WM8608SEFT/RV [CIRRUS]

Consumer Circuit, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, LEAD FREE, MS-026ABC, TQFP-48;
WM8608SEFT/RV
型号: WM8608SEFT/RV
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

Consumer Circuit, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, LEAD FREE, MS-026ABC, TQFP-48

商用集成电路
文件: 总51页 (文件大小:500K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8608  
5 to 7.1 Channel PWM Controller  
DESCRIPTION  
FEATURES  
Multi-channel PWM audio amplifier controller  
The WM8608 comprises a high performance multi-channel  
PWM digital power amplifier controller. Simply by adding  
appropriate power output stages a multi-channel power  
amplifier may be built. Six identical full audio bandwidth  
Supports Stereo, 5.1, 6.1 or 7.1 inputs  
Supports 2.1, 5.1 or 6.1 outputs with optional rear centre  
channel generation  
channels, plus  
a reduced bandwidth sub channel are  
PWM Audio Performance with typical output stage  
provided as PWM outputs, to drive 6 speakers plus Sub.  
100dB SNR (‘A’ weighted @ 48kHz)  
0.01% THD @ 1Watt  
The PCM to PWM converter supports up to 7.1 channels of  
audio, in PCM input formats. These may be mixed down to  
6.1 or 5.1 outputs, by mixing rear channel data into centre  
rear or surround speakers if required. If 5.1 channel data is  
input, the surround data may be processed internally to  
create a pseudo 6.1 signal with rear channel output.  
0.1% THD @ 30Watt  
Integrated Bass Management support with adjustable filter  
Integrated 4-band Graphic Equaliser for 3 front channels  
Adjustable output stage filter compensation for different  
speakers  
A Graphic Equaliser function is provided, plus selectable  
high frequency equalisation to suit different speaker types.  
Independent volume control for each channel is provided.  
Volume control on each 6.1 channel +24dB to -103.5dB in  
0.5dB steps, with volume ramping and auto-mute  
functions  
The WM8608 PWM controller is compatible with integrated  
switching output stages available from a number of vendors  
or alternatively may be used with a discrete output stage  
configuration and achieve similar levels of performance.  
Programmable Dynamic Peak Compressor avoids clipping  
even at high volume settings  
Internal PLL and optional crystal oscillator, supporting  
Audio and MPEG standards  
A Dynamic Peak Compressor with programmable attack  
and decay times is included, which allows headroom for  
tone control, bass management and extra digital gain to be  
provided, without clipping occurring.  
2/3-Wire MPU Serial Control Interface  
Master or Slave Clocking Mode  
Programmable Audio Data Interface Modes  
I2S, Left, Right Justified or DSP  
16/20/24/32 bit Word Lengths  
A Synchroniser allows slaving to LRCLK, thus making the  
WM8608 independent of source MCLK frequency and jitter.  
De-emphasis support for stereo  
The device is controlled via a 2/3 wire serial interface. The  
interface provides access to all features including channel  
selection, volume controls, mutes, de-emphasis and power  
management facilities. The device is supplied in a 48-pin  
TQFP package.  
Selectable CMOS or LVDS digital outputs  
APPLICATIONS  
Surround Sound AV Processors and Hi-Fi systems  
Automotive Audio  
DVD receivers  
Prouct Prview, January 2004, Rev 1.4  
Coright 2004 Wolfson Microelectronics plc  
WOLFSON MICROELECONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
TABLE OF CONTENTS  
DESCRIPTION .......................................................................................................1  
FEATURES.............................................................................................................1  
APPLICATIONS .....................................................................................................1  
PIN CONFIGURATION...........................................................................................3  
ORDERING INFORMATION ..................................................................................3  
TABLE OF CONTENTS .........................................................................................2  
PIN DESCRIPTION ................................................................................................4  
ABSOLUTE MAXIMUM RATINGS.........................................................................5  
ELECTRICAL CHARACTERISTICS ......................................................................6  
TERMINOLOGY.....................................................................................................7  
POWER CONSUMPTION ......................................................................................7  
SIGNAL TIMING REQUIREMENTS.......................................................................8  
POWER SUPPLY.......................................................................................................... 8  
MASTER CLOCK TIMING............................................................................................. 8  
AUDIO INTERFACE TIMING – MASTER MODE .......................................................... 9  
DEVICE DESCRIPTION.......................................................................................14  
INTRODUCTION......................................................................................................... 14  
SIGNAL PATH............................................................................................................. 15  
DIGITAL AUDIO INTERFACE..................................................................................... 16  
AUDIO INTERFACE CONTROL.................................................................................. 19  
MASTER CLOCK AND AUDIO SAMPLE RATES........................................................ 20  
SYNCHRONISER........................................................................................................ 23  
CONTROL INTERFACE OPERATION........................................................................ 24  
INPUT PROCESSOR.................................................................................................. 25  
BASS MANAGEMENT................................................................................................. 28  
GRAPHIC EQUALISER............................................................................................... 30  
DIGITAL DEEMPHASIS .............................................................................................. 32  
DIGITAL VOLUME CONTROL .................................................................................... 32  
SOFT MUTE AND AUTO-MUTE ................................................................................. 34  
DYNAMIC PEAK COMPRESSOR............................................................................... 35  
INTERPOLATION FILTERS........................................................................................ 39  
PCM TO PWM CONVERTER ..................................................................................... 40  
STANDBY, OUTPUT DISABLE AND RESET MODES................................................ 42  
EXTERNAL POWER SUPPLY CLOCK....................................................................... 43  
REGISTER MAP...................................................................................................44  
FILTER RESPONSES................................................................................................. 45  
DIGITAL DE-EMPHASIS CHARACTERISTICS........................................................... 46  
APPLICATION NOTES ........................................................................................47  
START-UP .................................................................................................................. 47  
POWER SUPPLY CONNECTIONS............................................................................. 48  
APPLICATIONS INFORMATION .........................................................................49  
RECOMMENDED EXTERNAL COMPONENTS.......................................................... 49  
RECOMMENDED EXTERNAL COMPONENTS VALUES........................................... 49  
PACKAGE DIMENSIONS ....................................................................................50  
IMPORTANT NOTICE..........................................................................................51  
ADDRESS: .................................................................................................................. 51  
PP Rev 1.4 January 2004  
WOLFSON MICROELECTRONICS plc  
2
www.wolfsonmicro.com  
Product Preview  
WM8608  
PIN CONFIGURATION  
36 35 34 33 32 31 30 29 28 27 26 25  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
BVDD  
OPFRN  
OPFRP  
BGND  
OPRCP  
OPRCN  
BGND  
OPFLN  
OPFLP  
BVDD  
OPSWP  
OPSWN  
BVDD  
EAPDB  
CSB  
TOP  
VIEW  
PWMCLKN  
PWMCLKP  
TEST  
TEST  
SDIN  
AVDD  
SCLK  
AGND  
MODE  
1
2
3
4
5
6
7
8
9
10 11 12  
ORDERING INFORMATION  
DEVICE  
TEMP RANGE  
PACKAGE  
MOISTURE LEVEL  
SENSITIVITY  
WM8608EFT/V  
WM8608SEFT/V  
-25 to + 85°C  
-25 to + 85°C  
TQFP 48 7x7mm  
MSL2  
MSL2  
TQFP 48 7x7mm  
(lead free)  
WM8608EFT/RV  
WM8608SEFT/RV  
-25 to + 85°C  
-25 to + 85°C  
TQFP 48 7x7mm  
(tape and reel)  
MSL2  
MSL2  
TQFP 48 7x7mm  
(lead free, tape and reel)  
Note:  
Reel quantity = 2,200  
PP Rev 1.4 January 2004  
3
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
PIN DESCRIPTION  
PIN  
1
NAME  
XOP  
XIN  
TYPE  
DESCRIPTION  
Crystal oscillator output connection  
Digital Output  
Digital Input  
2
Crystal oscillator input connection (may be left unconnected in slave  
mode)  
3
DGND  
MCLK  
Supply  
Digital negative supply  
4
Digital Input/Output Master clock; 256, 384, 512 fs (fs = word clock frequency) or 27MHz  
5
DVDD  
Supply  
Digital positive supply  
6
DINFRONT  
DINSRND  
DINC_LFE  
DINREAR  
LRCLK  
BCLK  
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Front channel data input  
7
Surround channel data input  
Centre and surround channel data input  
Rear channel data for 6.1 and 7.1 inputs  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
Digital Input/Output Left/right word clock  
Digital IO  
Audio interface bit clock  
Output disable  
OPDIS  
MODE  
Digital Input p.d.  
Digital Input p.d.  
Digital Input  
2/3 Wire control interface mode  
Serial interface clock  
SCLK  
SDIN  
Digital Input/Output Serial interface data  
CSB  
Digital Input  
Digital Output  
Supply  
Serial interface load signal  
EAPDB  
BVDD  
External output stage power down  
PWM output buffer positive supply  
PWM output negative Subwoofer channel  
PWM output positive Subwoofer channel  
PWM output buffer ground supply  
PWM output negative Rear centre (left) channel  
PWM output positive Rear centre (left) channel  
PWM output buffer positive supply  
Analogue negative supply  
OPSWN  
OPSWP  
BGND  
Digital Output  
Digital Output  
Supply  
OPRCN  
OPRCP  
BVDD  
Digital Output  
Digital Output  
Supply  
AGND  
Supply  
CLKPSU  
BGND  
Digital Output  
Supply  
Clock for external PSU  
PWM output buffer ground supply  
PWM output negative Surround right channel  
PWM output positive Surround right channel  
PWM output buffer positive supply  
PWM output negative Surround left channel  
PWM output positive Surround left channel  
PWM output buffer ground supply  
PWM output negative Front centre channel  
PWM output positive Front centre channel  
PWM output buffer positive supply  
PWM output negative Front right channel  
PWM output positive Front right channel  
PWM output buffer ground supply  
PWM output negative Front left channel  
PWM output positive Front left channel  
PWM output buffer positive supply  
PWM Clock negative  
OPSRN  
OPSRP  
BVDD  
Digital Output  
Digital Output  
Supply  
OPSLN  
OPSLP  
BGND  
Digital Output  
Digital Output  
Supply  
OPFCN  
OPFCP  
BVDD  
Digital Output  
Digital Output  
Supply  
OPFRN  
OPFRP  
BGND  
Digital Output  
Digital Output  
Supply  
OPFLN  
OPFLP  
BVDD  
Digital Output  
Digital Output  
Supply  
PWMCLKN  
PWMCLKP  
NC  
Digital Output  
Digital Output  
Not Connected  
Not Connected  
Analogue Supply  
Analogue Supply  
PWM Clock positive  
Do Not Connect  
NC  
Do Not Connect  
AVDD  
Analogue positive supply  
AGND  
Analogue negative supply  
Notes: Digital input pins have Schmitt trigger input buffers. Pins marked ‘p.u.’ or ‘p.d.’ have internal pull-up or pull down.  
PP Rev 1.4 January 2004  
WOLFSON MICROELECTRONICS plc  
4
www.wolfsonmicro.com  
Product Preview  
WM8608  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at  
or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical  
Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
The Moisture Sensitivity Level for each package type is specified in Ordering Information.  
CONDITION  
MIN  
-0.3V  
MAX  
+5V  
Analogue supply voltage (AVDD)  
Digital supply voltage (DVDD)  
PWM output buffer supply voltage (BVDD)  
Voltage range inputs  
-0.3V  
+5V  
-0.3V  
+5V  
DGND -0.3V  
10MHz  
-20°C  
DVDD +0.3V  
50MHz  
+85°C  
Master Clock Frequency  
Operating temperature range, TA  
Storage temperature  
-65°C  
+150°C  
+240°C  
+183°C  
Package body temperature (soldering 10 seconds)  
Package body temperature (soldering 2 seconds)  
Notes:  
1. GND power supplies (i.e. AGND, DGND, and BGND) must always be within 0.3V of each other.  
2. VDD power supplies (i.e. AVDD, DVDD, and BVDD) must always be within 0.3V of each other.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
2.7  
2.7  
2.7  
TYP  
MAX  
UNIT  
Analogue supply range  
Digital supply range  
PWM output buffer supply  
Ground  
AVDD  
3.6  
3.6  
3.6  
V
V
V
V
DVDD  
BVDD  
AGND, DGND, BGND  
0
PP Rev 1.4 January 2004  
5
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
AVDD, BVDD, DVDD = 2.7 to 3.3V, AGND, DGND, BGND = 0V, TA = -20 to +85oC, fs = 44.1kHz/48kHz, MCLK = 256fs unless  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
3
MAX  
4
UNIT  
pF  
Input capacitance  
Ci  
Input leakage  
Ileak  
0.1  
0.5  
µA  
Oscillator  
Input XIN LOW level  
Input XIN HIGH level  
Input XIN capacitance  
Input XIN leakage  
Output XOP LOW  
Output XOP HIGH  
Digital Logic Levels (CMOS Levels)  
Input LOW level  
VX  
0
0.44  
AVDD  
5
V
V
IL  
VXIH  
CXI  
0.77  
4
pF  
mA  
V
IXleak  
VXOL  
VXOH  
0.10  
0.1  
0.11  
0.4  
1.3  
0.13  
0.5  
15pF load capacitors  
15pF load capacitors  
1.2  
1.4  
V
V
IL  
0.3 x DVDD  
V
V
Input HIGH level  
VIH  
0.7 x DVDD  
100  
Pull-up/pull-down resistance  
Output LOW  
200  
400  
k  
V
VOL  
VOH  
I
OL=+1mA  
OL=-1mA  
0.1 x DVDD  
Output HIGH  
I
0.9 x DVDD  
V
Digital Logic Levels (LVDS Levels)  
Output differential voltage  
Offset voltage  
VOD  
VOS  
RT  
200  
350  
1.25  
100  
500  
1.4  
mV  
V
0.95  
Termination load  
20pF load  
PCM to PWM converter  
Digital SNR  
105  
100  
dB  
dB  
Typical SNR with output stage  
(A-weighted)  
Typical Dynamic Range with  
output stage  
100  
dB  
Digital THD+N at 0dBfs  
0.001  
0.1  
%
%
Typical THD+N at 30Watt with  
output stage  
Typical THD+N at 1Watt with  
typical output stage  
0.01  
%
Typical IMD (CCIF – 19/20kHz)  
-70  
-70  
dBFS  
dBFS  
Typical IMD (SMPTE –  
60Hz/7kHz)  
PWM buffer drive strength  
PWM pulse repetition rate  
I
CMOS  
20pF load  
25  
25  
mA  
mA  
mA  
mA  
kHz  
kHz  
source  
Isink  
Isource  
Isink  
LVDS  
2.1  
2.1  
3.4  
3.4  
5.4  
5.4  
20pF,100load  
fs = 44.1kHz  
fs = 48kHz  
fPWM  
352.8  
384  
Notes:  
1. Ratio of output level with 1kHz full scale input, to the output level with all zeros into the digital input, measured ‘A’  
weighted over a 20Hz to 20kHz bandwidth.  
2. All performance measurements done with 20kHz AES17 low pass filter, except where noted an A-weight filter is used.  
Failure to use such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in  
the Electrical Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect  
dynamic specification values.  
3. The XIN input supports both a clock as well as a crystal input.  
PP Rev 1.4 January 2004  
WOLFSON MICROELECTRONICS plc  
6
www.wolfsonmicro.com  
Product Preview  
WM8608  
TERMINOLOGY  
1. Signal-to-noise ratio (dB) - SNR is a measure of the difference in level between the full scale output and the output  
with no signal applied.  
2. Dynamic range (dB) - DNR is a measure of the difference between the highest and lowest portions of a signal.  
Normally a THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB  
to it (e.g. THD+N @ -60dB= -32dB, DR= 92dB).  
3. THD+N (dB) - THD+N is a ratio, of the RMS values, of (Noise + Distortion)/Signal.  
POWER CONSUMPTION  
MODE DESCRIPTION  
TYPICAL SUPPLY CURRENTS  
[mA]  
TOTAL POWER  
[mW]  
IAVDD  
IDVDD  
IBVDD  
LVDS  
CMOS  
AVDD, DVDD, BVDD = 3.3V  
OFF  
<0.01  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
<0.01  
TBD  
<0.01  
TBD  
TBD  
TBD  
TBD  
<0.01  
<0.01  
0.01  
<1  
Standby (STDBY = 1 or OPDIS = 1)  
TBD  
<0.01  
TBD  
TBD  
TBD  
TBD  
TBD  
<0.01  
TBD  
TBD  
TBD  
TBD  
Mute  
Stereo  
5.1  
6.1  
7.1  
Table 1 Supply Current Consumption  
Notes:  
1. TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 12.288MHz (256fs), 24-bit data  
2. All figures are quiescent, with no signal.  
PP Rev 1.4 January 2004  
7
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
SIGNAL TIMING REQUIREMENTS  
POWER SUPPLY  
Test Conditions  
AGND, DGND, BGDN = 0V, TA = +25OC  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Power Supply Timing Information  
AVDD: rise time 10% to 90% AVDD  
DVDD: rise time 10% to 90% DVDD  
BVDD: rise time 10% to 90% BVDD  
tAR  
tDR  
tBR  
0.2  
0.2  
0.2  
50  
50  
50  
ms  
ms  
ms  
Table 2 Power Supply Timing Requirements  
MASTER CLOCK TIMING  
XTI/MCLK  
tMCLKY  
Figure 1 Master Clock Timing Requirements  
Test Conditions  
AVDD, DVDD, BVDD = 3.3V, AGND, DGND, BGDN = 0V, TA = +25OC  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
XTI/MCLK System clock cycle time  
XTI/MCLK Duty cycle  
tMCLKY  
20  
100  
60:40  
200  
1
ns  
%
40:60  
XTI/MCLK Period Jitter  
ps  
ns  
XTI/MCLK Rise/Fall times  
Table 3 Master Clock Timing Requirements  
PP Rev 1.4 January 2004  
8
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
AUDIO INTERFACE TIMING – MASTER MODE  
BCLK  
(Output)  
tDL  
LRCLK  
(Output)  
tDST  
tDHT  
DINFRONT  
DINSRND  
DINC_LFE  
DINREAR  
Figure 2 Digital Audio Data Timing – Master Mode (see Control Interface)  
Test Conditions  
AVDD, DVDD, BVDD = 3.3V, AGND, DGND, BGDN = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data,  
unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
LRCLK propagation delay from BCLK falling edge  
tDL  
10  
ns  
ns  
DINFRONT, DINSRND, DINC_LFE and DINREAR setup time  
to BCLK rising edge  
tDST  
10  
10  
DINFRONT, DINSRND, DINC_LFE and DINREAR hold time  
from BCLK rising edge  
tDHT  
ns  
Table 4 Audio Interface Timing – Master Mode  
PP Rev 1.4 January 2004  
9
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
AUDIO INTERFACE TIMING – SLAVE MODE  
tBCH  
tBCL  
BCLK  
tBCY  
LRCLK  
tLRSU  
tDS  
tLRH  
DINFRONT  
DINSRND  
DINC_LFE  
DINREAR  
tDH  
Figure 3 Digital Audio Data Timing – Slave Mode  
Test Conditions  
AVDD, DVDD, BVDD = 3.3V, AGND, DGND, BGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data,  
unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
BCLK cycle time  
tBCY  
tBCH  
tBCL  
50  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK pulse width high  
BCLK pulse width low  
BCLK rise/fall times  
5
5
LRCLK set-up time to BCLK rising edge  
LRCLK hold time from BCLK rising edge  
LRCLK rise/fall times  
tLRSU  
tLRH  
10  
10  
DINFRONT, DINSRND, DINC_LFE and DINREAR hold  
time from BCLK rising edge  
tDH  
10  
Table 5 Audio Interface Timing – Slave Mode  
Note: BCLK period should always be greater than or equal to MCLK period.  
PP Rev 1.4 January 2004  
10  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
CONTROL INTERFACE TIMING – 3-WIRE MODE  
tCSL  
tCSH  
CSB  
tCSS  
tSCY  
tSCS  
tSCH  
tSCL  
SCLK  
SDIN  
LSB  
tDSU  
tDHO  
Figure 4 Control Interface Timing – 3-Wire Serial Control Mode  
Test Conditions  
AVDD, DVDD, BVDD = 3.3V, AGND, DGND, BGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data,  
unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK rising edge to CSB rising edge  
SCLK pulse cycle time  
tSCS  
tSCY  
tSCL  
tSCH  
tDSU  
tDHO  
tCSL  
tCSH  
tCSS  
tps  
60  
80  
30  
30  
20  
20  
20  
20  
20  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK pulse width low  
SCLK pulse width high  
SDIN to SCLK set-up time  
SCLK to SDIN hold time  
CSB pulse width low  
CSB pulse width high  
CSB rising to SCLK rising  
Pulse width of spikes that will be suppressed  
8
Table 6 Control Interface Timing – 3-Wire Serial Control Mode  
PP Rev 1.4 January 2004  
11  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
CONTROL INTERFACE TIMING – 2-WIRE MODE  
t3  
t3  
t5  
SDIN  
t4  
t6  
t2  
t8  
SCLK  
t7  
t1  
t10  
Figure 5 Control Interface Timing – 2-Wire Serial Control Mode  
Test Conditions  
AVDD, DVDD, BVDD = 3.3V, AGND, DGND, BGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data,  
unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK Frequency  
400  
kHz  
ns  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Pulse-Width  
SCLK High Pulse-Width  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
tps  
600  
1.3  
600  
600  
100  
SDIN, SCLK Rise Time  
SDIN, SCLK Fall Time  
300  
300  
Setup Time (Stop Condition)  
Data Hold Time  
600  
2
900  
8
Pulse width of spikes that will be suppressed  
Table 7 Control Interface Timing – 2-Wire Serial Control Mode  
PP Rev 1.4 January 2004  
12  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
PWM OUTPUT TIMING  
tPWMH  
tPWML  
OPXXX  
tPWMCY  
Figure 6 PWM Output Timing  
Test Conditions  
AVDD, DVDD, BVDD = 2.7 to 3.3V, AGND, DGND, BGND = 0V, TA = -20 to +85oC, Slave Mode, fs = 48kHz, MCLK = 256fs,  
24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL/NOTE  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
PWM Frequency  
tPWMCY  
tPWML  
384  
kHz  
ns  
PWM Low Pulse-Width  
PWM High Pulse-Width  
LVDS Mode  
122  
122  
tPWMH  
ns  
PWM Rise Time  
20pF load  
20pF load  
1.5  
1.7  
1.8  
2.0  
2.0  
2.2  
ns  
ns  
PWM Fall Time  
CMOS Mode  
PWM Rise Time  
20pF load  
20pF load  
1.5  
1.5  
2.3  
2.3  
ns  
ns  
PWM Fall Time  
Table 8 PWM Interface Timing  
PP Rev 1.4 January 2004  
13  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM8608 is a high-performance multi-channel Pulse-Width Modulation (PWM) digital power  
amplifier controller. The device accepts up to 7.1 channels of audio in PCM input format, and outputs  
six PWM full-bandwidth channels, plus a PWM sub-woofer channel. The outputs are suitable for  
directly driving integrated switching output stages available from a number of vendors. The device is  
also compatible with discrete MOSFET output stages. In both cases, Wolfson Microelectronics offer  
Reference Designs for complete PWM digital power amplifiers, providing high-performance low-cost  
solutions ideal for Surround Sound AV Processors and DVD Receivers.  
The WM8608 has a configurable input processor which accepts either Stereo, 5.1, 6.1 or 7.1  
channels of PCM audio and outputs Stereo, 2.1, 5.1 or 6.1 outputs. This is done by mixing rear  
channel data into centre rear or surround output channels, as required. If 5.1 channel data is input,  
the surround data may be processed to create the rear-centre output.  
The device has a Bass Management function, which has low-pass and high-pass filters for feeding  
the sub channel and main output channels. It also provides selectable boost for the LFE channel.  
Each channel can be configured to drive either “large” full-range speakers or “small” satellite  
speakers with limited bass capability.  
A Tone Control function is provided, plus selectable high frequency equalisation to compensate for  
different loudspeaker characteristics. Independent volume control is provided for all channels, with  
comprehensive mute features.  
A Dynamic Peak Compressor with programmable attack and decay times is included, which allows  
headroom for tone control, bass management and extra digital gain to be provided, without clipping  
occurring.  
The device is controlled via a 2/3 wire serial interface. The interface provides access to all features  
including channel selection, volume controls, mute, de-emphasis and power management facilities.  
PP Rev 1.4 January 2004  
14  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
SIGNAL PATH  
The WM8606 receives digital input data via an 8-channel digital audio interface. The data is  
processed in turn by the Input Processor, Bass Management and Equalisation, Volume Control and  
Dynamic Peak Compressors, Interpolation Filters, and PCM-PWM Converters, as shown in Figure 7.  
The PWM signals are output via selectable LVDS/CMOS drivers.  
8 Channel Input  
Input Processor  
Bass Management and  
Equalisation  
Volume Control / Dynamic  
Peak Compressors  
Interpolation Filters  
PCM - PWM Converter  
CMOS / LVDS Output  
Figure 7 Signal Processing Block Diagram  
Parameter  
Group Delay  
Unit  
fs=48kHz  
1.0  
Unit  
ms  
FL/FR/FC/SL/SR/RC channel  
SUB channel  
47  
22  
samples  
samples  
0.5  
ms  
Table 9 Signal Path Group Delay  
Key: FL = Front-Left, FR = Front-Right, FC = Front-Centre, SL = Surround-Left, SR = Surround-Right,  
RL = Surround-Left, RR = Surround-Right, RC = Surround-Centre, SUB = Subwoofer  
Note: The shorter delay on the SUB channel will not significantly affect audio performance. (It is  
equivalent to moving the subwoofer forwards by about 15cm.)  
PP Rev 1.4 January 2004  
15  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
DIGITAL AUDIO INTERFACE  
The digital audio interface is used for inputting audio data into the WM8608. It uses five pins:  
DINFRONT: Front L+R channel data input  
DINSRND: Surround L+R channel data input  
DINC_LFE: Front Centre (L) and LFE (R) channel data input  
DINREAR: Rear L+R channel data input  
LRCLK: Data alignment clock  
BCLK: Bit clock, for synchronisation  
The clock signals BCLK and LRCLK can be outputs when the WM8608 operates as a master, or  
inputs when it is a slave (see Master and Salve Mode Operation, below).  
MASTER AND SLAVE MODE OPERATION  
The WM8608 can be configured as either a master or slave mode device. As a master device the  
WM8608 generates BCLK and LRCLK and thus controls sequencing of the data transfer on the data  
channels. In slave mode, the WM8608 receives data and clock signals over the digital audio  
interface. The mode can be selected by writing to the MS bit (see Table 23). Master and slave modes  
are illustrated below.  
BCLK  
BCLK  
LRCLK  
LRCLK  
WM8608  
PWM  
Contoller  
WM8608  
PWM  
Contoller  
DINFRONT  
DINSRND  
DINC_LFE  
DINREAR  
DINFRONT  
DINSRND  
DINC_LFE  
DINREAR  
DSP  
DECODER  
DSP  
DECODER  
Master Mode  
Slave Mode  
Figure 8 Operation Mode  
AUDIO DATA FORMATS  
In Left Justified mode, the MSB is available on the first rising edge of BCLK following a LRCLK Audio  
data is applied to the internal filters via the Digital Audio Interface. 5 popular interface formats are  
supported:  
Left Justified mode  
Right Justified mode  
I2S mode  
DSP mode A  
DSP mode B  
All 5 formats send the MSB first and support word lengths of 16, 20, 24 and 32 bits. Except that 32  
bit data is not supported in right justified mode. DINFRONT, DINSRND, DINC_LFE, DINREAR and  
LRCLK are sampled on the rising, or falling edge of BCLK.  
In left justified, right justified and I2S modes the digital audio interface receives data on the  
DINFRONT, DINSRND, DINC_LFE and DINREAR inputs. Audio Data for each stereo channel is time  
multiplexed with LRCLK indicating whether the left or right channel is present. LRCLK is also used as  
a timing reference to indicate the beginning or end of the data words.  
In left justified, right justified and I2S modes, the minimum number of BCLKs per DACLRC period is 2  
times the selected word length. LRCLK must be high for a minimum of word length BCLKs and low  
for a minimum of word length BCLKs. Any mark to space ratio on LRCLK is acceptable provided the  
above requirements are met.  
In DSP mode A or B, all channels are time multiplexed onto DINFRONT. LRCLK is used as a frame  
sync signal to identify the MSB of the first word. The minimum number of BCLKs per LRCLK period  
is 8 times the selected word length. Any mark to space ratio is acceptable on LRCLK provided the  
rising edge is correctly positioned (see Figure 9, Figure 10 and Figure 11).  
PP Rev 1.4 January 2004  
16  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
LEFT JUSTIFIED MODE  
In left justified mode, the MSB is sampled on the first rising edge of BCLK following a LRCLK  
transition. LRCLK is high during the left samples and low during the right samples.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
DINFRONT  
DINSRND  
DINC_LFE  
DINREAR  
1
2
3
n
n-2 n-1  
1
2
3
n
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 9 Left Justified Mode Timing Diagram  
RIGHT JUSTIFIED MODE  
In right justified mode, the LSB is sampled on the rising edge of BCLK preceding a LRCLK transition.  
LRCLK is high during the left samples and low during the right samples.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
DINFRONT  
DINSRND  
DINC_LFE  
DINREAR  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 10 Right Justified Mode Timing Diagram  
I2S MODE  
In I2S mode, the MSB is sampled on the second rising edge of BCLK following a LRCLK transition.  
LRCLK is low during the left samples and high during the right samples.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
1 BCLK  
1 BCLK  
DINFRONT  
DINSRND  
DINC_LFE  
DINREAR  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
LSB  
LSB  
MSB  
MSB  
Figure 11 I2S Mode TIming Diagram  
DSP MODE A AND B  
In DSP mode, the Front Left (FL) channel MSB is available on either the 1st (mode B) or 2nd (mode  
A) rising edge of BCLK (selectable by LRP) following a rising edge of LRCLK. Right channel data  
immediately follows left channel data. Depending on word length, BCLK frequency and sample rate,  
there may be unused BCLK cycles between the LSB of the right channel data and the next sample.  
PP Rev 1.4 January 2004  
17  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
1 BCLK  
1 BCLK  
1/fs  
LRCLK  
BCK  
DINFRONT  
LEFT  
DINFRONT  
RIGHT  
DINSRND  
LEFT  
DINREAR  
RIGHT  
NO VALID DATA  
DINFRONT  
1
2
n
1
2
n
1
2
n
n-1  
n-1  
n-1  
MSB  
LSB  
Input Word Length (IWL)  
Figure 12 DSP Mode A Timing Diagram  
1/fs  
LRCLK  
BCK  
DINSRND  
LEFT  
DINFRONT  
LEFT  
DINFRONT  
RIGHT  
DINREAR  
RIGHT  
NO VALID DATA  
1
2
n
1
2
n
1
2
n
1
n-1  
n-1  
n-1  
DINFRONT  
MSB  
LSB  
Input Word Length (IWL)  
Figure 13 DSP Mode B Timing Diagram  
In both DSP modes A and B, DINFRONT left is always sent first, followed immediately by data words  
for the other channels. No BCLK edges are allowed between the data words.  
MODE  
Stereo  
INPUT FORMAT (ORDER)  
SUPPORTED MODES  
FL, FR  
Restrictions apply for audio sample  
rates (fs) of 176.4 and 192kHz,  
e.g. fs = MCLK/192; maximal input  
word length = 24 bits, or  
fs = 192kHz, MCLK = 27 MHz;  
maximal input word length = 16 bits  
(see also Table 14).  
5.1  
6.1  
7.1  
FL, FR, SL, SR, FC, LFE  
FL, FR, SL, SR, FC, LFE, RC  
FL, FR, SL, SR, FC, LFE, RL, RR  
Table 10 DSP Mode Input Format  
Key: FL = Front-Left, FR = Front-Right, FC = Front-Centre, SL = Surround-Left, SR = Surround-Right,  
RL = Surround-Left, RR = Surround-Right, RC = Surround-Centre, LFE = Low Frequency Effects  
PP Rev 1.4 January 2004  
18  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
AUDIO INTERFACE CONTROL  
The register bits controlling audio format, word length and master/slave mode are summarised  
below. MS selects audio interface operation in master or slave mode. In Master mode BCLK and  
LRCLK are outputs and the frequency of LRCLK is set by the sample rate control bits SR[3:0]. In  
Slave mode BCLK and LRCLK are inputs (refer to Table 12 for sample rate control in this case).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R2 (02h)  
8
BCLKINV  
0
BCLK invert bit (for master and slave  
modes)  
Audio IF  
Format  
0 = BCLK not inverted  
1 = BCLK inverted  
7
6
MS  
0
0
Master / Slave Mode Control  
1 = Enable Master Mode  
0 = Enable Slave Mode  
Left/Right channel swap  
LRSWAP  
1 = swap left and right data in audio  
interface  
0 = output left and right data as normal  
Front Centre – LFE channel swap  
1 = Front Centre right and LFE left  
0 = Front Centre left and LFE right  
Right, left & I2S modes – LRCLK polarity  
1 = invert LRCLK polarity  
5
4
SUBSWP  
LRP  
0
0
0 = normal LRCLK polarity  
(as show in e.g. Figure 12)  
DSP Mode – A/B select  
1 = MSB is available on 1st BCLK rising  
edge after LRC rising edge (mode B)  
0 = MSB is available on 2nd BCLK rising  
edge after LRC rising edge (mode A)  
3:2  
1:0  
WL[1:0]  
10  
10  
Audio Data Word Length  
11 = 32 bits (see Note)  
10 = 24 bits  
01 = 20 bits  
00 = 16 bits  
FORMAT[1:0]  
Audio Data Format Select  
11 = DSP Mode  
10 = I2S Format  
01 = Left justified  
00 = Right justified  
Table 11 Audio Data Format Control  
Notes:  
1. Right Justified mode does not support 32-bit data.  
2. LRSWAP does not affect the polarity of SUBSWP, the left-right controlling of DINC_LFE is  
separate from the other channels.  
PP Rev 1.4 January 2004  
19  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
MASTER CLOCK AND AUDIO SAMPLE RATES  
The WM8608 supports a wide range of master clock frequencies on the MCLK pin, and can generate  
many commonly used audio sample rates directly from the master clock. (See Table 14 for details.)  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R0 (00h)  
Clocking  
0
1
2
3
CMAST  
1
1
0
0
Master Clock Mode  
0 = MCLK input  
1 = XIN input  
MPEG  
MPEG Mode  
0 = see Table 14  
1 = MCLK is 27MHz  
Master Clock Active Edge  
0 = positive edge  
MEDGE  
CLKDIV2  
1 = negative edge  
Master Clock Divide by 2  
1 = MCLK is divided by 2  
0 = MCLK is not divided  
Table 12 Clocking and Sample Rate Control (1)  
If the WM8608 is running in MPEG mode (i.e. f = 27MHz) the sample can be detected  
XIN  
automatically if the SRDET bit is set. In this case, the SR bits do not need programming.  
REGISTER  
ADDRESS  
BIT  
3:0  
LABEL  
SR [3:0]  
SRDET  
DEFAULT  
0000  
DESCRIPTION  
R1 (01h)  
Sample Rate  
Sample Rate Control. Refer to  
Table 14.  
4
1
Sample rate detect  
1 = Enabled  
(in MPEG mode only)  
0 = Disabled  
Table 13 Clocking and Sample Rate Control (2)  
The clocking of the WM8608 is controlled using the CLKDIV2 and SR control bits. Setting the  
CLKDIV2 bit divides MCLK by two internally. Each value of SR[3:0] selects one combination of  
MCLK division ratios and hence one combination of sample rates (see next page). Since all sample  
rates are generated by dividing MCLK, their accuracy depends on the accuracy of MCLK. If MCLK  
changes the sample rates change proportionally.  
PP Rev 1.4 January 2004  
20  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
MCLK / XIN  
AUDIO SAMPLE RATE  
SR [3:0]  
(MPEG = 0)  
CLKDIV2=0  
CLKDIV2=1  
[MHz]  
[kHz]  
[MHz]  
32  
48  
96  
192  
44.1  
(MCLK/384)  
(MCLK/256)  
(MCLK/256)  
(MCLK/128)  
(MCLK/256)  
0001  
0000  
0011  
0010  
0100  
12.288  
24.576  
24.576  
49.152  
11.2896  
22.5792  
22.5792  
45.1584  
(MCLK/256)  
(MCLK/128)  
(MCLK/512)  
(MCLK/384)  
(MCLK/384)  
(MCLK/192)  
(MCLK/384)  
(MCLK/384)  
(MCLK/192)  
0111  
0110  
1001  
1000  
88.2  
176.4  
32  
18.432  
36.864  
36.864  
48  
not supported  
96  
1011  
1010  
1100  
1111  
1110  
192  
44.1  
88.2  
176.4  
16.9344  
33.8688  
33.8688  
not supported  
(MPEG = 1)  
32  
27.000  
not supported  
0001  
0100  
0000  
0111  
0011  
0110  
0010  
44.1  
48  
88.2  
96  
176.4  
192  
Table 14 Master Clock and Sample Rates  
The following Figure 14, Figure 15, Figure 16 and Figure 17 illustrate the different Clocking and  
Audio IF modes.  
Figure 14 Clock and Audio IF: Clock Master / Audio IF Slave (default)  
PP Rev 1.4 January 2004  
21  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
Figure 15 Clock and Audio IF: Clock Master / Audio IF Master  
Figure 16 Clock and Audio IF: Clock Slave / Audio IF Slave  
Figure 17 Clock and Audio IF: Clock Slave / Audio IF Master  
PP Rev 1.4 January 2004  
22  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
SYNCHRONISER  
The WM8608 contains a synchroniser circuit to support the synchronisation of an external LRCLK to  
the local LRCLK. This mode is only supported in MPEG mode.  
The specification of the synchroniser circuit is:  
Test Conditions  
AVDD, DVDD, BVDD = 3.3V, AGND, DGND, BGND = 0V, TA = +25oC, fXIN = 27MHz, Slave Mode, fs = 48kHz, 24-bit data,  
unless otherwise stated.  
PARAMETER  
SYMBOL  
tlock  
MIN  
TYP  
<1  
MAX  
2
UNIT  
s
Lock time  
LRCLK frequency offset  
LRCLK drift in Lock  
foffLRCLK  
driftLRCLK  
1000  
10’000  
0.2  
ppm fs  
ppm/s  
Hz  
6
Table 15 Synchroniser Specification  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Synchroniser Enable  
R32 (20h)  
0
SYNCEN  
1
Synchroniser  
(1)  
0: Disable  
1: Enable (in MPEG mode only)  
Minimum Synchroniser Gain  
00: minimum gain = 20  
01: minimum gain = 21  
10: minimum gain = 22  
11: minimum gain = 23  
Maximum Synchroniser Gain  
00: maximum gain = 28  
01: maximum gain = 210  
10: maximum gain = 212  
11: maximum gain = 214  
2:1  
4:3  
5
GMIN[1:0]  
10  
10  
0
GMAX[1:0]  
HOLD  
Hold Synchroniser (and SR detect)  
1 : Synchroniser in hold mode  
Table 16 Synchroniser (1)  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R33 (21h)  
2:0  
SYNTO[2:0]  
100  
Synchroniser Gain time-out  
000: 0.2 ms  
Synchroniser  
(2)  
001: 0.5 ms  
010: 1 ms  
011: 2 ms  
100: 5 ms (default)  
101: 10 ms  
110: 20 ms  
111: 50 ms  
Table 17 Synchroniser (2)  
The next table illustrates recommendation for the Synchroniser loop gain G (see also Table 16) and  
time-out time (Table 17) with respect to the LRCLK frequency and the resulting Synchroniser lock  
time.  
PP Rev 1.4 January 2004  
23  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
FOFFLRCLK  
[ppm]  
100  
G
GAIN TIME-OUT  
[ms]  
~1  
max  
28  
210  
210  
min  
20  
1000  
20  
~4  
10’000  
20  
~20  
Table 18 Synchroniser Setup and Locking  
Note: The Synchroniser requires a continuously running LRCLK. If that is not the case the HOLD  
signal has to be applied to avoid the synchronizer drifting.  
CONTROL INTERFACE OPERATION  
SELECTION OF CONTROL MODE  
The WM8608 is controlled by writing to registers through a serial control interface. A control word  
consists of 16 bits. The first 7 bits (B15 to B9) are address bits that select which control register is  
accessed. The remaining 9 bits (B8 to B0) are register bits, corresponding to the 9 bits in each  
control register. The control interface can operate as either a 3-wire or 2-wire MPU interface. The  
MODE pin selects the interface format. An internal pull-down resistor configures the Control Interface  
to a default 2 wire format.  
MODE  
Low  
INTERFACE FORMAT  
2 wire (default)  
3 wire  
High  
Table 19 Control Interface Mode Selection  
The WM8606 Control Interface operates as a slave device only.  
3-WIRE (SPI COMPATIBLE) SERIAL CONTROL MODE  
The WM8608 is controlled using a 3-wire serial interface. SDIN is used for the program data, SCLK  
is used to clock in the program data and CSB is use to latch in the program data. The 3-wire  
interface protocol is shown in Figure 13.  
CSB  
SCLK  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SDIN  
Figure 18 3-wire Serial Interface  
The bits B[15:9] are Control Address Bits and the bits B[8:0] are Control Data Bits  
2-WIRE SERIAL CONTROL MODE  
The WM8608 supports software control via a 2-wire serial bus. Many devices can be controlled by  
the same bus, and each device has a unique 7-bit address (this is not the same as the 7-bit address  
of each register in the WM8608).  
The controller indicates the start of data transfer with a high to low transition on SDIN while SCLK  
remains high. This indicates that a device address and data will follow. All devices on the 2-wire bus  
respond to the start condition and shift in the next eight bits on SDIN (7-bit address + Read/Write bit,  
MSB first). If the device address received matches the address of the WM8608 and the R/W bit is ‘0’,  
indicating a write, then the WM8608 responds by pulling SDIN low on the next clock pulse (ACK). If  
the address is not recognised or the R/W bit is ‘1’, the WM8608 returns to the idle condition and wait  
for a new start condition and valid address.  
PP Rev 1.4 January 2004  
24  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
Once the WM8608 has acknowledged a correct address, the controller sends the first byte of control  
data (B15 to B8, i.e. the WM8608 register address plus the first bit of register data). The WM8608  
then acknowledges the first data byte by pulling SDIN low for one clock pulse. The controller then  
sends the second byte of control data (B7 to B0, i.e. the remaining 8 bits of register data), and the  
WM8608 acknowledges again by pulling SDIN low.  
The transfer of data is complete when there is a low to high transition on SDIN while SCLK is high.  
After receiving a complete address and data sequence the WM8608 returns to the idle state and  
waits for another start condition. If a start or stop condition is detected out of sequence at any point  
during data transfer (i.e. SDIN changes while SCLK is high), the device jumps to the idle condition.  
DEVICE ADDRESS RD / WR  
(7 BITS) BIT  
ACK  
(LOW)  
CONTROL BYTE 1  
(BITS 15 TO 8)  
ACK  
(LOW)  
CONTROL BYTE 1  
(BITS 7 TO 0)  
ACK  
(LOW)  
SDIN  
SCLK  
START  
STOP  
register address and  
1st register data bit  
remaining 8 bits of  
register data  
Figure 18 2-Wire Serial Control Interface  
The WM8608 has two possible device addresses, which can be selected using the CSB pin.  
CSB STATE  
Low  
DEVICE ADDRESS  
0011010  
High  
0011011  
Table 20 2-Wire MPU Interface Address Selection  
INPUT PROCESSOR  
The WM8608 supports the production of 2.1, 5.1 and 6.1 outputs from stereo, 5.1, 6.1 and 7.1 inputs  
according to Table 21 and Table 22.  
INPUT CONFIGURATIONS  
CONFIG  
FL IN  
FR IN  
SL IN  
SR IN  
RL/RC  
IN  
RR/RC  
IN  
FC IN  
LFE  
IN  
Stereo  
5.1  
6.1  
or  
7.1  
Table 21 Input Configuration  
The RC channel is accepted either in the RL or RR input, or alternatively in both RL and RR inputs.  
Register control bit RCCFG (Table 23) determines which option is used.  
OUTPUT CONFIGURATIONS  
CONFIG  
FL OUT  
FR OUT  
SL OUT  
SR OUT  
FC OUT  
RC OUT  
SUB  
OUT  
Stereo  
2.1  
5.1  
6.1  
Table 22 Output Configuration  
By default the Subwoofer channel is directed to the SUB output, which is a lower bandwidth channel  
operating at half the PWM frequency of the other channels. Optionally, the subwoofer channel can be  
redirected to the RC channel at the full bandwidth.  
PP Rev 1.4 January 2004  
25  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Input Configuration  
R3 (03h)  
1:0  
IPCFG[1:0]  
01  
Input/Output  
Configuration  
00 = Stereo  
01 = 5.1  
10 = 6.1  
11 = 7.1  
2
RCCFG  
0
Rear-Centre Input Channel Configuration  
0 = Rear-Centre input in Left channel  
1 = Rear-Centre input in Right Channel  
(Only applicable when operating in 6.1  
input mode.)  
4:3  
OPCFG[1:0]  
11  
Output Configuration  
00 = Stereo  
01 = 2.1  
10 = 5.1  
11 = 6.1  
5
SUBCFG  
0
Subwoofer Channel Configuration  
0 = Subwoofer Output on SUB  
1 = Subwoofer Output on RC  
(Only applicable when operating in 2.1 or  
5.1 output mode.)  
Table 23 Input and Output Configuration Register  
A typical speaker configuration is illustrated in Figure 19.  
SUB  
FL  
FC  
FR  
SL  
SR  
RC  
Figure 19 Loudspeaker Configuration for 6.1 Output  
The WM8608 also supports Stereo input – Stereo output via the Bass Management filtering  
options, as discussed in Bass Management (page 28). In this case, the output configuration is  
set to 2.1.  
Where there are a different number of input and output channels, the data is processed as follows.  
Refer to the section on Bass Management (page 28) for details on how the sub-channel is created.  
PP Rev 1.4 January 2004  
26  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
STEREO INPUT – STEREO OUTPUT  
The Front-Left and Front-Right inputs are passed to the Front-Left and Front-Right Outputs. All other  
channels are muted.  
STEREO INPUT – 2.1 OUTPUT  
The Front-Left and Front-Right inputs are passed to the Front-Left and Front-Right Outputs. The low-  
frequency contents of the Front inputs, may be optionally mixed and passed to the SUB output. The  
Surround, Front Centre and Rear Centre channel outputs are muted.  
5.1 INPUT – 2.1 OUTPUT  
Stereo mix-down is not supported. In this mode, the Front-Left and Front-Right inputs are passed  
to the Front-Left and Front-Right Outputs. The LFE and the low-frequency contents of the Front and  
Surround inputs, may be optionally mixed and passed to the SUB output. The Surround, Front Centre  
and Rear Centre channel outputs are muted.  
5.1 INPUT – 6.1 OUTPUT  
The Front and Surround channel inputs are passed to the Front and Surround channel outputs.  
The LFE and the low-frequency contents of the Front and Surround inputs optionally, may be  
mixed and passed to the SUB output. The RC OUT channel is obtained from the surround  
channels according to the equation:  
RC OUT = (SL IN + SR IN)/2  
5.1 INPUT – 5.1 OUTPUT  
The Front and Surround channel inputs are passed to the Front and Surround channel outputs.  
The LFE and the low-frequency contents of the Front and Surround inputs, may be optionally  
mixed and passed to the SUB output. The Rear-Centre channel is muted.  
6.1 INPUT – 2.1 OUTPUT  
Stereo mix-down is not supported. The Front-Left and Front-Right inputs are passed to the Front-  
Left and Front-Right Outputs. The LFE and the low-frequency contents of the Front, Surround and  
Rear-centre inputs are optionally mixed and passed to the SUB output. The Surround, Front Centre  
and Rear Centre channel outputs are muted.  
6.1 INPUT – 5.1 OUTPUT  
The Front channel inputs are passed to the Front channel outputs. The LFE and the low-frequency  
contents of the Front, Surround and Rear-centre inputs, may be optionally mixed and passed to the  
SUB output. The RC IN channel is mixed into the SL OUT and SR OUT output channels according to  
the equations:  
SL OUT = (SL IN + RC IN)/2, SR OUT = (SR IN + RC IN)/2  
The Rear-Centre output channel is muted.  
6.1 INPUT –6.1 OUTPUT  
The Front and Surround channel inputs are passed to the Front and Surround channel outputs.  
The LFE and the low-frequency contents of the Front, Surround and Rear-centre inputs, may  
be optionally mixed and passed to the SUB output. The RC OUT channel is obtained from  
either RL IN or RR IN (dependent on setting of register bit RCFG).  
7.1 INPUT – 2.1 OUTPUT  
Stereo mix-down is not supported. The Front-Left and Front-Right inputs are passed to the Front-  
Left and Front-Right outputs. The LFE and the low-frequency contents of the Front, Surround and  
Rear inputs, may be optionally mixed and passed to the SUB output. The Surround, Front Centre and  
Rear Centre channels are muted.  
7.1 INPUT – 5.1 OUTPUT  
The Front channel inputs are passed to the Front channel outputs. The LFE and the low-  
frequency contents of the Front, Surround and Rear inputs, may be optionally mixed and  
passed to the SUB output. The RL IN and RL OUT channels are mixed into the SL OUT and  
SR OUT channels according to the equations:  
SL OUT = (SL IN + RL IN)/2, SR OUT = (SR IN + RR IN)/2  
The Rear-Centre output channel is muted.  
PP Rev 1.4 January 2004  
27  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
7.1 INPUT –6.1 OUTPUT  
The Front and Surround channel inputs are passed to the Front and Surround channel outputs.  
The LFE and the low-frequency contents of the Front, Surround and Rear inputs, may be  
optionally mixed and passed to the SUB output. The RC OUT channel is obtained from:  
(RL IN + RR IN)/2  
BASS MANAGEMENT  
The Bass-Management function filters and combines the input signals to produce a low-pass filtered  
output for the sub-woofer channel and high-pass filtered outputs for the remaining channels. The  
filters have selectable cut-off frequencies to match different types of sub-woofer and satellite  
speakers. The filters are designed so that the cut-off frequencies for the high-pass and low-pass  
filters remain constant irrespective of the sampling frequency used. 1st order filters are used for the  
low-pass and high-pass filters.  
lp  
RC  
hp  
RC  
lp  
FC  
hp  
FC  
+10dB  
LFE  
+
SUB  
lp  
FL  
hp  
FL  
lp  
FR  
hp  
FR  
lp  
SL  
hp  
SL  
lp  
SR  
hp  
SR  
Figure 20 Bass Management  
PP Rev 1.4 January 2004  
28  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
The high-pass filters pairs can be bypassed to allow full-range speakers to be used on any of the 3  
main output channel pairs. The low-pass outputs from the Front channels can also be disabled to  
provide Stereo In – Stereo Out capability when full range front speakers are used.  
The Bass-Management also provides a selectable LFE boost of 10dB via the LFEBOOST control bit.  
This is to compensate for the standard practise of recording the LFE channel 10dB down in the mix.  
Additional gain-adjust is provided after this block (refer to page 32).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R13 (0Dh)  
1:0  
LPHPCO[1:0]  
01  
Low-/High-Pass Cutoff Frequency (-3dB)  
00 = 75Hz  
Bass  
Management  
01 = 100Hz  
Filter  
10 = 133Hz  
11 = 178Hz  
2
LFEBOOST  
0
LFE Boost Enable  
0 = Boost Disabled  
1 = 10dB Boost Enabled  
Table 24 Bass Management Filter  
REGISTER  
ADDRESS  
BIT  
LABEL  
HPENF  
DEFAULT  
DESCRIPTION  
R14 (0Eh)  
0
1
Front High-Pass Filter  
Bass  
Management  
0 = High-Pass Filter bypassed  
1 = High-Pass Filter enabled  
Surround High-Pass Filter  
0 = High-Pass Filter bypassed  
1 = High-Pass Filter enabled  
Filter Bypass  
1
2
HPENS  
HPENC  
1
1
Front Centre and Rear Centre High-Pass  
Filter  
0 = High-Pass Filter bypassed  
1 = High-Pass Filter enabled  
3
4
5
LPENF  
LPENS  
LPENC  
1
1
1
Front Low-Pass Filter Enable  
0 = Low-Pass Filter output disabled  
1 = Low-Pass Filter output enabled  
Surround Low-Pass Filter Enable  
0 = Low-Pass Filter output disabled  
1 = Low-Pass Filter output enabled  
Front Centre and Rear Centre Low-Pass  
Filter Enable  
0 = Low-Pass Filter output disabled  
1 = Low-Pass Filter output enabled  
Table 25 Bass Management Filter Bypass  
PP Rev 1.4 January 2004  
29  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
GRAPHIC EQUALISER  
The WM8608 has a 4-band Graphic Equaliser on the front three channels. The three upper bands  
are controlled via registers (see Table 26, Table 27, Table 28 and Table 29). The lowest band is  
controlled via the subwoofer volume control (see VOLS in Table 32). The function has selectable cut-  
off frequencies which are independent of sample rate. The boost/cut for the upper three bands is  
controllable in 1.5dB steps from -6dB to +9dB via the EQB control bits.  
The front-left and front-right controls are tied together, whilst the front-centre controls can be  
independently adjusted.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R15 (0Fh)  
3:0  
EQ1GF  
1111  
Band 1 Front-Left/Front-Right Gain  
0000 or 0001 = +9dB  
0010 = +7.5dB  
EQ Band 1  
Gain Control  
[3:0]  
(Disabled)  
… (1.5dB steps)  
1011 to 1110 = -6dB  
1111 = Disable  
7:4  
EQ1GFC  
[7:4]  
1111  
(Disabled)  
Band 1 Front-Centre Gain  
0000 or 0001 = +9dB  
0010 = +7.5dB  
… (1.5dB steps)  
1011 to 1110 = -6dB  
1111 = Disable  
Table 26 EQ Band 1 Gain Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R16 (10h)  
3:0  
EQ2GF  
1111  
Band 2 Front-Left/Front-Right Gain  
0000 or 0001 = +9dB  
0010 = +7.5dB  
EQ Band 2  
Gain Control  
[3:0]  
(Disabled)  
… (1.5dB steps)  
1011 to 1110 = -6dB  
1111 = Disable  
7:4  
EQ2GFC  
[7:4]  
1111  
(Disabled)  
Band 2 Front-Centre Gain  
0000 or 0001 = +9dB  
0010 = +7.5dB  
… (1.5dB steps)  
1011 to 1110 = -6dB  
1111 = Disable  
Table 27 EQ Band 2 Gain Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R17 (11h)  
3:0  
EQ3GF  
1111  
Band 3 Front-Left/Front-Right Gain  
0000 or 0001 = +9dB  
0010 = +7.5dB  
EQ Band 3  
Gain Control  
[3:0]  
(Disabled)  
… (1.5dB steps)  
1011 to 1110 = -6dB  
1111 = Disable  
7:4  
EQ3GFC  
[7:4]  
1111  
(Disabled)  
Band 3 Front-Centre Gain  
0000 or 0001 = +9dB  
0010 = +7.5dB  
… (1.5dB steps)  
1011 to 1110 = -6dB  
1111 = Disable  
Table 28 EQ Band 3 Gain Control  
PP Rev 1.4 January 2004  
30  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
REGISTER  
ADDRESS  
BIT  
LABEL  
EQ1CF  
DEFAULT  
DESCRIPTION  
R18 (12h)  
0
1
Band 1 Front-Left/Front Right Centre-  
Frequency  
EQ Centre-  
Frequency  
Control  
0 = High Cutoff (500Hz)  
1 = Low Cutoff (250Hz)  
1
2
EQ1CFC  
EQ2CF  
1
1
Band 1 Front-Centre Centre-Frequency  
0 = High Cutoff (500Hz)  
1 = Low Cutoff (250Hz)  
Band 2 Front-Left/Front Right Centre-  
Frequency  
0 = High Cutoff (2kHz)  
1 = Low Cutoff (1kHz)  
3
4
EQ2CFC  
EQ3CF  
1
1
Band 2 Front-Centre Centre-Frequency  
0 = High Cutoff (2kHz)  
1 = Low Cutoff (1kHz)  
Band 3 Front-Left/Front Right Cutoff  
Frequency  
0 = High Cutoff (8kHz)  
1 = Low Cutoff (4kHz)  
5
EQ3CFC  
1
Band 3 Front-Centre Cutoff Frequency  
0 = High Cutoff (8kHz)  
1 = Low Cutoff (4kHz)  
Table 29 EQ Frequency Control  
Band 0 is controlled via the sub-woofer volume control register R11 as described in Table 32. The  
functionality to add/subtract the boost/cut setting to the sub-woofer volume must be written into the  
software controller for the chip.  
The Band 0 Cutoff frequency can be changed using the corner frequency of the low-pass/high-pass  
filters as described in Table 24.  
DIGITAL LOUDSPEAKER EQUALISER  
A loudspeaker equaliser is provided for the front three channels to compensate for high-frequency  
variations that can occur when loudspeakers of different impedances are used with different output  
filters in typical output stages. The equaliser has selectable cut-off frequencies which are  
independent of sample rate. The gain at 20kHz is controllable in 0.5dB steps from -1.5dB to +2dB via  
the LSEQ control bit. The settings are applied to all three front channels simultaneously.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R19 (13h)  
0
LSCO  
0
LSEQ Filter Characteristic  
Loudspeaker  
Equaliser  
0 = High Cutoff (15kHz)  
1 = Low Cutoff (10kHz)  
High Frequency Equalisation  
000 = +2dB  
3:1  
LSEQ  
[2:0]  
100  
(Disabled)  
001 = +1.5dB  
010 = +1dB  
011 = +0.5dB  
100 = Disable  
101 = -0.5dB  
110 = -1dB  
111 = -1.5dB  
Table 30 Loudspeaker Equaliser  
PP Rev 1.4 January 2004  
31  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
DIGITAL DEEMPHASIS  
The digital ‘de-emphasis’ is used to equalize pre-emphasised digital CD recordings. De-emphasis  
filtering is available on the Front-Left and Front-Right channels only, for sample rates of 32kHz,  
44.1kHz and 48kHz. The settings are applied to the two channels simultaneously.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEEMP  
DEFAULT  
DESCRIPTION  
R20 (14h)  
De-emphasis  
0
0
De-emphasis Control  
0 = No De-emphasis  
1 = De-emphasis enabled  
Table 31 De-emphasis  
Refer to Figure 31, Figure 32, Figure 33, Figure 34, Figure 35 and Figure 36 for details of the De-  
Emphasis modes at different sample rates.  
Note: Using the De-emphasis filters for other sample rates as defined above will result in a frequency  
response error as shown in Figure 32, Figure 34 and Figure 36.  
DIGITAL VOLUME CONTROL  
The volume control allows the gain of each channel to be independently adjusted in 0.5dB steps from  
-103.5dB to +24dB. When the Dynamic Peak Compressor (see below) is enabled, gains of greater  
than 0dB can be applied without digital clipping occurring. The volume control has a digital zero-cross  
circuit which minimises clicks during changing the volume.  
An update control bit is provided which allows the volume setting on each channel to be first stored in  
an intermediate latch, then afterwards applied simultaneously to all channels. If UPDATE=0, the  
Volume value will be written to the pre-latch but not applied to the relevant channel. If UPDATE=1, all  
pre-latched values will be applied from the next input sample. The value of UPDATE itself is not  
latched.  
To prevent audible clicks, the volume control includes a ramp function which automatically ramps the  
volume in small steps between register updates. The ramp rate is 256dB/s 5%.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R4 (04h)  
7:0  
VOLFL[7:0]  
10110001  
(-15dB)  
0
Front-Left Volume in 0.5dB steps.  
Refer to Table 14  
Front-Left  
Volume  
8
UPDATE  
Volume Update  
0 = Store FLVOL in intermediate latch  
(no gain change)  
1 = Store and Update all channel  
gains  
R5 (05h)  
7:0  
VOLFR [7:0]  
UPDATE  
10110001  
(-15dB)  
0
Front-Right Volume in 0.5dB steps.  
Refer to Table 14  
Front-Right  
Volume  
8
Volume Update  
0 = Store FRVOL in intermediate latch  
(no gain change)  
1 = Store and Update all channel  
gains  
R6 (06h)  
7:0  
VOLSL [7:0]  
UPDATE  
10110001  
(-15dB)  
0
Surround-Left Volume in 0.5dB steps.  
Refer to Table 14  
Surround-Left  
Volume  
8
Volume Update  
0 = Store SLVOL in intermediate latch  
(no gain change)  
1 = Store and Update all channel  
gains  
PP Rev 1.4 January 2004  
32  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R7 (07h)  
7:0  
VOLSR [7:0]  
10110001  
(-15dB)  
0
Surround-Right Volume in 0.5dB  
steps. Refer to Table 14  
Surround-  
Right Volume  
8
UPDATE  
Volume Update  
0 = Store SRVOL in intermediate latch  
(no gain change)  
1 = Store and Update all channel  
gains  
R8 (08h)  
7:0  
VOLFC [7:0]  
UPDATE  
10110001  
(-15dB)  
0
Front-Centre Volume in 0.5dB steps.  
Refer to Table 14  
Front-Centre  
Volume  
8
UPDATE  
0 = Store FCVOL in intermediate latch  
(no gain change)  
1 = Store and Update all channel  
gains  
R9 (09h)  
7:0  
VOLRC [7:0]  
UPDATE  
10110001  
(-15dB)  
0
Rear-Centre Volume in 0.5dB steps.  
Refer to Table 14  
Rear-Centre  
Volume  
8
UPDATE  
0 = Store RCVOL in intermediate latch  
(no gain change)  
1 = Store and Update all channel  
gains  
R10 (0Ah)  
7:0  
VOLS [7:0]  
UPDATE  
10110001  
(-15dB)  
0
Sub Volume in 0.5dB steps. Refer to  
Table 14  
Subwoofer  
Volume  
8
UPDATE  
0 = Store SVOL in intermediate latch  
(no gain change)  
1 = Store and Update all channel  
gains  
Table 32 Volume Control  
VOLXX[7:0]  
VOLUME LEVEL  
00(hex)  
-dB (mute)  
01(hex)  
-103dB  
:
:
:
:
CF(hex)  
0dB  
:
:
:
:
FE(hex)  
FF(hex)  
+23.5dB  
+24dB  
Table 33 Volume Control Levels  
DUAL VOLUME CONTROL  
Setting the DVC register bit causes the volume settings to be applied in pairs. For example, the  
DVCF causes the Front-Left channel volume settings to be applied to both the Front-Left and Front-  
Right channels from the next audio input sample. No update to the VOL registers is required for DVC  
to take effect.  
PP Rev 1.4 January 2004  
33  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R11 (0Bh)  
0
DVCF  
0
Dual Volume Control – Front Channels:  
Dual Volume  
Control  
0 : Use VOLFR setting for Front-  
Right channel  
1: Apply VOLFL setting to Front-  
Right channel  
1
2
DVCS  
DVCC  
0
0
Dual Volume Control – Surround  
Channels:  
0 : Use VOLSR setting for  
Surround-Right channel  
1: Apply VOLSL setting to  
Surround-Right channel  
Dual Volume Control – Front Centre  
and Rear Centre Channels:  
0 : Use VOLRC setting for Rear-  
Centre channel  
1: Apply VOLFC setting to Rear-  
Centre channel  
Table 34 Dual Volume Control  
SOFT MUTE AND AUTO-MUTE  
The WM8608 has a Soft Mute function set by the SMUTE control bit. Figure 21 shows the application  
and release of SMUTE while a full amplitude sinusoid is being played at 48kHz sampling rate. When  
SMUTE (lower trace) is asserted, the output (upper trace) begins to decay exponentially from the DC  
level of the last input sample. The output will decay towards zero with a time constant of  
approximately 64 input samples. When SMUTE is turned off, the output will restart almost  
immediately from the current input sample.  
This function is disabled by default.  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
0
0.001  
0.002  
0.003  
0.004  
0.005  
0.006  
Time(s)  
Figure 21 Application and Release of Soft Mute  
PP Rev 1.4 January 2004  
34  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
An auto-mute function is provided which automatically mutes the output stage when a digital silence  
period is detected. Digital silence is defined as a consecutive period of 1024 zero input samples at  
the output of the volume control. Auto-mute will be removed as soon as the channel receives any  
non-zero input.  
The auto-mute operates independently across all channel pairs, and can be enabled or disabled on  
individual channel pairs.  
The mute features maximize the SNR of the PWM amplifier system. Soft-mute will only maximize the  
SNR of channel pairs that have auto-mute enabled.  
REGISTER  
ADDRESS  
BIT  
LABEL  
SMUTE  
DEFAULT  
DESCRIPTION  
R12 (0Ch)  
Mute  
0
0
Digital Soft Mute  
0 = disable (signal active)  
1= enable  
1
2
3
AMUTEF  
AMUTES  
AMUTEC  
1
1
1
Front Auto-mute  
0 = disable  
1 = enable  
Surround Auto-mute  
0 = disable  
1 = enable  
Front Centre and Rear Centre Auto-  
mute  
0 = disable  
1 = enable  
4
AMUTESB  
1
Subwoofer Auto-mute  
0 = disable  
1 = enable  
Table 35 Mute  
DYNAMIC PEAK COMPRESSOR  
The WM8608 includes a Dynamic Peak Compressor for each channel, which prevents the  
occurrence of digital clipping when gains in excess of 0dB are applied. The compressor automatically  
adjusts the signal amplitude to allow headroom for the LFE boost, sub-woofer mixing, tone controls,  
loudspeaker equalisation and digital volume control. The compressor has a programmable limit  
threshold, programmable attack and decay time-constants, a frequency-dependent decay mode, and  
built-in zero-cross detect. The compressor can be configured either to operate independently on all  
channels (DUAL MONO), or on linked channel-pairs (STEREO), e.g. Table 36. The following  
channels are paired together: Front-Left and Front-Right, Surround-Left and Surround-Right, Front-  
Centre and Rear-Centre.  
COMPRESSOR THRESHOLD  
The compressor has a digital peak detector which tracks the maximum input signal level at the  
output of the volume control. With reference to Figure 22, if this signal is below the threshold set by  
control bit THRESH, the compressor operates transparently with no change to the signal level.  
However, if peak signal rises above the threshold, the gain through the compressor is modified so  
that the upper part of the curve is followed. This ensures that the output signal does not exceed 0dB.  
ATTACK AND DECAY TIMES  
The attack time-constant ATK controls how fast the gain is reduced when the signal goes above the  
threshold. It is defined as the time taken for the gain to reduce by 6dB. Normally a short attack time-  
constant is used to prevent the signal clipping when a high-amplitude transient occurs.  
The decay time-constant DCY controls how fast the gain is increased when the signal begins to fall  
again. It is defined as the time taken for the gain to increase by 6dB. Normally, the decay time-  
constant is much longer than the attack time-constant, to prevent the input signal from entering  
repeated limiting cycles.  
The frequency-dependent decay feature automatically detects the input frequency and sets the  
decay time to decay slower for low frequency signals. This reduces low-frequency signal distortion by  
PP Rev 1.4 January 2004  
35  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
preserving the waveform of each input cycle, whilst allowing the compressor to respond quickly to  
high frequency transients. This feature is enabled via the FDEP control bit.  
ZERO-CROSS  
The Dynamic Peak Compressor has a zero cross detector to prevent gain changes introducing clicks  
in the signal. The ZC is controlled by the same register RXX used in the volume control.  
Output Level  
(dB)  
0dB  
THRESH  
[dB]  
-12  
+12dB  
-18  
+6dB  
0dB  
-6dB  
-24  
-12dB  
typical  
Volume Control  
-30  
-36  
Setting  
-36  
-30  
-24  
-18  
-12  
-6  
0
+6  
+12  
Peak Input Level [dB]  
Figure 22 Dynamic Peak Compressor Characteristics  
REGISTER  
ADDRESS  
BIT  
LABEL  
PLENF  
DEFAULT  
DESCRIPTION  
R21 (15h)  
0
1
Front Channel Compressor Enable  
0 = disable  
Front,  
Surround,  
Front Centre  
and Rear  
Centre  
Channel  
Dynamic  
Peak  
1 = enable  
1
2
3
4
5
PLENS  
PLENC  
DUALF  
DUALS  
DUALC  
1
1
0
0
0
Surround Channel Compressor  
Enable  
0 = disable  
1 = enable  
Front Centre and Rear Centre  
Channel Compressor Enable  
Compressor  
0 = disable  
1 = enable  
Front Channel Peak Compressor  
Operation Mode  
0: Dual-Mono  
1: Stereo  
Surround Channel Peak Compressor  
Operation Mode  
0: Dual-Mono  
1: Stereo  
Centre Channel Peak Compressor  
Operation Mode  
0: Dual-Mono  
1: Stereo  
Table 36 Front, Surround, Front Centre and Rear Centre Channel Dynamic Peak  
Compressor (1)  
PP Rev 1.4 January 2004  
36  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
REGISTER  
ADDRESS  
BIT  
LABEL  
ATK[2:0]  
DEFAULT  
DESCRIPTION  
R22 (16h)  
2:0  
010  
Front, Surround, Front Centre and  
Rear Centre Channel Attack Rate  
Front,  
Surround,  
Front Centre  
and  
Rear Centre  
Channel  
Dynamic  
Peak  
000 = 170µs  
001 = 330µs  
010 = 670µs  
011 = 1.33ms  
100 = 2.67ms  
101 = 5.33ms  
110 = 10.7ms  
111 = 20.1ms  
Compressor  
5:3  
DCY[2:0]  
011  
Front, Surround, Front Centre and  
Rear Centre Channel Decay Rate  
000 = 340ms  
001 = 680ms  
010 = 1.36s  
011 = 2.73s  
100 = 5,46s  
101, 110, 111 = 10.9s  
7:6  
THRESH[1:0]  
11  
Front, Surround, Front Centre and  
Rear Centre Channel Compressor  
Thresholds  
00 = -12dB  
01 = -9dB  
10 = -6dB  
11 = -3dB  
8
FDEP  
0
Frequency-dependent decay  
0 = disable  
1 = enable  
Table 37 Front, Surround, Front Centre and Rear Centre Channel Dynamic Peak  
Compressor (2)  
Note: The Dynamic Peak Compressors can be enabled independently for each channel pair (e.g.  
FL/FR, SL/SR). All channels use the same characteristics (e.g. Attack Rate).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R23 (17h)  
0
PLENSUB  
1
Sub Channel Compressor Enable  
0 = disable  
Sub Channel  
Dynamic  
Peak  
1 = enable  
Compressor  
Table 38 Subwoofer Channel Dynamic Peak Compressor (1)  
PP Rev 1.4 January 2004  
37  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
ATK[2:0]  
DEFAULT  
DESCRIPTION  
R24 (18h)  
2:0  
010  
Sub Channel Attack Rate  
000 = 170µs  
Sub Channel  
Dynamic  
Peak  
Compressor  
001 = 330µs  
010 = 670µs  
011 = 1.33ms  
100 = 2.67ms  
101 = 5.33ms  
110 = 10.7ms  
111 = 20.1ms  
5:3  
DCY[2:0]  
011  
Sub Channel Decay Rate  
000 = 340ms  
001 = 680ms  
010 = 1.36s  
011 = 2.73s  
100 = 5,46s  
101, 110, 111 = 10.9s  
Sub Channel Compressor Thresholds  
00 = -12dB  
7:6  
THRESH[1:0]  
11  
0
01 = -9dB  
10 = -6dB  
11 = -3dB  
8
FDEP  
Frequency-dependent decay  
0 = disable  
1 = enable  
Table 39 Subwoofer Channel Dynamic Peak Compressor (2)  
PP Rev 1.4 January 2004  
38  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
ZERO-CROSS DETECT  
The Dynamic Peak Compressor has a zero-cross detect which minimises clicks during gain changes.  
The zero-cross detect can be enabled/disabled in channel-pairs. The zero-cross has a timeout  
feature which ensures that the volume will change even if the input has a large DC offset. Once a  
new gain has been requested from the Dynamic Peak Compressor, the zero-cross detector will wait  
for a zero-cross for 25 to 50 ms before applying the gain change.  
Note that the zero-cross settings programmed here also apply to the Dynamic Peak Compressor.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R25 (19h)  
0
ZCF  
1
Zero-Cross Enable – Front Channels:  
0 : Disable Zero-Cross  
Volume  
Control Zero-  
Cross  
1: Enable Zero-Cross  
1
2
ZCS  
ZCC  
1
1
Zero-Cross Enable – Surround  
Channels:  
0 : Disable Zero-Cross  
1: Enable Zero-Cross  
Zero-Cross Enable – Front Centre and  
Rear Centre Channels:  
0 : Disable Zero-Cross  
1: Enable Zero-Cross  
3
4
ZCSUB  
ZCT  
1
1
Zero-Cross Enable – Sub Channel:  
0 : Disable Zero-Cross  
1: Enable Zero-Cross  
Zero Cross Timeout Enable:  
0 : Disable Zero-Cross Timeout  
1: Enable Zero-Cross Timeout  
Table 40 Volume Control Zero-Cross  
INTERPOLATION FILTERS  
The WM8608 uses two types of interpolation filters, selected according to sampling frequency, as  
shown in Table 40.  
SAMPLING FREQUENCY  
FILTER TYPE  
INTERPOLATION  
Main Channels SUB  
Main Channels  
32kHz  
44.1kHz  
48kHz  
0
0
0
0
0
1
1
12x  
8x  
8x  
4x  
4x  
2x  
2x  
6x  
4x  
4x  
2x  
2x  
1x  
1x  
88.2kHz  
96kHz  
176.4kHz  
192kHz  
Table 41 Interpolation Filter Types  
Note: If the Subwoofer channel is redirected into the Rear Centre (RC) channel the main channel  
characteristics apply.  
FILTER TYPE 0  
PARAMETER  
Filter  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.454  
±0.05  
UNIT  
Passband  
±0.05 dB  
fs  
fs  
Stopband  
-3dB  
0.484  
Passband ripple  
Stopband Attenuation  
Group Delay  
dB  
f > 0.546fs  
-60  
23  
dB  
samples  
Table 42 Digital Filter 0 Characteristics  
PP Rev 1.4 January 2004  
39  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
FILTER TYPE 1  
SYMBOL  
PARAMETER  
Filter  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.242  
±0.05  
UNIT  
Passband  
fs  
fs  
Stopband  
0.723  
Passband ripple  
Stopband Attenuation  
Group Delay  
dB  
-60  
6
dB  
samples  
Table 43 Digital Filter 1 Characteristics  
PCM TO PWM CONVERTER  
The PCM to PWM converter converters the Pulse-Code Modulated (PCM) signal into a highly linear  
Pulse-Width Modulated (PWM) signal. Table 44 defines the Pulse Repetition Frequency, (PRF),  
output clock rate (OBCLK) and minimum pulse width for each supported sampling frequency.  
tOBCLK  
tPWMP  
tPWMM  
tPWMM  
tPWMP  
Figure 23 PCM to PWM Converter  
The PRF Frequency (TPWMP) of the Sub-woofer channel is half of the frequency defined in Table 44  
in order to reduce power dissipation in the output stage.  
SAMPLING  
FREQUENCY  
PRF  
OUTPUT BITCLOCK  
FREQUENCY  
MINIMUM PULSE  
WIDTH (TPWMM  
(1/TPWMP  
)
)
(1/TOBCLK  
)
Main Channel  
SUB  
[kHz]  
384  
[kHz]  
192  
[MHz]  
98.304  
90.3168  
98.304  
90.3168  
98.304  
90.3168  
98.304  
[ns]  
122  
133  
122  
133  
122  
133  
122  
32kHz  
44.1kHz  
48kHz  
352.8  
384  
176.4  
192  
88.2kHz  
96kHz  
352.8  
384  
176.4  
192  
176.4kHz  
192kHz  
352.8  
384  
176.4  
192  
Table 44 Output Bitclock Frequency  
Notes:  
1. The correct Output Bitclock Frequency (TOBCLK) is generated by the built-in PLL of the WM8608  
device. The incoming clock must meet the jitter specification defined in Table 3.  
PP Rev 1.4 January 2004  
40  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
OUTPUT PHASE  
The Phase control word determines whether the output of each channel is non-inverted or inverted.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R26 (1Ah)  
6:0  
PH[6:0]  
0000000  
Bit  
0
Channel  
FL  
Phase  
Output Phase  
1 = invert  
1 = invert  
1 = invert  
1 = invert  
1 = invert  
1 = invert  
1 = invert  
1
FR  
2
SL  
3
SR  
4
FC  
5
RC  
6
SUB  
Table 45 Phase  
PWM OUTPUT CONFIGURATION  
Two different PWM output formats are supported. These are:  
CMOS or LVDS  
Tri-state outputs to support power-down.  
The PWM output format can be defined with the LVDS and PWMCFG setting defined in Table 46.  
REGISTER  
ADDRESS  
BIT  
LABEL  
LVDS  
DEFAULT  
DESCRIPTION  
R27 (1Bh)  
0
0
Output PAD configuration  
0 = CMOS  
PWM Output  
Configuration  
1 = LVDS  
2:1  
PWMCFG  
[1:0]  
00  
PWM Output State for LVDS=0 when  
output disabled or in standby mode:  
01 = all PWM Outputs high  
00 = all PWM Outputs low  
10, 11 = high impedance  
For LVDS=1 when output disabled or in  
standby mode, the output state is high  
impedance.  
3
7
PWMPH  
1
0
PWM Output Phase  
0 = PWM outputs in phase  
1 = PWM outputs phase shifted to each  
other  
PWMCLK  
PWM Output Clock  
0 = disabled  
1 = enabled  
Table 46 PWM Output Configuration  
OUTPUT CONFIGURATION  
If required the WM8608 device can be disabled in a system by setting the TRI bit as defined in Table  
47. Setting the TRI bit will set all output pins of the device to high impedance.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R28 (1Ch)  
0
TRI  
0
Output Pins Mode  
Output  
0 = Normal  
Configuration  
1 = High Impedance  
Table 47 Output Configuration  
PP Rev 1.4 January 2004  
41  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
STANDBY, OUTPUT DISABLE AND RESET MODES  
STANDBY  
Setting the STDBY register bit selects a low power mode, and immediately configures the output to  
produce an output defined in Table 46 (PWMCFG). All trace of the previous input samples is  
removed, but all control register settings are preserved.  
OUTPUT DISABLE (OPDIS) PIN AND REGISTER (OPDISR)  
The OPDIS pin is provided to immediately shutdown the outputs, primarily for their protection. This is  
useful for short-circuit or thermal protection. The OPDIS pin can be configured in 2 modes:  
Synchronous  
Latched  
In synchronous mode if OPDIS is high for longer than 100ns the outputs will be disabled. They will be  
enabled again at the end of a processing frame when OPDIS goes low for longer than 100ns.  
In latched mode if OPDIS is high for longer than 100ns, the outputs will be disabled and will remain  
off until OPDIS is reset via the control interface and the end of a processing frame is reached (Table  
49).  
The output disable register (OPDISR) also allows the PWM outputs to be disabled via a register  
write. If OPDISR is set the PWM outputs will be disabled at theend of the next processing frame and  
enabled if OPDISR is reset at the end of the next processing frame.  
REGISTER ADDRESS  
R29 (1Dh)  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Standby select:  
0
STDBY  
1
Power Down  
0 : Normal Mode  
1: Standby Mode  
1
2
OPDISR  
MENA  
0
1
Output disable register  
0: Normal mode  
1: PWM output disabled  
OPDIS Mode  
0 : Synchronous  
1: Latched, reset via Control I/F  
Table 48 Power Down  
EXTERNAL APPLICATION POWER-DOWN (EAPDB) PIN  
The state of the output pin EAPDB shows whether the device is disabled (i.e. OPDIS input pin active  
or STDBY register set).  
EAPDB  
External  
STATE  
DESCRIPTION  
1
The device is operating  
correctly  
Application  
Power Down  
0
The outputs are disabled or  
the WM8608 device is in  
Standby (default) mode  
(default)  
Table 49 EAPDB Pin  
PP Rev 1.4 January 2004  
42  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
RESET  
The WM8608 device can be reset writing to the Reset register as defined in Table 50.  
REGISTER ADDRESS  
R30 (1Eh)  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0
RLENA  
0
Writing 1 to bit 0 of the register will  
reset OPDIS  
Reset  
all  
RESET  
0
Writing all 1’s to the register will  
reset the device and register  
settings  
Table 50 Reset  
Note: RESET or RLENA will be applied at the end of the register write and released at the beginning  
of the next register write. I.e. to reset the OPDIS register write 1 to bit 0 of the Reset register and  
them write 0 to bit 0.  
EXTERNAL POWER SUPPLY CLOCK  
The WM8608 device can generate a clock signal for an external PSU (Power Supply Unit) which is  
available at the CLKPSU pin.  
tHCLKPSU  
CLKPSU  
tPCLKPSU  
Figure 24 External Power Supply Clock  
REGISTER  
ADDRESS  
BIT  
LABEL  
ENPSU  
DEFAULT  
DESCRIPTION  
CLKPSU enable  
R31 (1Fh)  
PSU  
0
0
1: enabled  
2:1  
4:3  
CLKPSU[1:0]  
00  
00  
CLKPSU frequency  
00: CLKPSU = fPRF  
01: CLKPSU = fPRF/2  
10: CLKPSU = fPRF/4  
11: CLKPSU = fPRF/6  
DCYPSU[1:0]  
CLKPSU duty cycle  
00: thclkpsu/tpclkpsu = 0.5 (50%)  
01: thclkpsu/tpclkpsu = 0.125 (12.5%)  
10: thclkpsu/tpclkpsu = 0.0625 (6.25%)  
11: thclkpsu/tpclkpsu = 0.03125 (3.125%)  
Table 51 PSU Clock  
Note: See Table 44 for specification of fPRF  
.
PP Rev 1.4 January 2004  
43  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
REGISTER MAP  
The complete register map is shown below. The detailed description can be found in the relevant text of the device description.  
There are 32 registers with 9 bits per register. These can be controlled using the Control Interface.  
REGISTER  
ADDRESS  
REMARKS  
BIT[8]  
BIT[7]  
BIT[6]  
BIT[5]  
BIT[4]  
BIT[3]  
BIT[2]  
BIT[1]  
BIT[0]  
DEFAULT  
PAGE REF  
00_0000  
0
0
0
0
CLKDIV2 MEDGE MPEG  
SR  
CMAST 0_0000_0011  
0_0001_0000  
20  
R0 (00h)  
Clocking  
0
00_0001  
00_0010  
00_0011  
00_0100  
00_0101  
00_0110  
00_0111  
00_1000  
00_1001  
00_1010  
00_1011  
00_1100  
00_1101  
00_1110  
00_1111  
01_0000  
01_0001  
01_0010  
01_0011  
01_0100  
01_0101  
01_0110  
01_0111  
01_1000  
01_1001  
01_1010  
01_1011  
01_1100  
01_1101  
01_1110  
01_1111  
10_0000  
10_0001  
0
MS  
0
0
0
SRDET  
LRP  
20  
19  
26  
32  
32  
32  
33  
33  
33  
33  
34  
35  
29  
29  
30  
30  
30  
31  
31  
32  
36  
37  
37  
38  
39  
41  
41  
41  
42  
43  
43  
23  
23  
R1 (01h)  
R2 (02h)  
Sample Rate  
Audio IF Format  
0
LRSWAP SUBSWP  
WL  
RCCFG  
FORMAT  
IPCFG  
0_0000_1010  
BCLKINV  
0
0
SUBCFG  
OPCFG  
0_0001_1001  
0_1011_0001  
R3 (03h)  
Input/Output Configuration  
Front-Left Volume  
Front-Right Volume  
VOLFL (Front Left) Volume  
VOLFR (Front Right) Volume  
VOLSL (Surround Left) Volume  
VOLSR (Surround Right) Volume  
VOLFC (Front Centre) Volume  
VOLRC (Rear Centre) Volume  
VOLS (Subwoofer) Volume  
R4 (04h)  
UPDATE  
UPDATE  
0_1011_0001  
R5 (05h)  
0_1011_0001  
R6 (06h)  
Surround-Left Volume UPDATE  
Surround-Right Volume UPDATE  
0_1011_0001  
R7 (07h)  
0_1011_0001  
R8 (08h)  
Front-Centre Volume  
Rear-Centre Volume  
Subwoofer Volume  
Dual Volume Control  
Mute  
UPDATE  
0_1011_0001  
R9 (09h)  
UPDATE  
0_1011_0001  
R10 (0Ah)  
R11 (0Bh)  
R12 (0Ch)  
R13 (0Dh)  
R14 (0Eh)  
R15 (0Fh)  
R16 (10h)  
R17 (11h)  
R18 (12h)  
R19(13h)  
R20 (14h)  
R21 (15h)  
R22 (16h)  
R23 (17h)  
R24 (18h)  
R25 (19h)  
R26 (1Ah)  
R27 (1Bh)  
R28 (1Ch)  
R29 (1Dh)  
R30 (1Eh)  
R31 (1Fh)  
R32 (20h)  
R33 (21h)  
UPDATE  
0
0
0
0
0
0
0
0
0
0
0
0
0
DVCC  
DVCS  
DVCF 0_0000_0000  
0
0
0
0
0
0
AMUTESB AMUTEC AMUTES AMUTEF SMUTE 0_0001_1110  
LFEBOOST LPHPCO 0_0000_0001  
0
0
Bass (1)  
LPENC LPENS LPENF HPENC HPENS HPENF 0_0011_1111  
Bass (2)  
EQ1GFC  
EQ2GFC  
EQ3GFC  
EQ1GF  
EQ2GF  
EQ3GF  
0_1111_1111  
0_1111_1111  
0_1111_1111  
EQ Band 1 Gain Control  
EQ Band 2 Gain Control  
EQ Band 3 Gain Control  
EQ Frequency Control  
Speaker Equaliser  
Deemphasis  
0
0
0
0
0
0
0
0
0
0
0
0
0
EQ3CFC EQ3CF EQ2CFC EQ2CF EQ1CFC EQ1CF 0_0011_1111  
0
0
0
0
LSEQ  
0
LSCO 0_0000_1000  
DEEMPH 0_0000_0000  
0
0
DUALC DUALS DUALF PLENC PLENS PLENF 0_0000_0111  
Peak Compressor F, S, C (1)  
THRESH  
DCY  
0
ATK  
0
0_1101_1010  
PLENSUB 0_0000_0001  
0_1101_1010  
Peak Compressor F, S, C, (2) FDEP  
PeakCompressor SUB (1)  
PeakCompressor SUB (2) FDEP  
0
0
0
0
0
0
0
0
THRESH  
DCY  
ZCT  
ATK  
ZCS  
0
0
ZCSUB  
ZCC  
ZCF  
0_0001_1111  
0_0000_0000  
0_0000_1000  
0_0000_0000  
Zero Cross  
Output phase  
PWM Output Config  
Output Config  
Power Down  
Reset  
0
0
0
0
0
0
0
0
0
PH  
PWMCLK  
0
0
0
0
0
0
0
0
0
0
0
0
PWMPH  
PWMCFG  
LVDS  
TRI  
0
0
0
0
0
0
0
0
0
0
0
0
0
MENA OPDISR STDBY 0_0000_0101  
0
0
0
RLENA 0_0000_0000  
ENPSU 0_0000_0000  
SYNCEN 0_0001_0101  
SYNTO 0_0000_0100  
0
HOLD  
0
DCYPSU  
GMAX  
CLKPSU  
GMIN  
PSU  
Synchroniser (1)  
Synchroniser (2)  
0
0
Table 52 Register Map Description  
PP Rev 1.4 January 2004  
44  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
DIGITAL FILTER CHARACTERISTICS  
FILTER RESPONSES  
0.05  
0.04  
0.03  
0.02  
0.01  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 26 Digital Filter Ripple –32kHz  
Figure 25 Digital Filter Frequency Response – 32KHz  
0.05  
0.04  
0.03  
0.02  
0.01  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 28 Digital Filter Ripple –44.1, 48 and 96kHz  
Figure 27 Digital Filter Frequency Response – 44.1, 48  
and 96KHz  
0.05  
0.04  
0.03  
0.02  
0.01  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.2  
0.4  
0.6  
0.8  
1
Frequency (Fs)  
Frequency (Fs)  
Figure 30 Digital filter Ripple – 192kHz  
Figure 29 Digital Filter Frequency Response – 192KHz  
PP Rev 1.4 January 2004  
45  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
DIGITAL DE-EMPHASIS CHARACTERISTICS  
1
0
0
-2  
-1  
-2  
-3  
-4  
-5  
-6  
-4  
-6  
-8  
-10  
-12  
0
2000  
4000  
6000  
8000 10000 12000 14000 16000  
0
2000  
4000  
6000  
8000  
10000 12000 14000 16000  
Frequency (Hz)  
Frequency (Hz)  
Figure 31 De-Emphasis Frequency Response (32kHz)  
Figure 32 De-Emphasis Error (32KHz)  
1
0
0
-2  
-1  
-2  
-3  
-4  
-5  
-6  
-4  
-6  
-8  
-10  
-12  
0
5000  
10000  
15000  
20000  
0
5000  
10000  
15000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 33 De-Emphasis Frequency Response (44.1KHz)  
Figure 34 De-Emphasis Error (44.1KHz)  
1
0
0
-2  
-1  
-2  
-3  
-4  
-5  
-6  
-4  
-6  
-8  
-10  
-12  
0
5000  
10000  
15000  
20000  
0
5000  
10000  
15000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 35 De-Emphasis Frequency Response (48kHz)  
Figure 36 De-Emphasis Error (48kHz)  
PP Rev 1.4 January 2004  
46  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
APPLICATION NOTES  
START-UP  
The WM8608 per default is switched off and the PWM output pins are static high, to protect any  
external circuit. When the device has been properly initialized and the output configuration has been  
defined then the device can safely be switched on. A typical start-up sequence is show in Figure 37.  
Figure 37 WM8608 Start-up  
PP Rev 1.4 January 2004  
47  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
POWER SUPPLY CONNECTIONS  
The WM8608 has got 3 individual power supplies. Figure 38 shows how these power supplies are  
connected and used on the chip and package.  
Figure 38 WM8608 Power Supply Connections  
PP Rev 1.4 January 2004  
48  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
APPLICATIONS INFORMATION  
RECOMMENDED EXTERNAL COMPONENTS  
Figure 39 WM8608 External Component Diagram  
RECOMMENDED EXTERNAL COMPONENTS VALUES  
COMPONENT REFERENCE  
SUGGESTED VALUE  
DESCRIPTION  
Y1  
C1, C2  
C3  
24.576 / 27.000MHz  
Crystal (15pF load)  
Capacitor NP0 0603  
Capacitor Y5V 0805  
Capacitor X7R 0603  
22pF  
4.7µF  
0.1µF  
C4-C10  
Table 53 External Components Description  
PP Rev 1.4 January 2004  
49  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
WM8608  
Product Preview  
PACKAGE DIMENSIONS  
FT: 48 PIN TQFP (7 x 7 x 1.0 mm)  
DM004.C  
b
e
36  
25  
37  
24  
E1  
E
48  
13  
1
12  
Θ
D1  
D
c
L
A1  
A
A2  
-C-  
SEATING PLANE  
ccc  
C
Dimensions  
(mm)  
Symbols  
MIN  
NOM  
-----  
-----  
1.00  
0.22  
-----  
MAX  
1.20  
0.15  
1.05  
0.27  
0.20  
A
A1  
A2  
b
-----  
0.05  
0.95  
0.17  
0.09  
c
D
D1  
E
E1  
e
9.00 BSC  
7.00 BSC  
9.00 BSC  
7.00 BSC  
0.50 BSC  
0.60  
L
Θ
0.45  
0o  
0.75  
7o  
3.5o  
Tolerances of Form and Position  
0.08  
ccc  
REF:  
JEDEC.95, MS-026  
NOTES:  
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.  
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.25MM.  
D. MEETS JEDEC.95 MS-026, VARIATION = ABC. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.  
PP Rev 1.4 January 2004  
50  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Product Preview  
WM8608  
IMPORTANT NOTICE  
Wolfson Microelectronics plc (WM) reserve the right to make changes to their products or to discontinue any product or  
service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing  
orders, that information being relied on is current. All products are sold subject to the WM terms and conditions of sale  
supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation  
of liability.  
WM warrants performance of its products to the specifications applicable at the time of sale in accordance with WM’s  
standard warranty. Testing and other quality control techniques are utilised to the extent WM deems necessary to support  
this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by  
government requirements.  
In order to minimise risks associated with customer applications, adequate design and operating safeguards must be used  
by the customer to minimise inherent or procedural hazards. Wolfson products are not authorised for use as critical  
components in life support devices or systems without the express written approval of an officer of the company. Life  
support devices or systems are devices or systems that are intended for surgical implant into the body, or support or  
sustain life, and whose failure to perform when properly used in accordance with instructions for use provided, can be  
reasonably expected to result in a significant injury to the user. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
WM assumes no liability for applications assistance or customer product design. WM does not warrant or represent that  
any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual  
property right of WM covering or relating to any combination, machine, or process in which such products or services might  
be or are used. WM’s publication of information regarding any third party’s products or services does not constitute WM’s  
approval, license, warranty or endorsement thereof.  
Reproduction of information from the WM web site or datasheets is permissible only if reproduction is without alteration and  
is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this  
information with alteration voids all warranties provided for an associated WM product or service, is an unfair and deceptive  
business practice, and WM is not responsible nor liable for any such use.  
Resale of WM’s products or services with statements different from or beyond the parameters stated by WM for that  
product or service voids all express and any implied warranties for the associated WM product or service, is an unfair and  
deceptive business practice, and WM is not responsible nor liable for any such use.  
ADDRESS:  
Wolfson Microelectronics plc  
20 Bernard Terrace  
Edinburgh  
EH8 9NX  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PP Rev 1.4 January 2004  
51  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  

相关型号:

WM8706

24-bit, 192kHz Stereo DAC with Volume Control
WOLFSON

WM8706SEDS

24-bit, 192kHz Stereo DAC with Volume Control
WOLFSON

WM8706SEDS/R

24-bit, 192kHz Stereo DAC with Volume Control
WOLFSON

WM8706_05

24-bit, 192kHz Stereo DAC with Volume Control
WOLFSON

WM8711

Internet Audio DAC with Integrated Headphone Driver
WOLFSON

WM8711BL

Ultra-Small Audio DAC with Headphone Amplifier
WOLFSON

WM8711BLGEFL/RV

Ultra-Small Audio DAC with Headphone Amplifier
WOLFSON

WM8711BLGEFL/V

Ultra-Small Audio DAC with Headphone Amplifier
WOLFSON

WM8711BL_07

Ultra-Small Audio DAC with Headphone Amplifier
WOLFSON

WM8711BL_11

Ultra-Small Audio DAC with Headphone Amplifier
WOLFSON

WM8711CBLGEFL/RV

Consumer Circuit, CMOS, PQCC24, 4 X 4 MM, 0.90 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, PLASTIC, MO-220VGGD-8, QFN-24
CIRRUS

WM8711EDS

portable digital audio solutions
WOLFSON