DAC8830 [BB]

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters; 16位,超低功耗,电压输出数字 - 模拟转换器
DAC8830
型号: DAC8830
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
16位,超低功耗,电压输出数字 - 模拟转换器

转换器
文件: 总29页 (文件大小:937K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
B
u
r
r
Ć
B
r
o
w
n
P
r
o
d
u
c
t
s
DAC8830  
DAC8831  
f
r
o
m
T
e
x
a
s
I
n
s
t
r
u
m
e
n
t
s
®
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
16-Bit, Ultra-Low Power, Voltage-Output  
Digital-to-Analog Converters  
FEATURES  
DESCRIPTION  
16-Bit Resolution  
The DAC8830 and DAC8831 are single, 16-bit,  
serial-input, voltage-output digital-to-analog  
2.7 V to 5.5 V Single-Supply Operation  
Very Low Power: 15 µW for 3 V Power  
High Accuracy, INL: 1 LSB  
Low Glitch: 10 nV-s  
converters (DACs) operating from a single 3 V to 5 V  
power supply. These converters provide excellent  
linearity (1 LSB INL), low glitch, low noise, and fast  
settling (1.0 µS to 1/2 LSB of full-scale output) over  
the specified temperature range of –40°C to +85°C.  
The output is unbuffered, which reduces the power  
consumption and the error introduced by the buffer.  
Low Noise: 10 nV/Hz  
Fast Settling: 1.0 µS  
Fast SPI™ Interface, up to 50 MHz  
Reset to Zero-Code  
These parts feature a standard high-speed (clock up  
to 50 MHz), 3 V or 5 V SPI serial interface to  
communicate with the DSP or microprocessors.  
Schmitt-Trigger Inputs for Direct Optocoupler  
Interface  
The DAC8830 output is 0 V to VREF. However, the  
DAC8831 provides bipolar output (±VREF) when  
working with an external buffer. The DAC8830 and  
DAC8831 are both reset to zero-code after power  
up. For optimum performance, a set of Kelvin  
connections to external reference and analog ground  
input are provided on the DAC8831.  
Industry-Standard Pin Configuration  
APPLICATIONS  
Portable Equipment  
Automatic Test Equipment  
Industrial Process Control  
Data Acquisition Systems  
Optical Networking  
The DAC8830 is available in an SO-8 package, and  
the DAC8831 in an SO-14 package. Both have  
industry standard pinouts (see Table 3, the  
cross-reference table in the Application Information  
section for details). The DAC8831 is also available in  
a QFN-14 package.  
DAC8830  
DAC8831  
Functional Block Diagram  
Functional Block Diagram  
VDD  
VDD  
VREF  
F
S
VREF  
RINV RFB  
RFB  
INV  
VOUT  
DAC  
VREF  
CS  
+V  
LDAC  
VO  
+
VOUT  
DAC  
AGND  
CS  
SCLK  
SDI  
V
OPA277  
OPA704  
OPA727  
SCLK  
SDI  
Input  
Register  
AGNDF  
AGNDS  
DAC Latch  
Input  
Register  
DAC Latch  
DAC8830  
DAC8831  
DGND  
DGND  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
SPI, QSPI are trademarks of Motorola, Inc.  
Microwire is a trademark of National Semiconductor Corp.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2006, Texas Instruments Incorporated  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
ORDERING INFORMATION(1)  
MINIMUM  
RELATIVE  
ACCURACY  
(LSB)  
POWER-  
ON  
RESET  
VALUE  
DIFFERENTIAL  
NONLINEARITY  
(LSB)  
SPECIFIED  
TEMPERATURE  
RANGE  
TRANSPORT  
MEDIA,  
QUANTITY  
PACKAGE PACKAGE-  
PACKAGE  
DESIGNATOR  
ORDERING  
NUMBER  
PRODUCT  
MARKING  
LEAD  
DAC8830ID  
DAC8830IDR  
Tubes, 75  
DAC8830ID  
±4  
±2  
±1  
±4  
±2  
±1  
±4  
±2  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8830I  
SO-8  
D
D
Tape and Reel, 2500  
Tubes, 75  
DAC8830IBD  
DAC8830IBD  
DAC8830ICD  
DAC8831ID  
8830I  
8830I  
8831I  
8831I  
8831I  
8831I  
8831I  
8831I  
SO-8  
SO-8  
DAC8830IBDR  
DAC8830ICD  
Tape and Reel, 2500  
Tubes, 75  
D
DAC8830ICDR  
DAC8831ID  
Tape and Reel, 2500  
Tube, 50  
SO-14  
SO-14  
SO-14  
QFN-14  
QFN-14  
QFN-14  
D
DAC8831IDR  
Tape and Reel, 2500  
Tube, 50  
DAC8831IBD  
DAC8831IBD  
DAC8831ICD  
DAC8831IRGY  
DAC8831IBRGY  
DAC8831ICRGY  
D
DAC8831IBDR  
DAC8831ICD  
Tape and Reel, 2500  
Tube, 50  
D
DAC8831ICDR  
DAC8831IRGYT  
DAC8831IRGYR  
DAC8831IBRGYT  
DAC8831IBRGYR  
DAC8831ICRGYT  
DAC8831ICRGYR  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 1000  
Tape and Reel, 250  
Tape and Reel, 1000  
Tape and Reel, 250  
Tape and Reel, 1000  
RGY  
RGY  
RGY  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or see the TI  
website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
DAC8830, DAC8831  
–0.3 to +7  
UNIT  
V
VDD to AGND  
Digital input voltage to DGND  
VOUT to AGND  
–0.3 to +VDD + 0.3  
–0.3 to +VDD + 0.3  
–0.3 to +0.3  
–40 to +85  
–65 to +150  
+150  
V
V
AGND, AGNDF, AGNDS to DGND  
Operating temperature range  
Storage temperature range  
Junction temperature range (TJ max)  
Power dissipation  
V
°C  
°C  
°C  
(TJ max - TA) / θJA  
54.9  
W
QFN-14  
SO-8  
°C/W  
°C/W  
°C/W  
Thermal impedance, θJA  
136.9  
SO-14  
66.6  
(1) Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. Exposure to absolute  
maximum conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
ELECTRICAL CHARACTERISTICS  
All specifications at TA = TMIN to TMAX, VDD = +3 V or VDD = +5 V, VREF = +2.5 V unless otherwise noted; specifications subject  
to change without notice.  
DAC8830, DAC8831  
PARAMETER  
STATIC PERFORMANCE  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
16  
bits  
DAC8830ICD,  
DAC8831ICD,  
DAC8831ICRGY  
±0.5  
±0.5  
±0.5  
±1  
±2  
±4  
DAC8830IBD,  
DAC8831IBD,  
DAC8831IBRGY  
Linearity error  
LSB  
DAC8830ID,  
DAC8831ID,  
DAC8831IRGY  
Differential linearity error  
All grades  
±0.5  
±1  
±1  
±5  
±7  
LSB  
LSB  
TA = +25°C  
Gain error  
TA = –40°C to +85°C  
Gain drift  
±0.1  
ppm/°C  
LSB  
TA = +25°C  
±0.25  
±1  
±2  
Zero code error  
TA = –40°C to +85°C  
Zero code drift  
±0.05  
ppm/°C  
OUTPUT CHARACTERISTICS  
All devices  
Unipolar operation  
Bipolar operation  
0
+VREF  
+VREF  
V
V
Voltage output(1)  
DAC8831 only  
–VREF  
Output impedance  
Settling time  
6.25  
1
kΩ  
To 1/2 LSB of FS, CL = 10 pF  
CL = 10 pF  
µs  
Slew rate(2)  
25  
10  
0.2  
10  
18  
V/µs  
nV-s  
nV-s  
Digital-to-analog glitch  
Digital feedthrough(3)  
1 LSB change around major carry  
DAC8830  
DAC8831  
Output noise  
TA = +25°C  
nV/Hz  
Power-supply rejection  
VDD varies ±10%  
RFB / RINV  
±1  
LSB  
/Ω  
%
1
±0.0015  
±0.25  
Bipolar resistor  
matching  
DAC8831 only  
Ratio error  
±0.0076  
±5  
TA = +25°C  
Bipolar zero error  
Bipolar zero drift  
DAC8831 only  
DAC8831 only  
LSB  
TA = –40°C to +85°C  
±7  
±0.2  
ppm/°C  
(1) The DAC8830 output is unipolar (0 V to +VREF). The DAC8831 output is bipolar (±VREF) when it connects to an external buffer (see the  
Bipolar Output Operation section for details).  
(2) Slew Rate is measure from 10% to 90% of transition when the output changes from 0 to full scale.  
(3) Digital feedthrough is defined as the impulse injected into the analog output from the digital input. It is measured when the DAC output  
does not change; CS is held high, while SCLK and DIN signals are toggled.  
3
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
ELECTRICAL CHARACTERISTICS (continued)  
All specifications at TA = TMIN to TMAX, VDD = +3 V or VDD = +5 V, VREF = +2.5 V unless otherwise noted; specifications subject  
to change without notice.  
DAC8830, DAC8831  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
REFERENCE INPUT  
Reference input voltage range  
Reference input impedance(4)  
1.25  
9
VDD  
V
Unipolar mode  
kΩ  
Bipolar mode, DAC8831  
Code = FFFFh  
7.5  
Reference –3dB bandwidth, BW  
Reference feedthrough  
1.3  
1
MHz  
mV  
dB  
Code = 0000h, VREF = 1 VPP at 100 kHz  
Signal-to-noise ratio, SNR  
92  
75  
120  
Code = 0000h  
Code = FFFFh  
Reference input capacitance  
pF  
DIGITAL INPUTS  
VDD = 2.7 V  
VDD = 5 V  
VDD = 2.7 V  
VDD = 5 V  
0.6  
0.8  
VIL  
VIH  
Input low voltage  
Input high voltage  
V
V
2.1  
2.4  
Input current  
±1  
µA  
pF  
V
Input capacitance  
Hysteresis voltage  
10  
0.4  
POWER SUPPLY  
VDD Power-supply voltage  
2.7  
5.5  
20  
V
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
5
5
IDD  
Power-supply current  
Power  
µA  
20  
15  
25  
60  
µW  
°C  
100  
TEMPERATURE RANGE  
Specified performance  
–40  
+85  
(4) Reference input resistance is code-dependent, minimum at 8555h.  
4
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
PIN CONFIGURATION (NOT TO SCALE)  
D PACKAGE  
SO-8  
D PACKAGE  
SO-14  
RGY PACKAGE  
QFN-14  
(TOP VIEW)  
(TOP VIEW)  
(TOP VIEW)  
VOUT  
AGND  
VREF  
VDD  
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VDD  
RFB  
VOUT  
INV  
DGND  
SDI  
13 12 11 10  
9
DGND  
LDAC  
SDI  
AGNDF  
AGNDS  
VREF−S  
VREF−F  
CS  
CS  
SCLK  
VDD 14  
8
7
SCLK  
CS  
NC  
DAC8831  
Thermal Pad(1)  
8
SCLK  
RFB  
1
2
3
4
5
6
NOTE: (1) Exposed thermal pad in the QFN package  
must be connected to analog ground.  
TERMINAL FUNCTIONS  
TERMINAL  
DESCRIPTION  
NO.  
NAME  
DAC8830  
1
VOUT  
Analog output of DAC  
Analog ground  
2
AGND  
VREF  
CS  
3
Voltage reference input  
4
Chip select input (active low). Data is not clocked into SDI unless CS is low  
Serial clock input  
5
SCLK  
SDI  
6
Serial data input. Data is latched into input register on the rising edge of SCLK.  
Digital ground  
7
DGND  
VDD  
8
Analog power supply, +3 V to +5 V  
DAC8831  
1
2
RFB  
Feedback resistor. Connect to the output of external operational amplifier in bipolar mode.  
Analog output of DAC  
VOUT  
3
AGNDF Analog ground (Force)  
AGNDS Analog ground (Sense)  
4
5
VREF–  
VREF–  
CS  
S
Voltage reference input (Sense). Connect to external voltage reference  
Voltage reference input (Force). Connect to external voltage reference  
Chip select input (active low). Data is not clocked into SDI unless CS is low.  
Serial clock input.  
6
F
7
8
SCLK  
NC  
9
No internal connection  
10  
SDI  
Serial data input. Data is latched into input register on the rising edge of SCLK.  
Load DAC control input. Active low. When LDAC is Low, the DAC latch is simultaneously updated with the  
content of the input register.  
11  
12  
13  
14  
LDAC  
DGND  
INV  
Digital ground  
Junction point of internal scaling resistors. Connect to external operational amplifier inverting input in bipolar  
mode.  
VDD  
Analog power supply, +3 V to +5 V.  
5
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
t
td  
CS  
DAC  
Updated  
t
Delay  
t
sck  
t
Lead  
t
t
DSCLK  
t
t
wsck  
Lag  
wsck  
SCLK  
SDI  
t
t
su  
ho  
BIT15 (MSB)  
−−Don’t Care  
BIT13, . . . ,1  
BIT0  
BIT14  
Figure 1. DAC8830 Timing Diagram  
Case1: LDAC tied to LOW  
CS  
t
td  
DAC  
Updated  
t
Delay  
t
sck  
t
Lead  
t
t
DSCLK  
t
t
wsck  
Lag  
wsck  
SCLK  
t
t
su  
ho  
SDI  
BIT 15 (MSB)  
BIT 14  
BIT 13, . . . ,1  
BIT 0  
LDAC  
LOW  
−−Don’t Care  
Case2: LDAC Active  
CS  
t
td  
t
Delay  
t
sck  
t
Lead  
t
t
DSCLK  
t
t
wsck  
Lag  
wsck  
SCLK  
SDI  
t
t
su  
ho  
BIT 15 (MSB)  
BIT 14  
BIT 13, . . . ,1  
BIT 0  
t
t
WLDAC  
DLADC  
DAC  
HIGH  
LDAC  
Updated  
−−Don’t Care  
Figure 2. DAC8831 Timing Diagram  
6
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
TIMING CHARACTERISTICS: VDD = +5 V(1)(2)  
At –40°C to +85°C, unless otherwise noted.  
PARAMETER  
MIN  
20  
10  
10  
10  
10  
10  
30  
10  
0
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
tsck  
SCLK period  
twsck  
tDelay  
tLead  
tLag  
SCLK high or low time  
Delay from SCLK high to CS low  
CS enable lead time  
CS enable lag time  
tDSCLK  
ttd  
Delay from CS high to SCLK high  
CS high between active period  
Data setup time (input)  
Data hold time (input)  
tsu  
tho  
tWLDAC  
tDLDAC  
LDAC width  
30  
30  
10  
Delay from CS high to LDAC low  
VDD high to CS low (power-up delay)  
(1) Assured by design. Not production tested.  
(2) Sample tested during the initial release and after any redesign or process changes that may affect this parameter.  
TIMING CHARACTERISTICS: VDD = +3 V(1)(2)  
At –40°C to +85°C, unless otherwise noted.  
PARAMETER  
MIN  
20  
10  
10  
10  
10  
10  
30  
10  
0
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
tsck  
SCLK period  
twsck  
tDelay  
tLead  
tLag  
SCLK high or low time  
Delay from SCLK high to CS low  
CS enable lead time  
CS enable lag time  
tDSCLK  
ttd  
Delay from CS high to SCLK high  
CS high between active period  
Data setup time (input)  
tsu  
tho  
Data hold time (input)  
tWLDAC  
tDLDAC  
LDAC width  
30  
30  
10  
Delay from CS high to LDAC low  
VDD high to CS low (power-up delay)  
(1) Assured by design. Not production tested.  
(2) Sample tested during the initial release and after any redesign or process changes that may affect this parameter.  
7
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
TYPICAL CHARACTERISTICS: VDD = +5 V  
At TA = +25°C and VREF = +2.5 V, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 3.  
Figure 4.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 5.  
Figure 6.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 7.  
Figure 8.  
8
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
TYPICAL CHARACTERISTICS: VDD = +5 V (continued)  
At TA = +25°C and VREF = +2.5 V, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
1.00  
0.75  
0.50  
0.25  
0
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 9.  
Figure 10.  
LINEARITY ERROR  
vs REFERENCE VOLTAGE  
LINEARITY ERROR  
vs SUPPLY VOLTAGE  
0.75  
0.50  
0.25  
0
0.75  
0.50  
0.25  
0
VREF = 2.5 V  
DNL  
DNL  
INL  
INL  
0.25  
0.50  
0.25  
0.50  
0
1
2
3
4
5
6
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Reference Voltage (V)  
Supply Voltage (V)  
Figure 11.  
Figure 12.  
GAIN ERROR  
vs TEMPERATURE  
ZERO-CODE ERROR  
vs TEMPERATURE  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0.50  
0.25  
0
Bipolar Mode  
VREF = 2.5 V  
Bipolar Mode  
Unipolar Mode  
0.25  
0.50  
0.75  
0.25  
0.50  
Unipolar Mode  
VREF = 2.5 V  
60  
40 20  
0
20  
40  
60  
80 100 120 140  
60  
40 20  
0
20  
40  
60  
80 100 120 140  
_
_
Temperature ( C)  
Temperature ( C)  
Figure 13.  
Figure 14.  
9
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
TYPICAL CHARACTERISTICS: VDD = +5 V (continued)  
At TA = +25°C and VREF = +2.5 V, unless otherwise noted.  
REFERENCE CURRENT  
vs CODE (UNIPOLAR MODE)  
REFERENCE CURRENT  
vs CODE (BIPOLAR MODE)  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
60  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 15.  
Figure 16.  
SUPPLY CURRENT  
vs DIGITAL INPUT VOLTAGE  
SUPPLY CURRENT  
vs TEMPERATURE  
800  
5
4
3
2
1
0
VREF = 2.5 V  
700  
600  
500  
400  
300  
200  
100  
0
VDD = 5 V  
VDD = 5 V  
VLOGIC = 5 V  
VDD = 3 V  
VLOGIC = 3 V  
VDD = 3 V  
0
1
2
3
4
5
20  
40  
0
20 40  
60  
80 100 120 140  
Digital Input Voltage (V)  
_
Temperature ( C)  
Figure 17.  
Figure 18.  
SUPPLY CURRENT  
vs SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs REFERENCE VOLTAGE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VREF = 2.5 V  
VDD = 5 V  
VDD = 3 V  
2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0  
Supply Voltage (V)  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Reference Voltage (V)  
Figure 19.  
Figure 20.  
10  
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
TYPICAL CHARACTERISTICS: VDD = +5 V (continued)  
At TA = +25°C and VREF = +2.5 V, unless otherwise noted.  
MAJOR-CARRY GLITCH  
(FALLING)  
MAJOR-CARRY GLITCH  
(RISING)  
VREF = 2.5 V  
VREF = 2.5 V  
5V/div  
5V/div  
LDAC  
LDAC  
VOUT  
VOUT  
0.1V/div  
0.1V/div  
µ
µ
Time (0.5 s/div)  
Time (0.5 s/div)  
Figure 21.  
Figure 22.  
DAC SETTLING TIME  
(FALLING)  
DAC SETTLING TIME  
(RISING)  
VREF = 2.5 V  
VREF = 2.5 V  
5V/div  
1V/div  
5V/div  
LDAC  
LDAC  
VOUT  
VOUT  
1V/div  
µ
µ
Time (0.2 s/div)  
Time (0.2 s/div)  
Figure 23.  
Figure 24.  
DIGITAL  
FEEDTHROUGH  
VREF = 2.5 V  
SDI  
5V/div  
VOUT  
20mV/div  
Time (50ns/div)  
Figure 25.  
11  
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
TYPICAL CHARACTERISTICS: VDD = +3 V  
At TA = +25°C and VREF = +2.5 V, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 26.  
Figure 27.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 28.  
Figure 29.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 30.  
Figure 31.  
12  
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
TYPICAL CHARACTERISTICS: VDD = +3 V (continued)  
At TA = +25°C and VREF = +2.5 V, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 32.  
Figure 33.  
LINEARITY ERROR  
vs REFERENCE VOLTAGE  
GAIN ERROR  
vs TEMPERATURE  
1.00  
0.75  
0.50  
0.25  
0
0.75  
0.50  
0.25  
0
Bipolar Mode  
DNL  
Unipolar Mode  
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
VDD = 3 V  
VREF = 2.5 V  
INL  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
60  
40 20  
0
20  
40  
60  
80 100 120 140  
_
Temperature ( C)  
Reference Voltage (V)  
Figure 34.  
Figure 35.  
ZERO-CODE ERROR  
vs TEMPERATURE  
REFERENCE CURRENT  
vs CODE (UNIPOLAR MODE)  
0.50  
0.25  
0
300  
250  
200  
150  
100  
50  
VDD = 3 V  
VREF = 2.5 V  
Unipolar Mode  
0.25  
0.50  
0.75  
Bipolar Mode  
0
60  
40 20  
0
20  
40  
60  
80 100 120 140  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
_
Temperature ( C)  
Figure 36.  
Figure 37.  
13  
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
TYPICAL CHARACTERISTICS: VDD = +3 V (continued)  
At TA = +25°C and VREF = +2.5 V, unless otherwise noted.  
REFERENCE CURRENT  
vs CODE (BIPOLAR MODE)  
DIGITAL  
FEEDTHROUGH  
300  
VREF = 2.5 V  
250  
200  
150  
100  
50  
SDI  
5V/div  
VOUT  
20mV/div  
0
Time (50ns/div)  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 38.  
Figure 39.  
MAJOR-CARRY GLITCH  
(FALLING)  
MAJOR-CARRY GLITCH  
(RISING)  
VREF = 2.5 V  
VREF = 2.5 V  
5V/div  
5V/div  
LDAC  
LDAC  
VOUT  
VOUT  
0.1V/div  
0.1V/div  
µ
µ
Time (0.5 s/div)  
Time (0.5 s/div)  
Figure 40.  
Figure 41.  
DAC SETTLING TIME  
(FALLING)  
DAC SETTLING TIME  
(RISING)  
VREF = 2.5 V  
VREF = 2.5 V  
5V/div  
5V/div  
1V/div  
LDAC  
LDAC  
VOUT  
VOUT  
1V/div  
µ
µ
Time (0.2 s/div)  
Time (0.2 s/div)  
Figure 42.  
Figure 43.  
14  
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
THEORY OF OPERATION  
GENERAL DESCRIPTION  
The DAC8830 and DAC8831 are single, 16-bit, serial-input, voltage-output DACs. They operate from a single  
supply ranging from 2.7 V to 5 V, and typically consume 5 µA. Data is written to these devices in a 16-bit word  
format, via an SPI serial interface. To ensure a known power-up state, these parts are designed with a power-on  
reset function. The DAC8830 and DAC8831 are reset to zero code. In unipolar mode, the DAC8830 and  
DAC8831 are reset to 0V, and in bipolar mode, the DAC8831 is reset to –VREF. Kelvin sense connections for the  
reference and analog ground are included on the DAC8831.  
DIGITAL-TO-ANALOG SECTIONS  
The DAC architecture for both devices consists of two matched DAC sections and is segmented. A simplified  
circuit diagram is shown in Figure 44. The four MSBs of the 16-bit data word are decoded to drive 15 switches,  
E1 to E15. Each of these switches connects one of 15 matched resistors to either AGND or VREF. The remaining  
12 bits of the data word drive switches S0 to S11 of a 12-bit voltage mode R-2R ladder network.  
R
R
VOUT  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
S0  
S1  
S11  
E1  
E2  
E15  
VREF  
12−Bit R2R Ladder  
Four MSBs Decoded into  
15 Equal Segments  
Figure 44. DAC Architecture  
OUTPUT RANGE  
The output of the DAC is  
VOUT = (VREF × Code)/65536.  
Where Code is the decimal data word loaded to the DAC latch.  
15  
Submit Documentation Feedback  
 
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
THEORY OF OPERATION (continued)  
POWER-ON RESET  
Both devices have a power-on reset function to ensure the output is at a known state upon power-up. In the  
DAC8830 and DAC8831, on power-up, the DAC latch and Input Registers contain all 0s until new data is loaded  
from the input serial shift register. Therefore, after power-up, the output from pin VOUT of the DAC8830 is 0 V.  
The output from pin VOUT of the DAC8831 is 0V in unipolar mode and –VREF in bipolar mode.  
However, the serial register of the DAC8830 and DAC8831 is not cleared on power-up, so its contents are  
undefined. When loading data initially to the device, 16 bits or more should be loaded to prevent erroneous data  
appearing on the output. If more than 16 bits are loaded, the last 16 are kept; if less than 16 are loaded, bits will  
remain from the previous word. If the device must be interfaced with data shorter than 16 bits, the data should  
be padded with 0s at the LSBs.  
Serial Interface  
The digital interface is standard 3-wire connection compatible with SPI, QSPI™, Microwire™, and TI DSP  
interfaces, which can operate at speeds up to 50M-bits/sec. The data transfer is framed by CS, the chip select  
signal. The DAC works as a bus slave. The bus master generates the synchronize clock, SCLK, and initiates the  
transmission. When CS is high, the DAC is not accessed, and the clock SCLK and serial input data SDI are  
ignored. The bus master accesses the DAC by driving pin CS low. Immediately following the high-to-low  
transition of CS, the serial input data on pin SDI is shifted out from the bus master synchronously on the falling  
edge of SCLK, and latched on the rising edge of SCLK into the input shift register, MSB first. The low-to-high  
transition of CS transfers the contents of the input shift register to the input register. All data registers are 16-bit.  
It takes 16 clocks of SCLK to transfer one data word to the parts. To complete a whole data word, CS must go  
high immediately after 16 SCLKs are clocked in. If more than 16 SCLKs are applied during the low state of CS,  
the last 16 bits are transferred to the input register on the rising edge of CS. However, if CS is not kept low  
during the entire 16 SCLK cycles, data is corrupted. In this case, reload the DAC with a new 16-bit word.  
In the DAC8830, the contents of the input register are transferred into the DAC latch immediately when the input  
register is loaded, and the DAC output is updated at the same time.  
The DAC8831 has an LDAC pin allowing the DAC latch to be updated asynchronously by bringing LDAC low  
after CS goes high. In this case, LDAC must be maintained high while CS is low. If LDAC is tied permanently  
low, the DAC latch is updated immediately after the input register is loaded (caused by the low-to-high transition  
of CS).  
16  
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
APPLICATION INFORMATION  
Unipolar Output Operation  
These DACs are capable of driving unbuffered loads of 60 k. Unbuffered operation results in low supply  
current (typically 5 µA) and a low offset error. The DAC8830 provides a unipolar output swing ranging from 0 V  
to VREF. The DAC8831 can be configured to output both unipolar and bipolar voltages. Figure 45 and Figure 46  
show a typical unipolar output voltage circuit for each device, respectively. The code table for this mode of  
operation is shown in Table 1.  
Table 1. Unipolar Code  
DAC LATCH CONTENTS  
MSB  
LSB  
ANALOG OUTPUT  
VREF × (65,535/65,536)  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
VREF × (32,768/65,536) = 1/2 VREF  
VREF × (1/65,536)  
0V  
+5 V  
+2.5 V  
+
µ
10  
F
µ
0.1  
F
µ
0.1  
F
OPA277  
OPA704  
OPA727  
VDD  
VREF  
VO = 0 to +VREF  
VOUT  
DAC  
AGND  
CS  
SCLK  
SDI  
Input  
Register  
DAC Latch  
DAC8830  
DGND  
Figure 45. Unipolar Output Mode of DAC8830  
17  
Submit Documentation Feedback  
 
 
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
+5 V  
+2.5 V  
+
µ
µ
F
0.1  
F
10  
µ
0.1  
F
OPA277  
OPA704  
OPA727  
VREF  
F
VDD  
S
VREF  
RINV  
RFB  
+V  
RFB  
LDAC  
INV  
VO = 0 to +VREF  
VOUT  
DAC  
CS  
SCLK  
SDI  
V
AGNDF  
AGNDS  
Input  
Register  
DAC Latch  
DAC8831  
DGND  
Figure 46. Unipolar Output Mode of DAC8831  
Assuming a perfect reference, the worst-case output voltage may be calculated from the following equation:  
Unipolar Mode Worst-Case Output  
D
2
  ǒV  
GEǓ ) V  
ZSE  
V
+
) V  
) INL  
OUT_UNI  
REF  
16  
Where:  
VOUT_UNI = Unipolar mode worst-case output  
D = Code loaded to DAC  
VREF = Reference voltage applied to part  
VGE = Gain error in volts  
VZSE = Zero scale error in volts  
INL = Integral nonlinearity in volts  
18  
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
Bipolar Output Operation  
With the aid of an external operational amplifier, the DAC8831 may be configured to provide a bipolar voltage  
output. A typical circuit of such an operation is shown in Figure 47. The matched bipolar offset resistors RFB and  
RINV are connected to an external operational amplifier to achieve this bipolar output swing; typically, RFB = RINV  
= 28 k.  
+5 V  
+2.5 V  
+
µ
µ
F
0.1  
F
10  
µ
0.1  
F
VREF  
F
VDD  
S
VREF  
RINV  
RFB  
RFB  
INV  
+V  
LDAC  
= VREF to +VREF  
VO  
VOUT  
DAC  
OPA277  
OPA704  
OPA727  
CS  
SCLK  
SDI  
V
AGNDF  
AGNDS  
Input  
Register  
DAC Latch  
DAC8831  
DGND  
Figure 47. Bipolar Output Mode of DAC8831  
Table 2 shows the transfer function for this output operating mode. The DAC8831 also provides a set of Kelvin  
connections to the analog ground and external reference inputs.  
Table 2. Bipolar Code  
DAC LATCH CONTENTS  
MSB  
LSB  
ANALOG OUTPUT  
+VREF × (32,767/32,768)  
1111 1111 1111 1111  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
+VREF × (1/32,768)  
0V  
–VREF × (1/32,768)  
–VREF × (32,768/32,768) = –VREF  
Assuming a perfect reference, the worst-case output voltage may be calculated from the following equation:  
Bipolar Mode Worst-Case Output  
ǒ
ƪ V  
Ǔ (  
1 ) RD)ƫ  
)
(
) V  
2 ) RD * V  
OUT_UNI  
OS  
REF  
V
+
OUT_BIP  
2)RD  
1 ) ǒ  
Ǔ
A
Where:  
VOS = External operational amplifier input offset voltage  
RD = RFB and RIN resistor matching error  
A = Operational amplifier open-loop gain  
19  
Submit Documentation Feedback  
 
 
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
Output Amplifier Selection  
For bipolar mode, a precision amplifier should be used, supplied from a dual power supply. This provides the  
±VREF output.  
In a single-supply application, selection of a suitable operational amplifier may be more difficult because the  
output swing of the amplifier does not usually include the negative rail; in this case, AGND. This output swing  
can result in some degradation of the specified performance unless the application does not use codes near 0.  
The selected operational amplifier needs to have low-offset voltage (the DAC LSB is 38 µV with a 2.5 V  
reference), eliminating the need for output offset trims. Input bias current should also be low because the bias  
current multiplied by the DAC output impedance (approximately 6.25 k) adds to the zero-code error.  
Rail-to-rail input and output performance is required. For fast settling, the slew rate of the operational amplifier  
should not impede the settling time of the DAC. Output impedance of the DAC is constant and  
code-independent, but in order to minimize gain errors the input impedance of the output amplifier should be as  
high as possible. The amplifier should also have a 3 dB bandwidth of 1 MHz or greater. The amplifier adds  
another time constant to the system, thus increasing the settling time of the output. A higher 3 dB amplifier  
bandwidth results in a shorter effective settling time of the combined DAC and amplifier.  
Reference and Ground  
Since the input impedance is code-dependent, the reference pin should be driven from a low impedance source.  
The DAC8830 and DAC8831 operate with a voltage reference ranging from 1.25 V to VDD. References below  
1.25 V result in reduced accuracy.  
The DAC full-scale output voltage is determined by the reference. Table 1 and Table 2 outline the analog output  
voltage for particular digital codes.  
For optimum performance, Kelvin sense connections are provided on the DAC8831. If the application does not  
require separate force and sense lines, they should be tied together close to the package to minimize voltage  
drops between the package leads and the internal die.  
Power Supply and Reference Bypassing  
For accurate high-resolution performance, it is recommended that the reference and supply pins be bypassed  
with a 10 µF tantalum capacitor in parallel with a 0.1 µF ceramic capacitor.  
20  
Submit Documentation Feedback  
DAC8830  
DAC8831  
www.ti.com  
SLAS449CFEBRUARY 2005REVISED NOVEMBER 2006  
CROSS-REFERENCE  
The DAC8830 and DAC8831 have an industry-standard pinout configuration (see Table 3).  
Table 3. Cross-Reference  
INL  
(LSB)  
DNL  
(LSB)  
POWER-ON  
RESET TO  
TEMPERATURE  
RANGE  
PACKAGE  
DESCRIPTION  
PACKAGE  
OPTION  
CROSS  
REFERENCE  
MODEL  
AD5541CR,  
MAX541AESA  
DAC8830ICD  
DAC8830IBD  
DAC8830ID  
±1  
±2  
±4  
±1  
±1  
±1  
Zero-Code  
Zero-Code  
Zero-Code  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead Small Outline IC  
8-Lead Small Outline IC  
8-Lead Small Outline IC  
SO-8  
SO-8  
SO-8  
AD5541BR,  
MAX541BESA  
AD5541AR,  
MAX541CESA  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
±1  
±2  
±4  
±1  
±2  
±1  
±2  
±4  
±1  
±1  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
8-Lead Small Outline IC  
8-Lead Small Outline IC  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
PDIP-8  
PDIP-8  
PDIP-8  
SO-8  
MAX541AEPA  
MAX541BEPA  
MAX541CEPA  
AD5541LR  
±1  
±1  
±1.5  
±1  
SO-8  
AD5541JR  
PDIP-8  
PDIP-8  
PDIP-8  
MAX541AEPA  
MAX541BEPA  
MAX541CEPA  
±1  
±1  
AD5542CR,  
MAX542AESD  
DAC8831ICD  
DAC8831IBD  
DAC8831ID  
±1  
±2  
±4  
±1  
±1  
±1  
Zero-Code  
Zero-Code  
Zero-Code  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
14-Lead Small Outline IC  
14-Lead Small Outline IC  
14-Lead Small Outline IC  
SO-14  
SO-14  
SO-14  
AD5542BR,  
MAX542BESD  
AD5542AR,  
MAX542CESD  
DAC8831ICRGY  
±1  
±2  
±4  
±1  
±2  
±4  
±1  
±2  
±1  
±2  
±4  
±1  
±1  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
0°C to +70°C  
14-Lead QFN  
14-Lead QFN  
QFN-14  
QFN-14  
QFN-14  
PDIP-14  
PDIP-14  
PDIP-14  
SO-14  
N/A  
DAC8831IBRGY  
N/A  
DAC8831IRGY  
±1  
14-Lead QFN  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
±1  
14-Lead Plastic DIP  
14-Lead Plastic DIP  
14-Lead Plastic DIP  
14-Lead Small Outline IC  
14-Lead Small Outline IC  
14-Lead Small Outline IC  
14-Lead Small Outline IC  
14-Lead Small Outline IC  
MAX542ACPD  
MAX542BCPD  
MAX542CCPD  
AD5542LR  
AD5542JR  
MAX542AEPD  
MAX542BEPD  
MAX542CEPD  
±1  
±1  
±1  
±1.5  
±1  
0°C to +70°C  
SO-14  
0°C to +70°C  
SO-14  
±1  
0°C to +70°C  
SO-14  
±1  
0°C to +70°C  
SO-14  
21  
Submit Documentation Feedback  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jan-2007  
PACKAGING INFORMATION  
Orderable Device  
DAC8830IBDR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8830IBDRG4  
DAC8830IBDT  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
QFN  
D
D
8
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
8
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8830IBDTG4  
DAC8830ICDR  
D
8
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
D
8
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8830ICDRG4  
DAC8830ICDT  
D
8
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
D
8
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8830ICDTG4  
DAC8830IDR  
D
8
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
D
8
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8830IDRG4  
DAC8830IDT  
D
8
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
D
8
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8830IDTG4  
DAC8831IBD  
D
8
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8831IBDG4  
DAC8831IBDR  
D
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8831IBDRG4  
DAC8831IBRGYR  
DAC8831IBRGYRG4  
DAC8831IBRGYT  
DAC8831IBRGYTG4  
DAC8831ICD  
D
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RGY  
RGY  
RGY  
RGY  
D
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SOIC  
SOIC  
SOIC  
SOIC  
QFN  
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8831ICDG4  
DAC8831ICDR  
D
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8831ICDRG4  
DAC8831ICRGYR  
D
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RGY  
1000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jan-2007  
Orderable Device  
DAC8831ICRGYT  
DAC8831ICRGYTG4  
DAC8831ID  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
QFN  
RGY  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
SOIC  
SOIC  
SOIC  
SOIC  
QFN  
QFN  
QFN  
QFN  
RGY  
D
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8831IDG4  
D
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8831IDR  
D
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8831IDRG4  
DAC8831IRGYR  
DAC8831IRGYRG4  
DAC8831IRGYT  
DAC8831IRGYTG4  
D
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RGY  
RGY  
RGY  
RGY  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to  
discontinue any product or service without notice. Customers should obtain the latest relevant information  
before placing orders and should verify that such information is current and complete. All products are sold  
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent  
TI deems necessary to support this warranty. Except where mandated by government requirements, testing  
of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible  
for their products and applications using TI components. To minimize the risks associated with customer  
products and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent  
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,  
or process in which TI products or services are used. Information published by TI regarding third-party  
products or services does not constitute a license from TI to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or  
other intellectual property of the third party, or a license from TI under the patents or other intellectual  
property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.  
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not  
responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service  
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Interface  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Military  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Logic  
Power Mgmt  
Microcontrollers  
Low Power Wireless  
power.ti.com  
microcontroller.ti.com  
www.ti.com/lpw  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

DAC8830-EP

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
TI

DAC8830IBD

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
BB

DAC8830IBD

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
TI

DAC8830IBDG4

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
TI

DAC8830IBDR

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
BB

DAC8830IBDR

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
TI

DAC8830IBDRG4

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
TI

DAC8830IBDT

暂无描述
TI

DAC8830IBDTG4

SERIAL INPUT LOADING, 1us SETTLING TIME, 16-BIT DAC, PDSO8, GREEN, PLASTIC, MS-012AA, SOIC-8
TI

DAC8830ICD

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
TI

DAC8830ICDG4

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
TI

DAC8830ICDR

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
BB