E3M0065090D [CREE]

Silicon Carbide Power MOSFET E-Series Automotive;
E3M0065090D
型号: E3M0065090D
厂家: CREE, INC    CREE, INC
描述:

Silicon Carbide Power MOSFET E-Series Automotive

文件: 总10页 (文件大小:853K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
E3M0065090D  
Silicon Carbide Power MOSFET  
E-Series Automotive  
N-Channel Enhancement Mode  
Features  
Package  
3rd generation SiC MOSFET technology  
High blocking voltage with low On-resistance  
High speed switching with low capacitances  
Fast intrinsic diode with low reverse recovery (Qrr)  
Halogen free, RoHS compliant  
Automotive Qualified (AEC-Q101) and PPAP Capable  
Benefits  
Higher system efficiency  
Reduced cooling requirements  
Increased power density  
Increased system switching frequency  
Applications  
Renewable energy  
EV battery chargers  
High voltage DC/DC converters  
Switch Mode Power Supplies  
Marking  
E3M0065090  
Part Number  
E3M0065090D  
Package  
TO-247-3  
Maximum Ratings (TC = 25 ˚C unless otherwise specified)  
Parameter  
Value  
Unit  
Test Conditions  
Note  
Symbol  
VGS = 0 V, ID = 100 μA  
Drain - Source Voltage  
Gate - Source Voltage  
900  
-8/+18  
-4/+15  
35  
V
V
V
VDSmax  
VGSmax  
VGSop  
Note: 1  
Note: 2  
Fig. 19  
Gate - Source Voltage (Recommended operating values)  
VGS = 15 V, TC = 25˚C  
VGS = 15 V, TC = 100˚C  
Continuous Drain Current  
A
ID  
23  
Pulsed Drain Current  
90  
A
Fig. 22  
ID(pulse)  
Pulse width tP limited by Tjmax  
Power Dissipation  
125  
W
˚C  
˚C  
TC=25˚C, T = 150 ˚C  
Fig. 20  
PD  
J
-55 to  
+150  
Operating Junction and Storage Temperature  
Solder Temperature  
T , Tstg  
J
1.6mm (0.063”) from case for  
10s  
260  
TL  
1
8.8  
Nm  
lbf-in  
Mounting Torque  
M3 or 6-32 screw  
Md  
Note (1): When using MOSFET Body Diode VGSmax = -4V/+18V  
Note (2): MOSFET can also safely operate at 0/+15 V  
1
E3M0065090D Rev. A, 08-2018  
Electrical Characteristics (TC = 25˚C unless otherwise specified)  
Symbol  
Parameter  
Min.  
900  
1.7  
Typ.  
Max. Unit  
Test Conditions  
Note  
V(BR)DSS  
Drain-Source Breakdown Voltage  
V
VGS = 0 V, ID = 100 μA  
2.1  
1.6  
1
3.5  
VDS = VGS, ID = 5 mA  
V
V
VGS(th)  
Gate Threshold Voltage  
Fig. 11  
VDS = VGS, ID = 5 mA, TJ = 150ºC  
VDS = 900 V, VGS = 0 V  
IDSS  
IGSS  
Zero Gate Voltage Drain Current  
Gate-Source Leakage Current  
100  
250  
84.5  
μA  
nA  
10  
VGS = 15 V, VDS = 0 V  
65  
VGS = 15 V, ID = 20 A  
Fig. 4,  
5, 6  
RDS(on)  
Drain-Source On-State Resistance  
Transconductance  
mΩ  
90  
VGS = 15 V, ID = 20A, TJ = 150ºC  
VDS= 20 V, IDS= 20 A  
13.6  
11.6  
gfs  
S
Fig. 7  
VDS= 20 V, IDS= 20 A, TJ = 150ºC  
Ciss  
Coss  
Crss  
Eoss  
Input Capacitance  
660  
60  
Fig. 17,  
18  
VGS = 0 V, VDS = 600 V  
Output Capacitance  
Reverse Transfer Capacitance  
Coss Stored Energy  
pF  
f = 1 MHz  
4.0  
16  
AC  
V
= 25 mV  
μJ  
μJ  
Fig. 16  
EON  
Turn-On Switching Energy (Body Diode FWD)  
226  
VDS = 400 V, VGS = -4 V/15 V, ID = 20A,  
RG(ext) = 2.5Ω, L= 77 μH, TJ = 150ºC  
Fig. 26,  
Note 3  
EOFF  
td(on)  
tr  
Turn Off Switching Energy (Body Diode FWD)  
Turn-On Delay Time  
36  
35  
11  
VDD = 400 V, VGS = -4 V/15 V  
ID = 20 A, RG(ext) = 2.5 Ω,  
Timing relative to VDS  
Inductive load  
Rise Time  
ns  
Fig. 27  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
23  
9
,
RG(int)  
Qgs  
Qgd  
Qg  
Internal Gate Resistance  
Gate to Source Charge  
Gate to Drain Charge  
Total Gate Charge  
4.7  
7.5  
f = 1 MHz VAC = 25 mV  
VDS = 400 V, VGS = -4 V/15 V  
ID = 20 A  
12  
nC  
Fig. 12  
Per IEC60747-8-4 pg 21  
30.4  
(T = 25˚C unless otherwise specified)  
Reverse Diode Characteristics  
C
Symbol  
Parameter  
Typ.  
Max.  
Unit  
Test Conditions  
Note  
4.8  
V
V
VGS = -4 V, ISD = 10 A  
Fig. 8,  
9, 10  
VSD  
Diode Forward Voltage  
4.4  
VGS = -4 V, ISD = 10 A, T = 150 °C  
J
IS  
IS, pulse  
trr  
Continuous Diode Forward Current  
Diode pulse Current  
23.5  
90  
A
VGS = -4 V, TC = 25˚C  
Note 1  
Note 1  
A
VGS = -4 V, pulse width tP limited by Tjmax  
Reverse Recover time  
35  
ns  
VGS = -4 V, ISD = 20 A, VR = 400 V  
Note 1  
Qrr  
Irrm  
Reverse Recovery Charge  
150  
5.6  
nC  
A
dif/dt = 950 A/µs, T = 150 °C  
J
Peak Reverse Recovery Current  
Thermal Characteristics  
Symbol  
RθJC  
Parameter  
Max.  
1.0  
Unit  
Test Conditions  
Note  
Thermal Resistance from Junction to Case  
°C/W  
Fig. 21  
RθJA  
Thermal Resistance From Junction to Ambient  
40  
Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode  
2
E3M0065090D Rev. A, 08-2018  
Typical Performance  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
Conditions:  
TJ = -55 °C  
tp < 200 µs  
Conditions:  
TJ = 25 °C  
tp < 200 µs  
VGS = 15 V  
VGS = 15 V  
VGS = 13 V  
VGS = 11 V  
70  
60  
50  
40  
30  
20  
10  
0
VGS = 13 V  
VGS = 11 V  
VGS = 9 V  
VGS = 9 V  
VGS = 7 V  
VGS = 7 V  
0.0  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
0.0  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
Drain-Source Voltage, VDS (V)  
Drain-Source Voltage, VDS (V)  
Figure 1. Output Characteristics TJ = -55 ºC  
Figure 2. Output Characteristics TJ = 25 ºC  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
80  
70  
60  
50  
40  
30  
20  
10  
0
Conditions:  
TJ = 150 °C  
tp < 200 µs  
VGS = 15 V  
Conditions:  
IDS = 20 A  
VGS = 15 V  
tp < 200 µs  
VGS = 13 V  
VGS = 11 V  
VGS = 9 V  
VGS = 7 V  
0.0  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature, TJ (°C)  
Drain-Source Voltage, VDS (V)  
Figure 3. Output Characteristics TJ = 150 ºC  
Figure 4. Normalized On-Resistance vs. Temperature  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
Conditions:  
Conditions:  
VGS = 15 V  
tp < 200 µs  
I
DS = 20 A  
tp < 200 µs  
TJ = 150 °C  
VGS = 11 V  
VGS = 13 V  
TJ = -55 °C  
TJ = 25 °C  
60  
VGS = 15 V  
40  
20  
0
0
10  
20  
30  
40  
50  
60  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature, TJ (°C)  
Drain-Source Current, IDS (A)  
Figure 5. On-Resistance vs. Drain Current  
Figure 6. On-Resistance vs. Temperature  
For Various Temperatures  
For Various Gate Voltage  
3
E3M0065090D Rev. A, 08-2018  
Typical Performance  
50  
-10  
-8  
-6  
-4  
-2  
0
Conditions:  
VDS = 20 V  
tp < 200 µs  
0
40  
30  
20  
10  
0
VGS = -4 V  
TJ = 150 °C  
VGS = 0 V  
-20  
-40  
-60  
-80  
TJ = 25 °C  
VGS = -2 V  
TJ = -55 °C  
Conditions:  
TJ = -55°C  
tp < 200 µs  
0
2
4
6
8
10  
Gate-SourceVoltage, VGS (V)  
Drain-Source Voltage VDS (V)  
Figure 7. Transfer Characteristic for  
Various Junction Temperatures  
Figure 8. Body Diode Characteristic at -55 ºC  
-10  
-8  
-6  
-4  
-2  
0
-10  
-8  
-6  
-4  
-2  
0
0
0
VGS = -4 V  
VGS = -4 V  
VGS = 0 V  
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
VGS = 0 V  
VGS = -2 V  
VGS = -2 V  
Conditions:  
TJ = 150°C  
tp < 200 µs  
Conditions:  
TJ = 25°C  
tp < 200 µs  
Drain-Source Voltage VDS (V)  
Drain-Source Voltage VDS (V)  
Figure 9. Body Diode Characteristic at 25 ºC  
Figure 10. Body Diode Characteristic at 150 ºC  
3.0  
16  
Conditons  
GS = VDS  
IDS = 5 mA  
Conditions:  
V
I
I
V
DS = 20 A  
GS = 100 mA  
DS = 400 V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
12  
8
TJ = 25 °C  
4
0
-4  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
5
10  
15  
20  
25  
30  
35  
Junction Temperature TJ (°C)  
Gate Charge, QG (nC)  
Figure 11. Threshold Voltage vs. Temperature  
Figure 12. Gate Charge Characteristics  
4
E3M0065090D Rev. A, 08-2018  
Typical Performance  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
0
0
VGS = 0 V  
VGS = 0 V  
VGS = 5 V  
VGS = 5 V  
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
VGS = 10 V  
VGS = 10 V  
VGS = 15 V  
VGS = 15 V  
Conditions:  
TJ = -55 °C  
tp < 200 µs  
Conditions:  
TJ = 25 °C  
tp < 200 µs  
Drain-Source Voltage VDS (V)  
Drain-Source Voltage VDS (V)  
Figure 13. 3rd Quadrant Characteristic at -55 ºC  
Figure 14. 3rd Quadrant Characteristic at 25 ºC  
30  
25  
20  
15  
10  
5
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
0
VGS = 0 V  
-20  
-40  
-60  
-80  
VGS = 5 V  
VGS = 10 V  
VGS = 15 V  
Conditions:  
TJ = 150 °C  
tp < 200 µs  
0
0
100  
200  
300  
400  
500  
600  
700  
800  
900 1000  
Drain to Source Voltage, VDS (V)  
Drain-Source Voltage VDS (V)  
Figure 15. 3rd Quadrant Characteristic at 150 ºC  
Figure 16. Output Capacitor Stored Energy  
10000  
10000  
1000  
100  
10  
Conditions:  
TJ = 25 °C  
Conditions:  
TJ = 25 °C  
VAC = 25 mV  
VAC = 25 mV  
f = 1 MHz  
f = 1 MHz  
1000  
100  
10  
Ciss  
Ciss  
Coss  
Coss  
Crss  
Crss  
1
1
0
50  
100  
Drain-Source Voltage, VDS (V)  
150  
200  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
Drain-Source Voltage, VDS (V)  
Figure 17. Capacitances vs. Drain-Source  
Voltage (0 - 200V)  
Figure 18. Capacitances vs. Drain-Source  
Voltage (0 - 900V)  
5
E3M0065090D Rev. A, 08-2018  
Typical Performance  
40  
35  
30  
25  
20  
15  
10  
5
140  
120  
100  
80  
Conditions:  
TJ ≤ 150 °C  
Conditions:  
TJ ≤ 150 °C  
60  
40  
20  
0
0
-55  
-30  
-5  
20  
45  
70  
95  
120  
145  
-55  
-30  
-5  
20  
45  
70  
95  
120  
145  
Case Temperature, TC (°C)  
Case Temperature, TC (°C)  
Figure 19. Continuous Drain Current Derating vs.  
Figure 20. Maximum Power Dissipation Derating vs.  
Case Temperature  
Case Temperature  
100.00  
10 µs  
1
Limited by RDS On  
100 µs  
0.5  
0.3  
10.00  
1 ms  
100 ms  
1.00  
0.10  
0.01  
0.1  
100E-3  
0.05  
0.02  
Conditions:  
TC = 25 °C  
D = 0,  
SinglePulse  
0.01  
Parameter: tp  
10E-3  
0.1  
1
10  
100  
1000  
1E-6  
10E-6  
100E-6  
1E-3  
10E-3  
100E-3  
1
10  
Drain-Source Voltage, VDS (V)  
Time, tp (s)  
Figure 21. Transient Thermal Impedance  
Figure 22. Safe Operating Area  
(Junction - Case)  
1200  
1000  
800  
600  
400  
200  
0
800  
Conditions:  
TJ = 25 °C  
VDD = 400 V  
RG(ext) = 2.5 Ω  
VGS = -4V/+15 V  
FWD = E3M0065090D  
L = 77 μH  
Conditions:  
TJ = 25 °C  
VDD = 600 V  
700  
600  
500  
400  
300  
200  
100  
0
RG(ext) = 2.5 Ω  
VGS = -4V/+15 V  
FWD = E3M0065090D  
L = 77 μH  
ETotal  
ETotal  
EOn  
EOn  
EOff  
EOff  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Drain to Source Current, IDS (A)  
Drain to Source Current, IDS (A)  
Figure 23. Clamped Inductive Switching Energy vs.  
Figure 24. Clamped Inductive Switching Energy vs.  
Drain Current (VDD = 600V)  
Drain Current (VDD = 400V)  
6
E3M0065090D Rev. A, 08-2018  
Typical Performance  
500  
400  
350  
300  
250  
200  
150  
100  
50  
Conditions:  
IDS = 20 A  
VDD = 400 V  
RG(ext) = 2.5 Ω  
VGS = -4V/+15 V  
FWD = E3M0065090D  
L = 77 μH  
Conditions:  
TJ = 25 °C  
VDD = 400 V  
IDS = 20 A  
400  
VGS = -4V/+15 V  
FWD = E3M0065090D  
L = 77 μH  
ETotal  
ETotal  
300  
200  
100  
0
EOn  
EOn  
EOff  
EOff  
0
0
5
10  
15  
20  
25  
0
25  
50  
75  
100  
125  
150  
175  
External Gate Resistor RG(ext) (Ohms)  
Junction Temperature, TJ (°C)  
Figure 26. Clamped Inductive Switching Energy vs.  
Figure 25. Clamped Inductive Switching Energy vs. RG(ext)  
Temperature  
60  
Conditions:  
TJ = 25 °C  
VDD = 400 V  
IDS = 20 A  
VGS = -4V/+15 V  
FWD = E3M0065090D  
L = 77 μH  
50  
40  
30  
20  
10  
0
td(on)  
td(off)  
tr  
tf  
0
5
10  
15  
20  
25  
External Gate Resistor RG(ext) (Ohms)  
Figure 27. Switching Times vs. RG(ext)  
Figure 28. Switching Times Definition  
7
E3M0065090D Rev. A, 08-2018  
Test Circuit Schematic  
Figure 29. Clamped Inductive Switching  
Waveform Test Circuit  
Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above.  
8
E3M0065090D Rev. A, 08-2018  
Package Dimensions  
Inches  
Millimeters  
Min  
POS  
Package TO-247-3  
Min  
.190  
.090  
.075  
.042  
.075  
.075  
.113  
.113  
.022  
.819  
.640  
.037  
.620  
.516  
.145  
.039  
.487  
Max  
.205  
.100  
.085  
.052  
.095  
.085  
.133  
.123  
.027  
.831  
.695  
.049  
.635  
.557  
.201  
.075  
.529  
Max  
5.21  
2.54  
2.16  
1.33  
2.41  
2.16  
3.38  
3.13  
0.68  
21.10  
17.65  
1.25  
16.13  
14.15  
5.10  
1.90  
13.43  
A
A1  
A2  
b
4.83  
2.29  
1.91  
1.07  
1.91  
1.91  
2.87  
2.87  
0.55  
20.80  
16.25  
0.95  
15.75  
13.10  
3.68  
1.00  
12.38  
b1  
b2  
b3  
b4  
c
D
D1  
D2  
E
E1  
E2  
E3  
E4  
e
.214 BSC  
3
5.44 BSC  
N
3
L
.780  
.800  
.173  
.144  
.236  
.248  
11˚  
11˚  
8˚  
19.81  
4.10  
3.51  
5.49  
6.04  
9˚  
20.32  
4.40  
3.65  
6.00  
6.30  
11˚  
11˚  
8˚  
Pinout Information:  
T
U
L1  
ØP  
Q
.161  
.138  
.216  
.238  
9˚  
•ꢀ Pin 1 = Gate  
•ꢀ Pin 2, 4 = Drain  
•ꢀ Pin 3 = Source  
S
V
W
T
U
9˚  
9˚  
V
2˚  
2˚  
W
2˚  
8˚  
2˚  
8˚  
Recommended Solder Pad Layout  
TO-247-3  
9
E3M0065090D Rev. A, 08-2018  
Notes  
RoHS Compliance  
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the  
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/  
EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or  
from the Product Documentation sections of www.cree.com.  
REACh Compliance  
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA)  
has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree represen-  
tative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is  
also available upon request.  
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body  
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited  
to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical  
equipment, aircraft navigation or communication or control systems, air traffic control systems.  
Related Links  
SPICE Models: http://wolfspeed.com/power/tools-and-support  
SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support  
SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support  
Cree, Inc.  
4600 Silicon Drive  
Durham, NC 27703  
Copyright © 2018 Cree, Inc. All rights reserved.  
USA Tel: +1.919.313.5300  
Fax: +1.919.313.5451  
www.wolfspeed.com/power  
The information in this document is subject to change without notice.  
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.  
E3M0065090D Rev. A, 08-2018  
10  

相关型号:

E3M0120090D

Silicon Carbide Power MOSFET E-Series Automotive
CREE

E3M0280090D

Silicon Carbide Power MOSFET E-Series Automotive
CREE

E3M440

Circular Connector, 3 Contact(s), Male, Solder Terminal, Receptacle,
SWITCH

E3MAU440

Circular Connector, 3 Contact(s), Male, Solder Terminal, Receptacle,
SWITCH

E3MAUM3

Circular Connector, 3 Contact(s), Male, Solder Terminal, Receptacle,
SWITCH

E3MB440

Circular Connector, 3 Contact(s), Male, Solder Terminal, Receptacle,
SWITCH

E3MBAU440

Circular Connector, 3 Contact(s), Male, Solder Terminal, Receptacle,
SWITCH

E3MBAUM3

Circular Connector, 3 Contact(s), Male, Solder Terminal, Receptacle,
SWITCH

E3MBM3

Circular Connector, 3 Contact(s), Male, Solder Terminal, Receptacle,
SWITCH

E3MC

RGB Color Sensor
ETC

E3MC-A11

RGB Color Sensor
ETC

E3MC-A41

RGB Color Sensor
ETC