CY7C1344-90AC [CYPRESS]

Cache SRAM, 64KX36, 8.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100;
CY7C1344-90AC
型号: CY7C1344-90AC
厂家: CYPRESS    CYPRESS
描述:

Cache SRAM, 64KX36, 8.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100

时钟 静态存储器 内存集成电路
文件: 总14页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
fax id: 1110  
PRELIMINARY  
CY7C1344  
64K x 36 Synchronous Flow-Through 3.3V Cache RAM  
Features  
Functional Description  
• Supports117-MHzmicroprocessorcachesystems with  
zero wait states  
• 64K by 36 common I/O  
• Low Standby Power (1.65 mW, L version)  
• Fast clock-to-output times  
— 7.5 ns (117-MHz version)  
The CY7C1344 is a 3.3V 64K by 36 synchronous cache RAM  
designed to interface with high-speed microprocessors with  
minimum glue logic. Maximum access delay from clock rise is  
7.5 ns (117-MHz version). A 2-bit on-chip counter captures the  
first address in a burst and increments the address automati-  
cally for the rest of the burst access.  
The CY7C1344 allows both interleaved and linear burst se-  
quences, selected by the MODE input pin. A HIGH selects an  
interleaved burst sequence, while a LOW selects a linear burst  
sequence. Burst accesses can be initiated with the processor  
address strobe (ADSP) or the cache controller address strobe  
(ADSC) inputs. Address advancement is controlled by the ad-  
dress advancement (ADV) input.  
• Two-bit wrap-around counter supporting either inter-  
leaved or linear burst sequence  
• Separate processorand controller address strobes pro-  
vide direct interface with the processor and external  
cache controller  
• Synchronous self-timed write  
• Asynchronous output enable  
• 3.3V I/Os  
• JEDEC-standard pinout  
• 100-pin TQFP packaging  
• ZZ “sleep” mode  
A synchronous self-timed write mechanism is provided to sim-  
plify the write interface. A synchronous chip enable input and  
an asynchronous output enable input provide easy control for  
bank selection and output three-state control.  
Logic Block Diagram  
MODE  
2
(A ,A )  
0
1
Q
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
CLR  
1
ADSP  
Q
14  
16  
ADDRESS  
REGISTER  
CE  
D
64K X 36  
MEMORY  
ARRAY  
A
[15:0]  
GW  
16  
14  
DQ[31:24],DP3  
Q
Q
Q
D
BYTEWRITE  
BWE  
BWS  
REGISTERS  
3
DQ[23:16],DP2  
D
BYTEWRITE  
REGISTERS  
BWS  
BWS  
2
DQ[15:8],DP1  
D
BYTEWRITE  
1
REGISTERS  
D
DQ[7:0],DP0 Q  
BWS  
BYTEWRITE  
0
REGISTERS  
36  
36  
CE  
CE  
CE  
1
2
D
CE  
ENABLE  
Q
REGISTER  
3
CLK  
INPUT  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ  
[31:0]  
DP  
[3:0]  
Selection Guide  
7C1344–117  
7C1344–100  
7C1344–90  
7C1344–50  
11.0  
Maximum Access Time (ns)  
7.5  
350  
2.0  
8.0  
325  
2.0  
8.5  
300  
2.0  
Maximum Operating Current (mA)  
250  
Maximum Standby Current (mA)  
2.0  
Pentium is a registered trademark of Intel Corporation.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
August 24, 1998  
PRELIMINARY  
CY7C1344  
Pin Configuration  
100-Lead TQFP  
DP2  
1
DP1  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQ16  
DQ17  
VDDQ  
VSSQ  
DQ18  
DQ19  
DQ20  
DQ21  
VSSQ  
VDDQ  
DQ22  
DQ23  
VSSQ  
VDD  
2
DQ15  
DQ14  
3
4
VDDQ  
VSSQ  
DQ13  
DQ12  
DQ11  
DQ10  
VSSQ  
VDDQ  
DQ9  
5
6
7
8
BYTE2  
9
BYTE1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
DQ8  
VSS  
NC  
NC  
VDD  
ZZ  
VSS  
DQ24  
DQ25  
VDDQ  
VSSQ  
DQ26  
DQ27  
DQ28  
DQ29  
VSSQ  
VDDQ  
DQ30  
DQ31  
DP3  
DQ7  
DQ6  
VDDQ  
VSSQ  
DQ5  
DQ4  
DQ3  
DQ2  
VSSQ  
VDDQ  
DQ1  
DQ0  
DP0  
BYTE3  
BYTE0  
2
PRELIMINARY  
CY7C1344  
Pin Descriptions  
TQFP Pin  
Number  
Name  
I/O  
Description  
Address Strobe from Controller, sampled on the rising edge of CLK. When asserted  
LOW, A is captured in the address registers. A are also loaded into the burst  
85  
ADSC  
Input-  
Synchronous  
[15:0]  
[1:0]  
counter. When ADSP and ADSC are both asserted, only ADSP is recognized.  
84  
ADSP  
Input-  
Address Strobe from Processor, sampled on the rising edge of CLK. When asserted  
Synchronous  
LOW, A  
is captured in the address registers. A  
are also loaded into the burst  
[15:0]  
[1:0]  
counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP  
is ignored when CE is deasserted HIGH.  
1
36, 37  
A
A
Input-  
Synchronous  
A , A Address Inputs, These inputs feed the on-chip burst counter as the LSBs as  
1 0  
well as being used to access a particular memory location in the memory array.  
[1:0]  
49 44,  
81–82,  
99–100,  
32–35  
Input-  
Synchronous  
Address Inputs used in conjunction with A to select one of the 64K address loca-  
[15:2]  
[1:0]  
tions. Sampled at the rising edge of the CLK, if CE , CE , and CE are sampled active,  
1 2 3  
and ADSP or ADSC is active LOW.  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes.  
96–93  
BW  
Input-  
[3:0]  
Synchronous  
Sampled on the rising edge. BW controls DQ  
and DP , BW controls DQ  
and  
0
[7:0]  
0
1
[15:8]  
DP , BW controls DQ  
and DP , and BW controls DQ  
and DP . See Write  
1
2
[23:16]  
2
3
[31:24] 3  
Cycle Descriptions table for further details.  
83  
ADV  
Input-  
Synchronous  
Advance input used to advance the on-chip address counter. When LOW, the internal  
burst counter is advanced in a burst sequence. The burst sequence is selected using  
the MODE input.  
87  
88  
BWE  
GW  
Input-  
Synchronous  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal  
must be asserted LOW to conduct a byte write.  
Input-  
Synchronous  
Global Write Input, active LOW. Sampled on the rising edge of CLK. This signal is  
used to conduct a global write, independent of the state of BWE and BW  
. Global  
[3:0]  
writes override byte writes.  
89  
98  
CLK  
Input-Clock  
Clock Input. Used to capture all synchronous inputs to the device.  
CE  
CE  
CE  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in con-  
junction with CE and CE , to select/deselect the device. CE gates ADSP.  
1
2
3
2
3
1
97  
92  
86  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in con-  
junction with CE and CE to select/deselect the device.  
1
3
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in con-  
junction with CE and CE to select/deselect the device.  
1
2
OE  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins.  
Asynchronous When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are  
three-stated, and act as input data pins.  
64  
31  
ZZ  
Input-  
Snooze input. Active HIGH asynchronous. When HIGH, the device enters a low-power  
Asynchronous standby mode in which all other inputs are ignored, but the data in the memory array  
is maintained. Leaving ZZ floating or NC will default the device into an active state.  
MODE  
-
Mode input. Selects the burst order of the device. Tied HIGH selects the interleaved  
burst order. Pulled LOW selects the linear burst order. When left floating or NC, de-  
faults to interleaved burst order.  
30–28,  
25–22,  
19–18,  
13–12,  
9–6, 3-1,  
80–78,  
75–72,  
69–68,  
63–62,  
59–56,  
53–51  
DQ  
,
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is  
triggered by the rising edge of CLK. As outputs, they deliver the data contained in the  
[31:0]  
DP  
[3:0]  
memory location specified by A  
during the previous clock rise of the read cycle.  
[16:0]  
The direction of the pins is controlled by OE in conjunction with the internal control  
logic. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQ  
[31:0]  
and DP  
are placed in a three-state condition. The outputs are automatically  
[3:0]  
three-stated when a Write cycle is detected.  
15, 41, 65,  
91  
V
Power Supply Power supply inputs to the core of the device. Should be connected to 3.3V power  
supply.  
DD  
3
PRELIMINARY  
CY7C1344  
Pin Descriptions (continued)  
TQFP Pin  
Number  
Name  
I/O  
Ground  
Description  
17, 40, 67,  
90  
V
V
Ground for the I/O circuitry of the device. Should be connected to ground of the sys-  
tem.  
SS  
5, 10, 14,  
21, 26, 55,  
60, 71, 76  
Ground  
Ground for the device. Should be connected to ground of the system.  
Power supply for the I/O circuitry. Should be connected to a 3.3V power supply.  
No connects.  
SSQ  
DDQ  
4, 11, 20,  
27, 54, 61,  
70, 77  
V
I/O Power  
Supply  
1,16, 30,  
50–51, 66,  
80  
NC  
-
-
38, 39, 42, DNU  
43  
Do not use pins. Should be left unconnected or tied LOW.  
to the presentation of data to DQ  
precaution, the data lines are three-stated once a write cycle  
is detected, regardless of the state of OE.  
and DP  
. As a safety  
[3:0]  
Functional Description  
[31:0]  
Single Write Accesses Initiated by ADSP  
This access is initiated when the following conditions are sat-  
Single Read Accesses  
isfied at clock rise: (1) CE , CE , and CE are all asserted  
1
2
3
A single read access is initiated when the following conditions  
are satisfied at clock rise: (1) CE , CE , and CE are all as-  
active, and (2) ADSP is asserted LOW. The addresses pre-  
sented are loaded into the address register and the burst  
counter/control logic and delivered to the RAM core. The write  
1
2
3
serted active, and (2) ADSP or ADSC is asserted LOW (if the  
access is initiated by ADSC, the write inputs must be deassert-  
ed during this first cycle). The address presented to the ad-  
dress inputs is latched into the address register and the burst  
counter/control logic and presented to the memory core. If the  
OE input is asserted LOW, the requested data will be available  
inputs (GW, BWE, and BWS  
) are ignored during this first  
[3:0]  
clock cycle. If the write inputs are asserted active (see Write  
Cycle Descriptions table for appropriate states that indicate a  
write) on the next clock rise, the appropriate data will be  
latched and written into the device. Byte writes are allowed.  
at the data outputs a maximum to t after clock rise. ADSP  
During byte writes, BWS controls DQ  
and DP , BWS  
CDV  
0
[7:0]  
0
1
is ignored if CE is HIGH.  
controls DQ  
and DP , BWS controls DQ  
and DP ,  
1
[15:8]  
1
2
[23:16]  
2
and BWS controls DQ  
and DP . All I/Os are three-stat-  
3
[31:24]  
3
Burst Sequences  
ed during a byte write. Since these are common I/O device, the  
asynchronous OE input signal must be deasserted and the  
I/Os must be three-stated prior to the presentation of data to  
The CY7C1344 provides an on-chip 2-bit wraparound burst  
counter inside the SRAM. The burst counter is fed by A  
,
[1:0]  
DQ  
and DP  
. As a safety precaution, the data lines are  
[31:0]  
[3:0]  
and can follow either a linear or interleaved burst order. The  
burst order is determined by the state of the MODE input. A  
LOW on MODE will select a linear burst sequence. A HIGH on  
MODE will select an interleaved burst order. Leaving MODE  
unconnected will cause the device to default to an interleaved  
burst sequence.  
three-stated once a write cycle is detected, regardless of the  
state of OE.  
Single Write Accesses Initiated by ADSC  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE , CE , and CE are all asserted  
1
2
3
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
Table 1. Counter Implementation for the Intel  
Pentium®/80486 Processor’s Sequence  
HIGH, and (4) the write input signals (GW, BWE, and BWS  
)
[3:0]  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
The addresses presented are loaded into the address register  
and the burst counter/control logic and delivered to the RAM  
core. The information presented to DQ  
written into the specified address location. Byte writes are al-  
and DP  
will be  
A
,A  
A
, A  
A
, A  
A
, A  
X + 1 x  
[31:0]  
[3:0]  
X + 1  
x
X + 1  
x
X + 1  
x
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
lowed. During byte writes, BWS controls DQ  
and DP ,  
0
[7:0]  
0
BWS controls DQ  
and DP , BWS controls DQ  
and  
1
[15:8]  
1
2
[23:16]  
DP , and BWS controls DQ  
and DP . All I/Os are  
2
3
[31:24]  
3
three-stated when a write is detected, even a byte write. Since  
these are common I/O device, the asynchronous OE input sig-  
nal must be deasserted and the I/Os must be three-stated prior  
4
PRELIMINARY  
CY7C1344  
Sleep Mode  
Table 2. Counter Implementation for a Linear Sequence  
The ZZ input pin is an asynchronous input. Asserting ZZ HIGH  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed. Ac-  
cesses pending when entering the “sleep” mode are not con-  
sidered valid nor is the completion of the operation guaran-  
teed. The device must be deselected prior to entering the  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
A
, A  
A
, A  
A
, A  
A
, A  
X + 1  
X + 1  
x
X + 1  
x
X + 1  
x
x
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
“sleep” mode. CE , CE , CE ADSP, and ADSC must remain  
1
2
3,  
inactive for the duration of t  
after the ZZ input returns  
ZZREC  
LOW. Leaving ZZ unconnected defaults the device into an ac-  
tive state.  
Cycle Description Table[1, 2, 3]  
ADD  
Cycle Description  
Used  
CE CE  
CE  
X
L
ZZ ADSP ADSP ADV WE  
OE CLK  
DQ  
1
3
2
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Snooze Mode, Power-down  
Read Cycle, Begin Burst  
None  
None  
H
L
X
X
H
X
X
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
None  
L
X
L
L
None  
L
H
H
X
L
None  
X
X
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
X
X
L
X
High-Z  
Q
External  
External  
External  
External  
External  
Next  
L-H  
Read Cycle, Begin Burst  
L
L
L
H
X
L
L-H High-Z  
Write Cycle, Begin Burst  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
Read Cycle, Begin Burst  
L
L
L
H
H
H
H
H
H
L
Read Cycle, Begin Burst  
L
L
L
H
L
L-H High-Z  
L-H  
L-H High-Z  
L-H  
L-H High-Z  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H High-Z  
L-H  
L-H High-Z  
Q
H
X
X
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Notes:  
L-H  
L-H  
D
D
L
1. X=Don't Care, 1=Logic HIGH, 0=Logic LOW.  
2. The SRAM always initiates a read cycle when ADSP asserted, regardless of the state of GW, BWE, or BWS[3:0]. Writes may occur only on subsequent clocks  
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to three-state. OE  
is a don't care for the remainder of the write cycle.  
3. OE is asynchronous and is not sampled with the clock rise. During a read cycle DQ=High-Z when OE is inactive, and DQ=data when OE is active.  
5
PRELIMINARY  
CY7C1344  
Write Cycle Descriptions[1, 2, 3, 4]  
Function  
GW  
1
BWE  
1
BW  
X
1
BW  
X
1
BW  
X
1
BW  
X
1
3
2
1
0
Read  
Read  
1
0
Write Byte 0, DP  
Write Byte 1, DP  
1
0
1
1
1
0
0
1
1
0
1
1
0
1
Write Bytes 1, 0, DP , DP  
1
0
1
1
0
0
0
1
Write Byte 2, DP  
1
0
1
0
1
1
2
Write Bytes 2, 0, DP , DP  
1
0
1
0
1
0
2
0
1
Write Bytes 2, 1, DP , DP  
1
0
1
0
0
1
2
Write Bytes 2, 1, 0, DP , DP , DP  
1
0
1
0
0
0
2
1
0
0
Write Byte 3, DP  
1
0
0
1
1
1
3
Write Bytes 3, 0, DP , DP  
1
0
0
1
1
0
3
0
0
Write Bytes 3, 1, DP , DP  
1
0
0
1
0
1
3
Write Bytes 3, 1, 0, DP , DP , DP  
1
0
0
1
0
0
3
1
Write Bytes 3, 2, DP , DP  
1
0
0
0
1
1
3
2
Write Bytes 3, 2, 0, DP , DP , DP  
1
0
0
0
1
0
3
2
0
1
Write Bytes 3, 2, 1, DP , DP , DP  
1
0
0
0
0
1
3
2
Write All Bytes  
Write All Bytes  
1
0
0
0
0
0
0
X
X
X
X
X
[5]  
DC Input Voltage ........................................... –0.5V to V + 0.5V  
Maximum Ratings  
DD  
Current into Outputs (LOW)......................................... 20 mA  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Static Discharge Voltage .......................................... >2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature ...................................–65°C to +150°C  
Latch-Up Current.................................................... >200 mA  
Ambient Temperature with  
Power Applied...............................................–55°C to +125°C  
Operating Range  
Supply Voltage on V Relative to GND................ –0.5V to +4.6V  
Ambient  
DD  
[6]  
Range Temperature  
V
V
DDQ  
DD  
DC Voltage Applied to Outputs  
[5]  
in High Z State ...............................................–0.5V to V + 0.5V  
DD  
Com’l  
0°C to +70°C  
3.135V to 3.6V 2.375V to V  
DD  
Notes:  
4. When a write cycle is detected, all I/Os are three-stated, even during byte writes.  
5. Minimum voltage equals –2.0V for pulse durations of less than 20 ns.  
6. TA is the “instant on” case temperature.  
6
PRELIMINARY  
CY7C1344  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Test Conditions  
Min. Max. Unit  
V
V
Output HIGH Voltage  
V
V
V
V
= 3.3V, V = Min., I =–4.0 mA  
2.4  
1.7  
V
V
V
V
V
OH  
DDQ  
DDQ  
DDQ  
DDQ  
DD  
OH  
= 2.5V, V = Min., I =–2.0 mA  
DD  
OH  
Output LOW Voltage  
Input HIGH Voltage  
= 3.3V, V = Min., I =8.0 mA  
0.4  
0.7  
OL  
DD  
OL  
= 2.5V, V = Min., I =2.0 mA  
DD  
OL  
V
V
1.7  
V
+
DD  
IH  
IL  
0.3V  
0.8  
1
[5]  
Input LOW Voltage  
–0.3  
V
I
Input Load Current  
GND V V  
1  
µA  
X
I
DDQ  
(except ZZ and MODE)  
Input Current of MODE  
Input = V  
Input = V  
Input = V  
Input = V  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
SS  
5
DDQ  
SS  
Input Current of ZZ  
30  
5
DDQ  
I
I
I
Output Leakage Current  
GND V V Output Disabled  
–5  
OZ  
OS  
DD  
I
DD,  
[7]  
Output Short Circuit Current  
V
V
f=f  
=Max., V =GND  
–300 mA  
DD  
OUT  
V
Operating Supply Current  
=Max., Iout=0mA,  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
11-ns cycle, 90 MHz  
20-ns cycle, 50 MHz  
350  
325  
300  
250  
125  
110  
100  
75  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD  
DD  
=1/t  
.
MAX  
CYC  
I
Automatic CE Power-Down  
Max. V , Device Deselected, 8.5-ns cycle, 117 MHz  
DD  
V
f = f  
SB1  
Current—TTL Inputs switching  
V or V V  
IN  
IH  
IN  
IL  
10-ns cycle, 100 MHz  
11-ns cycle, 90 MHz  
20-ns cycle, 50 MHz  
= 1/t  
MAX  
CYC  
I
I
Automatic CE Power-Down  
Max. V , Device Deselected, Std version - All speeds  
V
f = 0  
10  
SB2  
SB3  
DD  
Current — CMOS Inputs static  
0.3V or V > V  
– 0.3V,  
IN  
IN  
DDQ  
L version - All speeds  
2
Automatic CE Power-Down  
Max. V , Device Deselected, 8.5-ns cycle, 117 MHz  
95  
85  
70  
60  
60  
50  
40  
35  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD  
DDQ  
Current—CMOS Inputs switching, V V  
– 0.3V or V 0.3V,  
IN  
IN  
10-ns cycle, 100 MHz  
11-ns cycle, 90 MHz  
20-ns cycle, 50 MHz  
F=Max  
f=f  
, inputs switching  
MAX  
I
AutomaticCEPower-DownCurrent Max. V , Device Deselected, 8.5-ns cycle, 117 MHz  
DD  
— CMOS Inputs static, F=Max  
SB4  
V
f=f  
V – 0.3V or V 0.3V,  
IN DD IN  
10-ns cycle, 100 MHz  
11-ns cycle, 90 MHz  
20-ns cycle, 50 MHz  
, inputs static  
MAX  
Note:  
7. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.  
7
PRELIMINARY  
CY7C1344  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Test Conditions  
ZZ > V 0.2V  
Min  
Max  
Unit  
I
Snooze mode  
3
mA  
CCZZ  
DD  
standby current  
I
(L Version)  
Snooze mode  
standby current  
ZZ > V 0.2V  
800  
µA  
ns  
ns  
CCZZ  
DD  
t
Deviceoperationto  
ZZ  
ZZ > V 0.2V  
2t  
CYC  
ZZS  
DD  
t
ZZ recovery time  
ZZ < 0.2V  
2t  
CYC  
ZZREC  
Capacitance[8]  
Parameter  
Description  
Test Conditions  
T = 25°C, f = 1 MHz,  
Max.  
Unit  
pF  
C
C
C
Input Capacitance  
6
8
8
IN  
A
V
V
= 3.3V,  
DD  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
CLK  
= 3.3V  
DDQ  
pF  
I/O  
Note:  
8. Tested initially and after any design or process changes that may affect these parameters.  
AC Test Loads and Waveforms  
R1=317  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
OUTPUT  
Z =50  
0
3.0V  
GND  
90%  
10%  
R =50  
L
10%  
3.0 ns  
R2=351  
5 pF  
V =1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
3.0 ns  
(a)  
(b)  
8
PRELIMINARY  
CY7C1344  
[9]  
Switching Characteristics Over the Operating Range  
-117  
-100  
-90  
-50  
Parameter  
Description  
Clock Cycle Time  
Min. Max. Min. Max. Min. Max. Min. Max. Unit  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
8.5  
3.0  
3.0  
2.0  
0.5  
10  
4.0  
4.0  
2.0  
0.5  
11  
4.5  
4.5  
2.0  
0.5  
20  
4.5  
4.5  
2.0  
0.5  
ns  
CYC  
CH  
Clock HIGH  
ns  
Clock LOW  
ns  
CL  
Address Set-Up Before CLK Rise  
Address Hold After CLK Rise  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
ADSP, ADSC Set-Up Before CLK Rise  
ADSP, ADSC Hold After CLK Rise  
ns  
AS  
ns  
AH  
7.5  
8.0  
8.5  
11.0 ns  
CDV  
DOH  
ADS  
ADH  
WES  
WEH  
ADVS  
ADVH  
DS  
2.0  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BWS , GW,BWE Set-Up Before CLK Rise  
[1:0]  
BWS , GW,BWE Hold After CLK Rise  
[1:0]  
ADV Set-Up Before CLK Rise  
ADV Hold After CLK Rise  
Data Input Set-Up Before CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Set-Up  
DH  
CES  
CEH  
CHZ  
CLZ  
EOHZ  
EOLZ  
EOV  
Chip Enable Hold After CLK Rise  
[10,11]  
Clock to High-Z  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
ns  
ns  
ns  
ns  
ns  
[10,11]  
Clock to Low-Z  
0
0
0
0
0
0
0
0
[10,12]  
OE HIGH to Output High-Z  
[10,12]  
OE LOW to Output Low-Z  
OE LOW to Output Valid  
Note:  
9. Unless otherwise noted, test conditions assume signal transition time of 2.5 ns or less, timing reference levels of 1.25V, input pulse levels of 0 to 2.5V, and  
output loading of the specified IOL/IOH and load capacitance. Shown in (a) and (b) of AC test loads.  
10.  
tCHZ, tCLZ, tEOHZ, and tEOLZ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
11. At any given voltage and temperature, tCHZ (max) is less than tCLZ (min).  
12. This parameter is sampled and not 100% tested.  
9
PRELIMINARY  
CY7C1344  
Timing Diagrams  
Read/Write Timing  
t
t
t
CYC  
CL  
CH  
CLK  
t
AH  
t
t
AS  
A
D
B
C
ADD  
t
ADH  
ADS  
ADSP  
t
t
ADH  
ADS  
ADSC  
ADV  
t
t
ADVH  
ADVS  
t
CEH  
t
CES  
CE  
CE  
1
t
t
CEH  
CES  
t
t
WES  
WEH  
WE  
OE  
ADSP ignored  
with CE HIGH  
1
t
EOHZ  
D(C)  
t
t
CLZ  
Data  
D
(C+3)  
Q
(B+3)  
D
(C+1)  
D
(C+2)  
Q
(B+2)  
Q
(B+1)  
Q(B)  
Q(B)  
Q(A)  
Q(D)  
In/Out  
CDV  
t
DOH  
t
CHZ  
Device originally  
deselected  
WE is the combination of BWE, BWS  
and GW to define a write cycle (see Write Cycle Descriptions table).  
[1:0]  
CE is the combination of CE and CE . All chip selects need to be active in order to select  
2
3
the device. RAx stands for Read Address X, WAx stands for Write Address X, Dx stands for Data-in X,  
Qx stands for Data-out X.  
= UNDEFINED  
= DON’T CARE  
10  
PRELIMINARY  
CY7C1344  
Timing Diagrams (continued)  
Pipeline Timing  
t
t
t
CYC  
CL  
CH  
CLK  
t
t
AS  
C
E
F
G
H
B
D
A
ADD  
t
ADH  
ADS  
ADSP  
ADSC  
ADV  
t
t
CEH  
CES  
CE  
CE  
1
t
t
WES  
WEH  
WE  
OE  
ADSP ignored  
with CE HIGH  
1
t
t
CLZ  
Data  
D (E)  
D (F)  
D (H)  
Q(A)  
D (G)  
Q(B)  
Q(C)  
Q(D)  
In/Out  
CDV  
t
DOH  
t
CHZ  
Device originally  
deselected  
WE is the combination of BWE, BWS  
, and GW to define a write cycle (see Write Cycle Descriptions table).  
[1:0]  
CE is the combination of CE and CE . All chip selects need to be active in order to select  
2
3
the device. RAx stands for Read Address X, WAx stands for Write Address X, Dx stands for Data-in X,  
Qx stands for Data-out X.  
= UNDEFINED  
= DON’T CARE  
11  
PRELIMINARY  
CY7C1344  
Timing Diagrams (continued)  
OE Switching Waveforms  
OE  
t
EOV  
t
EOHZ  
three-state  
I/Os  
t
EOLZ  
12  
Timing Diagrams (continued)  
[13,14]  
ZZ Mode Timing  
CLK  
ADSP  
HIGH  
ADSC  
CE  
1
2
LOW  
HIGH  
CE  
CE  
3
ZZ  
t
ZZS  
I
CC  
I
(active)  
CC  
t
ZZREC  
I
CCZZ  
I/Os  
Three-state  
Note:  
13. Device must be deselected when entering ZZ mode. See Cycle Description for all possible signal conditions to deselect the device.  
14. I/Os are in three-state when exiting ZZ sleep mode.  
PRELIMINARY  
CY7C1344  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
117  
100  
90  
Ordering Code  
Package Type  
CY7C1344–117AC  
CY7C1344–100AC  
CY7C1344–90AC  
CY7C1344–50AC  
A101  
A101  
A101  
A101  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
Commercial  
Commercial  
Commercial  
Commercial  
50  
Document #: 38-00724  
Package Diagram  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
© Cypress Semiconductor Corporation, 1998. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C1344F

2-Mbit (64K x 36) Flow-Through Sync SRAM
CYPRESS

CY7C1344F-100AC

2-Mbit (64K x 36) Flow-Through Sync SRAM
CYPRESS

CY7C1344F-100ACT

Cache SRAM, 64KX36, 8ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1344H

2-Mbit (64K x 36) Flow-Through Sync SRAM
CYPRESS

CY7C1344H-100AXC

2-Mbit (64K x 36) Flow-Through Sync SRAM
CYPRESS

CY7C1344H-100AXI

2-Mbit (64K x 36) Flow-Through Sync SRAM
CYPRESS

CY7C1344H-133AXC

2-Mbit (64K x 36) Flow-Through Sync SRAM
CYPRESS

CY7C1344H-133AXI

2-Mbit (64K x 36) Flow-Through Sync SRAM
CYPRESS

CY7C1345-50AC

x36 Fast Synchronous SRAM
ETC

CY7C1345-90AC

x36 Fast Synchronous SRAM
ETC

CY7C13451G-100BZXE

Cache SRAM, 128KX36, CMOS, PBGA165, FBGA-165
CYPRESS
ETC