TSX8308500GL [ATMEL]

ADC 8-bit 500 Msps; ADC的8位500 Msps的
TSX8308500GL
型号: TSX8308500GL
厂家: ATMEL    ATMEL
描述:

ADC 8-bit 500 Msps
ADC的8位500 Msps的

文件: 总50页 (文件大小:489K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Main Features  
8-bit Resolution  
500 Msps (min) Sampling Rate  
Power Consumption: 3.8W Typ  
500 mVpp Differential or Single-ended Analog Inputs  
Differential or Single-ended 50ECL Compatible Clock Inputs  
ECL or LVDS/HSTL Output Compatibility  
ADC Gain Adjust  
Data Ready Output with Asynchronous Reset  
Gray or Binary Selectable Output Data; NRZ Output Mode  
Enhanced CBGA Package with Ceramic Lid  
Evaluation Board: TSEV8308500GL (Detailed Specification on Request)  
Demultiplexer TS81102G0: Companion Device Available  
ADC 8-bit  
500 Msps  
Performance  
1.3 GHz Full Power Input Bandwidth  
Band Flatness: 0.5 dB up to 500 MHz  
SINAD = 45 dB (7.2 Effective Bits), SFDR = 54 dBc  
at FS = 500 Msps, FIN = 20 MHz  
TS8308500  
SINAD = 43 dB (7.1 Effective Bits), SFDR = 53 dBc  
at FS = 500 Msps, FIN = 250 MHz  
SINAD = 42 dB (7.0 Effective Bits), SFDR = 52 dBc  
at FS = 500 Msps, FIN = 500 MHz (-3 dB FS)  
2-tone IMD: TBD (199.5 MHz, 200.5 MHz) at 500 Msps  
DNL = ±0.3 LSB INL = ±0.7 LSB  
Low Bit Error Rate (10-13) at 500 Msps, Tj = 90°C  
Applications  
Digital Sampling Oscilloscopes  
Satellite Receiver  
Electronic Countermeasures/Electronic Warfare  
Direct RF Down-conversion  
Screening  
Atmel Standard Screening Level  
Temperature Range:  
0°C < Tc; Tj < +90°C  
-40°C < Tc ; Tj < + 110°C  
Description  
The TS8308500 is a monolithic 8-bit analog-to-digital converter, designed for digitizing  
wide bandwidth analog signals at very high sampling rates of up to 500 Msps.  
The TS8308500 is using an innovative architecture, including an on-chip Sample and  
Hold (S/H), and is fabricated with an advanced high-speed bipolar process.  
The on-chip S/H has a 1.3 GHz full power input bandwidth, providing excellent  
dynamic performance in undersampling applications (High IF digitizing).  
Rev. 2193A–BDC–046/03  
Functional  
Description  
Block Diagram  
Figure 1. Simplified Block Diagram  
GAIN  
Analog  
Encoding  
Block  
VIN VINB  
,
4
Resistor  
Chain  
Interpolation  
Stages  
Master/Slave Track & Hold Amplifier  
5
5
4
4
Regeneration  
Latches  
Error Correction &  
Decode Logic  
CLK, CLKB  
Clock  
Buffer  
8
Output Latches &  
Buffers  
8
GORB  
DATA, DATAB OR, ORB  
DRRB DR, DRB  
Functional  
Description  
The TS8308500 is an 8-bit 500 Msps ADC based on an advanced high-speed bipolar technol-  
ogy featuring a cutoff frequency of 25 GHz.  
The TS8308500 includes a front-end master/slave Track and Hold stage (S/H), followed by an  
analog encoding stage and interpolation circuitry.  
Successive banks of latches are regenerating the analog residues into logical data before  
entering an error correction circuitry and a resynchronization stage followed by 75differential  
output buffers.  
The TS8308500 works in fully differential mode from analog inputs up to digital outputs.  
The TS8308500 features a full-power input bandwidth of 1.3 GHz.  
Control pin GORB is provided to select either the Gray or Binary data output format.  
The gain control pin is provided in order to adjust the ADC gain.  
A Data Ready output asynchronous reset (DRRB) is available on TS8308500.  
The TS8308500 uses only vertical isolated NPN transistors together with oxide isolated poly-  
silicon resistors, which allow enhanced radiation tolerance (no performance drift measured at  
150 kRad total dose).  
2
TS8308500  
2193A–BDC–04/03  
TS8308500  
Specifications  
Absolute  
Maximum Ratings  
Table 1. Absolute Maximum Ratings  
Parameter  
Symbol  
VCC  
Comments  
Value  
Unit  
V
Positive supply voltage  
GND to 6  
GND to -5.7  
GND -0.3 to 2.8  
GND to -6  
0.3  
Digital negative supply voltage  
Digital positive supply voltage  
Negative supply voltage  
DVEE  
V
VPLUSD  
VEE  
V
V
Maximum difference between negative supply voltages  
Analog input voltages  
DVEE to VEE  
V
V
IN or VINB  
-1 to 1  
V
Maximum difference between VIN and VINB  
Digital input voltage  
VIN - VINB  
-2 to 2  
V
VD  
VD  
VO  
GORB  
DRRB  
-0.3 to VCC 0.3  
VEE -0.3 to 0.9  
VPLUSD -3 to VPLUSD -0.5  
-3 to 1.5  
V
Digital input voltage  
V
Digital output voltage  
V
Clock input voltage  
VCLK or VCLKB  
V
Maximum difference between VCLK and VCLKB  
Maximum junction temperature  
Storage temperature  
VCLK - VCLKB  
-2 to 2  
V
Tj  
135  
°C  
°C  
°C  
Tstg  
Tleads  
-65 to 150  
300  
Lead temperature (soldering 10s)  
Note:  
Absolute maximum ratings are limiting values (referenced to GND = 0V), to be applied individually, while other parameters are  
within specified operating conditions. Long exposure to maximum ratings may affect device reliability. The use of a thermal heat  
sink is mandatory (see Thermal characteristics).  
Recommended  
Conditions of Use  
Table 2. Recommended Conditions of Use  
Recommended Value  
Parameter  
Symbol  
VCC  
Comments  
Min  
Typ  
5
Max  
Unit  
V
Positive supply voltage  
Positive digital supply voltage  
Positive digital supply voltage  
Negative supply voltages  
4.75  
5.25  
VPLUSD  
VPLUSD  
ECL output compatibility  
LVDS output compatibility  
GND  
2.4  
-5  
V
1.4  
2.6  
V
V
EE, DVEE  
IN, VINB  
-5.25  
-4.75  
V
Differential analog input voltage  
(full-scale)  
V
50differential or single-ended  
50single-ended clock input  
±113  
450  
±125  
500  
±137  
550  
mV  
VIN - VINB  
mVpp  
Clock input power level  
P
CLK, PCLKB  
3
4
10  
dBm  
Operating temperature range  
Commercial grade: “C”  
Industrial grade “V“  
0 < Tc; Tj < 90  
°C  
TJ  
-40 < Tc; Tj < 110  
3
2193A–BDC–04/03  
Electrical  
VEE = DVEE = -5V; VCC = +5V; VIN -VINB = 500 mVpp Full Scale differential input  
Operating  
Characteristics  
50differentially terminated digital outputs  
Tj (typical) = 70°C  
Table 3. Electrical Specifications  
Value  
Typ  
Test  
Level  
Parameter  
Power Requirements  
Symbol  
Min  
Max  
Unit  
Note  
Positive supply voltage  
Analog  
Digital (ECL)  
Digital (LVDS)  
VCC  
1
4
4
4.5  
5
0
5.5  
V
V
V
VPLUSD  
VPLUSD  
1.4  
2.4  
2.6  
Positive supply current  
Analog  
Digital  
ICC  
1
1
420  
130  
445  
145  
mA  
mA  
IPLUSD  
Negative supply voltage  
Negative supply current  
VEE  
1
-5.5  
-5  
-4.5  
V
Analog  
Digital  
AIEE  
DIEE  
1
1
185  
160  
200  
180  
mA  
mA  
Nominal power dissipation  
Power supply rejection ratio  
Resolution  
PD  
PSRR  
1
4
3.9  
0.5  
4.1  
2
W
mW  
bits  
(2)  
8
Analog Inputs  
Full-scale input voltage range (differential mode)  
(0V common mode voltage)  
VIN  
4
-125  
-125  
125  
125  
mV  
mV  
VINB  
Full-scale input voltage range (single-ended input  
option) (14)  
VIN  
4
-250  
0
250  
mV  
mV  
VINB  
Analog input capacitance  
Input bias current  
CIN  
IIN  
4
4
4
4
4
3
3.5  
20  
pF  
µA  
10  
1
Input Resistance  
RIN  
0.5  
MΩ  
GHz  
GHz  
Full Power input Bandwidth (-3 dB)  
Small signal input Bandwidth (10% full-scale)  
Clock Inputs  
FPBW  
SSBW  
1.8  
1.7  
Logic compatibility for clock inputs (14)  
ECL or specified clock input  
power level in dBm  
(8)  
ECL Clock inputs voltages (VCLK or VCLKB):  
Logic 0 voltage  
VIL  
VIH  
IIL  
4
-1.5  
V
Logic 1 voltage  
-1.1  
V
Logic 0 current  
5
50  
50  
µA  
µA  
Logic 1 current  
IIH  
5
Clock input power level into 50termination  
dBm into 50Ω  
4
TS8308500  
2193A–BDC–04/03  
TS8308500  
Table 3. Electrical Specifications (Continued)  
Value  
Typ  
4
Test  
Level  
Parameter  
Clock input power level  
Clock input capacitance  
Digital Outputs  
Symbol  
Min  
-2  
Max  
10  
Unit  
dBm  
pF  
Note  
4
4
CCLK  
3
3.5  
(1)(6)  
Single-ended or differential input mode, 50% clock duty cycle (CLK, CLKB), binary output data format,  
Tj (typical) = 70°C. Full temperature range: 0°C < Tc; Tj < +90°C or -40°C < Tc ; Tj < 110°C  
Logic compatibility for digital outputs  
4
ECL or LVDS  
(14)  
(Depending on the value of VPLUSD  
)
Differential output voltage swings  
(assuming VPLUSD = 0V):  
75open transmission lines (ECL levels)  
75differentially terminated  
1.5  
1.620  
0.825  
0.660  
V
V
V
0.70  
0.54  
50differentially terminated  
Output levels (assuming VPLUSD = 0V)  
(6)  
(6)  
(6)  
4
75open transmission lines:  
Logic 0 voltage  
Logic 1 voltage  
VOL  
VOH  
-1.62  
-0.8  
-1.54  
V
V
-0.88  
Output levels (assuming VPLUSD = 0V)  
4
75differentially terminated:  
Logic 0 voltage  
Logic 1 voltage  
VOL  
VOH  
-1.41  
-1  
-1.34  
V
V
-1.07  
Output levels (assuming VPLUSD = 0V)  
50differentially terminated:  
Logic 0 voltage  
VOL  
VOH  
DOS  
1, 2  
1, 2  
4
-1.16  
270  
-1.40  
-1.10  
300  
-1.32  
V
V
Logic 1 voltage  
Differential Output Swing  
Output level drift with temperature  
DC Accuracy  
mV  
4
1.6  
mV/°C  
Single-ended or differential input mode, 50% clock duty cycle (CLK, CLKB), Binary output data format  
Tj (typical) = 70°C  
(2)(3)  
(2)(3)  
(3)  
Differential non linearity  
Differential non linearity  
Integral non linearity  
Integral non linearity  
No missing codes  
Gain  
DNL-  
DNL+  
INL-  
INL+  
1
1
1
1
-0.6  
-0.4  
0.4  
lsb/V  
lsb/V  
lsb/V  
lsb/V  
0.6  
-1.2  
-0.7  
0.7  
1.2  
Guaranteed over specified temperature range  
1, 2  
1, 2  
90  
98  
-5  
110  
26  
%/V  
Input offset voltage  
-26  
mV/V  
5
2193A–BDC–04/03  
Table 3. Electrical Specifications (Continued)  
Value  
Typ  
Test  
Level  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Gain error drift  
Offset error drift  
4
4
100  
40  
125  
50  
150  
60  
ppm/°C  
ppm/°C  
Transient Performance  
Bit error rate  
Error/  
sample  
(2)(4)  
BER  
4
1E-13  
FS = 500 Msps, FIN = 62.5 MHz  
ADC settling time  
(2)  
(2)  
TS  
4
4
0.5  
0.5  
1
1
ns  
ns  
VIN -VINB = 400 mVpp  
Overvoltage recovery time  
TOR  
AC Performance  
Single-ended or differential input and clock mode, 50% clock duty cycle (CLK, CLKB), binary output data format,  
Tj = 70°C, unless otherwise specified  
(2)  
Signal to noise and distortion ratio  
FS = 500 Msps, FIN = 20 MHz  
FS = 500 Msps, FIN = 500 MHz  
FS = 500 Msps, FIN = 1000 MHz (-1 dBFS)  
FS = 50 Msps, FIN = 25 MHz  
Effective number of bits  
SINAD  
4
4
4
1
4
4
4
1
4
4
4
1
43  
42  
38  
43  
45  
44  
40  
46  
dB  
dB  
dB  
dB  
ENOB  
FS = 500 Msps, FIN = 20 MHz  
FS = 500 Msps, FIN = 500 MHz  
FS = 500 Msps, FIN = 1000 MHz (-1 dBFS)  
FS = 50 Msps, FIN = 25 MHz  
Signal to noise ratio  
7.0  
6.8  
6.0  
7.0  
7.2  
7.0  
6.3  
7.4  
Bits  
Bits  
Bits  
Bits  
(2)  
SNR  
FS = 500 Msps, FIN = 20 MHz  
FS = 500 Msps, FIN = 500 MHz  
FS = 500 Msps, FIN = 1000 MHz (-1 dBFS)  
FS = 50 Msps, FIN = 25 MHz  
Total harmonic distortion  
44  
44  
40  
44  
46  
45  
43  
45  
dB  
dB  
dB  
dB  
(2)  
|THD|  
FS = 500 Msps, FIN = 20 MHz  
4
50  
53  
dB  
FS = 500 Msps, FIN = 500 MHz  
FS = 500 Msps, FIN = 1000 MHz (-1 dBFS)  
FS = 50 Msps, FIN = 25 MHz  
4
4
1
48  
38  
44  
50  
40  
54  
dB  
dB  
dB  
6
TS8308500  
2193A–BDC–04/03  
TS8308500  
Table 3. Electrical Specifications (Continued)  
Value  
Typ  
Test  
Level  
Parameter  
Spurious free dynamic range  
Symbol  
Min  
Max  
Unit  
Note  
(2)  
SFDR  
4
4
4
1
4
FS = 500 Msps, FIN = 20 MHz  
50  
50  
38  
50  
56  
dBc  
dBc  
dBc  
dBc  
FS = 500 Msps, FIN = 500 MHz  
FS = 500 Msps, FIN = 1000 MHz (-1 dBFS)  
FS = 50 Msps, FIN = 25 MHz  
53  
40  
55  
(2)  
Two-tone inter-modulation distortion  
FIN1 = 199.5 MHz at FS = 500 Msps,  
IMD  
-47  
-52  
dBc  
F
IN2 = 200.5 MHz at FS = 500 Msps  
Switching Performance and Characteristics – See Figure 2 and Figure 3 on page 9  
(12)  
(13)  
Maximum clock frequency  
Minimum clock frequency  
Minimum clock pulse width (high)  
Minimum clock pulse width (low)  
Aperture delay  
FS  
FS  
4
4
4
4
4
500  
10  
700  
50  
Msps  
Msps  
ns  
TC1  
TC2  
Ta  
1.71  
1.71  
100  
2
50  
2
50  
ns  
(2)  
+250  
0.4  
400  
0.6  
ps  
(2)(5)  
Aperture uncertainty  
Jitter  
ps (rms)  
(2)(8)  
Data output delay  
TDO  
4
1150  
1360  
1660  
ps  
(9)(10)  
(9)  
(9)  
Output rise/fall time for data (20%-80%)  
Output rise/fall time for data ready (20%-80%)  
Data ready output delay  
TR/TF  
TR/TF  
4
4
250  
250  
350  
350  
550  
550  
ps  
ps  
(2)(8)  
TDR  
TRDR  
4
4
4
1110  
1320  
720  
40  
1620  
1000  
80  
ps  
ps  
ps  
(9)(10)  
Data ready reset delay  
0
(7)(11)  
(12)  
Data to data ready – Clock low pulse width  
(See “Timing Diagrams” on page 9)  
TOD-TDR  
Data to data ready output delay (50% duty cycle) at  
1 Gsps (See “Timing Diagrams” on page 9)  
(2)(13)  
TD1  
TPD  
4
4
920  
960  
4
1000  
ps  
clock  
cycles  
Data pipeline delay  
Notes: 1. Differential output buffers are internally loaded by 75resistors. Buffer bias current = 11 mA  
2. See “Definition of Terms” on page 46  
3. Histogram testing based on sampling of a 10 MHz sinewave at 50 Msps  
4. Output error amplitude < ±4 lsb around worst code  
5. Maximum jitter value obtained for single-ended clock input on the die (chip on board): 200 fs  
6. Digital output back termination options depicted in Application Notes  
7. At 500 Msps, 50/50 clock duty cycle, TC2 = 2 ns (TC1). TDR - TOD = -100 ps (typ) does not depend on the sampling rate  
8. Specified loading conditions for digital outputs:  
- 50or 75controlled impedance traces properly 50/75terminated, or unterminated 75controlled impedance traces  
- Controlled impedance traces far end loaded by 1 standard ECLinPS register from Motorola. (i.e.: 10E452) (Typical input  
parasitic capacitance of 1.5 pF including package and ESD protections.)  
9. Termination load parasitic capacitance derating values:  
- 50or 75controlled impedance traces properly 50/75terminated: 60 ps/pF or 75 ps per additionnal ECLinPS load  
7
2193A–BDC–04/03  
- Unterminated (source terminated) 75controlled impedance lines: 100 ps/pF or 150 ps per additionnal ECLinPS termina-  
tion load  
10. Apply proper 50/75impedance traces propagation time derating values: 6 ps/mm (155 ps/inch) for TSEV8308500GL Eval-  
uation Board  
11. Values for TOD and TDR track each other over temperature, (1% variation for TOD-TDR per 100°C temperature variation).  
Therefore TOD-TDR variation over temperature is negligible. Moreover, the internal (on-chip) and package skews between  
each Data TODs and TDR effect can be considered negligible. Consequently, minimum values for TOD and TDR are never  
more than 100 ps apart. The same is true for the TOD and TDR maximum values (see Advanced Application Notes about  
“TOD-TDR Variation Over Temperature” on page 22).  
12. Min value guarantees performance. Max value guarantees functionality  
13. Min value guarantees functionality. Max value guarantees performance  
14. Refer to product Application Notes  
8
TS8308500  
2193A–BDC–04/03  
TS8308500  
Timing Diagrams  
Figure 2. TS8308500 Timing Diagram (500 Msps Clock Rate), Data Ready Reset, Clock Held at LOW Level  
TA = 250 ps  
X
N+5  
X
N+4  
X
N+3  
X
N+2  
X
N+1  
X
N
(VIN, VINB  
)
X
N-1  
TC = 1000 ps  
TC1 TC2  
(CLK, CLKB)  
TOD = 1360 ps  
TPD: 4.0 Clock periods  
1360 ps  
DIGITAL  
OUTPUTS  
1000 ps  
DATA  
N-5  
DATA  
N-4  
DATA  
N-3  
DATA  
N-2  
DATA  
N-1  
DATA  
N
DATA  
N+1  
TD1 = TC1+TDR-TOD  
= TC1-40 ps = 460 ps  
TDR = 1320 ps  
TDR = 1320 ps  
Data Ready  
(DR, DRB)  
TD2 = TC2+TOD-TDR  
= TC2+40 ps = 540 ps  
TRDR = 720 ps  
DRRB  
1 ns (min)  
Figure 3. TS8308500 Timing Diagram (500 Msps Clock Rate), Data Ready Reset, Clock Held at HIGH Level  
TA = 250 ps  
X
X
X
N+5  
X
N+4  
X
N+3  
X
N+2  
N+1  
N
(VIN, VINB  
)
X
N-1  
TC = 1000 ps  
TC1 TC2  
(CLK, CLKB)  
TPD: 4.0 Clock periods  
TOD = 1360 ps  
1360 ps  
1000 ps  
DIGITAL  
OUTPUTS  
DATA  
N-5  
DATA  
N-4  
DATA  
N-3  
DATA  
N-2  
DATA  
N-1  
DATA  
N
DATA  
N+1  
TD1 = TC1+TDR-TOD  
= TC1-40 ps = 460 ps  
TDR = 1320 ps  
TDR = 1320 ps  
Data Ready  
(DR, DRB)  
TD2 = TC2+TOD-TD  
= TC2+40 ps = 540  
TRDR = 720 ps  
DRRB  
1 ns (min)  
9
2193A–BDC–04/03  
Explanation of  
Test Levels  
Table 4. Explanation of Test Levels(3)  
Num  
Characteristics  
1
100% production tested at +25°C(1) (for “C” Temperature range(2))  
100% production tested at +25°C(1), and sample tested at specified temperatures  
2
3
4
5
(for “V” Temperature range(2))  
Sample tested only at specified temperatures  
Parameter is guaranteed by design and characterization testing (thermal steady-state  
conditions at specified temperature)  
Parameter is a typical value only  
Note:  
1. Unless otherwise specified, all tests are pulsed tests : therefore TC = TA where TC and TA are  
case and ambient temperature.  
2. Refer to “Ordering Information” on page 48.  
3. Only min and max values are guaranteed (typical values are issued from characterization  
results).  
Functions  
Description  
Table 5. Functions Description  
Name  
VCC  
Function  
Positive power supply  
Analog negative power supply  
Digital positive power supply  
Ground  
VPLUSD = +0V (ECL)  
VEE  
VCC = +5V  
VPLUSD = +2.4V (LVDS)  
VPLUSD  
GND  
VIN  
OR  
VIN, VINB  
CLK, CLKB  
Differential analog inputs  
Differential clock inputs  
Differential output data port  
VINB  
ORB  
CLK  
CLKB  
GAIN  
<D0:D7>  
D0  
16  
D7  
D7B  
TS8308500  
D0B  
<D0B:D7B>  
DR  
DR, DRB  
OR, ORB  
GAIN  
Differential data ready outputs  
Out of range outputs  
GORG  
DRB  
DIOD/  
DRRB  
ADC gain adjust  
GORB  
Gray or binary digital output select  
Die junction temperature measurement/  
asynchronous data ready reset  
DVEE = -5V VEE = -5V  
GND  
DIOD/DRRB  
10  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Digital Output  
Coding  
NRZ (Non Return to Zero) mode, ideal coding: does not include gain, offset, and linearity volt-  
age errors.  
Table 6. Digital Output Coding  
Digital Output  
Binary  
Gray  
Differential  
Analog Input  
Out of  
Range  
Voltage Level  
GORB = VCC or Floating  
GORB = GND  
> +251 mV  
> Positive full-scale + 1/2 LSB  
1 1 1 1 1 1 1 1  
1 0 0 0 0 0 0 0  
1
+251 mV  
+249 mV  
Positive full-scale + 1/2 LSB  
Positive full-scale - 1/2 LSB  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 0  
1 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 1  
0
0
+126 mV  
+124 mV  
Positive 1/2 scale + 1/2 LSB  
Positive 1/2 scale - 1/2 LSB  
1 1 0 0 0 0 0 0  
1 0 1 1 1 1 1 1  
1 0 1 0 0 0 0 0  
1 1 1 0 0 0 0 0  
0
0
+1 mV  
-1 mV  
Bipolar zero + 1/2 LSB  
Bipolar zero - 1/2 LSB  
1 0 0 0 0 0 0 0  
0 1 1 1 1 1 1 1  
1 1 0 0 0 0 0 0  
0 1 0 0 0 0 0 0  
0
0
-124 mV  
-126 mV  
Negative 1/2 scale + 1/2 LSB  
Negative 1/2 scale - 1/2 LSB  
0 1 0 0 0 0 0 0  
0 0 1 1 1 1 1 1  
0 1 1 0 0 0 0 0  
0 0 1 0 0 0 0 0  
0
0
-249 mV  
-251 mV  
Negative full-scale + 1/2 LSB  
Negative full-scale - 1/2 LSB  
0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
0
0
< -251 mV  
< Negative full-scale - 1/2  
LSB  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1
11  
2193A–BDC–04/03  
Typical  
Characterization  
Results  
50/50 clock duty cycle, Binary output coding, Tj = 70°C, single-ended analog and clock inputs,  
unless otherwise specified.  
Static Linearity  
FS = 50 Msps/FIN = 10 MHz  
Figure 4. Integral Non-linearity  
Note:  
Clock frequency = 50 Msps; signal frequency = 10 MHz  
Positive peak: -0.68 LSB; Negative peak: -0.69 LSB  
Figure 5. Differential Non-linearity  
Note:  
Clock frequency = 50 Msps; signal frequency = 10 MHz;  
Positive peak: 0.3 LSB; negative peak: -0.29 LSB  
12  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Effective Number  
of Bits Versus  
Power Supply  
Variation  
Figure 6. Effective Number of Bits = f (VEEA); FS = 500 Msps; FIN = 100 MHz  
8
7
6
5
4
3
2
1
0
-7  
-6.5  
-6  
-5.5  
-5  
-4.5  
-4  
VEEA (V)  
Figure 7. Effective Number of Bits = f (VCC); FS = 500 Msps; FIN = 100 MHz  
8
7
6
5
4
3
2
1
0
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
VCC (V)  
Figure 8. Effective Number of Bits = f (VEED); FS = 500 Msps; FIN = 100 MHz  
8
7
6
5
4
3
2
1
0
-6  
-5.5  
-5  
-4.5  
-4  
-3.5  
-3  
VEED (V)  
13  
2193A–BDC–04/03  
Typical FFT  
Results  
Figure 9. Spectrum for FS = 500 Msps, FIN = 498 MHz (Full Scale Input)  
Note:  
Acquisition of 4096 points; THD = -49.67 dBc; Fs = 500 Msps; SINAD = 44.01 dB; FIN = 498 MHz; SFDR = -54.31 dBc;  
SFSR = -0.94 dB; ENOB = 7.13 bits; SNR = 45.39 dB  
Figure 10. Reconstructed Signal for FS = 500 Msps, FIN = 498 MHz (Full Scale Input)  
LSB  
250  
200  
150  
100  
50  
0
0
1
ns  
Note:  
Acquisition of 4096 samples; FS = 500 Msps; Amplitude: 0.221V (114.5 LSB); FIN = 498 MHz; Offset: 0V (122.5 LSB)  
14  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Figure 11. Spectrum for FS = 500 Msps, FIN = 250 MHz (Full Scale Input)  
Figure 12. Reconstructed Signal for FS = 500 Msps, FIN = 250 MHz (Full Scale Input)  
Lsb  
250  
200  
150  
100  
50  
0
0
1
2
3
ns  
Note:  
Acquisition of 4096 samples; FS = 500 Msps ; Amplitude: 0.189V (113.5 LSB); FIN = 250 MHz ; Offset: 0V (122.5 LSB)  
15  
2193A–BDC–04/03  
Dynamic  
Performance  
Versus Analog  
Input Frequency  
Figure 13. SFDR: Fs = 500 Msps, FIN = 20 MHz up to 1000 MHz, -1dB Full Scale Input, Tj = 70°C  
SFDR  
60  
55  
50  
45  
40  
2
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Fin (MHz)  
Figure 14. THD: Fs = 500 Msps, FIN = 20 MHz up to 1000 MHz, -1dB Full Scale Input, Tj = 70°C  
THD  
-60  
-50  
-40  
-30  
-20  
-10  
0
2
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Fin (MHz)  
Figure 15. SINAD and SNR: Fs = 500 Msps, FIN = 20 MHz up to 1000 MHz, -1dB Full Scale Input, Tj = 70°C  
SINAD  
SNR  
48  
46  
44  
42  
40  
38  
36  
2
100  
200  
300  
400  
500  
Fin (MHz)  
600  
700  
800  
900  
1000  
16  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Figure 16. Fs = 500 Msps, FIN = 20 MHz up to 1000 MHz, -1dB Full Scale Input, Tj = 70°C  
ENOB  
7,5  
7
6,5  
6
5,5  
2
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Fin (MHz)  
SFDR and THD  
Versus Sampling Frequency  
Figure 17. Analog Input Frequency: FIN = 250 MHz and Fs = 200 Msps to 1400 Msps  
SFDR  
THD  
-60  
-50  
-40  
-30  
-20  
-10  
200  
400  
600  
800  
1000  
1200  
1400  
Fs (Msps)  
Effective Number of Bits (ENOB)  
Versus Sampling Frequency  
Figure 18. Analog Input Frequency: FIN = 250 MHz and Fs = 200 Msps to 1400 Msps  
ENOB  
8
7
6
5
4
3
2
1
200  
400  
600  
800  
1000  
1200  
1400  
Fs Msps  
17  
2193A–BDC–04/03  
Sinad and SNR  
Versus Sampling Frequency  
Figure 19. Analog Input Frequency: FIN = 250 MHz and FS = 200 Msps to 1400 Msps  
SINAD  
SNR  
50  
45  
40  
35  
30  
25  
20  
15  
10  
200  
400  
600  
800  
1000  
1200  
1400  
Fs (Msps)  
TS8308500 ADC Performances  
Versus Junction Temperature  
Figure 20. SFDR: FS = 500 Msps, FIN = 250 MHz, -1dB Full Scale Input, Tj = 0°C to 125°C  
SFDR  
53.0  
52.5  
52.0  
51.5  
51.0  
50.5  
50.0  
25  
0
50  
75  
100  
125  
Tj(°C)  
18  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Figure 21. THD: FS = 500 Msps, FIN = 250 MHz, -1dB Full Scale Input, Tj = 0°C to 125°C  
THD  
-60  
-50  
-40  
-30  
-20  
-10  
0
0
25  
50  
75  
100  
125  
Tj (°C)  
Figure 22. SINAD and SNR: FS = 500 Msps, FIN = 250 MHz, -1dB Full Scale Input, Tj = 0°C to 125°C  
SINAD  
SNR  
46.5  
46.0  
45.5  
45.0  
44.5  
44.0  
43.5  
0
25  
50  
75  
100  
125  
Tj (°C)  
Figure 23. ENOB: FS = 500 Msps, FIN = 250 MHz, -1dB Full Scale Input, Tj = 0°C to 125°C  
ENOB  
7.30  
7.25  
7.20  
7.15  
7.10  
7.05  
7.00  
0
25  
50  
75  
100  
125  
Tj (°C)  
19  
2193A–BDC–04/03  
Figure 24. Power Consumption Versus Junction Temperature: FS = 500 Msps; FIN = 250 MHz; Duty cycle = 50%  
5
4
3
2
1
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
160  
Temperature (°C)  
Typical Full Power  
Input Bandwidth  
Figure 25. Band Flatness at 1.3 GHz ; -3 dB (-2 dBm Full Power Input)  
0
-1  
-2  
-3  
-4  
-5  
-6  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
Frequency (MHz)  
20  
TS8308500  
2193A–BDC–04/03  
TS8308500  
ADC Step  
Response  
Test pulse input characteristics: 20% to 80% input full scale and rise time ~ 200 ps.  
Note: This step response was obtained with the TSEV8308500 chip on-board (device in die form).  
Figure 26. Test Pulse Digitized with 20 GHz DSO  
250  
200  
150  
100  
50  
0
Vpp ~ 260 mV  
Tr ~ 270 ps  
50 mV/div  
600 ps/div  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Time (ns)  
Figure 27. Same Test Pulse Digitized with TS8308500 ADC  
200  
150  
Tr ~ 330 ps  
50 codes/div (Vpp ~ 260 mV)  
600 ps/div  
100  
50  
0
0
0.6  
1.2  
1.8  
2.4  
3.0  
3.6  
4.2  
4.8  
5.4  
6.0  
Time (ns)  
Note:  
Ripples are due to the test setup (they are present on both measurements).  
21  
2193A–BDC–04/03  
TS8308500  
Main Features  
Timing  
Information  
Timing Value for  
TS8308500  
Timing values as defined in Table 3 on page 4 are advanced data, issuing from electric simu-  
lations and are the first characterization results fitted with measurements.  
Timing values are given for CBGA68 package inputs/outputs, taking into account package  
internal controlled impedance traces propagation delays, and specified termination loads.  
Propagation delays in 50/75impedance traces are NOT taken into account for TOD and  
TDR.  
Apply proper derating values corresponding to termination topology.  
The min/max timing values are valid over the full temperature range in the following  
conditions:  
Specified termination load (differential output Data and Data Ready):  
50resistor in parallel with 1 standard ECLinPS register from Motorola, (i.e.:  
10E452). (Typical ECLinPS inputs shows a typical input capacitance of 1.5 pF  
(including package and ESD protections). If addressing an output Dmux, take care  
if some Digital outputs do not have the same termination load and apply  
corresponding derating value given below  
Output Termination Load derating values for TOD and TDR:  
~ 35 ps/pF or 50 ps per additional ECLinPS load  
Propagation time delay derating values have also to be applied for TOD and TDR:  
~ 6 ps/mm (155 ps/inch) for TSEV8308500 Evaluation Board  
Apply proper time delay derating value if a different dielectric layer is used.  
Propagation Time  
Considerations  
TOD and TDR timing values are given from pin to pin and DO NOT include the additional  
propagation times between device pins and input/output termination loads. For the  
TSEV8308500 Evaluation Board, the propagation time delay is 6 ps/mm (155 ps/inch) corre-  
sponding to 3.4 (at 10 GHz) dielectric constant of the RO4003 used for the Board.  
If a different dielectric layer is used (for instance Teflon), use appropriate propagation time  
values.  
TD does NOT depend on propagation times because it is a differential data.  
(TD is the time difference between Data Ready output delay and digital Data output delay)  
TD is also the most straightforward data to measure, again because it is differential: TD can be  
measured directly onto termination loads, with matched oscilloscopes probes.  
TOD-TDR Variation  
Over Temperature  
Values for TOD and TDR track each other over temperature (1% variation for TOD-TDR per  
100°C temperature variation).  
Therefore TOD-TDR variation over temperature is negligible. Moreover, the internal (on-chip)  
and package skews between each Data TODs and TDR affect can be considered as  
negligible.  
22  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Consequently, minimum values for TOD and TDR are never more than 100 ps apart. The  
same is true for the TOD and TDR maximum values.  
In other words:  
If TOD is at 1150 ps, TDR will not be at 1620 ps (maximum time delay for TDR).  
If TOD is at 1660 ps, TDR will not be at 1110 ps (minimum time delay for TDR).  
However, external TOD-TDR values may be dictated by total digital data skews  
between every TODs (each digital data) and TDR: MCM board , bonding wires and  
output lines lengths differences, and output termination impedance mismatches.  
The external (on board) skew effect has NOT been taken into account for the specification of  
the minimum and maximum values for TOD-TDR.  
Principle of Operation  
The Analog input is sampled on the rising edge of the external clock input (CLK, CLKB) after  
TA (aperture delay) of typically 250 ps .  
The digitized data is available after 4 clock periods latency (pipeline delay (TPD), on clock ris-  
ing edge, after 1360 ps typical propagation delay TOD.)  
The Data Ready differential output signal frequency (DR, DRB) is half the external clock fre-  
quency, that is it switches at the same rate as the digital outputs.  
The Data Ready output signal (DR, DRB) switches on the external clock falling edge after a  
propagation delay TDR of typically 1320 ps.  
A Master Asynchronous Reset input command DRRB (ECL compatible single-ended input) is  
available for initializing the differential Data Ready output signal (DR, DRB).  
This feature is mandatory in certain applications using interleaved ADCs or using a single  
ADC with demultiplexed outputs. Actually, without Data Ready signal initialization, it is impos-  
sible to store the output digital data in a defined order.  
Principle of Data  
Ready Signal  
Control by DRRB  
Input Command  
Data Ready Output  
Signal Reset  
The Data Ready signal is reset on the falling edge of the DRRB input command, on the ECL  
logical low level (-1.8V). DRRB may also be tied to VEE = -5V for Data Ready output signal  
Master Reset. So long as DRRB remains at a logical low level, (or tied to VEE = -5V), the Data  
Ready output remains at logical zero and is independent of the external free running encoding  
clock.  
The Data Ready output signal (DR, DRB) is reset to logical zero after TRDR = 720 ps typical.  
TRDR is measured between the -1.3V point of the falling edge of the DRRB input command  
and the zero crossing point of the differential Data Ready output signal (DR, DRB).  
The Data Ready Reset command may be a pulse of 1 ns minimum time width.  
23  
2193A–BDC–04/03  
Data Ready Output  
Signal Restart  
The Data Ready output signal restarts on the DRRB command’s rising edge, ECL logical high  
levels (-0.8V). DRRB may also be grounded, or is allowed to float, for a normal free running  
Data Ready output signal.  
The Data Ready signal restart sequence depends on the logical level of the external encoding  
clock, at DRRB rising edge instant:  
The DRRB rising edge occurs when the external encoding clock input (CLK,CLKB) is  
LOW: The Data Ready output’s first rising edge occurs after half a clock period on the  
clock falling edge, after a delay time TDR = 1320 ps already defined hereabove.  
The DRRB rising edge occurs when external encoding clock input (CLK,CLKB) is HIGH:  
The Data Ready output’s first rising edge occurs after one clock period on the clock falling  
edge, and a delay TDR = 1320 ps.  
Consequently, as the analog input is sampled on the clock’s rising edge, the first digitized data  
corresponding to the first acquisition (N) after a Data Ready signal restart (rising edge) is  
always strobed by the third rising edge of the Data Ready signal.  
The time delay (TD1) is specified between the last point of a change in the differential output  
data (zero crossing point) to the rising or falling edge of the differential Data Ready signal  
(DR,DRB) (zero crossing point).  
Note:  
1. For normal initialization of the Data Ready output signal, the external encoding clock signal  
frequency and level must be controlled. The minimum encoding clock sampling rate for the  
ADC is 10 Msps and consequently the clock cannot be stopped.  
2. One single pin is used for both the DRRB input command and die junction temperature  
monitoring. Pin denomination will be DRRB/DIOD. (On former versions the denomination  
was DIOD.). Temperature monitoring and Data Ready control by DRRB is not possible  
simultaneously.  
Analog Inputs (VIN,  
The analog input Full Scale range is 0.5V, or -2 dBm into the 50termination resistor.  
VINB  
)
In differential mode input configuration, that means 0.25V on each input, or ±125 mV around  
0V. The input common mode is ground.  
The typical input capacitance is 3 pF for TS8308500 in a CBGA package.  
Differential Input  
Voltage Span  
Figure 28. Differential Input Voltage Span  
[mV]  
VIN  
VINB  
125  
500 mV  
Full Scale  
250 mV  
-250 mV  
0V  
analog input  
-125  
t
(VIN, VINB) = 250 mV = 500 mV diff  
24  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Differential Versus  
Single-ended Analog  
Input Operation  
The TS8308500 can operate at full speed in either the differential or single-ended  
configuration.  
This is explained by the fact the ADC uses a high input impedance differential preamplifier  
stage, (preceeding the sample and hold stage), which has been designed in order to be  
entered either in differential mode or single-ended mode.  
This is true so long as the out-of-phase analog input pin VINB is 50terminated very closely to  
one of the neighboring shield ground pins (52, 53, 58, 59) which constitute the local ground  
reference for the in-phase analog input pin (VIN).  
Thus the differential analog input preamplifier will fully reject the local ground noise (and any  
capacitively and inductively coupled noise) as common mode effects.  
In a typical single-ended configuration, enter on the (VIN) input pin, with the inverted phase  
input pin (VINB) grounded through the 50termination resistor.  
In a single-ended input configuration, the in-phase input amplitude is 0.5V, centered on 0V (or  
-2 dBm into 50). The inverted phase input is at ground potential through the 50termination  
resistor.  
However, dynamic performances can be somewhat improved by entering either analog or  
clock inputs in differential mode.  
Typical Single-ended  
Analog Input  
Configuration  
Figure 29. Typical Single-ended Analog Input Configuration  
[mV]  
VIN or VINB double pad (pins 54, 55 or 56, 57)  
VIN or VINB  
V
IN  
250  
500 mV  
500 mV  
Full Scale  
VINB = 0V  
1 MΩ  
3 pF  
50Ω  
(on package)  
analog input  
VINB  
-250  
t
VIN = 250 mV = 500 mV diff  
50reverse termination  
Clock Inputs (CLK,  
CLKB)  
The TS8308500 can be clocked at full speed without noticeable performance degradation in  
either the differential or single-ended configuration.  
This is explained by the fact the ADC uses a differential preamplifier stage for the clock buffer,  
which has been designed in order to be entered either in differential or single-ended mode.  
The recommended sinewave generator characteristics are typically -120 dBc/Hz phase noise  
floor spectral density, at 1 kHz from carrier, assuming a single tone 4 dBm input for the clock  
signal.  
Single-ended Clock  
Input (Ground  
Common Mode)  
Although the clock inputs were intended to be driven differentially with nominal -0.8V/-1.8V  
ECL levels, the TS8308500 clock buffer can manage a single-ended sinewave clock signal  
centered around 0V. This is the most convenient clock input configuration as it does not  
require the use of a power splitter.  
25  
2193A–BDC–04/03  
No performance degradation (i.e.: due to timing jitter) is observed in this particular single-  
ended configuration up to 500 Msps Nyquist Conditions (FIN = 250 MHz).  
This is all the more so since the inverted phase clock input pin is 50terminated on the pack-  
age (that is very close to one of the neighboring shield ground pins, which constitutes the local  
ground reference for the inphase clock input).  
Thus the TS8308500 differential clock input buffer will fully reject the local ground noise (and  
any capacitively and inductively coupled noise) as common mode effects. Moreover, a very  
low phase noise sinewave generator must be used for enhanced jitter performance.  
The typical in-phase clock input amplitude is 1V, centered on 0V (ground) common mode. This  
corresponds to a typical clock input power level of 4 dBm into the 50termination resistor. Do  
not exceed 10 dBm to avoid saturation of the preamplifier input transistors.  
Figure 30. Single-ended Clock Input (Ground Common Mode):  
VCLK common mode = 0V; VCLKB = 0V; 4 dBm typical clock input power level (into 50termination resistor)  
CLK or CLKB double pad (pins 37, 38 or 39, 40)  
[V]  
VCLK  
+0.5V  
CLK or CLKB  
1 MΩ  
0.4 pF  
50Ω  
(on package)  
VCLK = 0V  
VCLK  
-0.5V  
t
50reverse termination  
Note:  
Do not exceed 10 dBm into the 50termination resistor for the single clock input power level.  
Differential ECL Clock  
Input  
The clock inputs can be driven differentially with nominal -0.8V/-1.8V ECL levels.  
In this mode, a low-phase noise sinewave generator can be used to drive the clock inputs, fol-  
lowed by a power splitter (hybrid junction) in order to obtain 180° out of phase sinewave  
signals. Biasing tees can be used for offseting the common mode voltage to ECL levels.  
Note: As the biasing tees propagation times are not matching, a tunable delay line is required  
in order to ensure the signals are 180° out of phase, especially at fast clock rates in the  
500 Msps range.  
Figure 31. Differential Clock Inputs (ECL Levels)  
[mV]  
CLK or CLKB double pad (pins 37, 38 or 39, 40)  
CLK or CLKB  
VCLK  
-0.8V  
VCLKB  
1 MΩ  
0.4 pF  
Common mode = -1.3V  
50Ω  
(on package)  
-2V  
-1.8V  
t
50reverse termination  
26  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Single-ended ECL  
Clock Input  
In a single-ended configuration, enter at CLK (resp. CLKB) pin, with the inverted phase clock  
input pin CLKB (respectively CLK) connected to -1.3V through the 50termination resistor.  
The in-phase input amplitude is 1V, centered on -1.3V common mode.  
Figure 32. Single-ended Clock Input (ECL):  
VCLK common mode = -1.3V; VCLKB = -1.3V  
[V]  
VCLK  
-0.8V  
VCLKB = -1.3V  
-1.8V  
t
Noise Immunity  
Information  
Circuit noise immunity performance begins at design level.  
Efforts have been made to the design to make it as insensitive as possible to chip environment  
perturbations resulting from the circuit itself or induced by external circuitry. (Cascode stage  
isolation, internal damping resistors, clamps, internal (on-chip) decoupling capacitors.)  
Furthermore, the fully differential operation from the analog input up to the digital outputs pro-  
vides enhanced noise immunity with common mode noise rejection.  
Common mode noise voltage induced on the differential analog and clock inputs will be can-  
celed out by these balanced differential amplifiers.  
Moreover, proper active signal shielding has been provided on the chip to reduce the amount  
of coupled noise on the active inputs.  
The analog inputs and clock inputs of the TS8308500 device have been surrounded by ground  
pins, which must be directly connected to the external ground plane.  
Digital Outputs  
The TS8308500 differential output buffers are internally loaded with 75. The 75resistors  
are connected to the digital ground pins through a -0.8V level shift diode (see Figure 33, Fig-  
ure 34, Figure 35 on page 29).  
The TS8308500 output buffers are designed for driving 75(default) or 50properly termi-  
nated impedance lines or coaxial cables. An 11 mA bias current flowing alternately into one of  
the 75resistors when switching ensures a 0.825V voltage drop across the resistor (untermi-  
nated outputs).  
The VPLUSD positive supply voltage allows the adjustment of the output common mode level  
from -1.2V (VPLUSD = 0V for ECL output compatibility) to +1.2V (VPLUSD = 2.4V for LVDS output  
compatibility).  
Therefore, the single-ended output voltages vary approximately between -0.8V and -1.625V,  
(outputs unterminated), around -1.2V common mode voltage.  
27  
2193A–BDC–04/03  
Three possible line driving and back-termination scenarios are proposed  
(assuming VPLUSD = 0V):  
1. 75impedance transmission lines, 75differentially terminated (Figure 33):  
Each output voltage varies between -1V and -1.42V (respectively +1.4V and +1V), leading  
to ±0.41V = 0.825V in differential, around -1.21V (respectively +1.21V) common mode for  
VPLUSD = 0V (respectively 2.4V)  
2. 50impedance transmission lines, 50differentially terminated (Figure 34):  
Each output voltage varies between -1.02V and -1.35V (respectively +1.38V and +1.05V),  
leading to ±0.33V = 660 mV in differential, around -1.18V (respectively +1.21V) common  
mode for VPLUSD = 0V (respectively 2.4V)  
3. 75impedance open transmission lines (Figure 35):  
Each output voltage varies between -1.6V and -0.8V (respectively +0.8V and +1.6V),  
which are true ECL levels, leading to ±0.8V = 1.6V in differential, around -1.2V (respec-  
tively +1.2V) common mode for VPLUSD = 0V (respectively 2.4V)  
Therefore, it is possible to directly drive high input impedance storing registers, without  
terminating the 75transmission lines.  
In the time domain, that means that the incident wave will reflect at the 75transmission  
line output and travel back to the generator (i.e.: the 75data output buffer). As the buffer  
output impedance is 75, no back reflection will occur.  
Note:  
This is no longer true if a 50transmission line is used, as the latter is not matching the buffer  
75output impedance.  
Each differential output termination length must be kept identical.  
It is recommended to decouple the midpoint of the differential termination with a 10 nF capaci-  
tor to avoid common mode perturbation in case of slight mismatch in the differential output line  
lengths.  
Too large mismatches (keep < a few mm) in the differential line lengths will lead to switching  
currents flowing into the decoupling capacitor leading to switching ground noise.  
The differential output voltage levels (75or 50termination) are not ECL standard voltage  
levels, however, it is possible to drive standard logic ECL circuitry like the ECLinPS logic line  
from Motorola®.  
28  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Differential Output Loading Configurations (Levels for ECL Compatibility)  
Figure 33. Differential Output: 75Terminated  
VPLUSD = 0V  
-0.8V  
Out  
-1V/-1.41V  
75Ω  
75Ω  
75Ω  
75Ω  
Differential output:  
+0.41V = 0.825V  
75Ω  
Common mode level: -1.2V  
(-1.2V below VPLUSD level)  
75Ω  
impedance  
10 nF  
+
-
OutB -1.41V/-1V  
11 mA  
DVEE  
Figure 34. Differential Output: 50Terminated  
VPLUSD = 0V  
-0.8V  
Out  
-1.02V/-1.35V  
75Ω  
75Ω  
50Ω  
50Ω  
Differential output:  
+0.33V = 0.660V  
50Ω  
Common mode level: -1.2V  
(-1.2V below VPLUSD level)  
50Ω  
impedance  
10 nF  
+
-
OutB -1.35V/-1.02V  
11 mA  
DVEE  
Figure 35. Differential Output: Open Loaded  
VPLUSD = 0V  
-0.8V  
Out  
-0.8V/-1.6V  
75Ω  
75Ω  
Differential output:  
+0.8V = 1.6V  
75Ω  
Common mode level: -1.2V  
(-1.2V below VPLUSD level)  
75Ω  
impedance  
+
-
OutB -1.6V/-0.8V  
11 mA  
DVEE  
29  
2193A–BDC–04/03  
Differential Output Loading Configurations (Levels for LVDS Compatibility)  
Figure 36. Differential Output: 75Terminated  
VPLUSD = 2.4V  
1.6V  
Out  
1.4V/0.99V  
75Ω  
75Ω  
75Ω  
75Ω  
Differential output:  
+0.41V = 0.825V  
75Ω  
Common mode level: -1.2V  
(-1.2V below VPLUSD level)  
75Ω  
impedance  
10 nF  
+
-
OutB 0.99V/1.4V  
11 mA  
DVEE  
Figure 37. Differential Output: 50Terminated  
VPLUSD = 2.4V  
1.6V  
Out  
1.38V/1.05V  
75Ω  
75Ω  
50Ω  
50Ω  
Differential output:  
+0.33V = 0.660V  
50Ω  
Common mode level: -1.2V  
(-1.2V below VPLUSD level)  
50Ω  
impedance  
10 nF  
+
-
OutB 1.05V/1.38V  
11 mA  
DVEE  
Figure 38. Differential Output: Open Loaded  
VPLUSD = 2.4V  
1.6V  
Out  
1.6V/0.8V  
75Ω  
75Ω  
Differential output:  
+0.8V = 1.6V  
75Ω  
Common mode level: -1.2V  
(-1.2V below VPLUSD level)  
75Ω  
impedance  
+
-
OutB 0.8V/1.6V  
11 mA  
DVEE  
30  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Out of Range Bit  
An Out of Range (OR, ORB) bit that goes to logical high state when the input exceeds the pos-  
itive full scale or falls below the negative full scale is available.  
When the analog input exceeds the positive full-scale, the digital output datas remain at a high  
logical state, with (OR, ORB) at logical one.  
When the analog input falls below the negative full-scale, the digital outputs remain at a logical  
low state, with (OR, ORB) at logical one again.  
Gray or Binary  
Output Data  
Format Select  
The TS8308500 internal regeneration latches indecisions (for inputs very close to a latch  
threshold) that can produce errors in the logic encoding circuitry and lead to large amplitude  
output errors.  
This is due to the fact that the latches are regenerating the internal analog residues into logical  
states with a finite voltage gain value (Av) within a given positive amount of time (t):  
Av = exp((t)/τ), where τ is the positive feedback regeneration time constant.  
The TS8308500 has been designed to reduce the probability of occurrence of such errors to  
approximately 10-13 (targeted for the TS8308500 at 500 Msps).  
A standard technique for reducing the amplitude of such errors down to ±1 LSB consists in  
outputing the digital data in Gray code format. Though the TS8308500 has been designed to  
feature a bit error rate of 10-13 with a binary output format, it is possible for the user to select  
between the Binary or Gray output data format, in order to reduce the amplitude of such errors  
when they occur, by storing Gray output codes.  
Digital Data format selection:  
BINARY output format if GORB is floating or VCC  
.
GRAY output format if GORB is connected to ground (0V).  
Diode Pin K1  
A single pin is used for both the DRRB input command and die junction monitoring. The pin  
denomination is DRRB/DIOD. Temperature monitoring and Data Ready control by DRRB is  
not possible simultaneously.  
(See “Principle of Data Ready Signal Control by DRRB Input Command” on page 23 for Data  
Ready Reset input command).  
The operating die junction temperature must be kept below 145°C, therefore an adequate  
cooling system has to be set up. The diode mounted transistor measured Vbe value versus  
junction temperature is given below.  
31  
2193A–BDC–04/03  
Figure 39. Diode Pin K1  
1000  
960  
920  
880  
840  
800  
760  
720  
680  
640  
600  
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
125  
Junction temperature (°C)  
ADC Gain Control  
Pin K6  
The ADC gain is adjustable by means of the pin K6 (input impedance is 1 Min parallel with 2  
pF).  
The gain adjust transfer function is given below:  
Figure 40. ADC Gain Control Pin K6  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
-500  
-400  
-300  
-200  
-100  
0
100  
200  
300  
400  
500  
Vgain (command voltage) (mV)  
32  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Equivalent  
Input/Output  
Schematics  
Figure 41. Equivalent Analog Input Circuit and ESD Protections  
VCC = +5V  
VCC  
VCLAMP = +2.4V  
-0.8V  
-0.8V  
-5.8V  
GND  
GND = 0V  
-5.8V  
+1.65V  
50Ω  
50Ω  
E21V  
E21V  
VEE  
VEE  
200Ω  
200Ω  
VIN  
VINB  
Pad  
capacitance  
340 fF  
Pad  
capacitance  
340 fF  
5.8V  
5.8V  
0.8V  
-1.55V  
0.8V  
E21G  
E21G  
VEE = -5V  
Note:  
The ESD protection equivalent capacitance is 150 fF.  
Figure 42. Equivalent Analog Clock Input Circuit and ESD Protections  
VCC  
VCC = +5V  
+0.8V  
-5.8V  
-0.8V  
-5.8V  
-5.8V  
-5.8V  
GND = 0V  
-5.8V  
VEE  
VEE  
E31V  
E31V  
150Ω  
150Ω  
CLK  
CLKB  
Pad  
capacitance  
340 fF  
Pad  
capacitance  
340 fF  
5.8V  
5.8V  
0.8V  
380 µA  
0.8V  
E21G  
E21G  
VEE = -5V  
Note:  
The ESD protection equivalent capacitance is 150 fF.  
33  
2193A–BDC–04/03  
Figure 43. Equivalent Data Output Buffer Circuit and ESD Protections  
VPLUSD = 0V to 2.4V  
-5.8V  
-5.8V  
E01V  
E01V  
VEE  
VEE  
OUT  
OUTB  
5.8V  
5.8V  
Pad  
capacitance  
180 fF  
Pad  
capacitance  
180 fF  
0.8V  
0.8V  
0.8V  
0.8V  
DVEE = -5V  
VEE = -5V  
VEE = -5V  
Note:  
The ESD protection equivalent capacitance is 150 fF.  
Figure 44. ADC Gain Adjust Equivalent Input Circuits and ESD Protections  
VCC = +5V  
GND  
-0.8V  
+0.8V  
NP1032C2  
-5.8V  
E22V  
1 kΩ  
GA  
Pad  
capacitance  
180 fF  
0.8V  
2 pF  
0.8V  
5.8V  
GND  
500 µA  
500 µA  
E22GA  
VEE  
VEE = -5V  
Note:  
The ESD protection equivalent capacitance is 150 fF.  
34  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Figure 45. GORB Equivalent Input Schematic and ESD Protections  
GORB: gray or binary select input; floating or tied to VCC -> binary  
VCC = +5V  
-0.8V  
-0.8V  
-5.8V  
1 kΩ  
1 kΩ  
1 kΩ  
E21VA  
VEE  
5 kΩ  
GORB  
Pad  
capacitance  
180 fF  
5.8V  
5.8V  
5.8V  
250 µA  
250 µA  
E31G  
VEE = -5V  
GND = 0V  
Note:  
The ESD protection equivalent capacitance is 150 fF.  
Figure 46. DRRB Equivalent Input Schematic and ESD Protections  
Actual protection range: 6.6V above VEE, in fact stress above GND are clipped by the CB diode used for Tj monitoring  
VCC = +5V  
GND = 0V  
NP1032C2  
10 kΩ  
200Ω  
DRRB  
-1.3V  
Pad  
capacitance  
180 fF  
-2.6V  
5.8V  
0.8V  
E21G  
VEE  
VEE = -5V  
Note:  
The ESD protection equivalent capacitance is 150 fF.  
35  
2193A–BDC–04/03  
TSEV8308500:  
Device Evaluation Board  
For complete specification, see the separate “TSEV8308500” document.  
General  
Description  
The TSEV8308500 Evaluation Board (EB) is a board which has been designed in order to  
facilitate the evaluation and the characterization of the TS8308500 device up to its 1.3 GHz full  
power bandwidth at up to 500 Msps in the commercial temperature range.  
The high speed of the TS8308500 requires careful attention to circuit design and layout to  
achieve optimal performance.  
This four metal layer board with internal ground plane has the adequate functions in order to  
allow a quick and simple evaluation of the TS8308500 ADC performances over the tempera-  
ture range.  
The TSEV8308500 Evaluation Board is very straightforward as it only implements the  
TS8308500 ADC, SMA connectors for input/output accesses and a 2.54 mm pitch connector  
compatible with HP16500C high frequency probes.  
The board also implements a de-embedding fixture in order to facilitate the evaluation of the  
high frequency insertion loss of the input microstrip lines, and a die junction temperature mea-  
surement setting.  
The board is constituted by a sandwich of two dielectric layers, featuring low insertion loss and  
enhanced thermal characteristics for operation in the high frequency domain and extended  
temperature range.  
The board dimensions are 130 mm x 130 mm.  
The board set comes fully assembled and tested, with the TS8308500 and its heatsink  
installed.  
36  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Package  
Description  
Table 7. TS8308500 Pad Description  
Pad number  
Chip Pad Name  
Chip Pad Function  
1
VPLUSD  
Positive digital supply (double pad)(2)  
In-phase (+) digital output, bit 5  
(D7 is the MSB; Bit 7, D0 is the LSB; Bit 0)  
2
D5  
3
D5B  
D4  
Inverted phase (-) digital output, bit 5  
In-phase (+) digital output, bit 4  
Inverted phase (-) digital output, bit 4  
-5V digital supply (double pad)  
In-phase (+) Data Ready  
4
5
D4B  
DVEE  
DR  
6
7
8
DRB  
D3  
Inverted phase (-) Data Ready  
In-phase (+) digital output, bit 3  
Inverted phase (-) digital output, bit 3  
Positive digital supply (double pad)(2)  
In-phase (+) digital output, bit 2  
Inverted phase (-) digital output, bit 2  
In-phase (+) digital output, bit 1  
Inverted phase (-) digital output, bit 1  
In-phase (+) digital output, bit 0, Least Significant Bit  
Inverted phase (-) digital output, bit 0, Least Significant Bit  
Gray or Binary data output format select(1)  
+5V supply (double pad)  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
D3B  
VPLUSD  
D2  
D2B  
D1  
D1B  
D0  
D0B  
GORG  
VCC  
GND  
VCC  
Analog ground (double pad)  
+5V supply (double pad)  
VEE  
-5V analog supply (double pad)  
+5V supply (double pad)  
VCC  
GND  
CLK  
GND  
CLKB  
GND  
VEE  
Analog ground (double pad)  
In-phase (+) clock input (double pad)  
Analog ground  
Inverted phase (-) clock input (double pad)  
Analog ground (double pad)  
-5V analog supply (double pad)  
+5V supply (double pad)  
VCC  
VEE  
-5V analog supply (double pad)  
DIOD/DRRB  
GND  
Diode input for Tj monitoring/Input for asynchronous Data Ready Reset  
Analog ground  
37  
2193A–BDC–04/03  
Table 7. TS8308500 Pad Description (Continued)  
Pad number  
Chip Pad Name  
Chip Pad Function  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
VIN  
GND  
VINB  
GND  
GAIN  
VCC  
In-phase (+) analog input (double pad)  
Analog ground  
Inverted phase (-) analog input (double pad)  
Analog ground (double pad)  
ADC gain adjust input  
+5V supply (double pad)  
VCC  
+5V supply  
OR  
In-phase (+) Out of Range digital output  
Inverted phase (-) Out of Range digital output  
In-phase (+) digital output, bit 7, Most Significant Bit  
Inverted phase (-) digital output bit 7  
In-phase (+) digital output, bit 6  
Inverted phase (-) digital output, bit 6  
ORB  
D7  
D7B  
D6  
D6B  
Notes: 1. GORB tied to VCC or floating: Binary output data format. GORB tied to GND: Gray output data format.  
2. The common mode level of the output buffers is 1.2V below the positive digital supply.  
For ECL compatibility the positive digital supply must be set at 0V (ground).  
For LVDS compatibility (output common mode at +1.2V) the positive digital supply must be set at 2.4V.If the subsequent  
LVDS circuitry can withstand a lower level for input common mode, it is remmended to lower the positive digital supply level  
in the name proportion in order to spare power dissipation.  
38  
TS8308500  
2193A–BDC–04/03  
TS8308500  
TS8308500  
Pin Description  
(CBGA68 package)  
Table 8. TS8308500 Pin Description  
Symbol  
Pin number  
Function  
GND  
Ground pins, to be connected to external ground plane  
A2, A5, B1, B5, B10, C2, D2, E1, E2, E11,  
F1, F2, G11, K2, K3, K4, K5, K10, L2, L5  
VCC  
VEE  
DVEE  
VIN  
A4, A6, B2, B4, B6, H1, H2, L6, L7  
A3, B3, G1, G2, J1, J2  
F10, F11  
+5V positive supply  
5V analog negative supply  
-5V digital negative supply  
In-phase (+) analog input signal of the Sample and Hold  
differential preamplifier  
L3  
VINB  
CLK  
L4  
Inverted phase (-) of ECL clock input signal (CLK)  
In-phase (+) ECL clock input signal. The analog input is  
sampled and held on the rising edge of the CLK signal  
C1  
CLKB  
D1  
Inverted phase (-) of ECL clock input signal (CLK)  
B0, B1, B2, B3, B4, B5,  
B6, B7  
In-phase (+) digital outputs. B0 is the LSB, B7 is the MSB  
A8, A9, A10, D10, H11, J11, K9, K8  
B0B, B1B, B2B, B3B,  
B4B, B5B, B6B, B7B  
Inverted phase (-) Digital outputs. B0B is the inverted LSB  
B7B is the inverted MSB  
B7, B8, B9, C11, G10, H10, L10, L9  
K7  
OR  
In-phase (+) Out of Range bit. Out of Range is high on the  
leading edge of code 0 and code 256  
ORB  
DR  
L8  
Inverted phase (+) of Out of Range bit (OR)  
In-phase (+) output of Data Ready signal  
E10  
D11  
DRB  
GORB  
Inverted phase (-) output of Data Ready signal (DR)  
Gray or Binary select output format control pin  
A7  
K6  
K1  
– Binary output format if GORB is floating or VCC  
– Gray output format if GORB is connected at ground (0V)  
GAIN  
ADC gain adjust pin. The gain pin is grounded by default,  
the ADC gain transfer fuction is nominally close to one  
DIOD/DRRB  
Die function temperature measurement pin and  
asynchronous data ready reset active low, single ended  
ECL input  
VPLUSD  
NC  
B11, C10, J10, K11  
A1, A11, L1, L11  
+ 2.4V for LVDS output levels otherwise to GND(1)  
Not connected  
Note:  
1. The common mode level of the output buffers is 1.2V below the positive digital supply  
For ECL compatibility the positive digital supply must be set at 0V (ground )  
For LVDS compatibility (output common mode at +1.2V) the positive digital supply must be set at 2.4V  
If the subsequent LVDS circuitry can withstand a lower level for the input common mode, it is recommended to lower the  
positive digital supply level in the same proportion in order to spare power dissipation  
39  
2193A–BDC–04/03  
TS8308500GL  
Pinout of CBGA68  
Package  
Figure 47. TS8308500 Pinout of CBGA68 Package  
NC  
B2  
VPLUSD  
GND  
B2b  
B3b  
DRb  
B3  
GND  
DR  
DVEE  
DVEE  
GND  
B4b  
B4  
B5  
VPLUSD  
GND  
B6  
NC  
B6b  
11  
10  
9
VPLUSD  
B5b  
VPLUSD  
B1  
B7b  
8
B0  
B1b  
B7  
ORb  
VCC  
VCC  
GND  
VINB  
7
Gorb  
VCC  
GND  
VCC  
B0b  
OR  
6
VCC  
GND  
VCC  
GAIN  
GND  
GND  
5
4
3
VEE  
GND  
NC  
VEE  
VCC  
GND  
GND  
GND  
Diode  
VIN  
GND  
NC  
2
GND  
CLK  
GND  
GND  
GND  
GND  
GND  
VEE  
VEE  
VCC  
VCC  
VEE  
VEE  
CLKB  
1
Ball  
A1 Index  
other side  
A
B
C
D
E
F
G
H
J
K
L
BOTTOM VIEW  
40  
TS8308500  
2193A–BDC–04/03  
TS8308500  
TS8308500  
Figure 48. TS8308500 Capacitors and Resistors Implant  
Capacitors and  
Resistors Implant  
0.9 mm  
GND  
100 pF  
DVEE  
7.0 mm  
0.9 mm  
CLK  
50Ω  
VEE  
100 pF  
GND  
VCC  
100 pF  
GND  
VEE  
100 pF  
GND  
CLKB  
50Ω  
0.9 mm  
GND  
GND  
0.9 mm  
Only on-package marking  
electrically isolated  
Note:  
R and C discrete components are 0603 size (1.6 x 0.8mm)  
41  
2193A–BDC–04/03  
Outline Dimensions  
Figure 49. Outline Dimensions - 68 Pins CBGA  
CBGA 68 package.  
AL203 substrate.  
Package design.  
Corner balls (x4) are not connected (mechanical ball).  
Balls : 1.27 mm pitch on 11x11 grid.  
Top side with  
soldered R, C  
devices  
(using solder  
Sn/Pb 63/37)  
- T -  
0.95 max  
View balls side  
1.27  
Balls side  
Balls  
Sn/Pb 63/37  
11  
10  
9
AI203 substrate  
8
AI203 Ceramic  
Cap. Glued and embedded  
in substrate  
7.84  
7
6
5
4
3
2
1
Ball  
A1 Index  
other side  
- B -  
A
B
C
D
E
F
G
H
J
K
L
1.45 0.12  
15.00 0.15 mm  
68 x D = 0.80 0.10 mm  
- A -  
1.27 ref  
(Position of array of balls/edges A and B)  
(Position of balls within array)  
0.40 T A B  
0.15 T  
Detail of  
ball x2  
0.63 0.10  
All units in mm  
42  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Cross Section  
Figure 50. Cross Section  
- T -  
Top side with soldered R, C devices  
(using solder Sn/Pb 63/37)  
0.95 max  
Balls side  
Balls  
Sn/Pb 63/37  
AI203 substrate  
AI203 Ceramic Cap.  
Glued on substrate  
(0.400)  
(0.20)  
(2 x 0.20)  
(0.25)  
(0.20)  
1.45 ꢀ0.1  
All units in mm  
43  
2193A–BDC–04/03  
Thermal And  
Moisture  
Characteristics  
Thermal Resistance  
from Junction to  
Ambient: RTHJA  
The following table lists the convection thermal performances parameters of the device itself,  
with no external heatsink added.  
Table 9. Thermal Resistance  
Air Flow (m/s)  
Estimated ja Thermal Resistance (°C/W)  
0
0.5  
1
45  
35.8  
30.8  
27.4  
24.9  
23  
50  
40  
30  
20  
10  
0
1.5  
2
2.5  
3
21.5  
19.3  
17.7  
0
1
2
5
3
4
Air Flow (m/s)  
4
5
Thermal Resistance  
from Junction to  
Case: RTHJC  
The typical value for Rthjc is given as 6.7°C/W (8°C/W max).  
This value does not include thermal contact resistance between package and external compo-  
nent (heatsink or PC Board).  
As an example, 2.0°C/W can be taken for 50 µm of thermal grease.  
CBGA68 Board  
Assembly with  
External Heatsink  
It is recommended that an external heatsink or specifically designed PCB be used. Cooling  
system efficiency can be monitored using the Temperature Sensing Diode, integrated in the  
device.  
Figure 51. CBGA68 Board Assembly  
50.5  
24.2 20.2  
32.5  
6.8  
31  
Board  
Note:  
Units = mm  
44  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Moisture  
This device is sensitive to moisture (MSL3 according to JEDEC standard):  
Characteristics  
Shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH).  
After this bag is opened, devices that will be subjected to infrared reflow, vapor-phase reflow,  
or equivalent processing (peak package body temperature 220°C) must be:  
mounted within 198 hours at factory conditions of 30°C/60% RH, or  
stored at 20% RH  
Devices require baking, before mounting, if Humidity Indicator Card is >20% when read at  
23°C ±5°C.  
If baking is required, devices may be baked for:  
192 hours at 40°C +5°C/-0°C and <5% RH for low-temperature device containers, or  
24 hours at 125°C ±5°C for high temperature device containers  
45  
2193A–BDC–04/03  
Definitions  
Definition of Terms  
(BER) Bit Error Rate  
Probability to exceed a specified error threshold for a sample. An error code is a code that dif-  
fers by more than ±4 LSB from the correct code.  
(BW) Full-Power Input  
Bandwidth  
Analog input frequency at which the fundamental component in the digitally reconstructed out-  
put has fallen by 3 dB with respect to its low frequency value (determined by FFT analysis) for  
input at full-scale.  
The peak gain variation (in percent) at five different DC levels for an AC signal of 20% Full-  
Scale peak to peak amplitude. FIN = 5 MHz (TBC).  
(DG) Differential Gain  
(DNL) Differential Non-  
Linearity  
The Differential Non-Linearity for an output code (i) is the difference between the measured  
step size of code (i) and the ideal LSB step size. DNL (i) is expressed in LSBs. DNL is the  
maximum value of all DNL (i). DNL error specification of less than 1 LSB guarantees that there  
are no missing output codes and that the transfer function is monotonic.  
(DP) Differential Phase  
Peak Phase variation (in degrees) at five different DC levels for an AC signal of 20% Full-  
Scale peak to peak amplitude. FIN = 5 MHz (TBC).  
(ENOB) Effective  
Number of Bits  
SINAD - 1.76 + 20 log (A/V/2)  
ENOB =  
6.02  
Where A is the actual input amplitude and V is the full-scale range of the ADC under test.  
(IMD) InterModulation  
Distortion  
The two tones intermodulation distortion (IMD) rejection is the ratio of either input tone to the  
worst third order intermodulation products. The input tones levels are at -7 dB full-scale.  
(INL) Integral Non-  
Linearity  
The Integral Non-Linearity for an output code (i) is the difference between the measured input  
voltage at which the transition occurs and the ideal value of this transition.  
INL (i) is expressed in LSBs, and is the maximum value of all |INL (i)|.  
(JITTER) Aperture  
Uncertainty  
Sample to sample variation in aperture delay. The voltage error due to jitter depends on the  
slew rate of the signal at the sampling point.  
(NPR) Noise Power  
Ratio  
The NPR is measured to characterize the ADC performance in response to broad bandwidth  
signals. When using a notch-filtered broadband white-noise generator as the input to the ADC  
under test, the Noise Power Ratio is defined as the ratio of the average out-of-notch to the  
average in-notch power spectral density magnitudes for the FFT spectrum of the ADC output  
sample test.  
(NRZ) Non-Return to  
Zero  
When the input signal is larger than the upper bound of the ADC input range, the output code  
is identical to the maximum code and the Out of Range bit is set to logic one. When the input  
signal is smaller than the lower bound of the ADC input range, the output code is identical to  
the minimum code, and the Out of Range bit is set to logic one. (It is assumed that the input  
signal amplitude remains within the absolute maximum ratings).  
(ORT) Overvoltage  
Recovery Time  
Time to recover 0.2% accuracy at the output, after a 150% full-scale step applied on the input  
is reduced to midscale.  
46  
TS8308500  
2193A–BDC–04/03  
TS8308500  
(PSRR) Power Supply  
Rejection Ratio  
Ratio of input offset variation to a change in power supply voltage.  
(SFDR) Spurious Free  
Dynamic Range  
Ratio expressed in dB of the RMS signal amplitude, set at 1 dB below full-scale, to the RMS  
value of the next highest spectral component (peak spurious spectral component). SFDR is  
the key parameter for selecting a converter to be used in a frequency domain application  
(Radar systems, digital receiver, network analyzer, etc.). It may be reported in dBc (i.e.:  
degrades as signal level is lowered), or in dBFS (i.e.: always related back to converter full  
scale)  
(SINAD) Signal to Noise  
and Distortion Ratio  
Ratio expressed in dB of the RMS signal amplitude, set to 1 dB below full-scale, to the RMS  
sum of all other spectral components, including the harmonics except DC.  
(SNR) Signal to Noise  
Ratio  
Ratio expressed in dB of the RMS signal amplitude, set to 1 dB below full-scale, to the RMS  
sum of all other spectral components excluding the five first harmonics.  
(TA) Aperture Delay  
Delay between the rising edge of the differential clock inputs (CLK, CLKB) (zero crossing  
point), and the time at which (VIN, VINB) is sampled.  
(TC) Encoding Clock  
Period  
TC1 = Minimum clock pulse width (high) TC = TC1 + TC2  
TC2 = Minimum clock pulse width (low)  
(TD1) Time Delay from  
Data to Data Ready  
Time delay from Data transition to Data Ready.  
(TD2) Time Delay from  
Data Ready to Data  
General expression is TD1 = TC1 + TDR - TOD with TC = TC1 + TC2 = 1 encoding clock  
period.  
(TF) Fall Time  
Time delay for the output Data signals to fall from 80% to 20% of delta between low level and  
high level.  
(THD) Total Harmonic  
Distorsion  
Ratio expressed in dBc of the RMS sum of the first five harmonic components, to the RMS  
value of the measured fundamental spectral component.  
(TOD) Digital Data  
Output Delay  
Delay from the falling edge of the differential clock inputs (CLK, CLKB) (zero crossing point) to  
the next point of change in the differential output data (zero crossing) with a specified load.  
(TPD) Pipeline Delay  
Number of clock cycles between the sampling edge of an input data and the associated output  
data being made available, (not taking in account the TOD). For the TS8388BF the TPD is 4  
clock periods.  
(TR) Rise Time  
Time delay for the output Data signals to rise from 20% to 80% of delta between low level and  
high level.  
(TRDR) Data Ready  
Reset Delay  
Delay between the falling edge of the Data Ready output asynchronous Reset signal (DDRB)  
and the reset to digital zero transition of the Data Ready output signal (DR).  
(TS) Settling Time  
Time delay to achieve 0.2% accuracy at the converter output when a 80% full-scale step func-  
tion is applied to the differential analog input.  
47  
2193A–BDC–04/03  
Ordering  
Information  
Part Number  
Package  
Temperature Range  
Screening  
Prototype  
Standard  
Comments  
TSX8308500GL  
CBGA 68  
Ambient  
Prototype version  
"C" grade  
TS8308500CGL  
CBGA 68  
CBGA 68  
0°C < Tc ; Tj < 90°C  
"V" grade  
Standard  
TS8308500VGL  
-40°C < Tc ; Tj < 110°C  
TSEV8308500GL  
TSEV8308500GLZA2  
CBGA 68  
CBGA 68  
Ambient  
Ambient  
Prototype  
Prototype  
Evaluation Board (delivered with a heat sink)  
Evaluation Board with digital output buffers  
(delivered with a heat sink)  
48  
TS8308500  
2193A–BDC–04/03  
TS8308500  
Datasheet  
Status  
Table 10. Datasheet Status  
Description  
Datasheet Status  
Validity  
This datasheet contains target and  
goal specifications for discussion with  
customer and application validation.  
Before design phase  
Objective specification  
Target specification  
This datasheet contains target or  
goal specifications for product  
development.  
Valid during the design phase  
This datasheet contains preliminary  
data. Additional data may be  
published later could include  
simulation results.  
Valid before characterization  
phase  
Preliminary specification  
α-site  
Preliminary specification  
β-site  
This datasheet also contains  
characterization results.  
Valid before the  
industrialization phase  
This datasheet contains final product  
specification  
Valid for production purposes  
Product specification  
Limiting Values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress  
above one or more of the limiting values may cause permanent damage to the device. These are  
stress ratings only and operation of the device at these or at any other conditions above those given in  
the Characteristics sections of the specification is not implied. Exposure to limiting values for  
extended periods may affect device reliability.  
Application Information  
Where application information is given, it is advisory and does not form part of the specification.  
Life Support  
Applications  
These products are not designed for use in life support appliances, devices or systems where  
malfunction of these products can reasonably be expected to result in personal injury. Atmel  
customers using or selling these products for use in such applications do so at their own risk  
and agree to fully indemnify Atmel for any damages resulting from such improper use or sale.  
49  
2193A–BDC–04/03  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard  
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any  
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and  
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are  
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use  
as critical components in life support devices or systems.  
© Atmel Corporation 2003. All rights reserved. Atmel® and combinations thereof, are the registered  
trademarks, of Atmel Corporation or its subsidiaries. Motorola® is the registered trademark of Motorola Com-  
pany. Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
2193A–BDC–04/03  
0M  

相关型号:

TSX83102G0BGS

ADC, Proprietary Method, 10-Bit, 1 Func, 1 Channel, Parallel, Word Access, CBGA152, HERMATIC, CI-CGA-152
ATMEL

TSX88915TCR100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TCR70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TCRD/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TCW70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TCWD/T100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TCWD/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TMR100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TMR70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TMRB/T100

暂无描述
ATMEL

TSX88915TMRB/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TMRD/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL