CS497014 [CIRRUS]

High Definition Audio Decoder DSP Family with Dual 32-bit Engine Technology;
CS497014
型号: CS497014
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

High Definition Audio Decoder DSP Family with Dual 32-bit Engine Technology

文件: 总31页 (文件大小:871K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS4970x4 Data Sheet  
FEATURES  
High Definition Audio Decoder DSP Family  
with Dual 32-bit Engine Technology  
Multi-standard 32-bit high-definition audio decoding plus  
post-processing  
Supports high-definition audio formats including:  
— Dolby Digital® Plus  
— Dolby® TrueHD  
— DTS-HD® High Resolution Audio  
— DTS-HD Master Audio™  
— DTS Express5.1  
Up to 12 Channels of 32-bit Serial Audio Input  
Customer Software Security Keys  
16 Ch x 32-bit PCM Out with Dual 192 kHz S/PDIF Tx  
Two SPI/I2Cports  
Large On-chip X, Y, and Program RAM & ROM  
SDRAM and Serial Flash Memory Support  
Supports legacy audio formats and a wide array of post-  
processing  
— Dolby Digital® EX, Dolby Pro Logic® II, IIx, IIz 7.1, Dolby  
The CS4970x4 DSP family is an enhanced version of the  
CS4953xx DSP family with higher overall performance. In  
addition to all the mainstream audio processing codes in on-  
chip ROM that the CS4953xx DSP offers, the CS4970x4 device  
family also supports the decoding of major high-definition audio  
formats. Additionally, the CS4970x4, a dual-core device,  
performs the high-definition audio decoding on the first core,  
leaving the second core available for audio post-processing and  
audio enhancement. The CS4970x4 device supports the most  
demanding audio post processing requirements. It provides an  
easy upgrade path to systems currently using the CS495xx or  
CS4953xx device with minor (or no) hardware and software  
changes.  
Headphone® 2, Dolby Virtual Speaker® 2, Dolby  
Volume® (original), Dolby Volume 258 (lite), Audistry®  
— DTS-ES 96/24Discrete 7.1, DTS-ESDiscrete 7.1,  
DTS-ESMatrix 6.1, DTS Neo:6®, DTS Neural  
SurroundDTS Surround Sensation Speaker  
— MPEG-2 AACLC 5.1  
— SRS® Circle Surround® II, SRS Circle Surround Auto,  
SRS Circle Surround Decoder Optimized, SRS  
TruVolume7.1 (V 2.1.0.0), SRS TruSurround  
HD/HD4®, SRS WOW HD, SRS CS Headphone,  
SRS Circle Cinema 3D, SRS Studio Sound HD™  
— THX® Ultra2, THX Select2™  
Cirrus Logic’s Applications Library  
Ordering Information  
See page 27 for ordering information.  
— Cirrus Original Multi-Channel Surround 2 (COMS2),  
Cirrus Band XpandeR, Cirrus Virtualization  
Technology (CVT), Cirrus Intelligent Room Calibration 2  
(IRC2), Cirrus Bass Enhancement (CBE)  
— Crossbar Mixer, Signal Generator  
— Advanced Post-Processors including: 7.1 Bass Manager  
Quadruple Crossover, Tone Control, 11- Band  
Parametric EQ, Delay, 2:1/4:1 Decimator, 1:2/1:4  
Upsampler  
Serial  
Control1  
Serial  
Control2  
Parallel  
Control  
GPIO  
Debug  
12 Ch. Audio In /  
6 Ch. SACD In  
STC  
D
M
A
Coyote 32-bit  
Coyote 32-bit  
DSP B  
TMR1  
TMR2  
DSP A  
S/PDIF  
S/PDIF  
P
X
Y
P
X
Y
16 Ch PCM  
Audio Out  
PLL  
Ext. Memory Controller  
This document contains information for a new product.  
Cirrus Logic reserves the right to modify this product without notice.  
Preliminary Product Information  
Copyright © 2014 Cirrus Logic, Inc.  
All Rights Reserved  
FEB 2014  
DS752F1  
http://www.cirrus.com  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
Table of Contents  
1 Documentation Strategy ............................................................................................................4  
2 Overview .....................................................................................................................................4  
2.1 Migrating from CS495xx(3) to CS4970x4 .................................................................................................5  
2.2 Licensing ..................................................................................................................................................5  
3 Code Overlays ............................................................................................................................5  
4 Hardware Functional Description ............................................................................................6  
4.1 Coyote DSP Core .....................................................................................................................................6  
4.1.1 DSP Memory ...............................................................................................................................6  
4.1.2 DMA Controller ............................................................................................................................7  
4.2 On-chip DSP Peripherals .........................................................................................................................7  
4.2.1 Digital Audio Input Port (DAI) .......................................................................................................7  
4.2.2 Digital Audio Output Port (DAO) ..................................................................................................7  
2
4.2.3 Serial Control Port 1 & 2 (I C or SPI) ..........................................................................................7  
4.2.4 External Memory Interface ..........................................................................................................7  
4.2.5 General Purpose Input/Output (GPIO) ........................................................................................7  
4.2.6 Phase-locked Loop (PLL)-based Clock Generator ......................................................................7  
4.3 DSP I/O Description .................................................................................................................................8  
4.3.1 Multiplexed Pins ..........................................................................................................................8  
4.3.2 Termination Requirements ...........................................................................................................8  
4.3.3 Pads ............................................................................................................................................8  
4.4 Application Code Security ........................................................................................................................8  
5 Characteristics and Specifications ..........................................................................................8  
5.1 Absolute Maximum Ratings ......................................................................................................................8  
5.2 Recommended Operating Conditions ......................................................................................................9  
5.3 Digital DC Characteristics ........................................................................................................................9  
5.4 Power Supply Characteristics ..................................................................................................................9  
5.5 Thermal Data (128-pin LQFP) ................................................................................................................10  
5.6 Switching Characteristics—RESET ......................................................................................................... 11  
5.7 Switching Characteristics — XTI ............................................................................................................ 11  
5.8 Switching Characteristics — Internal Clock ............................................................................................12  
5.9 Switching Characteristics — Serial Control Port - SPI Slave Mode .......................................................13  
5.10 Switching Characteristics — Serial Control Port - SPI Master Mode ...................................................14  
2
5.11 Switching Characteristics — Serial Control Port - I C Slave Mode ......................................................15  
2
5.12 Switching Characteristics — Serial Control Port - I C Master Mode ....................................................16  
5.13 Switching Characteristics — Parallel Control Port - Intel Slave Mode .................................................16  
5.14 Switching Characteristics — Parallel Control Port - Motorola Slave Mode .........................................19  
5.15 Switching Characteristics — Digital Audio Slave Input Port .................................................................21  
5.16 Switching Characteristics — Digital Audio Output Port ........................................................................22  
5.17 Switching Characteristics — SDRAM Interface ....................................................................................23  
6 Ordering Information ...............................................................................................................27  
7 Environmental, Manufacturing, and Handling Information .................................................27  
8 Device Pin-Out Diagram ..........................................................................................................28  
8.1 128-Pin LQFP Pin-Out Diagram .............................................................................................................28  
9 Package Mechanical Drawings ...............................................................................................29  
9.1 128-Pin LQFP Package Drawing ...........................................................................................................29  
10 Revision History .....................................................................................................................30  
DS752F1  
2
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
List of Figures  
Figure 1. RESET Timing .........................................................................................................................................11  
Figure 2. XTI Timing ..............................................................................................................................................11  
Figure 3. Serial Control Port - SPI Slave Mode Timing ..........................................................................................13  
Figure 4. Serial Control Port - SPI Master Mode Timing ........................................................................................14  
2
Figure 5. Serial Control Port - I C Slave Mode Timing ..........................................................................................15  
2
Figure 6. Serial Control Port - I C Master Mode Timing ........................................................................................16  
Figure 7. Parallel Control Port - IntelÒ Slave Mode Read Cycle ...........................................................................17  
Figure 8. Parallel Control Port - Intel Slave Mode Write Cycle ..............................................................................18  
Figure 9. Parallel Control Port - MotorolaÒ Slave Mode Read Cycle Timing ........................................................20  
Figure 10. Parallel Control Port - Motorola Slave Mode Write Cycle Timing .........................................................20  
Figure 11. Digital Audio Input (DAI) Port Timing Diagram .....................................................................................21  
Figure 12. DAI Slave Timing Diagram ...................................................................................................................21  
Figure 13. Digital Audio Port Output Timing Master Mode .....................................................................................22  
Figure 14. Digital Audio Output Timing, Slave Mode (Relationship LRCLK to SCLK) ...........................................23  
Figure 15. External Memory Interface - SDRAM Burst Read Cycle .......................................................................24  
Figure 16. External Memory Interface - SDRAM Burst Write Cycle .......................................................................24  
Figure 17. External Memory Interface - SDRAM Auto Refresh Cycle ....................................................................25  
Figure 18. External Memory Interface - SDRAM Load Mode Register Cycle ........................................................26  
Figure 19. 128-Pin LQFP Pin-Out Diagram ...........................................................................................................28  
Figure 20. 128-Pin LQFP Package Drawing ..........................................................................................................29  
List of Tables  
Table 1. CS4970x4 Related Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 2. Device and Firmware Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 3. CS4970x4 DSP Memory Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 4. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 5. Environmental, Manufacturing, & Handling Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 6. 128-Pin LQFP Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DS752F1  
3
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
1 Documentation Strategy  
The CS4970x4 data sheet describes the CS4970x4 family of multichannel audio decoders. This document  
should be used in conjunction with the following documents when evaluating or designing a system around the  
CS4970x4 family of processors.  
Table 1. CS4970x4 Related Documentation  
Document Name  
Description  
This document  
CS4970x4 Data Sheet  
A new consolidated documentation set that includes:  
• Detailed system design information including  
Typical Connection Diagrams, Boot-Procedures,  
Pin Descriptions, Etc. Also describes use of DSP  
Condenser tool.  
CS495314/CS4970x4 System Designer’s Guide  
• Detailed firmware design information including  
signal processing flow diagrams and control API  
information  
Includes detailed firmware design information  
including signal processing flow diagrams and control  
API information  
AN288 - CS4953xx/CS4970x4 Firmware User’s Manual  
The scope of the CS4970x4 data sheet is primarily to provide hardware specifications of the CS4970x4 family  
of devices. This includes hardware functionality, characteristic data, pinout, and packaging information.  
The intended audience for the CS4970x4 data sheet is the system PCB designer, MCU programmer, and the  
quality control engineer.  
2 Overview  
The CS4970x4 DSP Family, combined with Cirrus Logic’s comprehensive library of audio processing  
algorithms, enables the development of next-generation high-definition audio solutions. Cirrus Logic also  
provides a broad array of digital interface products and audio converters to meet your audio system-level  
design requirements.  
Note: The CS4970x4 is available in a 128-pin LQFP package.  
The audio processing features of the CS4970x4 product family are a superset of audio features available in  
the CS4953xx product family.  
Refer to Table 2 on page 5 for the speed and firmware features of the CS4970x4 product family.  
DS752F1  
4
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
Table 2. Device and Firmware Selection Guide  
Virtualizer Processor  
Post Processor  
Module  
Decode Processor  
(DSP-A)1  
Matrix Processor Module  
(DSP-A)1  
Module  
(DSP-B)1  
Device  
(DSP-B)1  
Dolby Pro Logic II / IIx / IIz 7.1  
Stereo PCM  
APP  
(4:1/2:1 Down-sampling and  
1:2/1:4 U-sampling Options)2  
(Advanced Post-  
processing)  
SRS Circle Surround II / Circle  
Surround Auto / Circle  
Surround Decoder Optimized  
(Stereo In)  
Tone Control  
–Select 2  
–PEQ (up to 11 Bands)  
–Delay  
Multichannel PCM  
(4:1/2:1 Down-sampling and  
1:2/1:4 Up-sampling Options)2  
Cirrus Virtualizer  
Technology  
CS497014  
300MACS  
Cirrus Original Multi-Channel  
Surround 2 (Effects / Reverb  
Processor)  
(Speaker to Listening  
Position Alignment  
and/or Lip Sync)  
–7.1 Bass Manager  
–Audio Manager  
Dolby Headphone 2  
Dolby Virtual Speaker 2  
SRS CS Headphone  
Dolby Digital  
MPEG-2 AAC LC 5.1  
Dolby Digital Plus  
Crossbar (Down-mix / Up-mix)  
(Simultaneous Process)  
Dolby TrueHD3  
–4:1/2:1 Down-sampling2  
Same as CS497014 +  
DTS, DTS-ES, DTS96/24  
DTS-HD Master Audio3  
DTS-HD High Res Audio3  
SRS TruSurround HD/HD4  
SRS TruVolume 7.1  
Multichannel  
CS497004  
300MACS  
Same as CS497014 +  
DTS Neo:6, DTS Neural  
Surround  
Dolby Volume  
Multichannel  
CS497024  
DTS Express 5.1  
300MACS  
1. Additional processing (MPMA, MPMB/VPM, PPM) post any of the HD audio decoders may be limited. Contact your Cirrus Logic  
FAE for the latest concurrency matrix.  
2. Downsampling and Upsampling functionality is located in the operating system. The Cirrus Decimator (Down-Sampler) is also  
available as a separate post-processing module that is described in the application note AN288PPI.  
3. The indicated HD audio decoder algorithms require external SDRAM. Consult your Cirrus Logic FAE for the recommended  
SDRAM size for your design.  
2.1 Migrating from CS495xx(3) to CS4970x4  
CS4970x4 was designed to provide an easy upgrade path from the CS495xx and CS4953x. There are some  
small differences the hardware designer should be aware of:  
• The PLL supply voltage on the CS4970x4 is 3.3V vs. 1.8V on the CS495xx.  
• The PLL filter topology is simpler when using the CS4970x4 rather than the CS495xx.  
• The CS4970x4 adds support for Time-division multiplexing (TDM) mode on both audio input and output  
ports.  
• The CS4970x4 does not support external static random access memory (SRAM) operation.  
• The CS4970x4 external Synchronous dynamic random access memory (SDRAM) bus speed is fixed at  
150 MHz vs. the 120 MHz maximum bus speed for the CS495xx. Some firmware modules also support a  
75 MHz CS4970x4 SDRAM bus speed. Refer to AN304 for details.  
• The CS4970x4 CLKOUT pin can output XTALI or XTALI/2. The CS495xx can only output XTALI.  
2.2 Licensing  
Licenses are required for all of the third party audio decoding/processing algorithms listed below, including the  
application notes. Contact your local Cirrus Sales representative for more information.  
3 Code Overlays  
The suite of software available for the CS4970x4 family consists of operating systems (OS) and a library of  
overlays. The overlays have been divided into three main groups: decoders, matrix processors, and  
postprocessors. All software components are defined in the following list:  
DS752F1  
5
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
OS/Kernel - Encompasses all non-audio processing tasks, including loading data from external memory,  
processing host messages, calling audio-processing subroutines, auto-detection, error concealment, etc.  
Decoders - Any module that initially writes data into the audio I/O buffers, e.g. AC-3, DTS, PCM, etc. All  
the decoding/processing algorithms listed require delivery of PCM or IEC61937-packed, compressed data  
2
via I S- or LJ-formatted digital audio to the CS4970x4 from A/D converters, SPDIF Rx, HDMI Rx, etc.  
Matrix-processors - Any module that processes audio I/O buffer PCM data in-place before the Post-  
processors. Generally speaking, these modules alter the number of valid channels in the audio I/O buffer  
through processes like Virtualization (n2 channels) or Matrix Decoding (2n channels). Examples are  
Dolby ProLogic IIx and DTS Neo:6.  
Virtualizer-processor - Any module that encodes PCM data into fewer output channels than input  
channels (n2 channels) with the effect of providing “phantom” speakers to represent the physical audio  
channels that were eliminated. Examples are Dolby Headphone 2 and Dolby Virtual Speaker 2. Generally  
speaking, these modules reduce the number of valid channels in the audio I/O buffer.  
Post-processors - Any module that processes audio I/O buffer PCM data in-place after the matrix  
processors. Examples are bass management, audio manager, tone control, EQ, delay, customer-specific  
effects, Dolby Headphone/Virtual Speaker, etc.  
The overlay structure reduces the time required to reconfigure the DSP when a processing change is  
requested. Each overlay can be reloaded independently without disturbing the other overlays. For example,  
when a new decoder is selected, the OS, matrix-, and post-processors do not need to be reloaded — only the  
new decoder (the same is true for the other overlays).  
4 Hardware Functional Description  
4.1 Coyote DSP Core  
The CS4970x4 is a dual-core Coyote DSP with separate X and Y data and P code memory spaces. Each core  
is a high-performance, 32-bit, user-programmable, fixed-point DSP that is capable of performing two multiply  
accumulate (MAC) operations per clock cycle. Each core has eight 72-bit accumulators, four X- and four Y-data  
registers, and 12 index registers.  
Both DSP cores are coupled to a flexible DMA engine. The DMA engine can move data between peripherals  
such as the digital audio input (DAI) and digital audio output (DAO), external memory, or any DSP core  
memory, all without the intervention of the DSP. The DMA engine offloads data move instructions from the DSP  
core, leaving more MIPS available for signal processing instructions.  
CS4970x4 functionality is controlled by application codes that are stored in on-board ROM or downloaded to  
the CS4970x4 from a host MCU or external FLASH/EEPROM. Users can choose to use standard audio  
decoder and post-processor modules which are available from Cirrus Logic.  
The CS4970x4 is suitable for audio decoder, audio post-processor, audio encoder, DVD audio/video player,  
and digital broadcast decoder applications.  
4.1.1 DSP Memory  
Each DSP core has its own on-chip data and program RAM and ROM and does not require external memory  
for any of today’s popular audio algorithms including Dolby Digital Surround EX, AAC Multichannel, DTS-ES  
96/24, and THX Ultra2. However, if the end-system design requires support of the new high-definition audio  
formats, external SDRAM will be needed to support Dolby TrueHD and DTS-HD master audio.  
The memory maps for the DSPs are as follows. All memory sizes are composed of 32-bit words.  
DS752F1  
6
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
Table 3. CS4970x4 DSP Memory Sizes  
Memory  
Type  
DSP A  
DSP B  
X
Y
P
16K SRAM, 32K ROM  
24K SRAM, 32K ROM  
8K SRAM, 32K ROM  
10K SRAM, 8K ROM  
16K SRAM, 16K ROM  
8K SRAM, 24K ROM  
4.1.2 DMA Controller  
The powerful 12-channel DMA controller can move data between 8 on-chip resources. Each resource has its  
own arbiter: X, Y, and P RAM/ROMs on DSP A; X, Y, and P RAM/ROMs on DSP B; external memory; and the  
peripheral bus. Modulo and linear addressing modes are supported, with flexible start address and increment  
controls. The service interval for each DMA channel as well as up to 6 interrupt events, is programmable.  
4.2 On-chip DSP Peripherals  
4.2.1 Digital Audio Input Port (DAI)  
The 12-channel (6-line) DAI port supports a wide variety of data input formats. The port is capable of accepting  
PCM or IEC61937. Up to 32-bit word lengths are supported. Additionally, support is provided for audio data  
input to the DSP via the DAI from an HDMI receiver.  
The port has two independent slave-only clock domains. Each data input can be independently assigned to a  
clock domain. The sample rate of the input clock domains can be determined automatically by the DSP, which  
off-loads the task of monitoring the SPDIF receiver from the host. A time-stamping feature allows the input data  
to be sample-rate converted via software.  
4.2.2 Digital Audio Output Port (DAO)  
There are two DAO ports. Each port can output 8 channels of up to 32-bit PCM data. The port supports data  
rates from 32 kHz to 192 kHz. Each port can be configured as an independent clock domain in slave mode, or  
the ratio of the two clocks can be set to even multiples of each other in master mode. The two ports can also be  
ganged together into a single clock domain. Each port has one serial audio pin that can be configured as a  
192-kHz SPDIF transmitter (data with embedded clock on a single line).  
2
4.2.3 Serial Control Port 1 & 2 (I C or SPI)  
There are two on-chip serial control ports that are capable of operating as master or slave in either I2C or SPI  
modes. SCP1 defaults to slave operation. It is dedicated for external host-control and supports an external  
clock up to 50 MHz in SPI mode. This high clock speed enables very fast code download, control or data  
delivery. SCP2 defaults to master mode and is dedicated for booting from external serial Flash memory or for  
audio sub-system control.  
4.2.4 External Memory Interface  
The external memory interface controller supports up to 128 Mbits of SDRAM, using a 16-bit data bus.  
4.2.5 General Purpose Input/Output (GPIO)  
Many of the CS4970x4 peripheral pins are multiplexed with GPIO. Each GPIO can be configured as an output,  
an input, or an input with interrupt. Each input-pin interrupt can be configured as rising edge, falling edge,  
active-low, or active-high.  
4.2.6 Phase-locked Loop (PLL)-based Clock Generator  
The low-jitter PLL generates integer or fractional multiples of a reference frequency which are used to clock the  
DSP core and peripherals. Through a second PLL divider chain, a dependent clock domain can be output on  
the DAO port for driving audio converters. The CS4970x4 defaults to running from the external reference  
frequency and can be switched to use the PLL output after overlays have been loaded and configured, either  
DS752F1  
7
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
through master boot from an external FLASH or through host control. A built-in crystal oscillator circuit with a  
buffered output is provided. The buffered output frequency ratio is selectable between 1:1 (default) or 2:1.  
4.3 DSP I/O Description  
4.3.1 Multiplexed Pins  
Many of the CS4970x4 pins are multi-functional. For details on pin functionality please refer to the CS4970x4  
System Designer’s Guide.  
4.3.2 Termination Requirements  
Open-drain pins on the CS4970x4 must be pulled high for proper operation. Please refer to the CS4970x4  
System Designer’s Guide to identify which pins are open-drain and what value of pull-up resistor is required for  
proper operation.  
Mode select pins on the CS4970x4 are used to select the boot mode upon the rising edge of reset. A detailed  
explanation of termination requirements for each communication mode select pin can be found in the  
CS4970x4 System Designer’s Guide.  
4.3.3 Pads  
The CS4970x4 I/O operates from the 3.3 V supply and is tolerant within 5 V.  
4.4 Application Code Security  
The external program code may be encrypted by the programmer to protect any intellectual property it may  
contain. A secret, customer-specific key is used to encrypt the program code that is to be stored external to the  
device.  
5 Characteristics and Specifications  
Note: All data sheet minimum and maximum timing parameters are guaranteed over the rated voltage  
and temperature. All data sheet typical parameters are measured under the following conditions:  
T = 25 °C, C = 20 pF, VDD = 1.8 V, VDDA = VDDIO = 3.3 V, GNDD = GNDIO = GNDA = 0 V.  
L
5.1 Absolute Maximum Ratings  
(GNDD = GNDIO = GNDA = 0 V; all voltages with respect to 0 V)  
Parameter Symbol  
Min  
Max  
Unit  
DC power supplies:  
Core supply  
PLL supply  
I/O supply  
VDD  
VDDA  
VDDIO  
–0.3  
–0.3  
–0.3  
2.0  
3.6  
3.6  
0.3  
V
V
V
V
|VDDA – VDDIO|  
Input pin current, any pin except supplies  
Input voltage on PLL_REF_RES  
Input voltage on I/O pins  
I
+/- 10  
3.6  
mA  
V
in  
V
-0.3  
-0.3  
-65  
filt  
V
5.0  
V
inio  
Storage temperature  
T
150  
°C  
stg  
CAUTION: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is  
not guaranteed at these extremes.  
DS752F1  
8
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
5.2 Recommended Operating Conditions  
(GNDD = GNDIO = GNDA = 0 V; all voltages with respect to 0 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DC power supplies:  
Core supply  
PLL supply  
I/O supply  
VDD  
VDDA  
VDDIO  
1.71  
3.13  
3.13  
1.8  
3.3  
3.3  
0
1.89  
3.46  
3.46  
V
V
V
V
|VDDA – VDDIO|  
Ambient operating temperature  
T
A
Commercial Grade (CQZ/CVZ)  
Commercial  
0
0
+25  
+ 70  
°C  
T
+125  
ºC  
j
Note: It is recommended that the 3.3 V IO supply come up ahead of or simultaneously with the 1.8 V core supply.  
5.3 Digital DC Characteristics  
(Measurements performed under static conditions.)  
Parameter  
High-level input voltage  
Symbol  
Min  
2.0  
Typ  
Max  
Unit  
V
V
IH  
Low-level input voltage, except XTI  
Low-level input voltage, XTI  
Input Hysteresis  
V
0.4  
0.8  
0.6  
V
V
V
V
IL  
V
ILXTI  
V
V
hys  
OH  
High-level output voltage (IO = -4mA), except XTI, SDRAM  
VDDIO * 0.9  
pins  
Low-level output voltage (IO = 4mA), except XTI, SDRAM  
V
VDDIO * 0.1  
V
OL  
pins  
SDRAM High-level output voltage (IO = -8mA)  
SDRAM Low-level output voltage (IO = 8mA)  
Input leakage current (all digital pins with internal pull-up  
V
V
I
VDDIO * 0.9  
V
V
A  
OH  
VDDIO * 0.1  
5
OL  
IN  
resistors disabled)  
Input leakage current (all digital pins with internal pull-up  
I
70  
A  
IN-PU  
resistors enabled, and XTI)  
5.4 Power Supply Characteristics  
(Measurements performed under operating conditions.)  
Parameter  
Power supply current:  
Min  
Typ  
Max  
Unit  
Core and I/O operating: VDD1  
350  
3.5  
120  
mA  
mA  
mA  
PLL operating: VDDA  
With external memory and most ports operating: VDDIO  
1.Dependent on application firmware and DSP clock speed.  
DS752F1  
9
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
5.5 Thermal Data (128-pin LQFP)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Thermal Resistance (Junction to Ambient)  
ja  
°C / Watt  
Two-layer Board1  
Four-layer Board2  
53  
44  
Thermal Resistance (Junction to Top of Package)  
Two-layer Board1  
Four-layer Board2  
jt  
°C / Watt  
.45  
.39  
Notes: 1. Two-layer board is specified as a 76 mm X 114 mm, 1.6 mm thick FR-4 material with 1-oz. copper covering 20% of the top and  
bottom layers.  
2. Four-layer board is specified as a 76 mm X 114 mm, 1.6 mm thick FR-4 material with 1-oz. copper covering 20% of the top and  
bottom layers and 0.5-oz. copper covering 90% of the internal power plane and ground plane layers.  
3. To calculate the die temperature for a given power dissipation  
j = Ambient Temperature + [ (Power Dissipation in Watts) * ja ]  
4. To calculate the case temperature for a given power dissipation  
c = j - [ (Power Dissipation in Watts) * jt  
DS752F1  
10  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
5.6 Switching Characteristics—RESET  
Parameter  
RESET minimum pulse width low  
Symbol  
Min  
1
Max  
Unit  
s  
T
rstl  
All bidirectional pins high-Z after RESET low  
Configuration pins setup before RESET high  
Configuration pins hold after RESET high  
T
100  
ns  
rst2z  
T
50  
20  
ns  
rstsu  
T
ns  
rsthld  
RESET#  
HS[3:0]  
All Bidirectional  
Pins  
Trstsu  
Trsthld  
Trst2z  
Trstl  
Figure 1. RESET Timing  
5.7 Switching Characteristics — XTI  
Parameter  
External Crystal operating frequency1  
XTI period  
Symbol  
Min  
12.288  
41  
Max  
24.576  
81.4  
Unit  
MHz  
ns  
F
xtal  
T
clki  
XTI high time  
T
16.4  
16.4  
10  
ns  
clkih  
XTI low time  
T
ns  
clkil  
External Crystal Load Capacitance (parallel resonant)2  
External Crystal Equivalent Series Resistance  
C
18  
pF  
L
ESR  
50  
1. Part characterized with the following crystal frequency values: 12.288 and 24.576 MHz.  
2. CL refers to the total load capacitance as specified by the crystal manufacturer. Crystals which require a CL outside this range  
should be avoided. The crystal oscillator circuit design should follow the crystal manufacturer’s recommendation for load capacitor  
selection.  
XTI  
tclkih  
tclkil  
Tclki  
Figure 2. XTI Timing  
DS752F1  
11  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
5.8 Switching Characteristics — Internal Clock  
Parameter  
Symbol  
Min  
Max  
Unit  
Internal DCLK frequency1  
F
MHz  
dclk  
CS497004-CQZ  
CS497004-CQZR  
CS497024-CVZ  
CS497024-CVZR  
CS497014-CVZ  
CS497014-CVZR  
CS497024-CVZ  
CS497024-CVZR  
F
131  
xtal  
Internal DCLK period1  
DCLKP  
ns  
CS497004-CQZ  
CS497004-CQZR  
CS497024-CVZ  
CS497024-CVZR  
CS497014-CVZ  
CS497014-CVZR  
CS497024-CVZ  
CS497024-CVZR  
7.63  
1/F  
xtal  
1. After initial power-on reset, Fdclk = Fxtal. After initial kick-start commands, the PLL is locked to max Fdclk and remains locked until  
the next power-on reset.  
DS752F1  
12  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
5.9 Switching Characteristics — Serial Control Port - SPI Slave Mode  
Parameter  
SCP_CLK frequency1,2  
Symbol  
Min  
24  
20  
20  
5
Typical  
Max  
25  
11  
20  
Units  
MHz  
ns  
f
t
spisck  
spicss  
SCP_CS falling to SCP_CLK rising2  
SCP_CLK low time2  
t
ns  
spickl  
spickh  
spidsu  
SCP_CLK high time2  
t
ns  
Setup time SCP_MOSI input  
t
ns  
Hold time SCP_MOSI input  
t
5
ns  
spidh  
SCP_CLK low to SCP_MISO output valid2  
SCP_CLK falling to SCP_IRQ rising2  
SCP_CS rising to SCP_IRQ falling2  
SCP_CLK low to SCP_CS rising2  
SCP_CS rising to SCP_MISO output high-Z  
SCP_CLK rising to SCP_BSY falling2  
t
0
ns  
spidov  
spiirqh  
t
ns  
t
ns  
spiirql  
t
24  
ns  
spicsh  
t
20  
ns  
spicsdz  
t
3 DCLKP+20  
*
ns  
spicbsyl  
1. The specification fspisck indicates the maximum speed of the hardware. The system designer should be aware that the actual  
maximum speed of the communication port may be limited by the firmware application. Flow control using the SCP_BSY pin  
should be implemented to prevent overflow of the input data buffer. At boot the maximum speed is Fxtal/3.  
2. When SCP1 is in SPI slave mode, very slow rise and fall times of the SCP_CLK edges may make the edges of the SCP_CLK  
more susceptible to noise, resulting in non-smooth edges. Any glitch at the threshold levels of the SCP port input signals could  
result in abnormal operation of the port. In systems that have noise coupling onto SCP_CLK, slow rise and fall times may cause  
host communication problems. Increasing rise time makes host communication more reliable.  
tspicss  
SCP_CS#  
tspickl  
tspicsh  
1
2
6
7
0
7
0
5
6
SCP_CLK  
SCP_MOSI  
SCP_MISO  
SCP_IRQ#  
SCP_BSY#  
fspisck  
tspickh  
A6  
A5  
A0  
R/W  
MSB  
MSB  
LSB  
LSB  
tspidsu  
tspidh  
tspidov  
tspicsdz  
tspiirqh  
tspiirql  
tspibsyl  
Figure 3. Serial Control Port - SPI Slave Mode Timing  
DS752F1  
13  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
5.10 Switching Characteristics — Serial Control Port - SPI Master Mode  
Parameter  
SCP_CLK frequency1, 2  
Symbol Min  
Typical  
Max  
Units  
MHz  
ns  
f
F
/2  
xtal  
spisck  
spicss  
SCP_CS falling to SCP_CLK rising 3  
t
11*DCLKP +  
(SCP_CLK PERIOD)/2  
SCP_CLK low time  
t
16.9  
16.9  
11  
11  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
spickl  
spickh  
spidsu  
SCP_CLK high time  
t
Setup time SCP_MISO input  
Hold time SCP_MISO input  
SCP_CLK low to SCP_MOSI output valid  
SCP_CLK low to SCP_CS falling  
SCP_CLK low to SCP_CS rising  
t
t
5
spidh  
t
spidov  
t
7
spicsl  
t
11*DCLKP +  
spicsh  
(SCP_CLK PERIOD)/2  
Bus free time between active SCP_CS  
t
3*DCLKP  
ns  
ns  
spicsx  
SCP_CLK falling to SCP_MOSI output high-Z  
t
20  
spidz  
1. The specification fspisck indicates the maximum speed of the hardware. The system designer should be aware that the actual  
maximum speed of the communication port may be limited by the firmware application.  
2. See Section 5.7.  
3. SCP_CLK PERIOD refers to the period of SCP_CLK as being used in a given application. It does not refer to a tested parameter.  
.
tspicsx  
tspicss  
EE_CS#  
tspickl  
tspicsh  
tspicsl  
1
2
6
7
0
7
0
5
6
SCP_CLK  
SCP_MISO  
SCP_MOSI  
fspisck  
tspickh  
A6  
A5  
A0  
R/W  
MSB  
MSB  
LSB  
LSB  
tspidsu  
tspidh  
tspidov  
tspidz  
Figure 4. Serial Control Port - SPI Master Mode Timing  
DS752F1  
14  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
2
5.11 Switching Characteristics — Serial Control Port - I C Slave Mode  
Parameter  
Symbol Min  
Typical  
Max  
400  
Units  
kHz  
µs  
SCP_CLK frequency1  
SCP_CLK low time  
SCP_CLK high time  
f
iicck  
t
1.25  
1.25  
1.25  
iicckl  
t
µs  
iicckh  
SCP_SCK rising to SCP_SDA rising or falling for START or  
STOP condition  
t
µs  
iicckcmd  
START condition to SCP_CLK falling  
t
1.25  
2.5  
3
18  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
iicstscl  
SCP_CLK falling to STOP condition  
t
iicstp  
Bus free time between STOP and START conditions  
Setup time SCP_SDA input valid to SCP_CLK rising  
Hold time SCP_SDA input after SCP_CLK falling2  
SCP_CLK low to SCP_SDA out valid  
SCP_CLK falling to SCP_IRQ rising  
t
iicbft  
iicsu  
t
100  
0
t
iich  
t
iicdov  
iicirqh  
t
3 DCLKP + 40  
*
NAK condition to SCP_IRQ low  
t
3 DCLKP + 20  
*
3 DCLKP + 20  
iicirql  
SCP_CLK rising to SCB_BSY low  
t
iicbsyl  
*
1. The specification fiicck indicates the maximum speed of the hardware. The system designer should be aware that the actual  
maximum speed of the communication port may be limited by the firmware application. Flow control using the SCP_BSY pin  
should be implemented to prevent overflow of the input data buffer.  
2. This parameter is measured from the ViL level at the falling edge of the clock.  
tiicckcmd  
tiicckl  
tiicr  
tiicf  
tiicckcmd  
0
1
6
7
8
0
1
6
7
8
SCP_CLK  
SCP_SDA  
SCP_IRQ#  
SCP_BSY#  
tiicstp  
tiicstscl  
tiicckh  
tiicdov  
R/W  
fiicck  
tiicbft  
A6  
A0  
ACK MSB  
ACK  
LSB  
tiicirqh  
tiicirql  
tiicsu  
tiich  
tiiccbsyl  
Figure 5. Serial Control Port - I2C Slave Mode Timing  
DS752F1  
15  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
2
5.12 Switching Characteristics — Serial Control Port - I C Master Mode  
Parameter  
Symbol  
Min  
Max  
400  
Units  
kHz  
µs  
SCP_CLK frequency1  
SCP_CLK low time  
SCP_CLK high time  
f
iicck  
t
1.25  
1.25  
1.25  
iicckl  
t
µs  
iicckh  
SCP_SCK rising to SCP_SDA rising or falling for START or STOP  
condition  
t
µs  
iicckcmd  
START condition to SCP_CLK falling  
t
1.25  
2.5  
3
36  
µs  
µs  
µs  
ns  
ns  
ns  
iicstscl  
SCP_CLK falling to STOP condition  
t
iicstp  
Bus free time between STOP and START conditions  
Setup time SCP_SDA input valid to SCP_CLK rising  
Hold time SCP_SDA input after SCP_CLK falling2  
SCP_CLK low to SCP_SDA out valid  
t
iicbft  
iicsu  
t
100  
0
t
iich  
t
iicdov  
1. The specification fiicck indicates the maximum speed of the hardware. The system designer should be aware that the actual  
maximum speed of the communication port may be limited by the firmware application.  
2. This parameter is measured from the ViL level at the falling edge of the clock.  
tiicckcmd  
t
tiicr  
t
iicf  
tiicckcmd  
iicckl  
0
1
6
7
8
0
1
6
7
8
SCP_CLK  
SCP_SDA  
t
iicstp  
tiicstscl  
t
tiicdov  
R/W  
fiicck  
tiicb  
iicckh  
A6  
A0  
ACK MSB  
ACK  
LSB  
tiicsu  
tiich  
Figure 6. Serial Control Port - I2C Master Mode Timing  
5.13 Switching Characteristics — Parallel Control Port - Intel Slave Mode  
Parameter  
Symbol Min  
Typical  
Max Unit  
Address setup before PCP_CS and PCP_RD low or PCP_CS and  
PCP_WR low  
t
5
ns  
ias  
Address hold time after PCP_CS and PCP_RD low or PCP_CS and  
PCP_WR high  
t
5
ns  
iah  
Read  
DS752F1  
16  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
Parameter  
Symbol Min  
Typical  
Max Unit  
Delay between PCP_RD then PCP_CS low or PCP_CS then  
PCP_RD low  
t
0
ns  
icdr  
Data valid after PCP_CS and PCP_RD low  
PCP_CS and PCP_RD low for read  
t
24  
8
18  
18  
ns  
ns  
ns  
ns  
ns  
idd  
t
irpw  
Data hold time after PCP_CS or PCP_RD high  
Data high-Z after PCP_CS or PCP_RD high  
t
idhr  
t
30  
idis  
PCP_CS or PCP_RD high to PCP_CS and PCP_RD low for next  
read1  
t
ird  
PCP_CS or PCP_RD high to PCP_CS and PCP_WR low for next  
write1  
t
30  
ns  
ns  
irdtw  
t
12  
PCP_RD rising to PCP_IRQ rising  
irdirqhl  
Write  
Delay between PCP_WR then PCP_CS low or PCP_CS then  
PCP_WR low  
t
0
ns  
icdw  
Data setup before PCP_CS or PCP_WR high  
PCP_CS and PCP_WR low for write  
t
8
24  
8
ns  
ns  
ns  
ns  
idsu  
t
iwpw  
Data hold after PCP_CS or PCP_WR high  
t
idhw  
iwtrd  
PCP_CS or PCP_WR high to PCP_CS and PCP_RD low for next  
read1  
t
30  
PCP_CS or PCP_WR high to PCP_CS and PCP_WR low for next  
write1  
t
30  
ns  
ns  
iwd  
t
2*DCLKP + 20  
PCP_WR rising to PCP_BSY falling  
iwrbsyl  
1. The system designer should be aware that the actual maximum speed of the communication port may be limited by the firmware  
application. Hardware handshaking on the PCP_BSY pin/bit should be observed to prevent overflowing the input data buffer.  
CS4953x4/CS4970x4 System Designer’s Guide should be consulted for the firmware speed limitations.  
PCP_A[3:0]  
tiah  
LSP  
tidhr  
MSP  
PCP_D[7:0]  
PCP_CS#  
PCP_WR#  
PCP_RD#  
PCP_IRQ#  
tias  
tidd  
ticdr  
tidis  
tirpw  
tird  
tirdtw  
tirdirqh  
Figure 7. Parallel Control Port - Intel Slave Mode Read Cycle  
DS752F1  
17  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
PCP_A[3:0]  
PCP_D[7:0]  
PCP_CS#  
PCP_RD#  
PCP_WR#  
PCP_BSY#  
tiah  
LSP  
MSP  
tias  
tidhw  
ticdw  
tidsu  
tiwpw  
tiwd  
tiwtrd  
tiwrbsyl  
Figure 8. Parallel Control Port - Intel Slave Mode Write Cycle  
DS752F1  
18  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
5.14 Switching Characteristics — Parallel Control Port - Motorola Slave Mode  
Symbo  
l
Parameter  
Min  
5
Typical  
Max  
Unit  
ns  
Address setup before PCP_CS and PCP_DS low  
Address hold time after PCP_CS and PCP_DS low  
t
mas  
mah  
t
5
ns  
Read  
Delay between PCP_DS then PCP_CS low or PCP_CS then  
PCP_DS low  
t
0
ns  
mcdr  
Data valid after PCP_CS and PCP_DS low with PCP_R/W high  
PCP_CS and PCP_DS low for read  
t
24  
8
19  
18  
ns  
ns  
ns  
ns  
ns  
mdd  
t
mrpw  
Data hold time after PCP_CS or PCP_DS high after read  
Data high-Z after PCP_CS or PCP_DS high after read  
t
mdhr  
t
30  
mdis  
PCP_CS or PCP_DS high to PCP_CS and PCP_DS low for next  
read1  
t
mrd  
PCP_CS or PCP_DS high to PCP_CS and PCP_DS low for next  
write1  
t
30  
ns  
ns  
mrdtw  
t
12  
PCP_RW rising to PCP_IRQ falling  
mrwirqh  
Write  
Delay between PCP_DS then PCP_CS low or PCP_CS then  
PCP_DS low  
t
0
ns  
mcdw  
Data setup before PCP_CS or PCP_DS high  
PCP_CS and PCP_DS low for write  
t
8
24  
24  
8
ns  
ns  
ns  
ns  
ns  
ns  
mdsu  
t
mwpw  
mrwsu  
PCP_R/W setup before PCP_CS AND PCP_DS low  
PCP_R/W hold time after PCP_CS or PCP_DS high  
Data hold after PCP_CS or PCP_DS high  
t
t
mrwhld  
t
8
mdhw  
mwtrd  
PCP_CS or PCP_DS high to PCP_CS and PCP_DS low with  
PCP_R/W high for next read1  
t
30  
PCP_CS or PCP_DS high to PCP_CS and PCP_DS low for next  
write1  
t
30  
ns  
ns  
mwd  
t
2*DCLKP + 20  
PCP_RW rising to PCP_BSY falling  
mrwbsyl  
1. The system designer should be aware that the actual maximum speed of the communication port may be limited by the firmware  
application. Hardware handshaking on the PCP_BSY pin/bit should be observed to prevent overflowing the input data buffer.  
CS4953x4/CS4970x4 System Designer’s Guide should be consulted for the firmware speed limitations.  
DS752F1  
19  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
PCP_A[3:0]  
PCP_AD[7:0]  
PCP_CS#  
tmas  
tmah  
LSP  
tmdhr  
MSP  
tmdd  
tmrwsu  
tmcdr  
tmdis  
tmrwhld  
PCP_WR#  
PCP_DS#  
tmrdtw  
tmrpw  
tmrd  
tmrwirqh  
PCP_IRQ#  
Figure 9. Parallel Control Port - Motorola Slave Mode Read Cycle Timing  
PCP_A[3:0]  
tmas  
t
mah  
LSP  
tmdsu  
MSP  
PCP_AD[7:0]  
PCP_CS#  
PCP_WR#  
PCP_DS#  
PCP_IRQ#  
tmdhw  
tmrwhld  
tmwpw  
tmcdw  
tmrwsu  
tmwd  
tmwtrd  
tmrwirql  
Figure 10. Parallel Control Port - Motorola Slave Mode Write Cycle Timing  
DS752F1  
20  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
5.15 Switching Characteristics — Digital Audio Slave Input Port  
Parameter  
Symbol  
Min  
40  
45  
10  
10  
10  
5
Max  
Unit  
ns  
%
DAI_SCLK period  
T
daiclkp  
DAI_SCLK duty cycle  
55  
DAI_LRCLK transition from DAI_SCLK active edge  
DAI_SCLK active edge from DAI_LRCLK transition  
Setup time DAI_DATAn  
t
t
ns  
ns  
ns  
ns  
daisstlr  
daislrts  
t
daidsu  
Hold time DAI_DATAn  
t
daidh  
Note: In these diagrams, falling edge is the inactive edge of DAI_SCLK.  
DAI_SCLK  
tdaidsu  
tdaidh  
DAI_DATAn  
Figure 11. Digital Audio Input (DAI) Port Timing Diagram  
Tdaiclkp  
tdaislrts  
DAI_LRCLK  
DAI_LRCLK  
DAI_SCLK  
DAI_SCLK  
Tdaiclkp  
tdaisstlr  
DAIn_DATAn  
DAIn_DATAn  
Figure 12. DAI Slave Timing Diagram  
DS752F1  
21  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
5.16 Switching Characteristics Digital Audio Output Port  
Parameter  
Symbol  
Min  
40  
Max  
Unit  
ns  
DAO_MCLK period  
T
daomclk  
DAO_MCLK duty cycle  
45  
55  
%
DAO_SCLK period for Master or Slave mode1  
DAO_SCLK duty cycle for Master or Slave mode1  
T
40  
ns  
daosclk  
40  
60  
%
1,2  
Master Mode (Output A1 Mode)  
DAO_SCLK delay from DAO_MCLK rising edge,  
DAO_MCLK as an input  
t
t
19  
ns  
daomsck  
DAO_SCLK delay from DAO_LRCLK transition3  
DAO_LRCLK delay from DAO_SCLK transition3  
t
8
8
ns  
ns  
ns  
daomlrts  
daomstlr  
DAO1_DATA[3..0], DAO2_DATA[1..0]  
delay from DAO_SCLK transition3  
t
10  
daomdv  
4
Slave Mode (Output A0 Mode)  
DAO_SCLK active edge to DAO_LRCLK transition  
DAO_LRCLK transition to DAO_SCLK active edge  
DAO_Dx delay from DAO_SCLK inactive edge  
t
10  
10  
ns  
ns  
ns  
daosstlr  
t
daoslrts  
t
12.5  
daosdv  
1. Master mode timing specifications are characterized, not production tested.  
2. Master mode is defined as the CS4970x4 driving both DAO_SCLK, DAO_LRCLK. When MCLK is an input, it is divided to produce  
DAO_SCLK, DAO_LRCLK.  
3. This timing parameter is defined from the non-active edge of DAO_SCLK. The active edge of DAO_SCLK is the point at which the  
data is valid.  
4. Slave mode is defined as DAO_SCLK, DAO_LRCLK driven by an external source.  
tdaomlclk  
tdaomlclk  
DAO_MCLK  
DAO_SCLK  
DAO_MCLK  
DAO_SCLK  
tdaomsck  
tdaomsck  
tdaomdv  
tdaomdv  
DAOn_DATAn  
DAO_LRCLK  
DAOn_DATAn  
DAO_LRCLK  
tdaomlrts  
tdaomlrts  
Note: In these diagrams, falling edge is the inactive edge of DAO_SCLK.  
Figure 13. Digital Audio Port Output Timing Master Mode  
DS752F1  
22  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
tdaosclk  
DAO_LRCLK  
DAO_SCLK  
DAO_LRCLK  
tdaoslrts  
DAO_SCLK  
tdaosclk  
tdaosstlr  
tdaosdv  
DAO_Dx  
DAO_Dx  
Note: In these diagrams, Falling edge is the inactive edge of DAO_SCLK  
Figure 14. Digital Audio Output Timing, Slave Mode (Relationship LRCLK to SCLK)  
5.17 Switching Characteristics — SDRAM Interface  
Refer to Figure 15 through Figure 18.  
(SD_CLKOUT = SD_CLKIN)  
Parameter  
Symbol  
Min  
2.3  
2.3  
Typical  
Max  
Unit  
ns  
SD_CLKIN high time  
SD_CLKIN low time  
t
1
sdclkh  
t
ns  
sdclkl  
SD_CLKOUT rise/fall time  
t
ns  
sdclkrf  
SD_CLKOUT Frequency  
150  
55  
3.8  
MHz  
%
SD_CLKOUT duty cycle  
45  
SD_CLKOUT rising edge to signal valid  
Signal hold from SD_CLKOUT rising edge  
SD_CLKOUT rising edge to SD_DQMn valid  
SD_DQMn hold from SD_CLKOUT rising edge  
SD_DATA valid setup to SD_CLKIN rising edge  
SD_DATA valid hold to SD_CLKIN rising edge  
SD_CLKOUT rising edge to ADDRn valid  
t
ns  
sdcmdv  
t
1.1  
3.8  
ns  
sdcmdh  
t
ns  
sddqv  
t
1.38  
1.3  
2.1  
ns  
sddqh  
t
ns  
sddsu  
t
ns  
sddh  
t
3.8  
ns  
sdav  
DS752F1  
23  
SD_CLKOUT  
SD_CS#  
tsdclkrf  
tsdcmdv  
tsdcmdh  
SD_RAS#  
SD_CAS#  
SD_WE#  
tsddqh  
tsddqv  
SD_DQMn  
11  
00  
SD_An  
tsdav  
tsddsu  
tsddh  
CAS=2  
LSP1  
MSP1  
LSP2  
MSP2  
SD_Dn  
LSP0  
MSP0  
LSP3  
MSP3  
SD_CLKIN  
tsdclkl  
tsdclkh  
Figure 15. External Memory Interface - SDRAM Burst Read Cycle  
SD_CLKOUT  
tsdcmdv  
tsdcmdh  
SD_CS#  
SD_RAS#  
SD_CAS#  
SD_WE#  
LSP0  
MSP0  
LSP1  
MSP1  
LSP2  
MSP2  
LSP3  
MSP3  
SD_Dn  
SD_An  
tsdav  
SD_DQMn  
00  
11  
tsddqv  
tsddqh  
Figure 16. External Memory Interface - SDRAM Burst Write Cycle  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
SD_CLKOUT  
tsdcmdv  
tsdcmdv  
tsdcmdh  
SD_CS#  
SD_RAS#  
SD_CAS#  
SD_WE#  
SD_DQMn  
SD_An  
SD_Dn  
Figure 17. External Memory Interface - SDRAM Auto Refresh Cycle  
DS752F1  
25  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
SD_CLKOUT  
tsdcmdv  
tsdcmdh  
SD_CS#  
SD_RAS#  
SD_CAS#  
SD_WE#  
SD_DQMn  
SD_An  
OPCODE  
SD_Dn  
Figure 18. External Memory Interface - SDRAM Load Mode Register Cycle  
DS752F1  
26  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
6 Ordering Information  
The CS4970x4 family part number is described as follows:  
CS497NNI-XYZ  
where  
NN - Product Number Variant  
I - ROM ID Number  
X - Product Grade  
Y - Package Type  
Z - Lead (Pb) Free  
Table 4. Ordering Information  
Grade  
Part No.  
Status  
Temp. Range  
Package  
CS497014-CVZ  
Active  
Active  
Active  
Active  
Commercial  
Commercial  
Commercial  
Commercial  
0 to +70 °C  
0 to +70 °C  
0 to +70 °C  
0 to +70 °C  
128-pin LQFP  
1
CS47014-CVZR  
CS497024-CVZ  
CS497024-CVZR  
128-pin LQFP  
1
1. R = Tape and reel  
Note: Please contact the factory for availability of the -D (automotive grade) package.  
7 Environmental, Manufacturing, and Handling Information  
Table 5. Environmental, Manufacturing, & Handling Information  
Model Number  
Peak Reflow Temp  
MSL Rating*  
Max Floor Life  
CS497014-CVZ  
CS47014-CVZR  
CS497024-CVZ  
CS497024-CVZR  
260 °C  
260 °C  
260 °C  
260 °C  
3
3
3
3
7 Days  
7 Days  
7 Days  
7 Days  
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.  
DS752F1  
27  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
8 Device Pin-Out Diagram  
8.1 128-Pin LQFP Pin-Out Diagram  
1
5
SD_A0, EXT_A0  
SD_A1, EXT_A1  
GPIO38, PCP_WR# / DS#, SCP2_CLK  
GPIO11, PCP_A3, AS#, SCP2_MISO / SDA  
100  
GPIO10, PCP_A2 / A10, SCP2_MOSI  
VDDIO5  
SD_A2, EXT_A2  
GND4  
GPOI9, SCP1_IRQ#  
GPIO8, PCP_IRQ#, SCP2_IRQ#  
SD_A3, EXT_A3  
SD_A4, EXT_A4  
95 VDD4  
GPIO7, SCP1_CS#, IOWAIT  
GPIO6, PCP_CS#, SCP2_CS#  
VDDIO7  
EXT_CS2#  
GNDIO7  
SD_A5, EXT_A5  
GNDIO4  
10  
15  
20  
25  
30  
35  
GPIO3, DDAC  
GPIO2  
SD_A6, EXT_A6  
90 SD_A7, EXT_A7  
VDDIO4  
VDD7  
GPIO1  
GPIO0, EE_CS#  
SD_A8, EXT_A8  
SD_A9, EXT_A9  
GND3  
GND7  
XTAL_OUT  
XTI  
85 SD_A11, EXT_A11  
SD_A12, EXT_A12  
VDD3  
XTO  
GNDA  
CS497xx4  
128-Pin LQFP  
PLL_REF_RES  
SD_CLKEN  
SD_CLKIN  
VDDA (3.3V)  
VDD8  
80 SD_CLKOUT  
SD_DQM1  
GPIO14, DAI1_DATA3, TM3, DSD3  
GPIO13, DAI1_DATA2, TM2, DSD2  
GND8  
SD_D8, EXT_D8  
SD_D9, EXT_D9  
GNDIO3  
GPIO12, DAI1_DATA1, TM1, DSD1  
DAI1_DATA0, TM0, DSD0  
VDDIO8  
75 SD_D10, EXT_D10  
SD_D11, EXT_D11  
VDDIO3  
DAI1_SCLK, DSD_CLK  
DAI1_LRCLK, DSD4  
SD_D12, EXT_D12  
SD_D13, EXT_D13  
70 SD_D14, EXT_D14  
SD_D15, EXT_D15  
SD_D0, EXT_D0  
GNDIO8  
GPIO42, BDI_REQ# , DAI2_LRCLK, PCP_IRQ# / BSY#  
GPIO43, BDI_CLK, DAI2_SCLK  
BDI_DATA, DAI2_DATA, DSD5  
GPIO26, DAO2_DATA3 / XMTB  
GNDIO2  
DBDA  
DBCK  
EXT_WE#  
65 SD_D1, EXT_D1  
GPIO20, DAO2_DATA2  
Figure 19. 128-Pin LQFP Pin-Out Diagram  
DS752F1  
28  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
9 Package Mechanical Drawings  
9.1 128-Pin LQFP Package Drawing  
D
D1  
E1  
E
1
e
b
A
A1  
L
Figure 20. 128-Pin LQFP Package Drawing  
Table 6. 128-Pin LQFP Package Characteristics  
MILLIMETERS  
INCHES  
NOM  
DIM  
MIN  
NOM  
MAX  
MIN  
MAX  
A
A1  
b
1.60  
0.15  
0.27  
.063”  
.006”  
.011”  
0.05  
0.17  
.002”  
.007”  
0.22  
.009”  
.866”  
.787”  
.630”  
.551”  
.020”  
3.5  
D
22.00 BSC  
20.00 BSC  
16.00 BSC  
14.00 BSC  
0.50 BSC  
3.5  
D1  
E
E1  
e
q
0°  
7°  
0°  
7°  
L
0.45  
0.60  
0.75  
.018”  
.024”  
.039” REF  
.030”  
L1  
1.00 REF  
TOLERANCES OF FORM AND POSITION  
ddd  
0.08  
.003”  
DS752F1  
29  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
10 Revision History  
Revision  
Date  
Changes  
PP9  
November, 2010  
Added “Status” column and footnote 1 to Table 4.  
Added Tj conditions to Section 5.2.  
Changed 500 ma to 350 ma in Section 5.4.  
Updated Section 5.15 “Switching Characteristics — Digital Audio Slave Input Port”  
on page 21.  
PP10  
March, 2011  
Updated Section 5.16 “Switching Characteristics — Digital Audio Output Port” on  
page 22.  
Added max internal DCLK frequency and min internal DCLK period to Section 5.8.  
Added notes to Section 5.9. Updated tspickl and tspickh values in Section 5.10.  
Updated tdaosdv max value in Section 5.16.  
PP11  
February, 2012  
PP12  
F1  
October, 2013  
February, 2014  
Updated note in Section 2 overview. Minor change to Section 2.1 title.  
Updated note in Section 2 overview regarding CS4970x4. Changed status of  
CS497024-CVZ and CS497024-CVZR to “Active” in Table 4.  
DS752F1  
30  
CS4970x4 Data Sheet  
32-bit High Definition Audio Decoder DSP Family  
Contacting Cirrus Logic Support  
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.  
To find the one nearest you, go to www.cirrus.com.  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject to  
change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives  
consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE  
PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR  
USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND  
CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY  
AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR  
CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO  
FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING  
ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.  
Cirrus Logic, Cirrus, Cirrus Logic logo designs, Cirrus Framework, and DSP Condenser are trademarks of Cirrus Logic, Inc. All other brand and product names in this  
document may be trademarks or service marks of their respective owners.  
THX is a registered trademark of THX, Ltd. THX Select 2 and THX Ultra 2 are trademarks of THX, Ltd.  
Dolby, Dolby Digital, Dolby Headphone, Virtual Speaker, Pro Logic, Audistry, and Dolby Volume are registered trademarks of Dolby Laboratories, Inc. AAC, AC-3,  
Dolby TrueHD, and Dolby Volume 258 are trademarks of Dolby Laboratories, Inc. Supply of an implementation of Dolby Technology does not convey a license nor  
imply a right under any patent, or any other industrial or Intellectual Property Right of Dolby Laboratories, to use the Implementation in any finished end-user or ready-  
to-use final product. It is hereby notified that a license for such use is required from Dolby Laboratories.  
DTS and DTS Neo:6 are registered trademarks of the Digital Theater Systems, Inc. DTS-ES 96/24, DTS-ES, DTS 6.1, DTS 96/24, DTS Neural Surround, and DTS  
Express are trademarks of Digital Theater Systems, Inc. It is hereby notified that a third-party license from DTS is necessary to distribute software of DTS in any  
finished end-user or ready-to-use final product.  
SRS, SRS 3D, SRS CS Auto, SRS CS Headphone, SRS Circle Cinema 3D, SRS Circle Surround, SRS Circle Surround II, SRS GEQ, SRS Hardlimiter, SRS  
Headphone, SRS Headphone 360, SRS HPF, SRS StudioSound HD, SRS TruEQ, SRS TruMedia, SRS TruSurround, SRS TruSurround XT, SRS TruSurround HD,  
SRS TruSurround HD4, SRS TruVolume, SRS VIP+, SRS WOW, SRS WOW XT, SRS WOW HD are either trademarks or registered trademarks of SRS Labs, Inc.  
SRS, SRS 3D, SRS CS Auto, SRS CS Headphone, SRS Circle Cinema 3D, SRS Circle Surround, SRS Circle Surround II, SRS GEQ, SRS Hardlimiter, SRS  
Headphone, SRS Headphone 360, SRS HPF, SRS StudioSound HD, SRS TruEQ, SRS TruMedia, SRS TruSurround, SRS TruSurround XT, SRS TruSurround HD,  
SRS TruSurround HD4, SRS TruVolume, SRS VIP+, SRS WOW, SRS WOW XT, SRS WOW HD technologies are incorporated under license from SRS Labs, Inc.  
SRS, SRS 3D, SRS CS Auto, SRS CS Headphone, SRS Circle Cinema 3D, SRS Circle Surround, SRS Circle Surround II, SRS GEQ, SRS Hardlimiter, SRS  
Headphone, SRS Headphone 360, SRS HPF, SRS StudioSound HD, SRS TruEQ, SRS TruMedia, SRS TruSurround, SRS TruSurround XT, SRS TruSurround HD,  
SRS TruSurround HD4, SRS TruVolume, SRS VIP+, SRS WOW, SRS WOW XT, SRS WOW HD technologies incorporated in the Cirrus Logic CS4953xx products  
are owned by SRS Labs, a U.S. Corporation and licensed to Cirrus Logic, Inc. Purchaser of Cirrus Logic CS4953xx products must sign a license for use of the chip  
and display of the SRS Labs trademarks. Any products incorporating the Cirrus Logic CS4953xx products must be sent to SRS Labs for review. SRS, SRS 3D, SRS  
CS Auto, SRS CS Headphone, SRS Circle Cinema 3D, SRS Circle Surround, SRS Circle Surround II, SRS GEQ, SRS Hardlimiter, SRS Headphone, SRS Headphone  
360, SRS HPF, SRS Studio-Sound HD, SRS TruEQ, SRS TruMedia, SRS TruSurround, SRS TruSurround XT, SRS TruSurround HD, SRS TruSurround HD4, SRS  
TruVolume, SRS VIP+, SRS WOW, SRS WOW XT, SRS WOW HD technologies are protected under US and foreign patents issued and/or pending. Neither the  
purchase of the Cirrus Logic CS4953xx products, nor the corresponding sale of audio enhancement equipment conveys the right to sell commercialized recordings  
made with any SRS technology/solution. SRS Labs requires all set makers to comply with all rules and regulations as outlined in the SRS Trademark Usage Manual.  
Motorola is a registered trademark of Motorola, Inc. SPI is a trademark of Motorola, Inc.  
Intel is a registered trademark of Intel Corporation.  
I2C is a trademark of Philips Semiconductor.  
DS752F1  
31  

相关型号:

CS497014-CVZ

High Definition Audio Decoder DSP Family with Dual 32-bit DSP Engine Technology
CIRRUS

CS497024-CVZ

32-bit High Definition Audio Decoder DSP Family
CIRRUS

CS497024-CVZR

High Definition Audio Decoder DSP Family with Dual 32-bit DSP Engine Technology
CIRRUS

CS4970X4

High Definition Audio Decoder DSP Family with Dual 32-bit DSP Engine Technology
CIRRUS

CS4970X4_09

High Definition Audio Decoder DSP Family with Dual 32-bit DSP Engine Technology
CIRRUS

CS49DV8

32-bit Dual Audio DSP Engine
CIRRUS

CS49DV8C

32-bit Audio DSP Family
CIRRUS

CS49DV8C-CVZ

32-bit Audio DSP Family
CIRRUS

CS49DV8C-CVZR

32-bit Audio DSP Family
CIRRUS

CS4ARH-1.000-4

暂无描述
RALTRON

CS4ARH-125.000-4

XO, Clock, 1MHz Min, 160MHz Max, 125MHz Nom, CMOS
RALTRON

CS4ARH-156.250-4

XO, Clock, 1MHz Min, 156.25MHz Max, 156.25MHz Nom
RALTRON