CY7C1345-50AC [ETC]

x36 Fast Synchronous SRAM ; X36高速同步SRAM
CY7C1345-50AC
型号: CY7C1345-50AC
厂家: ETC    ETC
描述:

x36 Fast Synchronous SRAM
X36高速同步SRAM

静态存储器
文件: 总16页 (文件大小:319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1345  
128K x 36 Synchronous Flow-Through 3.3V Cache RAM  
Features  
Functional Description  
• Supports117-MHzmicroprocessorcachesystems with  
zero wait states  
• 128K by 36 common I/O  
• Fast clock-to-output times  
— 7.5 ns (117-MHz version)  
The CY7C1345 is a 3.3V, 128K by 36 synchronous cache  
RAM designed to interface with high-speed microprocessors  
with minimum glue logic. Maximum access delay from clock  
rise is 7.5 ns (117-MHz version). A 2-bit on-chip counter cap-  
tures the first address in a burst and increments the address  
automatically for the rest of the burst access.  
• Two-bit wrap-around counter supporting either  
interleaved or linear burst sequence  
• Separate processorand controller address strobes pro-  
vide direct interface with the processor and external  
cache controller  
• Synchronous self-timed write  
• Asynchronous output enable  
• Supports 3.3V & 2.5V I/O levels  
• JEDEC-standard pinout  
• 100-pin TQFP packaging  
• ZZ “sleep” mode  
The CY7C1345 allows either interleaved or linear burst se-  
quences, selected by the MODE input pin. A HIGH selects an  
interleaved burst sequence, while a LOW selects a linear burst  
sequence. Burst accesses can be initiated with the Processor  
Address Strobe (ADSP) or the cache Controller Address  
Strobe (ADSC) inputs. Address advancement is controlled by  
the address advancement (ADV) input.  
A synchronous self-timed write mechanism is provided to sim-  
plify the write interface. A synchronous chip enable input and  
an asynchronous output enable input provide easy control for  
bank selection and output three-state control.  
Logic Block Diagram  
MODE  
2
(A ,A )  
0
1
Q
Q
0
CLK  
ADV  
ADSC  
BURST  
COUNTER  
CE  
CLR  
1
ADSP  
Q
15  
17  
ADDRESS  
REGISTER  
CE  
D
128K X 36  
MEMORY  
ARRAY  
A
[16:0]  
GW  
17  
15  
DQ[31:24],DP3  
Q
Q
Q
D
BYTEWRITE  
BWE  
BWS  
REGISTERS  
3
DQ[23:16],DP2  
D
BYTEWRITE  
REGISTERS  
BWS  
BWS  
2
DQ[15:8],DP1  
D
D
BYTEWRITE  
1
REGISTERS  
DQ[7:0],DP0 Q  
BWS  
BYTEWRITE  
0
REGISTERS  
36  
36  
CE  
CE  
CE  
1
2
D
ENABLE  
Q
CE  
REGISTER  
3
CLK  
INPUT  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ  
[31:0]  
DP  
[3:0]  
Selection Guide  
7C1345-117  
7.5  
7C1345-100  
8.0  
7C1345-90  
8.5  
7C1345-50  
11.0  
Maximum Access Time (ns)  
Maximum Operating Current (mA)  
350  
325  
300  
250  
Maximum Standby Current (mA)  
10.0  
10.0  
10.0  
10.0  
Pentium is a registered trademark of Intel Corporation.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
May 8, 2000  
CY7C1345  
Pin Configuration  
100-Lead TQFP  
DP2  
1
DP1  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQ16  
DQ17  
VDDQ  
VSSQ  
DQ18  
DQ19  
DQ20  
DQ21  
VSSQ  
VDDQ  
DQ22  
DQ23  
VSSQ  
VDD  
2
DQ15  
DQ14  
3
4
VDDQ  
VSSQ  
DQ13  
DQ12  
DQ11  
DQ10  
VSSQ  
VDDQ  
DQ9  
5
6
7
8
BYTE2  
9
BYTE1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
DQ8  
100-Pin TQFP  
CY7C1345  
VSS  
NC  
NC  
VDD  
ZZ  
VSS  
DQ24  
DQ25  
VDDQ  
VSSQ  
DQ26  
DQ27  
DQ28  
DQ29  
VSSQ  
VDDQ  
DQ30  
DQ31  
DP3  
DQ7  
DQ6  
VDDQ  
VSSQ  
DQ5  
DQ4  
DQ3  
DQ2  
VSSQ  
VDDQ  
DQ1  
DQ0  
DP0  
BYTE3  
BYTE0  
2
CY7C1345  
Pin Descriptions  
Pin Number  
Name  
I/O  
Description  
Address Strobe from Controller, sampled on the rising edge of CLK. When asserted  
LOW, A is captured in the address registers. A are also loaded into the burst  
85  
ADSC  
Input-  
Synchronous  
[15:0]  
[1:0]  
counter. When ADSP and ADSC are both asserted, only ADSP is recognized.  
84  
ADSP  
Input-  
Address Strobe from Processor, sampled on the rising edge of CLK. When asserted  
Synchronous  
LOW, A  
is captured in the address registers. A  
are also loaded into the burst  
[1:0]  
[15:0]  
counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP  
is ignored when CE is deasserted HIGH.  
1
36, 37  
A
A
Input-  
Synchronous  
A , A Address Inputs. These inputs feed the on-chip burst counter as the LSBs as  
1 0  
well as being used to access a particular memory location in the memory array.  
[1:0]  
49 44,  
8182,  
99100,  
3235  
Input-  
Synchronous  
Address Inputs used in conjunction with A to select one of the 64K address  
[16:2]  
[1:0]  
locations. Sampled at the rising edge of the CLK, if CE , CE , and CE are sampled  
1 2 3  
active, and ADSP or ADSC is active LOW.  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes.  
9693  
BW  
Input-  
[3:0]  
Synchronous  
Sampled on the rising edge. BW controls DQ  
and DP , BW controls DQ  
0
[7:0]  
0
1
[15:8]  
and DP , BW controls DQ  
and DP , and BW controls DQ  
and DP . See  
1
2
[23:16]  
2
3
[31:24] 3  
Write Cycle Description table for further details.  
83  
ADV  
Input-  
Synchronous  
Advance Input, used to advance the on-chip address counter. When LOW the inter-  
nal burst counter is advanced in a burst sequence. The burst sequence is selected  
using the MODE input.  
87  
88  
BWE  
GW  
Input-  
Synchronous  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal  
must be asserted LOW to conduct a byte write.  
Input-  
Synchronous  
Global Write Input, active LOW. Sampled on the rising edge of CLK. This signal is  
used to conduct a global write, independent of the state of BWE and BW  
writes override byte writes.  
. Global  
[3:0]  
89  
98  
CLK  
Input-Clock  
Clock Input. Used to capture all synchronous inputs to the device.  
CE  
CE  
CE  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in  
conjunction with CE and CE to select/deselect the device. CE gates ADSP.  
1
2
3
2
3
1
97  
92  
86  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in  
conjunction with CE and CE to select/deselect the device.  
1
3
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in  
conjunction with CE and CE to select/deselect the device.  
1
2
OE  
ZZ  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O  
Asynchronous pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins  
are three-stated, and act as input data pins.  
64  
31  
Input-  
Snooze Input. Active HIGH asynchronous. When HIGH, the device enters a  
Asynchronous low-power standby mode in which all other inputs are ignored, but the data in the  
memory array is maintained.Leaving ZZ floating or NC will default the device into an  
active state. ZZ pin has an internal pull-down.  
MODE  
-
Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved  
burst order. Pulled LOW selects the linear burst order. When left floating or NC,  
defaults to interleaved burst order. Mode pin has an internal pull-up.  
3028,  
2522,  
DQ  
DP  
,
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is  
triggered by the rising edge of CLK. As outputs, they deliver the data contained in  
[31:0]  
[3:0]  
1918,  
the memory location specified by A  
cycle. The direction of the pins is controlled by OE in conjunction with the internal  
control logic. When OE is asserted LOW, the pins behave as outputs. When HIGH,  
during the previous clock rise of the read  
[16:0]  
1312, 96,  
31, 8078,  
7572,  
DQ  
and DP  
are placed in a three-state condition. The outputs are automat-  
[31:0]  
[3:0]  
6968,  
ically three-stated when a Write cycle is detected.  
6362,  
5956,  
5351  
15, 41, 65,  
91  
V
Power Supply Power supply inputs to the core of the device. Should be connected to 3.3V power  
supply.  
DD  
3
CY7C1345  
Pin Descriptions (continued)  
Pin Number  
Name  
I/O  
Ground  
Description  
17, 40, 67,  
90  
V
Ground for the I/O circuitry of the device. Should be connected to ground of the  
system.  
SS  
5, 10, 14, 21,  
26, 55, 60,  
71, 76  
V
V
Ground  
Ground for the device. Should be connected to ground of the system.  
Power supply for the I/O circuitry. Should be connected to a 3.3V power supply.  
No connects.  
SSQ  
4, 11, 20, 27,  
54, 61, 70,  
77  
I/O Power  
Supply  
DDQ  
1, 16, 30,  
5051, 66,  
80  
NC  
-
-
38, 39, 42,  
43  
DNU  
Do not use pins. Should be left unconnected or tied LOW.  
counter/control logic and delivered to the RAM core. The write  
Functional Overview  
inputs (GW, BWE, and BW  
) are ignored during this first  
[3:0]  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. Maximum access delay from  
clock cycle. If the write inputs are asserted active (see Write  
Cycle Descriptions table for appropriate states that indicate a  
write) on the next clock rise, the appropriate data will be  
latched and written into the device. Byte writes are allowed.  
the clock rise (t  
) is 7.5 ns (117-MHz device).  
CDV  
The CY7C1345 supports secondary cache in systems utilizing  
either a linear or interleaved burst sequence. The interleaved  
burst order supports Pentium and i486 processors. The linear  
burst sequence is suited for processors that utilize a linear  
burst sequence. The burst order is user selectable, and is de-  
termined by sampling the MODE input. Accesses can be initi-  
ated with either the Processor Address Strobe (ADSP) or the  
Controller Address Strobe (ADSC). Address advancement  
through the burst sequence is controlled by the ADV input. A  
two-bit on-chip wraparound burst counter captures the first ad-  
dress in a burst sequence and automatically increments the  
address for the rest of the burst access.  
During byte writes, BW controls DQ  
, BW controls  
0
[7:0]  
1
DQ  
, BW controls DQ  
, and BW controls DQ  
.
[31:24]  
[15:8]  
2
[23:16]  
3
All I/Os are three-stated during a byte write. Since this is a  
common I/O device, the asynchronous OE input signal must  
be deasserted and the I/Os must be three-stated prior to the  
presentation of data to DQ  
. As a safety precaution, the  
[31:0]  
data lines are three-stated once a write cycle is detected, re-  
gardless of the state of OE.  
Single Write Accesses Initiated by ADSC  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE , CE , and CE are all asserted  
1
2
3
Byte write operations are qualified with the Byte Write Enable  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
(BWE) and Byte Write Select (BW  
) inputs. A Global Write  
[3:0]  
HIGH, and (4) the write input signals (GW, BWE, and BW  
)
[3:0]  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip synchro-  
nous self-timed write circuitry.  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
The addresses presented are loaded into the address register  
and the burst counter/control logic and delivered to the RAM  
Three synchronous Chip Selects (CE , CE , CE ) and an  
1
2
3
core. The information presented to DQ  
will be written into  
[31:0]  
asynchronous Output Enable (OE) provide for easy bank se-  
the specified address location. Byte writes are allowed. During  
byte writes, BW controls DQ , BW controls DQ , BW  
2
lection and output three-state control. ADSP is ignored if CE  
is HIGH.  
1
0
[7:0]  
1
[15:8]  
. All I/Os are  
controls DQ  
, and BWS controls DQ  
[23:16]  
3
[31:24]  
three-stated when a write is detected, even a byte write. Since  
this is a common I/O device, the asynchronous OE input signal  
must be deasserted and the I/Os must be three-stated prior to  
Single Read Accesses  
A single read access is initiated when the following conditions  
are satisfied at clock rise: (1) CE , CE , and CE are all as-  
1
2
3
the presentation of data to DQ  
. As a safety precaution, the  
[31:0]  
serted active, and (2) ADSP or ADSC is asserted LOW (if the  
access is initiated by ADSC, the write inputs must be deassert-  
ed during this first cycle). The address presented to the ad-  
dress inputs is latched into the address register and the burst  
counter/control logic and presented to the memory core. If the  
OE input is asserted LOW, the requested data will be available  
data lines are three-stated once a write cycle is detected, re-  
gardless of the state of OE.  
Burst Sequences  
The CY7C1345 provides an on-chip 2-bit wraparound burst  
at the data outputs a maximum to t  
after clock rise. ADSP  
counter inside the SRAM. The burst counter is fed by A  
,
CDV  
[1:0]  
is ignored if CE is HIGH.  
and can follow either a linear or interleaved burst order. The  
burst order is determined by the state of the MODE input. A  
LOW on MODE will select a linear burst sequence. A HIGH on  
MODE will select an interleaved burst order. Leaving MODE  
unconnected will cause the device to default to a interleaved  
burst sequence.  
1
Single Write Accesses Initiated by ADSP  
This access is initiated when the following conditions are sat-  
isfied at clock rise: (1) CE , CE , and CE are all asserted  
1
2
3
active, and (2) ADSP is asserted LOW. The addresses pre-  
sented are loaded into the address register and the burst  
4
CY7C1345  
Sleep Mode  
Table 1. Counter Implementation for the Intel  
Pentium®/80486 Processors Sequence  
The ZZ input pin is an asynchronous input. Asserting ZZ HIGH  
places the SRAM in a power conservation sleepmode. Two  
clock cycles are required to enter into or exit from this sleep”  
mode. While in this mode, data integrity is guaranteed. Access-  
es pending when entering the sleepmode are not considered  
valid nor is the completion of the operation guaranteed. The  
device must be deselected prior to entering the sleepmode.  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A
, A  
A
,A  
A
, A  
A
, A  
X + 1 x  
X + 1  
x
X + 1  
x
X + 1  
x
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
CE , CE , CE , ADSP, and ADSC must remain inactive for the  
1
2
3
duration of t  
after the ZZ input returns LOW. Leaving ZZ  
ZZREC  
unconnected defaults the device into an active state.  
Table 2. Counter Implementation for a Linear Sequence  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A
, A  
A
, A  
A
, A  
A
, A  
X + 1 x  
X + 1  
x
X + 1  
x
X + 1  
x
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
I
t
t
Snooze mode stand- ZZ > V 0.2V  
3
ns  
CCZZ  
DD  
by current  
Device operation to  
ZZ  
ZZ > V 0.2V  
2t  
CYC  
ns  
ZZS  
DD  
ZZ recovery time  
ZZ < 0.2V  
2t  
mA  
ZZREC  
CYC  
5
CY7C1345  
Cycle Description Table[1, 2, 3]  
ADD  
Cycle Description  
Used  
CE CE  
CE  
X
L
ZZ ADSP ADSC ADV WE  
OE CLK  
DQ  
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
1
3
2
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Snooze Mode, Power-down  
Read Cycle, Begin Burst  
None  
H
L
X
X
H
X
X
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
None  
None  
L
X
L
L
None  
L
H
H
X
L
None  
X
X
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
X
X
L
X
High-Z  
Q
External  
External  
External  
External  
External  
Next  
L-H  
Read Cycle, Begin Burst  
L
L
L
H
X
L
L-H High-Z  
Write Cycle, Begin Burst  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
Read Cycle, Begin Burst  
L
L
L
H
H
H
H
H
H
L
Read Cycle, Begin Burst  
L
L
L
H
L
L-H High-Z  
L-H  
L-H High-Z  
L-H  
L-H High-Z  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H High-Z  
L-H  
L-H High-Z  
Q
H
X
X
L-H  
L-H  
D
D
Write Cycle, Suspend Burst  
L
Notes:  
1. X=Don't Care,1=Logic HIGH, 0=Logic LOW.  
2. The SRAM always initiates a read cycle when ADSP asserted, regardless of the state of GW, BWE, or BWS[3:0]. Writes may occur only on subsequent clocks  
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to three-state. OE  
is a don't care for the remainder of the write cycle.  
3. OE is asynchronous and is not sampled with the clock rise. During a read cycle DQ=High-Z when OE is inactive, and DQ=data when OE is active.  
6
CY7C1345  
Write Cycle Descriptions[1, 2, 3, 4]  
Function  
GW  
1
BWE  
1
BW  
X
1
BW  
X
1
BW  
X
1
BW  
X
1
3
2
1
0
Read  
Read  
1
0
Write Byte 0, DP  
Write Byte 1, DP  
1
0
1
1
1
0
0
1
1
0
1
1
0
1
Write Bytes 1, 0, DP , DP  
1
0
1
1
0
0
0
1
Write Byte 2, DP  
1
0
1
0
1
1
2
Write Bytes 2, 0, DP , DP  
1
0
1
0
1
0
2
0
1
Write Bytes 2, 1, DP , DP  
1
0
1
0
0
1
2
Write Bytes 2, 1, 0, DP , DP , DP  
1
0
1
0
0
0
2
1
0
0
Write Byte 3, DP  
1
0
0
1
1
1
3
Write Bytes 3, 0, DP , DP  
1
0
0
1
1
0
3
0
0
Write Bytes 3, 1, DP , DP  
1
0
0
1
0
1
3
Write Bytes 3, 1, 0, DP , DP , DP  
1
0
0
1
0
0
3
1
Write Bytes 3, 2, DP , DP  
1
0
0
0
1
1
3
2
Write Bytes 3, 2, 0, DP , DP , DP  
1
0
0
0
1
0
3
2
0
1
Write Bytes 3, 2, 1, DP , DP , DP  
1
0
0
0
0
1
3
2
Write All Bytes  
Write All Bytes  
1
0
0
0
0
0
0
X
X
X
X
X
[5]  
DC Input Voltage ................................ 0.5V to V + 0.5V  
Maximum Ratings  
DD  
Current into Outputs (LOW)......................................... 20 mA  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Static Discharge Voltage .......................................... >2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature .................................65°C to +150°C  
Latch-Up Current.................................................... >200 mA  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on V Relative to GND........ 0.5V to +4.6V  
Ambient  
DD  
[6]  
Range Temperature  
V
V
DDQ  
DD  
DC Voltage Applied to Outputs  
[5]  
in High Z State ....................................0.5V to V + 0.5V  
DD  
Coml  
0°C to +70°C  
3.135V to 3.6V 2.375V to V  
DD  
Notes:  
4. When a write cycle is detected, all I/Os are three-stated, even during byte writes.  
5. Minimum voltage equals 2.0V for pulse durations of less than 20 ns.  
6. TA is the case temperature.  
7
CY7C1345  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Test Conditions  
Min. Max. Unit  
V
V
Output HIGH Voltage  
V
V
V
V
V
= 3.3V, V = Min., I = 4.0 mA  
2.4  
2.0  
V
V
V
V
V
OH  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DD  
OH  
= 2.5V, V = Min., I = 2.0 mA  
DD  
OH  
Output LOW Voltage  
= 3.3V, V = Min., I = 8.0 mA  
0.4  
0.7  
OL  
DD  
OL  
= 2.5V, V = Min., I = 2.0 mA  
DD  
OL  
V
V
Input HIGH Voltage  
Input HIGH Voltage  
= 3.3V  
2.0  
1.7  
V
+
DD  
IH  
IH  
0.3V  
V
= 2.5V  
V
+
V
DDQ  
DD  
0.3V  
[5]  
V
V
Input LOW Voltage  
V
V
= 3.3V  
= 2.5V  
0.3  
0.3  
1  
0.8  
0.7  
1
V
V
IL  
IL  
DDQ  
DDQ  
[5]  
Input LOW Voltage  
I
Input Load Current  
GND V V  
µA  
X
I
DDQ  
(except ZZ and MODE)  
Input Current of MODE  
Input Current of ZZ  
Input = V  
Input = V  
Input = V  
Input = V  
30  
5  
µA  
µA  
µA  
µA  
µA  
SS  
5
DDQ  
SS  
30  
5
DDQ  
I
I
I
Output Leakage Current  
GND V V Output Disabled  
5  
OZ  
OS  
DD  
I
DD,  
[7]  
Output Short Circuit Current  
V
= Max., V  
= GND  
300 mA  
DD  
OUT  
V
Operating Supply Current  
V
f = f  
= Max., I  
= 0 mA,  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
11-ns cycle, 90 MHz  
20-ns cycle, 50 MHz  
350  
325  
300  
250  
125  
110  
100  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD  
DD  
OUT  
= 1/t  
CYC  
MAX  
I
Automatic CE Power-Down  
CurrentTTL Inputs  
Max. V , Device Deselected, 8.5-ns cycle, 117 MHz  
DD  
V
f = f  
SB1  
V or V V  
IN IH IN IL  
10-ns cycle, 100 MHz  
11-ns cycle, 90 MHz  
20-ns cycle, 50 MHz  
All speeds  
= 1/t  
,
MAX  
CYC  
inputs switching  
I
I
Automatic CE Power-Down  
CurrentCMOS Inputs  
Max. V , Device Deselected,  
V
f = 0, inputs static  
10  
SB2  
SB3  
DD  
0.3V or V > V  
0.3V,  
IN  
IN  
DDQ  
Automatic CE Power-Down  
CurrentCMOS Inputs  
Max. V , Device Deselected,  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
11-ns cycle, 90 MHz  
20-ns cycle, 50 MHz  
95  
85  
75  
65  
30  
mA  
mA  
mA  
mA  
mA  
DD  
V
V  
0.3V or V 0.3V,  
IN  
DDQ IN  
f = f  
, inputs switching  
MAX  
I
Automatic CE Power-Down  
Max. V , Device Deselected,  
DD  
SB4  
CurrentTTL Inputs  
V V 0.3V or V 0.3V, f=0,  
inputs static  
IN DD IN  
Notes:  
7. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.  
8
CY7C1345  
Capacitance[8]  
Parameter  
Description  
Input Capacitance  
I/O Capacitance  
Test Conditions  
T = 25°C, f = 1 MHz,  
Max.  
4.0  
Unit  
pF  
C
C
IN  
A
V
= 5.0V  
DD  
4.0  
pF  
I/O  
AC Test Loads and Waveforms  
R1=317  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
OUTPUT  
Z =50  
0
3.0V  
GND  
90%  
10%  
R =50  
L
10%  
3.0 ns  
R2=351  
5 pF  
V =1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
3.0 ns  
(a)  
(b)  
[9]  
Switching Characteristics Over the Operating Range  
-117  
-100  
-90  
-50  
Parameter  
Description  
Clock Cycle Time  
Min. Max. Min. Max. Min. Max. Min. Max. Unit  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
8.5  
3.0  
3.0  
2.0  
0.5  
10  
4.0  
4.0  
2.0  
0.5  
11  
20  
4.5  
4.5  
2.0  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CYC  
CH  
Clock HIGH  
4.5  
4.5  
2.0  
0.5  
Clock LOW  
CL  
Address Set-Up Before CLK Rise  
Address Hold After CLK Rise  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
ADSP, ADSC Set-Up Before CLK Rise  
ADSP, ADSC Hold After CLK Rise  
AS  
AH  
7.5  
8.0  
8.5  
11.0  
CDV  
DOH  
ADS  
ADH  
WES  
WEH  
ADVS  
ADVH  
DS  
2.0  
2.0  
0.5  
2.0  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
BWS  
BWS  
, GW,BWE Set-Up Before CLK Rise 2.0  
[1:0]  
[1:0]  
, GW,BWE Hold After CLK Rise  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
ADV Set-Up Before CLK Rise  
ADV Hold After CLK Rise  
Data Input Set-Up Before CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Set-Up  
DH  
CES  
CEH  
CHZ  
CLZ  
EOHZ  
EOLZ  
EOV  
Chip Enable Hold After CLK Rise  
[10, 11]  
Clock to High-Z  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
[10, 11]  
Clock to Low-Z  
0
0
0
0
0
0
0
0
[10, 12]  
OE HIGH to Output High-Z  
[10, 12]  
OE LOW to Output Low-Z  
OE LOW to Output Valid  
Notes:  
8. Tested initially and after any design or process changes that may affect these parameters.  
9. Unless otherwise noted, test conditions assume signal transition time of 2.5 ns or less, timing reference levels of 1.25V, input pulse levels of 0 to 2.5V, and  
output loading of the specified IOL/IOH and load capacitance. Shown in (a) and (b) of AC test loads.  
10.  
tCHZ, tCLZ, tEOHZ, and tEOLZ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
11. At any given voltage and temperature, tCHZ (max) is less than tCLZ (min).  
12. This parameter is sampled and not 100% tested.  
9
CY7C1345  
Timing Diagrams  
[13, 14]  
Write Cycle Timing  
Single W rite  
Burst W rite  
Pipelined Write  
t
Unselected  
CH  
t
CYC  
CLK  
t
ADH  
t
ADS  
t
ADSP ignored with CE inactive  
CL  
1
ADSP  
t
ADH  
t
ADSC initiated write  
ADS  
ADSC  
ADV  
t
t
ADVH  
ADVS  
t
ADV Must Be Inactive for ADSP Write  
WD2  
AS  
WD3  
WD1  
ADD  
GW  
WE  
t
AH  
t
WH  
t
WH  
t
WS  
t
WS  
t
t
CES  
CEH  
CE masks ADSP  
1
CE  
1
t
t
CEH  
CES  
Unselected with CE  
2
CE  
CE  
2
3
t
CES  
t
CEH  
OE  
t
DH  
t
DS  
High-Z  
High-Z  
Data In  
3a  
2a  
= UNDEFINED  
2c  
2d  
1a  
2b  
= DONT CARE  
Notes:  
13. WE is the combination of BWE, BW[3:0] and GW to define a write cycle (see Write Cycle Descriptions table).  
14. WDx stands for Write Data to Address X.  
10  
CY7C1345  
Timing Diagrams (continued)  
[13, 15]  
Read Cycle Timing  
Burst Read  
Single Read  
Unselected  
t
t
CYC  
CH  
Pipelined Read  
CLK  
t
t
ADH  
ADS  
t
ADSP ignored with CE inactive  
CL  
1
ADSP  
t
ADS  
ADSC initiated read  
ADSC  
ADV  
t
ADVS  
t
ADH  
Suspend Burst  
t
t
ADVH  
AS  
ADD  
GW  
WE  
RD3  
RD1  
RD2  
t
AH  
t
WS  
t
WS  
t
WH  
t
t
CES  
CEH  
t
WH  
CE masks ADSP  
1
CE  
1
2
Unselected with CE  
2
CE  
t
t
CES  
t
CEH  
CE  
3
t
CEH  
CES  
OE  
t
EOV  
t
OEHZ  
t
DOH  
t
CDV  
3a  
Data Out  
2d  
2a  
2b  
2c  
1a  
t
CLZ  
t
CHZ  
= DONT CARE  
= UNDEFINED  
Note:  
15. RDx stands for Read Data from Address X.  
11  
CY7C1345  
Timing Diagrams (continued)  
Read/Write Timing  
t
t
t
CYC  
CL  
CH  
CLK  
t
AH  
t
t
AS  
A
D
B
C
ADD  
t
ADH  
ADS  
ADSP  
t
t
ADH  
ADS  
ADSC  
ADV  
t
t
ADVH  
ADVS  
t
CEH  
t
CES  
CE  
CE  
1
t
t
CEH  
CES  
t
t
WES  
WEH  
WE  
OE  
ADSP ignored  
with CE HIGH  
1
t
EOHZ  
D(C)  
t
t
CLZ  
Data  
D
(C+3)  
Q
(B+3)  
D
(C+1)  
D
(C+2)  
Q
(B+2)  
Q
(B+1)  
Q(B)  
Q(B)  
Q(A)  
Q(D)  
In/Out  
CDV  
t
DOH  
t
CHZ  
Device originally  
deselected  
WE is the combination of BWE, BWS  
, and GW to define a write cycle (see Write Cycle Descriptions table).  
[1:0]  
CE is the combination of CE and CE . All chip selects need to be active in order to select  
2
3
the device. RAx stands for Read Address X, WAx stands for Write Address X, Dx stands for Data-in X,  
Qx stands for Data-out X.  
= UNDEFINED  
= DONT CARE  
12  
CY7C1345  
Timing Diagrams (continued)  
Pipeline Timing  
t
t
t
CYC  
CL  
CH  
CLK  
t
AS  
WD1  
WD2  
WD3  
WD4  
RD1  
RD2  
RD3  
RD4  
ADD  
t
t
ADS  
ADH  
ADSC initiated Reads  
ADSC  
ADSP initiated Reads  
ADSP  
ADV  
t
t
CEH  
CES  
CE  
1
CE  
t
t
WEH  
WES  
WE  
ADSP ignored  
with CE HIGH  
1
OE  
t
CLZ  
Data In/Out  
1a  
In  
1a  
2a  
3a  
4a  
2a  
In  
3a  
In  
4a  
Out Out Out Out  
In  
t
CDV  
t
DOH  
Back to Back Reads  
t
CHZ  
Back to Back Writes  
= UNDEFINED  
= DONT CARE  
13  
CY7C1345  
Timing Diagrams (continued)  
OE Switching Waveforms  
OE  
t
EOV  
t
EOHZ  
three-state  
I/Os  
t
EOLZ  
14  
CY7C1345  
Timing Diagrams (continued)  
[16, 17]  
ZZ Mode Timing  
CLK  
ADSP  
HIGH  
ADSC  
CE  
1
2
LOW  
HIGH  
CE  
CE  
3
ZZ  
t
ZZS  
I
CC  
I
(active)  
CC  
t
ZZREC  
I
CCZZ  
I/Os  
Three-state  
Note:  
16. Device must be deselected when entering ZZ mode. See Cycle Description Table for all possible signal conditions to deselect the device.  
17. I/Os are in three-state when exiting ZZ sleep mode.  
15  
CY7C1345  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
117  
100  
90  
Ordering Code  
Package Type  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
CY7C1345117AC  
CY7C1345100AC  
CY7C134590AC  
CY7C134550AC  
A101  
A101  
A101  
A101  
Commercial  
50  
Document #: 38-00725-B  
Package Diagram  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C1345-90AC

x36 Fast Synchronous SRAM
ETC

CY7C13451G-100BZXE

Cache SRAM, 128KX36, CMOS, PBGA165, FBGA-165
CYPRESS
ETC

CY7C1345A-100AC

Standard SRAM, 128KX36, 8ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1345A-100AC

128KX36 STANDARD SRAM, 8ns, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
ROCHESTER

CY7C1345A-100BGC

Standard SRAM, 128KX36, 8ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

CY7C1345A-117BGC

Standard SRAM, 128KX36, 7.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

CY7C1345B

128K x 36 Synchronous Flow-Through 3.3V Cache RAM
CYPRESS

CY7C1345B-100AC

128K x 36 Synchronous Flow-Through 3.3V Cache RAM
CYPRESS

CY7C1345B-100ACT

Cache SRAM, 128KX36, 8ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1345B-100AI

128K x 36 Synchronous Flow-Through 3.3V Cache RAM
CYPRESS

CY7C1345B-100BGC

128K x 36 Synchronous Flow-Through 3.3V Cache RAM
CYPRESS