CY7C09579V-100BBXC [CYPRESS]

Dual-Port SRAM, 32KX36, 12.5ns, CMOS, PBGA172, 15 X 15 MM, 1.25 MM HEIGHT, 1 MM PITCH, ROHS COMPLIANT, FBGA-172;
CY7C09579V-100BBXC
型号: CY7C09579V-100BBXC
厂家: CYPRESS    CYPRESS
描述:

Dual-Port SRAM, 32KX36, 12.5ns, CMOS, PBGA172, 15 X 15 MM, 1.25 MM HEIGHT, 1 MM PITCH, ROHS COMPLIANT, FBGA-172

静态存储器 内存集成电路
文件: 总33页 (文件大小:866K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C09569V CY7C09579V CY7C09289V CY7C09369V CY7C09379V CY7C09389V3.3  
Synchronous Dual-Port Static RAM  
V 16 K / 32 K × 36 FLEx36®  
CY7C09569V  
CY7C09579V  
3.3 V 16 K / 32 K × 36 FLEx36®  
Synchronous Dual-Port Static RAM  
3.3  
V 16 K / 32 K × 36 FLEx36® Synchronous Dual-Port Static RAM  
Features  
Functional Description  
True dual-ported memory cells which allow simultaneous  
access of the same memory location  
The CY7C09569V and CY7C09579V are high-speed 3.3 V  
synchronous CMOS 16 K and 32 K × 36 dual-port static RAMs.  
Two ports are provided, permitting independent, simultaneous  
access for reads and writes to any location in memory. Registers  
on control, address, and data lines allow for minimal set-up and  
hold times. In pipelined output mode, data is registered for  
decreased cycle time. Clock to data valid tCD2 = 5 ns (pipelined).  
Flow-through mode can also be used to bypass the pipelined  
output register to eliminate access latency. In flow-through mode  
data will be available tCD1 = 12.5 ns after the address is clocked  
into the device. Pipelined output or flow-through mode is  
selected via the FT/Pipe pin.  
Two flow-through/pipelined devices  
16 K × 36 organization (CY7C09569V)  
32 K × 36 organization (CY7C09579V)  
0.25-micron CMOS for optimum speed/power  
Three modes  
Flow-through  
Pipelined  
Burst  
Each port contains a burst counter on the input address register.  
The internal write pulse width is independent of the external R/W  
LOW duration. The internal write pulse is self-timed to allow the  
shortest possible cycle times.  
Bus-matching capabilities on right port (× 36 to × 18 or × 9)  
Byte-select capabilities on left port  
100-MHz pipelined operation  
A HIGH on CE for one clock cycle will power down the internal  
circuitry to reduce the static power consumption. In the pipelined  
mode, one cycle is required with CE LOW to reactivate the  
outputs.  
High-speed clock to data access 5/6 ns  
3.3 V low operating power  
Active = 250 mA (typical)  
Standby = 10 A (typical)  
Counter Enable Inputs are provided to stall the operation of the  
address input and utilize the internal address generated by the  
internal counter for fast interleaved memory applications. A  
port’s burst counter is loaded with the port’s Address Strobe  
(ADS). When the port’s Count Enable (CNTEN) is asserted, the  
address counter will increment on each LOW-to-HIGH transition  
of that port’s clock signal. This will read/write one word from/into  
each successive address location until CNTEN is deasserted.  
The counter can address the entire memory array and will loop  
back to the start. Counter Reset (CNTRST) is used to reset the  
burst counter.  
Fully synchronous interface for ease of use  
Burst counters increment addresses internally  
Shorten cycle times  
Minimize bus noise  
Supported in flow-through and pipelined modes  
Counter address read back via I/O lines  
Single chip enable  
Parts are available in 144-pin Thin Quad Plastic Flatpack  
(TQFP), 144-pin Pb-free Thin Quad Plastic Flatpack (TQFP) and  
172-ball Ball Grid Array (BGA) packages.  
Automatic power-down  
Commercial and industrial temperature ranges  
Compact package  
144-pin TQFP (20 × 20 × 1.4 mm)  
144-pin Pb-free TQFP (20 × 20 × 1.4 mm)  
172-ball BGA (1.0-mm pitch) (15 × 15 × 0.51 mm)  
Selection Guide  
CY7C09569V / CY7C09579V  
Unit  
Description  
-100  
100  
5
-83  
83  
6
fMAX2 (pipelined)  
MHz  
ns  
Maximum access time (clock to data, pipelined)  
Typical operating current ICC  
250  
30  
240  
25  
10  
mA  
mA  
A  
Typical standby current for ISB1 (both ports TTL level)  
Typical standby current for ISB3 (both ports CMOS level)  
10  
Cypress Semiconductor Corporation  
Document Number: 38-06054 Rev. *H  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised January 7, 2013  
CY7C09569V  
CY7C09579V  
Logic Block Diagram  
R/WL  
OEL  
R/WR  
OER  
Left  
Port  
Control  
Logic  
Right  
Port  
Control  
Logic  
B0–B3  
CEL  
CER  
FT/PipeR  
FT/PipeL  
BE  
9
9
9
9
9
9
9
9
I/O0L–I/O8L  
9/18/36  
I/O9L–I/O17L  
I/O18L–I/O26L  
I/O27L–I/O35L  
I/O  
Control  
Bus  
Match  
I/O  
Control  
I/OR  
BM  
SIZE  
[1]  
14/15  
14/15  
[1]  
A0–A13/14R  
A0–A13/14L  
Counter/  
Address  
Register  
Decode  
Counter/  
CLKL  
CLKR  
ADSR  
True Dual-Ported  
RAM Array  
Address  
Register  
Decode  
ADSL  
CNTENL  
CNTRSTL  
CNTENR  
CNTRSTR  
Note  
1. A –A for 16K; A –A for 32 K devices.  
0
13  
0
14  
Document Number: 38-06054 Rev. *H  
Page 2 of 33  
CY7C09569V  
CY7C09579V  
Contents  
Pin Configurations ...........................................................4  
Pin Definitions ..................................................................6  
Maximum Ratings .............................................................7  
Operating Range ...............................................................7  
Electrical Characteristics .................................................7  
Capacitance ......................................................................7  
AC Test Load and Waveforms .........................................8  
Switching Characteristics ................................................9  
Switching Waveforms ....................................................11  
Read/Write and Enable Operation .................................24  
Address Counter Control Operation .............................24  
Right Port Configuration ................................................25  
Right Port Operation ......................................................25  
Readout of Internal Address Counter ...........................25  
Left Port Operation .........................................................25  
Counter Operation ..........................................................26  
Bus Match Operation .....................................................26  
Long-Word (36-bit) Operation ...................................26  
Word (18-bit) Operation .............................................27  
Byte (9-bit) Operation ................................................27  
Ordering Information ......................................................28  
16 K × 36 3.3 V Synchronous Dual-Port SRAM ........28  
32K × 36 3.3 V Synchronous Dual-Port SRAM .........28  
Ordering Code Definitions .........................................28  
Package Diagrams ..........................................................29  
Acronyms ........................................................................31  
Document Conventions .................................................31  
Units of Measure .......................................................31  
Document History Page .................................................32  
Sales, Solutions, and Legal Information ......................33  
Worldwide Sales and Design Support .......................33  
Products ....................................................................33  
PSoC Solutions .........................................................33  
Document Number: 38-06054 Rev. *H  
Page 3 of 33  
CY7C09569V  
CY7C09579V  
Pin Configurations  
Figure 1. 144-pin TQFP (20 × 20 × 1.4 mm) pinout (Top View)  
I/O33L  
I/O34L  
1
2
108  
I/O33R  
I/O34R  
107  
106  
I/O35L  
A0L  
I/O35R  
A0R  
3
4
105  
104  
103  
102  
A1L  
5
6
7
8
A1R  
A2R  
A2L  
A3R  
A4R  
A3L  
A4L  
101  
100  
A5R  
A6R  
A7R  
A5L  
A6L  
A7L  
9
10  
99  
98  
97  
96  
11  
12  
13  
BM  
SIZE  
B0  
B1  
BE  
B2  
B3  
14  
15  
95  
94  
vss  
OER  
R/WR  
16  
17  
18  
19  
93  
92  
91  
90  
OEL  
R/WL  
VDD  
VSS  
VSS  
VDD  
VSS  
CY7C09569V (16 K × 36)  
CY7C09579V (32 K × 36)  
VSS  
20  
21  
89  
88  
CEL  
CER  
CLKL  
22  
23  
24  
25  
87  
86  
85  
84  
83  
82  
CLKR  
ADSR  
ADSL  
CNTRSTL  
CNTENL  
FT/PIPEL  
A8L  
CNTRSTR  
CNTENR  
FT/PIPER  
A8R  
26  
27  
28  
29  
30  
31  
A9R  
A9L  
81  
80  
A10R  
A10L  
79  
78  
77  
A11R  
A12R  
A11L  
A12L  
A13R  
A13L  
32  
33  
[3]  
[2]  
NC  
NC  
76  
75  
I/O26L  
I/O25L  
I/O24L  
34  
35  
36  
I/O26R  
74  
73  
I/O25R  
I/O24R  
Notes  
2. This pin is A14L for CY7C09579V.  
3. This pin is A14R for CY7C09579V.  
Document Number: 38-06054 Rev. *H  
Page 4 of 33  
CY7C09569V  
CY7C09579V  
Pin Configurations  
Figure 2. 172-ball BGA (15 × 15 × 1.25 mm) pinout (Top View)  
1
2
3
NC  
4
VSS  
5
6
7
8
9
10  
11  
12  
13  
14  
I/O32L I/O30L  
I/O13L VDD I/O11L I/O11R VDD I/O13R  
VSS  
NC  
I/O30R I/O32R  
A
B
C
D
E
F
A0L  
NC  
I/O33L  
A1L  
I/O29  
I/O31L  
I/O35L  
NC  
I/O17L  
I/O27L  
I/O34L  
B0L  
I/O14L I/O12L I/O9L I/O9R I/O12R I/O14R I/O17R  
I/O29R I/O33R  
A0R  
NC  
NC  
I/O15L I/O10L I/O10R I/O15R NC  
I/O27R  
I/O31R  
I/O35R  
NC  
A1R  
A3R  
A2L  
A4L  
VDD  
OEL  
VSS  
A9L  
A11L  
A3L  
I/O28L I/O16L VSS  
VSS I/O16R I/O28R I/O34R  
A2R  
A4R  
VDD  
OER  
VSS  
A9R  
A11R  
A5L  
NC  
NC  
NC  
NC  
NC  
NC  
BM  
A5R  
A6L  
A7L  
B1L  
SIZE  
CER  
A7R  
A6R  
B2L  
B3L  
CEL  
VSS  
A8R  
VSS  
NC  
BE  
G
H
J
R/WL  
A10L  
A12L  
A8L  
CLKL  
ADSL  
CNTRSTL  
I/O26L  
I/O18L  
I/O6L  
VSS  
CLKR  
ADSR  
R/WR  
A10R  
A12R  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC CNTRSTR  
K
L
FT/PIPEL A13L CNTENL  
I/O25L I/O19L VSS  
VSS I/O19R I/O25R I/O26R  
CNTENR A13R FT/PIPER  
I/O22R NC  
NC[5]  
I/O8R I/O20R I/O24R  
NC I/O21R I/O23R  
NC  
NC[4]  
I/O22L  
I/O8L  
NC  
NC  
I/O7L I/O2L I/O2R I/O7R  
NC  
I/O18R  
I/O6R  
VSS  
M
N
P
I/O24L I/O20L  
I/O23L I/O21L  
I/O5L I/O3L I/O0L I/O0R  
I/3R  
I/O5R  
I/O4L VDD I/O1L I/O1R VDD I/O4R  
Notes  
4. This pin is A14L for CY7C09579V.  
5. This pin is A14R for CY7C09579V.  
Document Number: 38-06054 Rev. *H  
Page 5 of 33  
CY7C09569V  
CY7C09579V  
Pin Definitions  
Left Port  
Right Port  
Description  
A0L–A13/14L A0R–A13/14R Address Inputs (A0–A13 for 16 K, A0–A14 for 32 K devices).  
ADSL  
ADSR  
Address Strobe Input. Used as an address qualifier. This signal should be asserted LOW to assert  
the part using the externally supplied address on Address Pins. To load this address into the Burst  
Address Counter both ADS and CNTEN have to be LOW. ADS is disabled if CNTRST is asserted  
LOW.  
CEL  
CER  
Chip Enable Input.  
CLKL  
CLKR  
Clock Signal. This input can be free-running or strobed. Maximum clock input rate is fMAX.  
CNTENL  
CNTENR  
Counter Enable Input. Asserting this signal LOW increments the burst address counter of its  
respective port on each rising edge of CLK. CNTEN is disabled if CNTRST is asserted LOW.  
CNTRSTL  
CNTRSTR  
Counter Reset Input. Asserting this signal LOW resets the burst address counter of its respective  
port to zero. CNTRST is not disabled by asserting ADS or CNTEN.  
I/O0L–I/O35L I/O0R–I/O35R Data Bus Input/Output  
OEL  
OER  
Output Enable Input. This signal must be asserted LOW to enable the I/O data pins during read  
operations.  
R/WL  
R/WR  
FT/PIPER  
Read/Write Enable Input. This signal is asserted LOW to write to the dual port memory array. For  
read operations, assert this pin HIGH.  
FT/PIPEL  
B0L–B3L  
Flow-Through/Pipelined Select Input. For flow-through mode operation, assert this pin LOW. For  
pipelined mode operation, assert this pin HIGH.  
Byte Select Inputs. Asserting these signals enable read and write operations to the corresponding  
bytes of the memory array.  
BM, SIZE  
BE  
Select Pins for Bus Matching. See Bus Matching for details.  
Big Endian Pin. See Bus Matching for details.  
Ground Input.  
VSS  
VDD  
Power Input.  
Document Number: 38-06054 Rev. *H  
Page 6 of 33  
CY7C09569V  
CY7C09579V  
DC input voltage ..............................0.5 V to VDD + 0.5 V[7]  
Output current into outputs (LOW) ............................. 20 mA  
Static discharge voltage ..........................................> 2001 V  
Latch-up current ....................................................> 200 mA  
Maximum Ratings  
Exceeding maximum ratings[6] may shorten the useful life of the  
device. User guidelines are not tested.  
Storage temperature ................................ –65 °C to +150 °C  
Ambient temperature with  
power applied .......................................... –55 °C to +125 °C  
Operating Range  
Range  
Ambient Temperature  
VDD  
Supply voltage to ground potential ..............–0.5 V to +4.6 V  
Commercial  
0 °C to +70 °C  
3.3 V 165 mV  
DC voltage applied to  
outputs in High Z state ........................0.5 V to VDD + 0.5 V  
Electrical Characteristics  
Over the Operating Range  
CY7C09569V / CY7C09579V  
Parameter  
Description  
-100  
Typ  
-83  
Typ  
Unit  
Min  
Max  
Min  
Max  
VOH  
Output HIGH Voltage  
(VDD = Min., IOH = –4.0 mA)  
2.4  
2.4  
V
V
VOL  
Output LOW Voltage  
0.4  
0.4  
(VDD = Min., IOL= +4.0 mA)  
VIH  
VIL  
IOZ  
ICC  
Input HIGH Voltage  
Input LOW Voltage  
2.0  
2.0  
V
V
0.8  
10  
0.8  
10  
Output Leakage Current  
–10  
–10  
A  
mA  
Operating Current  
(VDD = Max., IOUT = 0 mA)  
250  
385  
240  
360  
Outputs Disabled  
ISB1  
ISB2  
ISB3  
Standby Current (Both Ports TTL Level)  
CEL & CER VIH, f = fMAX  
30  
75  
220  
1
25  
70  
210  
1
mA  
mA  
mA  
Standby Current (One Port TTL Level)  
CEL | CER VIH, f = fMAX  
170  
0.01  
160  
0.01  
Standby Current  
(Both Ports CMOS Level)  
CEL & CER VDD – 0.2 V, f = 0  
ISB4  
Standby Current  
(One Port CMOS Level)  
CEL | CER VIH, f = fMAX  
150  
200  
140  
190  
mA  
Capacitance  
Parameter  
CIN  
Description  
Test Conditions  
TA = 25 °C, f = 1 MHz, VDD = 3.3 V  
Max  
Unit  
pF  
Input capacitance  
10  
10  
COUT  
Output capacitance  
pF  
Notes  
6. The voltage on any input or I/O pin can not exceed the power pin during power-up.  
7. Pulse width < 20 ns.  
Document Number: 38-06054 Rev. *H  
Page 7 of 33  
CY7C09569V  
CY7C09579V  
AC Test Load and Waveforms  
Figure 3. AC Test Load and Waveforms  
3.3 V  
Z0 = 50  
R = 50   
Output  
R1 = 590   
[8]  
C
Output  
V
TH  
= 1.5 V  
C = 5 pF  
R2 = 435   
(b) Three-State Delay (Load 2)  
(a) Normal Load (Load 1)  
3.0 V  
VSS  
90%  
10%  
90%  
10%  
3 ns  
All Input Pulses  
3 ns  
7
6
5
4
3
2
1
20[9]  
30 60 80 100  
200  
Capacitance (pF)  
(b) Load Derating Curve  
Notes  
8. External AC Test Load Capacitance = 10 pF.  
9. (Internal I/O pad Capacitance = 10 pF + AC Test Load.  
Document Number: 38-06054 Rev. *H  
Page 8 of 33  
CY7C09569V  
CY7C09579V  
Switching Characteristics  
Over the Operating Range  
CY7C09569V/CY7C09579V  
-100 -83  
Parameter  
Description  
Unit  
Min  
Max  
67  
100  
Min  
Max  
45  
83  
fMAX1  
fMAX2  
tCYC1  
tCYC2  
tCH1  
tCL1  
tCH2  
tCL2  
tR  
fMax Flow-Through  
fMax Pipelined  
MHz  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Cycle Time – Flow-Through  
Clock Cycle Time – Pipelined  
Clock HIGH Time – Flow-Through  
Clock LOW Time – Flow-Through  
Clock HIGH Time – Pipelined  
Clock LOW Time – Pipelined  
Clock Rise Time  
15  
10  
6.5  
6.5  
4
22  
12  
7.5  
7.5  
5
4
5
3
3
tF  
Clock Fall Time  
3
3
tSA  
Address Set-Up Time  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
4
tHA  
Address Hold Time  
0.5  
4
tSB  
Byte Select Set-Up Time  
Byte Select Hold Time  
tHB  
0.5  
4
tSC  
Chip Enable Set-Up Time  
Chip Enable Hold Time  
R/W Set-Up Time  
tHC  
0.5  
4
tSW  
tHW  
tSD  
R/W Hold Time  
0.5  
4
Input Data Set-Up Time  
Input Data Hold Time  
tHD  
0.5  
4
tSAD  
tHAD  
tSCN  
tHCN  
tSRST  
tHRST  
tOE  
ADS Set-Up Time  
ADS Hold Time  
0.5  
4
CNTEN Set-Up Time  
CNTEN Hold Time  
0.5  
4
CNTRST Set-Up Time  
CNTRST Hold Time  
0.5  
Output Enable to Data Valid  
OE to Low Z  
8
9
[10, 11]  
tOLZ  
tOHZ  
tCD1  
tCD2  
tCA1  
tCA2  
tDC  
2
2
[10, 11]  
OE to High Z  
1
7
1
7
Clock to Data Valid – Flow-Through  
Clock to Data Valid – Pipelined  
Clock to Counter Address Valid – Flow-Through  
Clock to Counter Address Valid – Pipelined  
Data Output Hold After Clock HIGH  
Clock HIGH to Output High Z  
Clock HIGH to Output Low Z  
12.5  
5
18  
6
12.5  
9
18  
10  
2
2
[10, 11]  
tCKHZ  
2
6
2
7
[10, 11]  
tCKLZ  
2
2
Notes  
10. This parameter is guaranteed by design, but it is not production tested.  
11. Test conditions used are Load 2.  
Document Number: 38-06054 Rev. *H  
Page 9 of 33  
CY7C09569V  
CY7C09579V  
Switching Characteristics (continued)  
Over the Operating Range  
CY7C09569V/CY7C09579V  
-100 -83  
Parameter  
Description  
Unit  
Min  
Max  
Min  
Max  
Port to Port Delays  
tCWDD  
tCCS  
Write Port Clock HIGH to Read Data Delay  
Clock to Clock Set-Up Time  
30  
9
35  
10  
ns  
ns  
Document Number: 38-06054 Rev. *H  
Page 10 of 33  
CY7C09569V  
CY7C09579V  
Switching Waveforms  
Figure 4. Read Cycle for Flow-Through Output (FT/PIPE = VIL) [12, 13, 14, 15]  
tCYC1  
tCH1  
tCL1  
CLK  
CE  
tSC  
tHC  
tSC  
tHC  
tSB  
tHB  
B0-3  
R/W  
tSW  
tSA  
tHW  
tHA  
An  
An+1  
An+2  
An+3  
Address  
DataOUT  
tCKHZ  
Qn+2  
tDC  
tDC  
Qn  
tCD1  
Qn+1  
tCKLZ  
tOHZ  
tOLZ  
OE  
tOE  
Figure 5. Read Cycle for Pipelined Operation (FT/PIPE = VIH) [12, 13, 14, 15]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSC  
tHC  
tSB  
tHB  
B0-3  
R/W  
tSW  
tSA  
tHW  
tHA  
Address  
DataOUT  
An  
An+1  
An+2  
An+3  
tDC  
1 Latency  
tCD2  
Qn  
Qn+1  
Qn+2  
tOHZ  
tCKLZ  
tOLZ  
OE  
t
OE  
Notes  
12. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.  
13. ADS = V , CNTEN = V and CNTRST = V  
.
IH  
IL  
IL  
14. The output is disabled (high-impedance state) by CE=V following the next rising edge of the clock.  
IH  
15. Addresses do not have to be accessed sequentially since ADS = V constantly loads the address on the rising edge of the CLK. Numbers are for reference only.  
IL  
Document Number: 38-06054 Rev. *H  
Page 11 of 33  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Figure 6. Bus Match Read Cycle for Flow-Through Output (FT/PIPE = VIL) [16, 17, 18, 19, 20]  
tCYC1  
tCH1  
tCL1  
CLK  
CE  
tSC  
tHC  
ADS  
R/W  
tSW  
tSA  
tHW  
tHA  
An  
An  
An+1  
An+1  
Address  
DataOUT  
tDC  
Qn  
tCD1  
Qn  
Qn+1  
1st  
Cycle  
Qn+1  
2nd  
Cycle  
1st  
Cycle  
2nd  
Cycle  
tCKLZ  
tDC  
LOW  
OE  
Figure 7. Bus Match Read Cycle for Pipelined Operation (FT/PIPE = VIH) [16, 17, 18, 19, 20]  
tCYC2  
tCL2  
tCH2  
CLK  
CE  
tHC  
tSC  
R/W  
tSW tHW  
ADS  
Address  
An+1  
An  
An  
An+1  
tSA tHA  
t
tCD2  
tCD2  
CD2  
tCLKZ  
DataOUT  
Qn  
Qn  
Qn+1  
1 Latency  
tDC  
1st Cycle  
tDC  
2nd Cycle  
tDC  
1st Cycle  
OE  
LOW  
Notes  
16. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.  
17. The output is disabled (high-impedance state) by CE=V following the next rising edge of the clock.  
IH  
18. Timing shown is for x18 bus matching; x9 bus matching is similar with 4 cycles between address inputs.  
19. See table “Right Port Operation“ for data output on first and subsequent cycles.  
20. CNTEN = V . In x9 and x18 Bus Matching Burst Mode operations (Write or Read), ADS can toggle on the rising edge of every clock cycle or it can be at V level all  
IL  
IH  
the time except when loading the initial external address (i.e. ADS = V only required when reading or writing the first Byte or Word).  
IL  
Document Number: 38-06054 Rev. *H  
Page 12 of 33  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Figure 8. Bank Select Pipelined Read [21, 22]  
tCYC2  
tCH2  
tCL2  
CLKL  
tHA  
tSA  
A3  
A4  
Address(B1)  
A5  
A0  
A1  
A2  
tHC  
tSC  
CE(B1)  
tCD2  
tCD2  
tCD2  
tCKHZ  
tHC  
tCKHZ  
tSC  
Q0  
Q3  
Q1  
DataOUT(B1)  
Address(B2)  
tHA  
tSA  
tDC  
A2  
tDC  
A3  
tCKLZ  
A4  
A5  
A0  
A1  
tHC  
tSC  
CE(B2)  
tCD2  
tCKHZ  
tCD2  
tSC  
tHC  
DataOUT(B2)  
Q4  
Q2  
tCKLZ  
tCKLZ  
Figure 9. Left Port Write to Flow-Through Right Port Read [22, 23, 24, 25, 26]  
CLKL  
R/WL  
tHW  
tSW  
tHA  
tSA  
No  
Match  
AddressL  
DataINL  
Match  
tHD  
tSD  
Valid  
tCCS  
CLKR  
R/WR  
tCD1  
tSW tHW  
tSA  
tHA  
No  
Match  
Match  
AddressR  
tCWDD  
tCD1  
DataOUTR  
Valid  
Valid  
tDC  
tDC  
Notes  
21. In this depth expansion example, B1 represents Bank #1 and B2 is Bank #2; Each Bank consists of one Cypress dual-port device from this data sheet.  
ADDRESS = ADDRESS  
.
(B2)  
(B1)  
22. B0 = B1 = B2 = B3 = BM = SIZE = ADS = CNTEN = V , CNTRST = V  
.
IL  
IH  
23. The same waveforms apply for a right port write to flow-through left port read.  
24. CE = B0 = B1 = B2 = B3 = ADS = CNTEN=V ; CNTRST= V  
.
IH  
IL  
25. OE = V for the right port, which is being read from. OE = V for the left port, which is being written to.  
IL  
IH  
26. If t  
maximum specified, then data from right port READ is not valid until the maximum specified for t  
. If t > maximum specified, then data is not valid  
CCS  
CCS  
CWDD  
until t  
+ t  
(t  
does not apply in this case).  
CCS  
CD1 CWDD  
Document Number: 38-06054 Rev. *H  
Page 13 of 33  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Figure 10. Pipelined Read-to-Write-to-Read (OE = VIL) [27, 28, 29, 30]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSW  
tHW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
An+3  
An+4  
Address  
DataIN  
tSD tHD  
tSA  
tHA  
Dn+2  
tCD2  
tCD2  
tCKHZ  
tCKLZ  
Qn  
Qn+3  
DataOUT  
Read  
No Operation  
Write  
Read  
Notes  
27. Addresses do not have to be accessed sequentially since ADS = V constantly loads the address on the rising edge of the CLK. Numbers are for reference only.  
IL  
28. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.  
29. CE = ADS = CNTEN = V ; CNTRST = V  
.
IL  
IH  
30. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
Document Number: 38-06054 Rev. *H  
Page 14 of 33  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Figure 11. Pipelined Read-to-Write-to-Read (OE Controlled) [31, 32, 33, 34]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tHW  
tSW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
Address  
DataIN  
tSA  
tHA  
tSD tHD  
Dn+2  
Dn+3  
tCD2  
tCKLZ  
tCD2  
DataOUT  
Qn  
Qn+4  
tOHZ  
OE  
Read  
Write  
Read  
Notes  
31. Test conditions used are Load 2.  
32. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.  
33. CE = ADS = CNTEN = V ; CNTRST = V  
.
IH  
IL  
34. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
Document Number: 38-06054 Rev. *H  
Page 15 of 33  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Figure 12. Bus Match Pipelined Read-to-Write-to-Read (OE = VIL) [35, 36, 37, 38, 39, 40, 41]  
tCYC2  
CLK  
CE  
tCL2  
tCH2  
tSC  
tHC  
R/W  
tSW  
tHW  
Address  
An+3  
An+2  
An+4  
An+1  
An+2  
An+4  
An  
An+3  
An  
An+1  
tSA  
tHA  
ADS  
tCKLZ  
2nd Word  
Qn  
1st Word  
Qn+3  
2nd Word  
Qn+3  
1st Word  
Qn  
DataOUT  
tCKHZ  
tCD2  
tCD2  
tCD2  
2nd Word  
Dn+2  
1st Word  
Dn+2  
tDC  
DataIN  
tHD  
tSD  
No  
Operation 1st Cycle  
Read  
1st Cycle  
Read  
1st Cycle  
Read  
Read  
2nd Cycle  
Write  
2nd Cycle  
Read  
Read  
2nd Cycle  
Write  
Notes  
35. Test conditions used are Load 2.  
36. Timing shown is for x18 bus matching; x9 bus matching is similar with 4 cycles between address inputs.  
37. See table “Right Port Operation“ for data output on first and subsequent cycles.  
38. CNTEN = V . In x9 and x18 Bus Matching Burst Mode operations (Write or Read), ADS can toggle on the rising edge of every clock cycle or it can be at V level all  
IL  
IH  
the time except when loading the initial external address (i.e. ADS = V only required when reading or writing the first Byte or Word).  
IL  
39. CE = ADS = CNTEN = V ; CNTRST = V  
.
IL  
IH  
40. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
41. BM, SIZE, and BE must be reconfigured 1 cycle before operation is guaranteed. BM, SIZE, and BE should remain static for any particular port configuration.  
Document Number: 38-06054 Rev. *H  
Page 16 of 33  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Figure 13. Flow-Through Read-to-Write-to-Read (OE = VIL) [42, 43, 44, 45, 46, 47]  
tCYC1  
tCL1  
tCH1  
CLK  
CE  
tSW  
tHW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
An+3  
An+4  
Address  
DataIN  
tSD  
tHD  
tSA  
tHA  
Dn+2  
tCD1  
tCD1  
tCD1  
tCD1  
DataOUT  
Qn  
tDC  
Qn+1  
tCKHZ  
Qn+3  
tCKLZ  
tDC  
No  
Operation  
Read  
Write  
Read  
Figure 14. Flow-Through Read-to-Write-to-Read (OE Controlled) [42, 43,46, 47, 48]  
tCYC1  
tCH1  
tCL1  
CLK  
CE  
tSW  
tHW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
Address  
DataIN  
tSD  
tHD  
tSA  
tHA  
Dn+2  
Dn+3  
tOE  
tCD1  
tDC  
tCD1  
tCD1  
Qn  
Qn+4  
DataOUT  
OE  
tOHZ  
tDC  
tCKLZ  
Read  
Write  
Read  
Notes  
42. ADS = V , CNTEN = V and CNTRST = V .  
IH  
IL  
IL  
43. Addresses do not have to be accessed sequentially since ADS = V constantly loads the address on the rising edge of the CLK. Numbers are for reference only.  
IL  
44. Timing shown is for x18 bus matching; x9 bus matching is similar with 4 cycles between address inputs.  
45. See table “Right Port Operation“ for data output on first and subsequent cycles.  
46. CE = ADS = CNTEN = V ; CNTRST = V  
.
IL  
IH  
47. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
48. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.  
Document Number: 38-06054 Rev. *H  
Page 17 of 33  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Figure 15. Bus Match Flow-Through Read-to-Write-to-Read (OE = VIL) [49, 50, 51, 52, 53, 54, 55]  
tCYC1  
tCH1 tCL1  
CLK  
CE  
tSC tHC  
tSW tHW  
tSW tHW  
R/W  
tSA tHA  
An+1  
Address  
ADS  
An  
An+1  
An+1  
An+2  
An+1  
An+1  
An  
tSD tHD  
Dn+1  
Dn+1  
DataIN  
tCD1  
tDC  
2nd Word  
1st Word  
tCKHZ  
tCD1  
tCD1  
tCD1  
Qn  
1st Word  
Qn+1  
Qn+1  
Qn  
DataOUT  
2nd Word  
tDC  
tCKLZ  
Read  
1st Cycle  
Read  
2nd Cycle  
No  
Operation  
Write  
1st Cycle  
Write  
2nd Cycle  
Read  
1st Cycle  
Read  
2nd Cycle  
Notes  
49. Test conditions used are Load 2.  
50. Timing shown is for x 18 bus matching; x 9 bus matching is similar with 4 cycles between address inputs.  
51. See table “Right Port Operation“ for data output on first and subsequent cycles.  
52. CNTEN = V . In x9 and x18 Bus Matching Burst Mode operations (Write or Read), ADS can toggle on the rising edge of every clock cycle or it can be at V level  
IL  
IH  
all the time except when loading the initial external address (i.e. ADS = V only required when reading or writing the first Byte or Word).  
IL  
53. CE = ADS = CNTEN = V ; CNTRST = V  
.
IL  
IH  
54. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
55. BM, SIZE, and BE must be reconfigured 1 cycle before operation is guaranteed. BM, SIZE, and BE should remain static for any particular port configuration.  
Document Number: 38-06054 Rev. *H  
Page 18 of 33  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Figure 16. Pipelined Read with Address Counter Advance [56]  
tCYC2  
tCL2  
tCH2  
CLK  
tSA  
tHA  
Address  
An  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tSCN  
tHCN  
tCD2  
DataOUT  
Qx–1  
Qx  
tDC  
Qn  
Qn+1  
Qn+2  
Qn+3  
Read  
Counter Hold  
Read with Counter  
Read with Counter  
External  
Address  
Figure 17. Flow-Through Read with Address Counter Advance [56]  
tCYC1  
tCL1  
tCH1  
CLK  
tSA  
tHA  
An  
Address  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tCD1  
tSCN  
Qn+2  
tHCN  
Qx  
tDC  
Qn  
Qn+1  
DataOUT  
Qn+3  
Qn+4  
Counter Hold  
Read  
tDC  
tDC  
Read  
with  
External  
Address  
Read with Counter  
tCD1  
tCD1  
Counter  
Note  
56. CE = OE = V ; R/W = CNTRST = V  
.
IH  
IL  
Document Number: 38-06054 Rev. *H  
Page 19 of 33  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Figure 18. Write with Address Counter Advance (Flow-Through or Pipelined Outputs) [57, 58]  
tCYC2  
tCL2  
tCH2  
CLK  
tSA  
tHA  
An  
Address  
Internal  
Address  
An  
An+1  
An+2  
An+3  
An+4  
tSAD  
tHAD  
ADS  
CNTEN  
DataIN  
tSCN  
tHCN  
Dn  
Dn+1  
Dn+1  
Dn+2  
Dn+3  
Dn+4  
tSD  
tHD  
Write External Address  
Write with Counter Write Counter Hold Write with Counter  
Notes  
57. CE= B0 = B1 = B2 = B3 = R/W = V ; CNTRST = V  
.
IH  
IL  
58. The “Internal Address” is equal to the “External Address” when ADS = CNTEN = V and CNTRST = V  
.
IL  
IH  
Document Number: 38-06054 Rev. *H  
Page 20 of 33  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Figure 19. Counter Reset (Pipelined Outputs) [59, 60, 61, 62, 63]  
tCYC2  
tCH2 tCL2  
CLK  
tHA  
Am  
tSA  
Ap  
An  
Address  
Internal  
Address  
Ap  
Ax  
An  
1
0
Am  
tHW  
tSW  
R/W  
ADS  
CNTEN  
CNTRST  
tHRST  
tSRST  
tHD  
tSD  
DataIN  
D0  
tCD2  
tCD2  
[63]  
DataOUT  
Q0  
Qn  
Q1  
tCKLZ  
Read Address 1 Read Address An  
Write Address 0 Read Address 0  
Counter Reset  
Read Address Am  
Notes  
59. Test conditions used are Load 2.  
60. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.  
61. CE = B0 = B1 = B2 = B3 = V .  
IL  
62. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset.  
63. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals. Ideally, DATA  
a valid WRITE cycle.  
should be in the High-Impedance state during  
OUT  
Document Number: 38-06054 Rev. *H  
Page 21 of 33  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Figure 20. Counter Reset (Flow-Through Outputs) [64, 65, 66, 67, 68]  
tCYC2  
tCL2  
tCH2  
CLK  
tSA tHA  
An  
An+1  
Address  
Internal  
Address  
AX  
0
An  
An+1  
1
tSW tHW  
R/W  
ADS  
CNTEN  
tHRST  
tSRST  
CNTRST  
DataIN  
tHD  
tSD  
D0  
tCD1  
DataOUT  
Q0  
Qn  
Q1  
Counter Reset  
Write Address 0  
Read Address 0  
Read Address 1 Read Address n  
Notes  
64. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.  
65. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
66. CE = B0 = B1 = B2 = B3 = V .  
IL  
67. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset.  
68. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals. Ideally, DATA  
should be in the High-Impedance state during  
OUT  
a valid WRITE cycle.  
Document Number: 38-06054 Rev. *H  
Page 22 of 33  
CY7C09569V  
CY7C09579V  
Switching Waveforms (continued)  
Figure 21. Pipelined Read of State of Address Counter [69, 70, 71]  
tCYC2  
tCH2 tCL2  
CLK  
tSA  
tHA  
An  
Address  
Internal  
Address  
An  
An+2  
An+1  
tSAD  
tHAD  
ADS  
CNTEN  
DataOUT  
tSAD  
tHAD  
tSCN  
tHCN  
tSCN  
tHCN  
tSCN  
tHCN  
tCA2  
Qx-1  
Qx-2  
Qn  
An  
Qn+1  
Qn+2  
Read with  
Counter  
Load  
External  
Address  
tDC  
Read Counter Address  
Counter  
Hold  
Read With Counter  
Figure 22. Flow-Through Read of State of Address Counter [69, 70, 72]  
tCYC1  
tCH1 tCL1  
CLK  
tSA  
tHA  
An  
Address  
Internal  
Address  
An  
An+1  
An+3  
An+2  
tSAD  
tHAD  
ADS  
CNTEN  
tSAD  
tHAD  
tSCN  
tHCN  
tSCN  
tHCN  
tCA1  
tHCN  
tSCN  
DataOUT  
Qn  
Qx  
An  
Qn+2  
Qn+1  
Read with  
Qn+3  
tDC  
Read Counter Address  
Load  
External  
Address  
Counter  
Counter  
Hold  
Read with Counter  
Notes  
69. CE = OE = V ; R/W = CNTRST = V  
.
IL  
IH  
70. When reading ADDRESS  
in x 9 Bus Match mode, readout of A is extended by 1 cycle.  
OUT  
N
71. For Pipelined address counter read, signals from address counter operation table from must be valid for 2 consecutive cycles for x 36 and x 18 mode and for 3  
consecutive cycles for x 9 mode.  
72. For flow-through address counter read, signals from address counter operation table must be valid for consecutive cycles for x 36.  
Document Number: 38-06054 Rev. *H  
Page 23 of 33  
CY7C09569V  
CY7C09579V  
Read/Write and Enable Operation  
The Read/Write and Enable Operation is described as follows. [73, 74, 75]  
Inputs  
Outputs  
Operation  
Deselected [76]  
OE  
CLK  
CE  
R/W  
I/O0I/O35  
X
H
X
High Z  
X
L
L
L
L
L
H
X
DIN  
Write  
DOUT  
High Z  
Read[76]  
H
X
Outputs disabled  
Address Counter Control Operation  
The Address Counter Control Operation is described as follows. [73, 77]  
Previous  
Address  
Address  
CLK  
OE  
R/W ADS CNTEN CNTRST  
Mode  
Operation  
X
X
X
X
X
H
X
L
L
X
L
L
H
H
Reset  
Counter reset  
An  
An  
X
X
L
Load  
Address load into counter  
An  
H
Hold + Read External address blocked –  
counter address readout  
X
X
An  
An  
X
X
X
X
H
H
H
L
H
H
Hold  
External address blocked –  
counter disabled  
Increment Counter increment  
Notes  
73. “X” = “Don’t Care,” “H” = V , “L” = V .  
IH  
IL  
74. ADS, CNTEN, CNTRST = “Don’t Care.”  
75. OE is an asynchronous input signal.  
76. When CE changes state In the pipelined mode, deselection and read happen in the following clock cycle.  
77. Counter operation is independent of CE.  
Document Number: 38-06054 Rev. *H  
Page 24 of 33  
CY7C09569V  
CY7C09579V  
Right Port Configuration  
The Right Port Configuration is described as follows. [78, 79]  
BM  
0
SIZE  
Configuration  
I/O Pins used  
I/O0R–35R  
I/O0R–17R  
I/O0R–8R  
0
0
1
× 36  
× 18  
× 9  
1
1
Right Port Operation  
The Right Port Operation is described as follows. [80]  
Configuration  
BE  
0
Data on 1st Cycle  
Q0R–17R  
Data on 2nd Cycle Data on 3rd Cycle  
Data on 4th Cycle  
× 18  
× 18  
× 9  
Q18R–35R  
Q0R–17R  
Q9R–17R  
Q18R–26R  
1
Q18R–35R  
0
Q0R–8R  
Q18R–26R  
Q9R–17R  
Q27R–35R  
Q0R–8R  
× 9  
1
Q27R–35R  
Readout of Internal Address Counter  
The Readout of Internal Address Counter is described as follows. [81]  
Configuration Address on 1st Cycle I/O Pins used on 1st Cycle Address on 2nd Cycle I/O Pins used on 2nd Cycle  
Left Port × 36  
Right Port × 36  
Right Port × 18  
Right Port × 9  
A0L–14L  
A0R–14R  
I/O3L–17L  
I/O3R–17R  
I/O2R–17R  
I/O0R–8R  
WA, A0R–14R  
A6R–14R  
BA, WA, A0R–5R  
I/O1R–8R  
Left Port Operation  
The Left Port Operation is described as follows.  
Control Pin  
Effect  
B0  
B1  
B2  
B3  
I/O0–8 Byte Control  
I/O9–17 Byte Control  
I/O18–26 Byte Control  
I/O27–35 Byte Control  
Notes  
78. BM, SIZE, and BE must be reconfigured 1 cycle before operation is guaranteed. BM, SIZE, and BE should remain static for any particular port configuration.  
79. In x36 mode, BE input is a “Don’t Care.”  
80. DQ represents data output of the chip.  
81. x18 and x9 configuration apply to right port only.  
Document Number: 38-06054 Rev. *H  
Page 25 of 33  
CY7C09569V  
CY7C09579V  
long-word, 18-bit word, or 9-bit byte format for data I/O. The data  
lines are divided into four lanes, each consisting of 9 bits  
(byte-size data lines).  
Counter Operation  
The CY7C09569V/CY7C09579V Dual-Port RAM (DPRAM)  
contains on-chip address counters (one for each port) for the  
synchronous members of the product family. Besides the main  
× 36 format, the right port allows bus matching (× 18 or × 9,  
user-selectable). An internal sub-counter provides the extra  
addresses required to sequence out the 36-bit word in 18-bit or  
9-bit increments. The sub-counter counts up in the “Little Endian”  
mode, and counts down if the user has chosen the “Big Endian”  
mode. The address counter is required to be in increment mode  
in order for the sub-counter to sequence out the second word (in  
× 18 mode) or the remaining three bytes (in × 9 mode).  
Figure 24. Bus Match Operation Diagram  
BE  
9
/
CY7C09569V  
CY7C09579V  
16K/32Kx36  
Dual Port  
9
/
9
/
x36  
/
x9, x18, x36  
/
9
/
For a × 36 format (the only active format on the left port), each  
address counter in the CY7C09579V uses addresses (A0–14).  
For the right port (allowing for the bus-matching feature), a  
maximum of two address bits (out of a 2-bit sub-counter) are  
added.  
BM SIZE  
The Bus Match Select (BM) pin works with Bus Size Select  
(SIZE) and Big Endian Select (BE) to select the bus width  
(long-word, word, or byte) and data sequencing arrangement for  
the right port of the dual-port device. A logic LOW applied to both  
the Bus Match Select (BM) pin and to the Bus Size Select (SIZE)  
pin will select long-word (36-bit) operation. A logic HIGH level  
applied to the Bus Match Select (BM) pin will enable whether  
byte or word bus width operation on the right port I/Os depending  
on the logic level applied to the SIZE pin. The level of Bus Match  
Select (BM) must be static throughout normal device operation.  
1. ADSL/R (pin #23/86) is a port’s address strobe, allowing the  
loading of that port's burst counters if the corresponding  
CNTENL/R pin is active as well.  
2. CNTENL/R (pin #25/84) is a port’s count enable, provided to  
stall the operation of the address input and utilize the internal  
address generated by the internal counter for fast interleaved  
memory applications; when asserted, the address counter will  
increment on each positive transition of that port's clock  
signal.  
3. CNTRSTL/R (pin #24/85) is a port's burst counter reset.  
The Bus Size Select (SIZE) pin selects either a byte or word data  
arrangement on the right port when the Bus Match Select (BM)  
pin is HIGH. A logic HIGH on the SIZE pin when the BM pin is  
HIGH selects a byte bus (9-bit) data arrangement. A logic LOW  
on the SIZE pin when the BM pin is HIGH selects a word bus  
(18-bit) data arrangement. The level of the Bus Size Select  
(SIZE) must also be static throughout normal device operation.  
A new read-back (Hold+Read Mode) feature has been added,  
which is different between the left and right port due to the bus  
matching feature provided only for the right port. In read-back  
mode the internal address of the counter will be read from the  
data I/Os as shown in Figure 23.  
Figure 23. Counter Operation Diagram  
The Big Endian Select (BE) pin is a multiple-function pin during  
word or byte bus selection (BM = 1). BE is used in Big Endian  
Select mode to determine the order by which bytes (or words) of  
data are transferred through the right data port. A logic LOW on  
the BE pin will select Little Endian data sequencing arrangement  
and a logic HIGH on the BE pin will select a Big Endian data  
sequencing arrangement. Under these circumstances, the level  
on the BE pin should be static throughout dual-port operation.  
Address  
CY7C09569V  
CY7C09579V  
RAM  
ARRAY  
Long-Word (36-bit) Operation  
_______  
Bus Match Select (BM) and Bus Size Select (SIZE) set to a logic  
LOW will enable standard cycle long-word (36-bit) operation. In  
this mode, the right port’s I/O operates essentially in an identical  
fashion to the left port of the dual-port SRAM. However no Byte  
Select control is available. All 36 bits of the long-word are shifted  
into and out of the right port’s I/O buffer stages. All read and write  
timing parameters may be identical with respect to the two data  
ports. When the right port is configured for a long-word size, Big-  
Endian Select (BE) pin has no application and their inputs are  
“Don’t Care”[82] for the external user.  
ADS  
______________  
CNTRST  
____________  
CNTEN  
I/O’s  
Bus Match Operation  
The  
right  
port  
of  
the  
CY7C09569V/CY7C09579V  
16 K / 32 K × 36 dual-port SRAM can be configured in a 36-bit  
Note  
82. Even though a logic level applied to a “Don’t Care” input will not change the logical operation of the dual-port, inputs that are temporarily a “Don’t Care” (along with  
unused inputs) must not be allowed to float. They must be forced either HIGH or LOW.  
Document Number: 38-06054 Rev. *H  
Page 26 of 33  
CY7C09569V  
CY7C09579V  
Word (18-bit) Operation  
Byte (9-bit) Operation  
Word (18-bit) bus sizing operation is enabled when Bus Match  
Select (BM) is set to a logic HIGH and the Bus Size Select (SIZE)  
pin is set to a logic LOW. In this mode, 18 bits of data are ported  
through I/O0R–17R. The level applied to the Big Endian (BE) pin  
determines the right port data I/O sequencing order (Big Endian  
or Little Endian).  
Byte (9-bit) bus sizing operation is enabled when Bus Match  
Select (BM) is set to a logic HIGH and the Bus Size Select (SIZE)  
pin is set to a logic HIGH. In this mode, 9 bits of data are ported  
through I/O0R–8R  
.
Big Endian and Little Endian data sequencing is available for  
dual-port operation. The level applied to the Big Endian pin (BE)  
under these circumstances will determine the right port data I/O  
sequencing order (Big or Little Endian). A logic LOW applied to  
the BE pin during byte (9-bit) bus size operation will select Little  
Endian operation. In this case, the least significant data byte is  
read from the right port first or written to the right port first. A logic  
HIGH on the BE pin during byte (9-bit) bus size operation will  
select Big Endian operation resulting in the most significant data  
word to be transferred through the right port first. Internally, the  
data will be stored in the appropriate 36-bit LSB or MSB I/O  
memory location. Device operation requires a minimum of four  
clock cycles to read or write during byte (9-bit) bus size  
operation. An internal sub-counter automatically increments the  
right port multiplexer control when Little or Big Endian operation  
is in effect. When transferring data in byte (9-bit) bus match  
format, the unused I/O pins (I/O9R–35R) are three-stated.  
During word (18-bit) bus size operation, a logic LOW applied to  
the BE pin will select Little Endian operation. In this case, the  
least significant data word is read from the right port first or  
written to the right port first. A logic HIGH on the BE pin during  
word (18-bit) bus size operation will select Big Endian operation  
resulting in the most significant data word being transferred  
through the right port first. Internally, the data will be stored in the  
appropriate 36-bit LSB or MSB I/O memory location. Device  
operation requires a minimum of two clock cycles to read or write  
during word (18-bit) bus size operation. An internal sub-counter  
automatically increments the right port multiplexer control when  
Little or Big Endian operation is in effect.  
Document Number: 38-06054 Rev. *H  
Page 27 of 33  
CY7C09569V  
CY7C09579V  
Ordering Information  
16 K × 36 3.3 V Synchronous Dual-Port SRAM  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
144-pin TQFP (Pb-free)  
100  
CY7C09569V-100AXC  
A144  
Commercial  
32K × 36 3.3 V Synchronous Dual-Port SRAM  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
144-pin TQFP (Pb-free)  
100  
CY7C09579V-100AXC  
CY7C09579V-100BBC  
CY7C09579V-83AXC  
CY7C09579V-83BBC  
A144  
BB172  
A144  
Commercial  
172-ball BGA  
83  
144-pin TQFP (Pb-free)  
172-ball BGA  
Commercial  
BB172  
Ordering Code Definitions  
CY 09 X9 V - XXX X  
7
C
5
X
X
Temperature Range:  
C = Commercial  
X = Pb-free (RoHS Compliant)  
Package Type: X = A or BB  
A = 144-pin TQFP  
BB = 172-ball BGA  
Speed Grade: XXX = 83 MHz or 100 MHz  
V = 3.3 V  
Depth: X9, where X = 6 or 7  
6 = 16K; 7 = 32K  
5 = Width: × 36  
09 = Sync  
Technology Code: C = CMOS  
Marketing Code: 7 = SRAM  
Company ID: CY = Cypress Device  
Document Number: 38-06054 Rev. *H  
Page 28 of 33  
CY7C09569V  
CY7C09579V  
Package Diagrams  
Figure 25. 144-pin TQFP (20 × 20 × 1.4 mm) A144SA Package Outline, 51-85047  
51-85047 *D  
Document Number: 38-06054 Rev. *H  
Page 29 of 33  
CY7C09569V  
CY7C09579V  
Package Diagrams (continued)  
Figure 26. 172-ball FBGA (15 × 15 × 1.25 mm) BB172 Package Outline, 51-85114  
51-85114 *E  
Document Number: 38-06054 Rev. *H  
Page 30 of 33  
CY7C09569V  
CY7C09579V  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
ADS  
address strobe  
Symbol  
°C  
Unit of Measure  
BGA  
ball grid array  
chip enable  
degree Celsius  
megahertz  
microampere  
milliampere  
millimeter  
nanosecond  
picofarad  
volt  
CE  
MHz  
µA  
mA  
mm  
ns  
CMOS  
CNTEN  
CNTRST  
I/O  
complementary metal oxide semiconductor  
count enable  
counter reset  
input/output  
LSB  
least significant bit  
pF  
MSB  
OE  
most significant bit  
V
output enable  
W
watt  
SRAM  
TQFP  
TTL  
static random access memory  
thin quad flat pack  
transistor-transistor logic  
Document Number: 38-06054 Rev. *H  
Page 31 of 33  
CY7C09569V  
CY7C09579V  
Document History Page  
Document Title: CY7C09569V/CY7C09579V, 3.3 V 16 K / 32 K × 36 FLEx36® Synchronous Dual-Port Static RAM  
Document Number: 38-06054  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN  
Description of Change  
**  
110213  
122304  
SZV  
RBI  
12/16/01  
12/27/02  
Change from Spec number: 38-00743 to 38-06054  
*A  
Updated Maximum Ratings (Added Power up requirements to Maximum  
Ratings Information).  
*B  
*C  
349775  
RUY  
See ECN Updated Ordering Information (Added Pb-free Information).  
2897215  
RAME  
03/22/10  
12/14/10  
02/04/11  
Updated Ordering Information (Removed inactive parts).  
Updated Package Diagrams.  
*D  
*E  
3110406  
3162642  
ADMU  
ADMU  
Added Ordering Code Definitions.  
Minor edits and updated in new template.  
Updated Selection Guide (Removed speed bin -67 related information).  
Updated Operating Range (Removed Industrial Temperature Range  
information).  
Updated Electrical Characteristics (Removed speed bin -67 related  
information).  
Updated Switching Characteristics (Removed speed bin -67 related  
information).  
Added Acronyms and Units of Measure.  
*F  
3352391  
3702863  
ADMU  
SMCH  
08/23/11  
Updated Package Diagrams (Spec 51-85047 (Changed revision from *C to  
*D)).  
*G  
08/20/2012 Updated Logic Block Diagram (Aligned all the objects correctly).  
Updated Switching Waveforms (Updated Figure 18 (Aligned the naming of  
objects correctly), updated Figure 19 (Aligned the naming of objects correctly),  
updated Figure 20 (Aligned the naming of objects correctly)).  
Updated Right Port Operation (Updated the columns Data on 1st Cycle, Data  
on 2nd Cycle, Data on 3rd Cycle and Data on 4th Cycle).  
Updated Bus Match Operation (Updated Byte (9-bit) Operation (description)).  
Updated Package Diagrams (Spec 51-85114 (Changed revision from *C to  
*D)).  
Replaced Logic ‘0’ with Logic LOW and replaced Logic ‘1’ with Logic HIGH  
across the document.  
*H  
3859909  
SMCH  
01/07/2013 Updated Ordering Information (Updated part numbers).  
Updated Package Diagrams:  
spec 51-85114 – Changed revision from *D to *E.  
Document Number: 38-06054 Rev. *H  
Page 32 of 33  
CY7C09569V  
CY7C09579V  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
PSoC Solutions  
Clocks & Buffers  
Interface  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2001-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 38-06054 Rev. *H  
Revised January 7, 2013  
Page 33 of 33  
FLEx36 is a registered trademark of Cypress Semiconductor Corporation. All products and company names mentioned in this document may be the trademarks of their respective holders.  

相关型号:

CY7C09579V-67AC

3.3V 16K/32K x 36 FLE x 36-TM Synchronous Dual-Port Static RAM
CYPRESS

CY7C09579V-67AI

Dual-Port SRAM, 128KX9, 8ns, CMOS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-144
CYPRESS

CY7C09579V-67BAC

Dual-Port SRAM, 32KX36, 8ns, CMOS, PBGA172, 15 X 15 MM, 0.51 MM HEIGHT, 1 MM PITCH, BGA-172
CYPRESS

CY7C09579V-67BAI

Dual-Port SRAM, 128KX9, 8ns, CMOS, PBGA144, 12 X 12 MM, 0.80 MM PITCH, MINI, BGA-144
CYPRESS

CY7C09579V-67BBC

3.3V 16K/32K x 36 FLE x 36-TM Synchronous Dual-Port Static RAM
CYPRESS

CY7C09579V-83AC

3.3V 16K/32K x 36 FLE x 36-TM Synchronous Dual-Port Static RAM
CYPRESS

CY7C09579V-83AI

3.3V 16K/32K x 36 FLE x 36-TM Synchronous Dual-Port Static RAM
CYPRESS

CY7C09579V-83AXC

3.3 V 16 K / 32 K × 36 FLEx36® Synchronous Dual-Port Static RAM
CYPRESS

CY7C09579V-83BAC

暂无描述
CYPRESS

CY7C09579V-83BAI

Dual-Port SRAM, 32KX36, 6ns, CMOS, PBGA172, 15 X 15 MM, 0.51 MM HEIGHT, 1 MM PITCH, BGA-172
CYPRESS

CY7C09579V-83BBC

3.3V 16K/32K x 36 FLE x 36-TM Synchronous Dual-Port Static RAM
CYPRESS

CY7C09579V-83BBI

3.3V 16K/32K x 36 FLE x 36-TM Synchronous Dual-Port Static RAM
CYPRESS