CS4365_07 [CIRRUS]

114 dB, 192 kHz 6-Channel D/A Converter; 114分贝192千赫6声道D / A转换器
CS4365_07
型号: CS4365_07
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

114 dB, 192 kHz 6-Channel D/A Converter
114分贝192千赫6声道D / A转换器

转换器
文件: 总52页 (文件大小:946K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS4365  
114 dB, 192 kHz 6-Channel D/A Converter  
Features  
Description  
 Advanced Multi-bit Delta Sigma Architecture  
 24-bit Conversion  
The CS4365 is a complete 6-channel digital-to-analog  
system. This D/A system includes digital de-emphasis,  
half-dB step size volume control, ATAPI channel mix-  
ing, selectable fast and slow digital interpolation filters  
followed by an oversampled, multi-bit delta sigma mod-  
ulator which includes mismatch-shaping technology  
that eliminates distortion due to capacitor mismatch.  
Following this stage is a multi-element switched capac-  
itor stage and low-pass filter with differential analog  
outputs.  
 Automatic Detection of Sample Rates up to  
192 kHz  
 114 dB Dynamic Range  
 -100 dB THD+N  
 Direct Stream Digital Mode  
The CS4365 also has a proprietary DSD processor  
which allows for volume control and 50 kHz on-chip fil-  
tering without an intermediate decimation stage. It also  
offers an optional path for direct DSD conversion by di-  
rectly using the multi-element switched capacitor array.  
Non-Decimating Volume Control  
On-Chip 50 kHz Filter  
Matched PCM and DSD Analog Output  
Levels  
The CS4365 is available in a 48-pin LQFP package in  
both Commercial (-40° to +85°) and Automotive  
(-40° to +105°) grades. The CDB4365 Customer Dem-  
onstration board is also available for device evaluation  
and implementation suggestions. Please see “Ordering  
Information” on page 51 for complete details.  
 Selectable Digital Filters  
 Volume Control with 1/2-dB Step Size and Soft  
Ramp  
 Low Clock Jitter Sensitivity  
The CS4365 accepts PCM data at sample rates from  
4 kHz to 216 kHz, DSD audio data, and delivers excel-  
lent sound quality. These features are ideal for multi-  
channel audio systems, including SACD players, A/V  
receivers, digital TV’s, mixing consoles, effects proces-  
sors, sound cards, and automotive audio systems.  
 +5 V Analog Supply, +2.5 V Digital Supply  
 Separate 1.8 to 5 V Logic Supplies for the  
Control & Serial Ports  
Control Port Supply = 1.8 V to 5 V  
Digital Supply = 2.5 V  
Analog Supply = 5 V  
Hardware Mode or  
I2C/SPI Software Mode  
Control Data  
Internal Voltage  
Reference  
Register/Hardware  
Configuration  
Reset  
Serial Audio Port  
Supply = 1.8 V to 5 V  
Six Channels of  
Differential  
Outputs  
Switch-Cap  
DAC and  
Analog Filters  
6
6
Volume  
Controls  
Digital  
Filters  
Multi-bit ∆Σ  
Modulators  
PCM Serial  
Audio Input  
6
TDM Serial  
Audio Input  
External Mute  
Control  
DSD Processor  
-Volume control  
-50 kHz filter  
Mute Signals  
6
DSD Audio  
Input  
Copyright © Cirrus Logic, Inc. 2007  
APRIL '07  
DS670F1  
(All Rights Reserved)  
http://www.cirrus.com  
CS4365  
TABLE OF CONTENTS  
1. PIN DESCRIPTION ................................................................................................................................ 6  
2. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 8  
RECOMMENDED OPERATING CONDITIONS ..................................................................................... 8  
ABSOLUTE MAXIMUM RATINGS ......................................................................................................... 8  
POWER AND THERMAL CHARACTERISTICS .................................................................................. 11  
3. TYPICAL CONNECTION DIAGRAM .................................................................................................. 19  
4. APPLICATIONS ................................................................................................................................... 21  
4.1 Master Clock ................................................................................................................................... 21  
4.2 Mode Select .................................................................................................................................... 22  
4.3 Digital Interface Formats ................................................................................................................ 23  
4.3.1 OLM #1 .................................................................................................................................. 24  
4.3.2 OLM #2 .................................................................................................................................. 24  
4.4 Oversampling Modes ...................................................................................................................... 24  
4.5 Interpolation Filter ........................................................................................................................... 25  
4.6 De-Emphasis .................................................................................................................................. 25  
4.7 ATAPI Specification ........................................................................................................................ 26  
4.8 Direct Stream Digital (DSD) Mode .................................................................................................. 26  
4.9 Grounding and Power Supply Arrangements ................................................................................. 27  
4.9.1 Capacitor Placement ............................................................................................................. 27  
4.10 Analog Output and Filtering .......................................................................................................... 28  
4.11 The MUTEC Outputs .................................................................................................................... 29  
4.12 Recommended Power-Up Sequence ........................................................................................... 29  
4.12.1 Hardware Mode ................................................................................................................... 29  
4.12.2 Software Mode .................................................................................................................... 30  
4.13 Recommended Procedure for Switching Operational Modes ....................................................... 30  
4.14 Control Port Interface ................................................................................................................... 30  
4.14.1 MAP Auto Increment ........................................................................................................... 30  
4.14.2 I²C Mode .............................................................................................................................. 30  
4.14.2.1 I²C Write™ ............................................................................................................... 31  
4.14.2.2 I²C Read .................................................................................................................. 31  
4.14.3 SPI™ Mode ......................................................................................................................... 32  
4.14.3.1 SPI Write .................................................................................................................. 32  
4.15 Memory Address Pointer (MAP)  
............................................................................................. 32  
4.15.1 INCR (Auto Map Increment Enable) .................................................................................... 32  
4.15.2 MAP4-0 (Memory Address Pointer) .................................................................................... 32  
5. REGISTER QUICK REFERENCE ....................................................................................................... 33  
6. REGISTER DESCRIPTION .................................................................................................................. 34  
6.1 Chip Revision (address 01h) ......................................................................................................... 34  
6.1.1 Part Number ID (PART) [Read Only] .................................................................................... 34  
6.2 Mode Control 1 (address 02h) ........................................................................................................ 34  
6.2.1 Control Port Enable (CPEN) .................................................................................................. 34  
6.2.2 Freeze Controls (FREEZE) ................................................................................................... 34  
6.2.3 PCM/DSD Selection (DSD/PCM) .......................................................................................... 35  
6.2.4 DAC Pair Disable (DACx_DIS) .............................................................................................. 35  
6.2.5 Power Down (PDN) ............................................................................................................... 35  
6.3 PCM Control (address 03h) ........................................................................................................... 35  
6.3.1 Digital Interface Format (DIF) ................................................................................................ 35  
6.3.2 Functional Mode (FM) ........................................................................................................... 36  
6.4 DSD Control (address 04h) ........................................................................................................... 36  
6.4.1 DSD Mode Digital Interface Format (DSD_DIF) .................................................................... 36  
6.4.2 Direct DSD Conversion (DIR_DSD) ...................................................................................... 37  
6.4.3 Static DSD Detect (STATIC_DSD) ........................................................................................ 37  
2
DS670F1  
CS4365  
6.4.4 Invalid DSD Detect (INVALID_DSD) ..................................................................................... 37  
6.4.5 DSD Phase Modulation Mode Select (DSD_PM_MODE) ..................................................... 37  
6.4.6 DSD Phase Modulation Mode Enable (DSD_PM_EN) ......................................................... 37  
6.5 Filter Control (address 05h) ........................................................................................................... 38  
6.5.1 Interpolation Filter Select (FILT_SEL) ................................................................................... 38  
6.6 Invert Control (address 06h) .......................................................................................................... 38  
6.6.1 Invert Signal Polarity (Inv_xx) ................................................................................................ 38  
6.7 Group Control (address 07h) ......................................................................................................... 38  
6.7.1 Mute Pin Control (MUTEC1, MUTEC0) ................................................................................. 38  
6.7.2 Channel A Volume = Channel B Volume (Px_A=B) .............................................................. 39  
6.7.3 Single Volume Control (SNGLVOL) ...................................................................................... 39  
6.8 Ramp and Mute (address 08h) ...................................................................................................... 39  
6.8.1 Soft Ramp and Zero Cross CONTROL (SZC) ...................................................................... 39  
6.8.2 Soft Volume Ramp-Up after Error (RMP_UP) ....................................................................... 40  
6.8.3 Soft Ramp-Down before Filter Mode Change (RMP_DN) ..................................................... 40  
6.8.4 PCM Auto-Mute (PAMUTE) .................................................................................................. 40  
6.8.5 DSD Auto-Mute (DAMUTE) ................................................................................................... 41  
6.8.6 MUTE Polarity and DETECT (MUTEP1:0) ............................................................................ 41  
6.9 Mute Control (address 09h) ........................................................................................................... 41  
6.9.1 Mute (MUTE_xx) ................................................................................................................... 41  
6.10 Mixing Control (address 0Ah, 0Dh, 10h, 13h) ............................................................................. 42  
6.10.1 De-Emphasis Control (PX_DEM1:0) ................................................................................... 42  
6.11 ATAPI Channel Mixing and Muting (ATAPI) ................................................................................. 42  
6.12 Volume Control (address 0Bh, 0Ch, 0Eh, 0Fh, 11h, 12h) ........................................................... 43  
6.12.1 Digital Volume Control (xx_VOL7:0) ................................................................................... 43  
6.13 PCM Clock Mode (address 16h) ................................................................................................. 44  
6.13.1 Master Clock DIVIDE by 2 ENABLE (MCLKDIV) ................................................................ 44  
7. FILTER PLOTS ..................................................................................................................................... 45  
8. PARAMETER DEFINITIONS ................................................................................................................ 49  
9. PACKAGE DIMENSIONS ................................................................................................................... 50  
10. ORDERING INFORMATION .............................................................................................................. 51  
11. REFERENCES .................................................................................................................................... 51  
12. REVISION HISTORY ......................................................................................................................... 52  
DS670F1  
3
CS4365  
LIST OF FIGURES  
Figure 1.Serial Audio Interface Timing ...................................................................................................... 15  
Figure 2.Direct Stream Digital - Serial Audio Input Timing ........................................................................ 16  
Figure 3.Direct Stream Digital - Serial Audio Input Timing for Phase Modulation Mode ........................... 16  
Figure 4.Control Port Timing - I²C Format ................................................................................................. 17  
Figure 5.Control Port Timing - SPI Format ................................................................................................ 18  
Figure 6.Typical Connection Diagram, Software Mode ............................................................................. 19  
Figure 7.Typical Connection Diagram, Hardware Mode ........................................................................... 20  
Figure 8.Format 0 - Left-Justified up to 24-bit Data .................................................................................. 23  
Figure 9.Format 1 - I²S up to 24-bit Data .................................................................................................. 23  
Figure 10.Format 2 - Right-Justified 16-bit Data ....................................................................................... 23  
Figure 11.Format 3 - Right-Justified 24-bit Data ....................................................................................... 23  
Figure 12.Format 4 - Right-Justified 20-bit Data ....................................................................................... 23  
Figure 13.Format 5 - Right-Justified 18-bit Data ....................................................................................... 24  
Figure 14.Format 8 - One-Line Mode 1 ..................................................................................................... 24  
Figure 15.Format 9 - One-Line Mode 2 ..................................................................................................... 24  
Figure 16.De-Emphasis Curve .................................................................................................................. 25  
Figure 17.ATAPI Block Diagram (x = channel pair 1, 2, or 3) ................................................................... 26  
Figure 18.DSD Phase Modulation Mode Diagram .................................................................................... 27  
Figure 19.Full-Scale Output ...................................................................................................................... 28  
Figure 20.Recommended Output Filter ..................................................................................................... 28  
Figure 21.Recommended Mute Circuitry .................................................................................................. 29  
Figure 22.Control Port Timing, I²C Mode .................................................................................................. 31  
Figure 23.Control Port Timing, SPI Mode ................................................................................................. 32  
Figure 24.Single-Speed (fast) Stopband Rejection ................................................................................... 45  
Figure 25.Single-Speed (fast) Transition Band ......................................................................................... 45  
Figure 26.Single-Speed (fast) Transition Band (detail) ............................................................................. 45  
Figure 27.Single-Speed (fast) Passband Ripple ....................................................................................... 45  
Figure 28.Single-Speed (slow) Stopband Rejection ................................................................................. 45  
Figure 29.Single-Speed (slow) Transition Band ........................................................................................ 45  
Figure 30.Single-Speed (slow) Transition Band (detail) ............................................................................ 46  
Figure 31.Single-Speed (slow) Passband Ripple ...................................................................................... 46  
Figure 32.Double-Speed (fast) Stopband Rejection ................................................................................. 46  
Figure 33.Double-Speed (fast) Transition Band ........................................................................................ 46  
Figure 34.Double-Speed (fast) Transition Band (detail) ............................................................................ 46  
Figure 35.Double-Speed (fast) Passband Ripple ...................................................................................... 46  
Figure 36.Double-Speed (slow) Stopband Rejection ................................................................................ 47  
Figure 37.Double-Speed (slow) Transition Band ...................................................................................... 47  
Figure 38.Double-Speed (slow) Transition Band (detail) .......................................................................... 47  
Figure 39.Double-Speed (slow) Passband Ripple .................................................................................... 47  
Figure 40.Quad-Speed (fast) Stopband Rejection .................................................................................... 47  
Figure 41.Quad-Speed (fast) Transition Band .......................................................................................... 47  
Figure 42.Quad-Speed (fast) Transition Band (detail) .............................................................................. 48  
Figure 43.Quad-Speed (fast) Passband Ripple ........................................................................................ 48  
Figure 44.Quad-Speed (slow) Stopband Rejection ................................................................................... 48  
Figure 45.Quad-Speed (slow) Transition Band ......................................................................................... 48  
Figure 46.Quad-Speed (slow) Transition Band (detail) ............................................................................. 48  
Figure 47.Quad-Speed (slow) Passband Ripple ....................................................................................... 48  
4
DS670F1  
CS4365  
LIST OF TABLES  
Table 1. Single-Speed Mode Standard Frequencies ................................................................................ 21  
Table 2. Double-Speed Mode Standard Frequencies ............................................................................... 21  
Table 3. Quad-Speed Mode Standard Frequencies ................................................................................. 21  
Table 4. PCM Digital Interface Format, Hardware Mode Options ............................................................. 22  
Table 5. Mode Selection, Hardware Mode Options .................................................................................. 22  
Table 6. Direct Stream Digital (DSD), Hardware Mode Options ............................................................... 22  
Table 7. Digital Interface Formats - PCM Mode ........................................................................................ 36  
Table 8. Digital Interface Formats - DSD Mode ........................................................................................ 36  
Table 9. ATAPI Decode Table .................................................................................................................. 42  
Table 10. Example Digital Volume Settings .............................................................................................. 43  
DS670F1  
5
CS4365  
1. PIN DESCRIPTION  
48 47 46 45 44 43 42 41 40 39 38 37  
DSDA2  
DSDB1  
DSDA1  
VD  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AOUTA2-  
AOUTA2+  
AOUTB2+  
AOUTB2-  
1
2
3
4
GND  
5
VA  
6
GND  
MCLK  
LRCK  
SDIN1  
SCLK  
CS4365  
7
AOUTA3-  
AOUTA3+  
AOUTB3+  
AOUTB3-  
MUTEC2  
MUTEC3  
8
9
10  
M4(TST)  
SDIN2 11  
M3(TST)  
2
1
13 14 15 16 17 18 19 20 21 22 23 24  
Pin Name  
#
Pin Description  
Digital Power (Input) - Positive power supply for the digital section. Refer to the Recom-  
mended Operating Conditions for appropriate voltages.  
VD  
4
GND  
5, 31 Ground (Input) - Ground reference. Should be connected to analog ground.  
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. Tables 1  
MCLK  
6
through 3 illustrate several standard audio sample rates and the required master clock fre-  
quencies.  
Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the  
serial audio data line. The frequency of the left/right clock must be at the audio sample rate, Fs.  
LRCK  
7
SDIN1  
SDIN2  
SDIN3  
8
11  
13  
Serial Data Input (Input) - Input for two’s complement serial audio data.  
Serial Clock (Input) - Serial clocks for the serial audio interface.  
Test - These pins need to be tied to analog ground.  
SCLK  
9
14  
44  
45  
TST  
Reset (Input) - The device enters a low power mode and all internal registers are reset to their  
default settings when low.  
RST  
VA  
19  
32  
43  
Analog Power (Input) - Positive power supply for the analog section. Refer to the Recom-  
mended Operating Conditions for appropriate voltages.  
Serial Audio Interface Power (Input) - Determines the required signal level for the serial audio  
interface. Refer to the Recommended Operating Conditions for appropriate voltages.  
VLS  
Control Port Power (Input) - Determines the required signal level for the control port and  
Hardware Mode configuration pins. Refer to the Recommended Operating Conditions for  
appropriate voltages.  
VLC  
18  
6
DS670F1  
CS4365  
Pin Name  
#
Pin Description  
Quiescent Voltage (Output) - Filter connection for internal quiescent voltage. VQ must be  
capacitively coupled to analog ground, as shown in the Typical Connection Diagram. The nom-  
inal voltage level is specified in the Analog Characteristics and Specifications section. VQ pre-  
sents an appreciable source impedance and any current drawn from this pin will alter device  
performance. However, VQ can be used to bias the analog circuitry assuming there is no AC  
signal component and the DC current is less then the maximum specified in the Analog Char-  
acteristics and Specifications section.  
VQ  
21  
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling cir-  
cuits. Requires the capacitive decoupling to analog ground as shown in the Typical Connection  
Diagram.  
FILT+  
20  
AOUTA1 +,-  
AOUTB1 +,-  
AOUTA2 +,-  
AOUTB2 +,-  
AOUTA3 +,-  
AOUTB3 +,-  
39,40  
37,38  
35,36 Differential Analog Output (Output) - The full-scale differential analog output level is specified  
33,34 in the Analog Characteristics specification table.  
29,30  
27,28  
MUTEC1  
MUTEC2  
MUTEC3  
MUTEC4  
MUTEC5  
MUTEC6  
41  
26  
25  
24  
23  
22  
Mute Control (Output) - The Mute Control pins go high during power-up initialization, reset,  
muting, power-down or if the master clock to left/right clock frequency ratio is incorrect. These  
pins are intended to be used as a control for external mute circuits on the line outputs to pre-  
vent the clicks and pops that can occur in any single supply system. Use of Mute Control is not  
mandatory but recommended for designs requiring the absolute minimum in extraneous clicks  
and pops.  
Hardware Mode Definitions  
M0  
M1  
M2  
M3  
M4  
17  
16  
15  
12  
10  
Mode Selection (Input) - Determines the operational mode of the device as detailed in Table 6  
and Table 7.  
Software Mode Definitions  
Serial Control Port Clock (Input) - Serial clock for the serial control port. Requires an external  
pull-up resistor to the logic interface voltage in I²C Mode as shown in the Typical Connection  
Diagram.  
SCL/CCLK  
15  
Serial Control Port Data (Input/Output) - SDA is a data I/O line in I²C Mode and is open drain,  
requiring an external pull-up resistor to the logic interface voltage, as shown in the Typical Con-  
nection Diagram; CDIN is the input data line for the control port interface in SPI Mode.  
SDA/CDIN  
AD0/CS  
16  
17  
Address Bit 0 (I²C) / Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in I²C  
Mode; CS is the chip-select signal for SPI Mode.  
TST  
10, 12 Test - These pins need to be tied to analog ground.  
DSD Definitions  
DSDA1  
DSDB1  
DSDA2  
DSDB2  
DSDA3  
DSDB3  
3
2
1
48  
47  
46  
Direct Stream Digital Input (Input) - Input for Direct Stream Digital serial audio data. GND if  
unused.  
DSD_SCLK  
42  
DSD Serial Clock (Input) - Serial clock for the Direct Stream Digital serial audio interface.  
DS670F1  
7
CS4365  
2. CHARACTERISTICS AND SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
GND = 0 V; all voltages with respect to ground.  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
DC Power Supply  
Analog power  
Digital internal power  
Serial data port interface power  
Control port interface power  
VA  
VD  
VLS  
VLC  
4.75  
2.37  
1.71  
1.71  
5.0  
2.5  
5.0  
5.0  
5.25  
2.63  
5.25  
5.25  
V
V
V
V
Ambient Operating Temperature (Power Applied)  
Commercial Grade (-CQZ)  
Automotive Grade (-DQZ)  
TA  
-40  
-40  
-
-
+ 85  
+105  
°C  
°C  
ABSOLUTE MAXIMUM RATINGS  
GND = 0 V; all voltages with respect to ground.  
Parameters  
Symbol  
Min  
Max  
Units  
DC Power Supply  
Analog power  
VA  
VD  
VLS  
VLC  
-0.3  
-0.3  
-0.3  
-0.3  
6.0  
3.2  
6.0  
6.0  
V
V
V
V
Digital internal power  
Serial data port interface power  
Control port interface power  
Input Current  
Any Pin Except Supplies  
Iin  
-
±10  
mA  
Digital Input Voltage  
Serial data port interface  
Control port interface  
VIND-S  
VIND-C  
-0.3  
-0.3  
VLS+ 0.4  
VLC+ 0.4  
V
V
Ambient Operating Temperature (Power Applied)  
Storage Temperature  
Top  
-55  
-65  
125  
150  
°C  
°C  
Tstg  
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation  
is not guaranteed at these extremes.  
8
DS670F1  
CS4365  
DAC ANALOG CHARACTERISTICS - COMMERCIAL (-CQZ)  
Test Conditions (unless otherwise specified): VA = VLS = VLC = 5 V; VD = 2.5 V; T = 25°C; Full-scale 997 Hz  
A
input sine wave (Note 1); Tested under max ac-load resistance; Valid with FILT+ and VQ capacitors as shown in  
“Typical Connection Diagram” on page 19; Measurement Bandwidth 10 Hz to 20 kHz.  
Parameters  
Symbol  
Min  
Typ  
Max  
Unit  
Fs = 48 kHz, 96 kHz, 192 kHz and DSD  
Dynamic Range  
24-bit A-weighted  
108  
105  
-
-
114  
111  
97  
-
-
-
-
dB  
dB  
dB  
dB  
unweighted  
16-bit A-weighted  
(Note 2) unweighted  
94  
Total Harmonic Distortion + Noise  
24-bit  
0 dB  
-
-
-
-
-
-
-100  
-91  
-51  
-94  
-74  
-34  
-94  
-
-45  
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
-20 dB  
-60 dB THD+N  
0 dB  
-20 dB  
-60 dB  
(Note 2) 16-bit  
Idle Channel Noise / Signal-to-noise ratio  
Interchannel Isolation  
DC Accuracy  
A-weighted  
(1 kHz)  
-
-
114  
110  
-
-
dB  
dB  
Interchannel Gain Mismatch  
Gain Drift  
-
-
0.1  
-
-
dB  
100  
ppm/°  
C
Analog Output  
Full-Scale Differential-  
Output Voltage (Note 3)  
PCM, DSD processor  
Direct DSD Mode  
1.28•VA  
0.90•VA  
1.32•VA  
0.94•VA  
1.36•VA  
0.98•VA  
Vpp  
Vpp  
VFS  
Output Impedance  
ZOUT  
IOUTmax  
RL  
-
-
-
-
-
-
130  
1.0  
-
-
-
-
-
-
Ω
mA  
kΩ  
Max DC Current draw from an AOUT pin  
Min AC-Load Resistance  
Max Load Capacitance  
3
CL  
100  
50% VA  
10  
pF  
Quiescent Voltage  
VQ  
VDC  
μA  
Max Current draw from VQ  
IQMAX  
Notes:  
1. One-half LSB of triangular PDF dither is added to data.  
2. Performance limited by 16-bit quantization noise.  
3.  
V
is tested under load R and includes attenuation due to Z  
.
FS  
L
OUT  
DS670F1  
9
CS4365  
DAC ANALOG CHARACTERISTICS - AUTOMOTIVE (-DQZ)  
Test Conditions (unless otherwise specified): VA = 4.75 to 5.25 V; VLS = 1.71 to 5.25 V; VLC = 1.71 to 5.25 V;  
VD = 2.37 to 2.63 V; T = -40°C to 85°C; Full-scale 997 Hz input sine wave (Note 1); Tested under max ac-load  
A
resistance; Valid with FILT+ and VQ capacitors as shown in “Typical Connection Diagram” on page 19; Measure-  
ment Bandwidth 10 Hz to 20 kHz.  
Parameters  
Fs = 48 kHz, 96 kHz, 192 kHz and DSD  
Dynamic Range (Note 1)  
Symbol  
Min  
Typ  
Max  
Units  
24-bit A-weighted  
unweighted  
105  
102  
-
-
114  
111  
97  
-
-
-
-
dB  
dB  
dB  
dB  
16-bit A-weighted  
(Note 2) unweighted  
94  
Total Harmonic Distortion + Noise  
(Note 1)  
24-bit  
0 dB  
-20 dB  
-60 dB THD+N  
0 dB  
-20 dB  
-
-
-
-
-
-
-100  
-91  
-51  
-94  
-74  
-34  
-91  
-
-42  
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
(Note 2) 16-bit  
-60 dB  
Idle Channel Noise / Signal-to-noise ratio  
Interchannel Isolation  
DC Accuracy  
A-weighted  
-
-
114  
110  
-
-
dB  
dB  
(1 kHz)  
Interchannel Gain Mismatch  
Gain Drift  
-
-
0.1  
-
-
dB  
100  
ppm/°C  
Analog Output  
Full-Scale Differential-  
Output Voltage (Note 3)  
PCM, DSD processor  
Direct DSD Mode  
1.28•VA  
0.90•VA  
1.32•VA  
0.94•VA  
1.36•VA  
0.98•VA  
Vpp  
Vpp  
VFS  
Output Impedance  
ZOUT  
IOUTmax  
RL  
-
-
-
-
-
-
130  
1.0  
-
-
-
-
-
-
Ω
mA  
kΩ  
Max DC Current draw from an AOUT pin  
Min AC-Load Resistance  
Max Load Capacitance  
3
CL  
100  
50% VA  
10  
pF  
Quiescent Voltage  
VQ  
VDC  
μA  
Max Current draw from VQ  
IQMAX  
10  
DS670F1  
CS4365  
POWER AND THERMAL CHARACTERISTICS  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Power Supplies  
Power Supply Current  
(Note 4)  
normal operation, VA= 5 V  
VD= 2.5 V  
(Note 5) Interface current, VLC=5 V  
VLS=5 V  
IA  
ID  
ILC  
ILS  
Ipd  
-
-
-
-
-
60  
16  
2
84  
200  
65  
22  
-
-
-
mA  
mA  
μA  
μA  
μA  
(Note 6) power-down state (all supplies)  
Power Dissipation (Note 4)  
VA = 5 V, VD = 2.5 V  
normal operation  
-
-
340  
1
390  
-
mW  
mW  
(Note 6) power-down  
Package Thermal Resistance  
θJA  
θJC  
-
-
48  
15  
-
-
°C/Watt  
°C/Watt  
Power Supply Rejection Ratio (Note 7)  
(1 kHz)  
(60 Hz)  
-
-
60  
40  
-
-
dB  
dB  
PSRR  
Notes:  
4. Current consumption increases with increasing Fs within a given speed mode and is signal dependant.  
Max values are based on highest Fs and highest MCLK.  
5.  
I
measured with no external loading on the SDA pin.  
LC  
6. Power-Down Mode is defined as RST pin = Low with all clock and data lines held static.  
7. Valid with the recommended capacitor values on FILT+ and VQ as shown in 6 and 7.  
DS670F1  
11  
CS4365  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE  
The filter characteristics have been normalized to the sample rate (Fs) and can be referenced to the desired sam-  
ple rate by multiplying the given characteristic by Fs. See Note 12.  
Fast Roll-Off  
Parameter  
Unit  
Min  
Typ  
Max  
Combined Digital and On-chip Analog Filter Response - Single-Speed Mode - 48 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
.454  
.499  
Fs  
Fs  
Frequency Response  
StopBand  
10 Hz to 20 kHz  
-0.01  
0.547  
102  
-
-
+0.01  
dB  
Fs  
dB  
s
-
-
-
-
StopBand Attenuation  
Group Delay  
(Note 10)  
-
10.4/Fs  
De-emphasis Error (Note 11)  
(Relative to 1 kHz)  
Fs = 32 kHz  
Fs = 44.1 kHz  
Fs = 48 kHz  
-
-
-
-
-
-
±0.36  
±0.21  
±0.14  
dB  
dB  
dB  
Combined Digital and On-chip Analog Filter Response - Double-Speed Mode - 96 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
.430  
.499  
Fs  
Fs  
Frequency Response  
StopBand  
10 Hz to 20 kHz  
-0.01  
.583  
80  
-
+0.01  
dB  
Fs  
dB  
s
-
-
-
-
StopBand Attenuation  
Group Delay  
(Note 10)  
-
-
6.15/Fs  
Combined Digital and On-chip Analog Filter Response - Quad-Speed Mode - 192 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
.105  
.490  
Fs  
Fs  
Frequency Response  
StopBand  
10 Hz to 20 kHz  
-0.01  
.635  
90  
-
+0.01  
dB  
Fs  
dB  
s
-
-
-
-
-
StopBand Attenuation  
Group Delay  
(Note 10)  
-
7.1/Fs  
Notes:  
8. Slow roll-off interpolation filter is only available in Software Mode.  
9. Response is clock-dependent and will scale with Fs.  
10. For Single-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.  
For Double-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.  
For Quad-Speed Mode, the Measurement Bandwidth is from stopband to 1.34 Fs.  
11. De-emphasis is available only in Single-Speed Mode; only 44.1 kHz De-emphasis is available in Hard-  
ware Mode.  
12. Amplitude vs. Frequency plots of this data are available in Section 7. “Filter Plots” on page 45 .  
12  
DS670F1  
CS4365  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE  
(CONTINUED)  
Slow Roll-Off (Note 8)  
Parameter  
Unit  
Min  
Typ  
Max  
Single-Speed Mode - 48 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
0.417  
0.499  
Fs  
Fs  
Frequency Response  
StopBand  
10 Hz to 20 kHz  
-0.01  
.583  
64  
-
+0.01  
dB  
Fs  
dB  
s
-
-
-
-
-
StopBand Attenuation  
Group Delay  
(Note 10)  
-
7.8/Fs  
De-emphasis Error (Note 11)  
(Relative to 1 kHz)  
Fs = 32 kHz  
Fs = 44.1 kHz  
Fs = 48 kHz  
-
-
-
-
-
-
±0.36  
±0.21  
±0.14  
dB  
dB  
dB  
Double-Speed Mode - 96 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
.296  
.499  
Fs  
Fs  
Frequency Response  
StopBand  
10 Hz to 20 kHz  
-0.01  
.792  
70  
-
+0.01  
dB  
Fs  
dB  
s
-
-
-
-
-
StopBand Attenuation  
Group Delay  
(Note 10)  
-
5.4/Fs  
Quad-Speed Mode - 192 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
.104  
.481  
Fs  
Fs  
Frequency Response  
StopBand  
10 Hz to 20 kHz  
-0.01  
.868  
75  
-
+0.01  
dB  
Fs  
dB  
s
-
-
-
-
-
StopBand Attenuation  
Group Delay  
(Note 10)  
-
6.6/Fs  
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE  
Parameter  
Min  
Typ  
Max  
Unit  
DSD Processor Mode  
Passband (Note 9)  
Frequency Response  
Roll-off  
to -3 dB corner  
10 Hz to 20 kHz  
0
-
-
-
50  
+0.05  
-
kHz  
dB  
-0.05  
27  
dB/Oct  
Direct DSD Mode  
Passband (Note 9)  
to -0.1 dB corner  
to -3 dB corner  
0
0
-
-
26.9  
176.4  
kHz  
kHz  
Frequency Response 10 Hz to 20 kHz  
-0.1  
-
0
dB  
DS670F1  
13  
CS4365  
DIGITAL CHARACTERISTICS  
Parameters  
Input Leakage Current  
Symbol  
Min  
-
-
Typ  
-
Max  
±10  
-
Units  
μA  
pF  
(Note 13)  
Iin  
Input Capacitance  
8
High-Level Input Voltage  
Serial I/O  
Control I/O  
VIH  
VIH  
0.70•VLS  
0.70•VLC  
-
-
-
-
V
V
Low-Level Input Voltage  
Serial I/O  
Control I/O  
VIL  
VIL  
-
-
-
-
0.30•VLS  
0.30•VLC  
V
V
Low-Level Output Voltage (IOL = -1.2 mA)  
Control I/O = 3.3 V, 5 V  
VOL  
VOL  
-
-
-
-
0.20•VLC  
0.25•VLC  
V
V
Low-Level Output Voltage (IOL = -1.2 mA) Control I/O = 1.8 V, 2.5 V  
MUTEC auto detect input high voltage  
MUTEC auto detect input low voltage  
Maximum MUTEC Drive Current  
MUTEC High-Level Output Voltage  
MUTEC Low-Level Output Voltage  
VIH  
VIL  
0.70•VA  
-
-
-
V
V
-
-
-
-
0.30•VA  
Imax  
VOH  
VOL  
3
-
-
-
mA  
V
VA  
0
V
Notes:  
13. Any pin except supplies. Transient currents of up to ±100 mA on the input pins will not cause SCR latch-  
up.  
14  
DS670F1  
CS4365  
SWITCHING CHARACTERISTICS - PCM  
Inputs: Logic 0 = GND, Logic 1 = VLS, C = 20 pF.  
L
Parameters  
Symbol  
Min  
Max  
Units  
RST pin Low Pulse Width  
(Note 14)  
(Note 15)  
1
-
ms  
MCLK Frequency  
1.024  
45  
55.2  
55  
MHz  
%
MCLK Duty Cycle  
Input Sample Rate - LRCK (Manual selection)  
Single-Speed Mode  
Double-Speed Mode  
Quad-Speed Mode  
Fs  
Fs  
Fs  
4
50  
100  
54  
108  
216  
kHz  
kHz  
kHz  
Input Sample Rate - LRCK (Auto detect)  
Single-Speed Mode  
Double-Speed Mode  
Quad-Speed Mode  
Fs  
Fs  
Fs  
4
84  
170  
54  
108  
216  
kHz  
kHz  
kHz  
LRCK Duty Cycle  
45  
45  
8
55  
55  
-
%
%
SCLK Duty Cycle  
SCLK High Time  
tsckh  
tsckl  
tlcks  
tlckd  
tds  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Time  
8
-
LRCK Edge to SCLK Rising Edge  
SCLK Rising Edge to LRCK Falling Edge  
SDIN Setup Time Before SCLK Rising Edge  
SDIN Hold Time After SCLK Rising Edge  
5
-
5
-
3
-
tdh  
5
-
Notes:  
14. After powering up, RST should be held low until after the power supplies and clocks are settled.  
15. See Tables 1 - 3 for suggested MCLK frequencies.  
16. MSB of CH1 is always the second SCLK rising edge following LRCK rising edge.  
LRCK  
tlcks  
tsckh  
tsckl  
SCLK  
tds  
tdh  
MSB  
SDINx  
MSB-1  
Figure 1. Serial Audio Interface Timing  
DS670F1  
15  
CS4365  
SWITCHING CHARACTERISTICS - DSD  
Logic 0 = GND; Logic 1 = VLS; C = 20 pF.  
L
Parameter  
MCLK Duty Cycle  
Symbol  
Min  
40  
Typ  
Max  
60  
-
Unit  
%
-
-
-
DSD_SCLK Pulse Width Low  
DSD_SCLK Pulse Width High  
tsclkl  
160  
160  
ns  
tsclkh  
-
ns  
DSD_SCLK Frequency  
(64x Oversampled)  
(128x Oversampled)  
1.024  
2.048  
-
-
3.2  
6.4  
MHz  
MHz  
DSD_A / _B valid to DSD_SCLK rising setup time  
DSD_SCLK rising to DSD_A or DSD_B hold time  
DSD clock to data transition (Phase Modulation Mode)  
tsdlrs  
tsdh  
20  
20  
-
-
-
-
-
ns  
ns  
ns  
tdpm  
-20  
20  
t
sclkh  
t
sclkl  
DSD_SCLK  
DSDxx  
t
t
sdlrs  
sdh  
Figure 2. Direct Stream Digital - Serial Audio Input Timing  
t
t
dpm  
dpm  
DSD_SCLK  
(128Fs)  
DSD_SCLK  
(64Fs)  
DSDxx  
Figure 3. Direct Stream Digital - Serial Audio Input Timing for Phase Modulation Mode  
16  
DS670F1  
CS4365  
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT  
Inputs: Logic 0 = GND, Logic 1 = VLC, C = 20 pF.  
L
Parameter  
SCL Clock Frequency  
Symbol  
fscl  
Min  
-
Max  
Unit  
kHz  
ns  
100  
RST Rising Edge to Start  
tirs  
500  
4.7  
4.0  
4.7  
4.0  
4.7  
0
-
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low time  
tbuf  
-
µs  
thdst  
tlow  
-
µs  
-
µs  
Clock High Time  
thigh  
tsust  
thdd  
-
µs  
Setup Time for Repeated Start Condition  
SDA Hold Time from SCL Falling  
SDA Setup time to SCL Rising  
Rise Time of SCL and SDA  
-
µs  
(Note 17)  
-
µs  
tsud  
250  
-
-
1
ns  
trc, trc  
tfc, tfc  
tsusp  
tack  
µs  
Fall Time SCL and SDA  
-
300  
-
ns  
Setup Time for Stop Condition  
Acknowledge Delay from SCL Falling  
4.7  
300  
µs  
1000  
ns  
Notes:  
17. Data must be held for sufficient time to bridge the transition time, t , of SCL.  
fc  
RST  
t
irs  
Repeated  
Stop  
Start  
Stop  
Start  
SDA  
SCL  
t
t
t
t
t
buf  
t
high  
hdst  
f
susp  
hdst  
t
t
t
t
t
sust  
sud  
r
low  
hdd  
Figure 4. Control Port Timing - I²C Format  
DS670F1  
17  
CS4365  
SWITCHING CHARACTERISTICS - CONTROL PORT - SPIFORMAT  
Inputs: Logic 0 = GND, Logic 1 = VLC, C = 20 pF.  
L
Parameter  
CCLK Clock Frequency  
Symbol  
fsclk  
tsrs  
Min  
-
Max  
Unit  
MHz  
ns  
6
RST Rising Edge to CS Falling  
CCLK Edge to CS Falling  
500  
500  
1.0  
20  
66  
66  
40  
15  
-
-
(Note 18)  
tspi  
-
ns  
CS High Time Between Transmissions  
CS Falling to CCLK Edge  
tcsh  
tcss  
tscl  
-
µs  
-
ns  
CCLK Low Time  
-
ns  
CCLK High Time  
tsch  
tdsu  
tdh  
-
-
ns  
CDIN to CCLK Rising Setup Time  
CCLK Rising to DATA Hold Time  
Rise Time of CCLK and CDIN  
Fall Time of CCLK and CDIN  
ns  
(Note 19)  
(Note 20)  
(Note 20)  
-
ns  
tr2  
100  
100  
ns  
tf2  
-
ns  
Notes:  
18. t is only needed before first falling edge of CS after RST rising edge. t = 0 at all other times.  
spi  
spi  
19. Data must be held for sufficient time to bridge the transition time of CCLK.  
20. For F < 1 MHz.  
SCK  
RST  
CS  
t
t
srs  
t
t
t
spi css  
scl  
sch  
t
csh  
CCLK  
CDIN  
t
t
r2  
f2  
t
t
dsu  
dh  
Figure 5. Control Port Timing - SPI Format  
18  
DS670F1  
CS4365  
3. TYPICAL CONNECTION DIAGRAM  
+2.5 V  
+5 V  
+
+
1 µF  
0.1 µF  
0.1 µF  
1 µF  
4
32  
VA  
VD  
220 Ω  
6
7
9
MCLK  
39  
40  
AOUTA1+  
AOUTA1-  
Analog Conditioning  
and Muting  
LRCK  
SCLK  
PCM  
Digital  
Audio  
Source  
8
11  
13  
SDIN1  
SDIN2  
SDIN3  
38  
37  
AOUTB1+  
AOUTB1-  
Analog Conditioning  
and Muting  
470 Ω  
470 Ω  
35  
36  
AOUTA2+  
AOUTA2-  
Analog Conditioning  
and Muting  
43  
+1.8 V to +5 V  
VLS  
CS4365  
0.1 µF  
34  
33  
AOUTB2+  
AOUTB2-  
Analog Conditioning  
and Muting  
3
29  
30  
DSDA1  
DSDB1  
DSDA2  
AOUTA3+  
AOUTA3-  
Analog Conditioning  
and Muting  
2
1
DSD  
Audio  
Source  
48  
28  
27  
DSDB2  
DSDA3  
DSDB3  
AOUTB3+  
AOUTB3-  
Analog Conditioning  
and Muting  
47  
46  
42  
41  
26  
25  
24  
23  
22  
DSD_SCLK  
MUTEC1  
MUTEC2  
MUTEC3  
MUTEC4  
Mute  
Drive  
19  
RST  
MUTEC5  
MUTEC6  
15  
16  
Micro-  
Controller  
SCL/CCLK  
SDA/CDIN  
17  
ADO/CS  
Note*  
20  
21  
FILT+  
18  
+1.8 V to +5 V  
VLC  
+
CMOUT  
0.1 µF  
F
47 µF  
0.1 µ  
F
1 µF  
0.1 µ  
+
GND  
5
TST  
GND  
31  
10, 12,  
14, 44, 45  
Note*: Necessary for I2C  
control port operation  
Figure 6. Typical Connection Diagram, Software Mode  
DS670F1  
19  
CS4365  
+2.5 V  
+5 V  
+
+
1 µF  
0.1 µF  
0.1 µF  
1 µF  
4
VD  
32  
VA  
220 Ω  
6
MCLK  
39  
40  
41  
7
9
8
AOUTA1+  
AOUTA1-  
MUTEC1  
LRCK  
SCLK  
SDIN1  
SDIN2  
Analog Conditioning  
and Muting  
PCM  
Digital  
Audio  
Source  
11  
13  
38  
37  
26  
SDIN3  
AOUTB1+  
AOUTB1-  
MUTEC2  
Analog Conditioning  
and Muting  
470 Ω  
470 Ω  
43  
+1.8 V to +5 V  
VLS  
CS4365  
0.1 µF  
35  
36  
25  
AOUTA2+  
AOUTA2-  
MUTEC3  
Analog Conditioning  
and Muting  
3
2
DSDA1  
DSDB1  
DSDA2  
1
34  
DSD  
Audio  
Source  
AOUTB2+  
AOUTB2-  
MUTEC4  
48  
Analog Conditioning  
and Muting  
33  
24  
DSDB2  
47  
46  
42  
DSDA3  
DSDB3  
DSD_SCLK  
29  
30  
23  
AOUTA3+  
AOUTA3-  
MUTEC5  
Analog Conditioning  
and Muting  
Optional  
47 KΩ  
10  
12  
M4  
M3  
28  
27  
22  
AOUTB3+  
AOUTB3-  
MUTEC6  
15  
16  
Analog Conditioning  
and Muting  
M2  
M1  
Stand-Alone  
Mode  
Configuration  
17  
19  
M0  
RST  
20  
21  
FILT+  
+
CMOUT  
F
47 µF  
18  
0.1 µ  
F
0.1 µ  
1 µF  
+1.8 V to +5 V  
VLC  
+
0.1 µF  
GND  
5
TST  
14, 44, 45  
GND  
31  
Figure 7. Typical Connection Diagram, Hardware Mode  
20  
DS670F1  
CS4365  
4. APPLICATIONS  
The CS4365 serially accepts two’s complement formatted PCM data at standard audio sample rates including 48,  
44.1 and 32 kHz in SSM, 96, 88.2 and 64 kHz in DSM, and 192, 176.4 and 128 kHz in QSM. Audio data is input via  
the serial data input pins (SDINx). The Left/Right Clock (LRCK) determines which channel is currently being input  
on SDINx, and the Serial Clock (SCLK) clocks audio data into the input data buffer. For more information on serial  
audio interfaces, see Cirrus Application Note AN282, “The 2-Channel Serial Audio Interface: A Tutorial.”  
The CS4365 can be configured in Hardware Mode by the M0, M1, M2 , M3 and M4 pins and in Software Mode  
through I²C or SPI.  
4.1  
Master Clock  
MCLK/LRCK must be an integer ratio as shown in Tables 1 - 3. The LRCK frequency is equal to Fs, the  
frequency at which words for each channel are input to the device. The MCLK-to-LRCK frequency ratio and  
speed mode is detected automatically during the initialization sequence by counting the number of MCLK  
transitions during a single LRCK period and by detecting the absolute speed of MCLK. Internal dividers are  
then set to generate the proper internal clocks. Tables 1 - 3 illustrate several standard audio sample rates  
and the required MCLK and LRCK frequencies. Please note there is no required phase relationship, but  
MCLK, LRCK and SCLK must be synchronous.  
Sample Rate  
(kHz)  
MCLK (MHz)  
256x  
8.1920  
11.2896  
12.2880  
384x  
512x  
768x  
1024x  
32.7680  
45.1584  
49.1520  
1152x  
36.8640  
32  
44.1  
48  
12.2880  
16.9344  
18.4320  
16.3840  
22.5792  
24.5760  
24.5760  
33.8688  
36.8640  
Table 1. Single-Speed Mode Standard Frequencies  
Sample Rate  
(kHz)  
MCLK (MHz)  
128x  
8.1920  
11.2896  
12.2880  
192x  
256x  
384x  
512x  
64  
88.2  
96  
12.2880  
16.9344  
18.4320  
16.3840  
22.5792  
24.5760  
24.5760  
33.8688  
36.8640  
32.7680  
45.1584  
49.1520  
Table 2. Double-Speed Mode Standard Frequencies  
Sample Rate  
(kHz)  
MCLK (MHz)  
64x  
96x  
128x  
192x  
256x  
176.4  
192  
11.2896  
12.2880  
16.9344  
18.4320  
22.5792  
24.5760  
33.8688  
36.8640  
45.1584  
49.1520  
Table 3. Quad-Speed Mode Standard Frequencies  
= Denotes clock ratio and sample rate combinations which are NOT supported under auto  
speed-mode detection. Please see “Switching Characteristics - PCM” on page 15.  
DS670F1  
21  
CS4365  
4.2  
Mode Select  
In Hardware Mode, operation is determined by the Mode Select pins. The state of these pins are continually  
scanned for any changes. These pins require connection to supply or ground as outlined in Figure 7. For  
M0, M1, M2 supply is VLC and for M3 and M4 supply is VLS. Tables 4 - 6 show the decode of these pins.  
In Software Mode, the operational mode and data format are set in the FM and DIF registers. See “Filter  
Plots” on page 45  
.
M1  
(DIF1)  
M0  
(DIF0)  
DESCRIPTION  
Left-Justified, up to 24-bit data  
I²S, up to 24-bit data  
Right-Justified, 16-bit Data  
Right-Justified, 24-bit Data  
FORMAT  
FIGURE  
0
0
1
1
0
1
0
1
0
1
2
3
8
9
10  
11  
Table 4. PCM Digital Interface Format, Hardware Mode Options  
M2  
M4  
M3  
DESCRIPTION  
(DEM)  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
X
Single-Speed without De-Emphasis (4 to 50 kHz sample rates)  
Single-Speed with 44.1 kHz De-Emphasis; see Figure 16  
Double-Speed (50 to 100 kHz sample rates)  
Quad-Speed (100 to 200 kHz sample rates)  
Auto Speed-Mode Detect (32 kHz to 200 kHz sample rates)  
Auto Speed-Mode Detect with 44.1 kHz De-Emphasis; see Figure 16  
DSD Processor Mode (see Table 6 for details)  
Table 5. Mode Selection, Hardware Mode Options  
M2  
0
M1  
0
M0  
0
DESCRIPTION  
64x oversampled DSD data with a 4x MCLK to DSD data rate  
64x oversampled DSD data with a 6x MCLK to DSD data rate  
64x oversampled DSD data with a 8x MCLK to DSD data rate  
64x oversampled DSD data with a 12x MCLK to DSD data rate  
128x oversampled DSD data with a 2x MCLK to DSD data rate  
128x oversampled DSD data with a 3x MCLK to DSD data rate  
128x oversampled DSD data with a 4x MCLK to DSD data rate  
128x oversampled DSD data with a 6x MCLK to DSD data rate  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Table 6. Direct Stream Digital (DSD), Hardware Mode Options  
22  
DS670F1  
CS4365  
4.3  
Digital Interface Formats  
The serial port operates as a slave and supports the I²S, Left-Justified, Right-Justified, and One-Line Mode  
(OLM) digital interface formats with varying bit depths from 16 to 32, as shown in Figures 8-15. Data is  
clocked into the DAC on the rising edge. OLM configuration is only supported in Software Mode.  
Left Channel  
Right Channel  
LRCK  
SCLK  
SDINx  
MSB  
+5 +4 +3 +2 +1 LSB  
MSB  
+5 +4 +3 +2 +1 LSB  
-1 -2 -3 -4 -5  
-1 -2 -3 -4  
Figure 8. Format 0 - Left-Justified up to 24-bit Data  
Left Channel  
Right Channel  
LRCK  
SCLK  
SDINx  
MSB  
-2 -3 -4 -5  
+5 +4 +3 +2 +1  
LSB  
MSB  
+5 +4 +3 +2 +1  
LSB  
-1  
-1  
-2 -3 -4  
Figure 9. Format 1 - I²S up to 24-bit Data  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
9
8
7
6
5
4
3
2
1
0
9 8 7 6 5 4 3 2 1 0  
15 14 13 12 11 10  
15 14 13 12 11 10  
32 clocks  
Figure 10. Format 2 - Right-Justified 16-bit Data  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
7
6
5
4
3
2
1
0
7 6 5 4 3 2 1 0  
0
23 22 21 20 19 18  
32 clocks  
23 22 21 20 19 18  
Figure 11. Format 3 - Right-Justified 24-bit Data  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
1
0
19 18 17 16  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10 9  
32 clocks  
15 14 13 12 11 10  
19 18 17 16 9  
Figure 12. Format 4 - Right-Justified 20-bit Data  
DS670F1  
23  
CS4365  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
1
0
17 16  
8
7
6
5
4
3
2
1
0
17 16  
15 14 13 12 11 10 9  
32 clocks  
15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1 0  
Figure 13. Format 5 - Right-Justified 18-bit Data  
4.3.1  
OLM #1  
OLM #1 serial audio interface format operates in Single-, Double-, or Quad-Speed Mode and will slave to  
SCLK at 128 Fs. Six channels of MSB first 20-bit PCM data are input on SDIN1.  
64 clks  
64 clks  
LRCK  
Left Channel  
Right Channel  
SCLK  
MSB  
LSB MSB  
LSB MSB  
DAC_A3  
20 clks  
LSB  
MSB  
DAC_B1  
20 clks  
LSB MSB  
LSB MSB  
LSB  
DAC_B3  
20 clks  
MSB  
SDIN1  
DAC_A2  
20 clks  
DAC_B2  
20 clks  
DAC_A1  
20 clks  
Figure 14. Format 8 - One-Line Mode 1  
4.3.2  
OLM #2  
OLM #2 serial audio interface format operates in Single-, Double-, or Quad-Speed Mode and will slave to  
SCLK at 256 Fs. Six channels of MSB first 24-bit PCM data are input on SDIN1.  
128 clks  
128 clks  
LRCK  
Left Channel  
Right Channel  
SCLK  
MSB  
DAC_A1  
24 clks  
LSB MSB  
LSB MSB  
DAC_A3  
24 clks  
LSB  
MSB  
DAC_B1  
24 clks  
LSB MSB  
LSB MSB  
DAC_B3  
24 clks  
LSB  
MSB  
SDIN1  
DAC_A2  
24 clks  
DAC_B2  
24 clks  
Figure 15. Format 9 - One-Line Mode 2  
4.4  
Oversampling Modes  
The CS4365 operates in one of three oversampling modes based on the input sample rate. Mode selection  
is determined by the M4, M3 and M2 pins in Hardware Mode or the FM bits in Software Mode. Single-Speed  
mode supports input sample rates up to 50 kHz and uses a 128x oversampling ratio. Double-Speed Mode  
supports input sample rates up to 100 kHz and uses an oversampling ratio of 64x. Quad-Speed Mode sup-  
ports input sample rates up to 200 kHz and uses an oversampling ratio of 32x.  
The auto-speed mode detect feature allows for the automatic selection of speed mode based off of the in-  
coming sample rate. This allows the CS4365 to accept a wide range of sample rates with no external inter-  
vention necessary. The auto-speed mode detect feature is available in both hardware and Software Mode.  
24  
DS670F1  
CS4365  
4.5  
Interpolation Filter  
To accommodate the increasingly complex requirements of digital audio systems, the CS4365 incorporates  
selectable interpolation filters for each mode of operation. A “fast” and a “slow” roll-off filter is available in  
each of Single, Double, and Quad-Speed modes. These filters have been designed to accommodate a va-  
riety of musical tastes and styles. The FILT_SEL bit is used to select which filter is used (see the “Filter  
Plots” on page 45 for more details).  
When in Hardware Mode, only the “fast” roll-off filter is available.  
Filter specifications can be found in Section , and filter response plots can be found in Figures 24 to 47.  
4.6  
De-Emphasis  
The CS4365 includes on-chip digital de-emphasis filters. The de-emphasis feature is included to accommo-  
date older audio recordings that utilize pre-emphasis equalization as a means of noise reduction. Figure 16  
shows the de-emphasis curve. The frequency response of the de-emphasis curve will scale proportionally  
with changes in sample rate, Fs if the input sample rate does not match the coefficient which has been se-  
lected.  
In Software Mode the required de-emphasis filter coefficients for 32 kHz, 44.1 kHz, or 48 kHz are selected  
via the de-emphasis control bits.  
In Hardware Mode only the 44.1 kHz coefficient is available (enabled through the M2 pin). If the input sam-  
ple rate is not 44.1 kHz and de-emphasis has been selected then the corner frequencies of the de-emphasis  
filter will be scaled by a factor of the actual Fs over 44,100.  
Gain  
dB  
T1=50 µs  
0dB  
T2 = 15 µs  
-10dB  
F1  
F2  
Frequency  
3.183 kHz  
10.61 kHz  
Figure 16. De-Emphasis Curve  
DS670F1  
25  
CS4365  
4.7  
ATAPI Specification  
The CS4365 implements the channel-mixing functions of the ATAPI CD-ROM specification. The  
ATAPI functions are applied per A-B pair. Refer to Table 9 on page 42 and Figure 17 for additional informa-  
tion.  
A Channel  
Volume  
Control  
Left Channel  
Audio Data  
MUTE  
AoutAx  
Σ
Σ
SDINx  
B Channel  
Volume  
Control  
Right Channel  
Audio Data  
MUTE  
AoutBx  
Figure 17. ATAPI Block Diagram (x = channel pair 1, 2, or 3)  
4.8  
Direct Stream Digital (DSD) Mode  
In Software Mode, the DSD/PCM bits (Reg. 02h) are used to configure the device for DSD Mode. The  
DSD_DIF bits (Reg 04h) then control the expected DSD rate and MCLK ratio.  
The DIR_DSD bit (Reg 04h) selects between two proprietary methods for DSD-to-analog conversion. The  
first method uses a decimation-free DSD processing technique which allows for features such as matched  
PCM-level output, DSD volume control, and 50kHz on-chip filter. The second method sends the DSD data  
directly to the on-chip switched-capacitor filter for conversion (without the above-mentioned features).  
The DSD_PM_EN bit (Reg. 04h) selects Phase Modulation (data plus data inverted) as the style of data  
input. In this mode, the DSD_PM_mode bit selects whether a 128Fs or 64x clock is used for phase modu-  
lated 64x data (see Figure 18). Use of Phase Modulation Mode may not directly affect the performance of  
the CS4365, but may lower the sensitivity to board-level routing of the DSD data signals.  
The CS4365 can detect errors in the DSD data which does not comply with the SACD specification. The  
STATIC_DSD and INVALID_DSD bits (Reg. 04h) allow the CS4365 to alter the incoming invalid DSD data.  
Depending on the error, the data may either be attenuated or replaced with a muted DSD signal (the  
MUTEC pins would be set according to the DAMUTE bit (Reg. 08h)).  
More information for any of these register bits can be found in Section 7. “Filter Plots” on page 45.  
The DSD input structure and analog outputs are designed to handle a nominal 0 dB-SACD (50% modulation  
index) at full rated performance. Signals of +3 dB-SACD may be applied for brief periods of time, however;  
performance at these levels is not guaranteed. If sustained +3 dB-SACD levels are required, the digital vol-  
ume control should be set to -3.0 dB. This same volume control register affects PCM output levels. There  
is no need to change the volume control setting between PCM and DSD in order to have the 0dB output  
levels match (both 0 dBFS and 0 dB-SACD will output at -3 dB in this case).  
26  
DS670F1  
CS4365  
DSD Phase  
Modulation Mode  
DSD Normal Mode  
Not Used  
BCKA  
DSD_SCLK  
(128Fs)  
BCKA  
BCKD  
DSD_SCLK  
(64Fs)  
DSD_SCLK  
(64Fs)  
DSDAx,  
DSDBx  
Not Used  
D0  
D0  
D1  
D2  
D2  
D1  
DSDAx,  
DSDBx  
Not Used  
D1  
Figure 18. DSD Phase Modulation Mode Diagram  
4.9  
Grounding and Power Supply Arrangements  
As with any high-resolution converter, the CS4365 requires careful attention to power supply and grounding  
arrangements if its potential performance is to be realized. The Typical Connection Diagram shows the rec-  
ommended power arrangements, with VA, VD, VLC, and VLS connected to clean supplies. If the ground  
planes are split between digital ground and analog ground, the GND pins of the CS4365 should be connect-  
ed to the analog ground plane.  
All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted  
coupling into the DAC.  
4.9.1  
Capacitor Placement  
Decoupling capacitors should be placed as close to the DAC as possible, with the low value ceramic ca-  
pacitor being the closest. To further minimize impedance, these capacitors should be located on the same  
layer as the DAC. If desired, all supply pins with similar voltage ratings may be connected to the same  
supply, but a decoupling capacitor should still be placed on each supply pin.  
Notes: All decoupling capacitors should be referenced to ground.  
The CDB4365 evaluation board demonstrates the optimum layout and power supply arrangements.  
DS670F1  
27  
CS4365  
4.10 Analog Output and Filtering  
The application note “Design Notes for a 2-Pole Filter with Differential Input” discusses the second-order  
Butterworth filter and differential to single-ended converter which was implemented on the CS4365 evalua-  
tion board, CDB4365, as seen in Figure 20. The CS4365 does not include phase or amplitude compensa-  
tion for an external filter. Therefore, the DAC system phase and amplitude response will be dependent on  
the external analog circuitry. The off-chip filter has been designed to attenuate the typical full-scale output  
level to below 2 Vrms.  
Figure 19 shows how the full-scale differential analog output level specification is derived.  
4.15 V  
2.5 V  
AOUT+  
AOUT-  
0.85 V  
4.15 V  
2.5 V  
0.85 V  
Full-Scale Output Level= (AOUT+) - (AOUT-)= 6.6 Vpp  
Figure 19. Full-Scale Output  
Figure 20. Recommended Output Filter  
28  
DS670F1  
CS4365  
4.11 The MUTEC Outputs  
The MUTEC1-6 pins have an auto-polarity detect feature. The MUTEC output pins are high impedance at  
the time of reset. The external mute circuitry needs to be self-biased into an active state in order to be muted  
during reset. Upon release of reset, the CS4365 will detect the status of the MUTEC pins (high or low) and  
will then select that state as the polarity to drive when the mutes become active. The external-bias voltage  
level that the MUTEC pins see at the time of release of reset must meet the “MUTEC auto-detect input  
high/low voltage” specifications as outlined in the Digital Characteristics section.  
Figure 21 shows a single example of both an active high and an active low mute drive circuit. In these de-  
signs, the pull-up and pull-down resistors have been especially chosen to meet the input high/low threshold  
when used with the MMUN2111 and MMUN2211 internal bias resistances of 10 kΩ. Use of the Mute Control  
function is not mandatory, but recommended, for designs requiring the absolute minimum in extraneous  
clicks and pops. Also, use of the Mute Control function can enable the system designer to achieve idle chan-  
nel noise/signal-to-noise ratios which are only limited by the external mute circuit.  
Figure 21. Recommended Mute Circuitry  
4.12 Recommended Power-Up Sequence  
4.12.1 Hardware Mode  
1. Hold RST low until the power supplies and configuration pins are stable, and the master and left/right  
clocks are locked to the appropriate frequencies, as discussed in Section 4.1. In this state, the  
registers are reset to the default settings, FILT+ will remain low, and VQ will be connected to VA/2.  
If RST can not be held low long enough the SDINx pins should remain static low until all other clocks  
are stable, and if possible the RST should be toggled low again once the system is stable.  
2. Bring RST high. The device will remain in a low power state with FILT+ low and will initiate the  
Hardware power-up sequence after approximately 512 LRCK cycles in Single-Speed Mode (1024  
LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode).  
DS670F1  
29  
CS4365  
4.12.2 Software Mode  
1. Hold RST low until the power supply is stable, and the master and left/right clocks are locked to the  
appropriate frequencies, as discussed in Section 4.1. In this state, the registers are reset to the default  
settings, FILT+ will remain low, and VQ will be connected to VA/2.  
2. Bring RST high. The device will remain in a low power state with FILT+ low for 512 LRCK cycles in  
Single-Speed Mode (1024 LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-  
Speed Mode).  
3. In order to reduce the chances of clicks and pops, perform a write to the CP_EN bit prior to the  
completion of approximately 512 LRCK cycles in Single-Speed Mode (1024 LRCK cycles in Double-  
Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode). The desired register settings can be  
loaded while keeping the PDN bit set to 1. Set the RMP_UP and RMP_DN bits to 1; then set the  
format and mode control bits to the desired settings.  
If more than the stated range of LRCK cycles passes before CPEN bit is written, the chip will enter  
Hardware Mode and begin to operate with the M0-M4 as the mode settings. CPEN bit may be written  
at anytime, even after the Hardware sequence has begun. It is advised that if the CPEN bit cannot  
be set in time, the SDINx pins should remain static low (this way no audio data can be converted  
incorrectly by the Hardware Mode settings).  
4. Set the PDN bit to 0. This will initiate the power-up sequence, which lasts approximately 50 µs.  
4.13 Recommended Procedure for Switching Operational Modes  
For systems where the absolute minimum in clicks and pops is required, it is recommended that the MUTE  
bits are set prior to changing significant DAC functions (such as changing sample rates or clock sources).  
The mute bits may then be released after clocks have settled and the proper modes have been set.  
It is required to have the device held in reset if the minimum high/low time specs of MCLK cannot be met  
during clock source changes.  
4.14 Control Port Interface  
The control port is used to load all the internal register settings in order to operate in Software Mode (see  
Section 7. “Filter Plots” on page 45). The operation of the control port may be completely asynchronous with  
the audio sample rate. However, to avoid potential interference problems, the control port pins should re-  
main static if no operation is required.  
The control port operates in one of two modes: I²C or SPI.  
4.14.1 MAP Auto Increment  
The device has MAP (memory address pointer) auto-increment capability enabled by the INCR bit (also  
the MSB) of the MAP. If INCR is set to 0, MAP will stay constant for successive I²C writes or reads and  
SPI writes. If INCR is set to 1, MAP will auto-increment after each byte is written, allowing block reads or  
writes of successive registers.  
4.14.2 I²C Mode  
In the I²C Mode, data is clocked into and out of the bi-directional serial control data line, SDA, by the serial  
control port clock, SCL (see Figure 22 for the clock to data relationship). There is no CS pin. The AD0 pin  
enables the user to alter the chip address (001100[AD0][R/W]) and should be tied to VLC or GND, as re-  
quired, before powering up the device. If the device ever detects a high-to-low transition on the AD0/CS  
pin after power-up, SPI Mode will be selected.  
30  
DS670F1  
CS4365  
4.14.2.1 I²C Write™  
To write to the device, follow the procedure below while adhering to the control port Switching Specifica-  
tions in Section .  
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be  
001100. The seventh bit must match the setting of the AD0 pin, and the eighth must be 0. The eighth  
bit of the address byte is the R/W bit.  
2. Wait for an acknowledge (ACK) from the part, then write to the memory address pointer, MAP. This  
byte points to the register to be written.  
3. Wait for an acknowledge (ACK) from the part, then write the desired data to the register pointed to by  
the MAP.  
4. If the INCR bit (see Section 4.14.1) is set to 1, repeat the previous step until all the desired registers  
are written, then initiate a STOP condition to the bus.  
5. If the INCR bit is set to 0 and further I²C writes to other registers are desired, it is necessary to initiate  
a repeated START condition and follow the procedure detailed from step 1. If no further writes to other  
registers are desired, initiate a STOP condition to the bus.  
4.14.2.2 I²C Read  
To read from the device, follow the procedure below while adhering to the control port Switching Specifi-  
cations.  
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be  
001100. The seventh bit must match the setting of the AD0 pin, and the eighth must be 1. The eighth  
bit of the address byte is the R/W bit.  
2. After transmitting an acknowledge (ACK), the device will then transmit the contents of the register  
pointed to by the MAP. The MAP register will contain the address of the last register written to the  
MAP, or the default address (see Section 4.14.1) if an I²C read is the first operation performed on the  
device.  
3. Once the device has transmitted the contents of the register pointed to by the MAP, issue an ACK.  
4. If the INCR bit is set to 1, the device will continue to transmit the contents of successive registers. Con-  
tinue providing a clock and issue an ACK after each byte until all the desired registers are read, then  
initiate a STOP condition to the bus.  
5. If the INCR bit is set to 0 and further I²C reads from other registers are desired, it is necessary to initiate  
a repeated START condition and follow the procedure detailed from steps 1 and 2 from the I²C Write  
instructions followed by step 1 of the I²C Read section. If no further reads from other registers are de-  
sired, initiate a STOP condition to the bus.  
Note 1  
ADDR  
AD0  
DATA  
1-8  
DATA  
1-8  
001100  
R/W  
ACK  
ACK  
ACK  
SDA  
SCL  
Start  
Stop  
Note: If operation is a write, this byte contains the Memory Address Pointer, MAP.  
Figure 22. Control Port Timing, I²C Mode  
DS670F1  
31  
CS4365  
4.14.3 SPIMode  
In SPI Mode, data is clocked into the serial control data line, CDIN, by the serial control port clock, CCLK  
(see Figure 23 for the clock to data relationship). There is no AD0 pin. Pin CS is the chip select signal and  
is used to control SPI writes to the control port. When the device detects a high to low transition on the  
AD0/CS pin after power-up, SPI Mode will be selected. All signals are inputs and data is clocked in on the  
rising edge of CCLK.  
4.14.3.1 SPI Write  
To write to the device, follow the procedure below while adhering to the control port Switching Specifica-  
tions in Section .  
1. Bring CS low.  
2. The address byte on the CDIN pin must then be 00110000.  
3. Write to the memory address pointer, MAP. This byte points to the register to be written.  
4. Write the desired data to the register pointed to by the MAP.  
5. If the INCR bit (see Section 4.14.1) is set to 1, repeat the previous step until all the desired registers  
are written, then bring CS high.  
6. If the INCR bit is set to 0 and further SPI writes to other registers are desired, it is necessary to bring  
CS high, and follow the procedure detailed from step 1. If no further writes to other registers are de-  
sired, bring CS high.  
CS  
CCLK  
CHIP  
ADDRESS  
MAP  
DATA  
0011000  
LSB  
CDIN  
MSB  
R/W  
byte 1  
byte n  
MAP = Memory Address Pointer  
Figure 23. Control Port Timing, SPI Mode  
4.15 Memory Address Pointer (MAP)  
7
INCR  
0
6
Reserved  
0
5
Reserved  
0
4
MAP4  
0
3
MAP3  
0
2
MAP2  
0
1
MAP1  
0
0
MAP0  
0
4.15.1 INCR (Auto Map Increment Enable)  
Default = ‘0’  
0 - Disabled  
1 - Enabled  
4.15.2 MAP4-0 (Memory Address Pointer)  
Default = ‘00000’  
32  
DS670F1  
CS4365  
5. REGISTER QUICK REFERENCE  
Addr  
01h Chip Revision  
default  
02h Mode Control  
default  
03h PCM Control  
default  
04h DSD Control  
Function  
7
PART4  
0
6
PART3  
1
5
PART2  
1
4
PART1  
0
3
PART0  
1
2
REV  
x
1
REV  
x
0
REV  
x
CPEN  
0
FREEZE DSD/PCM Reserved DAC3_DIS DAC2_DIS DAC1_DIS  
PDN  
1
0
DIF2  
0
0
DIF1  
0
0
DIF0  
0
0
0
0
FM1  
1
DIF3  
0
Reserved Reserved  
FM0  
1
0
0
DSD_DIF2 DSD_DIF1 DSD_DIF0 DIR_DSD STATIC_D INVALID_D DSD_PM_ DSD_PM_  
SD  
SD  
MD  
EN  
default  
05h Filter Control  
default  
06h Invert Control  
default  
07h Group Control  
default  
0
0
0
0
1
0
0
0
Reserved Reserved Reserved Reserved Reserved Reserved Reserved FILT_SEL  
0
0
0
INV_B3  
0
0
INV_A3  
0
0
0
0
INV_B1  
0
0
INV_A1  
0
Reserved Reserved  
INV_B2  
INV_A2  
0
0
0
P2_A=B  
0
0
P3_A=B  
0
MUTEC1 MUTEC0 Reserved  
P1_A=B  
0
Reserved SNGLVOL  
0
SZC1  
1
0
SZC0  
0
0
0
0
08h Ramp and Mute  
default  
RMP_UP RMP_DN PAMUTE DAMUTE MUTE_P1 MUTE_P0  
1
1
1
1
0
0
09h Mute Control  
default  
Reserved Reserved MUTE_B3 MUTE_A3 MUTE_B2 MUTE_A2 MUTE_B1 MUTE_A1  
0
0
0
0
0
0
0
0
0Ah Mixing Control  
Pair 1 (AOUTx1)  
Reserved P1_DEM1 P1_DEM0 P1ATAPI4 P1ATAPI3 P1ATAPI2 P1ATAPI1 P1ATAPI0  
default  
0Bh Vol. Control A1  
default  
0
0
0
0
1
0
0
1
A1_VOL7 A1_VOL6 A1_VOL5 A1_VOL4 A1_VOL3 A1_VOL2 A1_VOL1 A1_VOL0  
0
0
0
0
0
0
0
0
0Ch Vol. Control B1  
default  
B1_VOL7 B1_VOL6 B1_VOL5 B1_VOL4 B1_VOL3 B1_VOL2 B1_VOL1 B1_VOL0  
0
0
0
0
0
0
0
0
0Dh Mixing Control  
Pair 2 (AOUTx1)  
Reserved P2_DEM1 P2_DEM0 P2ATAPI4 P2ATAPI3 P2ATAPI2 P2ATAPI1 P2ATAPI0  
default  
0Eh Vol. Control A2  
default  
0
0
0
0
1
0
0
1
A2_VOL7 A2_VOL6 A2_VOL5 A2_VOL4 A2_VOL3 A2_VOL2 A2_VOL1 A2_VOL0  
0
0
0
0
0
0
0
0
0Fh Vol. Control B2  
default  
B2_VOL7 B2_VOL6 B2_VOL5 B2_VOL4 B2_VOL3 B2_VOL2 B2_VOL1 B2_VOL0  
0
0
0
0
0
0
0
0
10h Mixing Control  
Pair 3 (AOUTx1)  
Reserved P3_DEM1 P3_DEM0 P3ATAPI4 P3ATAPI3 P3ATAPI2 P3ATAPI1 P3ATAPI0  
default  
11h Vol. Control A3  
default  
0
0
0
0
1
0
0
1
A3_VOL7 A3_VOL6 A3_VOL5 A3_VOL4 A3_VOL3 A3_VOL2 A3_VOL1 A3_VOL0  
0
0
0
0
0
0
0
0
12h Vol. Control B3  
default  
B3_VOL7 B3_VOL6 B3_VOL5 B3_VOL4 B3_VOL3 B3_VOL2 B3_VOL1 B3_VOL0  
0
0
0
0
0
0
0
0
16h PCM clock mode Reserved Reserved MCLKDIV Reserved Reserved Reserved Reserved Reserved  
default  
0
0
0
0
0
0
0
0
DS670F1  
33  
CS4365  
6. REGISTER DESCRIPTION  
Note: All registers are read/write in I²C Mode and write only in SPI, unless otherwise noted.  
6.1  
Chip Revision (address 01h)  
7
PART4  
0
6
PART3  
1
5
PART2  
1
4
PART1  
0
3
PART0  
0
2
REV2  
-
1
REV1  
-
0
REV0  
-
6.1.1 Part Number ID (PART) [Read Only]  
01101- CS4365  
Revision ID (REV) [Read Only]  
000 - Revision A0  
001 - Revision B0  
Function:  
This read-only register can be used to identify the model and revision number of the device.  
6.2  
Mode Control 1 (address 02h)  
7
6
5
4
3
2
1
0
CPEN  
0
FREEZE  
0
DSD/PCM  
0
Reserved  
0
DAC3_DIS DAC2_DIS DAC1_DIS  
PDN  
1
0
0
0
6.2.1 Control Port Enable (CPEN)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
This bit defaults to 0, allowing the device to power-up in Stand-Alone Mode. The Control Port Mode can  
be accessed by setting this bit to 1. This will allow the operation of the device to be controlled by the reg-  
isters, and the pin definitions will conform to Control Port Mode. To accomplish a clean power-up, the user  
should write this bit within 10 ms following the release of Reset.  
6.2.2 Freeze Controls (FREEZE)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
This function allows modifications to be made to the registers without the changes taking effect until the  
FREEZE is disabled. To make multiple changes in the Control port registers take effect simultaneously,  
enable the FREEZE Bit, make all register changes, then Disable the FREEZE bit.  
34  
DS670F1  
CS4365  
6.2.3 PCM/DSD Selection (DSD/PCM)  
Default = 0  
0 - PCM  
1 - DSD  
Function:  
This function selects DSD or PCM Mode. The appropriate data and clocks should be present before  
changing modes, or else MUTE should be selected.  
6.2.4 DAC Pair Disable (DACx_DIS)  
Default = 0  
0 - Enabled  
1 - Disabled  
Function:  
When enabled, the respective DAC channel pairx (AOUTAx and AOUTBx) will remain in a reset state. It  
is advised that changes to these bits be made while the power-down bit is enabled to eliminate the pos-  
sibility of audible artifacts.  
6.2.5 Power Down (PDN)  
Default = 1  
0 - Disabled  
1 - Enabled  
Function:  
The entire device will enter a low-power state when this function is enabled, and the contents of the control  
registers are retained in this mode. The power-down bit defaults to ‘enabled’ on power-up and must be  
disabled before normal operation in Control Port Mode can occur.  
6.3  
PCM Control (address 03h)  
7
DIF3  
0
6
DIF2  
0
5
DIF1  
0
4
DIF0  
0
3
Reserved  
0
2
Reserved  
0
1
FM1  
1
0
FM0  
1
6.3.1 Digital Interface Format (DIF)  
Default = 0000 - Format 0 (Left-Justified, up to 24-bit data)  
Function:  
These bits select the interface format for the serial audio input. The DSD/PCM bit determines whether  
PCM or DSD Mode is selected.  
The required relationship between the Left/Right clock, serial clock and serial data is defined by the Digital  
Interface Format and the options are detailed in Figures 8 through through 17.  
DS670F1  
35  
CS4365  
DIF3  
DIF2  
DIF1  
DIF0  
DESCRIPTION  
Left-Justified, up to 24-bit data  
I²S, up to 24-bit data  
Right-Justified, 16-bit data  
Right-Justified, 24-bit data  
Right-Justified, 20-bit data  
Right-Justified, 18-bit data  
One-Line Mode 1, 24-bit Data  
One-Line Mode 2, 20-bit Data  
Reserved  
FORMAT  
0
0
0
0
0
0
1
1
1
1
X
0
0
0
0
1
1
0
0
0
0
X
0
0
1
1
0
0
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
X
0
1
2
3
4
5
8
9
Reserved  
All other combinations are Reserved  
Table 7. Digital Interface Formats - PCM Mode  
6.3.2 Functional Mode (FM)  
Default = 11  
00 - Single-Speed Mode (4 to 50 kHz sample rates)  
01 - Double-Speed Mode (50 to 100 kHz sample rates)  
10 - Quad-Speed Mode (100 to 200 kHz sample rates)  
11 - Auto Speed Mode detect (32 kHz to 200 kHz sample rates)  
Function:  
Selects the required range of input sample rates or Auto Speed Mode.  
6.4  
DSD Control (address 04h)  
7
6
5
4
3
2
1
0
DSD_DIF2 DSD_DIF1 DSD_DIF0  
DIR_DSD STATIC_DSD INVALID_DSD DSD_PM_MD DSD_PM_EN  
0
0
0
0
1
1
0
0
6.4.1 DSD Mode Digital Interface Format (DSD_DIF)  
Default = 000 - Format 0 (64x oversampled DSD data with a 4x MCLK to DSD data rate)  
Function:  
The relationship between the oversampling ratio of the DSD audio data and the required Master clock-to-  
DSD-data rate is defined by the Digital Interface Format pins.  
The DSD/PCM bit determines whether PCM or DSD Mode is selected.  
DIF2  
DIF1  
DIFO  
DESCRIPTION  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
64x oversampled DSD data with a 4x MCLK to DSD data rate  
64x oversampled DSD data with a 6x MCLK to DSD data rate  
64x oversampled DSD data with a 8x MCLK to DSD data rate  
64x oversampled DSD data with a 12x MCLK to DSD data rate  
128x oversampled DSD data with a 2x MCLK to DSD data rate  
128x oversampled DSD data with a 3x MCLK to DSD data rate  
128x oversampled DSD data with a 4x MCLK to DSD data rate  
128x oversampled DSD data with a 6x MCLK to DSD data rate  
Table 8. Digital Interface Formats - DSD Mode  
36  
DS670F1  
CS4365  
6.4.2 Direct DSD Conversion (DIR_DSD)  
Function:  
When set to 0 (default), DSD input data is sent to the DSD processor for filtering and volume control func-  
tions.  
When set to 1, DSD input data is sent directly to the switched capacitor DACs for a pure DSD conversion.  
In this mode, the full-scale DSD and PCM levels will not be matched (see Section ), the dynamic range  
performance may be reduced, the volume control is inactive, and the 50 kHz low pass filter is not available  
(see Section for filter specifications).  
6.4.3 Static DSD Detect (STATIC_DSD)  
Function:  
When set to 1 (default), the DSD processor checks for 28 consecutive zeroes or ones and, if detected,  
sends a mute signal to the DACs. The MUTEC pins will eventually go active according to the DAMUTE  
register.  
When set to 0, this function is disabled.  
6.4.4 Invalid DSD Detect (INVALID_DSD)  
Function:  
When set to 1, the DSD processor checks for greater than 24 out of 28 bits of the same value and, if de-  
tected, will attenuate the data sent to the DACs. The MUTEC pins go active according to the DAMUTE  
register.  
When set to 0 (default), this function is disabled.  
6.4.5 DSD Phase Modulation Mode Select (DSD_PM_MODE)  
Function:  
When set to 0 (default), the 128Fs (BCKA) clock should be input to DSD_SCLK for Phase Modulation  
Mode. (See Figure 18 on page 27)  
When set to 1, the 64Fs (BCKD) clock should be input to DSD_SCLK for Phase Modulation Mode.  
6.4.6 DSD Phase Modulation Mode Enable (DSD_PM_EN)  
Function:  
When set to 1, DSD phase modulation input mode is enabled, and the DSD_PM_MODE bit should be set  
accordingly.  
When set to 0 (default), this function is disabled (DSD normal mode).  
DS670F1  
37  
CS4365  
6.5  
Filter Control (address 05h)  
7
6
Reserved  
0
5
Reserved  
0
4
Reserved  
0
3
Reserved  
0
2
Reserved  
0
1
Reserved  
0
0
FILT_SEL  
0
Reserved  
0
6.5.1 Interpolation Filter Select (FILT_SEL)  
Function:  
When set to 0 (default), the Interpolation Filter has a fast roll-off.  
When set to 1, the Interpolation Filter has a slow roll-off.  
The specifications for each filter can be found in the Analog characteristics table, and response plots can  
be found in Figures 24 to 47.  
6.6  
Invert Control (address 06h)  
7
6
Reserved  
0
5
INV_B3  
0
4
INV_A3  
0
3
INV_B2  
0
2
INV_A2  
0
1
INV_B1  
0
0
INV_A1  
0
Reserved  
0
6.6.1 Invert Signal Polarity (Inv_xx)  
Function:  
When set to 1, this bit inverts the signal polarity of channel xx.  
When set to 0 (default), this function is disabled.  
6.7  
Group Control (address 07h)  
7
6
MUTEC0  
0
5
Reserved  
0
4
P1_A=B  
0
3
P2_A=B  
0
2
P3_A=B  
0
1
Reserved  
0
0
SNGLVOL  
0
MUTEC1  
0
6.7.1 Mute Pin Control (MUTEC1, MUTEC0)  
Default = 00  
00 - Six mute control signals  
01, 10 - One mute control signal  
11 - Three mute control signals  
Function:  
Selects how the internal mute control signals are routed to the MUTEC1 through MUTEC6 pins. When  
set to ‘00’, there is one mute control signal for each channel: AOUT1A on MUTEC1, AOUT1B on  
MUTEC2, etc. When set to ‘01’ or ‘10’, there is a single mute control signal on the MUTEC1 pin. When  
set to ‘11’, there are three mute control signals, one for each stereo pair: AOUT1A and AOUT1B on  
MUTEC1, AOUT2A and AOUT2B on MUTEC2, and AOUT3A and AOUT3B on MUTEC3.  
38  
DS670F1  
CS4365  
6.7.2 Channel A Volume = Channel B Volume (Px_A=B)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The AOUTAx and AOUTBx volume levels are independently controlled by the A and the B Channel Vol-  
ume Control Bytes when this function is disabled. The volume on both AOUTAx and AOUTBx are deter-  
mined by the A Channel Attenuation and Volume Control Bytes (per A-B pair), and the B Channel Bytes  
are ignored when this function is enabled.  
6.7.3 Single Volume Control (SNGLVOL)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The individual channel volume levels are independently controlled by their respective Volume Control  
Bytes when this function is disabled. The volume on all channels is determined by the A1 Channel Vol-  
ume Control Byte, and the other Volume Control Bytes are ignored when this function is enabled.  
6.8  
Ramp and Mute (address 08h)  
7
SZC1  
1
6
SZC0  
0
5
RMP_UP  
1
4
RMP_DN  
1
3
PAMUTE  
1
2
DAMUTE  
1
1
MUTE_P1  
0
0
MUTE_P0  
0
6.8.1 Soft Ramp and Zero Cross CONTROL (SZC)  
Default = 10  
00 - Immediate Change  
01 - Zero Cross  
10 - Soft Ramp  
11 - Soft Ramp on Zero Crossings  
Function:  
Immediate Change  
When Immediate Change is selected, all level changes will take effect immediately in one step.  
Zero Cross  
Zero Cross Enable dictates that signal-level changes, either by attenuation changes or muting, will occur  
on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a tim-  
eout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal  
does not encounter a zero crossing. The zero cross function is independently monitored and implemented  
for each channel.  
Soft Ramp  
Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramp-  
ing, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods.  
DS670F1  
39  
CS4365  
Soft Ramp on Zero Crossing  
Soft Ramp and Zero Cross Enable dictates that signal-level changes, either by attenuation changes or  
muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change  
will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz  
sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently  
monitored and implemented for each channel.  
6.8.2 Soft Volume Ramp-Up after Error (RMP_UP)  
Function:  
An un-mute will be performed after executing an LRCK/MCLK ratio change or error, and after changing  
the Functional Mode.  
When set to 1 (default), this unmute is effected, similar to attenuation changes, by the Soft and Zero Cross  
bits in the Volume and Mixing Control register.  
When set to 0, an immediate unmute is performed in these instances.  
Note: For best results, it is recommended that this feature be used in conjunction with the RMP_DN bit.  
6.8.3 Soft Ramp-Down before Filter Mode Change (RMP_DN)  
Function:  
If either the FILT_SEL or DEM bits are changed the DAC will stop conversion for a period of time to  
change its filter values. This bit selects how the data is effected prior to and after the change of the filter  
values.  
When set to 1 (default), a mute will be performed prior to executing a filter mode change and an un-mute  
will be performed after executing the filter mode change. This mute and un-mute are effected, similar to  
attenuation changes, by the Soft and Zero Cross bits in the Volume and Mixing Control register.  
When set to 0, an immediate mute is performed prior to executing a filter mode change.  
Note: For best results, it is recommended that this feature be used in conjunction with the RMP_UP bit.  
6.8.4 PCM Auto-Mute (PAMUTE)  
Function:  
When set to 1 (default), the Digital-to-Analog converter output will mute following the reception of 8192  
consecutive audio samples of static 0 or -1. A single sample of non-static data will release the mute. De-  
tection and muting is done independently for each channel. The quiescent voltage on the output will be  
retained and the Mute Control pin will go active during the mute period.  
When set to 0, this function is disabled.  
40  
DS670F1  
CS4365  
6.8.5 DSD Auto-Mute (DAMUTE)  
Function:  
When set to 1 (default), the Digital-to-Analog converter output will mute following the reception of 256 re-  
peated 8-bit DSD mute patterns (as defined in the SACD specification).  
A single bit not fitting the repeated mute pattern (mentioned above) will release the mute. Detection and  
muting is done independently for each channel. The quiescent voltage on the output will be retained, and  
the Mute Control pin will go active during the mute period.  
6.8.6 MUTE Polarity and DETECT (MUTEP1:0)  
Default = 00  
00 - Auto polarity detect, selected from MUTEC1 pin  
01 - Reserved  
10 - Active low mute polarity  
11 - Active high mute polarity  
Function:  
Auto mute polarity detect (00)  
See Section 4.11 “The MUTEC Outputs” on page 29 for description.  
Active low mute polarity (10)  
When RST is low, the outputs are high impedance and will need to be biased active. Once reset has been  
released and after this bit is set, the MUTEC output pins will be active low polarity.  
Active high mute polarity (11)  
At reset time, the outputs are high impedance and will need to be biased active. Once reset has been  
released and after this bit is set, the MUTEC output pins will be active high polarity.  
6.9  
Mute Control (address 09h)  
7
6
Reserved  
0
5
MUTE_B3  
0
4
MUTE_A3  
0
3
MUTE_B2  
0
2
MUTE_A2  
0
1
MUTE_B1  
0
0
MUTE_A1  
0
Reserved  
0
6.9.1 Mute (MUTE_xx)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The Digital-to-Analog converter output will mute when enabled. The quiescent voltage on the output will  
be retained. The muting function is affected, similarly to attenuation changes, by the Soft and Zero Cross  
bits. The MUTE pins will go active during the mute period according to the MUTEC bits.  
DS670F1  
41  
CS4365  
6.10 Mixing Control (address 0Ah, 0Dh, 10h, 13h)  
7
Reserved  
0
6
Px_DEM1  
0
5
Px_DEM0  
0
4
PxATAPI4  
0
3
PxATAPI3  
1
2
PxATAPI2  
0
1
PxATAPI1  
0
0
PxATAPI0  
1
6.10.1 De-Emphasis Control (PX_DEM1:0)  
Default = 00  
00 - Disabled  
01 - 44.1 kHz  
10 - 48 kHz  
11 - 32 kHz  
Function:  
Selects the appropriate digital filter to maintain the standard 15 μs/50 μs digital de-emphasis filter re-  
sponse at 32, 44.1 or 48 kHz sample rates. (see Figure 16)  
De-emphasis is only available in Single-Speed Mode.  
6.11 ATAPI Channel Mixing and Muting (ATAPI)  
Default = 01001 - AOUTAx=aL, AOUTBx=bR (Stereo)  
Function:  
The CS4365 implements the channel-mixing functions of the ATAPI CD-ROM specification. The ATAPI  
functions are applied per A-B pair. Refer to Table 9 and Figure 17 for additional information.  
ATAPI4  
ATAPI3  
ATAPI2  
ATAPI1  
ATAPI0  
AOUTAx  
MUTE  
MUTE  
MUTE  
MUTE  
aR  
AOUTBx  
MUTE  
bR  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
bL  
b[(L+R)/2]  
MUTE  
bR  
aR  
aR  
bL  
aR  
b[(L+R)/2]  
MUTE  
bR  
aL  
aL  
aL  
bL  
aL  
b[(L+R)/2]  
MUTE  
bR  
a[(L+R)/2]  
a[(L+R)/2]  
a[(L+R)/2]  
a[(L+R)/2]  
MUTE  
MUTE  
MUTE  
bL  
b[(L+R)/2]  
MUTE  
bR  
bL  
Table 9. ATAPI Decode Table  
42  
DS670F1  
CS4365  
ATAPI4  
ATAPI3  
ATAPI2  
ATAPI1  
ATAPI0  
AOUTAx  
AOUTBx  
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
MUTE  
[(bL+aR)/2]  
MUTE  
bR  
aR  
aR  
aR  
aR  
bL  
[(aL+bR)/2]  
MUTE  
bR  
aL  
aL  
aL  
bL  
aL  
[(aL+bR)/2]  
MUTE  
bR  
[(aL+bR)/2]  
[(aL+bR)/2]  
[(bL+aR)/2]  
[(aL+bR)/2]  
bL  
[(aL+bR)/2]  
Table 9. ATAPI Decode Table  
6.12 Volume Control (address 0Bh, 0Ch, 0Eh, 0Fh, 11h, 12h)  
7
xx_VOL7  
0
6
xx_VOL6  
0
5
xx_VOL5  
0
4
xx_VOL4  
0
3
xx_VOL3  
0
2
xx_VOL2  
0
1
xx_VOL1  
0
0
xx_VOL0  
0
These six registers provide individual volume and mute control for each of the six channels.  
The values for “xx” in the bit fields above are as follows:  
Register address 0Bh - xx = A1  
Register address 0Ch - xx = B1  
Register address 0Eh - xx = A2  
Register address 0Fh - xx = B2  
Register address 11h - xx = A3  
Register address 12h - xx = B3  
6.12.1 Digital Volume Control (xx_VOL7:0)  
Default = 00h (0 dB)  
Function:  
The Digital Volume Control registers allow independent control of the signal levels in 1/2 dB increments  
from 0 to -127.5 dB. Volume settings are decoded as shown in Table 10. The volume changes are imple-  
mented as dictated by the Soft and Zero Cross bits in the Power and Muting Control register. Note that  
the values in the volume setting column in Table 10 are approximate. The actual attenuation is determined  
by taking the decimal value of the volume register and multiplying by 6.02/12.  
Binary Code  
00000000  
00000001  
00000110  
11111111  
Decimal Value  
Volume Setting  
0 dB  
0
1
6
-0.5 dB  
-3.0 dB  
-127.5 dB  
255  
Table 10. Example Digital Volume Settings  
DS670F1  
43  
CS4365  
6.13 PCM Clock Mode (address 16h)  
7
Reserved  
0
6
Reserved  
0
5
MCLKDIV  
0
4
Reserved  
0
3
Reserved  
0
2
Reserved  
0
1
Reserved  
0
0
Reserved  
0
6.13.1 Master Clock DIVIDE by 2 ENABLE (MCLKDIV)  
Function:  
When set to 1, the MCLKDIV bit enables a circuit which divides the externally applied MCLK signal by 2  
prior to all other internal circuitry.  
When set to 0 (default), MCLK is unchanged.  
44  
DS670F1  
CS4365  
7. FILTER PLOTS  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−100  
−120  
−120  
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 24. Single-Speed (fast) Stopband Rejection  
Figure 25. Single-Speed (fast) Transition Band  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.02  
0.015  
0.01  
0.005  
0
−0.005  
−0.01  
−0.015  
−0.02  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 26. Single-Speed (fast) Transition Band (detail)  
Figure 27. Single-Speed (fast) Passband Ripple  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 28. Single-Speed (slow) Stopband Rejection  
Figure 29. Single-Speed (slow) Transition Band  
DS670F1  
45  
CS4365  
0.02  
0.015  
0.01  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.005  
0
−0.005  
−0.01  
−0.015  
−0.02  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 30. Single-Speed (slow) Transition Band (detail)  
Figure 31. Single-Speed (slow) Passband Ripple  
0
0
20  
20  
40  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 32. Double-Speed (fast) Stopband Rejection  
Figure 33. Double-Speed (fast) Transition Band  
0
1
0.02  
0.015  
0.01  
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 34. Double-Speed (fast) Transition Band (detail)  
Figure 35. Double-Speed (fast) Passband Ripple  
46  
DS670F1  
CS4365  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 36. Double-Speed (slow) Stopband Rejection  
Figure 37. Double-Speed (slow) Transition Band  
0
1
0.02  
0.015  
0.01  
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 38. Double-Speed (slow) Transition Band (detail)  
Figure 39. Double-Speed (slow) Passband Ripple  
0
0
20  
20  
40  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 40. Quad-Speed (fast) Stopband Rejection  
Figure 41. Quad-Speed (fast) Transition Band  
DS670F1  
47  
CS4365  
0
0.2  
0.15  
0.1  
1
2
3
0.05  
0
4
5
6
0.05  
7
0.1  
0.15  
0.2  
8
9
10  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 42. Quad-Speed (fast) Transition Band (detail)  
Figure 43. Quad-Speed (fast) Passband Ripple  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 44. Quad-Speed (slow) Stopband Rejection  
Figure 45. Quad-Speed (slow) Transition Band  
0
1
0.02  
0.015  
0.01  
0.005  
0
2
3
4
5
6
0.005  
0.01  
0.015  
0.02  
7
8
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.02  
0.04  
0.06  
0.08  
0.1  
0.12  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 46. Quad-Speed (slow) Transition Band (detail)  
Figure 47. Quad-Speed (slow) Passband Ripple  
48  
DS670F1  
CS4365  
8. PARAMETER DEFINITIONS  
Total Harmonic Distortion + Noise (THD+N)  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.  
Dynamic Range  
The ratio of the full-scale rms value of the signal to the rms sum of all other spectral components over the  
specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth  
made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measure-  
ment to full scale. This technique ensures that the distortion components are below the noise level and  
do not affect the measurement. This measurement technique has been accepted by the Audio Engineer-  
ing Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307.  
Interchannel Isolation  
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's  
output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in  
decibels.  
Interchannel Gain Mismatch  
The gain difference between left and right channels. Units in decibels.  
The change in gain value with temperature. Units in ppm/°C.  
Gain Drift  
DS670F1  
49  
CS4365  
9. PACKAGE DIMENSIONS  
48L LQFP PACKAGE DRAWING  
E
E1  
D1  
D
1
e
B
A
A1  
L
INCHES  
MILLIMETERS  
DIM  
A
A1  
B
D
D1  
E
E1  
e*  
L
MIN  
---  
NOM  
0.055  
0.004  
0.009  
0.354  
0.28  
0.354  
0.28  
0.020  
0.24  
MAX  
MIN  
---  
NOM  
1.40  
0.10  
MAX  
1.60  
0.15  
0.27  
9.30  
7.10  
9.30  
7.10  
0.60  
0.75  
7.00°  
0.063  
0.006  
0.011  
0.366  
0.280  
0.366  
0.280  
0.024  
0.030  
7.000°  
0.002  
0.007  
0.343  
0.272  
0.343  
0.272  
0.016  
0.018  
0.000°  
0.05  
0.17  
8.70  
6.90  
8.70  
6.90  
0.40  
0.45  
0.00°  
0.22  
9.0 BSC  
7.0 BSC  
9.0 BSC  
7.0 BSC  
0.50 BSC  
0.60  
µ
4°  
4°  
* Nominal pin pitch is 0.50 mm  
*Controlling dimension is mm.  
*JEDEC Designation: MS022  
50  
DS670F1  
CS4365  
10.ORDERING INFORMATION  
Product  
CS4365  
CDB4365  
Description  
Package Pb-Free  
Grade  
Temp Range  
Container Order #  
Tray CS4365-CQZ  
Tape & Reel CS4365-CQZR  
Tray CS4365-DQZ  
Tape & Reel CS4365-DQZR  
CDB4365  
Commercial -40° to +85° C  
Automotive -40° to +105° C  
114 dB, 192 kHz 6-  
channel D/A Converter  
48-pin  
YES  
LQFP  
CS4365 Evaluation Board  
-
-
-
-
11.REFERENCES  
1. How to Achieve Optimum Performance from Delta-Sigma A/D & D/A Converters, by Steven Harris. Paper  
presented at the 93rd Convention of the Audio Engineering Society, October 1992.  
2. Cirrus Logic datasheet CDB4365 available at http://www.cirrus.com  
3. Design Notes for a 2-Pole Filter with Differential Input, by Steven Green. Cirrus Logic Application Note AN48  
4. The I²C-Bus Specification: Version 2.0, Philips Semiconductors, December 1998.  
http://www.semiconductors.philips.com  
DS670F1  
51  
CS4365  
12.REVISION HISTORY  
Release  
Changes  
Updated Guaranteed Operational Temperature Range in “Recommended Operating Conditions” on page 8.  
Updated VA, VLC, and VLS current cunsumption specs  
Updated Fullscale output level  
Updated Dynamic perforamnce limits.  
Removed VOH specification  
PP3  
F1  
Updated VOL specification  
Updated “Recommended Operating Conditions” on page 8  
Updated “DAC Analog Characteristics - Commercial (-CQZ)” on page 9  
Updated “DAC Analog Characteristics - Automotive (-DQZ)” on page 10  
Updated “Power and Thermal Characteristics” on page 11  
Updated Legal Information on page 52  
Contacting Cirrus Logic Support  
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.  
To find the one nearest to you, go to www.cirrus.com  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE-  
VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD  
TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE  
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED  
IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICA-  
TIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER  
AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH  
THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
I²C is a registered trademark of Philips Semiconductor.  
SPI is a trademark of Motorola, Inc.  
52  
DS670F1  

相关型号:

CS4365_08

114 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CS4373

Low-power, High-performance Delta-Sigma Test DAC
CIRRUS

CS4373-IS

Low-power, High-performance Delta-Sigma Test DAC
CIRRUS

CS4373A

Low-power, High-performance Test DAC
CIRRUS

CS4373A-IS

D/A Converter, 1 Func, Serial Input Loading, PDSO28, SSOP-28
CIRRUS

CS4373A-ISZ

Low-power, High-performance Test DAC
CIRRUS

CS4382

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS

CS4382-BQ

D/A Converter, 1 Func, Serial Input Loading, PQFP48, MS-022, LQFP-48
CIRRUS

CS4382-KQ

D/A Converter, 1 Func, Serial Input Loading, PQFP48, MS-022, LQFP-48
CIRRUS

CS4382-KQZ

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS

CS4382-KQZR

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS

CS4382A

114 dB, 192 kHz 8-channel D/A Converter
CIRRUS