U2794B-MFSG3 [ATMEL]

1000 MHZ QUADRATURE DEMODULATOR; 1000兆赫正交解调器
U2794B-MFSG3
型号: U2794B-MFSG3
厂家: ATMEL    ATMEL
描述:

1000 MHZ QUADRATURE DEMODULATOR
1000兆赫正交解调器

文件: 总15页 (文件大小:281K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Supply Voltage 5 V  
Very Low Power Consumption 125 mW  
Very Good Image Rejection By Means of Phase Control Loop for Precise 90° Phase  
Shifting  
Duty-cycle Regeneration for Single-ended LO Input Signal  
Low LO Input Level -10 dBm  
LO Frequency from 70 MHz to 1 GHz  
Power-down Mode  
25 dB Gain Control  
Very Low I/Q Output DC Offset Voltage Typically < 5 mV  
1000-MHz  
Quadrature  
Demodulator  
Benefits  
Low Current Consumption  
Easy to Implement  
Perfect Performance for Large Variety of Wireless Applications  
U2794B  
Electrostatic sensitive device.  
Observe precautions for handling.  
Description  
The silicon monolithic integrated circuit U2794B is a quadrature demodulator manu-  
factured using Atmel’s advanced UHF technology. This demodulator features a  
frequency range from 70 MHz to 1000 MHz, low current consumption, selectable gain,  
power-down mode and adjustment-free handling. The IC is suitable for direct conver-  
sion and image rejection applications in digital radio systems up to 1 GHz such as  
cellular radios, cordless telephones, cable TV and satellite TV systems.  
Rev. 4653C–CELL–06/03  
Figure 1. Block Diagram  
VS  
IIX  
II  
PU  
5,6 14  
4
3
IX  
Power  
down  
1
2
OUTPUT  
I
0°  
15  
90°Control  
loop  
Frequency  
doubler  
Duty cycle  
regenerator  
7
8
LO  
RFin  
90°  
17  
13  
PC  
PCX  
12  
19  
20  
Q
OUTPUT  
QX  
10  
9
11  
16,18  
GND  
GC  
QQ  
QQX  
Pin Configuration  
Figure 2. Pinning SSO20  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
IX  
QX  
Q
I
3
II  
GND  
4
IIX  
LOin  
5
V
S
GND  
6
LOXin  
V
S
7
RFin  
PU  
RFXin  
8
PC  
9
PCX  
GC  
QQ  
10  
QQX  
2
U2794B  
4653C–CELL–06/03  
U2794B  
Pin Description  
Pin  
Symbol  
Function  
1
IX  
IX output  
2
I
I output  
3
II  
II lowpass filter I  
IIX lowpass filter I  
Supply voltage  
Supply voltage  
RF input  
4
IIX  
5
VS  
6
VS  
7
RFin  
RFXin  
QQ  
QQX  
GC  
PCX  
PC  
8
RFX input  
9
QQ lowpass filter Q  
QQX lowpass filter Q  
GC gain control  
PCX phase control  
PC phase control  
PU power up  
LOX input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PU  
LOXin  
GND  
LOin  
GND  
Q
Ground  
LO input  
Ground  
Q output  
QX  
QX output  
3
4653C–CELL–06/03  
Absolute Maximum Ratings  
Parameters  
Symbol  
Value  
6
Unit  
V
Supply voltage  
VS  
Vi  
Input voltage  
0 to VS  
+125  
V
Junction temperature  
Storage-temperature range  
Tj  
LC  
LC  
Tstg  
-40 to +125  
Thermal Resistance  
Parameters  
Symbol  
Value  
Unit  
Junction ambient SSO20  
RthJA  
140  
K/W  
Operating Range  
Parameters  
Symbol  
VS  
Value  
Unit  
V
Supply-voltage range  
Ambient-temperature range  
4.75 to 5.25  
-40 to +85  
Tamb  
LC  
Electrical Characteristics  
Test conditions (unless otherwise specified); VS = 5 V, Tamb = 25°C, referred to test circuit  
System impedance ZO = 50 , fiLO = 950 MHz, PiLO = -10 dBm  
No.  
1.1  
1.2  
2
Parameters  
Test Conditions  
Pin  
5, 6  
5, 6  
Symbol  
Min.  
4.75  
22  
Typ.  
Max.  
5.25  
35  
Unit  
Type*  
Supply-voltage range  
Supply current  
VS  
IS  
V
A
A
30  
mA  
Power-down Mode  
2.1  
“OFF” mode supply  
current  
VPU ? 0.5 V  
14, 5  
6
ISPU  
? 1  
20  
µA  
µA  
B
D
VPU = 1.0 V  
(1)  
3
Switch Voltage  
3.1  
“Power ON”  
14  
VPON  
4
V
D
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. During power-down status a load circuitry with DC-isolation to GND is assumed, otherwise a current of I Wꢀ(VS -0.8 V)/RI  
has to be added to the above power-down current for each output I, IX, Q, QX.  
2. The required LO-Level is a function of the LO frequency (see Figure 8).  
3. Measured with input matching. For 950 MHz, the optional transmission line T3 at the RF input may be used for this pur-  
pose. Noise figure measurements without using the differential output signal result in a worse noise figure.  
4. Using Pins 7 and 8 as a symmetric RF input, the second-order IIP can be improved.  
5. Due to test board parasitics, this bandwidth may be reduced and not be equal for I, IX, Q, QX. If symmetry and full band-  
width is required, the lowpass Pins 3, 4 and 9, 10 should be isolated from the board. the bandwidth of the I/Q outputs can  
be increased further by using a resistor between Pins 3, 4, 9 and 10. These resistors shunt the internal loads of  
RI ~ 5.4 k. The decrease in gain here has to be considered.  
6. The internal current of the output emitter followers is 0.6 mA. This reduces the undistorted output voltage swing at a 50 ꢁ  
load to approsimately 30 mV. For low signal distortion the load impedance should be RI O 5 k.  
7. Referred to the level of the output vector I2 + Q2  
8. The low-gain status is achieved with an open or high-ohmic Pin 11. A recommended application circuit for switching  
between high and low gain status is hown in Figure 3.  
4
U2794B  
4653C–CELL–06/03  
U2794B  
Electrical Characteristics (Continued)  
Test conditions (unless otherwise specified); VS = 5 V, Tamb = 25°C, referred to test circuit  
System impedance ZO = 50 , fiLO = 950 MHz, PiLO = -10 dBm  
No.  
3.2  
4
Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
“Power DOWN”  
LO Input, LOin  
Frequency range  
Input level  
14  
VPOFF  
1
V
D
4.1  
4.2  
4.3  
4.4  
17  
17  
17  
17  
fiLO  
PiLO  
70  
1000  
-5  
MHz  
dBm  
D
D
D
D
(2)  
-12  
-10  
50  
Input impedance  
See Figure 12  
See Figure 5  
ZiLO  
Voltage standing  
wave ratio  
VSWRLO  
1.2  
2
4.5  
5
Duty-cycle range  
17  
DCRLO  
0.4  
40  
0.6  
D
D
RF Input, RFin  
5.1  
Noise figure (DSB)  
symmetrical output  
at 950 MHz (3)  
at 100 MHz  
7, 8  
NF  
fiRF  
12  
10  
dB  
5.2  
5.3  
Frequency range  
fiRF = FiLO ±BWYQ  
7, 8  
7, 8  
1030  
MHz  
dBm  
D
D
-1 dB input  
compression point  
High gain  
Low gain  
(4)  
P1dBHG  
P1dBLG  
-8  
+3.5  
5.4  
5.5  
Second order IIP  
Third order IIP  
7, 8  
7, 8  
IIP2HG  
35  
dBm  
dBm  
D
D
High gain  
Low gain  
IIP3HG  
IIP3LG  
+3  
+13  
5.6  
LO leakage  
Symmetric input  
Asymmetric input  
7, 8  
LOL  
? -60  
? -55  
dBm  
D
D
5.7  
6
Input impedance  
see Figure 12  
7, 8  
ZiRF  
500II0.8  
IIpF  
I/Q Outputs (I, IX, Q, QX) Emitter Follower I = 0.6 mA  
6.1  
3–dB bandwidth  
w/o external C  
1, 2, 19,  
20  
BWI/Q  
Ae  
O 30  
-0.5  
-3  
MHz  
dB  
D
B
B
6.2  
6.3  
I/Q amplitude error  
1, 2, 19,  
20  
? M0.2  
? M1.5  
+0.5  
+3  
I/Q phase error  
1, 2, 19,  
20  
Pe  
Deg  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. During power-down status a load circuitry with DC-isolation to GND is assumed, otherwise a current of I Wꢀ(VS -0.8 V)/RI  
has to be added to the above power-down current for each output I, IX, Q, QX.  
2. The required LO-Level is a function of the LO frequency (see Figure 8).  
3. Measured with input matching. For 950 MHz, the optional transmission line T3 at the RF input may be used for this pur-  
pose. Noise figure measurements without using the differential output signal result in a worse noise figure.  
4. Using Pins 7 and 8 as a symmetric RF input, the second-order IIP can be improved.  
5. Due to test board parasitics, this bandwidth may be reduced and not be equal for I, IX, Q, QX. If symmetry and full band-  
width is required, the lowpass Pins 3, 4 and 9, 10 should be isolated from the board. the bandwidth of the I/Q outputs can  
be increased further by using a resistor between Pins 3, 4, 9 and 10. These resistors shunt the internal loads of  
RI ~ 5.4 k. The decrease in gain here has to be considered.  
6. The internal current of the output emitter followers is 0.6 mA. This reduces the undistorted output voltage swing at a 50 ꢁ  
load to approsimately 30 mV. For low signal distortion the load impedance should be RI O 5 k.  
7. Referred to the level of the output vector I2 + Q2  
8. The low-gain status is achieved with an open or high-ohmic Pin 11. A recommended application circuit for switching  
between high and low gain status is hown in Figure 3.  
5
4653C–CELL–06/03  
Electrical Characteristics (Continued)  
Test conditions (unless otherwise specified); VS = 5 V, Tamb = 25°C, referred to test circuit  
System impedance ZO = 50 , fiLO = 950 MHz, PiLO = -10 dBm  
No.  
Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
6.4  
I/Q maximum output  
swing  
Symm. output  
RL > 5 kꢁ  
1, 2, 19,  
20  
VPP  
2
D
6.5  
6.6  
DC output voltage  
1, 2, 19,  
20  
VOUT  
Voffset  
2.5  
2.8  
< 5  
3.1  
V
A
(6)  
DC output offset  
voltage  
1, 2, 19,  
20  
mV  
Test  
Spec.  
6.7  
Output impedance  
see Figure 12  
1, 2, 19,  
20  
Zout  
50  
D
7
Gain Control, GC  
(7)  
7.1  
Control range power  
Gain high  
11  
GCR  
GH  
25  
23  
-2  
dB  
D
B
D
dBm  
dBm  
Gain low  
GL  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Switch Voltage  
“Gain high”  
11  
1
V
(8)  
“Gain low”  
11 < open  
Settling Time, ST  
Power “OFF” - “ON”  
Power “ON” - “OFF”  
TSON  
< 4  
< 4  
µs  
µs  
D
D
TSOFF  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. During power-down status a load circuitry with DC-isolation to GND is assumed, otherwise a current of I Wꢀ(VS -0.8 V)/RI  
has to be added to the above power-down current for each output I, IX, Q, QX.  
2. The required LO-Level is a function of the LO frequency (see Figure 8).  
3. Measured with input matching. For 950 MHz, the optional transmission line T3 at the RF input may be used for this pur-  
pose. Noise figure measurements without using the differential output signal result in a worse noise figure.  
4. Using Pins 7 and 8 as a symmetric RF input, the second-order IIP can be improved.  
5. Due to test board parasitics, this bandwidth may be reduced and not be equal for I, IX, Q, QX. If symmetry and full band-  
width is required, the lowpass Pins 3, 4 and 9, 10 should be isolated from the board. the bandwidth of the I/Q outputs can  
be increased further by using a resistor between Pins 3, 4, 9 and 10. These resistors shunt the internal loads of  
RI ~ 5.4 k. The decrease in gain here has to be considered.  
6. The internal current of the output emitter followers is 0.6 mA. This reduces the undistorted output voltage swing at a 50 ꢁ  
load to approsimately 30 mV. For low signal distortion the load impedance should be RI O 5 k.  
7. Referred to the level of the output vector I2 + Q2  
8. The low-gain status is achieved with an open or high-ohmic Pin 11. A recommended application circuit for switching  
between high and low gain status is hown in Figure 3.  
6
U2794B  
4653C–CELL–06/03  
U2794B  
Figure 3. Test Circuit  
PU  
* optional for single-ended tests (notice 3 dB bandwidth of AD620)  
T1, T2 = transmission line ZO = 50 ꢀꢁ  
If no GC function is required, connect Pin 11 to GND.  
For high and low gain status GC´ is to be switched to GND respectively to VS.  
Figure 4. I and Q phase for fRF > fLO. For fRF < fLO the phase is inverted.  
1.5  
1.0  
Q
I
0.5  
0.0  
0
5
10  
15  
20  
25  
30  
-0.5  
-1.0  
-1.5  
time (arbitrary units)  
7
4653C–CELL–06/03  
Figure 5. Typical VSWR Frequency Response of the LO Input  
6
5
4
3
2
1
1050  
50  
250  
450  
650  
850  
LO Frequency ( MHz )  
Figure 6. Noise Figure versus LO Frequency; o: Value at 950 MHz with RF Input  
Matching with T3  
18  
16  
14  
12  
10  
8
0
200  
400  
600  
800  
1000  
LO Frequency (MHz)  
Figure 7. Typical Suitable LO Power Range versus Frequency  
0
PLOmax  
-10  
-20  
-30  
-40  
-50  
PLOmin  
30  
40  
50  
60  
70  
80  
90  
LO Frequency (MHz)  
8
U2794B  
4653C–CELL–06/03  
U2794B  
Figure 8. Gain versus LO Frequency; x: Value at 950 MHz with RF Input Matching with  
T3  
30  
26  
22  
18  
14  
10  
0
200  
400  
600  
800  
1000  
LO Frequency (MHz)  
Figure 9. Typical Output Signal versus LO Frequency for PRF = -15 dBm and  
PLO = -15 dBm  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
0
200  
400  
600  
800  
1000  
LO Frequency (MHz)  
Figure 10. Typical Suitable LO Power Range versus Frequency  
10  
0
-10  
-20  
-30  
-40  
-50  
0
200  
400  
600  
800  
1000  
LO Frequency (MHz)  
9
4653C–CELL–06/03  
Figure 11. Typical Output Voltage (single ended) versus PRF at Tamb = 25°C and  
PLO = -15 dBm  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
-40  
-35  
-30  
-25  
-20  
-15  
-10  
PRF (dBm)  
Figure 12. Typical S11 Frequency Response  
j
0.5j  
2j  
0.2j  
5j  
c
a
0
0.2  
0.5  
1
2
5
1
b
-0.2j  
-5j  
-0.5j  
-2j  
-j  
a: LO input, LO frequency from 100 MHz to 1100 MHz, marker: 950 MHz  
b: RF input, RF frequency from 100 MHz to 1100 MHz, marker: 950 MHz  
c: I/Q Outputs, Baseband Frequency from 5 MHz to 55 MHz, marker: 25 MHz  
10  
U2794B  
4653C–CELL–06/03  
U2794B  
Figure 13. Evaluation Board Layout  
Figure 14. Evaluation Board  
11  
4653C–CELL–06/03  
External Components  
CUCC  
CRFX  
CLO  
100 nF  
1 nF  
100 pF  
1 nF  
CNLO  
CRF  
100 pF  
CII, CQQ  
T3  
optional external lowpass filters  
transmission line for RF-input matching, to connect  
optionally  
CI, CIX  
CQ, CQX  
CPDN  
CGC  
optional for AC-coupling at  
baseband outputs  
not connected  
100 pF  
100 pF  
100 pF  
100 pF  
CPC  
not connected  
not connected  
gain switch  
CNPC  
GSW  
Calibration Part  
CO, CS, CL 100 pF  
RL 50 ꢀ  
Conversion to Single  
Ended Output  
(see data sheet of AD620)  
OP1, OP2  
RG1, RG2  
AD620  
prog. gain, see datasheet, for 5.6 ka gain of 1 at  
50 is achieved together with RD1 and RD2.  
RD1, RD2  
CS1, CS2  
CS3, CS4  
450 ꢀ  
100 nF  
100 nF  
12  
U2794B  
4653C–CELL–06/03  
U2794B  
Description of the  
Evaluation Board  
Board material: epoxy; r = 4.8, thickness = 0.5 mm, transmission lines: ZO = 50 ꢀ  
The board offers the following functions:  
Test circuit for the U2794B:  
The supply voltage and the control inputs GC, PC and PU are connected via  
a plug strip. The control input voltages can be generated via external  
potentiometers; then the inputs should be AC-grounded (time requirements  
in burst mode for power up have to be considered).  
The outputs I, IX, Q, QX are DC coupled via an plug strip or can be AC-  
connected via SMB plugs for high frequency tests e.g. noise figure or s-  
parameter measurement. The Pins II, IIX, QQ, QQX allow user-definable  
filtering with 2 external capacitors CII, CQQ.  
The offsets of both channels can be adjusted with two potentimeters or  
resistors.  
The LO- and the RF-inputs are AC-coupled and connected via SMB plugs. If  
transmission line T3 is connected to the RF-input and AC-grounded at the  
other end, gain and noise performance can be improved (input matching to  
50 ).  
The complementary RF-input is AC-coupled to GND (CRFX = 1 nF), the  
same appears to the complementary LO input (CNLO = 1 nF).  
A calibration part which allows to calibrate an s-parameter analyzer directly to the in-  
and output- signal ports of the U2794B.  
For single-ended measurements at the demodulator outputs, two OPs (e.g., AD620  
or other) can be con-figured with programmable gain; together with an output-  
divider network RD = 450 to RL = 50 , direct measurements with 50 load  
impedances are possible at frequencies t < 100 kHz.  
13  
4653C–CELL–06/03  
Ordering Information  
Extended Type Number  
Package  
SSO20  
SSO20  
Remarks  
U2794B-MFS  
Tube, MOQ 830 pcs  
Taped and reeled, MOQ 4000 pcs  
U2794B-MFSG3  
Package Information  
5.7  
5.3  
Package SSO20  
Dimensions in mm  
6.75  
6.50  
4.5  
4.3  
1.30  
0.15  
0.15  
0.05  
0.25  
0.65  
6.6  
6.3  
5.85  
20  
11  
technical drawings  
according to DIN  
specifications  
1
10  
14  
U2794B  
4653C–CELL–06/03  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
Europe  
Microcontrollers  
Atmel Sarl  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
FAX 1(719) 540-1759  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
FAX 1(719) 540-1759  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
© Atmel Corporation 2003.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty  
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors  
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does  
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted  
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical  
components in life support devices or systems.  
Atmel® is the registered trademark of Atmel.  
Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
4653C–CELL–06/03  
xM  

相关型号:

U2794B-MFSY

暂无描述
ATMEL

U2794B-NFSG3H

1000-MHz Quadrature Demodulator
ATMEL

U2794B-NFSH

1000-MHz Quadrature Demodulator
ATMEL

U2794B_08

1000-MHz Quadrature Demodulator
ATMEL

U2795B

2.5-GHz Double Balanced Mixer
TEMIC

U2795B

2.5-GHz Double balanced Mixer
ATMEL

U2795B-CFP

Double Balanced Mixer, 10MHz Min, 2500MHz Max, BIPolar, SO-8
ATMEL

U2795B-CFP

Double Balanced Mixer, 10MHz Min, 2500MHz Max
MICROCHIP

U2795B-CFPG3

Double Balanced Mixer, 10MHz Min, 2500MHz Max, BIPolar, SO-8
ATMEL

U2795B-CFPG3

Double Balanced Mixer, 10MHz Min, 2500MHz Max
MICROCHIP

U2795B-FP

2.5-GHz Double Balanced Mixer
TEMIC

U2795B-MFP

2.5-GHz Double balanced Mixer
ATMEL