CY7C1381CV25-133BZC [CYPRESS]

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM; 18兆位( 512K ×36 / 1M ×18 )流通型SRAM
CY7C1381CV25-133BZC
型号: CY7C1381CV25-133BZC
厂家: CYPRESS    CYPRESS
描述:

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
18兆位( 512K ×36 / 1M ×18 )流通型SRAM

存储 内存集成电路 静态存储器 时钟
文件: 总35页 (文件大小:501K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1381CV25  
CY7C1383CV25  
18-Mbit (512K x 36/1M x 18) Flow-Through SRAM  
Features  
Functional Description[1]  
• Supports 133-MHz bus operations  
• 512K X 36/1M X 18 common I/O  
• 2.5V +/–5% core power supply (VDD  
The CY7C1381CV25/CY7C1383CV25 is a 2.5V, 512K x 36  
and 1M x 18 Synchronous Flow through SRAMs, respectively  
designed to interface with high-speed microprocessors with  
minimum glue logic. Maximum access delay from clock rise is  
6.5 ns (133-MHz version). A 2-bit on-chip counter captures the  
first address in a burst and increments the address automati-  
cally for the rest of the burst access. All synchronous inputs  
are gated by registers controlled by a positive-edge-triggered  
Clock Input (CLK). The synchronous inputs include all  
)
• 2.5V I/O supply (VDDQ  
)
• Fast clock-to-output times  
— 6.5 ns (133-MHz version)  
— 7.5 ns (117-MHz version)  
— 8.5 ns (100-MHz version)  
addresses, all data inputs, address-pipelining Chip Enable  
[2]  
(
), depth-expansion Chip Enables (CE and  
), Burst  
CE3  
CE1  
2
Control inputs (  
,
,
), Write Enables  
(
ADV  
BWx  
and  
,
• Provide high-performance 2-1-1-1 access rate  
ADSC ADSP  
), and Global Write (  
BWE  
). Asynchronous  
GW  
and  
inputs  
User-selectable burst counter supporting Intel  
(
)
and the ZZ pin  
OE  
.
include the Output Enable  
Pentiuminterleaved or linear burst sequences  
The CY7C1381CV25/CY7C1383CV25 allows either inter-  
leaved or linear burst sequences, selected by the MODE input  
pin. A HIGH selects an interleaved burst sequence, while a  
LOW selects a linear burst sequence. Burst accesses can be  
initiated with the Processor Address Strobe (ADSP) or the  
cache Controller Address Strobe (ADSC) inputs. Address  
advancement is controlled by the Address Advancement  
(ADV) input.  
• Separate processor and controller address strobes  
• Synchronous self-timed write  
• Asynchronous output enable  
• Offered in JEDEC-standard 100-pin TQFP,119-ball BGA  
and 165-ball fBGA packages  
• JTAG boundary scan for BGA and fBGA packages  
• “ZZ” Sleep Mode option  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (  
) or  
ADSP  
Address Strobe Controller (  
) are active. Subsequent  
ADSC  
burst addresses can be internally generated as controlled by  
the Advance pin ( ).  
ADV  
The CY7C1381CV25/CY7C1383CV25 operates from a +2.5V  
core power supply. All outputs also operate with a +2.5 supply.  
All  
inputs  
and  
outputs  
are  
JEDEC-standard  
JESD8-5-compatible.  
Selection Guide  
133 MHz  
117 MHz  
7.5  
100 MHz  
Unit  
ns  
mA  
mA  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
6.5  
210  
70  
8.5  
175  
70  
190  
70  
Notes:  
1. For best–practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE CE are for TQFP and 165 fBGA package only. 119 BGA is offered only in 1 Chip Enable.  
3,  
2
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05241 Rev. *B  
Revised April 19, 2004  
CY7C1381CV25  
CY7C1383CV25  
1
Logic Block Diagram – CY7C1381CV25 (512K  
ADDRESS  
REGISTER  
A0, A1, A  
A[1:0]  
MODE  
ADV  
CLK  
Q1  
BURST  
COUNTER  
AND LOGIC  
Q0  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
BW  
D
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
DQ  
C, DQPC  
BW  
C
BYTE  
OUTPUT  
BUFFERS  
DQs  
WRITE REGISTER  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQP  
DQP  
DQP  
A
DQ  
B,  
DQPB  
B
C
DQB, DQPB  
BYTE  
BW  
B
BYTE  
WRITE REGISTER  
DQPD  
WRITE REGISTER  
DQ  
A, DQPA  
BYTE  
DQ  
A, DQPA  
BW  
A
WRITE REGISTER  
BYTE  
BWE  
WRITE REGISTER  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
2
Logic Block Diagram – CY7C1383CV25 (1M x 18)  
ADDRESS  
A0,A1,A  
REGISTER  
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ  
B,DQPB  
DQ  
B,DQPB  
WRITE DRIVER  
WRITE REGISTER  
BW  
B
A
MEMORY  
ARRAY  
OUTPUT  
BUFFERS  
DQs  
DQP  
DQP  
SENSE  
AMPS  
A
B
DQ  
A,DQPA  
DQA,DQPA  
WRITE REGISTER  
WRITE DRIVER  
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
Document #: 38-05241 Rev. *B  
Page 2 of 35  
CY7C1381CV25  
CY7C1383CV25  
Pin Configurations  
100-pin TQFP Pinout  
DQPC  
1
DQPB  
NC  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQB  
NC  
2
NC  
DQC  
3
DQB  
NC  
NC  
3
VDDQ  
VDDQ  
VDDQ  
4
4
5
VDDQ  
VSSQ  
NC  
VSSQ  
VSSQ  
VSSQ  
5
DQC  
6
DQB  
NC  
6
DQC  
7
DQB  
NC  
7
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
DQC  
8
DQB  
DQB  
8
DQC  
9
DQB  
DQB  
9
VSSQ  
10  
VSSQ  
VSSQ  
10  
VDDQ  
11  
VDDQ  
VDDQ  
11  
DQC  
12  
DQB  
DQB  
12  
DQC  
13  
DQB  
DQB  
13  
NC  
14  
VSS  
NC  
14  
VDD  
15  
NC  
VDD  
CY7C1383CV25  
(1M x 18)  
15  
CY7C1381CV25  
(512K x 36)  
NC  
16  
VDD  
NC  
16  
VDD  
ZZ  
VSS  
17  
ZZ  
VSS  
17  
DQD  
18  
DQA  
DQB  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
DQA  
DQB  
19  
VDDQ  
20  
VDDQ  
VDDQ  
20  
VSSQ  
21  
VSSQ  
VSSQ  
21  
DQD  
22  
DQA  
DQB  
22  
DQD  
23  
DQA  
DQB  
23  
DQD  
24  
DQA  
DQPB  
24  
DQD  
25  
DQA  
NC  
25  
NC  
VSSQ  
26  
VSSQ  
VSSQ  
26  
VSSQ  
VDDQ  
NC  
VDDQ  
27  
VDDQ  
VDDQ  
27  
DQD  
28  
DQA  
NC  
28  
DQD  
29  
DQA  
NC  
29  
NC  
DQPD  
30  
DQPA  
NC  
NC  
30  
Document #: 38-05241 Rev. *B  
Page 3 of 35  
CY7C1381CV25  
CY7C1383CV25  
Pin Configurations (continued)  
119-ball BGA (1 Chip Enable with JTAG)  
CY7C1381CV25 (512K x 36)  
1
2
3
4
5
6
7
VDDQ  
A
A
A
A
VDDQ  
A
ADSP  
B
C
NC  
NC  
A
A
A
A
A
A
A
A
NC  
NC  
ADSC  
VDD  
DQC  
DQC  
VDDQ  
DQPC  
DQC  
DQC  
VSS  
VSS  
VSS  
NC  
CE1  
OE  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
DQB  
VDDQ  
D
E
F
DQC  
DQC  
VDDQ  
DQD  
DQD  
VDDQ  
DQD  
DQC  
DQC  
VDD  
DQB  
DQB  
VDD  
DQA  
DQA  
DQA  
DQA  
DQB  
DQB  
VDDQ  
DQA  
DQA  
VDDQ  
DQA  
G
H
J
BWC  
VSS  
NC  
ADV  
GW  
VDD  
CLK  
NC  
BWE  
A1  
BWB  
VSS  
NC  
DQD  
VSS  
VSS  
K
L
M
N
DQD  
DQD  
DQD  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
P
R
DQD  
NC  
DQPD  
A
VSS  
MODE  
A0  
VDD  
VSS  
NC  
DQPA  
A
DQA  
NC  
T
U
NC  
VDDQ  
NC  
TMS  
A
TDI  
A
TCK  
A
TDO  
NC  
NC  
ZZ  
VDDQ  
CY7C1383CV25 (1M x 18)  
2
A
A
1
3
A
A
4
5
A
A
A
VSS  
VSS  
VSS  
VSS  
VSS  
6
A
7
A
B
C
D
E
F
G
H
J
K
L
M
N
P
VDDQ  
NC  
NC  
DQB  
NC  
VDDQ  
NC  
DQB  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
VDDQ  
DQA  
NC  
VDDQ  
ADSP  
ADSC  
VDD  
A
A
DQPA  
NC  
A
A
NC  
DQB  
NC  
DQB  
NC  
VDD  
VSS  
VSS  
VSS  
BWB  
VSS  
NC  
NC  
CE1  
OE  
ADV  
DQA  
NC  
DQA  
VDD  
NC  
DQA  
NC  
GW  
VDD  
NC  
VSS  
NC  
DQB  
VSS  
CLK  
NC  
BWE  
A1  
DQA  
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
VSS  
VSS  
VSS  
VSS  
NC  
VDDQ  
NC  
BWA  
VSS  
VSS  
VSS  
DQA  
NC  
DQPB  
A0  
DQA  
R
T
NC  
NC  
A
A
MODE  
A
VDD  
NC  
NC  
A
A
A
NC  
ZZ  
U
VDDQ  
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
Document #: 38-05241 Rev. *B  
Page 4 of 35  
CY7C1381CV25  
CY7C1383CV25  
Pin Configurations (continued)  
165-ball fBGA (3 Chip Enable)  
CY7C1381CV25 (512K x 36)  
1
NC / 288M  
NC  
DQPC  
DQC  
2
A
A
NC  
DQC  
DQC  
DQC  
DQC  
VSS  
3
4
5
6
7
8
9
10  
11  
NC  
NC / 144M  
DQPB  
DQB  
CE1  
BWC  
BWB  
CE3  
BWE  
GW  
VSS  
VSS  
VSS  
ADSC  
ADV  
A
A
B
C
D
E
F
G
H
J
K
L
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
BWD  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
DQB  
DQB  
DQB  
DQB  
NC  
DQA  
DQA  
DQA  
DQC  
DQB  
DQC  
DQC  
NC  
DQD  
DQD  
DQD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQB  
ZZ  
DQA  
DQA  
DQA  
DQD  
DQD  
DQD  
DQD  
DQPD  
NC  
DQD  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
A
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
A0  
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1383CV25 (1M x 18)  
1
NC / 288M  
NC  
2
3
4
5
6
7
8
9
10  
11  
A
A
CE1  
BWB  
NC  
CE  
BWE  
GW  
VSS  
VSS  
ADSC  
ADV  
A
A
3
A
NC  
DQB  
DQB  
DQB  
DQB  
VSS  
NC  
NC  
NC  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
NC  
NC  
NC  
NC  
NC / 144M  
DQPA  
DQA  
B
C
D
E
F
G
H
J
K
L
NC  
NC  
NC  
NC  
NC  
VSS  
DQB  
DQB  
DQB  
VSS  
DQA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQA  
DQA  
ZZ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
NC  
DQB  
DQPB  
NC  
NC  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
A
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
MODE NC / 36M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05241 Rev. *B  
Page 5 of 35  
CY7C1381CV25  
CY7C1383CV25  
CY7C1381CV25–Pin Definitions  
TQFP  
(3-Chip  
Enable)  
BGA  
fBGA  
(3-Chip  
Enable)  
(1-Chip  
Enable)  
Name  
I/O  
Description  
A0, A1, A  
37,36,32,33,34, P4,N4,A2,B2,C2 R6,P6,A2,A10,  
Input-  
Address Inputs used to select one of the  
35,42,43,44,45, ,R2,A3,B3,C3,T B2,B10,N6,P3, Synchronous 512K address locations. Sampled at the  
46,47,48,49,50, 3,T4,A5,B5,C5, P4,P8,P9,P10,  
81,82,99,100 T5,A6,B6,C6,R6 P11,R3,R4,R8,  
R9,R10,R11  
rising edge of the CLK if ADSP or ADSC is  
active LOW, and CE1, CE2, and CE3[2] are  
sampled active. A[1:0] feed the 2-bit counter.  
93,94,95,96  
88  
L5,G5,G3,L3  
H4  
B5,A5,A4,B4  
B7  
Input-  
Byte Write Select Inputs, active LOW.  
BWA,BWB  
BWC,BWD  
Synchronous Qualified with BWE to conduct byte writes to  
the SRAM. Sampled on the rising edge of  
CLK.  
Input-  
Global Write Enable Input, active LOW.  
GW  
Synchronous When asserted LOW on the rising edge of  
CLK, a global write is conducted (ALL bytes  
are written, regardless of the values on  
BW[A:D]and BWE).  
CLK  
CE1  
CE2  
89  
98  
K4  
E4  
B6  
A3  
Input-  
Clock  
Clock Input. Used to capture all  
synchronous inputs to the device. Also used  
to increment the burst counter when ADV is  
asserted LOW, during a burst operation.  
Input-  
Chip Enable 1 Input, active LOW. Sampled  
Synchronous on the rising edge of CLK. Used in  
conjunction with CE2 and CE3[2] to  
select/deselect the device. ADSP is ignored  
if CE1 is HIGH.  
97  
92  
86  
-
-
B3  
A6  
B8  
Input-  
Chip Enable 2 Input, active HIGH.  
Synchronous Sampled on the rising edge of CLK. Used in  
conjunction with CE1 and CE3[2] to  
select/deselect the device.  
[2]  
Input-  
Chip Enable 3 Input, active LOW. Sampled  
CE3  
Synchronous on the rising edge of CLK. Used  
in  
conjunction with CE1 and CE2 to  
select/deselect the device.  
F4  
Input-  
Output Enable, asynchronous input,  
OE  
Asynchronous active LOW. Controls the direction of the I/O  
pins. When LOW, the I/O pins behave as  
outputs. When deasserted HIGH, I/O pins  
are tri-stated, and act as input data pins. OE  
is masked during the first clock of a read  
cycle when emerging from a deselected  
state.  
83  
84  
G4  
A4  
A9  
B9  
Input-  
Advance Input signal, sampled on the  
ADV  
Synchronous rising edge of CLK. When asserted, it  
automatically increments the address in a  
burst cycle.  
Input-  
Address Strobe from Processor, sampled  
ADSP  
Synchronous on the rising edge of CLK, active LOW.  
When asserted LOW, addresses presented  
to the device are captured in the address  
registers. A[1:0] are also loaded into the burst  
counter. When ADSP and ADSC are both  
asserted, only ADSP is recognized. ASDP is  
ignored when  
CE1 is deasserted HIGH  
Document #: 38-05241 Rev. *B  
Page 6 of 35  
CY7C1381CV25  
CY7C1383CV25  
CY7C1381CV25–Pin Definitions (continued)  
TQFP  
(3-Chip  
Enable)  
BGA  
fBGA  
(3-Chip  
Enable)  
(1-Chip  
Enable)  
Name  
ADSC  
I/O  
Description  
85  
B4  
A8  
Input-  
Address Strobe from Controller, sampled  
Synchronous on the rising edge of CLK, active LOW.  
When asserted LOW, addresses presented  
to the device are captured in the address  
registers. A[1:0] are also loaded into the burst  
counter. When ADSP and ADSC are both  
.
asserted, only ADSP is recognized  
87  
64  
M4  
T7  
A7  
Input-  
Byte Write Enable Input, active LOW.  
BWE  
ZZ  
Synchronous Sampled on the rising edge of CLK. This  
signal must be asserted LOW to conduct a  
byte write.  
H11  
Input-  
ZZ “sleep” Input, active HIGH. When  
Asynchronous asserted HIGH places the device in a  
non-time-critical “sleep” condition with data  
integrity preserved. For normal operation,  
this pin has to be LOW or left floating. ZZ pin  
has an internal pull-down.  
52,53,56,57,58, K6,L6,M6,N6,K7 M11,L11,K11,  
I/O-  
Bidirectional Data I/O lines. As inputs, they  
DQs  
59,62,63,68,69, ,L7,N7,P7,E6,F  
J11,J10,K10,  
Synchronous feed into an on-chip data register that is  
triggered by the rising edge of CLK. As  
outputs, they deliver the data contained in  
the memory location specified by the  
72,73,74,75,78, 6,G6,H6,D7,E7, L10,M10,D10,  
79,2,3,6,7,8,9, G7,H7,D1,E1,G E10,F10,G10,  
12,13,18,19,22, 1,H1,E2,F2,G2, D11,E11,F11,  
23,24,25,28,29 H2,K1,L1,N1,P1  
,K2,L2,M2,N2  
G11,D1,E1,  
F1,G1,D2,E2,  
F2,G2,J1,K1,  
L1,M1,J2,  
addresses presented during the previous  
clock rise of the read cycle. The direction of  
the pins is controlled by OE. When OE is  
asserted LOW, the pins behave as outputs.  
When HIGH, DQs and DQP[A:D] are placed  
K2,L2,M2,  
The outputs are  
in a tri-state condition.  
automatically tri-stated during the data  
portion of a write sequence, during the first  
clock when emerging from a deselected  
state, and when the device is deselected,  
regardless of the state of OE.  
51,80,1,30  
31  
P6,D6,D2,P2 N11,C11,C1,N1  
I/O-  
Bidirectional Data Parity I/O Lines.  
DQP[A:D]  
MODE  
Synchronous Functionally, these signals are identical to  
DQs. During write sequences, DQP[A:D] is  
controlled by BW[A:D] correspondingly.  
R3  
R1  
Input-Static Selects Burst Order. When tied to GND  
selects linear burst sequence. When tied to  
VDD or left floating selects interleaved burst  
sequence. This is a strap pin and should  
remain static during device operation. Mode  
Pin has an internal pull-up.  
VDD  
15,41,65,91  
J2,C4,J4,R4,J6  
D4,D8,E4,  
E8,F4,F8,  
G4,G8,H4,  
H8,J4,J8,  
K4,K8,L4,  
L8,M4,M8  
Power Supply Power supply inputs to the core of the  
device.  
Document #: 38-05241 Rev. *B  
Page 7 of 35  
CY7C1381CV25  
CY7C1383CV25  
CY7C1381CV25–Pin Definitions (continued)  
TQFP  
(3-Chip  
Enable)  
BGA  
fBGA  
(3-Chip  
Enable)  
(1-Chip  
Enable)  
Name  
VDDQ  
I/O  
Description  
4,11,20,27,  
54,61,70,77  
A1,F1,J1,M1,U1  
C3,C9,D3,  
D9,E3,E9,  
F3,F9,G3,  
G9,J3,J9,  
K3,K9,L3,  
L9,M3,M9,  
N3,N9  
I/O Power  
Supply  
Power supply for the I/O circuitry.  
,
A7,F7,J7,M7,U7  
VSS  
17,40,67,90 H2,D3,E3,F3,H3  
C4,C5,C6,  
C7,C8,D5,  
Ground  
Ground for the core of the device.  
,K3,  
M3,N3,  
D6,D7,E5,  
P3,D5,E5,F5,H5  
,K5,  
E6,E7,F5,  
F6,F7,G5,  
M5,N5,P5  
G6,G7,H5,  
H6,H7,J5,  
J6,J7,K5,K6,K7,  
L5,L6,L7,M5,M6  
,M7,N4,N8  
VSSQ  
TDO  
5,10,21,26,  
55,60,71,76  
-
-
I/O Ground Ground for the I/O circuitry.  
-
U5  
P7  
JTAG serial Serial data-out to the JTAG circuit.  
output  
Delivers data on the negative edge of TCK.  
Synchronous If the JTAG feature is not being utilized, this  
pin should be left unconnected. This pin is  
not available on TQFP packages.  
TDI  
-
U3  
U2  
P5  
R5  
JTAG serial Serial data-In to the JTAG circuit. Sampled  
input  
ontherisingedgeofTCK. IftheJTAGfeature  
Synchronous is not being utilized, this pin can be left  
floating or connected to VDD through a pull  
up resistor. This pin is not available on TQFP  
packages.  
TMS  
-
JTAG serial Serial data-In to the JTAG circuit. Sampled  
input  
ontherisingedgeofTCK. IftheJTAGfeature  
Synchronous is not being utilized, this pin can be discon-  
nected or connected to VDD. This pin is not  
available on TQFP packages.  
TCK  
NC  
-
U4  
R7  
JTAG-Clock Clock input to the JTAG circuitry. If the  
JTAG feature is not being utilized, this pin  
must be connected to VSS. This pin is not  
available on TQFP packages.  
16,38,39,66  
B1,C1,R1,T1,T2  
A1,A11,B1,  
-
No Connects. Not internally connected to  
the die. 18M, 36M, 72M, 144M and 288M are  
address expansion pins are not internally  
connected to the die.  
,J3,D4,L4,J5,R5 B11,C2,C10,H1,  
,T6,U6,B7,C7,R  
7
H3,H9,  
H10,N2,N5,N7,  
N10,P1,P2,R2  
VSS/DNU  
14  
-
-
Ground/DNU This pin can be connected to Ground or  
should be left floating.  
Document #: 38-05241 Rev. *B  
Page 8 of 35  
CY7C1381CV25  
CY7C1383CV25  
CY7C1383CV25:Pin Definitions  
TQFP  
(3-Chip  
Enable)  
BGA  
fBGA  
(3-Chip  
Enable)  
(1-Chip  
Enable)  
Name  
I/O  
Description  
A0, A1, A  
37,36,32,33,34, P4,N4,A2,B2,  
35,42,43,44,45, C2,R2,T2,A3,  
46,47,48,49,50, B3,C3,T3,A5,  
80,81,82,99,100 B5,C5,T5,A6,  
B6,C6,R6,T6  
R6,P6,A2,  
A10,A11,B2,  
B10,N6,P3,P4,  
P8,P9,P10,  
Input-  
Address Inputs used to select one of the  
Synchronous 1M address locations. Sampled at the ris-  
ing edge of the CLK if ADSP or ADSC is  
active LOW, and CE1, CE2, and CE3[2] are  
sampled active. A[1:0] feed the 2-bit counter.  
P11,R3,R4,  
R8,R9,R10,R11  
93,94  
L5,G3  
B5,A4  
Input-  
Byte Write Select Inputs, active LOW.  
BWA,BWB  
GW  
Synchronous Qualified with BWE to conduct byte writes  
to the SRAM. Sampled on the rising edge of  
CLK.  
88  
H4  
B7  
Input-  
Global Write Enable Input, active LOW.  
Synchronous When asserted LOW on the rising edge of  
CLK, a global write is conducted (ALL bytes  
are written, regardless of the values on  
BW[A:B] and BWE).  
87  
89  
98  
M4  
K4  
E4  
A7  
B6  
A3  
Input-  
Byte Write Enable Input, active LOW.  
BWE  
CLK  
Synchronous Sampled on the rising edge of CLK. This  
signal must be asserted LOW to conduct a  
byte write.  
Input-  
Clock  
Clock Input. Used to capture all  
synchronous inputs to the device. Also used  
to increment the burst counter when ADV is  
asserted LOW, during a burst operation.  
Input-  
Chip Enable 1 Input, active LOW.  
CE1  
CE2  
Synchronous Sampled on the rising edge of CLK. Used in  
conjunction with CE2 and CE3[2] to  
select/deselect the device. ADSP is ignored  
if CE1 is HIGH.  
97  
92  
86  
-
-
B3  
A6  
B8  
Input-  
Chip Enable 2 Input, active HIGH.  
Synchronous Sampled on the rising edge of CLK. Used in  
conjunction with CE1 and CE3[2] to  
select/deselect the device.  
[2]  
Input-  
Chip Enable 3 Input, active LOW.  
CE3  
Synchronous Sampled on the rising edge of CLK.  
Used in  
conjunction with CE1 and CE2 to  
select/deselect the device.  
F4  
Input-  
Output Enable, asynchronous input,  
OE  
Asynchronous active LOW. Controls the direction of the  
I/O pins. When LOW, the I/O pins behave as  
outputs. When deasserted HIGH, I/O pins  
are tri-stated, and act as input data pins. OE  
is masked during the first clock of a read  
cycle when emerging from a deselected  
state.  
83  
G4  
A9  
Input-  
Advance Input signal, sampled on the  
ADV  
Synchronous rising edge of CLK. When asserted, it  
automatically increments the address in a  
burst cycle.  
Document #: 38-05241 Rev. *B  
Page 9 of 35  
CY7C1381CV25  
CY7C1383CV25  
CY7C1383CV25:Pin Definitions (continued)  
TQFP  
(3-Chip  
Enable)  
BGA  
fBGA  
(3-Chip  
Enable)  
(1-Chip  
Enable)  
Name  
ADSP  
I/O  
Description  
84  
A4  
B9  
Input-  
Address Strobe from Processor,  
Synchronous sampled on the rising edge of CLK,  
active LOW. When asserted LOW,  
addresses presented to the device are  
captured in the address registers. A[1:0] are  
also loaded into the burst counter. When  
ADSP and ADSC are both asserted, only  
ADSP is recognized. ASDP is ignored when  
CE1 is deasserted HIGH  
85  
64  
B4  
T7  
A8  
Input-  
Address Strobe from Controller,  
ADSC  
Synchronous sampled on the rising edge of CLK,  
active LOW. When asserted LOW,  
addresses presented to the device are  
captured in the address registers. A[1:0] are  
also loaded into the burst counter. When  
and ADSC are both asserted, only  
ADSP  
.
ADSP is recognized  
ZZ  
H11  
Input-  
ZZ “sleep” Input, active HIGH. When  
Asynchronous asserted HIGH places the device in a  
non-time-critical “sleep” condition with data  
integrity preserved. For normal operation,  
this pin has to be LOW or left floating. ZZ pin  
has an internal pull-down.  
58,59,62,63,68, P7,K7,G7,E7,F6  
69,72,73,8,9,12, ,H6,L6,N6,D1,H  
J10,K10,  
L10,M10,  
D11,E11,  
F11,G11,J1,K1,  
L1,M1,  
I/O-  
Bidirectional Data I/O lines. As inputs,  
DQs  
Synchronous they feed into an on-chip data register that  
is triggered by the rising edge of CLK. As  
outputs, they deliver the data contained in  
the memory location specified by the  
13,  
1,L1,N1,E2,G2,  
K2,M2  
18,19,22,23  
D2,E2,F2,  
G2  
addresses presented during the previous  
clock rise of the read cycle. The direction of  
the pins is controlled by OE. When OE is  
asserted LOW, the pins behave as outputs.  
When HIGH, DQs and DQP[A:B] are placed  
The outputs are  
in a tri-state condition.  
automatically tri-stated during the data  
portion of a write sequence, during the first  
clock when emerging from a deselected  
state, and when the device is deselected,  
regardless of the state of OE.  
74,24  
31  
D6,P2  
R3  
C11,N1  
R1  
I/O-  
Bidirectional Data Parity I/O Lines.  
DQP[A:B]  
MODE  
Synchronous Functionally, these signals are identical to  
DQs. During write sequences, DQP[A:B] is  
controlled by BW[A:B] correspondingly.  
Input-Static  
Selects Burst Order. When tied to GND  
selects linear burst sequence. When tied to  
VDD or left floating selects interleaved burst  
sequence. This is a strap pin and should  
remain static during device operation. Mode  
Pin has an internal pull-up.  
Document #: 38-05241 Rev. *B  
Page 10 of 35  
CY7C1381CV25  
CY7C1383CV25  
CY7C1383CV25:Pin Definitions (continued)  
TQFP  
(3-Chip  
Enable)  
BGA  
fBGA  
(3-Chip  
Enable)  
(1-Chip  
Enable)  
Name  
VDD  
I/O  
Description  
15,41,65,91  
C4,J2,J4,J6,R4  
D4,D8,E4,  
E8,F4,F8,  
G4,G8,  
Power Supply Power supply inputs to the core of the  
device.  
H4,H8,J4,  
J8,K4,K8,  
L4,L8,M4,  
M8  
VDDQ  
4,11,20,27,  
54,61,70,77  
A1,A7,F1,F7,J1,  
J7,M1,M7,U1,U  
7
C3,C9,D3,  
D9,E3,E9,  
F3,F9,G3,  
G9,J3,J9,  
K3,K9,L3,  
L9,M3,M9,  
N3,N9  
I/O Power  
Supply  
Power supply for the I/O circuitry.  
Ground for the core of the device.  
VSS  
17,40,67,90  
D3,D5,E3,E5,F3  
,F5,G5,H3,  
H5,K3,K5,L3,M3  
,
C4,C5,C6,  
C7,C8,D5,  
D6,D7,E5,  
E6,E7,F5,  
F6,F7,G5,  
G6,G7,H1,  
H2,H5,H6,  
H7,J5,J6,J7,K5,  
K6,K7,L5,L6,L7,  
M5,  
Ground  
M5,N3,  
N5,P3,P5  
M6,M7,N4,  
N8  
VSSQ  
TDO  
5,10,21,26,  
-
-
I/O Ground  
Ground for the I/O circuitry.  
55,60,71,76,  
-
U5  
P7  
JTAG serial Serial data-out to the JTAG circuit.  
output  
Delivers data on the negative edge of TCK.  
Synchronous If the JTAG feature is not being utilized, this  
pin should be left unconnected. This pin is  
not available on TQFP packages.  
TDI  
-
U3  
P5  
JTAG serial Serial data-In to the JTAG circuit.  
input  
Sampled on the rising edge of TCK. If the  
Synchronous JTAG feature is not being utilized, this pin  
can be left floating or connected to VDD  
through a pull up resistor. This pin is not  
available on TQFP packages.  
TMS  
TCK  
-
-
U2  
U4  
R5  
R7  
JTAG serial Serial data-In to the JTAG circuit.  
input  
Sampled on the rising edge of TCK. If the  
Synchronous JTAG feature is not being utilized, this pin  
can be disconnected or connected to VDD  
.
This pin is not available on TQFP packages.  
JTAG-Clock Clock input to the JTAG circuitry. If the  
JTAG feature is not being utilized, this pin  
must be connected to VSS. This pin is not  
available on TQFP packages.  
Document #: 38-05241 Rev. *B  
Page 11 of 35  
CY7C1381CV25  
CY7C1383CV25  
CY7C1383CV25:Pin Definitions (continued)  
TQFP  
(3-Chip  
Enable)  
BGA  
fBGA  
(3-Chip  
Enable)  
(1-Chip  
Enable)  
Name  
NC  
I/O  
Description  
1,2,3,6,7,16,25, B1,B7,C1,C7,D  
A1,A5,B1,  
-
No Connects. Not internally connected to  
the die. 36M, 72M, 144M and 288M are  
address expansion pins are not internally  
connected to the die.  
28,29,30,38,39, 2,D4,D7,E1,E6, B4,B11,C1,C2,C  
51,52,53,56,57, H2,F2,G1,G6,H 10,D1,D10,E1,E  
66,75,78,79,95, 7,J3,J5,K1,K6,L 10,F1,F10,G1,G  
96  
14  
4,L2,L7,M6,N2, 10,H3,H9,H10,J  
N7,L7,P1,P6,R1 2,J11,K2,K11,  
,R5,R7,T1,T4,U L2,L11,M2,M11,  
6
N2,N5,N7,N10,  
N11,P1,P2,R2  
VSS/DNU  
-
-
Ground/DNU This pin can be connected to Ground or  
should be left floating.  
Document #: 38-05241 Rev. *B  
Page 12 of 35  
CY7C1381CV25  
CY7C1383CV25  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
HIGH, and (4) the write input signals (GW, BWE, and BWX)  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. Maximum access delay from  
the clock rise (tCDV) is 6.5 ns (133-MHz device).  
The addresses presented are loaded into the address register  
and the burst counter/control logic and delivered to the  
memory core. The information presented to DQ[A:D] will be  
written into the specified address location. Byte writes are  
allowed. All I/Os are tri-stated when a write is detected, even  
a byte write. Since this is a common I/O device, the  
asynchronous OE input signal must be deasserted and the  
I/Os must be tri-stated prior to the presentation of data to DQs.  
As a safety precaution, the data lines are tri-stated once a write  
The CY7C1381CV25 supports secondary cache in systems  
utilizing either a linear or interleaved burst sequence. The  
interleaved burst order supports Pentium® and i486  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is  
user-selectable, and is determined by sampling the MODE  
input. Accesses can be initiated with either the Processor  
Address Strobe (ADSP) or the Controller Address Strobe  
(ADSC). Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
cycle is detected, regardless  
of the state of OE.  
Burst Sequences  
The CY7C1381CV25 provides an on-chip two-bit wraparound  
burst counter inside the SRAM. The burst counter is fed by  
A
[1:0], and can follow either a linear or interleaved burst order.  
The burst order is determined by the state of the MODE input.  
A LOW on MODE will select a linear burst sequence. A HIGH  
on MODE will select an interleaved burst order. Leaving  
MODE unconnected will cause the device to default to a inter-  
leaved burst sequence.  
Byte write operations are qualified with the Byte Write Enable  
X
(BWE) and Byte Write Select (BW ) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed write circuitry.  
Interleaved Burst Address Table  
Three synchronous Chip Selects (CE1, CE2, CE3[2]) and an  
(MODE = Floating or VDD  
)
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if  
is HIGH.  
CE1  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
Single Read Accesses  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
A single read access is initiated when the following conditions  
[2]  
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all  
asserted active, and (2) ADSP or ADSC is asserted LOW (if  
the access is initiated by ADSC, the write inputs must be  
deasserted during this first cycle). The address presented to  
the address inputs is latched into the address register and the  
burst counter/control logic and presented to the memory core.  
If the OE input is asserted LOW, the requested data will be  
available at the data outputs a maximum to tCDV after clock  
Linear Burst Address Table  
(MODE = GND)  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
rise. ADSP is ignored if CE1 is HIGH.  
Address  
A1: A0  
Single Write Accesses Initiated by ADSP  
This access is initiated when the following conditions are  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
CE1, CE2, CE3[2] are all asserted  
satisfied at clock rise: (1)  
ADSP is asserted LOW. The addresses  
active, and (2)  
presented are loaded into the address register and the burst  
inputs (  
GW, BWE, and BWX)are ignored during this first clock  
cycle. If the write inputs are asserted active ( see Write Cycle  
Descriptions table for appropriate states that indicate a write)  
on the next clock rise,the appropriate data will be latched and  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
All I/Os are  
written into the device.Byte writes are allowed.  
tri-stated during a byte write.Since this is a common I/O  
device, the asynchronous  
OE input signal must be deasserted  
and the I/Os must be tri-stated prior to the presentation of data  
to DQs. As a safety precaution, the data lines are tri-stated  
once a write cycle is detected, regardless of the state of OE.  
“sleep” mode. CE , CE , CE [2], ADSP, and ADSC must  
the  
1
2
3
Single Write Accesses Initiated by ADSC  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, and CE3[2] are all asserted  
Document #: 38-05241 Rev. *B  
Page 13 of 35  
CY7C1381CV25  
CY7C1383CV25  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
tZZS  
Description  
Snooze mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
ZZ > VDD – 0.2V  
Min.  
Max.  
60  
2tCYC  
Unit  
mA  
ns  
tZZREC  
tZZI  
tRZZI  
ZZ recovery time  
ZZ active to snooze current  
ZZ Inactive to exit snooze current  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
2tCYC  
0
ns  
ns  
ns  
2tCYC  
Truth Table[ 3, 4, 5, 6, 7]  
ADDRESS  
Used  
Cycle Description  
CE1 CE2 CE3 ZZ  
ADSP  
ADSC ADV WRITE OE CLK  
DQ  
Deselected Cycle,  
None  
None  
None  
None  
None  
None  
H
X
X
X
H
X
X
X
L
L
L
L
L
H
X
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
Power-down  
Deselected Cycle,  
Power-down  
Deselected Cycle,  
Power-down  
Deselected Cycle,  
Power-down  
Deselected Cycle,  
Power-down  
L
L
L
L
L
X
L
L
H
H
X
X
X
X
X
L
Snooze Mode, Pow-  
er-down  
X
X
Tri-State  
Q
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
External  
External  
External  
External  
External  
Next  
Next  
Next  
Next  
Next  
L
L
L
L
L
X
X
H
H
X
H
X
X
H
H
X
H
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
X
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
X
X
X
X
X
L
L
L
L
L
L
H
H
H
H
H
H
X
X
L
H
H
H
H
H
H
L
L
H
H
H
H
L
L
H
X
L
H
L
H
L
H
X
X
L
H
L
H
X
X
L-H  
L-H Tri-State  
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
Q
Q
L-H  
L-H  
L-H  
D
D
Q
Next  
Current  
Current  
Current  
Current  
Current  
Current  
L-H Tri-State  
L-H  
L-H Tri-State  
Q
L-H  
L-H  
D
D
Write Cycle, Suspend Burst  
L
Notes:  
3. X=”Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW= L. WRITE = H when all Byte write enable signals, BWE, GW = H.  
5. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.  
OE  
OE  
6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks  
X
after the  
or with the assertion of  
. As a result,  
must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state.  
OE  
is a  
ADSC  
OE  
ADSP  
don't care for the remainder of the write cycle.  
7.  
is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are Tri-State when  
OE  
is  
OE  
inactive or when the device is deselected, and all data bits behave as output when  
is active (LOW).  
OE  
3
Document #: 38-05241 Rev. *B  
Page 14 of 35  
CY7C1381CV25  
CY7C1383CV25  
Partial Truth Table for Read/Write[3, 8]  
Function (CY7C1381CV25)  
BWD  
X
BWC  
X
BWB  
X
BWA  
X
GW  
H
BWE  
H
Read  
Read  
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
H
H
L
H
L
H
L
H
L
H
L
Write Byte A (DQA, DQPA)  
Write Byte B(DQB, DQPB)  
Write Bytes A, B (DQA, DQB, DQPA, DQPB)  
Write Byte C (DQC, DQPC)  
Write Bytes C, A (DQC, DQA, DQPC, DQPA)  
Write Bytes C, B (DQC, DQB, DQPC, DQPB)  
L
H
H
L
Write Bytes C, B, A (DQC, DQB, DQA, DQPC,  
L
DQPB, DQPA)  
Write Byte D (DQD, DQPD)  
Write Bytes D, A (DQD, DQA, DQPD, DQPA)  
Write Bytes D, B (DQD, DQA, DQPD, DQPA)  
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
L
H
L
H
L
Write Bytes D, B, A (DQD, DQB, DQA, DQPD,  
L
DQPB, DQPA)  
Write Bytes D, B (DQD, DQB, DQPD, DQPB)  
H
H
L
L
L
L
L
L
H
H
H
L
Write Bytes D, B, A (DQD, DQC, DQA, DQPD,  
DQPC, DQPA)  
Write Bytes D, C, A (DQD, DQB, DQA, DQPD,  
DQPB, DQPA)  
H
L
L
L
L
H
Write All Bytes  
Write All Bytes  
H
L
L
X
L
X
L
X
L
X
L
X
Note:  
8. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
Truth Table for Read/Write[3]  
Function (CY7C1383CV25)  
BWB  
X
BWA  
X
BWE  
H
GW  
Read  
Read  
H
H
H
H
H
L
L
L
L
L
X
H
H
L
L
X
H
L
H
L
Write Byte A - (DQA and DQPA)  
Write Byte B - (DQB and DQPB)  
Write All Bytes  
Write All Bytes  
X
Document #: 38-05241 Rev. *B  
Page 15 of 35  
CY7C1381CV25  
CY7C1383CV25  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1381CV25 incorporates a serial boundary scan test  
access port (TAP). This port operates in accordance with IEEE  
Standard 1149.1-1990 but does not have the set of functions  
required for full 1149.1 compliance. These functions from the  
IEEE specification are excluded because their inclusion  
places an added delay in the critical speed path of the SRAM.  
Note that the TAP controller functions in a manner that does  
not conflict with the operation of other devices using 1149.1  
fully compliant TAPs. The TAP operates using  
JEDEC-standard 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see Figure . TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
The CY7C1381CV25 contains a TAP controller, instruction  
register, boundary scan register, bypass register, and ID  
register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied  
LOW(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may alter-  
nately be connected to VDD through a pull-up resistor. TDO  
should be left unconnected. Upon power-up, the device will  
come up in a reset state which will not interfere with the  
operation of the device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
TAP Controller State Diagram  
0
Bypass Register  
TEST-LOGIC  
1
RESET  
0
2
1
0
0
0
1
1
1
Selection  
Circuitry  
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
Instruction Register  
31 30 29  
Identification Register  
0
Selection  
TDI  
TDO  
Circuitr  
y
0
0
.
.
. 2 1  
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
0
0
TAP CONTROLLER  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Document #: 38-05241 Rev. *B  
Page 16 of 35  
CY7C1381CV25  
CY7C1383CV25  
Instruction Register  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The x36 configuration has a  
70-bit-long register and the x18 configuration has a 51-bit long  
register.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the device TAP controller is not fully 1149.1 compliant.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls  
is captured in the boundary scan register.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus  
hold time (tCS plus tCH).  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
The SRAM clock input might not be captured correctly if there  
is no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
Document #: 38-05241 Rev. *B  
Page 17 of 35  
CY7C1381CV25  
CY7C1383CV25  
possible to capture all other signals and simply ignore the  
value of the CLK captured in the boundary scan register.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO balls.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction will have the  
same effect as the Pause-DR command.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the operating Range[9, 10]  
Parameter  
Symbol  
Min.  
Max  
Units  
Clock  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
Output Times  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
Setup Times  
tTCYC  
tTF  
tTH  
100  
ns  
MHz  
ns  
10  
20  
40  
40  
tTL  
ns  
tTDOV  
tTDOX  
ns  
ns  
0
TMS Set-Up to TCK Clock Rise  
TDI Set-Up to TCK Clock Rise  
Capture Set-Up to TCK Rise  
Hold Times  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
tTMSS  
tTDIS  
tCS  
10  
10  
10  
ns  
ns  
tTMSH  
tTDIH  
tCH  
10  
10  
10  
ns  
ns  
ns  
Capture Hold after Clock Rise  
Notes:  
t
t
9. CS and CH refer to the setup and hold time requirements of latching data from the boundary scan register.  
10. Test conditions are specified using the load in TAP AC test Conditions. T. /t = 1ns  
R
F
Document #: 38-05241 Rev. *B  
Page 18 of 35  
CY7C1381CV25  
CY7C1383CV25  
2.5V TAP AC Test Conditions  
2.5V TAP AC Output Load Equivalent  
1.25V  
Input pulse levels ...... ........................................VSS to 2.5V  
Input rise and fall time...................................................... 1ns  
Input timing reference levels.........................................1.25V  
Output reference levels.................................................1.25V  
Test load termination supply voltage.............................1.25V  
50  
TDO  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; Vdd = 2.5V ±0.125V unless otherwise noted)[11]  
PARAMETER  
VOH1  
DESCRIPTION  
TEST CONDITIONS  
MIN  
2.0  
MAX  
UNITS  
V
V
Output HIGH Voltage IOH = -1.0 mA, VDDQ = 2.5V  
Output HIGH Voltage IOH = -100 µA,VDDQ = 2.5V  
Output LOW Voltage IOL = 8.0 mA, VDDQ = 2.5V  
2.1  
VOH2  
0.4  
0.2  
V
VOL1  
VDDQ = 2.5V  
V
VOL2  
Output LOW Voltage IOL = 100 µA  
Input HIGH Voltage  
V
DDQ = 2.5V  
DDQ = 2.5V  
1.7  
-0.3  
-5  
VDD + 0.3  
V
VIH  
V
0.7  
5
V
VIL  
Input LOW Voltage  
µA  
IX  
Input Load Current  
GND < VIN < VDDQ  
Note:  
11. All voltages referenced to VSS (GND).  
Identification Register Definitions  
CY7C1381CV25  
CY7C1383CV25  
(1MX18)  
DESCRIPTION  
INSTRUCTION FIELD  
(512KX36)  
010  
010  
01011  
Revision Number (31:29)  
Device Depth (28:24)  
Describes the version number.  
Reserved for Internal Use  
01011  
000001  
100101  
00000110100  
000001  
010101  
00000110100  
Device Width (23:18)  
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
Defines memory type and architecture  
Defines width and density  
Allows unique identification of SRAM  
vendor.  
1
1
ID Register Presence Indicator (0)  
Indicates the presence of an ID register.  
Scan Register Sizes  
BIT SIZE(X36)  
REGISTER NAME  
BIT SIZE(X18)  
Instruction  
Bypass  
3
3
Bypass  
1
1
ID  
32  
72  
32  
72  
Boundary Scan Order  
Document #: 38-05241 Rev. *B  
Page 19 of 35  
CY7C1381CV25  
CY7C1383CV25  
Identification Codes  
INSTRUCTION  
CODE  
DESCRIPTION  
000  
EXTEST  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1 compliant.  
001  
010  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
SAMPLE Z  
011  
100  
RESERVED  
SAMPLE/PRELOAD  
Do Not Use: This instruction is reserved for future use.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1 compliant.  
101  
110  
111  
RESERVED  
RESERVED  
BYPASS  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
119-Ball BGA Boundary Scan Order  
CY7C1381CV25 (512K x 36)  
BIT#  
1
BALL ID  
BIT#  
BALL ID  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
B2  
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C6  
A6  
D6  
D7  
E6  
G6  
H7  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
P4  
N4  
R6  
T5  
T3  
R2  
R3  
P2  
P1  
N2  
L2  
K1  
N1  
M2  
L1  
K2  
Not Bonded (Preset to 0)  
H1  
G2  
E2  
D1  
H2  
G1  
F2  
E1  
D2  
A5  
N6  
P7  
K6  
L7  
M6  
N7  
P6  
Document #: 38-05241 Rev. *B  
Page 20 of 35  
CY7C1381CV25  
CY7C1383CV25  
119-Ball BGA Boundary Scan Order (continued)  
29  
30  
31  
32  
33  
34  
35  
36  
B5  
B3  
C5  
C3  
C2  
A2  
T4  
B6  
65  
66  
67  
68  
69  
70  
71  
72  
A3  
E4  
Internal  
L3  
G3  
G5  
L5  
Internal  
CY7C1383CV25 (1M x 18)  
BIT#  
1
2
3
4
5
6
7
8
BALL ID  
BIT#  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
BALL ID  
B2  
P4  
N4  
R6  
T5  
T3  
R2  
R3  
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C6  
9
A6  
T6  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
P2  
N1  
M2  
L1  
K2  
Internal  
H1  
G2  
D6  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
E2  
D1  
N6  
P7  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
A5  
A3  
E4  
Internal  
B5  
B3  
C5  
C3  
C2  
A2  
T2  
B6  
Not Bonded (Preset to 0)  
Internal  
G3  
L5  
Internal  
Document #: 38-05241 Rev. *B  
Page 21 of 35  
CY7C1381CV25  
CY7C1383CV25  
165-Ball fBGA Boundary Scan Order  
CY7C1381CV25 (512K x 36)  
BIT#  
1
BALL ID  
B6  
BIT#  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
BALL ID  
N6  
R6  
P6  
R4  
R3  
P4  
P3  
R1  
N1  
L2  
K2  
J2  
M2  
M1  
L1  
K1  
2
3
4
5
6
7
8
9
B7  
A7  
B8  
A8  
B9  
A9  
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
R9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
J1  
Not Bonded (Preset to 0)  
G2  
F2  
E2  
D2  
G1  
F1  
E1  
D1  
C1  
A2  
B2  
A3  
B3  
B4  
A4  
A5  
B5  
A6  
R8  
P10  
P9  
P8  
P11  
Document #: 38-05241 Rev. *B  
Page 22 of 35  
CY7C1381CV25  
CY7C1383CV25  
165-Ball fBGA Boundary Scan Order (continued)  
CY7C1383CV25 (1M x 18)  
BIT#  
1
2
3
4
5
6
7
8
BALL ID  
BIT#  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
BALL ID  
B6  
B7  
A7  
B8  
A8  
B9  
A9  
B10  
N6  
R6  
P6  
R4  
R3  
P4  
P3  
R1  
9
A10  
A11  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
N1  
M1  
L1  
K1  
C11  
D11  
E11  
F11  
G11  
J1  
Not Bonded (Preset to 0)  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
H11  
J10  
K10  
L10  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
G2  
F2  
E2  
D2  
M10  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
A2  
B2  
A3  
B3  
R11  
R10  
R9  
R8  
P10  
P9  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
A4  
B5  
A6  
P8  
P11  
Document #: 38-05241 Rev. *B  
Page 23 of 35  
CY7C1381CV25  
CY7C1383CV25  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Storage Temperature .................................65°C to +150°C  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND........ –0.3V to +4.6V  
Ambient  
Range  
Temperature  
VDD  
2.5V +/– 5%  
VDDQ  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
Commercial 0°C to +70°C  
2.5V – 5%  
to VDD  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Industrial  
-40°C to +85°C  
Electrical Characteristics Over the Operating Range[12, 13]  
Parameter  
VDD  
VDDQ  
VOH  
VOL  
VIH  
VIL  
IX  
Description  
Test Conditions  
Min.  
2.375  
2.375  
2.0  
Max.  
2.625  
VDD  
Unit  
V
V
V
V
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
Output LOW Voltage  
VDDQ = 2.5V  
VDDQ = 2.5V, VDD = Min., IOH = –1.0 mA  
VDDQ = 2.5V, VDD = Min., IOL = 1.0 mA  
0.4  
VDD + 0.3V  
Input HIGH Voltage[12] VDDQ = 2.5V  
1.7  
–0.3  
–5  
V
V
Input LOW Voltage[12]  
Input Load  
VDDQ = 2.5V  
GND VI VDDQ  
0.7  
5
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Input Current of MODE Input = VSS  
Input = VDD  
Input Current of ZZ  
–30  
30  
Input = VSS  
Input = VDD  
–30  
–5  
30  
5
-300  
IOZ  
IOS  
Output Leakage Current GND VI VDD, Output Disabled  
Output Short Circuit  
VDD = Max., VOUT = GND  
Current  
IDD  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
7.5-ns cycle, 133 MHz  
8.8-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
7.5-ns cycle, 133 MHz  
8.8-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
All speeds  
210  
190  
175  
120  
110  
100  
70  
mA  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
Max. VDD, Device Deselected,  
Power-down  
VIN VIH or VIN VIL, f = fMAX,  
Current—TTL Inputs  
inputs switching  
ISB2  
Automatic CE  
Power-down  
Max. VDD, Device Deselected,  
mA  
V
IN VDD – 0.3V or VIN 0.3V,  
Current—CMOS Inputs f = 0, inputs static  
ISB3  
Automatic CE  
Max. VDD, Device Deselected,  
7.5-ns cycle, 133 MHz  
8.8-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
All Speeds  
105  
100  
95  
mA  
mA  
mA  
mA  
Power-down  
V
IN VDDQ – 0.3V or VIN 0.3V,  
Current—CMOS Inputs f = fMAX, inputs switching  
ISB4  
Automatic CE  
Max. VDD, Device Deselected,  
IN VDD – 0.3V or VIN 0.3V,  
f = 0, inputs static  
80  
Power-down  
V
Current—TTL Inputs  
Notes:  
12. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > -2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
13. T  
: Assumes a linear ramp from 0v to V (min.) within 200ms. During this time V < V and V  
< V  
DDQ DD  
Power-up  
DD  
IH  
DD  
Document #: 38-05241 Rev. *B  
Page 24 of 35  
CY7C1381CV25  
CY7C1383CV25  
Thermal Resistance[14]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Package  
Unit  
ΘJA  
Thermal Resistance  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
31  
45  
46  
°C/W  
(Junction to Ambient)  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6
7
3
°C/W  
impedance, per EIA / JESD51.  
Capacitance[14]  
TQFP  
BGA  
fBGA  
Parameter  
CIN  
Description  
Input Capacitance  
Test Conditions  
Package  
Package  
Package  
Unit  
pF  
TA = 25°C, f = 1 MHz,  
5
5
5
8
8
8
9
9
9
VDD = 2.5V.  
CCLK  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
CI/O  
pF  
Notes:  
14. Tested initially and after any design or process change that may affect these parameters  
AC Test Loads and Waveforms  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
R =1538Ω  
1ns  
1ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Document #: 38-05241 Rev. *B  
Page 25 of 35  
CY7C1381CV25  
CY7C1383CV25  
Switching Characteristics Over the Operating Range[19, 20]  
133 MHz  
117 MHz  
100 MHz  
Parameter  
tPOWER  
Clock  
tCYC  
tCH  
tCL  
Description  
Min.  
1
Max.  
Min.  
1
Max.  
Min.  
1
Max.  
Unit  
ms  
VDD(Typical) to the first Access[15]  
Clock Cycle Time  
Clock HIGH  
7.5  
2.1  
2.1  
8.5  
2.3  
2.3  
10  
2.5  
2.5  
ns  
ns  
ns  
Clock LOW  
Output Times  
tCDV  
tDOH  
tCLZ  
tCHZ  
tOEV  
tOELZ  
tOEHZ  
Setup Times  
tAS  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[16, 17, 18]  
6.5  
7.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.0  
2.0  
0
2.0  
2.0  
0
2.0  
2.0  
0
Clock to High-Z[16, 17, 18]  
4.0  
3.2  
4.0  
3.4  
5.0  
3.8  
OE LOW to Output Valid  
OE LOW to Output Low-Z[16, 17, 18]  
OE HIGH to Output High-Z[16, 17, 18]  
0
0
0
4.0  
4.0  
5.0  
Address Set-up Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
ADSP, ADSC Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
Set-up Before CLK  
GW, BWE, BW[A:D]  
Rise  
tDS  
tCES  
Data Input Set-up Before CLK Rise  
Chip Enable Set-up  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
Hold Times  
tAH  
tADH  
tWEH  
tADVH  
tDH  
Address Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ADSP, ADSC Hold After CLK Rise  
,
,
GW BWE BW[A:D] Hold After CLK Rise  
ADV Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tCEH  
Notes:  
15. This part has a voltage regulator internally; t  
can be initiated.  
is the time that the power needs to be supplied above V (minimum) initially, before a read or write operation  
DD  
POWER  
16. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
17. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions  
18. This parameter is sampled and not 100% tested.  
19. Timing reference level is 1.25V.  
20. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05241 Rev. *B  
Page 26 of 35  
CY7C1381CV25  
CY7C1383CV25  
Timing Diagrams  
Read Cycle Timing[21]  
t
CYC  
t
CLK  
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
X
Deselect Cycle  
t
t
CES  
CEH  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
Notes:  
21. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05241 Rev. *B  
Page 27 of 35  
CY7C1381CV25  
CY7C1383CV25  
Timing Diagrams (continued)  
Write Cycle Timing[21, 22]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW  
X
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
Notes:  
22.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
4
Document #: 38-05241 Rev. *B  
Page 28 of 35  
CY7C1381CV25  
CY7C1383CV25  
Timing Diagrams (continued)  
Read/Write Cycle Timing[21, 23, 24]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
DS  
t
OELZ  
t
High-Z  
D(A3)  
D(A5)  
D(A6)  
Data In (D)  
t
OEHZ  
CDV  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back  
Back-to-Back READs  
Single WRITE  
BURST READ  
WRITEs  
DON’T CARE  
UNDEFINED  
Note:  
23.  
24.  
.
The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by  
GW is HIGH.  
ADSP or ADSC  
Document #: 38-05241 Rev. *B  
Page 29 of 35  
CY7C1381CV25  
CY7C1383CV25  
Timing Diagrams (continued)  
ZZ Mode Timing [25, 26]  
CLK  
ZZ  
t
t
ZZ  
ZZREC  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
25. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
26. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05241 Rev. *B  
Page 30 of 35  
CY7C1381CV25  
CY7C1383CV25  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
Part and Package Type  
133  
CY7C1381CV25-133AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
Commercial  
CY7C1383CV25-133AC  
3 Chip Enables  
CY7C1381CV25-133BGC  
CY7C1383CV25-133BGC  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and  
JTAG  
CY7C1381CV25-133BZC  
BB165A 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.2mm)  
CY7C1383CV25-133BZC  
3 Chip Enables and JTAG  
117  
CY7C1381CV25-117AC  
CY7C1383CV25-117AC  
CY7C1381CV25-117BGC  
CY7C1383CV25-117BGC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Commercial  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and  
JTAG  
CY7C1381CV25-117BZC  
BB165A 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.2mm)  
3 Chip Enables and JTAG  
CY7C1383CV25-117BZC  
CY7C1381CV25-117AI  
CY7C1383CV25-117AI  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
Industrial  
3 Chip Enables  
CY7C1381CV25-117BGI  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and  
JTAG  
CY7C1383CV25-117BGI  
CY7C1381CV25-117BZI  
CY7C1383CV25-117BZI  
BB165A 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.2mm)  
3 Chip Enables and JTAG  
100  
CY7C1381CV25-100AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Commercial  
CY7C1383CV25-100AC  
CY7C1381CV25-100BGC  
CY7C1383CV25-100BGC  
CY7C1381CV25-100BZC  
CY7C1383CV25-100BZC  
CY7C1381CV25-100AI  
CY7C1383CV25-100AI  
CY7C1381CV25-100BGI  
CY7C1383CV25-100BGI  
CY7C1381CV25-100BZI  
CY7C1383CV25-100BZI  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and  
JTAG  
BB165A 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.2mm)  
3 Chip Enables and JTAG  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Industrial  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and  
JTAG  
BB165A 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.2mm)  
3 Chip Enables and JTAG  
Shaded areas contain advance information. Please contact your local sales representative for availability of these parts.  
Document #: 38-05241 Rev. *B  
Page 31 of 35  
CY7C1381CV25  
CY7C1383CV25  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
DIMENSIONS ARE IN MILLIMETERS.  
ꢁ6.00 0.20  
ꢁ4.00 0.ꢁ0  
ꢁ.40 0.05  
ꢁ00  
ꢀꢁ  
ꢀ0  
0.30 0.0ꢀ  
0.65  
TYP.  
ꢁ2° ꢁ°  
(ꢀX)  
SEE DETAIL  
A
30  
5ꢁ  
3ꢁ  
50  
0.20 MAX.  
ꢁ.60 MAX.  
R 0.0ꢀ MIN.  
0.20 MAX.  
0° MIN.  
STAND-OFF  
0.05 MIN.  
0.ꢁ5 MAX.  
SEATING PLANE  
0.25  
GAUGE PLANE  
R 0.0ꢀ MIN.  
0.20 MAX.  
0°-7°  
0.60 0.ꢁ5  
0.20 MIN.  
ꢁ.00 REF.  
51-85050-*A  
DETAIL  
A
Document #: 38-05241 Rev. *B  
Page 32 of 35  
CY7C1381CV25  
CY7C1383CV25  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Document #: 38-05241 Rev. *B  
Page 33 of 35  
CY7C1381CV25  
CY7C1383CV25  
Package Diagrams (continued)  
165-Ball FBGA (13 x 15 x 1.2 mm) BB165A  
51-85122-*C  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05241 Rev. *B  
Page 34 of 35  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
Cypressproductsarenotwarrantednorintendedtobeusedformedical, life-support, life-saving, criticalcontrolorsafetyapplications, unlesspursuanttoanexpresswrittenagreementwithCypress.  
CY7C1381CV25  
CY7C1383CV25  
Document History Page  
Document Title: CY7C1381CV25/ CY7C1383CV2518-Mbit (512K x 36/1M x 18) Flow-Through SRAM  
Document #: 38-05241 Rev. *B  
Orig. of  
REV.  
**  
*A  
ECN NO. Issue Date Change  
Description of Change  
116281  
206081  
225181  
08/28/02  
See ECN  
See ECN  
SKX  
RKF  
VBL  
New Data Sheet  
Final Data Sheet  
*B  
Update Ordering Info section: shade all part numbers  
Correct in feature page, core power supply tolerance to +/–5%  
Document #: 38-05241 Rev. *B  
Page 35 of 35  

相关型号:

CY7C1381D

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100AXC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100AXCT

Standard SRAM, 512KX36, 8.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100
CYPRESS

CY7C1381D-100AXI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100BGC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100BGCT

Cache SRAM, 512KX36, 8.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, BGA-119
CYPRESS

CY7C1381D-100BGI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100BGIT

Cache SRAM, 512KX36, 8.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, BGA-119
CYPRESS

CY7C1381D-100BGXC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100BGXI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100BZC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100BZI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS