WM8772SEDS [CIRRUS]

PCM Codec, 1-Func, CMOS, PDSO28, 10.20 X 5.30 MM, 1.75 MM HEIGHT, LEAD FREE, MO-150AH, SSOP-28;
WM8772SEDS
型号: WM8772SEDS
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

PCM Codec, 1-Func, CMOS, PDSO28, 10.20 X 5.30 MM, 1.75 MM HEIGHT, LEAD FREE, MO-150AH, SSOP-28

PC 电信 光电二极管 电信集成电路
文件: 总70页 (文件大小:663K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8772  
24-bit, 192kHz 6-Channel Codec with Volume Control  
DESCRIPTION  
FEATURES  
Audio Performance  
The WM8772 is a multi-channel audio codec ideal for DVD  
and surround sound processing applications for home hi-fi,  
automotive and other audio visual equipment.  
103dB SNR (‘A’ weighted @ 48kHz) DAC  
100dB SNR (‘A’ weighted @ 48kHz) ADC (TQFP)  
DAC Sampling Frequency: 8kHz – 192kHz  
ADC Sampling Frequency: 8kHz – 96kHz  
A stereo 24-bit multi-bit sigma delta ADC is used. Digital  
audio output word lengths from 16-32 bits and sampling  
rates from 8kHz to 96kHz are supported. The 32-lead  
version allows separate ADC and DAC samples rates.  
ADC and DAC can run at different sample rates (32 pin  
TQFP version only)  
3-Wire SPI Serial or Hardware Control Interface  
Programmable Audio Data Interface Modes  
Three stereo 24-bit multi-bit sigma delta DACs are used  
with oversampling digital interpolation filters. Digital audio  
input word lengths from 16-32 bits and sampling rates from  
8kHz to 192kHz are supported. Each DAC channel has  
independent digital volume and mute control.  
I2S, Left, Right Justified or DSP  
16/20/24/32 bit Word Lengths  
Three Independent stereo DAC outputs with independent  
digital volume controls  
The audio data interface supports I2S, left justified, right  
justified and DSP digital audio formats.  
Master or Slave Audio Data Interface  
2.7V to 5.5V Analogue, 2.7V to 3.6V Digital supply  
Operation  
The device is controlled via a 3 wire serial interface. The  
interface provides access to all features including channel  
selection, volume controls, mutes, de-emphasis and power  
management facilities. The device is available in a 28-pin  
SSOP or 32 pin TQFP.  
28 pin SSOP or 32 pin TQFP Package  
APPLICATIONS  
DVD Players  
Surround Sound AV Processors and Hi-Fi systems  
Automotive Audio  
BLOCK DIAGRAM - 28 PIN SSOP  
VREFNVREFP  
LOW  
PASS  
FILTER  
VOUT1L  
VOUT1R  
STEREO  
DAC  
VREFN  
AUDIO  
INTERFACE  
AINL  
AINR  
VOUT2L  
VOUT2R  
LOW  
PASS  
FILTER  
STEREO  
ADC  
STEREO  
DAC  
&
DIGITAL FILTERS  
VOUT3L  
VOUT3R  
LOW  
PASS  
FILTER  
STEREO  
DAC  
W
WM8772EDS  
CONTROL INTERFACE  
WOLFSON MICROELECTRONICS plc  
Production Data, January 2004, Rev 4.0  
w :: www.wolfsonmicro.com  
Copyright 2004 Wolfson Microelectronics plc  
WM8772  
Production Data  
BLOCK DIAGRAM – 32 PIN TQFP  
VREFNVREFP  
LOW  
PASS  
FILTER  
VOUT1L  
STEREO  
DAC  
VOUT1R  
AUDIO  
INTERFACE  
&
AINL  
VOUT2L  
VOUT2R  
LOW  
PASS  
FILTER  
STEREO  
ADC  
STEREO  
DAC  
AINR  
DIGITAL FILTERS  
VOUT3L  
VOUT3R  
LOW  
PASS  
FILTER  
STEREO  
DAC  
W
WM8772EFT  
CONTROL INTERFACE  
* extra pins on TQFP allow separate  
clocking of ADC and DAC  
PD Rev 4.0 January 2004  
w
2
Production Data  
WM8772  
TABLE OF CONTENTS  
DESCRIPTION .......................................................................................................1  
FEATURES.............................................................................................................1  
APPLICATIONS .....................................................................................................1  
BLOCK DIAGRAM - 28 PIN SSOP........................................................................1  
BLOCK DIAGRAM – 32 PIN TQFP........................................................................2  
TABLE OF CONTENTS .........................................................................................3  
PIN CONFIGURATION - 28 LEAD SSOP.............................................................5  
ORDERING INFORMATION ..................................................................................5  
PIN CONFIGURATION 32 LEAD TQFP...............................................................6  
ORDERING INFORMATION ..................................................................................6  
PIN DESCRIPTION – 28 LEAD SSOP...................................................................7  
PIN DESCRIPTION – 32 LEAD TQFP ...................................................................8  
ABSOLUTE MAXIMUM RATINGS.........................................................................9  
RECOMMENDED OPERATING CONDITIONS ...................................................10  
ADC HIGH PASS FILTER ........................................................................................... 14  
DIGITAL DE-EMPHASIS CHARACTERISTICS........................................................... 14  
WM8772EDS – 28 PIN SSOP..............................................................................16  
MASTER CLOCK TIMING........................................................................................... 16  
DIGITAL AUDIO INTERFACE – MASTER MODE....................................................... 16  
MPU INTERFACE TIMING.......................................................................................... 19  
INTRODUCTION......................................................................................................... 20  
AUDIO DATA SAMPLING RATES............................................................................... 20  
HARDWARE CONTROL MODES ............................................................................... 21  
DIGITAL AUDIO INTERFACE..................................................................................... 23  
POWERDOWN MODES ............................................................................................. 27  
ZERO DETECT ........................................................................................................... 27  
CONTROL INTERFACE REGISTERS ........................................................................ 29  
RECOMMENDED EXTERNAL COMPONENTS.......................................................... 37  
SUGGESTED ANALOGUE LOW PASS POST DAC FILTERS................................... 38  
WM8722EFT - 32 PIN TQFP................................................................................41  
MASTER CLOCK TIMING........................................................................................... 41  
DIGITAL AUDIO INTERFACE – MASTER MODE....................................................... 41  
MPU INTERFACE TIMING.......................................................................................... 44  
DEVICE DESCRIPTION.......................................................................................46  
INTRODUCTION......................................................................................................... 46  
AUDIO DATA SAMPLING RATES............................................................................... 46  
HARDWARE CONTROL MODES ............................................................................... 47  
DIGITAL AUDIO INTERFACE..................................................................................... 49  
POWERDOWN MODES ............................................................................................. 54  
ZERO DETECT ........................................................................................................... 54  
SOFTWARE CONTROL INTERFACE OPERATION ...........................................54  
REGISTER MAP – 32 PIN TQFP.........................................................................55  
CONTROL INTERFACE REGISTERS ........................................................................ 56  
PD Rev 4.0 January 2004  
w
3
WM8772  
Production Data  
APPLICATIONS INFORMATION .........................................................................66  
RECOMMENDED EXTERNAL COMPONENTS.......................................................... 66  
SUGGESTED ANALOGUE LOW PASS POST DAC FILTERS...........................67  
PACKAGE DIMENSIONS ....................................................................................69  
IMPORTANT NOTICE..........................................................................................70  
ADDRESS: .................................................................................................................. 70  
PD Rev 4.0 January 2004  
w
4
Production Data  
WM8772  
PIN CONFIGURATION - 28 LEAD SSOP  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MODE  
MCLK  
BCLK  
LRC  
1
AVDD  
2
AGND  
3
VOUT3R  
VOUT3L  
VOUT2R  
VOUT2L  
VOUT1R  
VOUT1L  
AINL  
4
DVDD  
DGND  
5
6
DIN1  
DIN2  
7
8
DIN3  
9
DOUT  
ML/I2S  
MC/IWL  
MD/DM  
MUTE  
AINR  
10  
11  
12  
13  
14  
VMID  
VREFP  
VREFN  
REFADC  
ORDERING INFORMATION  
MOISTURE  
SENSITIVITY LEVEL  
PACKAGE BODY  
TEMP  
DEVICE  
TEMP. RANGE  
-25 to +85oC  
-25 to +85oC  
PACKAGE  
MSL1  
260oC  
WM8772EDS  
WM8772SEDS  
28-pin SSOP  
28-pin SSOP  
(lead free)  
MSL1  
260oC  
28-pin SSOP  
(tape and reel)  
28-pin SSOP  
MSL1  
MSL1  
260oC  
260oC  
WM8772EDS/R  
WM8772SEDS/R  
-25 to +85oC  
-25 to +85oC  
(lead free, tape  
and reel)  
Note:  
Reel quantity = 2,000  
PD Rev 4.0 January 2004  
5
w
WM8772  
Production Data  
PIN CONFIGURATION  
32 LEAD TQFP  
24 23 22  
20 19 18 17  
21  
VOUT3R  
DACVREFP  
DACVREFN  
ADCVREFN  
AGND  
AVDD  
MODE  
REFADC  
MUTE  
ADCMCLK  
DACMLCK  
MD/DM  
MC/IWL  
ML/I2S  
ADCBCLK  
DACBCLK  
1
2
3
4
5
6
7
8
ORDERING INFORMATION  
MOISTURE SENSITIVITY  
LEVEL  
PACKAGE BODY  
DEVICE  
TEMP. RANGE  
PACKAGE  
TEMP  
240oC  
WM8772EFT  
-25 to +85oC  
32-lead TQFP  
MSL1  
WM8772SEFT/V  
WM8772EFT/R  
-25 to +85oC  
-25 to +85oC  
-25 to +85oC  
32-lead TQFP  
(lead free)  
MSL2  
260oC  
240oC  
260oC  
32-lead TQFP  
(tape and reel)  
32-lead TQFP  
MSL1  
MSL2  
WM8772SEFT/RV  
(lead free, tape  
and reel)  
Note:  
Reel quantity = 2,200  
PD Rev 4.0 January 2004  
6
w
Production Data  
WM8772  
PIN DESCRIPTION – 28 LEAD SSOP  
PIN  
NAME  
TYPE  
DESCRIPTION  
1
MODE  
Digital input  
Control format selection  
0 = Software control  
1 = Hardware control  
2
MCLK  
Digital input  
Master clock; 256, 384, 512 or 768fs (fs = word clock frequency)  
(combined ADCMCLK and DACMCLK)  
3
4
BCLK  
LRC  
Digital input/output Audio interface bit clock (combined ADCBCLK and DACBCLK)  
Digital input/output Audio left/right word clock (combined ADCLRC and DACLRC)  
5
DVDD  
DGND  
DIN1  
Supply  
Supply  
Digital positive supply  
6
Digital negative supply  
7
Digital input  
Digital input  
Digital input  
Digital output  
Digital input  
DAC channel 1 data input  
8
DIN2  
DAC channel 2 data input  
9
DIN3  
DAC channel 3 data input  
10  
11  
DOUT  
ML/I2S  
ADC data output  
Software Mode: Serial interface Latch signal  
Hardware Mode: Input Audio Data Format  
Software Mode: Serial control interface clock  
Hardware Mode: Audio data input word length  
Software Mode: Serial interface data  
Hardware Mode: De-emphasis selection  
12  
13  
MC/IWL  
MD/DM  
Digital input  
Digital input  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
MUTE  
REFADC  
VREFN  
VREFP  
VMID  
Digital input/output DAC Zero Flag output or DAC mute input  
Analogue output  
Supply  
ADC reference buffer decoupling pin; 10uF external decoupling  
ADC and DAC negative supply  
DAC positive reference supply  
Midrail divider decoupling pin; 10uF external decoupling  
ADC right input  
Supply  
Analogue output  
Analogue input  
Analogue input  
Analogue output  
Analogue output  
Analogue output  
Analogue output  
Analogue output  
Analogue output  
Supply  
AINR  
AINL  
ADC left input  
VOUT1L  
VOUT1R  
VOUT2L  
VOUT2R  
VOUT3L  
VOUT3R  
AGND  
DAC channel 1 left output  
DAC channel 1 right output  
DAC channel 2 left output  
DAC channel 2 right output  
DAC channel 3 left output  
DAC channel 3 right output  
Analogue negative supply and substrate connection  
Analogue positive supply  
AVDD  
Supply  
Note: Digital input pins have Schmitt trigger input buffers.  
PD Rev 4.0 January 2004  
w
7
WM8772  
Production Data  
PIN DESCRIPTION – 32 LEAD TQFP  
PIN  
1
NAME  
ADCLRC  
DACLRC  
DVDD  
DGND  
DIN1  
TYPE  
DESCRIPTION  
Digital Input/Output ADC left/right word clock  
Digital Input/Output DAC left/right word clock  
2
3
Supply  
Supply  
Digital positive supply  
Digital negative supply  
DAC channel 1 data input  
DAC channel 2 data input  
DAC channel 3 data input  
ADC data output  
4
5
Digital Input  
Digital Input  
Digital Input  
Digital Output  
Digital Input  
6
DIN2  
7
DIN3  
8
DOUT  
ML/I2S  
9
Software Mode: Serial interface Latch signal  
Hardware Mode: Input Audio Data Format  
Software Mode: Serial control interface clock  
Hardware Mode: Audio data input word length  
Software Mode: Serial interface data  
10  
11  
MC/IWL  
MD/DM  
Digital Input  
Digital Input  
Hardware Mode: De-emphasis selection  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
MUTE  
REFADC  
ADCVREFN  
DACVREFN  
DACVREFP  
VMID  
Digital Input/Output DAC Zero Flag output or DAC Mute Input  
Analogue Output  
Supply  
ADC reference buffer decoupling pin; 10uF external decoupling  
ADC negative supply  
Supply  
DAC negative supply  
Supply  
DAC positive reference supply  
Midrail divider decoupling pin; 10uF external decoupling  
ADC right input  
Analogue Output  
Analogue Input  
Analogue Input  
Analogue Output  
Analogue Output  
Analogue Output  
Analogue Output  
Analogue Output  
Analogue Output  
Supply  
AINR  
AINL  
ADC left input  
VOUT1L  
VOUT1R  
VOUT2L  
VOUT2R  
VOUT3L  
VOUT3R  
AGND  
DAC channel 1 left output  
DAC channel 1 right output  
DAC channel 2 left output  
DAC channel 2 right output  
DAC channel 3 left output  
DAC channel 3 right output  
Analogue negative supply and substrate connection  
Analogue positive supply  
Control format selection  
AVDD  
Supply  
MODE  
Digital Input  
0 = Software control  
1 = Hardware control  
29  
30  
31  
32  
ADCMCLK  
DACMCLK  
ADCBCLK  
DACBCLK  
Digital Input  
Digital Input  
Master ADC clock; 256, 384, 512 or 768fs (fs = word clock frequency)  
Master DAC clock; 256, 384, 512 or 768fs (fs = word clock frequency)  
Digital Input/Output ADC audio interface bit clock  
Digital Input/Output DAC audio interface bit clock  
Note: Digital input pins have Schmitt trigger input buffers.  
PD Rev 4.0 January 2004  
8
w
Production Data  
WM8772  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at  
or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical  
Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
The Moisture Sensitivity Level for each package type is specified in Ordering Information.  
CONDITION  
MIN  
-0.3V  
MAX  
+5V  
Digital supply voltage  
Analogue supply voltage  
-0.3V  
+7V  
Voltage range digital inputs 1  
Voltage range analogue inputs 1  
Master Clock Frequency  
DGND -0.3V  
AGND -0.3V  
DVDD +0.3V  
AVDD +0.3V  
37MHz  
Operating temperature range, TA  
Storage temperature after soldering  
Package body temperature (soldering 10 seconds)  
-25°C  
-65°C  
+85°C  
+150°C  
Refer to Ordering  
Information, p5 and p6  
Package body temperature (soldering 2 minutes)  
+183°C  
Notes:  
1. Analogue and digital grounds must always be within 0.3V of each other.  
PD Rev 4.0 January 2004  
9
w
WM8772  
Production Data  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
DVDD  
TEST CONDITIONS  
MIN  
2.7  
TYP  
MAX  
3.6  
UNIT  
Digital supply range  
Analogue supply range  
Ground  
V
V
V
V
AVDD, VREFP  
AGND, VREFN, DGND  
2.7  
5.5  
0
0
Difference DGND to AGND  
-0.3  
+0.3  
Note: Digital supply DVDD must never be more than 0.3V greater than AVDD.  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
AVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN = 0V, DGND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs, 32-pin TQFP  
version unless otherwise stated. ADC/DAC in Slave Mode unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Vrms  
dB  
DAC Performance (Load = 10k, 50pF)  
0dBFs Full scale output voltage  
1.0 x  
VREFP/5  
103  
SNR (Note 1,2,4)  
SNR (Note 1,2,4)  
SNR (Note 1,2,4)  
SNR (Note 1,2,4)  
A-weighted,  
@ fs = 48kHz  
A-weighted  
95  
102  
101  
99  
dB  
@ fs = 96kHz  
A-weighted  
dB  
@ fs = 192kHz  
A-weighted  
dB  
@ fs = 48kHz, AVDD =  
3.3V  
SNR (Note 1,2,4)  
A-weighted  
99  
dB  
dB  
@ fs = 96kHz, AVDD =  
3.3V  
Dynamic Range (Note 2,4)  
DNR  
A-weighted, -60dB full  
scale input  
90  
103  
Total Harmonic Distortion (THD)  
Mute Attenuation  
1kHz, 0dB.Fs  
-90  
100  
100  
50  
-80  
dB  
dB  
dB  
dB  
dB  
1kHz Input, 0dB gain  
DAC channel separation  
Power Supply Rejection Ratio  
PSRR  
1kHz 100mVp-p  
20Hz to 20kHz  
100mVp-p  
45  
PD Rev 4.0 January 2004  
10  
w
Production Data  
WM8772  
Test Conditions  
AVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN = 0V, DGND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs, 32-pin TQFP  
version unless otherwise stated. ADC/DAC in Slave Mode unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADC Performance  
Input Signal Level (0dB)  
2.0 x  
REFADC/5  
20  
Vrms  
Input resistance  
Input capacitance  
SNR (Note 1,2,4)  
k  
pF  
dB  
10  
A-weighted, 0dB gain  
@ fs = 48kHz  
80  
100  
SNR (Note 1,2,4)  
A-weighted, 0dB gain  
@ fs = 96kHz  
100  
dB  
64 x OSR  
SNR (Note 1,2,4)  
SNR (Note 1,2,4)  
A-weighted, 0dB gain  
93  
93  
dB  
dB  
@ fs = 48kHz, AVDD =  
3.3V  
A-weighted, 0dB gain  
@ fs = 96kHz, AVDD  
= 3.3V  
64 x OSR  
kHz, 0dBFs  
Total Harmonic Distortion (THD)  
-80  
-82  
90  
dB  
dB  
dB  
dB  
dB  
dB  
1kHz, -1dBFs  
1kHz Input  
ADC Channel Separation  
Mute Attenuation  
1kHz Input, 0dB gain  
1kHz 100mVpp  
90  
Power Supply Rejection Ratio  
PSRR  
50  
20Hz to 20kHz  
100mVpp  
45  
Digital Logic Levels (CMOS Levels)  
Input LOW level  
VIL  
VIH  
0.3 x DVDD  
1
V
V
Input HIGH level  
0.7 x DVDD  
0.9 x DVDD  
Input leakage current  
Input capacitance  
0.2  
5
µA  
pF  
V
Output LOW  
VOL  
VOH  
I
OL=1mA  
0.1 x DVDD  
Output HIGH  
I
OH= -1mA  
V
Analogue Reference Levels  
Reference voltage  
VVMID  
RVMID  
VREFP/2 –  
50mV  
VREFP/2  
50  
VREFP/2 +  
50mV  
V
Potential divider resistance  
VREFP to VMID and  
VMID to VREFN  
kΩ  
Supply Current  
Analogue supply current  
Digital supply current  
AVDD, VREFP = 5V  
DVDD = 3.3V  
45  
16  
mA  
mA  
Notes:  
1. Ratio of output level with 1kHz full scale input, to the output level with all zeros into the digital input, measured ‘A’  
weighted.  
2. All performance measurements done with 20kHz low pass filter, and where noted an A-weight filter. Failure to use  
such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the Electrical  
Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic  
specification values.  
3. VMID decoupled with 10uF and 0.1uF capacitors (smaller values may result in reduced performance).  
PD Rev 4.0 January 2004  
11  
w
WM8772  
Production Data  
TERMINOLOGY  
1. Signal-to-noise ratio (dB) - SNR is a measure of the difference in level between the full scale output and the output  
with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).  
2. Dynamic range (dB) - DNR is a measure of the difference between the highest and lowest portions of a signal.  
Normally a THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB  
to it. (e.g. THD+N @ -60dB= -32dB, DR= 92dB).  
3. THD+N (dB) - THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.  
4. Stop band attenuation (dB) - Is the degree to which the frequency spectrum is attenuated (outside audio band).  
5. Channel Separation (dB) - Also known as Cross-Talk. This is a measure of the amount one channel is isolated from  
the other. Normally measured by sending a full scale signal down one channel and measuring the other.  
6. Pass-Band Ripple - Any variation of the frequency response in the pass-band region.  
PD Rev 4.0 January 2004  
12  
w
Production Data  
WM8772  
DIGITAL FILTER CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
ADC Filter  
MIN  
TYP  
MAX  
0.4535fs  
±0.01  
UNIT  
Passband  
±0.01 dB  
0
-6dB  
0.5fs  
Passband ripple  
Stopband  
dB  
dB  
0.5465fs  
-65  
Stopband Attenuation  
f > 0.5465fs  
DAC Filter  
Passband  
±0.05 dB  
0.444fs  
-3dB  
0.487fs  
Passband ripple  
Stopband  
±0.05  
dB  
dB  
0.555fs  
-60  
Stopband Attenuation  
f > 0.555fs  
Table 1 Digital Filter Characteristics  
DAC FILTER RESPONSES  
0.2  
0
0.15  
0.1  
-20  
-40  
0.05  
0
-60  
-0.05  
-0.1  
-0.15  
-0.2  
-80  
-100  
-120  
0
0.5  
1
1.5  
2
2.5  
3
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
Frequency (Fs)  
Figure 1 DAC Digital Filter Frequency Response  
– 44.1, 48 and 96KHz  
Figure 2 DAC Digital Filter Ripple –44.1, 48 and 96kHz  
0.2  
0
0
-20  
-40  
-60  
-80  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
Frequency (Fs)  
Figure 3 DAC Digital Filter Frequency Response  
– 192KHz  
Figure 4 DAC Digital Filter Ripple – 192kHz  
PD Rev 4.0 January 2004  
13  
w
WM8772  
Production Data  
ADC FILTER RESPONSES  
0.02  
0.015  
0.01  
0
-20  
-40  
-60  
-80  
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
0
0.5  
1
1.5  
2
2.5  
3
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
Frequency (Fs)  
Figure 5 ADC Digital Filter Frequency Response  
Figure 6 ADC Digital Filter Ripple  
ADC HIGH PASS FILTER  
The WM8772EDS has a selectable digital high pass filter to remove DC offsets. The filter response is characterised by the  
following polynomial.  
1 z1  
H(z) =  
1 0.9995z1  
DIGITAL DE-EMPHASIS CHARACTERISTICS  
0
1
0.5  
0
-2  
-0.5  
-1  
-4  
-6  
-1.5  
-2  
-8  
-2.5  
-3  
-10  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Frequency (kHz)  
Frequency (kHz)  
Figure 7 De-Emphasis Frequency Response (32kHz)  
Figure 8 De-Emphasis Error (32KHz)  
PD Rev 4.0 January 2004  
14  
w
Production Data  
WM8772  
0
0.4  
0.3  
0.2  
0.1  
0
-2  
-4  
-6  
-8  
-0.1  
-0.2  
-0.3  
-0.4  
-10  
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (kHz)  
Frequency (kHz)  
Figure 9 De-Emphasis Frequency Response (44.1KHz)  
Figure 10 De-Emphasis Error (44.1KHz)  
0
1
0.8  
0.6  
0.4  
0.2  
0
-2  
-4  
-6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-8  
-10  
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (kHz)  
Frequency (kHz)  
Figure 11 De-Emphasis Frequency Response (48kHz)  
Figure 12 De-Emphasis Error (48kHz)  
PD Rev 4.0 January 2004  
15  
w
WM8772EDS – 28 PIN SSOP  
Production Data  
PAGES 12 TO 36 DESCRIBE THE OPERATION OF THE WM8772EDS 28 PIN  
SSOP PRODUCT VARIANT.  
PAGES 37 TO 66 DESCRIBE THE OPERATION OF THE WM8772EFT 32 PIN  
TQFP PRODUCT VARIANT.  
WM8772EDS – 28 PIN SSOP  
MASTER CLOCK TIMING  
tMCLKL  
MCLK  
tMCLKH  
tMCLKY  
Figure 13 ADC and DAC Master Clock Timing Requirements  
Test Conditions  
AVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN = 0V, AGND, DGND = 0V, TA = +25oC, fs = 48kHz, DACMCLK and  
ADCMCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
MCLK System clock pulse width  
high  
tMCLKH  
tMCLKL  
tMCLKY  
11  
11  
ns  
ns  
ns  
MCLK System clock pulse width  
low  
MCLK System clock cycle time  
MCLK Duty cycle  
28  
40:60  
60:40  
Table 2 Master Clock Timing Requirements  
DIGITAL AUDIO INTERFACE – MASTER MODE  
BCLK  
LRC  
DSP/  
ENCODER/  
DECODER  
WM8772  
CODEC  
DOUT  
DIN1/2/3  
3
Figure 14 Audio Interface - Master Mode  
PD Rev 4.0 January 2004  
16  
w
Production Data  
WM8772EDS – 28 PIN SSOP  
BCLK  
(Output)  
tDL  
LRC  
(Output)  
tDDA  
DOUT  
DIN1/2/3  
tDST  
tDHT  
Figure 15 Digital Audio Data Timing – Master Mode  
Test Conditions  
AVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN, DGND = 0V, TA = +25oC, Master Mode, fs = 48kHz, MCLK = 256fs unless  
otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
LRC propagation delay from  
BCLK falling edge  
tDL  
0
0
10  
10  
ns  
ns  
ns  
ns  
DOUT propagation delay  
from BCLK falling edge  
tDDA  
tDST  
tDHT  
DIN1/2/3 setup time to  
BCLK rising edge  
10  
10  
DIN1/2/3 hold time from  
BCLK rising edge  
Table 3 Digital Audio Data Timing – Master Mode  
PD Rev 4.0 January 2004  
17  
w
WM8772EDS – 28 PIN SSOP  
Production Data  
DIGITAL AUDIO INTERFACE – SLAVE MODE  
LRC  
BCLK  
DOUT  
WM8772  
CODEC  
DSP  
ENCODER/  
DECODER  
DIN1/2/3  
3
Figure 16 Audio Interface – Slave Mode  
tBCH  
tBCL  
BCLK  
tBCY  
LRC  
tLRSU  
tDS  
tLRH  
DIN1/2/3  
tDD  
tDH  
DOUT  
Figure 17 Digital Audio Data Timing – Slave Mode  
Test Conditions  
AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
BCLK cycle time  
tBCY  
tBCH  
tBCL  
50  
20  
20  
10  
ns  
ns  
ns  
ns  
BCLK pulse width high  
BCLK pulse width low  
LRC set-up time to BCLK  
rising edge  
tLRSU  
LRC hold time from BCLK  
rising edge  
tLRH  
tDS  
10  
10  
10  
ns  
ns  
ns  
DIN1/2/3 set-up time to  
BCLK rising edge  
DIN1/2/3 hold time from  
BCLK rising edge  
tDH  
PD Rev 4.0 January 2004  
18  
w
Production Data  
WM8772EDS – 28 PIN SSOP  
Test Conditions  
AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DOUT propagation delay  
from BCLK falling edge  
tDD  
0
10  
ns  
Table 4 Digital Audio Data Timing – Slave Mode  
MPU INTERFACE TIMING  
tCSL  
tCSH  
ML/I2S  
tSCY  
tCSS  
tSCS  
tSCH  
tSCL  
MC/IWL  
MD/DM  
LSB  
tDSU  
tDHO  
Figure 18 SPI Compatible Control Interface Input Timing  
Test Conditions  
AVDD = 5V, DVDD = 3.3V, AGND, DGND = 0V, TA = +25oC, fs = 48kHz, DACMCLK and ADCMCLK = 256fs unless otherwise  
stated  
PARAMETER  
MC/IWL rising edge to ML/I2S rising edge  
MC/IWL pulse cycle time  
SYMBOL  
tSCS  
MIN  
60  
80  
30  
30  
20  
20  
20  
20  
20  
TYP  
MAX  
UNIT  
ns  
tSCY  
ns  
MC/IWL pulse width low  
tSCL  
ns  
MC/IWL pulse width high  
tSCH  
ns  
MD/DM to MC/IWL set-up time  
MC/IWL to MD/DM hold time  
ML/I2S pulse width low  
tDSU  
ns  
tDHO  
tCSL  
ns  
ns  
ML/I2S pulse width high  
tCSH  
ns  
ML/I2S rising to MC/IWL rising  
tCSS  
ns  
Table 5 3-Wire SPI Compatible Control Interface Input Timing Information  
PD Rev 4.0 January 2004  
19  
w
WM8772EDS – 28 PIN SSOP  
Production Data  
DEVICE DESCRIPTION  
INTRODUCTION  
WM8772EDS is a complete 6-channel DAC, 2-channel ADC audio codec, including digital  
interpolation and decimation filters, multi-bit sigma delta stereo ADC, and switched capacitor multi-  
bit sigma delta DACs with digital volume controls on each channel and output smoothing filters.  
The device is implemented as three separate stereo DACs and a stereo ADC in a single package  
and controlled by a single interface.  
Each stereo DAC has its own data input DIN1/2/3, the stereo ADC has it’s own data output DOUT.  
The word clock LRC, bit clock BCLK and master clock MCLK are shared between them.  
The Audio Interface may be configured to operate in either master or slave mode. In Slave mode  
LRC and BCLK are all inputs. In Master mode LRC and BCLK are all outputs.  
Each DAC has its own digital volume control that is adjustable in 0.5dB steps. The digital volume  
controls may be operated independently. In addition, a zero cross detect circuit is provided for each  
DAC for the digital volume controls. The digital volume control detects a transition through the zero  
point before updating the volume. This minimises audible clicks and ‘zipper’ noise as the gain values  
change.  
Control of internal functionality of the device is by 3-wire serial or pin programmable control interface.  
The software control interface may be asynchronous to the audio data interface as control data will  
be re-synchronised to the audio processing internally.  
Operation using master clocks of 128fs, 192fs, 256fs, 384fs, 512fs or 768fs is provided for the DAC,  
for operation of both the ADC and DAC master clocks of 256fs, 384fs, 512fs and 768fs is provided.  
In Slave mode selection between clock rates is automatically controlled. In master mode, the sample  
rate is set by control bits RATE. Audio sample rates (fs) from less than 8ks/s up to 192ks/s are  
allowed for the DAC and from less than 8ks/s up to 96ks/s for the ADC, provided the appropriate  
master clock is input.  
The audio data interface supports right, left and I2S interface formats along with a highly flexible DSP  
serial port interface.  
AUDIO DATA SAMPLING RATES  
In a typical digital audio system there is only one central clock source producing a reference clock to  
which all audio data processing is synchronised. This clock is often referred to as the audio system’s  
Master Clock. The external master system clock can be applied directly through the MCLK input pin  
with no software configuration necessary. In a system where there are a number of possible sources  
for the reference clock it is recommended that the clock source with the lowest jitter be used to  
optimise the performance of the ADC and DAC.  
The master clock for WM8772EDS supports audio sampling rates from 128fs to 768fs, where fs is  
the audio sampling frequency (LRC) typically 32kHz, 44.1kHz, 48kHz, 96kHz or 192kHz (for DAC  
operation only). For ADC operation sample rates from 256fs to 768fs are supported. The master  
clock is used to operate the digital filters and the noise shaping circuits.  
In Slave mode the WM8772EDS has a master clock detection circuit that automatically determines  
the relationship between the system clock frequency and the sampling rate (to within +/- 32 master  
clocks). If there is a greater than 32 clocks error the interface defaults to 768fs mode. The master  
clocks must be synchronised with LRC, although the WM8772EDS is tolerant of phase variations or  
jitter on this clock. Table 6 shows the typical master clock frequency inputs for the WM8772EDS.  
The signal processing for the WM8772EDS typically operates at an oversampling rate of 128fs for  
both ADC and DAC. The exception to this for the DAC is for operation with a 128/192fs system clock,  
e.g. for 192kHz operation, when the oversampling rate is 64fs. For ADC operation at 96kHz it is  
recommended that the user set the ADCOSR bit. This changes the ADC signal processing  
oversample rate to 64fs.  
PD Rev 4.0 January 2004  
20  
w
Production Data  
WM8772EDS – 28 PIN SSOP  
SAMPLING  
RATE  
System Clock Frequency (MHz)  
128fs  
192fs  
256fs  
384fs  
512fs  
768fs  
(LRC)  
32kHz  
4.096  
5.6448  
6.144  
6.144  
8.467  
8.192  
11.2896  
12.288  
24.576  
12.288  
16.9340  
18.432  
36.864  
16.384  
22.5792  
24.576  
24.576  
33.8688  
36.864  
44.1kHz  
48kHz  
9.216  
96kHz  
12.288  
24.576  
18.432  
36.864  
Unavailable Unavailable  
192kHz  
Unavailable Unavailable Unavailable Unavailable  
Table 6 System Clock Frequencies Versus Sampling Rate  
(ADC does not support 128fs and 192fs)  
HARDWARE CONTROL MODES  
When the MODE pin is held high, the following hardware modes of operation are available.  
Note: When in hardware mode the ADC and DAC will only run in slave mode.  
MUTE AND AUTOMUTE OPERATION  
In both hardware and software modes, MUTE controls the selection of MUTE directly, and can be  
used to enable and disable the automute function. This pin becomes an output when left floating and  
indicates infinite ZERO detect (IZD) has been detected.  
DESCRIPTION  
0
1
Normal Operation  
Mute DAC channels  
Floating  
Enable IZD, MUTE becomes an output to indicate when IZD occurs.  
L=IZD detected, H=IZD not detected.  
Table 7 Mute and Automute Control  
Figure 19 shows the application and release of MUTE whilst a full amplitude sinusoid is being played  
at 48kHz sampling rate. When MUTE (lower trace) is asserted, the output (upper trace) begins to  
decay exponentially from the DC level of the last input sample. The output will decay towards VMID  
with a time constant of approximately 64 input samples. If MUTE is applied to all channels for 1024  
or more input samples the outputs will be connected directly to VMID if IZD is set. When MUTE is de-  
asserted, the output will restart immediately from the current input sample.  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
0
0.001  
0.002  
0.003  
0.004  
0.005  
0.006  
Time(s)  
Figure 19 Application and Release of Soft Mute  
PD Rev 4.0 January 2004  
21  
w
WM8772EDS – 28 PIN SSOP  
Production Data  
The MUTE pin is an input to select mute or not mute. MUTE is active high; taking the pin high causes  
the filters to soft mute, ramping down the audio signal over a few milliseconds. Taking MUTE low  
again allows data into the filter.  
The automute function detects a series of ZERO value audio samples of 1024 samples long being  
applied to both channels. After such an event, a latch is set whose output (AUTOMUTED) is wire  
OR’ed through a 10kresistor to the MUTE pin. Thus if the MUTE pin is not being driven, the  
automute function will assert mute.  
If MUTE is tied low, AUTOMUTED is overridden and will not mute unless the IZD register bit is set. If  
MUTE is driven from a bi-directional source, then both MUTE and automute functions are available. If  
MUTE is not driven, AUTOMUTED appears as a weak output (10ksource impedance) and can be  
used to drive external mute circuits. AUTOMUTED will be removed as soon as any channel receives  
a non-ZERO input.  
A diagram showing how the various Mute modes interact is shown below Figure 20.  
IZD (Register Bit)  
AUTOMUTED  
(Internal Signal)  
10k  
SOFTMUTE  
(Internal  
Signal)  
MUTE  
PIN  
MUTE (Register Bit)  
Figure 20 Selection Logic for MUTE Modes  
INPUT FORMAT SELECTION  
In hardware mode, ML/I2S and MC/IWL become input controls for selection of input data format type  
and input data word length for both the ADC and DAC.  
ML/I2S  
MC/IWL  
INPUT DATA MODE  
24-bit right justified  
0
0
1
0
1
0
20-bit right justified  
16-bit I2S  
24-bit I2S  
1
1
Table 8 Input Format Selection  
Note:  
In 24 bit I2S mode, any width of 24 bits or less is supported provided that the left/right clocks (LRC)  
are high for a minimum of 24 bit clocks (BCLK) and low for a minimum of 24 bit clocks.  
DE-EMPHASIS CONTROL  
In hardware mode, the MD/DM pin becomes an input control for selection of de-emphasis filtering to  
be applied.  
MD/DM  
DE-EMPHASIS  
0
Off  
On  
1
Table 9 De-emphasis Control  
PD Rev 4.0 January 2004  
22  
w
Production Data  
WM8772EDS – 28 PIN SSOP  
DIGITAL AUDIO INTERFACE  
MASTER AND SLAVE MODES  
The audio interface operates in either Slave or Master mode, selectable using the MS control bit. In  
both Master and Slave modes DIN1/2/3 are always inputs to the WM8772EDS and DOUT is always  
an output. The default is Slave mode.  
In Slave mode, LRC and BCLK are inputs to the WM8772EDS (Figure 21). DIN1/2/3 and LRC are  
sampled by the WM8772EDS on the rising edge of BCLK. ADC data is output on DOUT and  
changes on the falling edge of BCLK.  
By setting the control bit BCP the polarity of BCLK may be reversed so that DIN1/2/3 and LRC are  
sampled on the falling edge of BCLK and DOUT changes on the rising edge of BCLK.  
LRC  
BCLK  
DOUT  
WM8772  
CODEC  
DSP  
ENCODER/  
DECODER  
DIN1/2/3  
3
Figure 21 Slave Mode  
In Master mode, LRC and BCLK are outputs from the WM8772EDS (Figure 22). LRC and BCLK are  
generated by the WM8772EDS. DIN1/2/3 are sampled by the WM8772EDS on the rising edge of  
BCLK so the controller must output DAC data that changes on the falling edge of BCLK. ADC data is  
output on DOUT and changes on the falling edge of BCLK.  
By setting control bit BCP the polarity of BCLK may be reversed so that DIN1/2/3 are sampled on the  
falling edge of BCLK, and DOUT changes on the rising edge of BCLK.  
BCLK  
DSP/  
ENCODER/  
DECODER  
LRC  
WM8772  
CODEC  
DOUT  
DIN1/2/3  
3
Figure 22 Master Mode  
PD Rev 4.0 January 2004  
23  
w
WM8772EDS – 28 PIN SSOP  
Production Data  
AUDIO INTERFACE FORMATS  
Audio data is applied to the internal DAC filters, or output from the ADC filters, via the Digital Audio  
Interface. 5 popular interface formats are supported:  
Left Justified mode  
Right Justified mode  
I2S mode  
DSP Early mode  
DSP Late mode  
All 5 formats send the MSB first and support word lengths of 16, 20, 24 and 32 bits, with the  
exception of 32 bit right justified mode, which is not supported.  
In left justified, right justified and I2S modes, the digital audio interface receives DAC data on the  
DIN1/2/3 inputs and outputs ADC data on DOUT. Audio Data for each stereo channel is time  
multiplexed with LRC indicating whether the left or right channel is present. LRC is also used as a  
timing reference to indicate the beginning or end of the data words.  
In left justified, right justified and I2S modes, the minimum number of BCLKs per LRC period is 2  
times the selected word length. LRC must be high for a minimum of word length BCLKs and low for a  
minimum of word length BCLKs. Any mark to space ratio on LRC is acceptable provided the above  
requirements are met.  
In DSP early or DSP late mode, all 6 DAC channels are time multiplexed onto DIN1. LRC is used as  
a frame sync signal to identify the MSB of the first word. The minimum number of BCLKs per LRC  
period is 6 times the selected word length. Any mark to space ratio is acceptable on LRC provided  
the rising edge is correctly positioned. The ADC data may also be output in DSP early or late modes,  
with LRC used as a frame sync to identify the MSB of the first word. The minimum number of BCLKs  
per LRC period is 2 times the selected word length if only the ADC is being operated.  
LEFT JUSTIFIED MODE  
In left justified mode, the MSB of DIN1/2/3 is sampled by the WM8772EDS on the first rising edge of  
BCLK following a LRC transition. The MSB of the ADC data is output on DOUT and changes on the  
same falling edge of BCLK as LRC and may be sampled on the rising edge of BCLK. LRC is high  
during the left samples and low during the right samples (Figure 23).  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC/  
ADCLRC  
DACBCLK/  
ADCBCLK  
DIN1/2/3/  
DOUT  
1
2
3
n
n-2 n-1  
1
2
3
n
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 23 Left Justified Mode Timing Diagram  
PD Rev 4.0 January 2004  
24  
w
Production Data  
WM8772EDS – 28 PIN SSOP  
RIGHT JUSTIFIED MODE  
In right justified mode, the LSB of DIN1/2/3 is sampled by the WM8772EDS on the rising edge of  
BCLK preceding a LRC transition. The LSB of the ADC data is output on DOUT and changes on the  
falling edge of BCLK preceding a LRC transition and may be sampled on the rising edge of BCLK.  
LRC are high during the left samples and low during the right samples (Figure 24).  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC/  
ADCLRC  
DACBCLK/  
ADCBCLK  
DIN1/2/3/  
DOUT  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 24 Right Justified Mode Timing Diagram  
I2S MODE  
In I2S mode, the MSB of DIN1/2/3 is sampled by the WM8772EDS on the second rising edge of  
BCLK following a LRC transition. The MSB of the ADC data is output on DOUT and changes on the  
first falling edge of BCLK following an LRC transition and may be sampled on the rising edge of  
BCLK. LRC are low during the left samples and high during the right samples.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC/  
ADCLRC  
DACBCLK/  
ADCBCLK  
1 BCLK  
1 BCLK  
DIN1/2/3/  
DOUT  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
LSB  
LSB  
MSB  
MSB  
Figure 25 I2S Mode Timing Diagram  
DSP EARLY MODE  
In DSP early mode, the MSB of DAC channel 1 left data is sampled by the WM8772EDS on the  
second rising edge on BCLK following a LRC rising edge. DAC channel 1 right and DAC channels 2  
and 3 data follow DAC channel 1 left data (Figure 26).  
1 BCLK  
1 BCLK  
1/fs  
DACLRC  
DACBCLK  
CHANNEL 1  
LEFT  
CHANNEL 1  
RIGHT  
CHANNEL 2  
LEFT  
CHANNEL 3  
RIGHT  
NO VALID DATA  
DIN1  
1
2
n
1
2
n
1
2
n
n-1  
n-1  
n-1  
MSB  
LSB  
Input Word Length (IWL)  
Figure 26 DSP Early Mode Timing Diagram – DAC Data Input  
PD Rev 4.0 January 2004  
25  
w
WM8772EDS – 28 PIN SSOP  
Production Data  
The MSB of the left channel ADC data is output on DOUT and changes on the first falling edge of  
BCLK following a low to high LRC transition and may be sampled on the rising edge of BCLK. The  
right channel ADC data is contiguous with the left channel data (Figure 27)  
1 BCLK  
1 BCLK  
1/fs  
ADCLRC  
ADCBCLK  
LEFT CHANNEL  
RIGHT CHANNEL  
NO VALID DATA  
DOUT  
1
2
n
1
2
n
n-1  
n-1  
MSB  
LSB  
Input Word Length (IWL)  
Figure 27 DSP Early Mode Timing Diagram – ADC Data Output  
DSP LATE MODE  
In DSP late mode, the MSB of DAC channel 1 left data is sampled by the WM8772EDS on the first  
BCLK rising edge following a LRC rising edge. DAC channel 1 right and DAC channels 2 and 3 data  
follow DAC channel 1 left data (Figure 28).  
1/fs  
DACLRC  
DACBCLK  
CHANNEL 1  
LEFT  
CHANNEL 1  
RIGHT  
CHANNEL 2  
LEFT  
CHANNEL 3  
RIGHT  
NO VALID DATA  
DIN1  
1
2
n
1
2
n
1
2
n
1
n-1  
n-1  
n-1  
MSB  
LSB  
Input Word Length (IWL)  
Figure 28 DSP Late Mode Timing Diagram – DAC Data Input  
The MSB of the left channel ADC data is output on DOUT and changes on the same falling edge of  
BCLK as the low to high LRC transition and may be sampled on the rising edge of BCLK. The right  
channel ADC data is contiguous with the left channel data (Figure 29).  
1/fs  
ADCLRC  
BCK  
LEFT CHANNEL  
RIGHT CHANNEL  
NO VALID DATA  
1
2
n
1
2
n
1
DOUT  
n-1  
n-1  
MSB  
LSB  
Input Word Length (IWL)  
Figure 29 DSP Late Mode Timing Diagram – ADC Data Output  
PD Rev 4.0 January 2004  
26  
w
Production Data  
WM8772EDS – 28 PIN SSOP  
In both early and late DSP modes, DACL1 is always sent first, followed immediately by DACR1 and  
the data words for the other 6 channels. No BCLK edges are allowed between the data words. The  
word order is DAC1 left, DAC1 right, DAC2 left, DAC2 right, DAC3 left, DAC3 right.  
POWERDOWN MODES  
The WM8772EDS has powerdown control bits allowing specific parts of the WM8772EDS to be  
powered off when not being used. Control bit ADCPD powers off the ADC. The three stereo DACs  
each have a separate powerdown control bit, DACPD[2:0] allowing individual stereo DACs to be  
powered off when not in use. Setting ADCPD and DACPD[2:0] will powerdown everything except the  
references VMID and REFADC. These may be powered down by setting PDWN. Setting PDWN will  
override all other powerdown control bits. It is recommended that the ADC and DACs are powered  
down before setting PDWN.  
ZERO DETECT  
The WM8772EDS has a zero detect circuit for each DAC channel that detects when 1024  
consecutive zero samples have been input. The MUTE pin output may be programmed to output the  
zero detect signal (see Table 10) which may then be used to control external muting circuits. A ‘1’ on  
MUTE indicates a zero detect. The zero detect may also be used to automatically enable DAC mute  
by setting IZD.  
DZFM[1:0]  
MUTE  
00  
01  
10  
11  
All channels zero  
Channel 1 zero  
Channel 2 zero  
Channel 3 zero  
Table 10 Zero Flag Output Select  
SOFTWARE CONTROL INTERFACE OPERATION  
The WM8772EDS is controlled using a 3-wire serial interface in software mode or pin  
programmable in hardware mode.  
The control mode is selected by the state of the MODE pin.  
3-WIRE (SPI COMPATIBLE) SERIAL CONTROL MODE  
MD/DM is used for the program data, MC/IWL is used to clock in the program data and ML/I2S is  
used to latch the program data. MD/DM is sampled on the rising edge of MC/IWL. The 3-wire  
interface protocol is shown in Figure 30.  
ML/I2S  
MC/IWL  
MD/DM  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Figure 30 3-Wire SPI Compatible Interface  
1. B[15:9] are Control Address Bits  
2. B[8:0] are Control Data Bits  
3. ML/I2S is edge sensitive – the data is latched on the rising edge of ML/I2S.  
PD Rev 4.0 January 2004  
27  
w
WM8772EDS – 28 PIN SSOP  
Production Data  
REGISTER MAP - 28 PIN SSOP  
The complete register map is shown below. The detailed description can be found in the relevant text of the device description. The  
WM8772EDS can be configured using the Control Interface. All unused bits should be set to ‘0’.  
REGISTER  
R0(00h)  
B15 B14 B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
LDA1[7:0]  
RDA1[7:0]  
B3  
B2  
B1  
B0  
DEFAULT  
UPDATE  
011111111  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
UPDATE  
011111111  
R1(01h)  
PL[8:5]  
PDWN  
MUTE  
IZD  
ATC  
DEEMP  
100100000  
R2(02h)  
0
0
0
0
0
1
0
All DAC  
All DAC  
PHASE[8:6]  
FMT[1:0]  
IWL[5:4]  
BCP  
LDA2[7:0]  
LRP  
000000000  
011111111  
011111111  
011111111  
011111111  
011111111  
000000000  
010000000  
R3(03h)  
R4(04h)  
R5(05h)  
R6(06h)  
R7(07h)  
R8(08h)  
R9(09h)  
R10(0Ah)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
UPDATE  
UPDATE  
UPDATE  
UPDATE  
UPDATE  
RDA2[7:0]  
LDA3[7:0]  
RDA3[7:0]  
MASTDA[7:0]  
DEEMP[8:6]  
RATE[8:6]  
DMUTE[5:3]  
DZFM[2:1]  
ZCD  
MS  
PWRDNALL  
0
DACPD[3:1]  
00  
ADCPD  
ADC  
OSR  
010  
00  
001000000  
R11(0Bh)  
0
0
0
1
0
1
1
AMUTE  
ALL  
0
0
MPD  
0
0
ADCHP  
AMUTEL AMUTER 000000000  
000000000  
R12(0Ch)  
R31(1Fh)  
0
0
0
0
0
1
1
1
1
1
0
1
0
1
RESET  
PD Rev 4.0 January 2004  
28  
w
Production Data  
WM8772EDS – 28 PIN SSOP  
CONTROL INTERFACE REGISTERS  
ATTENUATOR CONTROL MODE  
Setting the ATC register bit causes the left channel attenuation settings to be applied to both left and  
right channel DACs from the next audio input sample. No update to the attenuation registers is  
required for ATC to take effect.  
REGISTER ADDRESS  
0000010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
3
ATC  
0
Attenuator Control Mode:  
DAC Channel Control  
0: Right channels use right  
attenuations  
1: Right channels use left  
attenuations  
INFINITE ZERO DETECT ENABLE  
Setting the IZD register bit will enable the internal infinite zero detect function:  
REGISTER ADDRESS  
0000010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Infinite Zero Mute Enable  
0 : Disable inifinite zero mute  
1: Enable infinite zero mute  
4
IZD  
0
DAC Channel Control  
With IZD enabled, applying 1024 consecutive zero input samples each stereo channel will cause that  
stereo channel outputs to be muted to VMID. Mute will be removed as soon as that stereo channel  
receives a non-zero input.  
DAC OUTPUT CONTROL  
The DAC output control word determines how the left and right inputs to the audio Interface are  
applied to the left and right DACs:  
REGISTER ADDRESS  
0000010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
8:5  
PL[3:0]  
1001  
PL[3:0]  
Left  
Right  
Output  
Output  
DAC Control  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Mute  
Left  
Mute  
Mute  
Mute  
Mute  
Left  
Right  
(L+R)/2  
Mute  
Left  
Left  
Right  
(L+R)/2  
Mute  
Left  
Left  
Left  
Right  
Right  
Right  
Right  
(L+R)/2  
(L+R)/2  
(L+R)/2  
(L+R)/2  
Right  
(L+R)/2  
Mute  
Left  
Right  
(L+R)/2  
PD Rev 4.0 January 2004  
29  
w
WM8772EDS – 28 PIN SSOP  
Production Data  
ADC AND DAC DIGITAL AUDIO INTERFACE CONTROL REGISTER  
Interface format is selected via the FMT[1:0] register bits:  
REGISTER ADDRESS  
0000011  
BIT  
LABEL  
FMT  
DEFAULT  
DESCRIPTION  
1:0  
00  
Interface Format Select:  
00 : Right justified mode  
01: Left justified mode  
10: I2S mode  
Interface Control  
[1:0]  
11: DSP (early or late) mode  
In left justified, right justified or I2S modes, the LRP register bit controls the polarity of LRC. If this bit  
is set high, the expected polarity of LRC will be the opposite of that shown Figure 23, Figure 24 and  
Figure 25. Note that if this feature is used as a means of swapping the left and right channels, a 1  
sample phase difference will be introduced. In DSP modes, the LRP register bit is used to select  
between early and late modes.  
REGISTER ADDRESS  
0000011  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
In left/right/I2S Modes:  
2
LRP  
0
Interface Control  
LRC Polarity (normal)  
0 : Normal LRC polarity  
1: Inverted LRC polarity  
In DSP Mode:  
0 : Early DSP mode  
1: Late DSP mode  
By default, LRC and DIN1/2/3 are sampled on the rising edge of BCLK and should ideally change on  
the falling edge. By default, LRC and DOUT are sampled on the rising edge of BCLK and should  
ideally change on the falling edge. Data sources that change LRC and DOUT on the rising edge of  
BCLK can be supported by setting the BCP register bit. Data sources that change LRC and DIN1/2/3  
on the rising edge of BCLK can be supported by setting the BCP register bit. Setting BCP to 1  
inverts the polarity of BCLK to the inverse of that shown in Figure 23, Figure 24, Figure 25, Figure  
26, Figure 27, Figure 28 and Figure 29.  
REGISTER ADDRESS  
0000011  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
BCLK Polarity (DSP Modes):  
0: Normal BCLK polarity  
1: Inverted BCLK polarity  
3
BCP  
0
Interface Control  
The IWL[1:0] bits are used to control the input word length.  
REGISTER ADDRESS  
0000011  
BIT  
LABEL  
IWL  
DEFAULT  
DESCRIPTION  
Input Word Length:  
00 : 16 bit data  
5:4  
00  
Interface Control  
[1:0]  
01: 20 bit data  
10: 24 bit data  
11: 32 bit data  
Note: 32-bit right justified mode is not supported.  
In all modes, the data is signed 2's complement. The digital filters always input 24-bit data. If the  
DAC is programmed to receive 16 or 20 bit data, the WM8772EDS pads the unused LSBs with  
zeros. If the DAC is programmed into 32 bit mode, the 8 LSBs are ignored.  
Note: In 24 bit I2S mode, any width of 24 bits or less is supported provided that LRC is high for a  
minimum of 24 BCLKs and low for a minimum of 24 BCLKs.  
A number of options are available to control how data from the Digital Audio Interface is applied to  
the DAC channels.  
PD Rev 4.0 January 2004  
30  
w
Production Data  
WM8772EDS – 28 PIN SSOP  
DAC OUTPUT PHASE  
The DAC Phase control word determines whether the output of each DAC is non-inverted or inverted  
REGISTER ADDRESS  
0000011  
BIT  
LABEL  
PHASE  
[2:0]  
DEFAULT  
DESCRIPTION  
8:6  
000  
Bit  
0
DAC  
Phase  
DAC Phase  
DAC1L/R 1 = invert  
1
2
DAC2L/R 1 = invert  
DAC3L/R 1 = invert  
DIGITAL ZERO CROSS-DETECT  
The Digital volume control also incorporates a zero cross detect circuit which detects a transition  
through the zero point before updating the digital volume control with the new volume. This is  
enabled by control bit DZCEN.  
REGISTER ADDRESS BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0001001  
0
ZCD  
0
DAC Digital Volume Zero Cross  
Disable:  
DAC Control  
0: Zero cross detect enabled  
1: Zero cross detect disabled  
MUTE FLAG OUTPUT  
The DZFM control bits allow the selection of the six DAC channel zero flag bits for output on the  
MUTEB pin. A ‘1’ on MUTE indicates 1024 consecutive zero input samples to the DAC channels  
selected.  
REGISTER ADDRESS BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0001001  
2:1 DZFM[1:0]  
00  
Selects the output MUTE pin (A ‘1’  
indicates 1024 consecutive zero  
input samples on the DAC channels  
selected.  
Zero Flag  
00: All channels zero  
01: Channel 1 zero  
10: Channel 2 zero  
11: Channel 3 zero  
DAC MUTE MODES  
The WM8772EDS has individual mutes for each of the three DAC channels. Setting MUTE for a  
channel will apply a ‘soft’ mute to the input of the digital filters of the channel muted.  
REGISTER ADDRESS  
0001001  
BIT  
LABEL  
DMUTE  
[2:0]  
DEFAULT  
DESCRIPTION  
5:3  
000  
DAC Soft Mute Select  
DAC Mute  
DMUTE [2:0]  
000  
DAC CHANNEL 1  
Not MUTE  
MUTE  
DAC CHANNEL 2  
DAC CHANNEL 3  
Not MUTE  
Not MUTE  
Not MUTE  
Not MUTE  
MUTE  
Not MUTE  
Not MUTE  
MUTE  
001  
010  
Not MUTE  
MUTE  
011  
MUTE  
100  
Not MUTE  
MUTE  
Not MUTE  
Not MUTE  
MUTE  
101  
MUTE  
110  
Not MUTE  
MUTE  
PD Rev 4.0 January 2004  
31  
w
WM8772EDS – 28 PIN SSOP  
Production Data  
Setting the MUTEALL register bit will apply a 'soft' mute to the input of all the DAC digital filters:  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Soft Mute Select:  
0000010  
0
MUTEALL  
0
DAC Mute  
0 : Normal operation  
1: Soft mute all channels  
Refer to Figure 19 for the plot of application and release of soft mute.  
Note that all other means of muting the DAC channels: setting the PL[3:0] bits to 0, setting the  
PDWN bit or setting attenuation to 0 will cause much more abrupt muting of the output.  
ADC MUTE MODES  
Each ADC channel also has a mute control bit, which mutes the inputs to the ADC.  
REGISTER ADDRESS BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADC Mute Select:  
0001100  
0
1
2
AMUTER  
0
ADC Mute  
0 : Normal operation  
1: mute ADC right  
AMUTEL  
0
0
ADC Mute Select:  
0 : Normal operation  
1: mute ADC left  
AMUTEALL  
ADC Mute Select:  
0 : Normal operation  
1: mute both ADC channels  
DE-EMPHASIS MODE  
Each stereo DAC channel has an individual de-emphasis control bit:  
REGISTER ADDRESS  
BIT  
LABEL  
DEEMPH  
[1:0]  
DEFAULT  
DESCRIPTION  
0001001  
[8:6]  
000  
De-emphasis Channel Selection  
Select:  
DAC De-Emphahsis  
Control  
DEEMPH  
[1:0]  
000  
DAC CHANNEL 1  
DAC CHANNEL 2  
DAC CHANNEL 3  
Not DE-EMPHASIS  
DE-EMPHASIS  
Not DE-EMPHASIS  
Not DE-EMPHASIS  
DE-EMPHASIS  
Not DE-EMPHASIS  
Not DE-EMPHASIS  
Not DE-EMPHASIS  
Not DE-EMPHASIS  
DE-EMPHASIS  
001  
010  
Not DE-EMPHASIS  
DE-EMPHASIS  
011  
DE-EMPHASIS  
100  
Not DE-EMPHASIS  
DE-EMPHASIS  
Not DE-EMPHASIS  
Not DE-EMPHASIS  
DE-EMPHASIS  
101  
DE-EMPHASIS  
110  
Not DE-EMPHASIS  
DE-EMPHASIS  
Refer to Figure 7, Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12 for details of the De-  
Emphasis performance at different sample rates.  
REGISTER ADDRESS  
0000010  
BIT  
LABEL  
DEEMP  
ALL  
DEFAULT  
DESCRIPTION  
DEMMP Select:  
1
0
DAC DEMP  
0 : Normal operation  
1: De-emphasis all channels  
PD Rev 4.0 January 2004  
32  
w
Production Data  
WM8772EDS – 28 PIN SSOP  
POWERDOWN MODE AND ADC/DAC DISABLE  
Setting the PDWN register bit immediately powers down the DAC’s on the WM8772EDS, overriding  
the DACD powerdown bits control bits. All trace of the previous input samples are removed, but all  
control register settings are preserved. When PDWN is cleared the digital filters will be reinitialised  
REGISTER ADDRESS  
0000010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Power Down all DAC’s Select:  
0: All DAC’s enabled  
2
PDWN  
0
Powerdown Control  
1: All DAC’s disabled  
The ADC and DACs may also be powered down individually by setting the ADCPD and DACPD  
disable bits. Setting ADCD will disable the ADC and select a low power mode. The ADC digital filters  
will be reset and will reinitialise when ADCPD is unset. Each Stereo DAC channel has a separate  
disable DACPD[2:0]. Setting DACPD for a channel will disable the DACs and select a low power  
mode.  
REGISTER ADDRESS  
0001010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADC Disable:  
0
ADCPD  
0
Powerdown Control  
0: Active  
1: Disable  
3:1 DACPD[2:0]  
000  
DAC Disable  
DACPD [2:0]  
000  
DAC CHANNEL 1  
Active  
DAC CHANNEL 2  
DAC CHANNEL 3  
Active  
Active  
Active  
001  
DISABLE  
Active  
Active  
010  
DISABLE  
DISABLE  
Active  
Active  
011  
DISABLE  
Active  
Active  
100  
DISABLE  
DISABLE  
DISABLE  
DISABLE  
101  
DISABLE  
Active  
Active  
110  
DISABLE  
DISABLE  
111  
DISABLE  
MASTER POWERDOWN  
This control bit powers down the references for the whole chop. Therefore for complete powerdown,  
both the ADC and DACs should be powered down first before setting this bit.  
REGISTER ADDRESS  
0001010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Master Power Down Bit:  
0: Not powered down  
1: Powered down  
4
PWRDNALL  
0
Interface Control  
MASTER MODE SELECT  
Control bit MS selects between audio interface Master and Slave Modes. In Master mode LRC and  
BCLK are outputs and are generated by the WM8772EDS. In Slave mode LRC and BCLK are inputs  
to WM8772EDS.  
REGISTER ADDRESS  
0001010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
5
MS  
0
DAC Audio Interface Master/Slave  
Mode Select:  
Interface Control  
0: Slave mode  
1: Master mode  
PD Rev 4.0 January 2004  
33  
w
WM8772EDS – 28 PIN SSOP  
Production Data  
MASTER MODE LRC FREQUENCY SELECT  
In Master mode the WM8772EDS generates LRC and BCLK. These clocks are derived from the  
master clock and the ratio of MCLK to LRC is set by RATE.  
REGISTER ADDRESS  
0001010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Master Mode  
8:6 RATE [2:0]  
010  
Interface Control  
MCLK:LRC Ratio Select:  
000: 128fs (DAC only)  
001: 192fs (DAC only)  
010: 256fs  
011: 384fs  
100: 512fs  
101: 768fs  
ADC OVERSAMPLING RATE SELECT  
For ADC operation at 96kHz it is recommended that the user set the ADCOSR bit. This changes the  
ADC signal processing oversample rate to 64fs. The 64fs oversampling rate is only available in  
modes were a 96KHz rate is supported, i.e. 256fs or 384fs. In all other modes the ADC will stay in a  
128fs oversampling rate irrespective of what this bit is set to.  
REGISTER ADDRESS  
BIT  
DEFAULT  
DESCRIPTION  
LABEL  
0001011  
8
ADCOSR  
0
ADC Oversampling Rate Select:  
0: 128x oversampling  
ADC Oversampling Rate  
1: 64x oversampling  
ADC HIGHPASS FILTER DISABLE  
The ADC digital filters contain a digital highpass filter. This defaults to enabled and can be disabled  
using software control bit ADCHPD.  
REGISTER ADDRESS  
0001100  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADC Highpass Filter Disable:  
0: Highpass filter enabled  
1: Highpass filter disabled  
3
ADCHPD  
0
ADC Control  
MUTE PIN DECODE  
The MUTE pin can either be used an output or an input. When used as an input the MUTE pins  
action can controlled by setting the DZFM bit to select the corresponding DAC for applying the MUTE  
to. As an output its meaning is selected by the DZFM control bits. By default selecting the MUTE to  
represent if DAC1 has received more than 1024 midrail samples will cause the MUTE to be asserted  
a softmute on DAC1. Disabling the decode block will cause any logical high on the MUTE pin to  
apply a softmute to all DAC’s.  
REGISTER ADDRESS  
0001100  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
MUTE Pin Decode Disable:  
0: MUTE pin decode enable  
1: MUTE pin decode disable  
6
MPD  
0
ADC Control  
PD Rev 4.0 January 2004  
34  
w
Production Data  
WM8772EDS – 28 PIN SSOP  
DAC DIGITAL VOLUME CONTROL  
The DAC volume may also be adjusted in the digital domain using independent digital attenuation  
control registers  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0000000  
7:0  
LDA1[7:0]  
11111111  
(0dB)  
Digital Attenuation data for Left channel DACL1 in 0.5dB steps. See  
Table 11  
Digital  
Attenuation  
DACL1  
8
UPDATE  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0: Store LDA1 in intermediate latch (no change to output)  
1: Store LDA1 and update attenuation on all channels  
0000001  
7:0  
8
RDA1[6:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation data for Right channel DACR1 in 0.5dB steps.  
See Table 11  
Digital  
Attenuation  
DACR1  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0: Store RDA1 in intermediate latch (no change to output)  
1: Store RDA1 and update attenuation on all channels.  
0000100  
7:0  
8
LDA2[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation data for Left channel DACL2 in 0.5dB steps. See  
Table 11  
Digital  
Attenuation  
DACL2  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0: Store LDA2 in intermediate latch (no change to output)  
1: Store LDA2 and update attenuation on all channels.  
0000101  
7:0  
8
RDA2[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation data for Right channel DACR2 in 0.5dB steps.  
See Table 11  
Digital  
Attenuation  
DACR2  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0: Store RDA2 in intermediate latch (no change to output)  
1: Store RDA2 and update attenuation on all channels.  
0000110  
7:0  
8
LDA3[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation data for Left channel DACL3 in 0.5dB steps. See  
Table 11  
Digital  
Attenuation  
DACL3  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0: Store LDA3 in intermediate latch (no change to output)  
1: Store LDA3 and update attenuation on all channels.  
0000111  
7:0  
8
RDA3[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation data for Right channel DACR3 in 0.5dB steps.  
See Table 11  
Digital  
Attenuation  
DACR3  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0: Store RDA3 in intermediate latch (no change to output)  
1: Store RDA3 and update attenuation on all channels.  
0001000  
7:0  
8
MASTDA  
[7:0]  
11111111  
(0dB)  
Digital Attenuation data for all DAC channels in 0.5dB steps. See  
Table 11  
Master  
Digital  
Attenuation  
UPDATE  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0: Store gain in intermediate latch (no change to output)  
1: Store gain and update attenuation on all channels.  
(all channels)  
L/RDAX[7:0]  
ATTENUATION LEVEL  
00(hex)  
-dB (mute)  
01(hex)  
-127dB  
:
:
:
:
:
:
FE(hex)  
FF(hex)  
-0.5dB  
0dB  
Table 11 Digital Volume Control Attenuation Levels  
PD Rev 4.0 January 2004  
35  
w
WM8772EDS – 28 PIN SSOP  
Production Data  
SOFTWARE REGISTER RESET  
Writing to register 11111 will cause a register reset, resetting all register bits to their default values.  
The device will be held in this reset state until a subsequent register write to any address is  
completed.  
PD Rev 4.0 January 2004  
36  
w
Production Data  
WM8772EDS – 28 PIN SSOP  
APPLICATIONS INFORMATION  
RECOMMENDED EXTERNAL COMPONENTS  
RECOMMENDED EXTERNAL COMPONENTS VALUES  
COMPONENT  
REFERENCE  
SUGGESTED  
VALUE  
DESCRIPTION  
C1 and C5  
C2 to C4  
C8 and C9  
C6 and C10  
C7 and C11  
C12  
10µF  
0.1µF  
1µF  
De-coupling for DVDD and AVDD.  
De-coupling for DVDD and AVDD.  
Analogue input high pass filter capacitors  
0.1µF  
10µF  
10µF  
330Ω  
Reference de-coupling capacitors for VMID and ADCREF pin.  
Filtering for VREFP. Omit if AVDD low noise.  
R1  
Filtering for VREP. Use 0if AVDD low noise.  
Table 12 External Components Description  
PD Rev 4.0 January 2004  
37  
w
WM8772EDS – 28 PIN SSOP  
Production Data  
SUGGESTED ANALOGUE LOW PASS POST DAC FILTERS  
It is recommended that a lowpass filter be applied to the output from each DAC channel for Hi Fi applications. Typically a  
second order filter is suitable and provides sufficient attenuation of high frequency components (the unique low order, high  
bit count multi-bit sigma delta DAC structure used in WM8772EDS produces much less high frequency output noise than  
normal sigma delta DACs. This filter is typically also used to provide the 2x gain needed to provide the standard 2Vrms  
output level from most consumer equipment.  
Figure 31 shows a suitable post DAC filter circuit, with 2x gain. Alternative inverting filter architectures might also be used  
with as good results.  
1.0nF  
10uF  
1.8k  
7.5k  
51  
VOUT1L  
10kΩ  
680pF  
4.7kΩ  
4.7kΩ  
OP_FIL  
VOUT1R  
VOUT2L  
VOUT2R  
VOUT3L  
VOUT3R  
OP_FIL  
OP_FIL  
OP_FIL  
OP_FIL  
OP_FIL  
Figure 31 Recommended Post DAC Filter Circuit  
PD Rev 4.0 January 2004  
38  
w
Production Data  
WM8772EDS – 28 PIN SSOP  
To ensure that system ‘pop’ noise is kept to a minimum when power is applied or removed, a  
transistor clamp circuit arrangement may be added to the output connectors of the system. A  
recommended clamp circuit configuration is shown below.  
Figure 32 Output Clamp Circuit  
When the +VS power supply is applied, PNP transistor Q10 of the trigger circuit is held on until  
capacitor C49 is fully charged. With transistor Q10 held ‘on’, NPN transistors Q4 to Q9 of the clamp  
circuits are also switched on holding the system outputs near to GND. When capacitor C49 is fully  
charged transistors Q10 and Q4 to Q9 are switched off setting the outputs active.  
When the +VS power supply is removed, PNP transistor Q11 of the trigger circuit is switched on. In  
turn, transistors Q4 to Q9 of the clamp circuits are switched on holding the outputs of the evaluation  
board near to GND until the rest of the circuitry on the board has settled.  
Note: It is recommended that low Vcesat switching transistors should be used in this circuit to ensure  
that the clamp is applied before the rest of the circuitry has time to power down.  
Important: If a trigger circuit such as the one shown is to be used, it is important that the +VS  
supply drops quicker than any other supply to ensure that the outputs are clamped during the  
period when ‘pop’ noise may occur.  
PD Rev 4.0 January 2004  
39  
w
WM8772EDS – 28 PIN SSOP  
PACKAGE DIMENSIONS  
Production Data  
DS: 28 PIN SSOP (10.2 x 5.3 x 1.75 mm)  
DM007.D  
b
e
28  
15  
E1  
E
GAUGE  
PLANE  
Θ
14  
1
D
0.25  
L
c
A1  
L1  
A A2  
-C-  
0.10 C  
SEATING PLANE  
Dimensions  
(mm)  
NOM  
-----  
Symbols  
MIN  
-----  
0.05  
1.65  
0.22  
0.09  
9.90  
MAX  
A
A1  
A2  
b
c
D
e
E
E1  
L
2.0  
0.25  
1.85  
0.38  
0.25  
10.50  
-----  
1.75  
0.30  
-----  
10.20  
0.65 BSC  
7.80  
7.40  
5.00  
0.55  
8.20  
5.60  
0.95  
5.30  
0.75  
L1  
θ
0.125 REF  
0o  
4o  
8o  
JEDEC.95, MO-150  
REF:  
NOTES:  
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.  
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.20MM.  
D. MEETS JEDEC.95 MO-150, VARIATION = AH. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.  
PD Rev 4.0 January 2004  
40  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
WM8722EFT - 32 PIN TQFP  
MASTER CLOCK TIMING  
tMCLKL  
ADCMCLK/  
DACMCLK  
tMCLKH  
tMCLKY  
Figure 33 ADC and DAC Master Clock Timing Requirements  
Test Conditions  
AVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN = 0V, AGND, DGND = 0V, TA = +25oC, fs = 48kHz, DACMCLK and  
ADCMCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
ADCMCLK and DACMCLK  
System clock pulse width high  
tMCLKH  
tMCLKL  
tMCLKY  
11  
11  
ns  
ns  
ns  
ADCMCLK and DACMCLK  
System clock pulse width low  
ADCMCLK and DACMCLK  
System clock cycle time  
28  
ADCMCLK and DACMCLK Duty  
cycle  
40:60  
60:40  
Table 13 Master Clock Timing Requirements  
DIGITAL AUDIO INTERFACE – MASTER MODE  
ADCBCLK  
ADCLRC  
DACBCLK  
DSP/  
WM8772  
CODEC  
ENCODER/  
DECODER  
DACLRC  
DOUT  
DIN1/2/3  
3
Figure 34 Audio Interface - Master Mode  
PD Rev 4.0 January 2004  
41  
w
WM8772EFT – 32 PIN TQFP  
Production Data  
ADCBCLK/  
DACBCLK  
(Outputs)  
tDL  
ADCLRC/  
DACLRC  
(Outputs)  
tDDA  
DOUT  
DIN1/2/3  
tDST  
tDHT  
Figure 35 Digital Audio Data Timing – Master Mode  
Test Conditions  
AVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN, DGND = 0V, TA = +25oC, Master Mode, fs = 48kHz, DACMCLK and  
ADCMCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
ADCLRC/DACLRC  
propagation delay from  
ADCBCLK/DACBCLK  
falling edge  
tDL  
0
10  
ns  
DOUT propagation delay  
from ADCBCLK falling edge  
tDDA  
tDST  
tDHT  
0
10  
ns  
ns  
ns  
DIN1/2/3 setup time to  
DACBCLK rising edge  
10  
10  
DIN1/2/3 hold time from  
DACBCLK rising edge  
Table 14 Digital Audio Data Timing – Master Mode  
PD Rev 4.0 January 2004  
42  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
DIGITAL AUDIO INTERFACE – SLAVE MODE  
ADCBCLK  
ADCLRC  
DSP  
ENCODER/  
DECODER  
DACBCLK  
DACLRC  
DOUT  
WM8772  
CODEC  
DIN1/2/3  
3
Figure 36 Audio Interface – Slave Mode  
tBCH  
tBCL  
DACBCLK/  
ADCBCLK  
tBCY  
DACLRC/  
ADCLRC  
tLRSU  
tDS  
tLRH  
DIN1/2/3  
DOUT  
tDD  
tDH  
Figure 37 Digital Audio Data Timing – Slave Mode  
PD Rev 4.0 January 2004  
43  
w
WM8772EFT – 32 PIN TQFP  
Production Data  
Test Conditions  
AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, DACMCLK and ADCMCLK = 256fs  
unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
ADCBCLK/DACBCLK cycle  
time  
tBCY  
tBCH  
tBCL  
50  
20  
20  
10  
ns  
ns  
ns  
ns  
ADCBCLK/DACBCLK pulse  
width high  
ADCBCLK/DACBCLK pulse  
width low  
ADCLRC/DACLRC set-up  
time to  
tLRSU  
ADCBCLK/DACBCLK rising  
edge  
ADCLRC/DACLRC hold  
time from  
tLRH  
10  
ns  
ADCBCLK/DACBCLK rising  
edge  
DIN1/2/3 set-up time to  
DACBCLK rising edge  
tDS  
tDH  
tDD  
10  
10  
0
ns  
ns  
ns  
DIN1/2/3 hold time from  
DACBCLK rising edge  
DOUT propagation delay  
10  
from ADCBCLK falling edge  
Table 15 Digital Audio Data Timing – Slave Mode  
MPU INTERFACE TIMING  
tCSL  
tCSH  
ML/I2S  
tSCY  
tCSS  
tSCS  
tSCH  
tSCL  
MC/IWL  
MD/DM  
LSB  
tDSU  
tDHO  
Figure 38 SPI Compatible Control Interface Input Timing  
PD Rev 4.0 January 2004  
44  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
Test Conditions  
AVDD = 5V, DVDD = 3.3V, AGND, DGND = 0V, TA = +25oC, fs = 48kHz, DACMCLK and ADCMCLK = 256fs unless otherwise  
stated  
PARAMETER  
MC/IWL rising edge to ML/I2S rising edge  
MC/IWL pulse cycle time  
SYMBOL  
tSCS  
MIN  
60  
80  
30  
30  
20  
20  
20  
20  
20  
TYP  
MAX  
UNIT  
ns  
tSCY  
ns  
MC/IWL pulse width low  
tSCL  
ns  
MC/IWL pulse width high  
tSCH  
ns  
MD/DM to MC/IWL set-up time  
MC/IWL to MD/DM hold time  
ML/I2S pulse width low  
tDSU  
ns  
tDHO  
tCSL  
ns  
ns  
ML/I2S pulse width high  
tCSH  
ns  
ML/I2S rising to MC/IWL rising  
tCSS  
ns  
Table 16 3-Wire SPI Compatible Control Interface Input Timing Information  
PD Rev 4.0 January 2004  
45  
w
WM8772EFT – 32 PIN TQFP  
Production Data  
DEVICE DESCRIPTION  
INTRODUCTION  
WM8772EFT is a complete 6-channel DAC, 2-channel ADC audio codec, including digital  
interpolation and decimation filters, multi-bit sigma delta stereo ADC, and switched capacitor multi-  
bit sigma delta DACs with digital volume controls on each channel and output smoothing filters.  
The device is implemented as three separate stereo DACs and a stereo ADC in a single package  
and controlled by a single interface.  
Each stereo DAC has its own data input DIN1/2/3. DAC word clock DACLRC, DAC bit clock  
DACBCLK and DAC master clock DACMCLK are shared between them. The stereo ADC has it’s  
own data output DOUT, word clock ADCLRC, bit clock ADCBCLK and ADC master clock ADCMCLK.  
This allows the ADC and DAC to run independently.  
The Audio Interface may be configured to operate in either master or slave mode. In Slave mode  
ADCLRC and ADCBCLK, DACLRC and DACBCLK are all inputs. In Master mode ADCLRC and  
ADCBCLK, DACLRC and DACBCLK are all outputs. The DAC’s and ADC can be in any combination  
of master or slave mode.  
Each DAC has its own digital volume control that is adjustable in 0.5dB steps. The digital volume  
controls may be operated independently. In addition, a zero cross detect circuit is provided for each  
DAC for the digital volume controls. The digital volume control detects a transition through the zero  
point before updating the volume. This minimises audible clicks and ‘zipper’ noise as the gain values  
change.  
Control of internal functionality of the device is by 3-wire serial or pin programmable control interface.  
The software control interface may be asynchronous to the audio data interface as control data will  
be re-synchronised to the audio processing internally.  
Operation using master clocks of 128fs, 192fs, 256fs, 384fs, 512fs or 768fs is provided for the DAC,  
and 256fs, 384fs, 512fs, and 768fs is provided for the ADC. In Slave mode selection between clock  
rates is automatically controlled. In master mode, the sample rate is set by control bits ADCRATE  
and DACRATE. Audio sample rates (fs) from less than 8ks/s up to 192ks/s are allowed for the DAC  
and from less than 8ks/s up to 96ks/s for the ADC, provided the appropriate master clock is input.  
The audio data interface supports right, left and I2S interface formats along with a highly flexible DSP  
serial port interface.  
AUDIO DATA SAMPLING RATES  
In a typical digital audio system there is only one central clock source producing a reference clock to  
which all audio data processing is synchronised. This clock is often referred to as the audio system’s  
Master Clock. The external master system clock can be applied directly through the ADC and DAC  
MCLK input pin(s) with no software configuration necessary. In a system where there are a number  
of possible sources for the reference clock it is recommended that the clock source with the lowest  
jitter be used to optimise the performance of the ADC and DAC.  
The DAC master clock for WM8772EFT supports audio sampling rates from 128fs to 768fs, where fs  
is the audio sampling frequency (DACLRC) typically 32kHz, 44.1kHz, 48kHz, 96kHz or 192kHz (for  
DAC operation only). The ADC master clock for WM8772EFT supports audio sampling rates from  
256fs to 768fs, where fs is the audio sampling frequency (ADCLRC) typically 32kHz, 44.1kHz,  
48kHz, 96kHz or 192kHz. The master clock is used to operate the digital filters and the noise shaping  
circuits.  
In Slave mode the WM8772EFT has a master clock detection circuit that automatically determines  
the relationship between the system clock frequency and the sampling rate (to within +/- 32 master  
clocks). If there is a greater than 32 clocks error the interface defaults to 768fs mode. The master  
clocks must be synchronised with ADCLRC and DACLRC respectively, although the WM8772EFT is  
tolerant of phase variations or jitter on this clock. Table 6 shows the typical master clock frequency  
inputs for the WM8772EFT.  
PD Rev 4.0 January 2004  
46  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
The signal processing for the WM8772EFT typically operates at an oversampling rate of 128fs for  
both ADC and DAC. The exception to this for the DAC is for operation with a 128/192fs system clock,  
e.g. for 192kHz operation, when the oversampling rate is 64fs. For ADC operation at 96kHz it is  
recommended that the user set the ADCOSR bit. This changes the ADC signal processing  
oversample rate to 64fs.  
SAMPLING  
RATE  
System Clock Frequency (MHz)  
128fs  
192fs  
256fs  
384fs  
512fs  
768fs  
(DACLRC/  
ADCLRC)  
32kHz  
44.1kHz  
48kHz  
4.096  
5.6448  
6.144  
6.144  
8.467  
8.192  
11.2896  
12.288  
24.576  
12.288  
16.9340  
18.432  
36.864  
16.384  
22.5792  
24.576  
24.576  
33.8688  
36.864  
9.216  
96kHz  
12.288  
24.576  
18.432  
36.864  
Unavailable Unavailable  
192kHz  
Unavailable Unavailable Unavailable Unavailable  
Table 17 System Clock Frequencies Versus Sampling Rate  
(ADC does not support 128fs and 192fs)  
HARDWARE CONTROL MODES  
When the MODE pin is held high, the following hardware modes of operation are available.  
Note: When in hardware mode the ADC and DAC will only run in slave mode.  
MUTE AND AUTOMUTE OPERATION  
In both hardware and software modes, MUTE controls the selection of MUTE directly, and can be  
used to enable and disable the automute function. This pin becomes an output when left floating and  
indicates infinite ZERO detect (IZD) has been detected.  
DESCRIPTION  
0
1
Normal Operation  
Mute DAC channels  
Floating  
Enable IZD, MUTE becomes an output to indicate when IZD occurs.  
L=IZD detected, H=IZD not detected.  
Table 18 Mute and Automute Control  
Figure 39 shows the application and release of MUTE whilst a full amplitude sinusoid is being played  
at 48kHz sampling rate. When MUTE (lower trace) is asserted, the output (upper trace) begins to  
decay exponentially from the DC level of the last input sample. The output will decay towards VMID  
with a time constant of approximately 64 input samples. If MUTE is applied to all channels for 1024  
or more input samples the outputs will be connected directly to VMID if IZD is set. When MUTE is de-  
asserted, the output will restart immediately from the current input sample.  
PD Rev 4.0 January 2004  
47  
w
WM8772EFT – 32 PIN TQFP  
Production Data  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
0
0.001  
0.002  
0.003  
0.004  
0.005  
0.006  
Time(s)  
Figure 39 Application and Release of Soft Mute  
The MUTE pin is an input to select mute or not mute. MUTE is active high; taking the pin high causes  
the filters to soft mute, ramping down the audio signal over a few milliseconds. Taking MUTE low  
again allows data into the filter.  
The automute function detects a series of ZERO value audio samples of 1024 samples long being  
applied to both channels. After such an event, a latch is set whose output (AUTOMUTED) is wire  
OR’ed through a 10kresistor to the MUTE pin. Thus if the MUTE pin is not being driven, the  
automute function will assert mute.  
If MUTE is tied low, AUTOMUTED is overridden and will not mute unless the IZD register bit is set. If  
MUTE is driven from a bi-directional source, then both MUTE and automute functions are available. If  
MUTE is not driven, AUTOMUTED appears as a weak output (10ksource impedance) and can be  
used to drive external mute circuits. AUTOMUTED will be removed as soon as any channel receives  
a non-ZERO input.  
A diagram showing how the various Mute modes interact is shown below Figure 20.  
IZD (Register Bit)  
AUTOMUTED  
(Internal Signal)  
10k  
SOFTMUTE  
(Internal  
Signal)  
MUTE  
PIN  
MUTE (Register Bit)  
Figure 40 Selection Logic for MUTE Modes  
PD Rev 4.0 January 2004  
48  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
INPUT FORMAT SELECTION  
In hardware mode, ML/I2S and MC/IWL become input controls for selection of input data format type  
and input data word length for both the ADC and DAC.  
ML/I2S  
MC/IWL  
INPUT DATA MODE  
24-bit right justified  
0
0
1
0
1
0
20-bit right justified  
16-bit I2S  
24-bit I2S  
1
1
Table 19 Input Format Selection  
Note:  
In 24 bit I2S mode, any width of 24 bits or less is supported provided that the left/right clocks  
(ADCLRC and DACLRC) are high for a minimum of 24 bit clocks (ADCBCLK and DACBCLK) and  
low for a minimum of 24 bit clocks.  
DE-EMPHASIS CONTROL  
In hardware mode, the MD/DM pin becomes an input control for selection of de-emphasis filtering to  
be applied.  
MD/DM  
DE-EMPHASIS  
0
Off  
On  
1
Table 20 De-emphasis Control  
DIGITAL AUDIO INTERFACE  
MASTER AND SLAVE MODES  
The audio interface operates in either Slave or Master mode, selectable using the DACMS and  
ADCMS control bits. In both Master and Slave modes DIN1/2/3 are always inputs to the  
WM8772EFT and DOUT is always an output. The default is Slave mode for ADC and DAC.  
In Slave mode, ADCLRC, DACLRC and ADCBCLK, DACBCLK are inputs to the WM8772EFT  
(Figure 21). DIN1/2/3, ADCLRC and DACLRC are sampled by the WM8772EFT on the rising edge of  
ADCBCLK and DACBCLK respectively. ADC data is output on DOUT and changes on the falling  
edge of ADCBCLK.  
By setting the control bit DACBCP the polarity of DACBCLK may be reversed so that DIN1/2/3 and  
DACLRC are sampled on the falling edge of DACBCLK.  
By setting the control bit ADCBCP the polarity of ADCBCLK may be reversed so that ADCLRC is  
sampled on the falling edge of ADCBCLK and DOUT changes on the rising edge of ADCBCLK.  
ADCBCLK  
ADCLRC  
DSP  
ENCODER/  
DECODER  
DACBCLK  
DACLRC  
DOUT  
WM8772  
CODEC  
DIN1/2/3  
3
Figure 41 Slave Mode  
In Master mode, ADCLRC, DACLRC, ADCBCLK and DACBCLK are outputs from the WM8772EFT  
(Figure 22). ADCLRC, DACLRC, ADCBCLK and DACBCLK are generated by the WM8772EFT.  
PD Rev 4.0 January 2004  
49  
w
WM8772EFT – 32 PIN TQFP  
Production Data  
DIN1/2/3 are sampled by the WM8772EFT on the rising edge of DACBCLK so the controller must  
output DAC data that changes on the falling edge of DACBCLK. ADC data is output on DOUT and  
changes on the falling edge of ADCBCLK.  
By setting control bit DACBCP the polarity of DACBCLK may be reversed so that DIN1/2/3 are  
sampled on the falling edge of DACBCLK.  
By setting control bit ADCBCP the polarity of ADCBCLK may be reversed so that DOUT changes on  
the rising edge of ADCBCLK.  
ADCBCLK  
ADCLRC  
DACBCLK  
DSP/  
WM8772  
CODEC  
ENCODER/  
DECODER  
DACLRC  
DOUT  
DIN1/2/3  
3
Figure 42 Master Mode  
AUDIO INTERFACE FORMATS  
Audio data is applied to the internal DAC filters, or output from the ADC filters, via the Digital Audio  
Interface. 5 popular interface formats are supported:  
Left Justified mode  
Right Justified mode  
I2S mode  
DSP Early mode  
DSP Late mode  
All 5 formats send the MSB first and support word lengths of 16, 20, 24 and 32 bits, with the  
exception of 32 bit right justified mode, which is not supported.  
In left justified, right justified and I2S modes, the digital audio interface receives DAC data on the  
DIN1/2/3 inputs and outputs ADC data on DOUT. Audio Data for each stereo channel is time  
multiplexed with ADCLRC or DACLRC indicating whether the left or right channel is present.  
ADCLRC or DACLRC is also used as a timing reference to indicate the beginning or end of the data  
words.  
In left justified, right justified and I2S modes, the minimum number of DACBCLK/ADCBCLK’s per  
DACLRC/ADCLRC period is 2 times the selected word length. ADCLRC/DACLRC must be high for a  
minimum of word length DACBCLK/ADCBCLK’s and low for  
a minimum of word length  
DACBCLK/ADCBCLK’s. Any mark to space ratio on ADCLRC/DACLRC is acceptable provided the  
above requirements are met.  
In DSP early or DSP late mode, all 6 DAC channels are time multiplexed onto DIN1. DACLRC is  
used as a frame sync signal to identify the MSB of the first word. The minimum number of  
DACBCLK’s per DACLRC period is 6 times the selected word length. Any mark to space ratio is  
acceptable on DACLRC provided the rising edge is correctly positioned. The ADC data may also be  
output in DSP early or late modes, with ADCLRC used as a frame sync to identify the MSB of the  
first word. The minimum number of ADCBCLK’s per ADCLRC period is 2 times the selected word  
length  
PD Rev 4.0 January 2004  
50  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
LEFT JUSTIFIED MODE  
In left justified mode, the MSB of DIN1/2/3 is sampled by the WM8772EFT on the first rising edge of  
DACBCLK following a DACLRC transition. The MSB of the ADC data is output on DOUT and  
changes on the same falling edge of ADCBCLK as ADCLRC and may be sampled on the rising edge  
of ADCBCLK. ADCLRC and DACLRC are high during the left samples and low during the right  
samples (Figure 43).  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC/  
ADCLRC  
DACBCLK/  
ADCBCLK  
DIN1/2/3/  
DOUT  
1
2
3
n
n-2 n-1  
1
2
3
n
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 43 Left Justified Mode Timing Diagram  
RIGHT JUSTIFIED MODE  
In right justified mode, the LSB of DIN1/2/3 is sampled by the WM8772EFT on the rising edge of  
DACBCLK preceding a DACLRC transition. The LSB of the ADC data is output on DOUT and  
changes on the falling edge of ADCBCLK preceding a ADCLRC transition and may be sampled on  
the rising edge of ADCBCLK. ADCLRC and DACLRC are high during the left samples and low during  
the right samples (Figure 44).  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC/  
ADCLRC  
DACBCLK/  
ADCBCLK  
DIN1/2/3/  
DOUT  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 44 Right Justified Mode Timing Diagram  
PD Rev 4.0 January 2004  
51  
w
WM8772EFT – 32 PIN TQFP  
Production Data  
I2S MODE  
In I2S mode, the MSB of DIN1/2/3 is sampled by the WM8772EFT on the second rising edge of  
BCLK following a DACLRC transition. The MSB of the ADC data is output on DOUT and changes on  
the first falling edge of BCLK following an ADCLRC transition and may be sampled on the rising edge  
of BCLK. ADCLRC and DACLRC are low during the left samples and high during the right samples.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC/  
ADCLRC  
DACBCLK/  
ADCBCLK  
1 BCLK  
1 BCLK  
DIN1/2/3/  
DOUT  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
LSB  
LSB  
MSB  
MSB  
Figure 45 I2S Mode Timing Diagram  
DSP EARLY MODE  
In DSP early mode, the MSB of DAC channel 1 left data is sampled by the WM8772EFT on the  
second rising edge on DACBCLK following a DACLRC rising edge. DAC channel 1 right and DAC  
channels 2 and 3 data follow DAC channel 1 left data (Figure 46).  
1 BCLK  
1 BCLK  
1/fs  
DACLRC  
DACBCLK  
CHANNEL 1  
LEFT  
CHANNEL 1  
RIGHT  
CHANNEL 2  
LEFT  
CHANNEL 3  
RIGHT  
NO VALID DATA  
DIN1  
1
2
n
1
2
n
1
2
n
n-1  
n-1  
n-1  
MSB  
LSB  
Input Word Length (IWL)  
Figure 46 DSP Early Mode Timing Diagram – DAC Data Input  
The MSB of the left channel ADC data is output on DOUT and changes on the first falling edge of  
ADCBCLK following a low to high ADCLRC transition and may be sampled on the rising edge of  
ADCBCLK. The right channel ADC data is contiguous with the left channel data (Figure 47)  
PD Rev 4.0 January 2004  
52  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
1 BCLK  
1 BCLK  
1/fs  
ADCLRC  
ADCBCLK  
LEFT CHANNEL  
RIGHT CHANNEL  
NO VALID DATA  
DOUT  
1
2
n
1
2
n
n-1  
n-1  
MSB  
LSB  
Input Word Length (IWL)  
Figure 47 DSP Early Mode Timing Diagram – ADC Data Output  
DSP LATE MODE  
In DSP late mode, the MSB of DAC channel 1 left data is sampled by the WM8772EFT on the first  
DACBCLK rising edge following a DACLRC rising edge. DAC channel 1 right and DAC channels 2  
and 3 data follow DAC channel 1 left data (Figure 48).  
1/fs  
DACLRC  
DACBCLK  
CHANNEL 1  
LEFT  
CHANNEL 1  
RIGHT  
CHANNEL 2  
LEFT  
CHANNEL 3  
RIGHT  
NO VALID DATA  
DIN1  
1
2
n
1
2
n
1
2
n
1
n-1  
n-1  
n-1  
MSB  
LSB  
Input Word Length (IWL)  
Figure 48 DSP Late Mode Timing Diagram – DAC Data Input  
The MSB of the left channel ADC data is output on DOUT and changes on the same falling edge of  
ADCBCLK as the low to high ADCLRC transition and may be sampled on the rising edge of  
ADCBCLK. The right channel ADC data is contiguous with the left channel data (Figure 49).  
1/fs  
ADCLRC  
BCK  
LEFT CHANNEL  
RIGHT CHANNEL  
NO VALID DATA  
1
2
n
1
2
n
1
DOUT  
n-1  
n-1  
MSB  
LSB  
Input Word Length (IWL)  
Figure 49 DSP Late Mode Timing Diagram – ADC Data Output  
In both early and late DSP modes, DACL1 is always sent first, followed immediately by DACR1 and  
the data words for the other 6 channels. No BCLK edges are allowed between the data words. The  
word order is DAC1 left, DAC1 right, DAC2 left, DAC2 right, DAC3 left, DAC3 right.  
PD Rev 4.0 January 2004  
53  
w
WM8772EFT – 32 PIN TQFP  
POWERDOWN MODES  
Production Data  
The WM8772EFT has powerdown control bits allowing specific parts of the WM8772EFT to be  
powered off when not being used. Control bit ADCPD powers off the ADC. The three stereo DACs  
each have a separate powerdown control bit, DACPD[2:0] allowing individual stereo DACs to be  
powered off when not in use. Setting ADCPD and DACPD[2:0] will powerdown everything except the  
references VMID and REFADC. These may be powered down by setting PDWN. Setting PDWN will  
override all other powerdown control bits. It is recommended that the ADC and DACs are powered  
down before setting PDWN.  
ZERO DETECT  
The WM8772EFT has a zero detect circuit for each DAC channel that detects when 1024  
consecutive zero samples have been input. The MUTE pin output may be programmed to output the  
zero detect signal (see Table 10) which may then be used to control external muting circuits. A ‘1’ on  
MUTE indicates a zero detect. The zero detect may also be used to automatically enable DAC mute  
by setting IZD.  
DZFM[1:0]  
MUTE  
00  
01  
10  
11  
All channels zero  
Channel 1 zero  
Channel 2 zero  
Channel 3 zero  
Table 21 Zero Flag Output Select  
SOFTWARE CONTROL INTERFACE OPERATION  
The WM8772EFT is controlled using a 3-wire serial interface in software mode or pin programmable  
in hardware mode.  
The control mode is selected by the state of the MODE pin.  
The control interfaces are 5V tolerant; meaning that the control interface input signals ML/I2S,  
MC/IWL and MD/DM may have an input high level of 5V while DVDD is 3V. Input thresholds are  
determined by DVDD. MUTE and MODE are also 5V tolerant.  
3-WIRE (SPI COMPATIBLE) SERIAL CONTROL MODE  
MD/DM is used for the program data, MC/IWL is used to clock in the program data and ML/I2S is  
used to latch the program data. MD/DM is sampled on the rising edge of MC/IWL. The 3-wire  
interface protocol is shown in Figure 30.  
ML/I2S  
MC/IWL  
MD/DM  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Figure 50 3-Wire SPI Compatible Interface  
4. B[15:9] are Control Address Bits  
5. B[8:0] are Control Data Bits  
6. ML/I2S is edge-sensitive – the data is latched on the rising edge of ML/I2S.  
PD Rev 4.0 January 2004  
54  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
REGISTER MAP – 32 PIN TQFP  
The complete register map is shown below. The detailed description can be found in the relevant text of the device description. The  
WM8772EFT can be configured using the Control Interface. All unused bits should be set to ‘0’.  
REGISTER  
R0(00h)  
B15 B14 B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
LDA1[7:0]  
RDA1[7:0]  
B3  
B2  
B1  
B0  
DEFAULT  
UPDATE  
011111111  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
UPDATE  
011111111  
R1(01h)  
PL[8:5]  
PDWN  
MUTE  
IZD  
ATC  
DEEMP  
100100000  
R2(02h)  
0
0
0
0
0
1
0
All DAC  
All DAC  
PHASE[8:6]  
DACFMT[1:0]  
DACIWL[5:4]  
DACBCP  
DACLRP  
000000000  
011111111  
011111111  
011111111  
011111111  
011111111  
000000000  
R3(03h)  
R4(04h)  
R5(05h)  
R6(06h)  
R7(07h)  
R8(08h)  
R9(09h)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
1
1
0
0
1
0
0
1
1
0
0
1
0
1
0
1
0
1
UPDATE  
UPDATE  
UPDATE  
UPDATE  
UPDATE  
LDA2[7:0]  
RDA2[7:0]  
LDA3[7:0]  
RDA3[7:0]  
MASTDA[7:0]  
DEEMP[8:6]  
DMUTE[5:3]  
DZFM[2:1]  
ZCD  
PWRDN  
ALL  
DACRATE[8:6]  
DACMS  
DACPD[3:1]  
ADCPD  
010000000  
001000000  
R10(0Ah)  
R11(0Bh)  
0
0
0
0
0
0
1
1
0
0
1
1
0
1
ADC  
OSR  
ADCRATE[7:5]  
ADCMS  
ADCIWL[3:2]  
ADCFMT[1:0]  
AMUTE  
ALL  
0
SYNC  
MPD  
ADCBCP ADCLRP ADCHP  
RESET  
AMUTEL AMUTER 000000000  
000000000  
R12(0Ch)  
R31(1Fh)  
0
0
0
0
0
1
1
1
1
1
0
1
0
1
PD Rev 4.0 January 2004  
55  
w
WM8772EFT – 32 PIN TQFP  
Production Data  
CONTROL INTERFACE REGISTERS  
ATTENUATOR CONTROL MODE  
Setting the ATC register bit causes the left channel attenuation settings to be applied to both left and  
right channel DACs from the next audio input sample. No update to the attenuation registers is  
required for ATC to take effect.  
REGISTER ADDRESS  
0000010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
3
ATC  
0
Attenuator Control Mode:  
DAC Channel Control  
0: Right channels use right  
attenuations  
1: Right channels use left  
attenuations  
INFINITE ZERO DETECT ENABLE  
Setting the IZD register bit will enable the internal infinite zero detect function:  
REGISTER ADDRESS  
0000010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Infinite zero mute enable  
0: Disable infinite zero mute  
1: Enable infinite zero mute  
4
IZD  
0
DAC Channel Control  
With IZD enabled, applying 1024 consecutive zero input samples to each input will cause the  
relevant DAC to be muted to VMID. Mute will be removed as soon as that channel receives a non-zero  
input.  
DAC OUTPUT CONTROL  
The DAC output control word determines how the left and right inputs to the audio Interface are  
applied to the left and right DACs:  
REGISTER ADDRESS  
0000010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
8:5  
PL[3:0]  
1001  
PL[3:0]  
Left  
Right  
Output  
Output  
DAC Control  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Mute  
Left  
Mute  
Mute  
Mute  
Mute  
Left  
Right  
(L+R)/2  
Mute  
Left  
Left  
Right  
(L+R)/2  
Mute  
Left  
Left  
Left  
Right  
Right  
Right  
Right  
(L+R)/2  
(L+R)/2  
(L+R)/2  
(L+R)/2  
Right  
(L+R)/2  
Mute  
Left  
Right  
(L+R)/2  
PD Rev 4.0 January 2004  
56  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
DAC DIGITAL AUDIO INTERFACE CONTROL REGISTER  
Interface format is selected via the DACFMT[1:0] register bits:  
REGISTER ADDRESS  
0000011  
BIT  
LABEL  
DACFMT  
[1:0]  
DEFAULT  
DESCRIPTION  
Interface Format Select:  
00 : Right justified mode  
01: Left justified mode  
10: I2S mode  
1:0  
00  
Interface Control  
11: DSP (early or late) mode  
In left justified, right justified or I2S modes, the DACLRP register bit controls the polarity of DACLRC.  
If this bit is set high, the expected polarity of DACLRC will be the opposite of that shown Figure 23,  
Figure 24 and Figure 25. Note that if this feature is used as a means of swapping the left and right  
channels, a 1 sample phase difference will be introduced. In DSP modes, the DACLRP register bit is  
used to select between early and late modes.  
REGISTER ADDRESS  
0000011  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
In Left/Right/I2S Modes:  
DACLRC Polarity (normal)  
0 : Normal DACLRC polarity  
1: Inverted DACLRC polarity  
In DSP Mode:  
2
DACLRP  
0
Interface Control  
0 : Early DSP mode  
1: Late DSP mode  
By default, DACLRC and DIN1/2/3 are sampled on the rising edge of DACBCLK and should ideally  
change on the falling edge. Data sources that change DACLRC and DIN1/2/3 on the rising edge of  
DACBCLK can be supported by setting the BCP register bit. Setting DACBCP to 1 inverts the  
polarity of DACBCLK to the inverse of that shown in Figure 23, Figure 24, Figure 25, Figure 26,  
Figure 27, Figure 28 and Figure 29.  
REGISTER ADDRESS  
0000011  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
3
DACBCP  
0
DACBCLK Polarity (DSP Modes)  
0 : Normal BCLK polarity  
1: Inverted BCLK polarity  
Interface Control  
The DACIWL[1:0] bits are used to control the input word length.  
REGISTER ADDRESS  
0000011  
BIT  
LABEL  
DACIWL  
[1:0]  
DEFAULT  
DESCRIPTION  
Input Word Length:  
00 : 16 bit data  
5:4  
00  
Interface Control  
01: 20 bit data  
10: 24 bit data  
11: 32 bit data  
Note: If 32-bit mode is selected in right justified mode, the WM8772EFT defaults to 24 bits.  
In all modes, the data is signed 2's complement. The digital filters always input 24-bit data. If the  
DAC is programmed to receive 16 or 20 bit data, the WM8772EFT pads the unused LSBs with zeros.  
If the DAC is programmed into 32 bit mode, the 8 LSBs are ignored.  
Note: In 24 bit I2S mode, any width of 24 bits or less is supported provided that DACLRC is high for a  
minimum of 24 BCLKs and low for a minimum of 24 BCLKs.  
A number of options are available to control how data from the Digital Audio Interface is applied to  
the DAC channels.  
PD Rev 4.0 January 2004  
57  
w
WM8772EFT – 32 PIN TQFP  
Production Data  
DAC OUTPUT PHASE  
The DAC Phase control word determines whether the output of each DAC is non-inverted or inverted  
REGISTER ADDRESS  
0000011  
BIT  
LABEL  
PHASE  
[2:0]  
DEFAULT  
DESCRIPTION  
8:6  
000  
Bit  
0
DAC  
Phase  
DAC Phase  
DAC1L/R 1 = invert  
DAC2L/R 1 = invert  
1
2
DAC3L/R 1 = invert  
DIGITAL ZERO CROSS-DETECT  
The Digital volume control also incorporates a zero cross detect circuit which detects a transition  
through the zero point before updating the digital volume control with the new volume. This is  
enabled by control bit DZCEN.  
REGISTER ADDRESS  
0001001  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0
ZCD  
0
DAC Digital Volume Zero Cross  
Disable:  
DAC Control  
0: Zero cross detect enabled  
1: Zero cross detect disabled  
MUTE FLAG OUTPUT  
The DZFM control bits allow the selection of the six DAC channel zero flag bits for output on the  
MUTEB pin. A ‘1’ on MUTE indicates 1024 consecutive zero input samples to the DAC channels  
selected.  
REGISTER ADDRESS  
0001001  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
2:1  
DZFM[1:0]  
00  
Selects the output MUTE pin (A ‘1’  
indicates 1024 consecutive zero  
input samples on the DAC  
channels selected.  
Zero Flag  
00: All channels zero  
01: Channel 1 zero  
10: Channel 2 zero  
11: Channel 3 zero  
DAC MUTE MODES  
The WM8772EFT has individual mutes for each of the three DAC channels. Setting MUTE for a  
channel will apply a ‘soft’ mute to the input of the digital filters of the channel muted.  
REGISTER ADDRESS  
0001001  
BIT  
LABEL  
DMUTE  
[2:0]  
DEFAULT  
DESCRIPTION  
5:3  
000  
DAC Soft Mute Select  
DAC Mute  
DMUTE [2:0]  
000  
DAC CHANNEL 1  
Not MUTE  
MUTE  
DAC CHANNEL 2  
DAC CHANNEL 3  
Not MUTE  
Not MUTE  
Not MUTE  
Not MUTE  
MUTE  
Not MUTE  
Not MUTE  
MUTE  
001  
010  
Not MUTE  
MUTE  
011  
MUTE  
100  
Not MUTE  
MUTE  
Not MUTE  
Not MUTE  
MUTE  
101  
MUTE  
110  
Not MUTE  
MUTE  
PD Rev 4.0 January 2004  
58  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
Setting the MUTEALL register bit will apply a 'soft' mute to the input of all the DAC digital filters:  
REGISTER ADDRESS  
0000010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Soft Mute Select:  
0
MUTEALL  
0
DAC Mute  
0 : Normal operation  
1: Soft mute all channels  
Refer to Figure 39 for the plot of application and release of soft mute.  
Note that all other means of muting the DAC channels: setting the PL[3:0] bits to 0, setting the  
PDWN bit or setting attenuation to 0 will cause much more abrupt muting of the output.  
ADC MUTE MODES  
Each ADC channel also has a mute control bit, which mutes the inputs to the ADC.  
REGISTER ADDRESS BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADC Mute Select:  
0001100  
0
1
2
AMUTER  
0
ADC Mute  
0 : Normal operation  
1: mute ADC right  
AMUTEL  
0
0
ADC Mute Select:  
0 : Normal operation  
1: mute ADC left  
AMUTEALL  
ADC Mute Select:  
0 : Normal operation  
1: mute both ADC channels  
DE-EMPHASIS MODE  
Each stereo DAC channel has an individual de-emphasis control bit:  
REGISTER ADDRESS  
BIT  
LABEL  
DEEMPH  
[1:0]  
DEFAULT  
DESCRIPTION  
0001001  
[8:6]  
000  
De-emphasis Channel Selection  
Select:  
DAC De-emphahsis  
Control  
DEEMPH  
[1:0]  
000  
DAC CHANNEL 1  
DAC CHANNEL 2  
DAC CHANNEL 3  
Not DE-EMPHASIS  
DE-EMPHASIS  
Not DE-EMPHASIS  
Not DE-EMPHASIS  
DE-EMPHASIS  
Not DE-EMPHASIS  
Not DE-EMPHASIS  
Not DE-EMPHASIS  
Not DE-EMPHASIS  
DE-EMPHASIS  
001  
010  
Not DE-EMPHASIS  
DE-EMPHASIS  
011  
DE-EMPHASIS  
100  
Not DE-EMPHASIS  
DE-EMPHASIS  
Not DE-EMPHASIS  
Not DE-EMPHASIS  
DE-EMPHASIS  
101  
DE-EMPHASIS  
110  
Not DE-EMPHASIS  
DE-EMPHASIS  
Refer to Figure 7, Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12 for details of the De-  
Emphasis performance at different sample rates.  
REGISTER ADDRESS  
0000010  
BIT  
LABEL  
DEEMP  
ALL  
DEFAULT  
DESCRIPTION  
DEMMP Select:  
1
0
DAC DEMP  
0 : Normal operation  
1: De-emphasis all channels  
PD Rev 4.0 January 2004  
59  
w
WM8772EFT – 32 PIN TQFP  
Production Data  
POWERDOWN MODE AND ADC/DAC DISABLE  
Setting the PDWN register bit immediately powers down the DAC’s on the WM8772EFT, overriding  
the DACD powerdown bits control bits. All trace of the previous input samples are removed, but all  
control register settings are preserved. When PDWN is cleared the digital filters will be reinitialised  
REGISTER ADDRESS  
0000010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Power Down all DAC’s Select:  
0: All DAC’s enabled  
2
PDWN  
0
Powerdown Control  
1: All DAC’s disabled  
The ADC and DACs may also be powered down individually by setting the ADCPD and DACPD  
disable bits. Setting ADCD will disable the ADC and select a low power mode. The ADC digital filters  
will be reset and will reinitialise when ADCPD is unset. Each Stereo DAC channel has a separate  
disable DACPD[2:0]. Setting DACPD for a channel will disable the DACs and select a low power  
mode. Resetting DACD will reinitialise the digital filters.  
REGISTER ADDRESS  
0001010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADC Disable:  
0
ADCPD  
0
Powerdown Control  
0: Active  
1: Disable  
3:1 DACPD [2:0]  
000  
DAC Disable  
DACPD [2:0]  
000  
DAC CHANNEL 1  
Active  
DAC CHANNEL 2  
DAC CHANNEL 3  
Active  
Active  
Active  
001  
DISABLE  
Active  
Active  
010  
DISABLE  
DISABLE  
Active  
Active  
011  
DISABLE  
Active  
Active  
100  
DISABLE  
DISABLE  
DISABLE  
DISABLE  
101  
DISABLE  
Active  
Active  
110  
DISABLE  
DISABLE  
111  
DISABLE  
MASTER POWERDOWN  
This control bit powers down the references for the whole chop. Therefore for complete powerdown,  
both the ADC and DACs should be powered down first before setting this bit.  
REGISTER ADDRESS  
0001010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Master Power Down Bit:  
0: Not powered down  
1: Powered down  
4
PWRDNALL  
0
Interface Control  
DAC MASTER MODE SELECT  
Control bit DACMS selects between audio interface Master and Slave Modes. In Master mode  
DACLRC and DACBCLK are outputs and are generated by the WM8772EFT. In Slave mode  
DACCLRC, DACLRC and DACBCLK are inputs to WM8772EFT.  
REGISTER ADDRESS  
0001010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
5
DACMS  
0
DAC Audio Interface  
Master/Slave Mode Select:  
Interface Control  
0: Slave Mode  
1: Master Mode  
PD Rev 4.0 January 2004  
60  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
MASTER MODE DACLRC FREQUENCY SELECT  
In Master mode the WM8772EFT generates DACLRC and DACBCLK. These clocks are derived  
from the master clock and the ratio of DACMCLK to DACLRC is set by DACRATE.  
REGISTER ADDRESS  
0001010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Master Mode  
8:6 DACRATE [2:0]  
010  
DACMCLK:DACLRC Ratio  
Select:  
Interface Control  
000: 128fs  
001: 192fs  
010: 256fs  
011: 384fs  
100: 512fs  
101: 768fs  
ADC DIGITAL AUDIO INTERFACE CONTROL REGISTER  
Interface format is selected via the ADCFMT[1:0] register bits:  
REGISTER ADDRESS  
0001011  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Interface Format Select  
00: Right justified mode  
01: Left justified mode  
10: I2S mode  
1:0 ADCFMT[1:0]  
00  
Interface Control  
11: DSP (early or late) mode  
The ADCIWL[1:0] bits are used to control the input word length.  
REGISTER ADDRESS  
0001011  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Input Word Length  
00: 16 bit data  
3:2 ADCIWL[1:0]  
00  
Interface Control  
01: 20 bit data  
10: 24 bit data  
11: 32 bit data  
Note: 32-bit right justified mode is not supported.  
In all modes, the data is signed 2's complement.  
ADC MASTER MODE SELECT  
Control bit ADCMS selects between audio interface Master and Slave Modes. In Master mode  
ADCLRC and ADCBCLK are outputs and are generated by the WM8772EFT. In Slave mode  
ADCLRC and ADCBCLK are inputs to WM8772EFT.  
REGISTER ADDRESS  
0001011  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADC Audio Interface  
4
ADCMS  
0
Interface Control  
Master/Slave Mode Select:  
0: Slave mode  
1: Master mode  
PD Rev 4.0 January 2004  
61  
w
WM8772EFT – 32 PIN TQFP  
Production Data  
MASTER MODE ADCLRC FREQUENCY SELECT  
In Master mode the WM8772EFT generates ADCLRC and ADCBCLK. These clocks are derived  
from the master clock and the ratio of ADCMCLK to ADCLRC is set by ADCRATE.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Master Mode  
0001011  
7:5 ADCRATE [2:0]  
010  
ADCLRC and ADCBCLK  
Frequency Select  
ADCMCLK:ADCLRC Ratio  
Select:  
010: 256fs  
011: 384fs  
100: 512fs  
101: 768fs  
ADC OVERSAMPLING RATE SELECT  
For ADC operation at 96kHz it is recommended that the user set the ADCOSR bit. This changes the  
ADC signal processing oversample rate to 64fs. The 64fs oversampling rate is only available in  
modes were a 96KHz rate is supported, i.e. 256fs or 384fs. In all other modes the ADC will stay in a  
128fs oversampling rate irrespective of what this bit is set to.  
REGISTER ADDRESS  
0001011  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADC Oversampling Rate Select  
0: 128x oversampling  
8
ADCOSR  
0
ADC Oversampling Rate  
1: 64x oversampling  
ADC HIGHPASS FILTER DISABLE  
The ADC digital filters contain a digital highpass filter. This defaults to enabled and can be disabled  
using software control bit ADCHPD.  
REGISTER ADDRESS  
0001100  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
3
ADCHPD  
0
ADC Highpass Filter Disable:  
0: Highpass filter enabled  
1: Highpass filter disabled  
ADC Control  
In left justified, right justified or I2S modes, the ADCLRP register bit controls the polarity of ADCLRC.  
If this bit is set high, the expected polarity of ADCLRC will be the opposite of that shown Figure 23,  
Figure 24 and Figure 25. Note that if this feature is used as a means of swapping the left and right  
channels, a 1 sample phase difference will be introduced. In DSP modes, the ADCLRP register bit is  
used to select between early and late modes.  
REGISTER ADDRESS  
0001100  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
In Left/Right/I2S Modes:  
ADCLRC Polarity (normal)  
0: normal DACLRC polarity  
1: inverted DACLRC polarity  
In DSP Mode:  
4
ADCLRP  
0
Interface Control  
0: Early DSP mode  
1: Late DSP mode  
By default, DACLRC and DOUT are sampled on the rising edge of ADCBCLK and should ideally  
change on the falling edge. Data sources that change ADCLRC and DOUT on the rising edge of  
ADCBCLK can be supported by setting the ADCBCP register bit. Setting ADCBCP to 1 inverts the  
polarity of ADCBCLK to the inverse of that shown in Figure 23, Figure 24, Figure 25, Figure 26,  
Figure 27, Figure 28 and Figure 29.  
PD Rev 4.0 January 2004  
62  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
REGISTER ADDRESS  
0001100  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADCBCLK Polarity (DSP Modes):  
0: normal BCLK polarity  
5
ADCBCP  
0
Interface Control  
1: inverted BCLK polarity  
MUTE PIN DECODE  
The MUTE pin can either be used an output or an input. When used as an input the MUTE pins  
action can controlled by setting the DZFM bit to select the corresponding DAC for applying the MUTE  
to. As an output its meaning is selected by the DZFM control bits. By default selecting the MUTE to  
represent if DAC1 has received more than 1024 midrail samples will cause the MUTE to be asserted  
a softmute on DAC1. Disabling the decode block will cause any logical high on the MUTE pin to  
apply a softmute to all DACs.  
REGISTER ADDRESS  
0001100  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
MUTE Pin Decode Disable:  
0: MUTE pin decode enable  
1: MUTE pin decode disable  
6
MPD  
0
ADC Control  
DAC TO ADC SYNC  
If the DAC and ADC use the same MCLK, and they are operating in the same fs mode setting the  
SYNC bit will improve performance by synchronising the internal clock between the two blocks.  
Setting this at any other time may or may not improve or degrade the performance of the device.  
REGISTER ADDRESS  
0001100  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
SYNC Function:  
7
SYNC  
0
SYNC Control  
0: Disable  
1: Enable  
PD Rev 4.0 January 2004  
63  
w
WM8772EFT – 32 PIN TQFP  
Production Data  
DAC DIGITAL VOLUME CONTROL  
The DAC volume may also be adjusted in the digital domain using independent digital attenuation  
control registers  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0000000  
7:0  
LDA1[7:0]  
11111111  
(0dB)  
Digital Attenuation data for Left channel DACL1 in 0.5dB steps. See  
Table 11  
Digital  
Attenuation  
DACL1  
8
UPDATE  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0: Store LDA1 in intermediate latch (no change to output)  
1: Store LDA1 and update attenuation on all channels  
0000001  
7:0  
8
RDA1[6:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation data for Right channel DACR1 in 0.5dB steps.  
See Table 11  
Digital  
Attenuation  
DACR1  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0: Store RDA1 in intermediate latch (no change to output)  
1: Store RDA1 and update attenuation on all channels.  
0000100  
7:0  
8
LDA2[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation data for Left channel DACL2 in 0.5dB steps. See  
Table 11  
Digital  
Attenuation  
DACL2  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0: Store LDA2 in intermediate latch (no change to output)  
1: Store LDA2 and update attenuation on all channels.  
0000101  
7:0  
8
RDA2[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation data for Right channel DACR2 in 0.5dB steps.  
See Table 11  
Digital  
Attenuation  
DACR2  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0: Store RDA2 in intermediate latch (no change to output)  
1: Store RDA2 and update attenuation on all channels.  
0000110  
7:0  
8
LDA3[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation data for Left channel DACL3 in 0.5dB steps. See  
Table 11  
Digital  
Attenuation  
DACL3  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0: Store LDA3 in intermediate latch (no change to output)  
1: Store LDA3 and update attenuation on all channels.  
0000111  
7:0  
8
RDA3[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation data for Right channel DACR3 in 0.5dB steps.  
See Table 11  
Digital  
Attenuation  
DACR3  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0: Store RDA3 in intermediate latch (no change to output)  
1: Store RDA3 and update attenuation on all channels.  
0001000  
7:0  
8
MASTDA  
[7:0]  
11111111  
(0dB)  
Digital Attenuation data for all DAC channels in 0.5dB steps. See  
Table 11  
Master  
Digital  
Attenuation  
UPDATE  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0: Store gain in intermediate latch (no change to output)  
1: Store gain and update attenuation on all channels.  
(all channels)  
L/RDAX[7:0]  
ATTENUATION LEVEL  
00(hex)  
-dB (mute)  
01(hex)  
-127dB  
:
:
:
:
:
:
FE(hex)  
FF(hex)  
-0.5dB  
0dB  
Table 22 Digital Volume Control Attenuation Levels  
PD Rev 4.0 January 2004  
64  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
SOFTWARE REGISTER RESET  
Writing to register 11111 will cause a register reset, resetting all register bits to their default values.  
The device will be held in this reset state until a subsequent register write to any address is  
completed.  
PD Rev 4.0 January 2004  
65  
w
WM8772EFT – 32 PIN TQFP  
Production Data  
APPLICATIONS INFORMATION  
RECOMMENDED EXTERNAL COMPONENTS  
RECOMMENDED EXTERNAL COMPONENTS VALUES  
COMPONENT  
REFERENCE  
SUGGESTED  
VALUE  
DESCRIPTION  
C1 and C5  
C2 to C4  
C8 and C9  
C6 and C10  
C7 and C11  
C12  
10µF  
0.1µF  
1µF  
De-coupling for DVDD and AVDD.  
De-coupling for DVDD and AVDD.  
Analogue input high pass filter capacitors  
Reference de-coupling capacitors for VMID and ADCREF pin.  
0.1µF  
10µF  
10µF  
330Ω  
Filtering for VREFP. Omit if AVDD low noise.  
R1  
Filtering for VREP. Use 0if AVDD low noise.  
Table 23 External Components Description  
PD Rev 4.0 January 2004  
66  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
SUGGESTED ANALOGUE LOW PASS POST DAC FILTERS  
It is recommended that a lowpass filter be applied to the output from each DAC channel for Hi Fi applications. Typically a  
second order filter is suitable and provides sufficient attenuation of high frequency components (the unique low order, high  
bit count multi-bit sigma delta DAC structure used in WM8772EFT produces much less high frequency output noise than  
normal sigma delta DACs. This filter is typically also used to provide the 2x gain needed to provide the standard 2Vrms  
output level from most consumer equipment.  
Figure 51 shows a suitable post DAC filter circuit, with 2x gain. Alternative inverting filter architectures might also be used  
with as good results.  
1.0nF  
10uF  
1.8k  
7.5kΩ  
51Ω  
VOUT1L  
10kΩ  
680pF  
4.7kΩ  
4.7kΩ  
OP_FIL  
VOUT1R  
VOUT2L  
VOUT2R  
VOUT3L  
VOUT3R  
OP_FIL  
OP_FIL  
OP_FIL  
OP_FIL  
OP_FIL  
Figure 51 Recommended Post DAC Filter Circuit  
PD Rev 4.0 January 2004  
67  
w
WM8772EFT – 32 PIN TQFP  
Production Data  
To ensure that system ‘pop’ noise is kept to a minimum when power is applied or removed, a  
transistor clamp circuit arrangement may be added to the output connectors of the system. A  
recommended clamp circuit configuration is shown below.  
Figure 52 Output Clamp Circuit  
When the +VS power supply is applied, PNP transistor Q10 of the trigger circuit is held on until  
capacitor C49 is fully charged. With transistor Q10 held ‘on’, NPN transistors Q4 to Q9 of the clamp  
circuits are also switched on holding the system outputs near to GND. When capacitor C49 is fully  
charged transistors Q10 and Q4 to Q9 are switched off setting the outputs active.  
When the +VS power supply is removed, PNP transistor Q11 of the trigger circuit is switched on. In  
turn, transistors Q4 to Q9 of the clamp circuits are switched on holding the outputs of the evaluation  
board near to GND until the rest of the circuitry on the board has settled.  
Note: It is recommended that low Vcesat switching transistors should be used in this circuit to ensure  
that the clamp is applied before the rest of the circuitry has time to power down.  
Important: If a trigger circuit such as the one shown is to be used, it is important that the +VS  
supply drops quicker than any other supply to ensure that the outputs are clamped during the  
period when ‘pop’ noise may occur.  
PD Rev 4.0 January 2004  
68  
w
Production Data  
WM8772EFT – 32 PIN TQFP  
PACKAGE DIMENSIONS  
FT: 32 PIN TQFP (7 x 7 x 1.0 mm)  
DM028.A  
b
e
24  
17  
25  
16  
E1  
E
32  
9
Θ
1
8
c
D1  
D
L
A1  
A
A2  
-C-  
SEATING PLANE  
ccc  
C
Dimensions  
(mm)  
Symbols  
MIN  
-----  
0.05  
0.95  
0.30  
0.09  
NOM  
-----  
-----  
1.00  
0.37  
-----  
MAX  
A
A1  
A2  
b
1.20  
0.15  
1.05  
0.45  
0.20  
c
D
D1  
E
E1  
e
9.00 BSC  
7.00 BSC  
9.00 BSC  
7.00 BSC  
0.80 BSC  
0.60  
L
Θ
0.45  
0o  
0.75  
7o  
3.5o  
Tolerances of Form and Position  
0.10  
ccc  
REF:  
JEDEC.95, MS-026  
NOTES:  
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.  
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.25MM.  
D. MEETS JEDEC.95 MS-026, VARIATION = ABA. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.  
PD Rev 4.0 January 2004  
69  
w
WM8772EFT – 32 PIN TQFP  
IMPORTANT NOTICE  
Production Data  
Wolfson Microelectronics plc (WM) reserve the right to make changes to their products or to discontinue any product or  
service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing  
orders, that information being relied on is current. All products are sold subject to the WM terms and conditions of sale  
supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation  
of liability.  
WM warrants performance of its products to the specifications applicable at the time of sale in accordance with WM’s  
standard warranty. Testing and other quality control techniques are utilised to the extent WM deems necessary to support  
this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by  
government requirements.  
In order to minimise risks associated with customer applications, adequate design and operating safeguards must be used  
by the customer to minimise inherent or procedural hazards. Wolfson products are not authorised for use as critical  
components in life support devices or systems without the express written approval of an officer of the company. Life  
support devices or systems are devices or systems that are intended for surgical implant into the body, or support or  
sustain life, and whose failure to perform when properly used in accordance with instructions for use provided, can be  
reasonably expected to result in a significant injury to the user. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
WM assumes no liability for applications assistance or customer product design. WM does not warrant or represent that  
any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual  
property right of WM covering or relating to any combination, machine, or process in which such products or services might  
be or are used. WM’s publication of information regarding any third party’s products or services does not constitute WM’s  
approval, license, warranty or endorsement thereof.  
Reproduction of information from the WM web site or datasheets is permissible only if reproduction is without alteration and  
is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this  
information with alteration voids all warranties provided for an associated WM product or service, is an unfair and deceptive  
business practice, and WM is not responsible nor liable for any such use.  
Resale of WM’s products or services with statements different from or beyond the parameters stated by WM for that  
product or service voids all express and any implied warranties for the associated WM product or service, is an unfair and  
deceptive business practice, and WM is not responsible nor liable for any such use.  
ADDRESS:  
Wolfson Microelectronics plc  
20 Bernard Terrace  
Edinburgh  
EH8 9NX  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PD Rev 4.0 January 2004  
70  
w

相关型号:

WM8772SEDS/R

PCM Codec, 1-Func, CMOS, PDSO28, 10.20 X 5.30 MM, 1.75 MM HEIGHT, LEAD FREE, MO-150AH, SSOP-28
CIRRUS

WM8772SEDS/RV

24-bit, 192kHz 6-Channel Codec with Volume Control
WOLFSON

WM8772SEDS/V

24-bit, 192kHz 6-Channel Codec with Volume Control
WOLFSON

WM8772SEFT

24 BIT 192KHZ 6 CHANNEL CODEC WITH VOLUME CONTROL
WOLFSON

WM8772SEFT/RV

Consumer Circuit, CMOS, PQFP32,
CIRRUS

WM8772SEFT/RV

24 BIT 192KHZ 6 CHANNEL CODEC WITH VOLUME CONTROL
WOLFSON

WM8772SEFT/V

Consumer Circuit, CMOS, PQFP32,
CIRRUS

WM8772_05

24-bit, 192kHz 6-Channel Codec with Volume Control
WOLFSON

WM8773

24-bit, 96kHz ADC with 8 Channel I/P Multiplexer
WOLFSON

WM8773SEFT/V

ADC, Delta-Sigma, 24-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PQFP64, TQFP-64
CIRRUS

WM8774

24 - bit, 192kHz 8 - Channel Input Stereo Codec
WOLFSON

WM8774IFT

24 - bit, 192kHz 8 - Channel Input Stereo Codec
WOLFSON