CY7C1218H-100AXI [CYPRESS]

1-Mbit (32K x36) Pipelined Sync SRAM; 1兆位( 32K X36 )流水线同步SRAM
CY7C1218H-100AXI
型号: CY7C1218H-100AXI
厂家: CYPRESS    CYPRESS
描述:

1-Mbit (32K x36) Pipelined Sync SRAM
1兆位( 32K X36 )流水线同步SRAM

静态存储器
文件: 总16页 (文件大小:384K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1218H  
1-Mbit (32K x36) Pipelined Sync SRAM  
Features  
Functional Description[1]  
• Registered inputs and outputs for pipelined operation  
• 32K × 36 common I/O architecture  
The CY7C1218H SRAM integrates 32K x 36 SRAM cells with  
advanced synchronous peripheral circuitry and a two-bit  
counter for internal burst operation. All synchronous inputs are  
gated by registers controlled by a positive-edge-triggered  
Clock Input (CLK). The synchronous inputs include all  
addresses, all data inputs, address-pipelining Chip Enable  
(CE1), depth-expansion Chip Enables (CE2 and CE3), Burst  
Control inputs (ADSC, ADSP, and ADV), Write Enables  
(BW[A:D], and BWE), and Global Write (GW). Asynchronous  
inputs include the Output Enable (OE) and the ZZ pin.  
• 3.3V core power supply (VDD  
)
• 2.5V/3.3V I/O power supply (VDDQ  
)
• Fast clock-to-output times  
— 3.5 ns (for 166-MHz device)  
• Provide high-performance 3-1-1-1 access rate  
• User-selectable burst counter supporting Intel®  
Pentium interleaved or linear burst sequences  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or  
Address Strobe Controller (ADSC) are active. Subsequent  
burst addresses can be internally generated as controlled by  
the Advance pin (ADV).  
• Separate processor and controller address strobes  
• Synchronous self-timed write  
• Asynchronous output enable  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to four bytes wide as  
controlled by the Byte Write control inputs. GW when active  
LOW causes all bytes to be written.  
• Available in JEDEC-standard lead-free 100-Pin TQFP  
package  
• “ZZ” Sleep Mode Option  
The CY7C1218H operates from a +3.3V core power supply  
while all outputs may operate either with a +2.5V or +3.3V  
supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Logic Block Diagram  
A0, A1, A  
ADDRESS  
REGISTER  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER  
AND  
CLR  
Q0  
LOGIC  
ADSC  
ADSP  
DQD,DQ  
BYTE  
WRITE REGISTER  
D
DQ  
BYTE  
WRITE DRIVER  
D ,DQPD  
BW  
D
DQ  
BYTE  
WRITE DRIVER  
C ,DQPC  
DQ  
BYTE  
WRITE REGISTER  
C,DQPC  
DQs  
DQP  
DQP  
BW  
C
OUTPUT  
BUFFERS  
A
OUTPUT  
REGISTERS  
MEMORY  
ARRAY  
SENSE  
AMPS  
B
C
DQB,DQP  
B
E
DQB,DQP  
B
DQP  
BYTE  
WRITE DRIVER  
BYTE  
WRITE REGISTER  
BW  
BW  
B
A
DQP  
D
DQA,DQP  
A
DQ  
A ,DQPA  
BYTE  
WRITE DRIVER  
BYTE  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
Note:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
Document #: 38-05667 Rev. *B  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised July 6, 2006  
[+] Feedback  
CY7C1218H  
Selection Guide  
166 MHz  
3.5  
133 MHz  
4.0  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
240  
225  
mA  
mA  
40  
40  
Pin Configuration  
100-Pin TQFP  
Top View  
DQPC  
DQC  
DQC  
VDDQ  
VSSQ  
DQC  
DQC  
DQC  
DQC  
VSSQ  
VDDQ  
DQC  
DQC  
NC  
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
BYTE C  
BYTE B  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
NC  
VSS  
NC  
VDD  
ZZ  
CY7C1218H  
DQD  
DQD  
VDDQ  
VSSQ  
DQD  
DQD  
DQD  
DQD  
VSSQ  
VDDQ  
DQD  
DQD  
DQPD  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
BYTE D  
BYTE A  
Document #: 38-05667 Rev. *B  
Page 2 of 16  
[+] Feedback  
CY7C1218H  
Pin Definitions  
Name  
I/O  
Description  
Address Inputs used to select one of the 32K address locations. Sampled at the rising edge  
A0, A1, A  
Input-  
Synchronous of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A1, A0  
feed the 2-bit counter.  
BWA, BWB  
BWC, BWD  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct Byte Writes to the SRAM.  
Synchronous Sampled on the rising edge of CLK.  
GW  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a global  
Synchronous Write is conducted (ALL bytes are written, regardless of the values on BW[A:D] and BWE).  
BWE  
CLK  
CE1  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be  
Synchronous asserted LOW to conduct a Byte Write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the burst  
counter when ADV is asserted LOW, during a burst operation.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE  
2 and CE to select/deselect the device. ADSP is ignored if CE1 is HIGH. CE1 is sampled only  
when a new3external address is loaded.  
CE2  
CE3  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous CE1 and CE3 to select/deselect the device. CE2 is sampled only when a new external address is  
loaded.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous CE1 and CE2 to select/deselect the device. Not connected for BGA. Where referenced, CE3 is  
assumed active throughout this document for BGA. CE3 is sampled only when a new external  
address is loaded.  
OE  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When  
Asynchronous LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as  
input data pins. OE is masked during the first clock of a Read cycle when emerging from a  
deselected state.  
ADV  
Input-  
Advance Input signal, sampled on the rising edge of CLK, active LOW. When asserted, it  
Synchronous automatically increments the address in a burst cycle.  
ADSP  
Input- Address Strobe from Processor, sampled on the rising edge of CLK, active LOW. When  
Synchronous asserted LOW, A is captured in the address registers. A1, A0 are also loaded into the burst counter.  
When and ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE  
ADSP  
1
is deasserted HIGH.  
ADSC  
ZZ  
Input-  
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW. When  
Synchronous asserted LOW, A is captured in the address registers. A1, A0 are also loaded into the burst counter.  
When ADSP and ADSC are both asserted, only ADSP is recognized.  
Input-  
ZZ “Sleep” Input, active HIGH. This input, when High places the device in a non-time-critical  
Asynchronous “sleep” condition with data integrity preserved. For normal operation, this pin has to be LOW or left  
floating. ZZ pin has an internal pull-down.  
DQA, DQB  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered by  
DQC, DQD Synchronous the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified  
by “A” during the previous clock rise of the Read cycle. The direction of the pins is controlled by  
OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQP[A:D] are  
placed in a tri-state condition.  
DQPA,  
DQPB  
VDD  
VSS  
Power Supply Power supply inputs to the core of the device.  
Ground  
Ground for the core of the device.  
VDDQ  
I/O Power Power supply for the I/O circuitry.  
Supply  
VSSQ  
I/O Ground Ground for the I/O circuitry.  
MODE  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD or left  
floating selects interleaved burst sequence. This is a strap pin and should remain static during  
device operation. Mode Pin has an internal pull-up.  
NC  
No Connects. Not internally connected to the die. 2M, 4M, 9M,18M, 72M, 144M, 288M, 576M and  
1G are address expansion pins and are not internally connected to the die.  
Document #: 38-05667 Rev. *B  
Page 3 of 16  
[+] Feedback  
CY7C1218H  
signals. The CY7C1218H provides Byte Write capability that  
is described in the Write Cycle Descriptions table. Asserting  
the Byte Write Enable input (BWE) with the selected Byte  
Write (BW[A:D]) input, will selectively write to only the desired  
bytes. Bytes not selected during a Byte Write operation will  
remain unaltered. A synchronous self-timed Write mechanism  
has been provided to simplify the Write operations.  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
The CY7C1218H supports secondary cache in systems  
utilizing either a linear or interleaved burst sequence. The  
interleaved burst order supports Pentium and i486™  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
Accesses can be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC).  
Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Because the CY7C1218H is a common I/O device, the Output  
Enable (OE) must be deasserted HIGH before presenting data  
to the DQ inputs. Doing so will tri-state the output drivers. As  
a safety precaution, DQ are automatically tri-stated whenever  
a Write cycle is detected, regardless of the state of OE.  
Single Write Accesses Initiated by ADSC  
ADSC Write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) CE1, CE2, CE3 are all asserted active,  
and (4) the appropriate combination of the Write inputs (GW,  
BWE, and BW[A:D]) are asserted active to conduct a Write to  
the desired byte(s). ADSC-triggered Write accesses require a  
single clock cycle to complete. The address presented to A is  
loaded into the address register and the address  
advancement logic while being delivered to the memory array.  
The ADV input is ignored during this cycle. If a global Write is  
conducted, the data presented to DQs is written into the corre-  
sponding address location in the memory core. If a Byte Write  
is conducted, only the selected bytes are written. Bytes not  
selected during a Byte Write operation will remain unaltered.  
A synchronous self-timed Write mechanism has been  
provided to simplify the Write operations.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BW[A:D]) inputs. A Global Write  
Enable (GW) overrides all Byte Write inputs and writes data to  
all four bytes. All Writes are simplified with on-chip  
synchronous self-timed Write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if CE1  
is HIGH.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,  
(2) CE1, CE2, CE3 are all asserted active, and (3) the Write  
signals (GW, BWE) are all deasserted HIGH. ADSP is ignored  
if CE1 is HIGH. The address presented to the address inputs  
(A) is stored into the address advancement logic and the  
address register while being presented to the memory array.  
The corresponding data is allowed to propagate to the input of  
the output registers. At the rising edge of the next clock the  
data is allowed to propagate through the output register and  
onto the data bus within tCO if OE is active LOW. The only  
exception occurs when the SRAM is emerging from a  
deselected state to a selected state, its outputs are always  
tri-stated during the first cycle of the access. After the first cycle  
of the access, the outputs are controlled by the OE signal.  
Consecutive single Read cycles are supported. Once the  
SRAM is deselected at clock rise by the chip select and either  
ADSP or ADSC signals, its output will tri-state immediately.  
Because the CY7C1218H is a common I/O device, the Output  
Enable (OE) must be deasserted HIGH before presenting data  
to the DQ inputs. Doing so will tri-state the output drivers. As  
a safety precaution, DQs are automatically tri-stated whenever  
a Write cycle is detected, regardless of the state of OE.  
Burst Sequences  
The CY7C1218H provides a two-bit wraparound counter, fed  
by A1, A0, that implements either an interleaved or linear burst  
sequence. The interleaved burst sequence is designed specif-  
ically to support Intel Pentium applications. The linear burst  
sequence is designed to support processors that follow a  
linear burst sequence. The burst sequence is user selectable  
through the MODE input.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both Read and Write burst operations are supported.  
Single Write Accesses Initiated by ADSP  
Sleep Mode  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) CE1, CE2, CE3 are all asserted active. The address  
presented to A is loaded into the address register and the  
address advancement logic while being delivered to the  
memory array. The Write signals (GW, BWE, and BW[A:D]) and  
ADV inputs are ignored during this first cycle.  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, CE3, ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
ADSP-triggered Write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQ inputs is written into the corre-  
sponding address location in the memory array. If GW is HIGH,  
then the Write operation is controlled by BWE and BW[A:D]  
Document #: 38-05667 Rev. *B  
Page 4 of 16  
[+] Feedback  
CY7C1218H  
Linear Burst Address Table (MODE = GND)  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1, A0  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
First  
Address  
A1, A0  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
Unit  
mA  
ns  
40  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ Active to sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ZZ Inactive to exit sleep current  
ns  
Truth Table[2, 3, 4, 5, 6, 7]  
Next Cycle  
Unselected  
Add. Used  
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
CE1 CE2 CE3 ADSP ADSC  
ADV  
X
OE  
X
X
X
X
X
X
X
H
L
DQ  
Write  
X
None  
H
L
X
X
L
X
H
X
H
X
L
X
L
L
X
X
L
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
DQ  
Unselected  
None  
X
X
Unselected  
None  
L
L
X
X
Unselected  
None  
L
X
L
H
H
L
X
X
Unselected  
None  
L
L
X
X
Begin Read  
External  
External  
Next  
L
H
H
X
X
X
X
X
X
X
X
X
X
H
X
L
X
X
Begin Read  
L
L
H
H
H
X
X
H
H
X
X
H
X
H
X
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Write  
Write  
Write  
Continue Read  
Continue Read  
Continue Read  
Continue Read  
Suspend Read  
Suspend Read  
Suspend Read  
Suspend Read  
Begin Write  
X
X
H
H
X
X
H
H
X
H
L
X
X
X
X
X
X
X
X
X
X
L
H
H
H
H
H
H
H
H
H
H
H
L
Next  
L
Next  
L
H
L
Tri-State  
DQ  
Next  
L
Current  
Current  
Current  
Current  
Current  
Current  
External  
H
H
H
H
H
H
X
H
L
Tri-State  
DQ  
H
L
Tri-State  
DQ  
X
X
X
Tri-State  
Tri-State  
Tri-State  
Begin Write  
Begin Write  
Notes:  
2. X = “Don't Care.” H = HIGH, L = LOW.  
3. WRITE = L when any one or more Byte Write Enable signals (BW ,BW ,BW ,BW ) and BWE = L or GW = L. WRITE = H when all Byte Write Enable signals  
A
B
C
D
(BW ,BW ,BW ,BW ), BWE, GW = H.  
A
B
C
D
4. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
5. CE , CE , and CE are available only in the TQFP package.  
1
2
3
6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW  
. Writes may occur only on subsequent clocks  
[A:D]  
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the Write cycle to allow the outputs to Tri-State. OE is a  
don't care for the remainder of the Write cycle.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a Read cycle all data bits are tri-state when OE is  
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document #: 38-05667 Rev. *B  
Page 5 of 16  
[+] Feedback  
CY7C1218H  
Truth Table[2, 3, 4, 5, 6, 7] (continued)  
Next Cycle  
Continue Write  
Continue Write  
Suspend Write  
Suspend Write  
ZZ “Sleep”  
Add. Used  
Next  
ZZ  
L
CE1 CE2 CE3 ADSP ADSC  
ADV  
H
OE  
X
DQ  
Write  
Write  
Write  
Write  
Write  
X
X
H
X
H
X
X
X
X
X
X
X
X
X
X
X
H
X
H
X
X
H
H
H
H
X
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Next  
L
H
X
Current  
Current  
None  
L
H
X
L
H
X
H
X
X
Truth Table for Read/Write[2, 3]  
Function  
Read  
GW  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE  
H
L
BWD  
BWC  
X
H
H
H
H
L
BWB  
X
H
H
L
BWA  
X
H
L
X
H
H
H
H
H
H
H
H
L
Read  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
L
L
H
L
L
L
Write Byte C – (DQC and DQPC)  
Write Bytes C, A  
L
H
H
L
H
L
L
L
Write Bytes C, B  
L
L
H
L
Write Bytes C, B, A  
Write Byte D – (DQD and DQPD)  
Write Bytes D, A  
L
L
L
L
H
H
H
H
L
H
H
L
H
L
L
L
Write Bytes D, B  
L
L
H
L
Write Bytes D, B, A  
Write Bytes D, C  
L
L
L
L
L
H
H
L
H
L
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
L
L
L
L
L
H
L
L
L
L
L
Write All Bytes  
X
X
X
X
X
Document #: 38-05667 Rev. *B  
Page 6 of 16  
[+] Feedback  
CY7C1218H  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature ................................65°C to + 150°C  
Latch-up Current..................................................... >200 mA  
Ambient Temperature with  
Power Applied............................................55°C to + 125°C  
Operating Range  
Supply Voltage on VDD Relative to GND....... –0.5V to + 4.6V  
Supply Voltage on VDDQ Relative to GND .....0.5V to + VDD  
Ambient  
Temperature  
Range  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
Commercial 0°C to +70°C 3.3V –5%/+10% 2.5V –5%  
to VDD  
Industrial  
–40°Cto+85°C  
Electrical Characteristics Over the Operating Range [8, 9]  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
VDD  
Power Supply Voltage  
3.135  
3.6  
V
VDDQ  
VOH  
VOL  
VIH  
I/O Supply Voltage  
for 3.3V I/O  
for 2.5V I/O  
3.135  
2.375  
2.4  
VDD  
V
V
2.625  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage[8]  
Input LOW Voltage[8]  
for 3.3V I/O, IOH = –4.0 mA  
for 2.5V I/O, IOH = –1.0 mA  
for 3.3V I/O, IOL = 8.0 mA  
for 2.5V I/O, IOL = 1.0 mA  
for 3.3V I/O  
V
2.0  
V
0.4  
0.4  
V
V
2.0  
1.7  
VDD + 0.3V  
V
for 2.5V I/O  
V
DD + 0.3V  
V
VIL  
for 3.3V I/O  
–0.3  
–0.3  
–5  
0.8  
0.7  
5
V
for 2.5V I/O  
V
IX  
Input Leakage Current GND VI VDDQ  
except ZZ and MODE  
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
µA  
30  
5
µA  
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
µA  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
6-ns cycle, 166 MHz  
7.5-ns cycle, 133 MHz  
240  
225  
100  
90  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
ISB2  
ISB3  
ISB4  
Automatic CS  
Power-down  
Current—TTL Inputs  
VDD = Max, Device Deselected, 6-ns cycle, 166 MHz  
VIN VIH or VIN VIL  
f = fMAX = 1/tCYC  
7.5-ns cycle, 133 MHz  
Automatic CS  
Power-down  
Current—CMOS Inputs f = 0  
VDD = Max, Device Deselected, All speeds  
VIN 0.3V or VIN > VDDQ – 0.3V,  
40  
mA  
Automatic CS  
Power-down  
Current—CMOS Inputs f = fMAX = 1/tCYC  
VDD = Max, Device Deselected, 6-ns cycle, 166 MHz  
or VIN 0.3V or VIN > VDDQ – 0.3V  
85  
75  
mA  
mA  
7.5-ns cycle, 133 MHz  
Automatic CS  
Power-down  
Current—TTL Inputs  
VDD = Max, Device Deselected, All speeds  
VIN VIH or VIN VIL, f = 0  
45  
mA  
Notes:  
8. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
9. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
.
Power-up  
DD  
IH  
DD  
DDQ  
DD  
Document #: 38-05667 Rev. *B  
Page 7 of 16  
[+] Feedback  
CY7C1218H  
Capacitance[10]  
100 TQFP  
Max.  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
5
5
5
VDD = 3.3V.  
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
VDDQ = 2.5V  
pF  
Thermal Resistance[10]  
100 TQFP  
Package  
Parameter  
Description  
Thermal Resistance  
(Junction to Ambient)  
Test Conditions  
Unit  
ΘJA  
Test conditions follow standard test methods  
and procedures for measuring thermal  
impedance, per EIA/JESD51  
30.32  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6.85  
°C/W  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
OUTPUT  
R = 317Ω  
3.3V  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
10%  
R = 50Ω  
L
5 pF  
INCLUDING  
R = 351Ω  
1 ns  
1 ns  
V = 1.5V  
T
(a)  
JIG AND  
SCOPE  
(b)  
(c)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
1 ns  
5 pF  
R =1538Ω  
1 ns  
INCLUDING  
V = 1.25V  
T
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
Note:  
10. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05667 Rev. *B  
Page 8 of 16  
[+] Feedback  
CY7C1218H  
Switching Characteristics Over the Operating Range [11, 12]  
166 MHz  
133 MHz  
Parameter  
tPOWER  
Clock  
tCYC  
Description  
VDD(Typical) to the First Access[13]  
Min.  
Max.  
Min.  
Max.  
Unit  
1
1
ms  
Clock Cycle Time  
Clock HIGH  
6.0  
2.5  
2.5  
7.5  
3.0  
3.0  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCO  
Data Output Valid after CLK Rise  
3.5  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
tCLZ  
Data Output Hold after CLK Rise  
Clock to Low-Z[14, 15, 16]  
Clock to High-Z[14, 15, 16]  
1.5  
0
1.5  
0
tCHZ  
tOEV  
tOELZ  
tOEHZ  
3.5  
3.5  
4.0  
4.5  
OE LOW to Output Valid  
OE LOW to Output Low-Z[14, 15, 16]  
OE HIGH to Output High-Z[14, 15, 16]  
0
0
3.5  
4.0  
Set-up Times  
tAS  
Address Set-up before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
ADSC, ADSP Set-up before CLK Rise  
ADV Set-up before CLK Rise  
tADVS  
tWES  
tDS  
GW, BWE, BW[A:D] Set-up before CLK Rise  
Data Input Set-up before CLK Rise  
Chip Enable Set-Up before CLK Rise  
tCES  
Hold Times  
tAH  
Address Hold after CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tADVH  
tWEH  
tDH  
ADSP, ADSC Hold after CLK Rise  
ADV Hold after CLK Rise  
GW, BWE, BW[A:D] Hold after CLK Rise  
Data Input Hold after CLK Rise  
Chip Enable Hold after CLK Rise  
tCEH  
Notes:  
11. Timing references level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
12. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
13. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially before a Read or Write operation  
POWER  
DD  
can be initiated.  
14. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
15. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
16. This parameter is sampled and not 100% tested.  
Document #: 38-05667 Rev. *B  
Page 9 of 16  
[+] Feedback  
CY7C1218H  
Switching Waveforms  
Read Cycle Timing[17]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,  
BW[A:D]  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV  
suspends  
burst.  
t
t
OEV  
CO  
t
t
OEHZ  
t
OELZ  
t
CHZ  
DOH  
t
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Note:  
17. On this diagram, when CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05667 Rev. *B  
Page 10 of 16  
[+] Feedback  
CY7C1218H  
Switching Waveforms (continued)  
Write Cycle Timing[17, 18]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are  
ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW[A :D]  
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
Data In (D)  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
Data Out (Q)  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Note:  
18.  
Full width Write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW  
LOW.  
[A: D]  
Document #: 38-05667 Rev. *B  
Page 11 of 16  
[+] Feedback  
CY7C1218H  
Switching Waveforms (continued)  
Read/Write Cycle Timing[17, 19, 20]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE,  
BW[A:D]  
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back READs  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
DON’T CARE  
UNDEFINED  
Notes:  
19. The data bus (Q) remains in High-Z following a Write cycle unless an ADSP, ADSC, or ADV cycle is performed.  
20. GW is HIGH.  
Document #: 38-05667 Rev. *B  
Page 12 of 16  
[+] Feedback  
CY7C1218H  
Switching Waveforms (continued)  
ZZ Mode Timing[21, 22]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
21. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
22. DQs are in High-Z when exiting ZZ sleep mode.  
Document #: 38-05667 Rev. *B  
Page 13 of 16  
[+] Feedback  
CY7C1218H  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Package Type  
100 CY7C1218H-100AXC  
CY7C1218H-100AXI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Commercial  
Industrial  
133 CY7C1218H-133AXC  
CY7C1218H-133AXI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Commercial  
Industrial  
Document #: 38-05667 Rev. *B  
Page 14 of 16  
[+] Feedback  
CY7C1218H  
Package Diagram  
100-Pin TQFP (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
1.40 0.05  
14.00 0.10  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
0.25  
1. JEDEC STD REF MS-026  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
Document #: 38-05667 Rev. *B  
Page 15 of 16  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CY7C1218H  
Document History Page  
Document Title: CY7C1218H 1-Mbit (32K x36) Pipelined Sync SRAM  
Document Number: 38-05667  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
343896  
430678  
See ECN  
See ECN  
PCI  
New Data Sheet  
*A  
NXR  
Changed address of Cypress Semiconductor Corporation on Page# 1 from  
“3901 North First Street” to “198 Champion Court”  
Added 2.5VI/O option  
Changed Three-State to Tri-State  
Included Maximum Ratings for VDDQ relative to GND  
Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the  
Electrical Characteristics Table  
Modified test condition from VIH < VDD to VIH < VDD  
Replaced Package Name column with Package Diagram in the Ordering  
Information table  
*B  
481916  
See ECN  
VKN  
Converted from Preliminary to Final.  
Updated the Ordering Information table.  
Document #: 38-05667 Rev. *B  
Page 16 of 16  
[+] Feedback  

相关型号:

CY7C1218H-133AXC

1-Mbit (32K x36) Pipelined Sync SRAM
CYPRESS

CY7C1218H-133AXI

1-Mbit (32K x36) Pipelined Sync SRAM
CYPRESS

CY7C1219F

1-Mbit (32K x 36) Pipelined DCD Sync SRAM
CYPRESS

CY7C1219F-133AC

1-Mbit (32K x 36) Pipelined DCD Sync SRAM
CYPRESS

CY7C1219F-133ACT

Cache SRAM, 32KX36, 4ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1219F-133AXC

Cache SRAM, 32KX36, 4ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1219H

1-Mbit (32K x 36) Pipelined DCD Sync SRAM
CYPRESS

CY7C1219H-100AXC

1-Mbit (32K x 36) Pipelined DCD Sync SRAM
CYPRESS

CY7C1219H-100AXI

1-Mbit (32K x 36) Pipelined DCD Sync SRAM
CYPRESS

CY7C1219H-133AXC

1-Mbit (32K x 36) Pipelined DCD Sync SRAM
CYPRESS

CY7C1219H-133AXI

1-Mbit (32K x 36) Pipelined DCD Sync SRAM
CYPRESS

CY7C122-15DC

Standard SRAM, 256X4, 15ns, CMOS, CDIP22, 0.400 INCH, CERDIP-22
CYPRESS