HCPL-7710-560E [AVAGO]

40 ns Propagation Delay, CMOS Optocoupler; 40 ns的传播延迟, CMOS光电耦合器
HCPL-7710-560E
型号: HCPL-7710-560E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

40 ns Propagation Delay, CMOS Optocoupler
40 ns的传播延迟, CMOS光电耦合器

光电 输出元件
文件: 总18页 (文件大小:305K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-7710/0710  
40 ns Propagation Delay, CMOS Optocoupler  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
Available in either an 8-pin DIP or SO-8 package style  
respectively, the HCPL-7710 or HCPL-0710 optocouplers  
utilizethelatestCMOSICtechnologytoachieveoutstand-  
ing performance with very low power consumption. The  
HCPL-x710requireonlytwobypasscapacitorsforcomplete  
CMOS compatibility.  
+5 V CMOS compatibility  
8 ns maximum pulse width distortion  
20 ns maximum prop. delay skew  
High speed: 12 Mbd  
40 ns maximum prop. delay  
10 kV/µs minimum common mode rejection  
-40°C to 100°C temperature range  
Safety and regulatory approvals  
UL Recognized  
3750 V rms for 1 min. per UL 1577  
5000 V rms for 1 min. per UL 1577 (for HCPL-7710  
option 020)  
Basic building blocks of the HCPL-x710 are a CMOS LED  
driver IC, a high speed LED and a CMOS detector IC. A  
CMOS logic input signal controls the LED driver IC which  
supplies current to the LED. The detector IC incorporates  
an integrated photodiode, a high-speed transimped-  
ance amplifier, and a voltage comparator with an output  
driver.  
CSA Component Acceptance Notice #5  
IEC/EN/DIN EN 60747-5-2  
Functional Diagram  
– VIORM = 630 Vpeak for HCPL-7710 Option 060  
– VIORM = 560 Vpeak for HCPL-0710 Option 060  
1
2
8
7
**V  
V
**  
DD2  
DD1  
Applications  
NC*  
V
I
Digital fieldbus isolation: DeviceNet, SDS, Profibus  
AC plasma display panel level shifting  
Multiplexed data transmission  
Computer peripheral interface  
Microprocessor system interface  
I
O
3
4
6
5
NC*  
V
O
LED1  
GND  
GND  
2
1
SHIELD  
* Pin 3 is the anode of the internal LED and must be left  
unconnected for guaranteed data sheet performance.  
Pin 7 is not connected internally.  
** A 0.1 µF bypass capacitor must be connected  
between pins 1 and 4, and 5 and 8.  
TRUTH TABLE  
(POSITIVE LOGIC)  
V , INPUT  
I
LED1 V , OUTPUT  
O
H
L
OFF  
ON  
H
L
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Selection Guide  
8-Pin DIP  
(300 Mil)  
Small Outline  
SO-8  
HCPL-7710  
HCPL-0710  
Ordering Information  
HCPL-0710 and HCPL-7710 are UL Recognized with 3750 Vrms for 1 minute per UL1577.  
Option  
UL 5000  
Part  
number  
RoHS  
Non RoHS  
Surface  
Mount  
Gull  
Wing  
Tape  
Vrms/  
1
IEC/EN/DIN  
Compliant Compliant Package  
& Reel Minute rating EN 60747-5-2 Quantity  
-000E  
-300E  
-500E  
-020E  
-320E  
-520E  
-060E  
-360E  
-560E  
-000E  
-500E  
-060E  
-560E  
No option  
#300  
50 per tube  
50 per tube  
X
X
X
X
#500  
X
X
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
100 per tube  
1500 per reel  
100 per tube  
1500 per reel  
-020  
X
X
X
300mil  
DIP-8  
HCPL-7710  
HCPL-0710  
-320  
X
X
X
X
-520  
#060  
X
X
X
#360  
X
X
X
X
X
X
X
X
#560  
X
X
X
No option  
#500  
SO-8  
#060  
X
X
#560  
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
HCPL-7710-560E to order product of Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/  
DIN EN 60747-5-2 Safety Approval in RoHS compliant.  
Example 2:  
HCPL-0710 to order product of Small Outline SO-8 package in tube packaging and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since 15th July 2001 and  
RoHS compliant option will use ‘-XXXE.  
2
Package Outline Drawing  
HCPL-7710 8-Pin DIP Package  
7.62 ꢀ.25  
(ꢀ.3ꢀꢀ ꢀ.ꢀ1ꢀ)  
9.65 ꢀ.25  
(ꢀ.38ꢀ ꢀ.ꢀ1ꢀ)  
8
1
7
6
5
TYPE NUMBER  
6.35 ꢀ.25  
(ꢀ.25ꢀ ꢀ.ꢀ1ꢀ)  
DATE CODE  
A XXXX  
YYWW  
2
3
4
1.78 (ꢀ.ꢀ7ꢀ) MAX.  
1.19 (ꢀ.ꢀ47) MAX.  
+ ꢀ.ꢀ76  
- ꢀ.ꢀ51  
ꢀ.254  
5° TYP.  
+ ꢀ.ꢀꢀ3)  
- ꢀ.ꢀꢀ2)  
(ꢀ.ꢀ1ꢀ  
4.7ꢀ (ꢀ.185) MAX.  
ꢀ.51 (ꢀ.ꢀ2ꢀ) MIN.  
2.92 (ꢀ.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
*MARKING CODE LETTER FOR OPTION NUMBERS  
"L" = OPTION ꢀ2ꢀ  
1.ꢀ8ꢀ ꢀ.32ꢀ  
(ꢀ.ꢀ43 ꢀ.ꢀ13)  
ꢀ.65 (ꢀ.ꢀ25) MAX.  
"V" = OPTION ꢀ6ꢀ  
2.54 ꢀ.25  
(ꢀ.1ꢀꢀ ꢀ.ꢀ1ꢀ)  
OPTION NUMBERS 3ꢀꢀ AND 5ꢀꢀ NOT MARKED.  
Package Outline Drawing  
HCPL-7710 Package with Gull Wing Surface Mount Option 300  
PAD LOCATION (FOR REFERENCE ONLY)  
9.65 ꢀ.25  
(ꢀ.38ꢀ ꢀ.ꢀ1ꢀ)  
1.ꢀ16 (ꢀ.ꢀ4ꢀ)  
1.194 (ꢀ.ꢀ47)  
6
5
8
1
7
4.826  
(ꢀ.19ꢀ)  
TYP.  
6.35ꢀ ꢀ.25  
(ꢀ.25ꢀ ꢀ.ꢀ1ꢀ)  
9.398 (ꢀ.37ꢀ)  
9.9ꢀ6 (ꢀ.39ꢀ)  
2
3
4
ꢀ.381 (ꢀ.ꢀ15)  
ꢀ.635 (ꢀ.ꢀ25)  
1.194 (ꢀ.ꢀ47)  
1.778 (ꢀ.ꢀ7ꢀ)  
9.65 ꢀ.25  
1.78ꢀ  
(ꢀ.ꢀ7ꢀ)  
MAX.  
(ꢀ.38ꢀ ꢀ.ꢀ1ꢀ)  
1.19  
(ꢀ.ꢀ47)  
MAX.  
7.62 ꢀ.25  
(ꢀ.3ꢀꢀ ꢀ.ꢀ1ꢀ)  
+ ꢀ.ꢀ76  
ꢀ.254  
- ꢀ.ꢀ51  
4.19  
+ ꢀ.ꢀꢀ3)  
- ꢀ.ꢀꢀ2)  
MAX.  
(ꢀ.165)  
(ꢀ.ꢀ1ꢀ  
1.ꢀ8ꢀ ꢀ.32ꢀ  
(ꢀ.ꢀ43 ꢀ.ꢀ13)  
ꢀ.635 ꢀ.25  
(ꢀ.ꢀ25 ꢀ.ꢀ1ꢀ)  
12° NOM.  
ꢀ.635 ꢀ.13ꢀ  
(ꢀ.ꢀ25 ꢀ.ꢀꢀ5)  
2.54  
(ꢀ.1ꢀꢀ)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = ꢀ.1ꢀ mm (ꢀ.ꢀꢀ4 INCHES).  
Outline (8-pin DIP - Option 300)  
3
Package Outline Drawing  
HCPL-0710 Outline Drawing (Small Outline SO-8 Package)  
LAND PATTERN RECOMMENDATION  
8
1
7
2
6
5
4
5.994 ꢀ.2ꢀ3  
(ꢀ.236 ꢀ.ꢀꢀ8)  
XXXV  
YWW  
3.937 ꢀ.127  
(ꢀ.155 ꢀ.ꢀꢀ5)  
TYPE NUMBER  
(LAST 3 DIGITS)  
7.49 (ꢀ.295)  
DATE CODE  
3
PIN ONE  
1.9 (ꢀ.ꢀ75)  
ꢀ.4ꢀ6 ꢀ.ꢀ76  
(ꢀ.ꢀ16 ꢀ.ꢀꢀ3)  
1.27ꢀ  
(ꢀ.ꢀ5ꢀ)  
BSC  
ꢀ.64 (ꢀ.ꢀ25)  
ꢀ.432  
(ꢀ.ꢀ17)  
*
7°  
5.ꢀ8ꢀ ꢀ.127  
(ꢀ.2ꢀꢀ ꢀ.ꢀꢀ5)  
45° X  
3.175 ꢀ.127  
(ꢀ.125 ꢀ.ꢀꢀ5)  
ꢀ ~ 7°  
ꢀ.228 ꢀ.ꢀ25  
(ꢀ.ꢀꢀ9 ꢀ.ꢀꢀ1)  
1.524  
(ꢀ.ꢀ6ꢀ)  
ꢀ.2ꢀ3 ꢀ.1ꢀ2  
(ꢀ.ꢀꢀ8 ꢀ.ꢀꢀ4)  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.2ꢀ7 ꢀ.254 (ꢀ.2ꢀ5 ꢀ.ꢀ1ꢀ)  
*
ꢀ.3ꢀ5  
(ꢀ.ꢀ12)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = ꢀ.1ꢀ mm (ꢀ.ꢀꢀ4 INCHES) MAX.  
OPTION NUMBER 5ꢀꢀ NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS ꢀ.15 mm (6 mils) MAX.  
Solder Reflow Thermal Profile  
300  
PREHEATING RATE 3°C + 1°C/- 0.5°C/SEC.  
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
200  
100  
0
2.5°C ± 0.5°C/SEC.  
SOLDERING  
TIME  
200°C  
30  
160°C  
150°C  
140°C  
SEC.  
30  
SEC.  
3°C + 1°C/- 0.5°C  
PREHEATING TIME  
150°C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Note: Non-halide flux should be used.  
4
Recommended Pb-Free IR Profile  
TIMEWITHIN 5 °C of ACTUAL  
PEAKTEMPERATURE  
t
p
2ꢀ-4ꢀ SEC.  
26ꢀ +ꢀ/-5 °C  
T
T
p
217 °C  
L
RAMP-UP  
3 °C/SEC. MAX.  
15ꢀ - 2ꢀꢀ °C  
RAMP-DOWN  
6 °C/SEC. MAX.  
T
smax  
T
smin  
t
s
t
L
6ꢀ to 15ꢀ SEC.  
PREHEAT  
6ꢀ to 18ꢀ SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 2ꢀꢀ °C, T = 15ꢀ °C  
T
smax  
smin  
Note: Non-halide flux should be used.  
Regulatory Information  
The HCPL-x710 have been approved by the following organizations:  
IEC/EN/DIN EN 60747-5-2  
UL  
Approved under:  
Recognized under UL 1577, component recognition  
program, File E55361.  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884  
Teil 2):2003-01.  
CSA  
Approved under CSA Component Acceptance Notice  
#5, File CA 88324.  
(Option 060 only)  
Insulation and Safety Related Specifications  
Value  
Parameter  
Symbol  
7710  
0710  
Units  
Conditions  
Minimum External Air  
Gap (Clearance)  
L(I01)  
7.1  
4.9  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Minimum External  
Tracking (Creepage)  
Minimum Internal Plastic  
Gap (Internal Clearance)  
L(I02)  
CTI  
7.4  
4.8  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body.  
Insulation thickness between emitter and  
detector; also known as distance through  
insulation.  
0.08  
0.08  
Tracking Resistance  
(Comparative Tracking Index)  
Isolation Group  
≥175  
IIIa  
≥175 Volts DIN IEC 112/VDE 0303 Part 1  
IIIa Material Group (DIN VDE 0110, 1/89, Table 1)  
surfaceofaprintedcircuitboardbetweenthesolderllets  
of the input and output leads must be considered. There  
are recommended techniques such as grooves and ribs  
which may be used on a printed circuit board to achieve  
desiredcreepageandclearances.Creepageandclearance  
distances will also change depending on factors such as  
pollution degree and insulation level.  
All Avago data sheets report the creepage and clearance  
inherent to the optocoupler component itself. These  
dimensions are needed as a starting point for the equip-  
ment designer when determining the circuit insulation  
requirements.However,oncemountedonaprintedcircuit  
board, minimum creepage and clearance requirements  
must be met as specified for individual equipment stan-  
dards. For creepage, the shortest distance path along the  
5
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (Option 060)  
Description  
HCPL-7710  
Option 060  
HCPL-0710  
Option 060  
Symbol  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤150 V rms  
I-IV  
I-IV  
I-III  
I-IV  
I-III  
for rated mains voltage ≤300 V rms  
for rated mains voltage ≤450 V rms  
Climatic Classification  
55/100/21  
55/100/21  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b†  
VIORM x 1.875 = VPR, 100% Production  
Test with tm = 1 sec, Partial Discharge < 5 pC  
2
2
V
VPR  
630  
1181  
560  
1050  
V peak  
V peak  
IORM  
Input to Output Test Voltage, Method a†  
VIORM x 1.5 = VPR, Type and Sample Test,  
tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage†  
(Transient Overvoltage, tini = 10 sec)  
VPR  
945  
840  
V peak  
V peak  
VIOTM  
6000  
4000  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Thermal Derating curve, Figure 11.)  
Case Temperature  
TS  
175  
230  
600  
150  
150  
600  
°C  
mA  
mW  
Input Current  
IS,INPUT  
Output Power  
PS,OUTPUT  
Insulation Resistance at TS, V10 = 500 V  
RIO  
≥109  
≥109  
Ω
†Refer to the front of the optocoupler section of the Isolation and Control Component Designer’s Catalog, under Product Safety Regulations sec-  
tion IEC/EN/DIN EN 60747-5-2, for a detailed description.  
Note: These optocouplers are suitable for “safe electrical isolationonly within the safety limit data. Maintenance of the safety data shall be  
ensured by means of protective circuits.  
Note: The surface mount classification is Class A in accordance with CECC 00802.  
Absolute Maximum Ratings  
Parameter  
Symbol  
TS  
Min.  
–55  
–40  
0
Max.  
Units  
°C  
Storage Temperature  
Ambient Operating Temperature  
Supply Voltages  
125  
TA  
+100  
6.0  
°C  
VDD1, VDD2  
Volts  
Volts  
Volts  
mA  
mA  
Input Voltage  
V
I
–0.5  
–0.5  
–10  
VDD1 +0.5  
VDD2 +0.5  
+10  
Output Voltage  
VO  
II  
Input Current  
Average Output Current  
Lead Solder Temperature  
Solder Reflow Temperature Profile  
IO  
10  
260°C for 10 sec., 1.6 mm below seating plane  
See Solder Reflow Temperature Profile Section  
Recommended Operating Conditions  
Parameter  
Symbol  
TA  
Min.  
–40  
4.5  
2.0  
0.0  
Max.  
+100  
5.5  
Units  
°C  
V
Ambient Operating Temperature  
Supply Voltages  
VDD1, VDD2  
Logic High Input Voltage  
Logic Low Input Voltage  
Input Signal Rise and Fall Times  
V
IH  
VDD1  
0.8  
V
V
IL  
V
tr, tf  
1.0  
ms  
6
Electrical Specifications  
Test conditions that are not specified can be anywhere within the recommended operating range.  
All typical specifications are at TA = +25°C, VDD1 = VDD2 = +5 V.  
DC Specifications  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Logic Low Input  
Supply Current [1]  
IDD1L  
6.0  
10.0  
mA  
VI = 0 V  
Logic High Input  
Supply Current  
IDD1H  
1.5  
5.5  
3.0  
mA  
VI = VDDI  
Input Supply Current  
Output Supply Current  
Input Current  
IDD1  
IDD2  
II  
13.0  
11.0  
10  
mA  
mA  
µA  
V
-10  
Logic High Output  
Voltage  
VOH  
4.4  
4.0  
5.0  
4.8  
IO = -20 µA, VI = VIH  
IO = -4 mA, VI = VIH  
Logic Low Output  
Voltage  
VOL  
0
0.5  
0.1  
1.0  
V
IO = -20 µA, VI = VIL  
IO = -4 mA, VI = VIL  
Switching Specifications  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Propagation Delay Time  
to Logic Low Output [2]  
tPHL  
20  
40  
ns  
CL = 15 pF  
CMOS Signal Levels  
Propagation Delay Time  
to Logic Low Output [2]  
tPHL  
tPLH  
PW  
20  
23  
40  
40  
ns  
CL = 15 pF  
CMOS Signal Levels  
Propagation Delay Time  
to Logic High Output  
Pulse Width [3]  
ns  
CL = 15 pF  
CMOS Signal Levels  
80  
ns  
CL = 15 pF  
CMOS Signal Levels  
Data Rate [3]  
12.5  
8
MBd  
ns  
CL = 15 pF  
CMOS Signal Levels  
Pulse Width Distortion [4]  
PWD  
3
CL = 15 pF  
|tPHL - tPLH  
|
CMOS Signal Levels  
Propagation Delay Skew [5]  
tPSK  
tR  
20  
ns  
ns  
CL = 15 pF  
Output Rise Time  
(10 - 90%)  
9
CL = 15 pF  
CMOS Signal Levels  
Output Fall Time  
(90 - 10%)  
tF  
8
ns  
CL = 15 pF  
CMOS Signal Levels  
Common Mode  
|CMH|  
10  
10  
20  
kV/µs  
VI = VDD1, VO >  
0.8 VDD1,  
VCM = 1000 V  
Transient Immunity at  
Logic High Output [6]  
Common Mode  
|CML|  
20  
kV/µs  
VI = 0 V, VO > 0.8 V,  
VCM = 1000 V  
Transient Immunity at  
Logic Low Output [6]  
Input Dynamic Power  
CPD1  
CPD2  
60  
10  
pF  
pF  
Dissipation Capacitance [7]  
Output Dynamic Power  
Dissipation Capacitance [7]  
7
Package Characteristics  
Parameter  
Symbol Min.  
Typ.  
Max.  
Units  
Test Conditions  
Input-Output Momentary  
Withstand Voltage [8, 9, 10]  
0710  
VISO  
3750  
3750  
5000  
Vrms RH = 50%,  
t = 1 min.,  
7710  
TA = 25°C  
Option 020  
Resistance  
RI-O  
CI-O  
1012  
0.6  
W
VI-O = 500 Vdc  
f = 1 MHz  
(Input-Output) [8]  
Capacitance  
pF  
(Input-Output) [8]  
Input Capacitance [11]  
CI  
3.0  
Input IC Junction-to-Case  
Thermal Resistance  
-7710  
-0710  
-7710  
-0710  
qjci  
145  
160  
140  
135  
°C/W Thermocouple  
located at center  
underside of package  
Output IC Junction-to-Case  
Thermal Resistance  
qjco  
Package Power Dissipation  
PPD  
150  
mW  
Notes:  
1. The LED is ON when VI is low and OFF when VI is high.  
2. tPHL propagation delay is measured from the 50% level on the falling edge of the VI signal to the 50% level of the falling edge of the VO signal.  
tPLH propagation delay is measured from the 50% level on the rising edge of the VI signal to the 50% level of the rising edge of the VO signal.  
3. Mimimum Pulse Width is the shortest pulse width at which 10% maximum, Pulse Width Distortion can be guaranteed. Maximum Data Rate is  
the inverse of Minimum Pulse Width. Operating the HCPL-x710 at data rates above 12.5 MBd is possible provided PWD and data dependent  
jitter increases and relaxed noise margins are tolerable within the application. For instance, if the maximum allowable variation of bit width is  
30%, the maximum data rate becomes 37.5 MBd. Please note that HCPL-x710 performances above 12.5MBd are not guaranteed by Hewlett-  
Packard.  
4. PWD is defined as |tPHL - tPLH|. %PWD(percent pulse width distortion) is equal to the PWD divided by pulse width.  
5. tPSK is equal to the magnitude of the worst case difference in tPHL and/or tPLH that will be seen between units at any given temperature within  
the recommended operating conditions.  
6. CMH is the maximum common mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common  
mode voltage slew rate that can be sustained while maintaining VO < 0.8V. The common mode voltage slew rates apply to both rising and  
falling common mode voltage edges.  
7. Unloaded dynamic power dissipation is calculated as follows: CPD * VDD2 * f + IDD * VDD, where f is switching frequency in MHz.  
8. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.  
9. In accordance with UL1577, each HCPL-0710 is proof tested by applying an insulation test voltage ≥4500 VRMS for 1 second (leakage detec-  
tion current limit, II-O ≤5 µA). Each HCPL-7710 is proof tested by applying an insulation test voltage ≥ 4500 V rms for 1 second (leakage detec-  
tion current limit, II-O ≤ 5 µA).  
10. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating refer to your equipment level safety specification or Avago Application Note 1074 entitled  
“Optocoupler Input-Output Endurance Voltage.”  
11. CI is the capacitance measured at pin 2 (VI).  
2.2  
29  
5
4
3
2
1
ꢀ °C  
25 °C  
85 °C  
2.1  
2.ꢀ  
1.9  
27  
25  
23  
ꢀ °C  
25 °C  
85 °C  
T
T
PLH  
PHL  
21  
19  
17  
15  
1.8  
1.7  
1.6  
1
2
3
4
5
4.5  
4.75  
5
5.25  
5.5  
1ꢀ 2ꢀ 3ꢀ 4ꢀ 5ꢀ 6ꢀ 7ꢀ 8ꢀ  
(C)  
V (V)  
V
(V)  
DD1  
T
I
A
Figure 1. Typical output voltage vs. input voltage.  
Figure 2. Typical input voltage switching threshold vs.  
input supply voltage.  
Figure 3. Typical propagation delays vs. temperature.  
8
4
3
2
15  
14  
7
6
5
4
3
2
13  
12  
1
2ꢀ  
4ꢀ  
6ꢀ  
8ꢀ  
2ꢀ  
4ꢀ  
6ꢀ  
8ꢀ  
2ꢀ  
4ꢀ  
6ꢀ  
8ꢀ  
T
(C)  
T
(C)  
T (C)  
A
A
A
Figure 4. Typical pulse width distortion vs. tempera-  
ture.  
Figure 5. Typical rise time vs. temperature.  
Figure 6. Typical fall time vs. temperature.  
25  
23  
21  
19  
17  
15  
13  
11  
9
6
5
4
3
29  
27  
25  
T
PHL  
23  
21  
19  
17  
15  
T
PLH  
2
1
0
7
5
5
1ꢀ 15 2ꢀ 25 3ꢀ 35  
15 20  
25  
30  
35  
40  
45  
50  
15 20 25 30 35 40 45 50  
C (pF)  
I
C (pF)  
C (pF)  
I
I
Figure 7. Typical propagation delays vs. output load  
capacitance.  
Figure 8. Typical pulse width distortion vs. output load  
capacitance.  
Figure 9. Typical rise time vs. load capacitance.  
STANDARD 8 PIN DIP PRODUCT  
800  
SURFACE MOUNT SO8 PRODUCT  
800  
1ꢀ  
9
8
7
6
5
4
3
2
1
P
(mW)  
P
I
(mW)  
S
S
700  
600  
500  
400  
300  
700  
600  
500  
400  
300  
I
(mA)  
(mA)  
S
S
(230)  
200  
200  
(150)  
100  
100  
0
0
5
1ꢀ 15 2ꢀ 25 3ꢀ 35  
C (pF)  
0
25 50 75 100 125 150 175 200  
- CASE TEMPERATURE - o C  
0
25 50 75 100 125 150 175 200  
- CASE TEMPERATURE - o C  
I
T
T
A
A
Figure 11. Thermal derating curve, dependence of Safety Limiting Value with case temperature per IEC/EN/DIN EN  
60747-5-2.  
Figure 10. Typical fall time vs. load capacitance.  
9
Application Information  
Bypassing and PC Board Layout  
The HCPL-x710 optocouplers are extremely easy to  
use. No external interface circuitry is required because  
the HCPL-x710 use high-speed CMOS IC technology  
allowing CMOS logic to be connected directly to the  
inputs and outputs.  
required for proper operation are two bypass capacitors.  
Capacitor values should be between 0.01 µF and 0.1 µF.  
For each capacitor, the total lead length between both  
ends of the capacitor and the power-supply pins should  
not exceed 20 mm. Figure 13 illustrates the recommend-  
ed printed circuit board layout for the HPCL-x710.  
As shown in Figure 12, the only external components  
V
8
7
6
5
V
V
DD1  
1
2
3
4
DD2  
C1  
C2  
V
I
NC  
NC  
O
GND  
GND  
1
2
C1, C2 = ꢀ.ꢀ1 µF TO ꢀ.1 µF  
Figure 12. Recommended Printed Circuit Board layout.  
V
DD1  
V
V
DD2  
V
I
C1  
C2  
O
GND  
GND  
2
1
C1, C2 = ꢀ.ꢀ1 µF TO ꢀ.1 µF  
Figure 13. Recommended Printed Circuit Board layout.  
Propagation Delay, Pulse-Width Distortion and Propagation Delay  
Skew  
Propagation Delay is a figure of merit which describes  
how quickly a logic signal propagates through a  
from low to high. Similarly, the propagation delay from  
high to low (tPHL) is the amount of time required for the  
input signal to propagate to the output, causing the  
output to change from high to low. See Figure14.  
system. The propagation delay from low to high (tPLH  
)
is the amount of time required for an input signal to  
propagate to the output, causing the output to change  
INPUT  
5 V CMOS  
ꢀ V  
V
5ꢀ%  
I
t
t
PHL  
PLH  
V
OH  
2.5 V CMOS  
OUTPUT  
9ꢀ%  
9ꢀ%  
V
1ꢀ%  
1ꢀ%  
O
V
OL  
Figure 14.  
10  
Pulse-width distortion (PWD) is the difference between  
tPHL and tPLH and often determines the maximum data  
rate capability of a transmission system. PWD can be  
expressed in percent by dividing the PWD (in ns) by  
the minimum pulse width (in ns) being transmitted.  
Typically, PWD on the order of 20 - 30% of the minimum  
pulse width is tolerable. The PWD specification for the  
HCPL-x710 is 8 ns (10%) maximum across recommend-  
ed operating conditions. 10% maximum is dictated  
by the most stringent of the three fieldbus standards,  
PROFIBUS.  
Propagation delay skew is defined as the differ-  
ence between the minimum and maximum propa-  
gation delays, either tPLH or tPHL, for any given group  
of optocouplers which are operating under the same  
conditions (i.e., the same drive current, supply voltage,  
output load, and operating temperature). As illustrated  
in Figure 15, if the inputs of a group of optocouplers  
are switched either ON or OFF at the same time, tPSK is  
the difference between the shortest propagation delay,  
either tPLH or tPHL, and the longest propagation delay,  
either tPLH or tPHL  
.
Propagation delay skew, tPSK, is an important parameter  
to consider in parallel data applications where synchro-  
nization of signals on parallel data lines is a concern. If  
the parallel data is being sent through a group of op-  
tocouplers, differences in propagation delays will cause  
the data to arrive at the outputs of the optocouplers at  
different times. If this difference in propagation delay  
is large enough it will determine the maximum rate at  
which parallel data can be sent through the optocou-  
plers.  
As mentioned earlier, tPSK can determine the maximum  
parallel data transmission rate. Figure 16 is the timing  
diagram of a typical parallel data application with both  
the clock and data lines being sent through the opto-  
couplers. The figure shows data and clock signals at the  
inputs and outputs of the optocouplers. In this case the  
data is assumed to be clocked off of the rising edge of  
the clock.  
DATA  
V
I
5ꢀ%  
INPUTS  
CLOCK  
2.5 V,  
CMOS  
V
O
t
PSK  
DATA  
V
5ꢀ%  
I
OUTPUTS  
t
PSK  
CLOCK  
2.5 V,  
CMOS  
V
O
t
PSK  
Figure 15. Propagation delay skew waveform.  
Figure 16. Parallel data transmission example.  
Propagation delay skew represents the uncertainty of  
where an edge might be after being sent through an  
optocoupler. Figure16 shows that there will be uncer-  
tainty in both the data and clock lines. It is important  
that these two areas of uncertainty not overlap,  
otherwise the clock signal might arrive before all of  
the data outputs have settled, or some of the data  
outputs may start to change before the clock signal  
has arrived. From these considerations, the absolute  
minimum pulse width that can be sent through op-  
tocouplers in a parallel application is twice tPSK.  
A cautious design should use a slightly longer pulse  
width to ensure that any additional uncertainty in the  
rest of the circuit does not cause a problem.  
The HCPL-x710 optocouplers offer the advantage of  
guaranteed specifications for propagation delays, pulse-  
width distortion, and propagation delay skew over the  
recommended temperature and power supply ranges.  
11  
Digital Field Bus Communication Networks  
To date, despite its many drawbacks, the 4 - 20 mA  
analog current loop has been the most widely accepted  
standard for implementing process control systems.  
In today’s manufacturing environment, however,  
automated systems are expected to help manage  
the process, not merely monitor it. With the advent  
of digital field bus communication networks such as  
DeviceNet, PROFIBUS, and Smart Distributed Systems  
(SDS), gone are the days of constrained information.  
Controllers can now receive multiple readings from field  
devices (sensors, actuators, etc.) in addition to diagnos-  
tic information.  
The physical model for each of these digital field bus  
communication networks is very similar as shown in  
Figure 17. Each includes one or more buses, an interface  
unit, optical isolation, transceiver, and sensing and/or  
actuating devices.  
CONTROLLER  
BUS  
INTERFACE  
OPTICAL  
ISOLATION  
TRANSCEIVER  
FIELD BUS  
TRANSCEIVER  
TRANSCEIVER  
TRANSCEIVER  
TRANSCEIVER  
OPTICAL  
ISOLATION  
OPTICAL  
ISOLATION  
OPTICAL  
ISOLATION  
OPTICAL  
ISOLATION  
BUS  
INTERFACE  
BUS  
INTERFACE  
BUS  
INTERFACE  
BUS  
INTERFACE  
XXXXXX  
YYY  
SENSOR  
DEVICE  
CONFIGURATION  
MOTOR  
CONTROLLER  
MOTOR  
STARTER  
Figure 17. Typical field bus communication physical model.  
Optical Isolation for Field Bus Networks  
These components could include such things as devices  
with serial ports, parallel ports, RS232 and RS485 type  
ports. As shown in Figure 18, power from the network is  
used only for the transceiver and input (network) side of  
the optocouplers.  
To recognize the full benefits of these networks, each  
recommends providing galvanic isolation using Avago  
optocouplers. Since network communication is bi-direc-  
tional (involving receiving data from and transmitting  
data onto the network), two Avago optocouplers are  
needed. By providing galvanic isolation, data integrity is  
retained via noise reduction and the elimination of false  
signals. In addition, the network receives maximum pro-  
tection from power system faults and ground loops.  
Isolation of nodes connected to any of the three types of  
digital field bus networks is best achieved by using the  
HCPL-x710 optocouplers. For each network, the HCPL-  
x710 satisify the critical propagation delay and pulse  
width distortion requirements over the temperature  
range of 0°C to +85°C, and power supply voltage range  
of 4.5 V to5.5V.  
Within an isolated node, such as the DeviceNet Node  
shown in Figure 18, some of the node’s components are  
referenced to a ground other than V- of the network.  
12  
AC LINE  
NODE/APP SPECIFIC  
uP/CAN  
LOCAL  
NODE  
SUPPLY  
GALVANIC  
ISOLATION  
BOUNDARY  
HCPL  
x71ꢀ  
HCPL  
x71ꢀ  
5 V REG.  
TRANSCEIVER  
DRAIN/SHIELD  
SIGNAL  
V+ (SIGNAL)  
V– (SIGNAL)  
V+ (POWER)  
V– (POWER)  
POWER  
NETWORK  
POWER  
SUPPLY  
Figure 18. Typical DeviceNet node.  
Implementing DeviceNet and SDS with the HCPL-x710  
Isolated Node Powered by the Network  
With transmission rates up to 1 Mbit/s, both DeviceNet  
and SDS are based upon the same broadcast-oriented,  
This type of node is very flexible and as can be seen in  
Figure 19, is regarded as “isolated” because not all of its  
components have the same ground reference. Yet, all  
components are still powered by the network. This node  
contains two regulators: one is isolated and powers the  
CAN controller, node-specific application and isolated  
(node) side of the two optocouplers while the other is  
non-isolated. The non-isolated regulator supplies the  
transceiver and the non-isolated (network) half of the  
two optocouplers.  
communications protocol  
— the Controller Area  
Network (CAN). Three types of isolated nodes are rec-  
ommended for use on these networks: Isolated Node  
Powered by the Network (Figure 19), Isolated Node  
with Transceiver Powered by the Network (Figure 20),  
and Isolated Node Providing Power to the Network  
(Figure21).  
NODE/APP SPECIFIC  
uP/CAN  
ISOLATED  
GALVANIC  
SWITCHING  
ISOLATION  
POWER  
HCPL  
x71ꢀ  
HCPL  
x71ꢀ  
BOUNDARY  
SUPPLY  
REG.  
TRANSCEIVER  
DRAIN/SHIELD  
SIGNAL  
V+ (SIGNAL)  
V– (SIGNAL)  
V+ (POWER)  
V– (POWER)  
POWER  
NETWORK  
POWER  
SUPPLY  
Figure 19. Isolated node powered by the network.  
13  
Isolated Node with Transceiver Powered by the Network  
*Bus V+ Sensing  
It is suggested that the Bus V+ sense block shown in  
Figure 20 be implemented. A locally powered node with  
an un-powered isolated Physical Layer will accumulate  
errors and become bus-off if it attempts to transmit. The  
Bus V+ sense signal would be used to change the BOI  
attribute of the DeviceNet Object to the “auto-reset”  
(01) value. Refer to Volume 1, Section 5.5.3. This would  
cause the node to continually reset until bus power was  
detected. Once power was detected, the BOI attribute  
would be returned to the “hold in bus-off” (00) value.  
The BOI attribute should not be left in the “auto-reset”  
(01) value since this defeats the jabber protection ca-  
pability of the CAN error confinement. Any inexpensive  
low frequency optical isolator can be used to implement  
this feature.  
Figure20 shows a node powered by both the network  
and another source. In this case, the transceiver and  
isolated (network) side of the two optocouplers are  
powered by the network. The rest of the node is  
powered by the AC line which is very beneficial when  
an application requires a significant amount of power.  
This method is also desirable as it does not heavily load  
the network.  
More importantly, the unique “dual-inverting” design  
of the HCPL-x710 ensure the network will not “lock-up”  
if either AC line power to the node is lost or the node  
powered-off. Specifically, when input power (VDD1) to  
the HCPL-x710 located in the transmit path is eliminat-  
ed, a RECESSIVE bus state is ensured as the HCPL-x710  
output voltage (VO) go HIGH.  
AC LINE  
NON ISO  
5 V  
NODE/APP SPECIFIC  
uP/CAN  
GALVANIC  
ISOLATION  
BOUNDARY  
HCPL  
ꢀ71ꢀ  
HCPL  
ꢀ71ꢀ  
HCPL  
ꢀ71ꢀ  
REG.  
TRANSCEIVER  
DRAIN/SHIELD  
SIGNAL  
V+ (SIGNAL)  
V– (SIGNAL)  
V+ (POWER)  
V– (POWER)  
POWER  
NETWORK  
POWER  
SUPPLY  
* OPTIONAL FOR BUS V + SENSE  
Figure 20. Isolated node with transceiver powered by the network.  
14  
Isolated Node Providing Power to the Network  
More importantly, the unique “dual-inverting” design  
of the HCPL-x710 ensure the network will not “lock-up”  
if either AC line power to the node is lost or the node  
powered-off. Specifically, when input power (VDD1) to  
the HCPL-x710 located in the transmit path is eliminat-  
ed, a RECESSIVE bus state is ensured as the HCPL-x710  
output voltage (VO) go HIGH.  
Figure 21 shows a node providing power to the  
network. The AC line powers a regulator which provides  
five (5) volts locally. The AC line also powers a 24 volt  
isolated supply, which powers the network, and another  
five-volt regulator, which, in turn, powers the transceiv-  
er and isolated (network) side of the two optocouplers.  
This method is recommended when there are a limited  
number of devices on the network that don’t require  
much power, thus eliminating the need for separate  
power supplies.  
AC LINE  
DEVICENET NODE  
NODE/APP SPECIFIC  
uP/CAN  
5 V REG.  
ISOLATED  
SWITCHING  
POWER  
GALVANIC  
ISOLATION  
BOUNDARY  
HCPL  
ꢀ71ꢀ  
HCPL  
ꢀ71ꢀ  
SUPPLY  
5 V REG.  
TRANSCEIVER  
DRAIN/SHIELD  
SIGNAL  
V+ (SIGNAL)  
V– (SIGNAL)  
V+ (POWER)  
V– (POWER)  
POWER  
Figure 21. Isolated node providing power to the network.  
15  
Power Supplies and Bypassing  
the input and output power-supply pins of the HCPL-  
x710. For each capacitor, the total lead length between  
both ends of the capacitor and the power supply pins  
should not exceed 20 mm. The bypass capacitors are  
required because of the high-speed digital nature of the  
signals inside the optocoupler.  
The recommended DeviceNet application circuit is  
shown in Figure 22. Since the HCPL-x710 are fully com-  
patible with CMOS logic level signals, the optocoupler is  
connected directly to the CAN transceiver. Two bypass  
capacitors (with values between 0.01 and 0.1 µF) are  
required and should be located as close as possible to  
GALVANIC  
ISOLATION  
BOUNDARY  
ISO 5 V  
5 V  
LINEAR OR  
SWITCHING  
REGULATOR  
V
V
V
DD2  
1
2
8
7
DD1  
+
+
ꢀ.ꢀ1  
µF  
TXꢀ  
IN  
HCPL-ꢀ71ꢀ  
V
CC  
5 V+  
TxD  
Rs  
V
O
ꢀ.ꢀ1 µF  
3
4
6
5
CANH  
4 CAN+  
3 SHIELD  
2 CAN–  
1 V–  
82C25ꢀ  
GND  
GND  
GND  
+
1
2
2
C4  
ꢀ.ꢀ1 µF  
CANL  
REF  
GND  
VREF  
RXD  
GND  
GND  
5
6
4
3
1
C1  
ꢀ.ꢀ1 µF  
5ꢀꢀ V  
ꢀ.ꢀ1  
µF  
D1  
3ꢀ V  
R1  
1 M  
RXꢀ  
V
O
HCPL-ꢀ71ꢀ  
V
ꢀ.ꢀ1 µF  
7
8
2
1
IN  
V
V
DD1  
DD2  
ISO 5 V  
5 V  
Figure 22. Recommended DeviceNet application circuit.  
Implementing PROFIBUS with the HCPL-x710  
PROFIBUS USER:  
CONTROL STATION  
An acronym for Process Fieldbus, PROFIBUS is essen-  
tially a twisted-pair serial link very similar to RS-485  
capable of achieving high-speed communication up to  
12MBd. As shown in Figure 23, a PROFIBUS Controller  
(PBC) establishes the connection of a field automation  
unit (control or central processing station) or a field  
device to the transmission medium. The PBC consists  
of the line transceiver, optical isolation, frame character  
transmitter/receiver (UART), and the FDL/APP processor  
with the interface to the PROFIBUS user.  
(CENTRAL PROCESSING)  
OR FIELD DEVICE  
USER INTERFACE  
FDL/APP  
PROCESSOR  
UART  
PBC  
OPTICAL ISOLATION  
TRANSCEIVER  
MEDIUM  
Figure 23. PROFIBUS Controller (PBC).  
16  
Power Supplies and Bypassing  
The recommended PROFIBUS application circuit is  
shown in Figure 24. Since the HCPL-x710 are fully com-  
patible with CMOS logic level signals, the optocoup-  
ler is connected directly to the transceiver. Two bypass  
capacitors (with values between 0.01 and 0.1 µF) are  
required and should be located as close as possible to  
the input and output power-supply pins of the HCPL-  
x710. For each capacitor, the total lead length between  
both ends of the capacitor and the power supply pins  
should not exceed 20 mm. The bypass capacitors are  
required because of the high-speed digital nature of the  
signals inside the optocoupler.  
Being very similar to multi-station RS485 systems, the  
HCPL-061N optocoupler provides a transmit disable  
function which is necessary to make the bus free after  
each master/slave transmission cycle. Specifically, the  
HCPL-061N disables the transmitter of the line driver  
by putting it into a high state mode. In addition, the  
HCPL-061N switches the RX/TX driver IC into the listen  
mode. The HCPL-061N offers HCMOS compatibility and  
the high CMR performance (1 kV/µs at VCM = 1000 V)  
essential in industrial communication interfaces.  
GALVANIC  
ISOLATION  
BOUNDARY  
5 V  
ISO 5 V  
V
V
V
DD1  
8
7
1
2
ISO 5 V  
8
DD2  
V
ꢀ.ꢀ1 µF  
IN  
HCPL-x71ꢀ  
V
CC  
ꢀ.ꢀ1  
µF  
1
R
6
5
3
4
Rx  
O
6
7
+
A
B
ꢀ.ꢀ1  
µF  
RT  
SHIELD  
SN75176B  
GND  
GND  
1
2
4
3
2
D
DE  
RE  
5 V  
ISO 5 V  
GND  
5
V
V
DD2  
1
2
8
7
DD1  
ꢀ.ꢀ1  
µF  
1 M  
ꢀ.ꢀ1 µF  
V
Tx  
IN  
HCPL-x71ꢀ  
V
O
3
4
6
5
ꢀ.ꢀ1 µF  
GND  
GND  
2
1
ISO 5 V  
V
1
2
8
7
CC  
5 V  
V
E
ANODE  
68ꢀ  
ꢀ.ꢀ1  
µF  
1, ꢀ kΩ  
V
3
4
CATHODE  
6
5
Tx ENABLE  
O
GND  
HCPL-ꢀ61N  
HCPL-ꢀ71ꢀ fig 23  
Figure 24. Recommended PROFIBUS application circuit.  
17  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0564EN  
AV02-0641EN - January 4, 2008  

相关型号:

HCPL-7710-XXXE

40 ns Propagation Delay, CMOS Optocoupler
AGILENT

HCPL-7720

40 ns Propagation Delay CMOS Optocoupler
AGILENT

HCPL-7720

40 ns Propagation Delay, CMOS Optocoupler High speed: 25 MBd
AVAGO

HCPL-7720

Optocoupler Option 020 for 5000 V rms/1 Minute Requirement
BOARDCOM

HCPL-7720#060

FET-OUTPUT OPTOCOUPLER
ETC

HCPL-7720#300

FET-OUTPUT OPTOCOUPLER
ETC

HCPL-7720#500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 25 Mbps, 0.300 INCH, SURFACE MOUNT, DIP-8
AGILENT

HCPL-7720#500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 25Mbps, 0.300 INCH, SURFACE MOUNT, DIP-8
AVAGO

HCPL-7720-000E

40 ns Propagation Delay, CMOS Optocoupler
AVAGO

HCPL-7720-020E

40 ns Propagation Delay, CMOS Optocoupler
AVAGO

HCPL-7720-060

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 25Mbps, 0.300 INCH, DIP-8
AVAGO

HCPL-7720-060E

40 ns Propagation Delay, CMOS Optocoupler
AVAGO