AOT502 [AOS]

Clamped N-Channel MOSFET; 夹N沟道MOSFET
AOT502
型号: AOT502
厂家: ALPHA & OMEGA SEMICONDUCTORS    ALPHA & OMEGA SEMICONDUCTORS
描述:

Clamped N-Channel MOSFET
夹N沟道MOSFET

文件: 总7页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AOT502  
Clamped N-Channel MOSFET  
General Description  
Product Summary  
VDS  
Clamped  
60A  
AOT502 uses an optimally designed temperature  
compensated gate-drain zener clamp. Under overvoltage  
conditions, the clamp activates and turns on the MOSFET,  
safely dissipating the energy in the MOSFET.  
ID (at VGS=10V)  
RDS(ON) (at VGS=10V)  
< 11.5mΩ  
The built in resistor guarantees proper clamp operation  
under all circuit conditions, and the MOSFET never goes  
into avalanche breakdown. Advanced trench technology  
provides excellent low Rdson, gate charge and body diode  
characteristics, making this device ideal for motor and  
inductive load control applications.  
100% UIS Tested  
100% Rg Tested  
TO220  
D
Top View  
Bottom View  
D
10Ω  
G
G
S
D
D
S
S
G
Absolute Maximum Ratings TA=25°C unless otherwise noted  
Parameter  
Symbol  
VDS  
Maximum  
Clamped  
Clamped  
60  
Units  
Drain-Source Voltage  
Gate-Source Voltage  
V
V
VGS  
TC=25°C  
Continuous Drain  
Current  
Pulsed Drain Current C  
ID  
TC=100°C  
41  
A
A
IDM  
137  
TA=25°C  
TA=70°C  
9
7
Continuous Drain  
Current  
Avalanche Current C  
Avalanche energy L=0.1mH C  
IDSM  
IAS, AR  
I
28.5  
41  
A
EAS,EAR  
mJ  
TC=25°C  
Power Dissipation B  
TC=100°C  
79  
PD  
W
39  
TA=25°C  
1.9  
PDSM  
W
Power Dissipation A  
TA=70°C  
1.2  
TJ, TSTG  
Junction and Storage Temperature Range  
-55 to 175  
°C  
Thermal Characteristics  
Parameter  
Maximum Junction-to-Ambient A  
Maximum Junction-to-Ambient A D  
Maximum Junction-to-Case  
Symbol  
Typ  
13  
Max  
Units  
°C/W  
°C/W  
°C/W  
t
10s  
15.6  
65  
RθJA  
Steady-State  
Steady-State  
54  
RθJC  
1.6  
1.9  
Rev1: May 2009  
www.aosmd.com  
Page 1 of 7  
AOT502  
Electrical Characteristics (TJ=25°C unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Units  
STATIC PARAMETERS  
BVDSS(z)  
BVCLAMP  
IDSS(z)  
Drain-Source Breakdown Voltage  
Drain-Source Clamping Voltage  
Zero Gate Voltage Drain Current  
Gate-Source Voltage  
ID=10mA, VGS=0V  
ID=1A, VGS=0V  
33  
36  
V
44  
20  
V
VDS=16V, VGS=0V  
µA  
V
µA  
BVGSS  
IGSS  
VDS=0V, ID=250µA  
VDS=0V, VGS=±10V  
VDS=VGS, ID=250µA  
20  
Gate-Body leakage current  
Gate Threshold Voltage  
10  
VGS(th)  
ID(ON)  
1.6  
2.1  
2.7  
V
A
On state drain current  
VGS=10V, VDS=5V  
VGS=10V, ID=30A  
137  
9.3  
15.4  
55  
11.5  
18.5  
RDS(ON)  
Static Drain-Source On-Resistance  
mΩ  
TJ=125°C  
gFS  
VSD  
IS  
Forward Transconductance  
Diode Forward Voltage  
VDS=5V, ID=30A  
S
V
A
IS=1A, VGS=0V  
0.73  
1
Maximum Body-Diode Continuous Current  
75  
DYNAMIC PARAMETERS  
Ciss  
Coss  
Crss  
Rg  
Input Capacitance  
960  
185  
65  
1205  
266  
109  
20  
1450  
345  
pF  
pF  
pF  
VGS=0V, VDS=15V, f=1MHz  
Output Capacitance  
Reverse Transfer Capacitance  
Gate resistance  
155  
V
GS=0V, VDS=0V, f=1MHz  
10  
30.0  
SWITCHING PARAMETERS  
Qg  
Qgs  
Qgd  
tD(on)  
tr  
Total Gate Charge  
Gate Source Charge  
Gate Drain Charge  
Turn-On DelayTime  
Turn-On Rise Time  
Turn-Off DelayTime  
Turn-Off Fall Time  
18.5  
2.7  
4
23.4  
3.4  
7
28  
4
nC  
nC  
nC  
ns  
ns  
ns  
ns  
V
GS=10V, VDS=15V, ID=30A  
10  
13.5  
17.5  
63  
VGS=10V, VDS=15V, RL=0.5,  
RGEN=3Ω  
tD(off)  
tf  
27  
trr  
IF=30A, dI/dt=750A/µs  
IF=30A, dI/dt=750A/µs  
14  
Body Diode Reverse Recovery Time  
Body Diode Reverse Recovery Charge  
17.5  
67  
21  
80  
ns  
Qrr  
53.5  
nC  
A. The value of RθJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The Power  
dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the  
user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.  
B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper  
dissipation limit for cases where additional heatsinking is used.  
C. Repetitive rating, pulse width limited by junction temperature T J(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial  
TJ =25°C.  
D. The RθJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.  
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.  
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a  
maximum junction temperature of T J(MAX)=175°C. The SOA curve provides a single pulse rating.  
G. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C.  
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING  
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,  
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.  
Rev1: May 2009  
www.aosmd.com  
Page 2 of 7  
AOT502  
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS  
140  
120  
100  
80  
80  
60  
40  
20  
0
10V  
VDS=5V  
6V  
5V  
7V  
4.5V  
25°C  
60  
4V  
40  
125°C  
VGS=3.5V  
-40°C  
4
20  
0
2
2.5  
3
3.5  
VGS(Volts)  
4.5  
5
0
1
2
3
4
5
V
DS (Volts)  
Figure 2: Transfer Characteristics (Note E)  
Fig 1: On-Region Characteristics (Note E)  
14  
12  
10  
8
2.4  
2
VGS=10V  
ID=30A  
VGS=10V  
1.6  
1.2  
0.8  
0.4  
6
4
0
5
10  
15  
20  
25  
30  
-50  
0
50  
100  
150  
200  
ID (A)  
Temperature (°C)  
Figure 3: On-Resistance vs. Drain Current and  
Gate Voltage (Note E)  
Figure 4: On-Resistance vs. Junction Temperature  
(Note E)  
50  
40  
30  
20  
10  
0
1.0E+02  
1.0E+01  
ID=30A  
1.0E+00  
125°C  
1.0E-01  
1.0E-02  
1.0E-03  
1.0E-04  
1.0E-05  
125°C  
25°C  
-40°C  
25°C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
2
4
6
8
10  
VSD (Volts)  
VGS (Volts)  
Figure 6: Body-Diode Characteristics (Note E)  
Figure 5: On-Resistance vs. Gate-Source Voltage  
(Note E)  
Rev1: May 2009  
www.aosmd.com  
Page 3 of 7  
AOT502  
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
10  
VDS=15V  
ID=30A  
8
Ciss  
6
4
Crss  
Coss  
2
0
0
5
10  
15  
VDS (Volts)  
20  
25  
30  
0
5
10  
15  
20  
25  
Q
g (nC)  
Figure 7: Gate-Charge Characteristics  
Figure 8: Capacitance Characteristics  
1000  
800  
600  
400  
200  
0
1000.0  
100.0  
10.0  
1.0  
10µs  
TJ(Max)=175°C  
TC=25°C  
RDS(ON)  
limited  
DC  
100µs  
1ms  
10ms  
TJ(Max)=175°C  
TC=25°C  
0.1  
0.0  
0.01  
0.1  
1
10  
100  
0.0001  
0.001  
0.01  
0.1  
1
10  
VDS (Volts)  
Pulse Width (s)  
Figure 10: Single Pulse Power Rating Junction-to-  
Case (Note F)  
Figure 9: Maximum Forward Biased Safe  
Operating Area (Note F)  
10  
1
D=Ton/T  
In descending order  
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse  
TJ,PK=TC+PDM.ZθJC.RθJC  
RθJC=1.9°C/W  
0.1  
PD  
0.01  
0.001  
Ton  
Single Pulse  
0.0001  
T
0.000001  
0.00001  
0.001  
0.01  
0.1  
1
10  
Pulse Width (s)  
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)  
Rev1: May 2009  
www.aosmd.com  
Page 4 of 7  
AOT502  
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS  
1000  
100  
10  
100  
80  
60  
40  
20  
0
TA=25°C  
TA=100°C  
TA=125°C  
TA=150°C  
0
25  
50  
75  
100  
125  
150  
175  
1
10  
100  
1000  
Time in avalanche, tA (us)  
TCASE (°C)  
Figure 12: Single Pulse Avalanche capability (Note  
C)  
Figure 13: Power De-rating (Note F)  
10000  
1000  
100  
10  
80  
60  
40  
20  
TA=25°C  
1
0
0
0.00001  
0.001  
0.1  
10  
1000  
25  
50  
75  
100  
125  
150  
175  
T
CASE (°C)  
Pulse Width (s)  
Figure 15: Single Pulse Power Rating Junction-to-  
Ambient (Note H)  
Figure 14: Current De-rating (Note F)  
10  
1
D=Ton/T  
In descending order  
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse  
TJ,PK=TA+PDM.ZθJA.RθJA  
RθJA=65°C/W  
0.1  
0.01  
PD  
Single Pulse  
Ton  
0.001  
T
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Pulse Width (s)  
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)  
Rev1: May 2009  
www.aosmd.com  
Page 5 of 7  
AOT502  
TYPICAL PROTECTION CHARACTERISTICS  
2.00  
Trench BV  
1.50  
1.00  
0.50  
0.00  
BVCLAMP  
D
+
Vz  
-
BVDSS(Z)  
R
+
-
30  
35  
40  
45  
G
VDS (Volts)  
Fig 15: BVCLAMP Characteristic  
+
VPLATEAU  
This device uses built-in Gate to Source and Gate to Drain zener  
S
protection. While the Gate-Source zener protects against excessive  
VGS conditions, the Gate to Drain protection, clamps the VDS well  
below the device breakdown, preventing an avalanche condition  
within the MOSFET as a result of voltage over-shoot at the Drain  
electrode.  
-
It is designed to breakdown well before the device breakdown.  
During such an event, current flows through the zener clamp, which  
is situated internally between the Gate to Drain. This current flows at  
BVDSS(Z), building up the VGS internal to the device. When the current  
level through the zener reaches approximately 300mA, the VGS is  
approximately equal to VGS(PLATEAU), allowing significant channel  
conduction and thus clamping the Drain to Source voltage. The VGS  
needed to turn the device on is controlled with an internally lumped  
gate resistor R approximately equal to 10.  
60.00  
50.00  
40.00  
30.00  
20.00  
10.00  
0.00  
BVCLAMP25oC  
BVCLAMP 100oC  
VGS(PLATEAU)= 10x 300mA =3V  
It can also be said that the VDS during clamping is equal to:  
BVDSS = BVCLAMP + VGS(PLATEAU)  
0.00E+0 2.50E- 5.00E- 7.50E- 1.00E- 1.25E-  
05 05 05 04 04  
0
Additional power loss associated with the protection circuitry can be  
considered negligible when compare to the conduction losses of the  
MOSFET itself;  
Time in Avalanche (Seconds)  
Fig 16: Unclamped Inductive Switching  
EX:  
PL=30µAmax x 16V=0.48mW (Zener leakage loss)  
Fig16: The built-in Gate to Drain clamp prevents the device from going  
into Avalanche by setting the clamp voltage well below the actual  
breakdown of the device. When the Drain to Gate voltage approaches  
the BV clamp, the internal Gate to Source voltage is charged up and  
channel conduction occurs, sinking the current safely through the  
device. The BVCLAMP is virtually temperature independent, providing  
even greater protection during normal operation.  
PL(rds)=102A x 6m=300mW (MOSFET loss)  
Rev1: May 2009  
www.aosmd.com  
Page 6 of 7  
AOT502  
Gate Charge Test Circuit & Waveform  
Vgs  
Qg  
10V  
+
VDC  
+
Qgs  
Qgd  
Vds  
VDC  
-
-
DUT  
Vgs  
Ig  
Charge  
Resistive Switching Test Circuit & Waveforms  
RL  
Vds  
Vds  
90%  
10%  
+
DUT  
Vdd  
Vgs  
VDC  
Rg  
-
Vgs  
Vgs  
td(on)  
t
r
td(off)  
t
f
ton  
toff  
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms  
L
EAR= 1/2 LIA2R  
BVDSS  
Vds  
Id  
Vgs  
Vds  
+
Vgs  
Vdd  
I AR  
VDC  
Id  
Rg  
-
DUT  
Vgs  
Vgs  
Diode Recovery Test Circuit & Waveforms  
Qrr = - Idt  
Vds +  
Vds -  
Ig  
DUT  
Vgs  
trr  
L
Isd  
I F  
Isd  
Vgs  
dI/dt  
I RM  
+
Vdd  
VDC  
Vdd  
-
Vds  
Rev1: May 2009  
www.aosmd.com  
Page 7 of 7  

相关型号:

AOT5B60D

600V, 5A Alpha IGBT with Diode
AOS

AOT5N100

1000V,4A N-Channel MOSFET
AOS

AOT5N100

1000V,4A N-Channel MOSFET
FREESCALE

AOT5N50

500V, 5A N-Channel MOSFET
AOS

AOT5N60

600V, 5A N-Channel MOSFET
AOS

AOT5N60

600V,5A N-Channel MOSFET
FREESCALE

AOT5N60_10

600V,5A N-Channel MOSFET
AOS

AOT66920L

Power Field-Effect Transistor,
AOS

AOT7N60

600V, 7A N-Channel MOSFET
AOS

AOT7N60

600V,7A N-Channel MOSFET
FREESCALE

AOT7N60_10

600V,7A N-Channel MOSFET
AOS

AOT7N65

650V, 7A N-Channel MOSFET
AOS