PCM1606EG4 [TI]

24-Bit, 192-kHz SAMPLING. 6-CHANNEL, ENHANCED MULTILEVEL, DELTA- SIGMA DIGITAL-TO-ANALOG CONVERTER; 24位192 kHz采样。 6通道,增强多层次, Δ-Σ数位类比转换器
PCM1606EG4
型号: PCM1606EG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

24-Bit, 192-kHz SAMPLING. 6-CHANNEL, ENHANCED MULTILEVEL, DELTA- SIGMA DIGITAL-TO-ANALOG CONVERTER
24位192 kHz采样。 6通道,增强多层次, Δ-Σ数位类比转换器

转换器 数模转换器 光电二极管
文件: 总28页 (文件大小:405K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
ꢋꢒ  
ꢗ ꢂ ꢘꢓꢋ ꢊꢓ ꢖꢙ ꢖꢓ ꢌ  
ꢖ ꢛꢋ ꢖꢛ  
FEATURES  
DESCRIPTION  
D
24-Bit Resolution  
The PCM1606 is a CMOS monolithic integrated circuit  
that features six 24-bit audio digital-to-analog  
converters and support circuitry in a small 20-lead  
SSOP package. The digital-to-analog converters utilize  
Texas Instruments’ enhanced multilevel, delta-sigma  
D
Analog Performance:  
− Dynamic Range: 103 dB, Typical  
− SNR: 103 dB, Typical  
− THD+N: 0.004%, Typical  
− Full-Scale Output: 3.1 Vp-p, Typical  
nd  
architecture, which employs 2 -order noise shaping  
and 8-level amplitude quantization to achieve excellent  
signal-to-noise performance and a high tolerance to  
clock jitter.  
D
D
8× Oversampling Interpolation Filter:  
− Stopband Attenuation: –55 dB  
− Passband Ripple: 0.03 dB  
Sampling Frequency:  
− 5 kHz to 200 kHz (Channels 1 and 2)  
− 5 kHz to 100 kHz (Channels 3, 4, 5, and 6)  
The PCM1606 accepts industry-standard audio data  
formats with 16- to 24-bit audio data. Sampling rates up  
to 200 kHz are supported.  
D
D
Accepts 16- and 24-Bit Audio Data  
2
Data Formats: Standard, I S, and  
Left-Justified, TDM  
PCM1606  
D
D
System Clock: 128 f , 192 f , 256 f , 384 f ,  
(TOP VIEW)  
S
S
S
S
512 f , or 768 f  
S
S
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
DATA1  
DATA2  
DATA3  
FMT1  
FMT0  
ZEROA  
AGND  
SCKI  
BCK  
LRCK  
DEMP1  
DEMP0  
Digital De-Emphasis for 32 kHz, 44.1 kHz,  
48 kHz  
D
Power Supply: 5-V Single Supply  
20-Lead SSOP Package  
D
V
V
V
V
V
CC  
APPLICATIONS  
COM  
V
V
V
5
6
1
4
3
2
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
D
D
D
D
D
D
D
Integrated A/V Receivers  
DVD Movie and Audio Players  
HDTV Receivers  
Car Audio Systems  
DVD Add-On Cards for High-End PCs  
Digital Audio Workstations  
Other Multichannel Audio Systems  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢋꢧ  
Copyright 2002, Texas Instruments Incorporated  
ꢣ ꢧ ꢤ ꢣꢜ ꢝꢱ ꢟꢞ ꢢ ꢪꢪ ꢨꢢ ꢠ ꢢ ꢡ ꢧ ꢣ ꢧ ꢠ ꢤ ꢬ  
1
www.ti.com  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
PACKAGE/ORDERING INFORMATION  
PACKAGE  
DRAWING  
NUMBER  
OPERATION  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
PRODUCT  
PACKAGE  
TRANSPORT MEDIA  
NUMBER  
PCM1606E  
TUBE  
PCM1606E  
20-Lead SSOP  
ZZ334-1  
–25°C to 85°C  
PCM1606E  
PCM1606E/2K  
Tape and Reel  
Models with a slash (/) are available only in tape and reel in the quantities indicated (e.g., /2K indicates 2000 devices per reel). Ordering 2000  
pieces of PCM1606Y/2K gets a single 2000-piece tape and reel.  
functional block diagram  
V
V
V
1
2
3
Output Amp and  
Low-Pass Filter  
OUT  
OUT  
OUT  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
BCK  
LRCK  
Serial  
Input  
I/F  
Output Amp and  
Low-Pass Filter  
DATA1(1, 2)  
DATA2(3, 4)  
DATA3(5, 6)  
Output Amp and  
Low-Pass Filter  
4x / 8x  
Oversampling  
Digital Filter  
with  
Function  
Controller  
Enhanced  
Multilevel  
Delta-Sigma  
Modulator  
V
V
Output Amp and  
Low-Pass Filter  
COM  
4
OUT  
OUT  
OUT  
DEMP1  
Function  
Control  
I/F  
Output Amp and  
Low-Pass Filter  
DEMP0  
V
V
5
6
FMT1  
FMT0  
Output Amp and  
Low-Pass Filter  
System Clock  
System Clock  
Manager  
Zero Detect  
Power Supply  
SCKI  
ZEROA  
V
CC  
AGND  
2
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
Terminal Functions  
TERMINAL  
NAME PIN  
AGND  
I/O  
DESCRIPTIONS  
7
19  
1
I
Analog and digital ground  
Shift clock input for serial audio data (see Note 2)  
BCK  
DATA1  
DATA2  
DATA3  
DEMP0  
DEMP1  
FMT1  
FMT0  
LRCK  
SCKI  
I
Serial audio data input for V  
Serial audio data input for V  
Serial audio data input for V  
1 and V  
3 and V  
5 and V  
2 (see Note 2)  
4 (see Note 2)  
6 (see Note 2)  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
2
I
3
I
16  
17  
4
I
De-emphasis control (see Note 1)  
De-emphasis control (see Note 1)  
Format select (see Note 1)  
I
I
5
I
Format select (see Note 1)  
18  
20  
15  
14  
10  
11  
12  
13  
8
I
Left and right clock input. This clock is equal to the sampling rate, f (see Note 2)  
S
I
System clock in. Input frequency is 128 f , 192 f , 256 f , 384 f , 512 f or 768 f (see Note 2)  
S S S S S S  
V
V
V
V
V
V
V
V
O
O
O
O
O
O
O
Analog and digital power supply, 5 V  
CC  
Common voltage output. This pin should be bypassed with a 10-µF capacitor to AGND  
Voltage output for audio signal corresponding to L-channel on DATA1. Up to 192 kHz  
Voltage output for audio signal corresponding to R-channel on DATA1. Up to 192 kHz  
Voltage output for audio signal corresponding to L-channel on DATA2. Up to 96 kHz  
Voltage output for audio signal corresponding to R-channel on DATA2. Up to 96 kHz  
Voltage output for audio signal corresponding to L-channel on DATA3. Up to 96 kHz  
Voltage output for audio signal corresponding to R-channel on DATA3. Up to 96 kHz  
Zero-data flag. Logical AND of ZERO1 through ZERO6  
COM  
1
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
2
3
4
5
6
9
ZEROA  
6
NOTES: 1. Schmitt-trigger input with internal pulldown.  
2. Schmitt-trigger input.  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 V  
CC  
Digital input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V  
Analog input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V  
+ 0.3 V  
+ 0.3 V  
CC  
CC  
Input current (except power supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 mA  
Ambient temperature under bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
Junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
Lead temperature (soldering, 5s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C, 5s  
Package temperature (IR reflow, 10s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235°C, 10s  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
3
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
electrical characteristics, all specifications at T = 25°C, V  
= 5 V, f = 44.1 kHz,  
S
A
CC  
system clock = 384 f and 24-bit data (unless otherwise noted)  
S
PCM1606E  
TYP  
24  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
RESOLUTION  
DATA FORMAT  
Bits  
2
Audio data interface format  
Audio data bit length  
Audio data format  
Standard, I S, Left-Justified, TDM  
16 or 24 bits, selectable  
MSB first, 2s complement  
V
V
1, V  
3, V  
2
5
5
200  
100  
OUT  
OUT  
f
S
Sampling frequency  
kHz  
4, V  
OUT  
5, V 6  
OUT OUT  
OUT  
System clock frequency  
128, 192, 256, 384, 512, 768 f  
S
DIGITAL INPUT/OUTPUT  
Logic family (TTL compatible)  
V
V
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
High-level output voltage  
Low-level output voltage  
2
V
V
IH  
0.8  
100  
−10  
IL  
I
I
V
V
= V  
67  
µA  
µA  
V
IH  
IN  
CC  
= 0 V  
IL  
IN  
OH  
OL  
V
V
I
I
= −4 mA  
= 4 mA  
2.4  
OH  
1
V
OL  
DYNAMIC PERFORMANCE  
f
S
f
S
f
S
f
S
f
S
f
S
= 44.1 kHz/384 f  
0.004% 0.01%  
S
= 96 kHz/256 f  
S
0.005%  
0.002%  
1%  
V
V
= 0 dB  
OUT  
= 192 kHz/128 f  
S
Total harmonic  
distortion plus noise  
THD+N  
= 44.1 kHz/348 f  
= 96 kHz / 256 f  
S
1.2%  
1%  
= −60 dB  
S
OUT  
= 192 kHz/128 f  
S
EIAJ, A-weighted, f = 44.1 kHz/384 f  
S
98  
98  
95  
103  
99  
S
A-weighted, f = 96 kHz/256 f  
Dynamic range  
dB  
dB  
S
S
A-weighted, f = 192 kHz/128 f  
101  
103  
100  
101  
100  
95  
S
S
EIAJ, A-weighted, f = 44.1 kHz/384 f  
S
S
A-weighted, f = 96 kHz/256 f  
Signal-to-noise ratio  
Channel separation  
S
S
A-weighted, f = 192 kHz/128 f  
S
S
f
S
f
S
f
S
= 44.1 kHz/384 f  
S
= 96 kHz/256 f  
S
dB  
dB  
= 192 kHz/128 f  
100  
0.5  
S
Level linearity error  
DC ACCURACY  
V
OUT  
= −90 dB  
Gain error  
1 %FSR  
1.3 %FSR  
30  
Gain mismatch, channel-to-channel  
Bipolar zero error  
V
OUT  
= 0.5 V  
CC  
at BPZ  
mV  
ANALOG OUTPUT  
Output voltage  
Center voltage  
Load impedance  
Full scale (−0 dB)  
Ac load  
62% of V  
50% of V  
Vp-p  
Vdc  
kΩ  
CC  
CC  
5
4
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
electrical characteristics, all specifications at T = 25°C, V  
= 5 V, f = 44.1 kHz,  
S
A
CC  
system clock = 384 f and 24-bit data (unless otherwise noted) (continued)  
S
PCM1606E  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
DIGITAL FILTER PERFORMANCE  
FILTER CHARACTERISTICS  
0.03 dB  
−3 dB  
0.454 f  
S
Passband  
0.487 f  
S
Stopband  
0.546 f  
S
Passband ripple  
0.03  
dB  
dB  
Stopband = 0.546 f  
Stopband = 0.567 f  
−50  
−55  
S
Stopband attenuation  
S
ANALOG FILTER PERFORMANCE  
Frequency response  
At 20 kHz  
−0.03  
dB  
VDC  
mA  
POWER SUPPLY REQUIREMENTS (see Note 4)  
V
Voltage range  
Supply current  
4.5  
5
50  
5.5  
65  
CC  
f
S
f
S
f
S
f
S
f
S
f
S
= 44.1 kHz/384 f  
S
= 96 kHz/256 f  
72  
I
S
CC  
= 192 kHz/128 f  
68  
S
= 44.1 kHz/384 f  
250  
360  
340  
358  
85  
S
= 96 kHz/256 f  
S
Power dissipation  
mW  
= 192 kHz/128 f  
S
TEMPERATURE RANGE  
Operation temperature  
Thermal resistance  
−25  
°C  
θ
JA  
20-pin SSOP  
115  
°C/W  
NOTES: 3. Analog performance specs are tested using System Two Cascade Plus by Audio Precision with 400-Hz HPF, 30-kHz LPF on at RMS  
with 20-kHz LPF, 400-Hz HPF in calculation.  
Shibasoku #725 THD meter, 400 Hz HPF, 30 kHz LPF on, at average mode with 20-kHz bandwidth limiting. The load connected  
to the analog output is 5 kor larger via capacitance coupling.  
4. Condition in 192-kHz operation is channel 3 through channel 6 are disabled.  
timing requirements  
system clock input  
The PCM1606 requires a system clock for operating the digital interpolation filters and multilevel delta-sigma  
modulators. The system clock is applied at the SCKI (pin 20). Table 1 shows examples of system clock  
frequencies for common audio sampling rates.  
Figure 1 shows the timing requirements for the system clock input. For optimal performance, it is important to  
use a clock source with low phase jitter and noise. Texas Instruments’ PLL1700 multiclock generator is an  
excellent choice for providing the PCM1606 system clock source.  
The 192-kHz sampling frequency operation is available on DATA1 for V  
1 and V  
2. When the system clock  
OUT  
OUT  
of 128 f or 192 f is detected, V  
level (= 0.5 V ). Table 1 lists the typical system clock frequency.  
3, V  
4, V  
5 and V  
6 are automatically forced to the bipolar zero  
S
S
OUT  
OUT  
OUT  
OUT  
CC  
5
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
timing requirements (continued)  
power-on reset functions  
The PCM1606 includes a power-on reset function. Figure 2 shows the operation of this function. With the  
system clock active and V  
initialization sequence requires 1024 system clocks from the time V  
PCM1606 is set to its reset default state.  
> 3 V typical (2.2 V to 3.7 V), the power-on reset function is enabled. The  
CC  
> 3 V. After the initialization period, the  
CC  
Table 1. System Clock Rates for Common Audio Sampling Frequencies  
SYSTEM CLOCK FREQUENCY (f  
) (MHz)  
SCLK  
SAMPLING FREQUENCY  
128 f  
192 f  
256 f  
384 f  
512 f  
768 f  
S
S
S
S
S
S
8 kHz  
16 kHz  
32 kHz  
44.1 kHz  
48 kHz  
96 kHz  
192 kHz  
2.048  
4.096  
3.072  
6.144  
4.096  
8.192  
6.144  
12.288  
8.192  
12.288  
16.384  
24.576  
11.2896  
12.288  
24.576  
See Note 6  
16.9344  
18.432  
22.5792  
24.576  
33.8688  
36.864  
36.864  
49.152  
See Note 5  
See Note 6  
24.576  
36.864  
See Note 6  
See Note 6  
NOTES: 5. The 768-f system clock rate is not supported for f > 64 kHz.  
S
S
6. This system clock is not supported for the given sampling frequency.  
t
(SCKH)  
2.0 V  
0.8 V  
System Clock  
t
System Clock  
(SCKL)  
Pulse Cycle Time  
1/128 f , 1/256 f , 1/384 f , 1/512 f and 1/768 f .  
S
S
S
S
S
PARAMETERS  
MIN  
10  
MAX  
UNIT  
ns  
t
System clock pulse duration HIGH  
System clock pulse duration LOW  
(SCKH)  
t
10  
ns  
(SCKL)  
Figure 1. System Clock Timing  
3.7 V  
3.0 V  
2.2 V  
V
DD  
0 V  
Reset  
Reset Removal  
Internal Reset  
System Clock  
Don’t Care  
1024 System Clocks  
Figure 2. Power-On Reset Timing  
6
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
timing requirements (continued)  
audio serial interface  
The audio serial interface for the PCM1606 comprises a 5-wire synchronous serial port. It includes LRCK (pin  
18), BCK (pin 19), DATA1 (pin 1), DATA2 (pin 2) and DATA3 (pin 3). BCK is the serial audio bit clock and is used  
to clock the serial data present on DATA1, DATA2, and DATA3 into the audio interface serial shift registers. Serial  
data is clocked into the PCM1606 on the rising edge of BCK. LRCK is the serial audio left/right word clock. LRCK  
is used to latch serial data into the serial audio interface internal registers.  
Both LRCK and BCK must be synchronous to the system clock. Ideally, it is recommended that LRCK and BCK  
be derived from the system clock input or output, SCKI. The left/right clock, LRCK, is operated at the sampling  
frequency (f ). The bit clock, BCK, may be operated at 32, 48, or 64 times the sampling frequency.  
S
audio data formats and timing  
2
The PCM1606 supports industry-standard audio data formats, including standard, I S, left-justified, and TDM.  
The data formats are shown in Figure 6. Data formats are selected using the format pins, FMT1 (pin 4) and  
FMT0 (pin 5). All formats require binary 2s complement, MSB-first audio data. Figure 3 shows a detailed timing  
diagram for the serial audio interface, with the exception of TDM format.  
DATA1, DATA2, and DATA3 each carry two audio channels, designated as the left and right channels. The left  
channel data always precedes the right channel data in the serial data stream for all data formats. Table 2 shows  
the mapping of the digital input data to the analog output pins.  
TDM format is able to interface by 3-wire synchronous serial port. All data inputs from DATA1, BCK can be  
operated at 128, 256, and 512 times the sampling frequency. The rising edge of LRCK means the start of a data  
frame. Only channel 1 and channel 2 data are acceptable at the 192-kHz sampling frequency (f ); channel 3,  
S
channel 4, channel 5, and channel 6 data are don’t care.  
Figure 4 shows the timing requirements for BCK input for TDM format. Figure 5 shows the detailed timing  
diagram for TDM format.  
Table 2. Audio Input Data to Analog Output Mapping  
DATA INPUT  
DATA1  
CHANNEL  
Left  
ANALOG OUTPUT  
1
2
3
4
5
6
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
DATA1  
Right  
Left  
DATA2  
DATA2  
Right  
Left  
DATA3  
DATA3  
Right  
Up to 192 kHz  
Up to 96 kHz  
7
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
timing requirements (continued)  
1.4 V  
1.4 V  
1.4 V  
LRCK  
t
t
t
(LB)  
(BCH)  
(BCL)  
BCK  
t
t
(BL)  
(BCY)  
DATA1, DATA2, DATA3  
t
t
h(D)  
su(D)  
PARAMETER  
MIN  
MAX  
32 f / 48 f / 64  
UNIT  
S
S
t
BCK pulse cycle time  
(BCY)  
f
S
t
t
t
t
t
t
BCK high-level time  
BCK low-level time  
35  
35  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
(BCH)  
(BCL)  
(BL)  
BCK rising edge to LRCK edge  
LRCK falling edge to BCK rising edge  
DATA setup time  
(LB)  
su(D)  
h(D)  
DATA hold time  
f
S
is the sampling frequency (e.g., 44.1 kHz, 48 kHz, 96 kHz, etc.)  
Figure 3. Audio Interface Timing  
Table 3. Bit Clock Rates for TDM Format Sampling Frequencies  
SYSTEM CLOCK FREQUENCY (f  
) (MHz)  
512 f  
SCKI  
SAMPLING  
FREQUENCY  
128 f  
256 f  
S
S
S
8 kHz  
16 kHz  
32 kHz  
44.1 kHz  
48 kHz  
96 kHz  
192 kHz  
2.048  
4.096  
4.096  
8.192  
16.384  
8.192  
11.2896  
12.288  
24.576  
See Note 7  
22.5792  
24.576  
49.152  
24.576  
See Note 7  
NOTE 7: This bit clock is not supported for the given sampling frequency.  
8
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
timing requirements (continued)  
t
(BCKH)  
2.0 V  
0.8 V  
BCK  
t
Bit Clock Pulse  
Cycle Time  
(BCKL)  
PARAMETERS  
MIN  
10  
MAX  
UNIT  
ns  
t
t
Bit clock pulse duration HIGH  
Bit clock pulse duration LOW  
(BCKH)  
10  
ns  
(BCKL)  
1/128 f , 1/256 f , and 1/512 f .  
S
S
S
Figure 4. Bit Clock Timing for TDM Format  
1.4 V  
LRCK  
BCK  
t
t
t
(LB)  
(BCH)  
(BCL)  
1.4 V  
1.4 V  
t
t
(BCY)  
(BL)  
DATA1  
t
t
h(D)  
su(D)  
PARAMETER  
MIN MAX  
UNIT  
t
t
t
t
t
t
t
BCK pulse cycle time  
BCK high-level time  
BCK low-level time  
20  
10  
10  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(BCY)  
(BCH)  
(BCL)  
(BL)  
BCK rising edge to LRCK edge  
LRCK falling edge to BCK rising edge  
DATA setup time  
7
(LB)  
7
su(D)  
h(D)  
DATA hold time  
7
Figure 5. Audio Interface Timing for TDM Format  
9
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
timing requirements (continued)  
(1) Standard Data Format; L-Channel = HIGH, R-Channel = LOW  
1/f  
S
LRCK  
BCK  
R−Channel  
L−Channel  
(= 32 f , 48 f or 64 f )  
S
S
S
16-Bit Right-Justified, BCK = 48 f or 64 f  
S
S
DATA 14 15 16  
1
2
3
14 15 16  
1
2
3
14 15 16  
16-Bit Right-Justified, BCK = 32 f  
S
MSB  
LSB  
MSB  
LSB  
DATA 14 15 16  
1
2
3
14 15 16  
1
2
3
14 15 16  
MSB  
LSB  
MSB  
LSB  
(2) Left-Justified Data Format; L-Channel = HIGH, R-Channel = LOW  
1/f  
S
LRCK  
BCK  
L−Channel  
R−Channel  
DATA  
1
2
3
N−2 N−1  
N
1
2
3
N−2 N−1  
N
1
2
MSB  
LSB  
MSB  
LSB  
2
(3) I S Data Format; L-Channel = LOW, R-Channel = HIGH  
1/f  
S
LRCK  
BCK  
R−Channel  
L−Channel  
(= 48 f or 64 f  
S
)
S
DATA  
1
2
3
N−2 N−1  
N
1
2
3
N−2 N−1  
N
1
2
MSB  
LSB  
MSB  
LSB  
Figure 6. Audio Data Input Format  
10  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
timing requirements (continued)  
(4) TDM Data Format  
BCK = 256 f  
S
1/f  
S
Channel 1  
32 BCK  
Channel 2  
32 BCK  
Channel 3  
Channel 6  
LRCK  
BCK  
1
2
3
22 23 24 LOW Fix  
1
24  
LOW Fix 64 Bit  
1
2
LOW Fix  
MSB  
LSB  
BCK = 128 f  
S
1/f  
S
Channel 1  
32 BCK  
Channel 2  
32 BCK  
LRCK  
BCK  
1
2
3
22 23 24 LOW Fix  
1
24 LOW Fix  
LSB  
LOW Fix 64 Bit  
1
2
MSB  
LSB  
MSB  
BCK = 512 f  
S
1/f  
S
Channel 1  
64 BCK  
Channel 2  
64 BCK  
Channel 3  
Channel 6  
LRCK  
BCK  
LOW Fix  
1
2
24  
LOW Fix  
1
LOW Fix  
1
MSB  
LSB  
Figure 6. Audio Data Input Format (Continued)  
functional description  
The PCM1606 has several built-in functions including digital input data format selection and digital  
de-emphasis. These functions are hardware controlled with static control signals and used on pin FMT1 (pin 4),  
pin FMT0 (pin 5), pin DEMP1 (pin 17), and DEMP0 (pin 16).  
data format selection  
The PCM audio data format can be selected by pin FMT1 (pin 4) and FMT0 (pin 5) as shown in Table 4.  
Table 4. Data Format Control  
FMT1 (pin 4)  
LOW  
FMT0 (pin 5)  
LOW  
AUDIO INTERFACE  
2
I S  
LOW  
HIGH  
TDM  
HIGH  
LOW  
Standard  
Left-justified  
HIGH  
HIGH  
11  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
functional description (continued)  
de-emphasis control  
The de-emphasis control can be selected by DEMP1 (pin 17) and DEMP0 (pin 16). See Table 5.  
Table 5. De-Emphasis Control  
DEMT1 (pin 17)  
LOW  
DEMT0 (pin 16)  
LOW  
AUDIO INTERFACE  
OFF  
LOW  
HIGH  
48 kHz  
HIGH  
LOW  
44.1 kHz  
32 kHz  
HIGH  
HIGH  
analog outputs  
The PCM1606 includes six independent output channels, V  
1 through V  
6. These are unbalanced  
OUT  
OUT  
outputs, each capable of driving 3.1 Vp-p typical into a 5-kac load with V = 5 V. The internal output amplifiers  
CC  
for V  
1 through V  
6 are dc-biased to the common-mode (or bipolar zero) voltage, equal to V /2.  
OUT  
OUT CC  
The output amplifiers include an RC continuous-time filter, which helps to reduce the out-of-band noise energy  
present at the DAC outputs due to the noise shaping characteristics of the PCM1606’s delta-sigma D/A  
converters. The frequency response of this filter is shown in Figure 7. By itself, this filter is not enough to  
attenuate the out-of-band noise to an acceptable level for most applications. An external low-pass filter is  
required to provide sufficient out-of-band noise rejection. Further discussion of DAC post-filter circuits is  
provided in the Application Information section of this data sheet.  
LEVEL  
vs  
FREQUENCY  
20  
0
−20  
−40  
−60  
−80  
−100  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
Figure 7. Output Filter Frequency Response  
12  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
functional description (continued)  
V
output  
COM  
One unbuffered common-mode voltage output pin, V  
pin is nominally biased to a dc voltage level equal to V /2. If this pin is to be used to bias external circuitry, a  
voltage follower is required for buffering purposes. Figure 8 shows an example of using the V  
biasing applications.  
(pin 14) is brought out for decoupling purposes. This  
COM  
CC  
pin for external  
COM  
PCM1606  
4
VCC  
2
1
OPA337  
+
VBIAS  
[
14  
3
V
COM  
+
10 µF  
Figure 8. Biasing External Circuits Using the V  
Pin  
COM  
zero flag  
zero detect condition  
Zero detection for each output channel is independent from the others. If the data for a given channel remains  
at a 0 level for 1024 sample periods (or LRCK clock periods), a zero detect condition exists for that channel.  
zero output flag  
When the data for all channels remains at a 0 level for 1024 sample periods (or LRCK clock periods), the ZEROA  
(pin 6) is set to a logic 1 state. The zero flag pin can be used to operate external mute circuits, or used as a status  
indicator for a microcontroller, audio signal processor, or other digitally controlled functions.  
13  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
TYPICAL CHARACTERISTICS—DIGITAL FILTER  
AMPLITUDE  
vs  
AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
0
−20  
0.05  
0.04  
V
= 5 V  
= 44.1 kHz  
= 25°C  
CC  
V
f
= 5 V  
= 44.1 kHz  
= 25°C  
CC  
S
f
T
S
A
T
0.03  
A
De-emphasis Off  
De-emphasis Off  
−40  
0.02  
0.01  
−60  
0.00  
−80  
−0.01  
−0.02  
−0.03  
−0.04  
−0.05  
−100  
−120  
−140  
0
1
2
3
4
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
f − Frequency [f ]  
f − Frequency [f ]  
S
S
Figure 9  
Figure 10  
DE-EMPHASIS LEVEL  
vs  
DE-EMPHASIS ERROR  
vs  
FREQUENCY  
FREQUENCY  
0
0.5  
V
= 5 V  
= 32 kHz  
= 25°C  
V
= 5 V  
CC  
CC  
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.4  
0.3  
f
T
f
T
= 32 kHz  
S
S
= 25°C  
A
A
0.2  
0.1  
−0.0  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
f − Frequency − kHz  
f − Frequency − kHz  
Figure 11  
Figure 12  
All specifications at T = 25°C, V  
CC  
= 5 V, f = 44.1 kHz, system clock = 384 f and 24-bit data, unless otherwise noted.  
S S  
A
14  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
TYPICAL CHARACTERISTICS—DIGITAL FILTER  
DE-EMPHASIS LEVEL  
vs  
DE-EMPHASIS ERROR  
vs  
FREQUENCY  
FREQUENCY  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.5  
0.4  
V
f
T
A
= 5 V  
= 44.1 kHz  
= 25°C  
CC  
S
V
= 5 V  
= 44.1 kHz  
= 25°C  
CC  
f
T
S
A
0.3  
0.2  
0.1  
−0.0  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
f − Frequency − kHz  
f − Frequency − kHz  
Figure 13  
Figure 14  
DE-EMPHASIS LEVEL  
vs  
DE-EMPHASIS ERROR  
vs  
FREQUENCY  
FREQUENCY  
0
0.5  
0.4  
V
= 5 V  
= 48 kHz  
= 25°C  
V
= 5 V  
CC  
CC  
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
f
T
f
T
= 48 kHz  
S
S
= 25°C  
A
A
0.3  
0.2  
0.1  
−0.0  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
−10  
0
2
4
6
8
10 12 14 16 18 20 22  
0
2
4
6
8
10 12 14 16 18 20 22  
f − Frequency − kHz  
f − Frequency − kHz  
Figure 15  
Figure 16  
All specifications at T = 25°C, V  
CC  
= 5 V, f = 44.1 kHz, system clock = 384 f and 24-bit data, unless otherwise noted.  
S S  
A
15  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
TYPICAL CHARACTERISTICS—ANALOG DYNAMIC PERFORMANCE  
DYNAMIC RANGE  
vs  
SUPPLY VOLTAGE  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
SUPPLY VOLTAGE  
106  
104  
102  
100  
98  
10  
V
= 5 V  
= 44.1 kHz  
= 25°C  
CC  
V
= 5 V  
= 44.1 kHz  
= 25°C  
CC  
192 kHz  
128 f  
S
f
T
S
f
T
S
96 kHz  
256 f  
A
44.1 kHz  
A
S
384 f  
S
1
44.1 kHz  
384 f  
−60 dB  
S
192 kHz  
128 f  
0.1  
S
96 kHz  
256 f  
192 kHz  
128 f  
S
44.1 kHz  
384 f  
S
96 kHz  
256 f  
S
0.01  
S
0 dB  
96  
4.0  
0.001  
4.5  
5.0  
5.5  
6.0  
4.0  
4.5  
5.0  
5.5  
6.0  
V
CC  
− Supply Voltage − V  
V
CC  
− Supply Voltage − V  
Figure 17  
Figure 18  
SNR  
vs  
CHANNEL SEPARATION  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
106  
104  
102  
100  
98  
104  
102  
100  
98  
V
= 5 V  
= 44.1 kHz  
= 25°C  
V
f
T
A
= 5 V  
= 44.1 kHz  
= 25°C  
CC  
CC  
S
f
T
S
192 kHz  
128 f  
S
A
44.1 kHz  
384 f  
S
44.1 kHz  
384 f  
S
192 kHz  
128 f  
S
96 kHz  
256 f  
S
96  
96 kHz  
256 f  
S
94  
96  
4.0  
92  
4.0  
4.5  
V
5.0  
5.5  
6.0  
4.5  
V
5.0  
5.5  
6.0  
− Supply Voltage − V  
− Supply Voltage − V  
CC  
CC  
Figure 19  
Figure 20  
All specifications at T = 25°C, V  
CC  
= 5 V, f = 44.1 kHz, system clock = 384 f and 24-bit data, unless otherwise noted.  
S S  
A
16  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
TYPICAL CHARACTERISTICS—ANALOG DYNAMIC PERFORMANCE  
DYNAMIC RANGE  
vs  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
106  
104  
102  
100  
98  
10  
V
f
= 5 V  
V
f
= 5 V  
CC  
= 44.1 kHz  
CC  
= 44.1 kHz  
192 kHz  
128 f  
44.1 kHz  
384 f  
96 kHz  
256 f  
S
S
S
S
S
1
44.1 kHz  
−60 dB  
384 f  
S
192 kHz  
128 f  
S
0.1  
44.1 kHz  
384 f  
S
96 kHz  
256 f  
S
96 kHz  
256 f  
192 kHz  
128 f  
S
0.01  
S
0 dB  
75 100  
96  
−50  
0.001  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 21  
Figure 22  
SNR  
vs  
CHANNEL SEPARATION  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
106  
104  
102  
100  
98  
104  
102  
100  
98  
V
= 5 V  
V
= 5 V  
CC  
= 44.1 kHz  
CC  
f = 44.1 kHz  
S
44.1 kHz  
384 f  
f
S
S
44.1 kHz  
384 f  
S
192 kHz  
128 f  
S
192 kHz  
128 f  
S
96 kHz  
256 f  
96 kHz  
256 f  
96  
S
S
96  
94  
94  
−50  
92  
−50  
−25  
0
25  
50  
75  
100  
−25  
0
25  
50  
75  
100  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 23  
Figure 24  
All specifications at T = 25°C, V  
CC  
= 5 V, f = 44.1 kHz, system clock = 384 f and 24-bit data, unless otherwise noted.  
S S  
A
17  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
TYPICAL CHARACTERISTICS—ANALOG DYNAMIC PERFORMANCE  
−90-dB OUTPUT SPECTRUM  
−90-dB OUTPUT SPECTRUM  
0
−20  
0
−20  
V
f
T
A
= 5 V  
= 44.1 kHz  
= 25°C  
V
= 5 V  
CC  
CC  
S
f
T
= 44.1 kHz  
S
= 25°C  
A
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−180  
−100  
−120  
−140  
−160  
−180  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.1  
0.2  
0.3  
0.4  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 25  
Figure 26  
DYNAMIC RANGE  
vs  
JITTER  
106  
104  
102  
100  
98  
V
= 5 V  
= 44.1 kHz  
= 25°C  
CC  
f
T
S
A
96  
94  
92  
90  
0
100  
200  
300  
400  
500  
600  
Jitter − ps  
Figure 27  
All specifications at T = 25°C, V  
CC  
= 5 V, f = 44.1 kHz, system clock = 384 f and 24-bit data, unless otherwise noted.  
S S  
A
18  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
APPLICATION INFORMATION  
connection diagrams  
A basic connection diagram is shown in Figure 28, with the necessary power supply bypassing and decoupling  
components. Texas Instruments recommends using the component values shown in Figure 28 for all designs.  
A typical application diagram is shown in Figure 29. Texas Instruments’ PLL1700 is used to generate the system  
clock input at SCKI, as well as generating the clock for the audio signal processor.  
The use of series resistors (22 to 100 ) is recommended for SCKI, LRCK, BCK, DATA1, DATA2, and DATA3.  
The series resistor combines with the stray PCB and device input capacitance to form a low-pass filter which  
removes high-frequency noise from the digital signal, thus, reducing high-frequency emission.  
ML  
Microcontroller  
MC  
MD  
PLL1700  
SCKO3  
+5 V Power Supply  
+
10 µF  
DATA1  
DATA2  
DATA3  
FMT1  
SCKI  
BCK  
DATA1  
DATA2  
DATA3  
FMT1  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
2
3
BCK  
LRCK  
DEMP1  
DEMP0  
LRCK  
DEMP1  
DEMP0  
4
FMT0  
FMT0  
5
PCM1606  
ZEROA  
AGND  
V
CC  
ZEROA  
6
10 µF  
+
V
COM  
7
LPF  
LPF  
LPF  
LPF  
LPF  
LPF  
V
OUT  
V
OUT  
V
OUT  
5
6
1
V
V
V
4
3
2
8
OUT  
OUT  
OUT  
9
10  
Figure 28. Basic Connection Diagram  
19  
www.ti.com  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
APPLICATION INFORMATION  
DIGITAL SECTION  
ANALOG SECTION  
{
µC/µP  
w
R
S
DATA1  
DATA2  
DATA3  
FMT1  
SCKI  
BCK  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
R
S
S
S
S
Audio DSP  
or  
Decoder  
R
R
R
LRCK  
3
DEMP1  
DEMP0  
4
FMT0  
5
10 µF  
PCM1606  
+
R
ZEROA  
AGND  
V
CC  
6
S
V
COM  
7
Down Mix  
10 µF  
10 µF  
10 µF  
+
+
+
Buffer  
L
V
OUT  
V
OUT  
V
OUT  
5
6
1
V
V
V
4
3
2
8
OUT  
OUT  
OUT  
R
9
PLL1700  
LF  
RF  
}
10  
Output  
SCKO3  
Low-Pass  
10 µF  
10 µF  
10 µF  
+
+
+
W
XT1  
Filters  
LS  
RS  
27-MHz  
Master Clock  
CTR  
SUB  
5-V Analog  
10 µF  
+
0.1 µF  
§
Format and de-emphasis control can be provided by the DSP/decoder.  
Actual clock output used is determined by the application.  
R
= 22 to 100 Ω  
S
See the Application Information section of this data sheet for more information.  
Figure 29. Typical Application Diagram  
power supply and grounding  
The PCM1606 requires a 5-V supply. The 5-V supply is used to power the DAC analog output-filter circuitry, the  
digital filter, and the serial interface circuitry.  
Two capacitors are required for supply bypassing, as shown in Figure 29. These capacitors should be located  
as close as possible to the PCM1606 package. The 10-µF capacitors should be tantalum or aluminum  
electrolytic, while the 0.1-µF capacitors are ceramic (X7R type is recommended for surface-mount  
applications).  
20  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
APPLICATION INFORMATION  
D/A output filter circuits  
Delta-sigma D/A converters utilize noise shaping techniques to improve in-band signal-to-noise ratio (SNR)  
performance at the expense of generating increased out-of-band noise above the Nyquist frequency, or f /2.  
S
The out-of-band noise must be low-pass filtered in order to provide optimal converter performance. This is  
accomplished by a combination of on-chip and external low-pass filtering.  
Figure 30 and Figure 31 show the recommended external low-pass active filter circuits for dual- and  
single-supply applications. These circuits are 2nd-order Butterworth filters using the multiple feedback (MFB)  
circuit arrangement, which reduces sensitivity to passive component variations over frequency and  
temperature. For more information regarding MFB active filter design, see your local Texas Instruments sales  
office.  
Because the overall system performance is defined by the quality of the D/A converters and their associated  
analog output circuitry, high-quality audio op amps are recommended for the active filters. Texas Instruments’  
OPA2134 and OPA2353 dual op amps are shown in Figure 30 and Figure 31, and are recommended for use  
with the PCM1606.  
R
C
2
1
2
R
R
3
1
R
V
IN  
4
1
OPA2134  
V
OUT  
3
C
+
2
R2  
AV [ *  
R1  
Figure 30. Dual-Supply Filter Circuit  
R2  
AV [ *  
R1  
R
C
2
1
2
R
R
3
1
R
V
IN  
4
1
OPA2134  
V
OUT  
3
C
+
2
PCM1606  
V
COM  
To Additional  
Low-Pass Filter  
Circuits  
OPA337  
+
+
C
10 µF  
2
Figure 31. Single-Supply Filter Circuit  
21  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
APPLICATION INFORMATION  
PCB layout guidelines  
A typical PCB layout for the PCM1606 is shown in Figure 32. A ground plane is recommended, with the analog  
and digital sections being isolated from one another using a split or cut in the circuit board. The PCM1606 should  
be oriented with the digital I/O pins facing the ground plane split/cut to allow for short, direct connections to the  
digital audio interface and control signals originating from the digital section of the board.  
Separate power supplies are recommended for the digital and analog sections of the board. This prevents the  
switching noise present on the digital supply from contaminating the analog power supply and degrading the  
dynamic performance of the D/A converters. In cases where a common 5-V supply must be used for the analog  
and digital sections, an inductance (RF choke, ferrite bead) should be placed between the analog and digital  
5-V supply connections to avoid coupling of the digital switching noise into the analog circuitry. Figure 33 shows  
the recommended approach for single-supply applications.  
Digital Power  
+V DGND  
Analog Power  
AGND +5VA  
+V  
S S  
−V  
D
V
CC  
Digital  
Logic  
and  
Audio  
Output  
Circuits  
PCM1606  
AGND  
Digital  
Ground  
Processor  
Analog  
Ground  
Digital Section  
Analog Section  
Return Path for Digital Signals  
Figure 32. Recommended PCB Layout  
22  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
APPLICATION INFORMATION  
PCB layout guidelines (continued)  
Power Supplies  
RF Choke or Ferrite Bead  
+5V  
AGND +V −V  
S S  
V
CC  
V
DD  
Output  
Circuits  
PCM1606  
AGND  
Common  
Ground  
Digital Section  
Analog Section  
Figure 33. Single-Supply PCB Layout  
key performance parameters measurement  
This section provides information on how to measure key dynamic performance parameters for the PCM1606.  
In all cases, a System Two Cascade Plus by Audio Precision or equivalent audio measurement system is used  
to perform the testing.  
total harmonic distortion + noise  
Total harmonic distortion + noise (THD+N) is a significant figure of merit for audio D/A converters, because it  
takes into account both harmonic distortion and all noise sources within a specified measurement bandwidth.  
The true rms value of the distortion and noise is referred to as THD+N.  
For the PCM1606 D/A converters, THD+N is measured with a full scale, 1-kHz digital sine wave as the test  
stimulus at the input of the DAC. The digital generator is set to 24-bit audio word length and a sampling frequency  
of 44.1 kHz or 96 kHz. The digital generator output is taken from the unbalanced S/PDIF connector of the  
measurement system. The S/PDIF data is transmitted via coaxial cable to the digital audio receiver on the  
2
DEM−DAI1606 demo board. The receiver is then configured to output 24-bit data in either I S or left-justified  
data format. The DAC audio interface format is programmed to match the receiver output format. The analog  
output is then taken from the DAC post filter and connected to the analog analyzer input of the measurement  
system. The analog input is band-limited using filters resident in the analyzer. The resulting THD+N is measured  
by the analyzer and displayed by the measurement system.  
23  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
APPLICATION INFORMATION  
total harmonic distortion + noise (continued)  
Evaluation Board  
DEM-DAI1606  
2nd-Order  
Low-Pass  
Filter  
S/PDIF  
Receiver  
PCM1606  
f
= 54 kHz  
−3 dB  
Analyzer  
and  
Display  
Digital  
Generator  
S/PDIF  
Output  
Band Limit  
Notch Filter  
= 1 kHz  
100% Full-Scale,  
24-Bit,  
1-kHz Sine Wave  
RMS Mode  
HPF = 22 Hz  
LPF = 22 kHz  
Option = 20-kHz Apogee Filter  
f
c
There is little difference in measured THD+N when using the various settings for these filters..  
Required for THD+N test.  
Figure 34. Test Setup for THD+N Measurements  
dynamic range  
Dynamic range is specified as A-weighted, THD+N measured with a –60 dB of full-scale (FS), 1-kHz digital sine  
wave stimulus at the input of the D/A converter. This measurement is designed to give a good indicator of how  
the DAC performs given a low-level input signal.  
The measurement setup for the dynamic range measurement is shown in Figure 35, and is similar to the THD+N  
test setup discussed previously. The differences include the band limit filter selection, the additional A-weighting  
filter, and the –60-dB FS input level.  
idle channel signal-to-noise ratio  
The signal-to-noise ratio (SNR) test provides a measure of the noise floor of the D/A converter. The input to the  
D/A is all 0s data. This ensures that the delta-sigma modulator output is connected to the output amplifier circuit  
so that idle tones (if present) can be observed and affect the SNR measurement. The dither function of the digital  
generator must also be disabled to ensure an all 0s data stream at the input of the D/A converter.  
The measurement setup for SNR is identical to that used for dynamic range, with the exception of the input signal  
level. (See the note provided in Figure 35).  
24  
www.ti.com  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
APPLICATION INFORMATION  
idle channel signal-to-noise ratio (continued)  
Evaluation Board  
DEM-DAI1606  
2nd-Order  
Low-Pass  
Filter  
S/PDIF  
Receiver  
PCM1606  
f
= 54 kHz  
−3 dB  
Analyzer  
and  
Display  
Digital  
Generator  
A-Weight  
Filter  
S/PDIF  
Output  
Band Limit  
Notch Filter  
= 1 kHz  
0% Full-Scale,  
Dither Off (SNR)  
−60 dB FS,  
RMS Mode  
HPF = 22 Hz  
LPF = 22 kHz  
Option = A-Weighting  
f
c
1 kHz Sine Wave  
(Dynamic Range)  
Results without A-Weighting will be approximately 3 dB worse.  
Figure 35. Test Setup for Dynamic Range and SNR Measurements  
25  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ ꢄ  
SLES014B − OCTOBER 2001 − REVISED AUGUST 2002  
MECHANICAL DATA  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
28 PINS SHOWN  
0,38  
0,22  
0,65  
28  
M
0,15  
15  
0,15 NOM  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°ā8°  
0,95  
0,55  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
14  
16  
20  
24  
28  
30  
38  
DIM  
6,50  
5,90  
6,50  
5,90  
7,50  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
6,90  
9,90  
12,30  
4040065 /D 09/00  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 mm.  
D. Falls within JEDEC MO-150  
26  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jun-2009  
PACKAGING INFORMATION  
Orderable Device  
PCM1606E  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SSOP  
DB  
20  
20  
20  
20  
65 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PCM1606E/2K  
PCM1606E/2KG4  
PCM1606EG4  
SSOP  
SSOP  
SSOP  
DB  
DB  
DB  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
65 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

PCM1608

24-Bit, 192kHz Sampling, 8-Channel, Enhanced Multilevel, Delta-Sigma DIGITAL-TO-ANALOG CONVERTER
TI

PCM1608KY

24-Bit, 192kHz Sampling, 8-Channel, Enhanced Multilevel, Delta-Sigma DIGITAL-TO-ANALOG CONVERTER
TI

PCM1608KY/2K

24-Bit, 192kHz Sampling, 8-Channel, Enhanced Multilevel, Delta-Sigma DIGITAL-TO-ANALOG CONVERTER
TI

PCM1608KY/2KG4

SERIAL INPUT LOADING, 24-BIT DAC, PQFP48, GREEN, PLASTIC, LQFP-48
TI

PCM1608KYG4

105dB SNR 8-Channel Audio DAC 48-LQFP
TI

PCM1608Y

24-Bit, 192kHz Sampling, 8-Channel, Enhanced Multilevel, Delta-Sigma DIGITAL-TO-ANALOG CONVERTER
TI

PCM1608Y/2K

24-Bit, 192kHz Sampling, 8-Channel, Enhanced Multilevel, Delta-Sigma DIGITAL-TO-ANALOG CONVERTER
TI

PCM1608Y/2KG4

SERIAL INPUT LOADING, 24-BIT DAC, PQFP48, GREEN, PLASTIC, LQFP-48
TI

PCM1608_15

Delta-Sigma Digital-to-Analog Converter
TI

PCM1609A

24-BIT, 192-kHz SAMPLING, 8-CHANNEL, ENHANCED MULTILEVEL, DELTA-SIGMA DIGITAL-TO-ANALOG CONVERTER
TI

PCM1609APT

24-BIT, 192-kHz SAMPLING, 8-CHANNEL, ENHANCED MULTILEVEL, DELTA-SIGMA DIGITAL-TO-ANALOG CONVERTER
TI

PCM1609APTG4

24-BIT, 192-kHz SAMPLING, 8-CHANNEL, ENHANCED MULTILEVEL, DELTA-SIGMA DIGITAL-TO-ANALOG CONVERTER
TI