PCM1605Y [BB]

24-Bit, 192kHz Sampling,6-Channel, Enhanced Multi-Level, Delta-Sigma DIGITAL-TO-ANALOG CONVERTER; 24位192kHz采样, 6通道,增强多层次, Σ-Δ数位类比转换器
PCM1605Y
型号: PCM1605Y
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

24-Bit, 192kHz Sampling,6-Channel, Enhanced Multi-Level, Delta-Sigma DIGITAL-TO-ANALOG CONVERTER
24位192kHz采样, 6通道,增强多层次, Σ-Δ数位类比转换器

转换器
文件: 总32页 (文件大小:263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
PCM1604  
PCM1605  
PCM1605  
PCM1604  
For most current data sheet and other product  
information, visit www.burr-brown.com  
TM  
24-Bit, 192kHz Sampling,6-Channel,  
Enhanced Multi-Level, Delta-Sigma  
DIGITAL-TO-ANALOG CONVERTER  
APPLICATIONS  
FEATURES  
INTEGRATED A/V RECEIVERS  
DVD MOVIE AND AUDIO PLAYERS  
HDTV RECEIVERS  
PIN COMPATIBLE WITH PCM1600, PCM1601  
24-BIT RESOLUTION  
ANALOG PERFORMANCE:  
Dynamic Range: 105dB typ  
SNR: 104dB typ  
CAR AUDIO SYSTEMS  
DVD ADD-ON CARDS FOR HIGH-END PCs  
DIGITAL AUDIO WORKSTATIONS  
OTHER MULTI-CHANNEL AUDIO SYSTEMS  
THD+N: 0.0018% typ  
Full-Scale Output: 3.1Vp-p typ  
8x OVERSAMPLING INTERPOLATION FILTER:  
Stopband Attenuation: –82dB  
Passband Ripple: ±0.002dB  
DESCRIPTION  
SAMPLING FREQUENCY: 10kHz to 200kHz  
ACCEPTS 16-, 18-, 20-, AND 24-BIT AUDIO DATA  
DATA FORMATS: Standard, I2S, and Left-Justified  
SYSTEM CLOCK: 128/192/256/384/512/768fS  
The PCM1604(1) and PCM1605(1) are CMOS mono-  
lithic integrated circuits which feature six 24-bit audio  
digital-to-analog converters, and support circuitry in a  
small QFP-48 package. The digital-to-analog convert-  
ers utilize Burr-Brown’s enhanced multi-level, delta-  
sigma architecture, which employs 4th-order noise  
shaping and 8-level amplitude quantization to achieve  
excellent signal-to-noise performance, and a high tol-  
erance to clock jitter.  
USER-PROGRAMMABLE FUNCTIONS:  
Digital Attenuation: 0dB to –63dB, 0.5dB/Step  
Soft Mute  
Zero Detect Mute  
Zero Flags May Be Used As General  
Purpose Logic Outputs  
The PCM1604 and PCM1605 accept industry-stan-  
dard audio data formats with 16- to 24-bit audio data.  
Sampling rates up to 200kHz are supported. A full set  
of user-programmable functions are accessible through  
a 4-wire serial control port which supports register  
write and readback functions.  
Digital De-Emphasis  
Digital Filter Roll-Off: Sharp or Slow  
DUAL SUPPLY OPERATION:  
+5V Analog, +3.3V Digital  
NOTE: (1) The PCM1604 and PCM1605 utilize the same die and are  
electrically identical. All references to the PCM1604 apply equally to  
the PCM1605.  
5V TOLERANT DIGITAL LOGIC INPUTS  
PACKAGES(1): LQFP-48 (PCM1604) and  
MQFP-48 (PCM1605)  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706  
• Tel: (520) 746-1111  
Twx: 910-952-1111 Internet: http://www.burr-brown.com/  
Cable: BBRCORP Telex: 066-6491  
FAX: (520) 889-1510 Immediate Product Info: (800) 548-6132  
© 2000 Burr-Brown Corporation  
PDS-1564A  
Printed in U.S.A. April, 2000  
SPECIFICATIONS  
All specifications at +25°C, +VCC = +5V, +VDD = +3.3V, system clock = 384fS (fS = 44.1kHz) and 24-bit data, unless otherwise noted.  
PCM1604Y, PCM1605Y  
PARAMETER  
RESOLUTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
24  
Bits  
DATA FORMAT  
Audio Data Interface Formats  
User Selectable  
User Selectable  
Standard, I2S, Left-Justified  
16, 18, 20, 24-Bit  
Data Bit Length  
Audio Data Format  
MSB-First, Binary Two’s Complement  
Sampling Frequency (fS)  
System Clock Frequency  
10  
200  
kHz  
128, 192, 256, 384, 512, 768fS  
TTL-Compatible  
DIGITAL INPUT/OUTPUT  
Logic Family  
Input Logic Level  
VIH  
VIL  
2.0  
V
V
0.8  
Input Logic Current  
(1)  
IIH  
VIN = VDD  
VIN = 0V  
VIN = VDD  
VIN = 0V  
10  
µA  
µA  
µA  
µA  
(1)  
IIL  
–10  
100  
–10  
(2)  
IIH  
IIL  
65  
(2)  
Output Logic Level  
(3)  
VOH  
IOH = –4mA  
IOL = +4mA  
2.4  
V
V
(3)  
VOL  
1.0  
DYNAMIC PERFORMANCE(4)  
THD+N, VOUT = 0dB  
fS = 44.1kHz  
fS = 96kHz  
fS = 44.1kHz  
0.0018  
0.0035  
0.65  
0.0045  
%
%
%
VOUT = –60dB  
fS = 96kHz  
EIAJ, A-Weighted, fS =44.1kHz  
A-Weighted, fS = 96kHz  
EIAJ, A-Weighted, fS =44.1kHz  
A-Weighted, fS = 96kHz  
fS = 44.1kHz  
0.75  
105  
104  
104  
103  
102  
101  
±0.5  
%
Dynamic Range  
100  
98  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Signal-to-Noise Ratio(5)  
Channel Separation  
Level Linearity Error  
96  
fS = 96kHz  
VOUT = –90dB  
DC ACCURACY  
Gain Error  
Gain Mismatch, Channel-to-Channel  
Bipolar Zero Error  
±1.0  
±1.0  
±30  
% of FSR  
% of FSR  
mV  
VO = 0.5VCC at Bipolar Zero  
ANALOG OUTPUT  
Output Voltage  
Center Voltage  
Full Scale (0dB)  
AC Load  
62% of VCC  
50% VCC  
Vp-p  
V
Load Impedance  
5
kΩ  
DIGITAL FILTER PERFORMANCE  
Filter Characteristics, Sharp Roll-Off  
Passband  
±0.002dB  
–3dB  
0.454fS  
0.490fS  
Hz  
Hz  
Stopband  
Passband Ripple  
Stopband Attenuation  
0.546fS  
Hz  
dB  
±0.002  
Stopband = 0.546fS  
Stopband = 0.567fS  
–75  
–82  
dB  
dB  
Filter Characteristics, Slow Roll-Off  
Passband  
±0.002dB  
–3dB  
0.274fS  
0.454fS  
Hz  
Hz  
Hz  
dB  
dB  
sec  
dB  
Stopband  
0.732fS  
–82  
Passband Ripple  
Stopband Attenuation  
Delay Time  
±0.002  
Stopband = 0.732fS  
34/fS  
±0.1  
De-Emphasis Error  
ANALOG FILTER PERFORMANCE  
Frequency Response  
f = 20kHz  
f = 44kHz  
–0.03  
–0.20  
dB  
dB  
®
2
PCM1604, PCM1605  
SPECIFICATIONS (Cont.)  
All specifications at +25°C, +VCC = +5V, +VDD = +3.3V, system clock = 384fS (fS = 44.1kHz) and 24-bit data, unless otherwise noted.  
PCM1604Y, PCM1605Y  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY REQUIREMENTS  
Voltage Range, VDD  
VCC  
+3.0  
+4.5  
+3.3  
+5.0  
20  
+3.6  
+5.5  
28  
V
V
(6)  
Supply Current, IDD  
fS = 44.1kHz  
fS = 96kHz  
fS = 44.1kHz  
fS = 96kHz  
fS = 44.1kHz  
fS = 96kHz  
mA  
mA  
mA  
mA  
mW  
mW  
42  
ICC  
40  
56  
42  
266  
349  
Power Dissipation  
409  
TEMPERATURE RANGE  
Operation  
–25  
–55  
+85  
°C  
°C  
Storage  
+125  
Thermal Resistance, θJA  
100  
°C/W  
NOTES: (1) Pins 38, 40, 41, 45-47 (SCKI, BCK, LRCK, DATA1, DATA2, DATA3). (2) Pins 34-37 (MDI, MC, ML, RST). (3) Pins 1-6, 48 (ZERO1-6, ZEROA),  
Pin 39 (SCKO). (4) Analog performance specifications are tested with Shibasoku #725 THD Meter 400Hz HPF, 30kHz LPF on, average mode with 20kHz  
bandwidth limiting. The load connected to the analog output is 5kor larger, AC-coupled. (5) SNR is tested with Infinite Zero Detection off. (6) SCKO is disabled.  
ABSOLUTE MAXIMUM RATINGS  
ELECTROSTATIC  
Power Supply Voltage, VDD .............................................................. +4.0V  
VCC .............................................................. +6.5V  
DISCHARGE SENSITIVITY  
Digital Input Voltage ........................................................... –0.2V to +5.5V  
Digital Output Voltage(1) ........................................... –0.2V to (VDD + 0.2V)  
This integrated circuit can be damaged by ESD. Burr-Brown  
Input Current (except power supply) ............................................... ±10mA  
recommends that all integrated circuits be handled with  
Power Dissipation .......................................................................... 650mW  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Operating Temperature Range ......................................... –25°C to +85°C  
Storage Temperature ...................................................... –55°C to +125°C  
Lead Temperature (soldering, 5s)................................................. +260°C  
ESD damage can range from subtle performance degradation  
Package Temperature (IR reflow, 10s) .......................................... +235°C  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
NOTE: (1) Pin 33 (MDO) when output is disabled.  
changes could cause the device not to meet its published  
specifications.  
PACKAGE/ORDERING INFORMATION  
PACKAGE  
DRAWING  
NUMBER  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER(1)  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
PCM1604Y  
LQFP-48  
340  
"
–25°C to +85°C  
PCM1604Y  
PCM1604Y  
PCM1604Y/2K  
PCM1605Y  
250-Piece Tray  
Tape and Reel  
84-Piece Tray  
Tape and Reel  
"
"
"
"
PCM1605Y  
MQFP-48  
359  
–25°C to +85°C  
PCM1605Y  
"
"
"
"
"
PCM1605Y/1K  
NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K indicates 2000 devices per reel). Ordering 2000 pieces  
of “PCM1604Y/2K” will get a single 2000-piece Tape and Reel.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
3
PCM1604, PCM1605  
BLOCK DIAGRAM  
VOUT1  
Output Amp and  
Low-Pass Filter  
DAC  
BCK  
LRCK  
V
OUT2  
Output Amp and  
Low-Pass Filter  
Audio  
Serial  
I/F  
DAC  
DAC  
DATA1  
DATA2  
DATA3  
4x/8x  
Oversampling  
Digital Filter  
with  
Function  
Controller  
VOUT  
3
Output Amp and  
Low-Pass Filter  
Enhanced  
Multi-level  
Delta-Sigma  
Modulator  
V
COM1  
V
COM2  
OUT4  
Output Amp and  
Low-Pass Filter  
DAC  
DAC  
DAC  
TEST  
RST  
ML  
V
Serial  
Control  
I/F  
Output Amp and  
Low-Pass Filter  
V
V
OUT5  
MC  
MDI  
MDO  
Output Amp and  
Low-Pass Filter  
OUT6  
System Clock  
System Clock  
Manager  
Power Supply  
Zero Detect  
SCKI  
SCKO  
PIN CONFIGURATION  
Top View  
LQFP, MQFP  
48 47 46 45 44 43 42 41 40 39 38 37  
ZERO1/GPO1  
1
2
3
4
5
6
7
8
9
36 ML  
35 MC  
34 MDI  
33 MDO  
32 NC  
31 NC  
ZERO2/GPO2  
ZERO3/GPO3  
ZERO4/GPO4  
ZERO5/GPO5  
ZERO6/GPO6  
AGND  
PCM1604  
PCM1605  
30 VCC  
29 AGND0  
28 VCC  
27 AGND1  
26  
CC2  
25 AGND2  
0
VCC  
VOUT6  
1
V
OUT5 10  
VOUT  
4
3
11  
12  
V
VOUT  
13 14 15 16 17 18 19 20 21 22 23 24  
®
4
PCM1604, PCM1605  
PIN ASSIGNMENTS  
PIN  
1
NAME  
I/O  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
DESCRIPTION  
ZERO1/GPO1  
ZERO2/GPO2  
ZERO3/GPO3  
ZERO4/GPO4  
ZERO5/GPO5  
ZERO6/GPO6  
AGND  
Zero Data Flag for VOUT1. Can also be used as GPO pin.  
Zero Data Flag for VOUT2. Can also be used as GPO pin.  
Zero Data Flag for VOUT3. Can also be used as GPO pin.  
Zero Data Flag for VOUT4. Can also be used as GPO pin.  
Zero Data Flag for VOUT5. Can also be used as GPO pin.  
Zero Data Flag for VOUT6. Can also be used as GPO pin.  
Analog Ground  
2
3
4
5
6
7
8
VCC  
Analog Power Supply, +5V  
9
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
6
5
4
3
2
1
Voltage Output for Audio Signal Corresponding to Rch on DATA3.  
Voltage Output for Audio Signal Corresponding to Lch on DATA3.  
Voltage Output for Audio Signal Corresponding to Rch on DATA2.  
Voltage Output for Audio Signal Corresponding to Lch on DATA2.  
Voltage Output for Audio Signal Corresponding to Rch on DATA1.  
Voltage Output for Audio Signal Corresponding to Lch on DATA1.  
Common Voltage Output. This pin should be bypassed with a 10µF capacitor to AGND.  
Common Voltage Output. This pin should be bypassed with a 10µF capacitor to AGND.  
Analog Ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
VCOM  
VCOM  
AGND6  
VCC  
AGND5  
VCC  
AGND4  
VCC  
AGND3  
VCC  
AGND2  
VCC  
AGND1  
VCC  
AGND0  
VCC  
2
1
6
Analog Power Supply, +5V  
Analog Ground  
5
Analog Power Supply, +5V  
Analog Ground  
4
Analog Power Supply, +5V  
Analog Ground  
3
Analog Power Supply, +5V  
Analog Ground  
2
Analog Power Supply, +5V  
Analog Ground  
1
Analog Power Supply, +5V  
Analog Ground  
0
Analog Power Supply, +5V  
NC  
NC  
No Connection. Must be open.  
No Connection. Must be open.  
MDO  
MDI  
MC  
Serial Data Output for Function Register Control Port(3)  
Serial Data Input for Function Register Control Port(1)  
Shift Clock for Function Register Control Port(1)  
Latch Enable for Function Register Control Port(1)  
System Reset, Active LOW(1)  
I
ML  
I
RST  
SCKI  
SCKO  
I
I
System Clock In. Input frequency is 128, 192, 256, 384, 512 or 768fS.(2)  
O
Buffered Clock Output. Output frequency is 128, 192, 256, 384, 512, or 768fS or one-half of 128, 192, 256, 384, 512,  
or 768fS.  
40  
41  
42  
43  
44  
45  
46  
47  
48  
BCK  
LRCK  
TEST  
I
I
Shift Clock Input for Serial Audio Data(2)  
Left and Right Clock Input. This clock is equal to the sampling rate, fS.(2)  
Test Pin. This pin should be connected to DGND.(1)  
Digital Power Supply, +3.3V  
I
VDD  
DGND  
DATA1  
DATA2  
DATA3  
ZEROA  
Digital Ground for +3.3V  
Serial Audio Data Input for VOUT1 and VOUT2(2)  
Serial Audio Data Input for VOUT3 and VOUT4(2)  
Serial Audio Data Input for VOUT5 and VOUT6(2)  
Zero Data Flag. Logical “AND” of ZERO1 through ZERO6.  
I
I
O
NOTES: (1) Schmitt-Trigger input with internal pull-down, 5V tolerant. (2) Schmitt-Trigger input, 5V tolerant. (3) Tri-state output.  
®
5
PCM1604, PCM1605  
TYPICAL PERFORMANCE CURVES  
All specifications at +25°C, VCC = 5V, VDD = 3.3V, SYSCLK = 384fS (fS = 44.1kHz), and 24-bit input data, unless otherwise noted.  
DIGITAL FILTER  
Digital Filter (De-Emphasis Off, fS = 44.1kHz)  
FREQUENCY RESPONSE  
(Sharp Roll-Off)  
PASSBAND RIPPLE  
(Sharp Roll-Off)  
0
–20  
0.003  
0.002  
0.001  
0
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–0.001  
–0.002  
–0.003  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (x fS)  
Frequency (x fS)  
FREQUENCY RESPONSE  
(Slow Roll-Off)  
TRANSITION CHARACTERISTICS  
(Slow Roll-Off)  
0
–20  
0
–2  
–4  
–40  
–6  
–8  
–60  
–10  
–12  
–14  
–16  
–18  
–20  
–80  
–100  
–120  
–140  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Frequency (x fS)  
Frequency (x fS)  
De-Emphasis Error  
DE-EMPHASIS FREQUENCY RESPONSE (fS = 32kHz)  
DE-EMPHASIS ERROR (fS = 32kHz)  
0
–2  
0.5  
0.3  
–4  
0.1  
–6  
–8  
–10  
–0.1  
–0.3  
–0.5  
0
0
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
Frequency (kHz)  
Frequency (kHz)  
DE-EMPHASIS FREQUENCY RESPONSE (fS = 44.1kHz)  
DE-EMPHASIS ERROR (fS = 44.1kHz)  
0.5  
0.3  
0
–2  
–4  
–6  
–8  
0.1  
–0.1  
–0.3  
–0.5  
–10  
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Frequency (kHz)  
Frequency (kHz)  
DE-EMPHASIS FREQUENCY RESPONSE (fS = 48kHz)  
DE-EMPHASIS ERR0R (fS = 48kHz)  
0
–2  
–4  
–6  
–8  
0.5  
0.3  
0.1  
–0.1  
–0.3  
–0.5  
–10  
2
4
6
8
10 12 14 16 18 20 22  
0
2
4
6
8
10 12 14 16 18 20 22  
Frequency (kHz)  
Frequency (kHz)  
®
6
PCM1604, PCM1605  
TYPICAL PERFORMANCE CURVES (Cont.)  
All specifications at +25°C, VCC = 5V, VDD = 3.3V, SYSCLK = 384fS (fS = 44.1kHz), and 24-bit input data, unless otherwise noted.  
ANALOG DYNAMIC PERFORMANCE  
Supply Voltage Characteristics  
TOTAL HARMONIC DISTORTION + NOISE  
vs POWER SUPPLY (VDD = 3.3V)  
DYNAMIC RANGE  
vs POWER SUPPLY (VDD = 3.3V)  
10  
1
110  
108  
106  
104  
102  
100  
98  
96kHz, 384fS  
44.1kHz, 384fS  
–60dB  
44.1kHz, 384fS  
0.1  
96kHz, 384fS  
96kHz, 384fS  
0.01  
0.001  
0dB  
44.1kHz, 384fS  
4.5  
96  
4.0  
5.0  
5.5  
6.0  
4.0  
4.5  
5.0  
5.5  
6.0  
VCC (V)  
VCC (V)  
CHANNEL SEPARATION  
SIGNAL-TO-NOISE RATIO  
vs POWER SUPPLY (VDD = 3.3V)  
vs POWER SUPPLY (VDD = 3.3V)  
110  
108  
106  
104  
102  
100  
98  
110  
108  
106  
104  
102  
100  
98  
44.1kHz, 384fS  
44.1kHz, 384fS  
96kHz, 384fS  
96kHz, 384fS  
96  
96  
4.0  
4.5  
5.0  
5.5  
6.0  
4.0  
4.5  
5.0  
5.5  
6.0  
VCC (V)  
V
CC (V)  
®
7
PCM1604, PCM1605  
TYPICAL PERFORMANCE CURVES (Cont.)  
All specifications at VDD = +3.3V, 128fS system clock, 64x oversampling, and 24-bit data. Only two channels (VOUT1 and VOUT2) are operated. All other channels  
are set to all zero input data and DAC operation is disabled (bits DAC3 through DAC6 of Register 8 are set to 1).  
TOTAL HARMONIC DISTORTION + NOISE  
vs POWER SUPPLY (VDD = 3.3V)  
DYNAMIC RANGE  
vs POWER SUPPLY (VDD = 3.3V)  
10  
1
110  
108  
106  
104  
102  
100  
98  
–60dB/192kHz-128fS  
192kHz-128fS  
0.1  
0.01  
0.001  
0dB/192kHz-128fS  
96  
4
4.5  
5
5.5  
6
4
4.5  
5
5.5  
6
VCC (V)  
VCC (V)  
SIGNAL-TO-NOISE RATIO  
vs POWER SUPPLY (VDD = 3.3V)  
CHANNEL SEPARATION  
vs POWER SUPPLY (VDD = 3.3V)  
110  
108  
106  
104  
102  
100  
98  
110  
108  
106  
104  
102  
100  
98  
192kHz-128fS  
192kHz-128fS  
96  
96  
4
4.5  
5
5.5  
6
4
4.5  
5
5.5  
6
VCC (V)  
VCC (V)  
®
8
PCM1604, PCM1605  
TYPICAL PERFORMANCE CURVES (Cont.)  
All specifications at +25°C, VCC = 5V, VDD = 3.3V, SYSCLK = 384fS (fS = 44.1kHz), and 24-bit input data, unless otherwise noted.  
ANALOG DYNAMIC PERFORMANCE (Cont.)  
Temperature Characteristics  
TOTAL HARMONIC DISTORTION + NOISE  
vs TEMPERATURE  
DYNAMIC RANGE vs TEMPERATURE  
110  
108  
106  
104  
102  
100  
98  
10  
1
96kHz, 384fS  
44.1kHz, 384fS  
–60dB  
44.1kHz, 384fS  
0.1  
96kHz, 384fS  
96kHz, 384fS  
0.01  
0.001  
44.1kHz, 384fS  
0dB  
96  
–25  
0
25  
50  
75  
100  
–25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
SIGNAL-TO-NOISE RATIO vs TEMPERATURE  
CHANNEL SEPARATION vs TEMPERATURE  
110  
108  
106  
104  
102  
100  
98  
110  
108  
106  
104  
102  
100  
98  
44.1kHz, 384fS  
44.1kHz, 384fS  
96kHz, 384fS  
96kHz, 384fS  
96  
96  
–25  
0
25  
50  
75  
100  
–25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
®
9
PCM1604, PCM1605  
TYPICAL PERFORMANCE CURVES (Cont.)  
All specifications at VCC = +5V, VDD = +3.3V, 128fS system clock, 64x oversampling, and 24-bit data. Only two channels (VOUT1 and VOUT2) are operated. All other  
channels are set to all zero input data and DAC operation is disabled (bits DAC3 through DAC6 of Register 8 are set to 1).  
TOTAL HARMONIC DISTORTION + NOISE  
DYNAMIC RANGE vs TEMPERATURE  
vs TEMPERATURE  
110  
108  
106  
104  
102  
100  
98  
10  
1
192kHz-128fS/–60dB  
192kHz-128fS  
0.1  
0.01  
192kHz-128fS/0dB  
96  
0.001  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
SIGNAL-TO-NOISE RATIO vs TEMPERATURE  
CHANNEL SEPARATION vs TEMPERATURE  
110  
108  
106  
104  
102  
100  
98  
110  
108  
106  
104  
102  
100  
98  
192kHz-128fS  
192kHz-128fS  
96  
96  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
®
10  
PCM1604, PCM1605  
POWER-ON AND EXTERNAL RESET FUNCTIONS  
SYSTEM CLOCK AND RESET  
FUNCTIONS  
The PCM1604 includes a power-on reset function. Figure 2  
shows the operation of this function.  
SYSTEM CLOCK INPUT  
The system clock input at SCKI should be active for at least  
one clock period prior to VDD = 2.0V. With the system clock  
active and VDD > 2.0V, the power-on reset function will be  
enabled. The initialization sequence requires 1024 system  
clocks from the time VDD > 2.0V. After the initialization  
period, the PCM1604 will be set to its reset default state, as  
described in the Mode Control Register section of this data  
sheet.  
The PCM1604 and PCM1605 require a system clock for  
operating the digital interpolation filters and multi-level  
delta-sigma modulators. The system clock is applied at the  
SCKI input (pin 38). Table I shows examples of system  
clock frequencies for common audio sampling rates.  
Figure 1 shows the timing requirements for the system clock  
input. For optimal performance, it is important to use a clock  
source with low phase jitter and noise. Burr-Brown’s  
PLL1700 multi-clock generator is an excellent choice for  
providing the PCM1604 system clock source.  
The PCM1604 also includes an external reset capability  
using the RST input (pin 37). This allows an external  
controller or master reset circuit to force the PCM1604 to  
initialize to its reset default state. For normal operation, RST  
should be set to a logic ‘1’.  
To obtain optimal dynamic performance when operating  
with a 192kHz sampling frequency, it is recommended that  
only two channels be enabled for operation (VOUT1 and  
VOUT2). The remaining four channels should be disabled by  
setting bits DAC3 through DAC6 of control register 8 to  
logic 1 state.  
Figure 3 shows the external reset operation and timing. The  
RST pin is set to logic ‘0’ for a minimum of 20ns. The RST  
pin is then set to a logic ‘1’ state, which starts the initializa-  
tion sequence, which lasts for 1024 system clock periods.  
After the initialization sequence is completed, the PCM1604  
will be set to its reset default state, as described in the Mode  
Control Registers section of this data sheet.  
SYSTEM CLOCK OUTPUT  
A buffered version of the system clock input is available at  
the SCKO output (pin 39). SCKO can operate at either full  
(fSCKI) or half (fSCKI/2) rate. The SCKO output frequency  
may be programmed using the CLKD bit of Control Regis-  
ter 9. The SCKO output pin can also be enabled or disabled  
using the CLKE bit of Control Register 9. The default is  
SCKO enabled.  
The external reset is especially useful in applications where  
there is a delay between PCM1604 power up and system  
clock activation. In this case, the RST pin should be held at  
a logic ‘0’ level until the system clock has been  
activated.  
SYSTEM CLOCK FREQUENCY (fSCKI  
(MHz)  
)
SAMPLING FREQUENCY  
(fS)  
128fS  
192fS  
256fS  
384fS  
512fS  
768fS  
16kHz  
32kHz  
4.0960  
8.1920  
6.1440  
12.2880  
8.1920  
16.3840  
12.2880  
24.5760  
44.1kHz  
48kHz  
11.2896  
16.9344  
22.5792  
33.8688  
12.2880  
22.5792  
24.5760  
See Note 2  
See Note 2  
18.4320  
24.5760  
36.8640  
88.2kHz  
96kHz  
33.8688  
45.1584  
See Note 1  
See Note 1  
See Note 2  
See Note 2  
12.2880  
22.5792  
24.5760  
18.4320  
33.8688  
36.8640  
36.8640  
49.1520  
176.4kHz  
192  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
NOTE: (1) The 768fS system clock rate is not supported for fS > 64kHz. (2) This system clock rate is not supported for the given sampling frequency.  
TABLE I. System Clock Rates for Common Audio Sampling Frequencies.  
tSCKIH  
2.0V  
0.8V  
“H”  
“L”  
SCKI  
fSCKI  
tSCKIH  
System Clock Pulse Width High tSCKIH  
System Clock Pulse Width Low tSCKIL  
: 7ns min  
: 7ns min  
FIGURE 1. System Clock Input Timing.  
®
11  
PCM1604, PCM1605  
2.4V  
2.0V  
1.6V  
VCC = VDD  
Reset  
Reset Removal  
Internal Reset  
1024 system clocks  
System Clock  
(SCKI)  
FIGURE 2. Power-On Reset Timing.  
RST  
(1)  
tRST  
Reset  
Reset Removal  
Internal Reset  
1024 system clocks  
System Clock  
(SCKI)  
NOTE: (1) tRST = 20ns min.  
FIGURE 3. External Reset Timing.  
DATA1, DATA2 and DATA3 each carry two audio channels,  
designated as the Left and Right channels. The Left channel  
data always precedes the Right channel data in the serial data  
stream for all data formats. Table II shows the mapping of the  
digital input data to the analog output pins.  
AUDIO SERIAL INTERFACE  
The audio serial interface for the PCM1604 is comprised  
of a 5-wire synchronous serial port. It includes LRCK (pin  
41), BCK (pin 40), DATA1 (pin 45), DATA2 (pin 46) and  
DATA3 (pin 47). BCK is the serial audio bit clock, and is  
used to clock the serial data present on DATA1, DATA2  
and DATA3 into the audio interface’s serial shift registers.  
Serial data is clocked into the PCM1604 on the rising edge  
of BCK. LRCK is the serial audio left/right word clock. It  
is used to latch serial data into the serial audio interface’s  
internal registers.  
DATA INPUT  
CHANNEL  
ANALOG OUTPUT  
DATA1  
DATA1  
DATA2  
DATA2  
DATA3  
DATA3  
Left  
Right  
Left  
VOUT  
OUT2  
VOUT  
1
V
3
Right  
Left  
VOUT4  
VOUT5  
VOUT6  
Both LRCK and BCK must be synchronous to the system  
clock. Ideally, it is recommended that LRCK and BCK be  
derived from the system clock input or output, SCKI or  
SCKO. The left/right clock, LRCK, is operated at the  
sampling frequency (fS). The bit clock, BCK, may be  
operated at 48 or 64 times the sampling frequency.  
Right  
TABLE II. Audio Input Data to Analog Output Mapping.  
SERIAL CONTROL INTERFACE  
The serial control interface is a 4-wire synchronous serial port  
which operates asynchronously to the serial audio interface.  
The serial control interface is utilized to program and read the  
on-chip mode registers. The control interface includes MDO  
(pin 33), MDI (pin 34), MC (pin 35), and ML (pin 36). MDO  
is the serial data output, used to read back the values of the  
mode registers; MDI is the serial data input, used to program  
the mode registers; MC is the serial bit clock, used to shift  
data in and out of the control port and ML is the control port  
latch clock.  
AUDIO DATA FORMATS AND TIMING  
The PCM1604 supports industry-standard audio data for-  
mats, including Standard, I2S, and Left-Justified. The data  
formats are shown in Figure 4. Data formats are selected  
using the format bits, FMT[2:0], in Control Register 9. The  
default data format is 24-bit Standard. All formats require  
Binary Two’s Complement, MSB-first audio data. Figure  
5 shows a detailed timing diagram for the serial audio  
interface.  
®
12  
PCM1604, PCM1605  
®
13  
PCM1604, PCM1605  
LRCK  
BCK  
50% of VDD  
50% of VDD  
tBCH  
tBCL  
tLB  
tBCY  
tBL  
50% of VDD  
DATA1-DATA3  
tDS  
tDH  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
(1)  
tBCY  
tBCH  
tBCL  
tBL  
BCK Pulse Cycle Time  
BCK High Level Time  
BCK Low Level Time  
48 or 64fS  
35  
35  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
BCK Rising Edge to LRCK Edge  
LRCK Falling Edge to BCK Rising Edge  
DIN Set Up Time  
tLB  
tDS  
tDH  
DIN Hold Time  
NOTE: (1) fS is the sampling frequency (e.g., 44.1kHz, 48kHz, 96kHz, etc.)  
FIGURE 5. Audio Interface Timing.  
MSB  
LSB  
D0  
R/W IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Register Index (or Address)  
Register Data  
Read/Write Operation  
0 = Write Operation  
1 = Read Operation (register index is ignored)  
FIGURE 6. Control Data Word Format for MDI.  
ML  
MC  
MDI  
X
0
IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0 D7 D6 D5  
D4 D3 D2 D1 D0  
X
X
D15 D14  
FIGURE 7. Write Operation Timing.  
REGISTER WRITE OPERATION  
SINGLE REGISTER READ OPERATION  
All Write operations for the serial control port use 16-bit data  
words. Figure 6 shows the control data word format. The most  
significant bit is the Read/Write (R/W) bit. When set to ‘0’, this  
bit indicates a Write operation. There are seven bits, labeled  
IDX[6:0], that set the register index (or address) for the Write  
operation. The least significant eight bits, D[7:0], contain the  
data to be written to the register specified by IDX[6:0].  
Read operations utilize the 16-bit control word format shown  
in Figure 6. For Read operations, the Read/Write (R/W) bit is  
set to ‘1’. Read operations ignore the index bits, IDX[6:0], of  
the control data word. Instead, the REG[6:0] bits in Control  
Register 11 are used to set the index of the register that is to be  
read during the Read operation. Bits IDX[6:0] should be set to  
00H for Read operations.  
Figure 7 shows the functional timing diagram for writing the  
serial control port. ML is held at a logic ‘1’ state until a register  
needs to be written. To start the register write cycle, ML is set  
to logic ‘0’. Sixteen clocks are then provided on MC, corre-  
sponding to the 16-bits of the control data word on MDI. After  
the sixteenth clock cycle has completed, ML is set to logic ‘1’  
to latch the data into the indexed mode control register.  
Figure 8 details the Read operation. First, Control Register 11  
must be written with the index of the register to be read back.  
Additionally, the INC bit must be set to logic ‘0’ in order to  
disable the Auto-Increment Read function. The Read cycle is  
then initiated by setting ML to logic ‘0’ and setting the R/W bit  
of the control data word to logic ‘1’, indicating a Read  
operation. MDO remains at a high-impedance state until the  
®
14  
PCM1604, PCM1605  
®
15  
PCM1604, PCM1605  
last 8 bits of the 16-bit read cycle, which corresponds to the  
8 data bits of the register indexed by the REG[6:0] bits of  
Control Register 11. The Read cycle is completed when ML  
is set to ‘1’, immediately after the MC clock cycle for the  
least significant bit of indexed control register has com-  
pleted.  
tion starts on the next HIGH to LOW transition of the ML  
pin. The Read cycle starts by setting the R/W bit of the  
control word to ‘1’, and setting all of the IDX[6:0] bits to  
‘0.’. All subsequent bits input on the MDI are ignored while  
ML is set to ‘0.’ For the first 8 clocks of the Read cycle,  
MDO is set to a high-impedance state. This is followed by  
a sequence of 8-bit words, each corresponding to the data  
contained in Control Registers 1 through N, where N is  
defined by the REG[6:0] bits in Control Register 11. The  
Read cycle is completed when ML is set to ‘1’, immediately  
after the MC clock cycle for the least significant bit of  
Control Register N has completed.  
AUTO-INCREMENT READ OPERATION  
The Auto-Increment Read function allows for multiple reg-  
isters to be read sequentially. The Auto-Increment Read  
function is enabled by setting the INC bit of Control Register  
11 to ‘1’. The sequence always starts with Register 1, and  
ends with the register indexed by the REG[6:0] bits in  
Control Register 11.  
CONTROL INTERFACE TIMING REQUIREMENTS  
Figure 10 shows a detailed timing diagram for the Serial  
Control interface. Pay special attention to the setup and hold  
times, as well as tMLS and tMLH, which define minimum delays  
between edges of the ML and MC clocks. These timing  
parameters are critical for proper control port operation.  
Figure 9 shows the timing for the Auto-Increment Read  
operation. The operation begins by writing Control Register  
11, setting INC to ‘1’ and setting REG[6:0] to the last  
register to be read in the sequence. The actual Read opera-  
tMHH  
50% of VDD  
ML  
tMLS  
tMCH  
tMCL  
tMLH  
50% of VDD  
MC  
tMCY  
LSB  
MDI  
50% of VDD  
tMDS  
tMCH  
tMOS  
LSB  
50% of VDD  
MDO  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
tMCY  
tMCL  
tMCH  
tMHH  
tMLS  
tMLH  
tMDI  
MC Pulse Cycle Time  
MC Low Level Time  
MC High Level Time  
ML High Level Time  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
50  
300  
20  
ML Falling Edge to MC Rising Edge  
ML Hold Time(1)  
20  
Hold Time  
15  
tMDS  
tMOS  
MDL Set Up Time  
20  
MC Falling Edge to MDSO Stable  
30  
NOTE: (1) MC rising edge for LSB to ML rising edge.  
FIGURE 10. Control Interface Timing.  
®
16  
PCM1604, PCM1605  
Register Map  
MODE CONTROL REGISTERS  
User-Programmable Mode Controls  
The mode control register map is shown in Table IV. Each  
register includes a R/W bit, which determines whether a  
register read (R/W =1) or write (R/W = 0) operation is  
performed. Each register also includes an index (or address)  
indicated by the IDX[6:0] bits.  
The PCM1604 includes a number of user-programmable  
functions which are accessed via control registers. The  
registers are programmed using the Serial Control Interface  
which was previously discussed in this data sheet. Table III  
lists the available mode control functions, along with their  
reset default conditions and associated register index.  
FUNCTION  
RESET DEFAULT  
CONTROL REGISTER  
INDEX, IDX[6:0]  
Digital Attenuation Control, 0dB to –63dB in 0.5dB Steps  
Digital Attenuation Load Control  
Digital Attenuation Rate Select  
Soft Mute Control  
0dB, No Attenuation  
Data Load Disabled  
2/fS  
1 through 6  
01H - 07H  
07H  
7
7
07H  
Mute Disabled  
DAC 1-6 Enabled  
Disabled  
7
07H  
DAC 1-6 Operation Control  
Infinite Zero Detect Mute  
8
08H  
8
08H  
Audio Data Format Control  
Digital Filter Roll-Off Control  
SCKO Frequency Selection  
SCKO Output Enable  
24-Bit Standard Format  
Sharp Roll-Off  
9
09H  
9
09H  
Full Rate (= fSCKI  
SCKO Enabled  
)
9
09H  
9
09H  
De-Emphasis Function Control  
De-Emphasis Sample Rate Selection  
Output Phase Reversal  
De-Emphasis Disabled  
44.1kHz  
10  
10  
10  
11  
11  
12  
12  
12  
0AH  
0AH  
0AH  
0BH  
0BH  
0CH  
0CH  
0CH  
Disabled  
Read Register Index Control  
REG[6:0] = 01H  
Read Auto-Increment Control  
Auto-Increment Disabled  
Zero Flags Enabled  
Disabled  
General Purpose Output Enable  
General Purpose Output Bits (GPO1-GPO6)  
Oversampling Rate Control  
64x (32x for 192kHz)  
TABLE III. User-Programmable Mode Controls.  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 0  
Register 1  
Register 2  
Register 3  
Register 4  
Register 5  
Register 6  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IDX6  
IDX6  
IDX6  
IDX6  
IDX6  
IDX6  
IDX5  
IDX5  
IDX5  
IDX5  
IDX5  
IDX5  
IDX4  
IDX4  
IDX4  
IDX4  
IDX4  
IDX4  
IDX3  
IDX3  
IDX3  
IDX3  
IDX3  
IDX3  
IDX2  
IDX2  
IDX2  
IDX2  
IDX2  
IDX2  
IDX1  
IDX1  
IDX1  
IDX1  
IDX1  
IDX1  
IDX0  
IDX0  
IDX0  
IDX0  
IDX0  
IDX0  
AT17  
AT27  
AT37  
AT47  
AT57  
AT67  
AT16  
AT26  
AT36  
AT46  
AT56  
AT66  
AT15  
AT25  
AT35  
AT45  
AT55  
AT65  
AT14  
AT24  
AT34  
AT44  
AT54  
AT64  
AT13  
AT23  
AT33  
AT43  
AT53  
AT63  
AT12  
AT22  
AT32  
AT42  
AT52  
AT62  
AT11 AT10  
AT21 AT20  
AT31 AT30  
AT41 AT40  
AT51 AT50  
AT61 AT60  
Register 7  
Register 8  
Register 9  
Register 10  
Register 11  
Register 12  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IDX6  
IDX6  
IDX6  
IDX6  
IDX6  
IDX6  
IDX5  
IDX5  
IDX5  
IDX5  
IDX5  
IDX5  
IDX4  
IDX4  
IDX4  
IDX4  
IDX4  
IDX4  
IDX3  
IDX3  
IDX3  
IDX3  
IDX3  
IDX3  
IDX2  
IDX2  
IDX2  
IDX2  
IDX2  
IDX2  
IDX1  
IDX1  
IDX1  
IDX1  
IDX1  
IDX1  
IDX0 ATLD ATTS MUT6 MUT5 MUT4 MUT3 MUT2 MUT1  
IDX0  
IDX0  
IDX0  
IDX0  
res  
res  
res  
INC  
INZD DAC6 DAC5 DAC4 DAC3 DAC2 DAC1  
res  
res  
FLT0 CLKD CLKE FMT2 FMT1 FMT0  
REV DMF1 DMF0 DM56 DM34 DM12  
REG6 REG5 REG4 REG3 REG2 REG1 REG0  
IDX0 OVER GPOE GPO6 GPO5 GPO4 GPO3 GPO2 GPO1  
TABLE IV. Mode Control Register Map.  
®
17  
PCM1604, PCM1605  
REGISTER DEFINITIONS  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 1  
Register 2  
Register 3  
Register 4  
Register 5  
Register 6  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
AT17 AT16  
AT27 AT26  
AT37 AT36  
AT47 AT46  
AT57 AT56  
AT67 AT66  
AT15  
AT14  
AT13  
AT12 AT11 AT10  
AT22 AT21 AT20  
AT32 AT31 AT30  
AT42 AT41 AT40  
AT52 AT51 AT50  
AT62 AT61 AT60  
R/W  
R/W  
R/W  
R/W  
R/W  
IDX6  
IDX6  
IDX6  
IDX6  
IDX6  
IDX5  
IDX5  
IDX5  
IDX5  
IDX5  
IDX4  
IDX4  
IDX4  
IDX4  
IDX4  
IDX3  
IDX3  
IDX3  
IDX3  
IDX3  
IDX2  
IDX2  
IDX2  
IDX2  
IDX2  
IDX1  
IDX1  
IDX1  
IDX1  
IDX1  
IDX0  
IDX0  
IDX0  
IDX0  
IDX0  
AT25  
AT35  
AT45  
AT55  
AT65  
AT24  
AT34  
AT44  
AT54  
AT64  
AT23  
AT33  
AT43  
AT53  
AT63  
R/W  
Read/Write Mode Select  
When R/W = 0, a Write operation is performed.  
When R/W = 1, a Read operation is performed.  
Default Value: 0  
ATx[7:0]  
Digital Attenuation Level Setting  
where x = 1-6, corresponding to the DAC output VOUTx.  
These bits are Read/Write.  
Default Value: 1111 1111B  
Each DAC output, VOUT1 through VOUT6, has a digital attenuator associated with it. The attenuator may be  
set from 0dB to –63dB, in 0.5dB steps. Alternatively, the attenuator may be set to infinite attenuation (or  
mute).  
The attenuation data for each channel can be set individually. However, the data load control (ATLD bit of  
Control Register 7) is common to all six attenuators. ATLD must be set to ‘1’ in order to change an  
attenuator’s setting. The attenuation level may be set using the formula below.  
Attenuation Level (dB) = 0.5 (ATx [7:0]DEC – 255)  
where: ATx [7:0]DEC = 0 through 255  
for: ATx [7:0]DEC = 0 through 128, the attenuator is set to infinite attenuation.  
The following table shows attenuator levels for various settings.  
ATx[7:0]  
Decimal Value  
Attenuator Level Setting  
1111 1111B  
1111 1110B  
1111 1101B  
255  
254  
253  
0dB, No Attenuation (default)  
–0.5dB  
–1.0dB  
1000 0010B  
1000 0001B  
1000 0000B  
130  
129  
128  
–62.5dB  
–63.0dB  
Mute  
0000 0000B  
0
Mute  
®
18  
PCM1604, PCM1605  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 7  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
ATLD ATTS MUT6 MUT5 MUT4 MUT3 MUT2 MUT1  
R/W  
Read/Write Mode Select  
When R/W = 0, a Write operation is performed.  
When R/W = 1, a Read operation is performed.  
Default Value: 0  
ATLD  
Attenuation Load Control  
This bit is Read/Write.  
Default Value: 0  
ATLD = 0  
ATLD = 1  
Attenuation Control Disabled (default)  
Attenuation Control Enabled  
The ATLD bit is used to enable loading of attenuation data set by registers 1 through 6. When ATLD = 0, the  
attenuation settings remain at the previously programmed level, ignoring new data loaded to registers 1 through  
6. When ATLD = 1, attenuation data written to registers 1 through 6 is loaded normally.  
ATTS  
Attenuation Rate Select  
This bit is Read/Write.  
Default Value: 0  
ATTS = 0  
ATTS = 1  
Attenuation rate is 2/fS (default)  
Attenuation rate is 4/fS  
Changes in attenuator levels are made by incrementing or decrementing the attenuator by one step (0.5dB) for  
every 2/fS or 4/fS time interval until the programmed attenuator setting is reached. This helps to minimize  
audible ‘clicking’, or zipper noise, while the attenuator is changing levels. The ATTS bit allows you to select  
the rate at which the attenuator is decremented/incremented during level transitions.  
MUTx  
Soft Mute Control  
where x = 1-6, corresponding to the DAC output VOUTx.  
These bits are Read/Write.  
Default Value: 0  
MUTx = 0  
MUTx = 1  
Mute Disabled (default)  
Mute Enabled  
The mute bits, MUT1 through MUT6, are used to enable or disable the Soft Mute function for the  
corresponding DAC outputs, VOUT1 through VOUT6. The Soft Mute function is incorporated into the digital  
attenuators. When Mute is disabled (MUTx = 0), the attenuator and DAC operate normally. When Mute  
is enabled by setting MUTx = 1, the digital attenuator for the corresponding output will be decremented  
from the current setting to the infinite attenuation setting one attenuator step (0.5dB) at a time, with the rate  
of change programmed by the ATTS bit. This provides a quiet, ‘pop’ free muting of the DAC output. Upon  
returning from Soft Mute, by setting MUTx = 0, the attenuator will be incremented one step at a time to  
the previously programmed attenuator level.  
®
19  
PCM1604, PCM1605  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 8  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
res  
INZD  
DAC6 DAC5 DAC4 DAC3 DAC2 DAC1  
R/W  
Read/Write Mode Select  
When R/W = 0, a Write operation is performed.  
When R/W = 1, a Read operation is performed.  
Default Value: 0  
INZD  
Infinite Zero Detect Mute Control  
This bit is Read/Write.  
Default Value: 0  
INZD = 0  
INZD = 1  
Infinite Zero Detect Mute Disabled (default)  
Infinite Zero Detect Mute Enabled  
The INZD bit is used to enable or disable the Zero Detect Mute function described in the Zero Flag and Infinite  
Zero Detect Mute section in this data sheet. The Zero Detect Mute function is independent of the Zero Flag  
output operation, so enabling or disabling the INZD bit has no effect on the Zero Flag outputs (ZERO1-ZERO6,  
ZEROA).  
DACx  
DAC Operation Control  
where x = 1-6, corresponding to the DAC output VOUTx.  
These bits are Read/Write.  
Default Value: 0  
DACx = 0  
DACx = 1  
DAC Operation Enabled (default)  
DAC Operation Disabled  
The DAC operation controls are used to enable and disable the DAC outputs, VOUT1 through VOUT6. When  
DACx = 0, the output amplifier input is connected to the DAC output. When DACx = 1, the output amplifier  
input is switched to the DC common-mode voltage (VCOM1 or VCOM2), equal to VCC/2.  
®
20  
PCM1604, PCM1605  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 9  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
res  
res  
FLT0 CLKD CLKE FMT2 FMT1 FMT0  
R/W  
Read/Write Mode Select  
When R/W = 0, a Write operation is performed.  
When R/W = 1, a Read operation is performed.  
Default Value: 0  
FLT0  
Digital Filter Roll-Off Control  
These bits are Read/Write.  
Default Value: 000B  
FLT0 = 0  
FLT0 = 1  
Sharp Roll-Off (default)  
Slow Roll-Off  
Bit FLT0 allows the user to select the digital filter roll-off that is best suited to their application. Two filter roll-  
off sections are available: Sharp or Slow. The filter responses for these selections are shown in the Typical  
Performance Curves section of this data sheet.  
CLKD  
SCKO Frequency Selection  
This bit is Read/Write.  
Default Value: 0  
CLKD = 0  
CLKD = 1  
Full Rate, fSCKO = fSCKI (default)  
Half Rate, fSCKO = fSCKI/2  
The CLKD bit is used to determine the clock frequency at the system clock output pin, SCKO.  
CLKE  
SCKO Output Enable  
This bit is Read/Write.  
Default Value: 0  
CLKE = 0  
CLKE = 1  
SCKO Enabled (default)  
SCKO Disabled  
The CLKE bit is used to enable or disable the system clock output pin, SCKO. When SCKO is enabled, it will  
output either a full or half rate clock, based upon the setting of the CLKD bit.  
FMT[2:0] Audio Interface Data Format  
These bits are Read/Write.  
Default Value: 000B  
FMT[2:0]  
Audio Data Format Selection  
000  
001  
010  
011  
100  
101  
110  
111  
24-Bit Standard Format, Right-Justified Data (default)  
20-Bit Standard Format, Right-Justified Data  
18-Bit Standard Format, Right-Justified Data  
16-Bit Standard Format, Right-Justified Data  
I2S Format, 16- to 24-bits  
Left-Justified Format, 16- to 24-Bits  
Reserved  
Reserved  
The FMT[2:0] bits are used to select the data format for the serial audio interface.  
®
21  
PCM1604, PCM1605  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 10  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
res  
res  
REV  
DMF1 DMF0 DM56 DM34 DM12  
R/W  
Read/Write Mode Select  
When R/W = 0, a Write operation is performed.  
When R/W = 1, a Read operation is performed.  
Default Value: 0  
DMF[1:0]  
Sampling Frequency Selection for the De-Emphasis Function  
These bits are Read/Write.  
Default Value: 00B  
DMF[1:0]  
De-Emphasis Same Rate Selection  
00  
01  
10  
11  
44.1 kHz (default)  
48 kHz  
32 kHz  
Reserved  
The DMF[1:0] bits are used to select the sampling frequency used for the Digital De-Emphasis function when  
it is enabled. The de-emphasis curves are shown in the Typical Performance Curves section of this data sheet.  
DM12  
Digital De-Emphasis Control for Channels 1 and 2  
This bit is Read/Write.  
Default Value: 0  
DM12 = 0  
DM12 = 1  
De-Emphasis Disabled for Channels 1 and 2 (default)  
De-Emphasis Enabled for Channels 1 and 2  
The DM12 bit is used to enable or disable the De-emphasis function for VOUT1 and VOUT2, which correspond  
to the Left and Right channels of the DATA1 input.  
DM34  
Digital De-Emphasis Control for Channels 3 and 4  
This bit is Read/Write.  
Default Value: 0  
DM34 = 0  
DM34 = 1  
De-Emphasis Disabled for Channels 3 and 4 (default)  
De-Emphasis Enabled for Channels 3 and 4  
The DM34 bit is used to enable or disable the De-Emphasis function for VOUT3 and VOUT4, which correspond  
to the Left and Right channels of the DATA2 input.  
DM56  
Digital De-Emphasis Control for Channels 5 and 6  
This bit is Read/Write.  
Default Value: 0  
DM56 = 0  
DM56 = 1  
De-Emphasis Disabled for Channels 5 and 6 (default)  
De-Emphasis Enabled for Channels 5 and 6  
The DM56 bit is used to enable or disable the de-emphasis function for VOUT5 and VOUT6, which correspond  
to the Left and Right channels of the DATA3 input.  
REV  
Output Phase Reversal  
This bit is Read/Write.  
Default Value: 0  
REV = 0  
REV = 1  
Normal Output (non-inverted)  
Inverted Output  
The REV bit is used to invert the output phase for VOUT1 through VOUT6. When the REV bit is enabled, the zero-  
detect functions (including zero-detect mute and the zero flags) are not available.  
®
22  
PCM1604, PCM1605  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 11  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
INC  
REG6 REG5 REG4 REG3 REG2 REG1 REG0  
R/W  
Read/Write Mode Select  
When R/W = 0, a Write operation is performed.  
When R/W = 1, a Read operation is performed.  
Default Value: 0  
INC  
Auto-Increment Read Control  
This bit is Read/Write.  
Default Value: 0  
INC = 0  
INC = 1  
Auto-Increment Read Disabled (default)  
Auto-Increment Read Enabled  
The INC bit is used to enable or disable the Auto-Increment Read feature of the Serial Control Interface. Refer  
to the Serial Control Interface section of this data sheet for details regarding Auto-Increment Read operation.  
REG[6:0]  
Read Register Index  
These bits are Read/Write.  
Default Value: 01H  
Bits REG[6:0] are used to set the index of the register to be read when performing a Single Register Read  
operation. In the case of an Auto-Increment Read operation, bits REG[6:0] indicate the index of the last register  
to be read in the in the Auto-Increment Read sequence. For example, if Registers 1 through 6 are to be read  
during an Auto-Increment Read operation, bits REG[6:0] would be set to 06H.  
Refer to the Serial Control Interface section of this data sheet for details regarding the Single Register and Auto-  
Increment Read operations.  
®
23  
PCM1604, PCM1605  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 12  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0 OVER GPOE GPO6 GPO5 GPO4 GPO3 GPO2 GPO1  
GPOx  
General Purpose Logic Output  
Where: x = 1 through 6, corresponding to pins GPO1 through GPO6.  
These bits are Read/Write.  
Default Value: 0  
GPOx = 0  
GPOx = 1  
Set GPOx to ‘0’.  
Set GPOx to ‘1’.  
The general-purpose output pins, GPO1 through GPO6, are enabled by setting GPOE = 1. These pins are used  
as general-purpose outputs for controlling user-defined logic functions. When general-purpose outputs are  
disabled (GPOE = 0), they default to the zero-flag function, ZERO1 through ZERO6.  
GPOE  
General Purpose Output Enable  
This bit is Read/Write.  
Default Value: 0  
GPOE = 0  
GPOE = 1  
General-Purpose Outputs Disabled.  
Pins default to zero-flag function (ZERO1 through ZERO6).  
General-Purpose Outputs Enabled.  
Data written to GPO1 through GPO6 will appear at the corresponding pins.  
OVER  
Oversampling Rate Control  
This bit is Read/Write.  
Default Value: 0  
OVER = 0  
OVER = 1  
64x oversampling for fS 96kHz, and 32x oversampling for fS > 96kHz.  
128x oversampling for fS 96kHz, and 64x oversampling for fS > 96kHz.  
The OVER bit is utilized to control the total oversampling performed by the D/A converter, including the digital  
interpolation filter and delta-sigma DAC. This is useful for controlling the D/A out-of-band noise spectrum, and  
designing a single, fixed value low-pass filter for use with all sampling frequencies.  
®
24  
PCM1604, PCM1605  
ZERO FLAG AND INFINITE ZERO DETECT MUTE  
FUNCTIONS  
ANALOG OUTPUTS  
The PCM1604 includes six independent output channels,  
VOUT1 through VOUT6. These are unbalanced outputs, each  
capable of driving 3.1Vp-p typical into a 5kAC load with  
VCC = +5V. The internal output amplifiers for VOUT1 through  
VOUT6 are DC biased to the common-mode (or bipolar zero)  
voltage, equal to VCC/2.  
The PCM1604 includes circuitry for detecting an all ‘0’ data  
condition for the data input pins, DATA1 through DATA3.  
This includes two independent functions: Zero Output Flags  
and Zero Detect Mute.  
Although the flag and mute functions are independent of one  
another, the zero detection mechanism is common to both  
functions.  
The output amplifiers include a RC continuous-time filter,  
which helps to reduce the out-of-band noise energy present  
at the DAC outputs due to the noise shaping characteristics  
of the PCM1604’s delta-sigma D/A converters. The fre-  
quency response of this filter is shown in Figure 11. By  
itself, this filter is not enough to attenuate the out-of-band  
noise to an acceptable level for most applications. An  
external low-pass filter is required to provide sufficient out-  
of-band noise rejection. Further discussion of DAC post-  
filter circuits is provided in the Applications Information  
section of this data sheet.  
Zero Detect Condition  
Zero Detection for each output channel is independent from  
the others. If the data for a given channel remains at a ‘0’  
level for 1024 sample periods (or LRCK clock periods), a  
Zero Detect condition exists for the that channel.  
Zero Output Flags  
Given that a Zero Detect condition exists for one or more  
channels, the Zero flag pins for those channels will be set to  
a logic ‘1’state. There are Zero Flag pins for each channel,  
ZERO1 through ZERO6 (pins 1 through 6). In addition, all  
six Zero Flags are logically ANDed together and the result  
provided at the ZEROA pin (pin 48), which is set to a logic  
‘1’ state when all channels indicate a zero detect condition.  
The Zero Flag pins can be used to operate external mute  
circuits, or used as status indicators for a microcontroller,  
audio signal processor, or other digitally controlled func-  
tions.  
20  
0
–20  
–40  
–60  
–80  
–100  
Infinite Zero Detect Mute  
Infinite Zero Detect Mute is an internal logic function. The  
Zero Detect Mute can be enabled or disabled using the INZD  
bit of Control Register 8. The reset default is Zero Detect  
Mute disabled, INZD = 0. Given that a Zero Detect Condi-  
tion exists for one or more channels, the zero mute circuitry  
will immediately force the corresponding DAC output(s) to  
the bipolar zero level, or VCC/2. This is accomplished by  
switching the input of the DAC output amplifier from the  
delta-sigma modulator output to the DC common-mode  
reference voltage.  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Log Frequency (Hz)  
FIGURE 11. Output Filter Frequency Response.  
VCOM1 AND VCOM2 OUTPUTS  
Two unbuffered common-mode voltage output pins, VCOM1  
(pin 16) and VCOM2 (pin 15), are brought out for decoupling  
purposes. These pins are nominally biased to a DC voltage  
level equal to VCC/2. If these pins are to be used to bias  
external circuitry, a voltage follower is required for buffer-  
ing purposes. Figure 12 shows an example of using the  
VCOM1 and VCOM2 pins for external biasing applications.  
APPLICATIONS INFORMATION  
CONNECTION DIAGRAMS  
A basic connection diagram is shown in Figure 13, with the  
necessary power supply bypassing and decoupling compo-  
nents. Burr-Brown recommends using the component values  
shown in Figure 13 for all designs.  
PCM1604  
PCM1605  
A typical application diagram is shown in Figure 14. Burr-  
Brown’s REG1117-3.3 is used to generate +3.3V for VDD  
from the +5V analog power supply. Burr-Brown’s PLL1700E  
is used to generate the system clock input at SCKI, as well  
as generating the clock for the audio signal processor.  
4
VCC  
2
1
VBIAS  
OPA337  
3
16  
15  
VCOM  
1
V
COM2  
+
10µF  
The use of series resistors (22to 100) are recommended  
for SCKI, LRCK, BCK, DATA1, DATA2, and DATA3.  
The series resistor combines with the stray PCB and device  
input capacitance to form a low-pass filter which removes  
high frequency noise from the digital signal, thus reducing  
high frequency emission.  
FIGURE 12. Biasing External Circuits Using the VCOM  
1
and VCOM2 Pins.  
®
25  
PCM1604, PCM1605  
+3.3V  
Analog  
+3.3V  
Regulator  
+5V Analog  
To/From  
Decoder  
or  
+
C12  
C13  
Microcontroller  
36 35 34 33 32 31 30 29 28 27 26 25  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
V
CC3  
AGND3  
VCC  
AGND4  
VCC  
AGND5  
CC6  
AGND6  
RST  
SCKI  
SCKO  
BCK  
To/From  
Decoder  
4
5
LRCK  
TEST  
VDD  
PCM1604  
PCM1605  
+3.3V  
V
+
Analog  
C11  
C10  
DGND  
C1  
+
VCOM  
1
2
DATA1  
DATA2  
DATA3  
ZEROA  
VCOM  
To/From  
Decoder  
C2  
C3  
+
+
V
V
OUT1  
OUT2  
Output  
Low-Pass  
Filters  
1
2
3
4
5
6
7
8
9
10 11 12  
C4  
C4  
C6  
C7  
+
+
+
+
Zero-  
Output  
Flags  
or  
General-  
Purpose  
Outputs  
+5V Analog  
+
C9  
C8  
NOTE: C1 - C7, C8, C11, C13 = 10µF tantalum or aluminum electrolytic  
C9, C10, C12 = 0.1µF ceramic  
FIGURE 13. Basic Connection Diagram.  
®
26  
PCM1604, PCM1605  
O U T  
A G N D 2  
A G N D 1  
A G N D 0  
3
4
5
6
V
C C  
O U T  
2
1
0
V
V
O U T  
V
C C  
O U T  
V
V
C C  
V
C C  
V
A G N D  
N C  
N C  
Z E R O 6 / G P O 6  
Z E R O 5 / G P O 5  
Z E R O 4 / G P O 4  
Z E R O 3 / G P O 3  
Z E R O 2 / G P O 2  
Z E R O 1 / G P O 1  
M D O  
M D I  
M C  
M L  
FIGURE 14. Typical Application Diagram.  
®
27  
PCM1604, PCM1605  
POWER SUPPLIES AND GROUNDING  
Multiple Feedback (MFB) circuit arrangement, which re-  
duces sensitivity to passive component variations over fre-  
quency and temperature. For more information regarding  
MFB active filter design, please refer to Burr-Brown Appli-  
cations Bulletin AB-034, available from our web site  
(www.burr-brown.com) or your local Burr-Brown sales  
office.  
The PCM1604 requires a +5V analog supply and a +3.3V  
digital supply. The +5V supply is used to power the DAC  
analog and output filter circuitry, while the +3.3V supply is  
used to power the digital filter and serial interface circuitry.  
For best performance, the +3.3V supply should be derived  
from the +5V supply using a linear regulator, as shown in  
Figure 14.  
Since the overall system performance is defined by the  
quality of the D/A converters and their associated analog  
output circuitry, high quality audio op amps are recom-  
mended for the active filters. Burr-Brown’s OPA2134 and  
OPA2353 dual op amps are shown in Figures 15 and 16, and  
are recommended for use with the PCM1604 and PCM1605.  
Six capacitors are required for supply bypassing, as shown  
in Figure 13. These capacitors should be located as close as  
possible to the PCM1604 or PCM1605 package. The 10µF  
capacitors should be tantalum or aluminum electrolytic,  
while the 0.1µF capacitors are ceramic (X7R type is recom-  
mended for surface-mount applications).  
D/A OUTPUT FILTER CIRCUITS  
Delta-sigma D/A converters utilize noise shaping techniques  
to improve in-band Signal-to-Noise Ratio (SNR) perfor-  
mance at the expense of generating increased out-of-band  
noise above the Nyquist Frequency, or fS/2. The out-of-band  
noise must be low-pass filtered in order to provide the  
optimal converter performance. This is accomplished by a  
combination of on-chip and external low-pass filtering.  
R2  
C1  
2
R1  
R3  
VIN  
R4  
1
VOUT  
OPA2134  
3
C2  
R2  
R1  
A
V –  
Figures 15 and 16 show the recommended external low-pass  
active filter circuits for dual and single-supply applications.  
These circuits are 2nd-order Butterworth filters using the  
FIGURE 15. Dual Supply Filter Circuit.  
R2  
R1  
A
V –  
R2  
C1  
R1  
R3  
2
R4  
1
VOUT  
OPA2353  
C2  
3
PCM1604  
PCM1605  
V
OUTX  
VCOM  
1
2
To Additional  
Low-Pass Filter  
Circuits  
OPA337  
VCOM  
C2  
10µF  
+
where X = 1 to 6  
FIGURE 16. Single-Supply Filter Circuit.  
®
28  
PCM1604, PCM1605  
Separate power supplies are recommended for the digital  
and analog sections of the board. This prevents the switching  
noise present on the digital supply from contaminating the  
analog power supply and degrading the dynamic perfor-  
mance of the D/A converters. In cases where a common +5V  
supply must be used for the analog and digital sections, an  
inductance (RF choke, ferrite bead) should be placed be-  
tween the analog and digital +5V supply connections to  
avoid coupling of the digital switching noise into the analog  
circuitry. Figure 18 shows the recommended approach for  
single-supply applications.  
PCB LAYOUT GUIDELINES  
A typical PCB floor plan for the PCM1604 and PCM1605 is  
shown in Figure 17. A ground plane is recommended, with  
the analog and digital sections being isolated from one  
another using a split or cut in the circuit board. The PCM1604  
or PCM1605 should be oriented with the digital I/O pins  
facing the ground plane split/cut to allow for short, direct  
connections to the digital audio interface and control signals  
originating from the digital section of the board.  
Digital Power  
Analog Power  
+VD  
DGND  
AGND +5VA  
+VS –VS  
REG  
VCC  
VDD  
DGND  
Digital Logic  
and  
Audio  
Processor  
Output  
Circuits  
PCM1604  
PCM1605  
Digital  
Ground  
AGND  
Analog  
Ground  
DIGITAL SECTION  
ANALOG SECTION  
Return Path for Digital Signals  
FIGURE 17. Recommended PCB Layout.  
Power Supplies  
RF Choke or Ferrite Bead  
+5V  
AGND +VS –VS  
REG  
VCC  
VDD  
VDD  
DGND  
Output  
Circuits  
PCM1604  
PCM1605  
AGND  
Common  
Ground  
DIGITAL SECTION  
ANALOG SECTION  
FIGURE 18. Single-Supply PCB Layout.  
®
29  
PCM1604, PCM1605  
Figure 21 illustrates the simulated jitter sensitivity of the  
PCM1604. To achieve best performance, the system clock  
jitter should be less than 300 picoseconds. This is easily  
achieved using a quality clock generation IC, like Burr-  
Brown’s PLL1700.  
THEORY OF OPERATION  
The D/A converter section of the PCM1604 is based upon a  
multi-bit delta-sigma architecture. This architecture utilizes  
an4th-ordernoiseshaperandan8-levelquantizer,followedby  
an analog low-pass filter. A block diagram of the delta-sigma  
modulator is shown in Figure 19. This architecture has the  
advantage of stability and improved jitter tolerance when  
compared to traditional 1-bit (2-level) delta-sigma designs.  
CLOCK JITTER  
125  
120  
115  
110  
105  
100  
95  
The combined oversampling rate of the digital interpolation  
filter and the delta-sigma modulator is 32fs, 64fs, or 128fs.  
The total oversampling rate is determined by the desired  
sampling frequency. If fs 96kHz, then the OVER bit in  
Register 12 may be set to an oversampling rate to 64fs or  
128fs. If fs > 96kHz, then the OVER bit may be used to set the  
oversampling rate to 32fs or 64fs. Figure 20 shows the out-  
of- band quantization noise plots for both the 64x and 128x  
oversampling scenarios. Notice that the 128x oversampling  
plot shows significantly improved out-of-band noise perfor-  
mance, allowing for a simplified low-pass filter to be used at  
the output of the DAC.  
90  
85  
80  
0
100  
200  
300  
400  
500  
600  
Jitter (ps)  
FIGURE 21. Jitter Sensitivity.  
+
Z–1  
Z–1  
Z–1  
Z–1  
4fS or 8fS  
+
+
+
+
+
8-Level Quantizer  
32fS, 64fS, or 128fS  
FIGURE 19. Eight-Level Delta-Sigma Modulator.  
QUANTIZATION NOISE SPECTRUM  
(64x Oversampling)  
0
QUANTIZATION NOISE SPECTRUM  
(128x Oversampling)  
0
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
0
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Frequency (fS)  
Frequency (fS)  
FIGURE 20. Quantization Noise Spectrum.  
®
30  
PCM1604, PCM1605  
For the PCM1604 and PCM1605 D/A converters, THD+N is  
measured with a full scale, 1kHz digital sine wave as the test  
stimulus at the input of the DAC. The digital generator is set  
to 24-bit audio word length and a sampling frequency of  
44.1kHz, or 96kHz. The digital generator output is taken  
from the unbalanced S/PDIF connector of the measurement  
system. The S/PDIF data is transmitted via coaxial cable to  
the digital audio receiver on the DEM-DAI1604 demo board.  
The receiver is then configured to output 24-bit data in either  
I2S or left-justified data format. The DAC audio interface  
format is programmed to match the receiver output format.  
The analog output is then taken from the DAC post filter and  
connected to the analog analyzer input of the measurment  
system. The analog input is band limited using filters resi-  
dent in the analyzer. The resulting THD+N is measured by  
the analyzer and displayed by the measurement system.  
PERFORMANCE MEASUREMENTS  
This section provides information on how to measure key  
dynamic performance parameters for the PCM1604 and  
PCM1605. In all cases, an Audio Precision System Two  
Cascade or equivalent audio measurement system is utilized  
to perform the testing.  
TOTAL HARMONIC DISTORTION + NOISE  
Total Harmonic Distortion + Noise (THD+N) is a significant  
figure of merit for audio D/A converters, since it takes into  
account both harmonic distortion and all noise sources  
within a specified measurement bandwidth. The true rms  
value of the distortion and noise is referred to as THD+N.  
Evaluation Board  
DEM-DAI1604  
2nd-Order  
Low-Pass  
Filter  
S/PDIF  
Receiver  
PCM1604  
PCM1605  
f–3dB = 54kHz  
Analyzer  
and  
Display  
Digital  
Generator  
S/PDIF  
Band Limit  
Notch Filter  
fC = 1kHz  
Output  
100% Full Scale  
RMS Mode  
HPF = 22Hz(1)  
LPF = 30kHz(1)  
Option = 20kHz Apogee Filter(2)  
24-Bit, 1kHz  
Sine Wave  
NOTES: (1) There is little difference  
in measured THD+N when using the  
various settings for these filters.  
(2) Required for THD+N test.  
FIGURE 22. Test Setup for THD+N Measurements.  
®
31  
PCM1604, PCM1605  
DYNAMIC RANGE  
IDLE CHANNEL SIGNAL-TO-NOISE RATIO  
Dynamic range is specified as A-Weighted, THD+N mea-  
sured with a –60dBFS, 1kHz digital sine wave stimulus at  
the input of the D/A converter. This measurment is designed  
to give a good indicator of how the DAC will perform given  
a low-level input signal.  
The SNR test provides a measure of the noise floor of the  
D/A converter. The input to the D/A is all 0’s data, and the  
D/A converter’s Infinite Zero Detect Mute function must  
be disabled (default condition at power up for the PCM1604,  
PCM1605). This ensures that the delta-sigma modulator  
output is connected to the output amplifier circuit so that  
idle tones (if present) can be observed and effect the SNR  
measurement. The dither function of the digital generator  
must also be disabled to ensure an all ‘0’s data stream at the  
input of the D/A converter.  
The measurement setup for the dynamic range measurement  
is shown in Figure 23, and is similar to the THD+N test  
setup discussed previously. The differences include the  
band limit filter selection, the additional A-Weighting filter,  
and the –60dBFS input level.  
The measurement setup for SNR is identical to that used for  
dynamic range, with the exception of the input signal level  
(see the notes provided in Figure 23).  
Evaluation Board  
DEM-DAI1604  
2nd-Order  
Low-Pass  
Filter  
PCM1604(1)  
PCM1605  
S/PDIF  
Receiver  
f–3dB = 54kHz  
Analyzer  
and  
Display  
Digital  
Generator  
A-Weight  
Filter(1)  
S/PDIF  
Output  
Band Limit  
Notch Filter  
C = 1kHz  
0% Full Scale,  
Dither Off (SNR)  
–60dBFS,  
RMS Mode  
HPF = 22Hz  
LPF = 22kHz  
Option = A-Weighting(2)  
f
NOTES: (1) Infinite Zero Detect Mute disabled.  
(2) Results without A-Weighting will be  
approximately 3dB worse.  
1kHz Sine Wave  
(Dynamic Range)  
FIGURE 23. Test Set-Up for Dynamic Range and SNR Meeasurements.  
®
32  
PCM1604, PCM1605  

相关型号:

PCM1605Y/1K

D/A Converter, 1 Func, Serial Input Loading, PQFP48, MQFP-48
BB

PCM1605Y/1K

SERIAL INPUT LOADING, 24-BIT DAC, PQFP48, MQFP-48
TI

PCM1606

24-BIT, 192-kHz SAMPLING, 6-CHANNEL, ENHANCED MULTILEVEL, DELTA-SIGMA DIGITAL-TO-ANALOG CONVERTER
BB

PCM1606E

24-BIT, 192-kHz SAMPLING, 6-CHANNEL, ENHANCED MULTILEVEL, DELTA-SIGMA DIGITAL-TO-ANALOG CONVERTER
BB

PCM1606E

24-Bit, 192-kHz SAMPLING. 6-CHANNEL, ENHANCED MULTILEVEL, DELTA- SIGMA DIGITAL-TO-ANALOG CONVERTER
TI

PCM1606E/2K

24-BIT, 192-kHz SAMPLING, 6-CHANNEL, ENHANCED MULTILEVEL, DELTA-SIGMA DIGITAL-TO-ANALOG CONVERTER
BB

PCM1606E/2K

24-Bit, 192-kHz SAMPLING. 6-CHANNEL, ENHANCED MULTILEVEL, DELTA- SIGMA DIGITAL-TO-ANALOG CONVERTER
TI

PCM1606E/2KG4

24-Bit, 192-kHz SAMPLING. 6-CHANNEL, ENHANCED MULTILEVEL, DELTA- SIGMA DIGITAL-TO-ANALOG CONVERTER
TI

PCM1606EG4

24-Bit, 192-kHz SAMPLING. 6-CHANNEL, ENHANCED MULTILEVEL, DELTA- SIGMA DIGITAL-TO-ANALOG CONVERTER
TI

PCM1608

24-Bit, 192kHz Sampling, 8-Channel, Enhanced Multilevel, Delta-Sigma DIGITAL-TO-ANALOG CONVERTER
TI

PCM1608KY

24-Bit, 192kHz Sampling, 8-Channel, Enhanced Multilevel, Delta-Sigma DIGITAL-TO-ANALOG CONVERTER
TI

PCM1608KY/2K

24-Bit, 192kHz Sampling, 8-Channel, Enhanced Multilevel, Delta-Sigma DIGITAL-TO-ANALOG CONVERTER
TI