CY7C1381D-100AXC [CYPRESS]

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM; 18兆位( 512K ×36 / 1M ×18 )流通型SRAM
CY7C1381D-100AXC
型号: CY7C1381D-100AXC
厂家: CYPRESS    CYPRESS
描述:

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
18兆位( 512K ×36 / 1M ×18 )流通型SRAM

静态存储器
文件: 总29页 (文件大小:466K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1381D  
CY7C1383D  
PRELIMINARY  
18-Mbit (512K x 36/1M x 18) Flow-Through SRAM  
Features  
Functional Description[1]  
• Supports 133-MHz bus operations  
• 512K × 36/1M × 18 common I/O  
• 3.3V –5% and +10% core power supply (VDD  
The CY7C1381D/CY7C1383D is a 3.3V, 512K x 36 and 1 Mbit  
18 Synchronous Flow-through SRAMs, respectively  
x
designed to interface with high-speed microprocessors with  
minimum glue logic. Maximum access delay from clock rise is  
6.5 ns (133-MHz version). A 2-bit on-chip counter captures the  
first address in a burst and increments the address automati-  
cally for the rest of the burst access. All synchronous inputs  
are gated by registers controlled by a positive-edge-triggered  
Clock Input (CLK). The synchronous inputs include all  
)
• 2.5V or 3.3V I/O supply (VDDQ  
• Fast clock-to-output time  
— 6.5 ns (133-MHz version)  
— 8.5 ns (100-MHz version)  
)
addresses, all data inputs, address-pipelining Chip Enable  
[2]  
• Provide high-performance 2-1-1-1 access rate  
(
), depth-expansion Chip Enables (CE and  
), Burst  
CE3  
CE1  
2
User-selectable burst counter supporting Intel  
Control inputs (  
,
,
), Write Enables  
(
ADV  
BWx  
and  
,
ADSC ADSP  
Pentiuminterleaved or linear burst sequences  
), and Global Write (  
BWE  
). Asynchronous  
GW  
and  
inputs  
(
)
and the ZZ pin  
OE  
.
include the Output Enable  
• Separate processor and controller address strobes  
• Synchronous self-timed write  
• Asynchronous output enable  
The CY7C1381D/CY7C1383D allows either interleaved or  
linear burst sequences, selected by the MODE input pin. A  
HIGH selects an interleaved burst sequence, while a LOW  
selects a linear burst sequence. Burst accesses can be  
initiated with the Processor Address Strobe (ADSP) or the  
cache Controller Address Strobe (ADSC) inputs. Address  
advancement is controlled by the Address Advancement  
(ADV) input.  
• Offered in JEDEC-standard lead-free 100-pin TQFP  
,119-ball BGA and 165-ball fBGA packages  
• JTAG boundary scan for BGA and fBGA packages  
• “ZZ” Sleep Mode option  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (  
) or  
ADSP  
Address Strobe Controller (  
) are active. Subsequent  
ADSC  
burst addresses can be internally generated as controlled by  
the Advance pin ( ).  
ADV  
The CY7C1381D/CY7C1383D operates from a +3.3V core  
power supply while all outputs may operate with either a +2.5  
or +3.3V supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Selection Guide  
133 MHz  
6.5  
100 MHz  
8.5  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
210  
70  
175  
70  
mA  
mA  
Notes:  
1. For best–practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE CE are for TQFP and 165 fBGA package only. 119 BGA is offered only in 1 Chip Enable.  
3,  
2
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05544 Rev. *A  
Revised November 2, 2004  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
1
Logic Block Diagram – CY7C1381D (512K x 36)  
ADDRESS  
REGISTER  
A0, A1, A  
A[1:0]  
MODE  
ADV  
CLK  
Q1  
BURST  
COUNTER  
AND LOGIC  
Q0  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
BW  
D
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
BW  
C
OUTPUT  
BUFFERS  
DQs  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE REGISTER  
B, DQPB  
B
C
DQ  
BYTE  
WRITE REGISTER  
B, DQPB  
BW  
B
DQPD  
DQ  
BYTE  
WRITE REGISTER  
A, DQPA  
DQ  
A, DQPA  
BW  
A
BYTE  
BWE  
WRITE REGISTER  
INPUT  
GW  
REGISTERS  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
2
Logic Block Diagram – CY7C1383D (1 Mbit x 18)  
ADDRESS  
REGISTER  
A0,A1,A  
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ  
B,DQPB  
DQ  
B,DQPB  
WRITE DRIVER  
WRITE REGISTER  
BW  
B
A
MEMORY  
ARRAY  
OUTPUT  
BUFFERS  
DQs  
DQP  
DQP  
SENSE  
AMPS  
A
B
DQ  
A,DQPA  
DQA,DQPA  
WRITE REGISTER  
WRITE DRIVER  
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
Document #: 38-05544 Rev. *A  
Page 2 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Pin Configurations  
100-pin TQFP Pinout  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
A
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
NC  
2
DQC  
3
NC  
NC  
3
VDDQ  
4
5
VDDQ  
VSSQ  
NC  
VDDQ  
VSSQ  
NC  
4
VSSQ  
5
DQC  
6
6
DQC  
7
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
7
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS/DNU  
VDD  
8
DQC  
9
9
VSSQ  
10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
11  
DQC  
12  
DQC  
13  
VSS/DNU  
14  
VDD  
15  
NC  
CY7C1383D  
(1M x 18)  
CY7C1381D  
(512K x 36)  
NC  
16  
VDD  
ZZ  
NC  
VDD  
ZZ  
VSS  
17  
VSS  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
VDDQ  
20  
VSSQ  
21  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
NC  
VSSQ  
26  
VSSQ  
VDDQ  
NC  
VSSQ  
VDDQ  
NC  
VDDQ  
27  
DQD  
28  
DQD  
29  
NC  
NC  
DQPD  
30  
NC  
NC  
Document #: 38-05544 Rev. *A  
Page 3 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Pin Configurations (continued)  
119-ball BGA (1 Chip Enable with JTAG)  
CY7C1381D (512K x 36)  
1
2
3
4
5
6
7
VDDQ  
A
A
A
A
VDDQ  
A
ADSP  
B
C
NC  
NC  
A
A
A
A
A
A
A
A
NC  
NC  
ADSC  
VDD  
DQC  
DQC  
VDDQ  
DQPC  
DQC  
DQC  
VSS  
VSS  
VSS  
NC  
CE1  
OE  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
DQB  
VDDQ  
D
E
F
DQC  
DQC  
VDDQ  
DQD  
DQD  
VDDQ  
DQD  
DQC  
DQC  
VDD  
DQB  
DQB  
VDD  
DQA  
DQA  
DQA  
DQA  
DQB  
DQB  
VDDQ  
DQA  
DQA  
VDDQ  
DQA  
G
H
J
BWC  
VSS  
NC  
ADV  
GW  
VDD  
CLK  
NC  
BWE  
A1  
BWB  
VSS  
NC  
DQD  
VSS  
VSS  
K
L
M
N
DQD  
DQD  
DQD  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
P
R
DQD  
NC  
DQPD  
A
VSS  
MODE  
A0  
VDD  
VSS  
NC  
DQPA  
A
DQA  
NC  
T
U
NC  
VDDQ  
NC  
TMS  
A
TDI  
A
TCK  
A
TDO  
NC  
NC  
ZZ  
VDDQ  
CY7C1383D (1M x 18)  
2
A
A
1
3
A
A
4
5
A
A
A
VSS  
VSS  
VSS  
NC  
VSS  
6
A
7
A
B
C
D
E
F
G
H
J
K
L
M
N
P
VDDQ  
NC  
NC  
DQB  
NC  
VDDQ  
NC  
DQB  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
VDDQ  
DQA  
NC  
VDDQ  
ADSP  
ADSC  
VDD  
A
A
DQPA  
NC  
A
A
NC  
DQB  
NC  
DQB  
NC  
VDD  
VSS  
VSS  
VSS  
BWB  
VSS  
NC  
NC  
CE1  
OE  
ADV  
DQA  
NC  
DQA  
VDD  
NC  
DQA  
NC  
GW  
VDD  
NC  
VSS  
NC  
DQB  
VSS  
CLK  
NC  
BWE  
A1  
DQA  
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
NC  
VSS  
VSS  
VSS  
NC  
VDDQ  
NC  
BWA  
VSS  
VSS  
VSS  
DQA  
NC  
DQPB  
A0  
DQA  
R
T
NC  
NC  
A
A
MODE  
A
VDD  
NC  
NC  
A
A
A
NC  
ZZ  
U
VDDQ  
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
Document #: 38-05544 Rev. *A  
Page 4 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Pin Configurations (continued)  
165-ball fBGA (3 Chip Enable)  
CY7C1381D (512K x 36)  
1
NC / 288M  
NC  
DQPC  
DQC  
2
A
A
NC  
DQC  
DQC  
DQC  
DQC  
NC  
3
4
5
6
7
8
9
10  
11  
NC  
NC / 144M  
DQPB  
DQB  
CE1  
BWC  
BWB  
CE3  
BWE  
GW  
VSS  
VSS  
VSS  
ADSC  
ADV  
A
A
B
C
D
E
F
G
H
J
K
L
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
BWD  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
DQB  
DQB  
DQB  
DQB  
NC  
DQA  
DQA  
DQA  
DQC  
DQB  
DQC  
DQC  
NC  
DQD  
DQD  
DQD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQB  
ZZ  
DQA  
DQA  
DQA  
DQD  
DQD  
DQD  
DQD  
DQPD  
NC  
DQD  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
A
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
A0  
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1383D (1M x 18)  
1
NC / 288M  
NC  
2
3
4
5
6
7
8
9
10  
11  
A
A
CE1  
BWB  
NC  
CE  
BWE  
GW  
VSS  
VSS  
ADSC  
ADV  
A
A
3
A
NC  
DQB  
DQB  
DQB  
DQB  
NC  
NC  
NC  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
NC  
NC  
NC  
NC  
NC / 144M  
DQPA  
DQA  
B
C
D
E
F
G
H
J
K
L
NC  
NC  
NC  
NC  
NC  
VSS  
DQB  
DQB  
DQB  
VSS  
DQA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQA  
DQA  
ZZ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
A
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
MODE NC / 36M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05544 Rev. *A  
Page 5 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Pin Definitions  
Name  
I/O  
Description  
A0, A1 , A  
Input-  
Address Inputs used to select one of the address locations. Sampled at the rising edge  
Synchronous  
of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3[2] are sampled active.  
A[1:0] feed the 2-bit counter.  
BWA, BWB  
BWC, BWD  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the  
Synchronous  
SRAM. Sampled on the rising edge of CLK.  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a  
GW  
Synchronous  
global write is conducted (ALL bytes are written, regardless of the values on BW[A:D]and BWE).  
CLK  
Input-  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment  
Clock  
the burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
CE1  
CE2  
Synchronous  
with CE2 and CE3[2] to select/deselect the device. ADSP is ignored  
sampled only when a new external address is loaded.  
CE is  
if CE1 is HIGH.  
1
Input-  
Chip Enable 2 Input, active HIGH. Sampled onthe rising edge of CLK. Usedin conjunction  
with CE1 and CE3[2] to select/deselect the device. CE2 is sampled only when a new external  
address is loaded.  
Synchronous  
[2]  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used  
CE3  
in conjunction  
CE3 is sampled only when a new external  
Synchronous  
with CE1 and CE2 to select/deselect the device.  
address is loaded.  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins.  
OE  
Asynchronous When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated,  
and act as input data pins. OE is masked during the first clock of a read cycle when  
emerging from a deselected state.  
Input-  
Advance Input signal, sampled on the rising edge of CLK. When asserted, it automat-  
ADV  
Synchronous  
ically increments the address in a burst cycle.  
Input-  
Address Strobe from Processor, sampled on the rising edge of CLK, active LOW.  
When asserted LOW, addresses presented to the device are captured in the address  
registers. A[1:0] are also loaded into the burst counter. When ADSP and ADSC are both  
ADSP  
Synchronous  
asserted, only ADSP is recognized. ASDP is ignored when  
CE1 is deasserted HIGH  
Input-  
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW.  
When asserted LOW, addresses presented to the device are captured in the address  
registers. A[1:0] are also loaded into the burst counter. When ADSP and ADSC are both  
ADSC  
Synchronous  
.
asserted, only ADSP is recognized  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal  
BWE  
ZZ  
Synchronous  
must be asserted LOW to conduct a byte write.  
Input-  
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a  
Asynchronous non-time-critical “sleep” condition with data integrity preserved. For normal operation, this  
pin has to be LOW or left floating. ZZ pin has an internal pull-down.  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is  
DQs  
Synchronous  
triggered by the rising edge of CLK. As outputs, they deliver the data contained in the  
memory location specified by the addresses presented during the previous  
clock rise of the  
read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the  
The  
pins behave as outputs. When HIGH, DQs and DQPX are placed in a tri-state condition.  
outputs are automatically tri-stated during the data portion of a write sequence, during the  
first clock when emerging from a deselected state, and when the device is deselected,  
regardless of the state of OE.  
I/O-  
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQs.  
DQPX  
Synchronous  
During write sequences, DQPX is controlled by BWX correspondingly.  
MODE  
Input-Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD  
or left floating selects interleaved burst sequence. This is a strap pin and should remain  
static during device operation. Mode Pin has an internal pull-up.  
VDD  
VDDQ  
VSS  
Power Supply Power supply inputs to the core of the device.  
I/O Power Supply Power supply for the I/O circuitry.  
Ground Ground for the core of the device.  
Document #: 38-05544 Rev. *A  
Page 6 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Pin Definitions (continued)  
Name  
I/O  
Description  
VSSQ  
I/O Ground  
Ground for the I/O circuitry.  
TDO  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the  
Synchronous  
JTAG feature is not being utilized, this pin should be left unconnected. This pin is not  
available on TQFP packages.  
TDI  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature  
Synchronous  
is not being utilized, this pin can be left floating or connected to VDD through a pull up  
resistor. This pin is not available on TQFP packages.  
TMS  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature  
Synchronous  
is not being utilized, this pin can be disconnected or connected to VDD. This pin is not  
available on TQFP packages.  
TCK  
NC  
JTAG-  
Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin must  
be connected to VSS. This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die. 36M, 72M, 144M and 288M are address  
expansion pins are not internally connected to the die.  
VSS/DNU  
Ground/DNU  
This pin can be connected to Ground or should be left floating.  
Single Write Accesses Initiated by ADSP  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. Maximum access delay from  
the clock rise (tCDV) is 6.5 ns (133-MHz device).  
This access is initiated when the follow[i2n]g conditions are  
satisfied at clock rise: (1) CE1, CE2, CE3 are all asserted  
active, and (2) ADSP is asserted LOW. The addresses  
presented are loaded into the address register and the burst  
inputs (GW, BWE, and BWX)are ignored during this first clock  
cycle. If the write inputs are asserted active ( see Write Cycle  
Descriptions table for appropriate states that indicate a write)  
on the next clock rise,the appropriate data will be latched and  
written into the device.Byte writes are allowed. All I/Os are  
tri-stated during a byte write.Since this is a common I/O  
device, the asynchronous OE input signal must be deasserted  
and the I/Os must be tri-stated prior to the presentation of data  
to DQs. As a safety precaution, the data lines are tri-stated  
once a write cycle is detected, regardless of the state of OE.  
The CY7C1381D/CY7C1383D supports secondary cache in  
systems utilizing either a linear or interleaved burst sequence.  
The interleaved burst order supports Pentium® and i486  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is  
user-selectable, and is determined by sampling the MODE  
input. Accesses can be initiated with either the Processor  
Address Strobe (ADSP) or the Controller Address Strobe  
(ADSC). Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Single Write Accesses Initiated by ADSC  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, and CE3[2] are all asserted  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
HIGH, and (4) the write input signals (GW, BWE, and BWX)  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed write circuitry.  
The addresses presented are loaded into the address register  
and the burst counter/control logic and delivered to the  
memory core. The information presented to DQ[A:D] will be  
written into the specified address location. Byte writes are  
allowed. All I/Os are tri-stated when a write is detected, even  
a byte write. Since this is a common I/O device, the  
asynchronous OE input signal must be deasserted and the  
I/Os must be tri-stated prior to the presentation of data to DQs.  
As a safety precaution, the data lines are tri-stated once a write  
Three synchronous Chip Selects (CE1, CE2, CE3[2]) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if CE1  
is HIGH.  
Single Read Accesses  
A single read access is initiated when the following conditions  
[2]  
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all  
cycle is detected, regardless  
of the state of OE.  
asserted active, and (2) ADSP or ADSC is asserted LOW (if  
the access is initiated by ADSC, the write inputs must be  
deasserted during this first cycle). The address presented to  
the address inputs is latched into the address register and the  
burst counter/control logic and presented to the memory core.  
If the OE input is asserted LOW, the requested data will be  
available at the data outputs a maximum to tCDV after clock  
rise. ADSP is ignored if CE1 is HIGH.  
Burst Sequences  
The CY7C1381D/CY7C1383D provides an on-chip two-bit  
wraparound burst counter inside the SRAM. The burst counter  
is fed by A[1:0], and can follow either a linear or interleaved  
burst order. The burst order is determined by the state of the  
MODE input. A LOW on MODE will select a linear burst  
sequence. A HIGH on MODE will select an interleaved burst  
Document #: 38-05544 Rev. *A  
Page 7 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
order. Leaving MODE unconnected will cause the device to  
Sleep Mode  
default to a interleaved burst sequence.  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
“sleep” mode. CE , CE , CE [2], ADSP, and ADSC must  
the  
1
2
3
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
Linear Burst Address Table (MODE = GND)  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
tZZS  
tZZREC  
tZZI  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
Test Conditions  
ZZ > VDD – 0.2V  
ZZ > VDD – 0.2V  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
Min.  
Max.  
80  
2tCYC  
Unit  
mA  
ns  
ns  
ns  
2tCYC  
0
2tCYC  
tRZZI  
ns  
Truth Table [ 3, 4, 5, 6, 7]  
ADDRESS  
Used  
Cycle Description  
CE1 CE2 CE3 ZZ  
ADSP  
ADSC ADV WRITE OE CLK  
DQ  
Deselected Cycle,  
None  
None  
None  
None  
None  
None  
H
X
X
X
H
X
X
X
L
L
L
L
L
H
X
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
Power-down  
Deselected Cycle,  
Power-down  
Deselected Cycle,  
Power-down  
Deselected Cycle,  
Power-down  
Deselected Cycle,  
Power-down  
Sleep Mode, Power-down  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
L
L
L
L
L
X
L
L
H
H
X
L
L
X
X
L
X
X
X
X
L-H  
Tri-State  
Q
External  
External  
External  
L
L
L
H
H
H
L
L
L
L
L
L
X
X
L
X
X
X
X
X
L
L
H
X
L-H Tri-State  
L-H  
Write Cycle, Begin Burst  
H
D
Notes:  
3. X=”Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW= L. WRITE = H when all Byte write enable signals , BWE, GW = H..  
5. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.  
OE  
OE  
must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state.  
6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks  
X
after the  
or with the assertion of  
. As a result,  
ADSC  
is a  
OE  
OE  
ADSP  
don't care for the remainder of the write cycle.  
is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are Tri-State when  
7.  
is  
OE  
inactive or when the device is deselected, and all data bits behave as output when  
OE  
is active (LOW).  
OE  
Document #: 38-05544 Rev. *A  
Page 8 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Truth Table (continued)[ 3, 4, 5, 6, 7]  
ADDRESS  
Cycle Description  
Used  
CE1 CE2 CE3 ZZ  
ADSP  
ADSC ADV WRITE OE CLK  
DQ  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
External  
External  
Next  
Next  
Next  
Next  
Next  
Next  
Current  
Current  
Current  
Current  
Current  
Current  
L
L
X
X
H
H
X
H
X
X
H
H
X
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
L
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L
L
H
H
H
H
H
H
H
H
H
H
H
H
X
X
L
L
L
L
L
H
H
H
H
H
H
L
L
H
L
H
L
H
X
X
L
H
L
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
Q
Q
Q
L-H  
L-H  
L-H  
D
D
Q
L
L
H
H
H
H
H
H
H
H
H
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
Q
H
X
X
L-H  
L-H  
D
D
L
Partial Truth Table for Read/Write[3, 8]  
Function (CY7C1381D)  
BWD  
BWC  
BWB  
BWA  
GW  
BWE  
Read  
Read  
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
H
H
L
H
L
H
L
H
L
H
L
Write Byte A (DQA, DQPA)  
Write Byte B(DQB, DQPB)  
Write Bytes A, B (DQA, DQB, DQPA, DQPB)  
Write Byte C (DQC, DQPC)  
Write Bytes C, A (DQC, DQA, DQPC, DQPA)  
Write Bytes C, B (DQC, DQB, DQPC, DQPB)  
L
H
H
L
Write Bytes C, B, A (DQC, DQB, DQA, DQPC,  
L
DQPB, DQPA)  
Write Byte D (DQD, DQPD)  
Write Bytes D, A (DQD, DQA, DQPD, DQPA)  
Write Bytes D, B (DQD, DQA, DQPD, DQPA)  
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
L
H
L
H
L
Write Bytes D, B, A (DQD, DQB, DQA, DQPD,  
L
DQPB, DQPA)  
Write Bytes D, B (DQD, DQB, DQPD, DQPB)  
H
H
L
L
L
L
L
L
H
H
H
L
Write Bytes D, B, A (DQD, DQC, DQA, DQPD,  
DQPC, DQPA)  
Write Bytes D, C, A ( DQD, DQB, DQA, DQPD,  
DQPB, DQPA)  
H
L
L
L
L
H
Write All Bytes  
Write All Bytes  
H
L
L
X
L
X
L
X
L
X
L
X
Note:  
8. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05544 Rev. *A  
Page 9 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Truth Table for Read/Write[3,8]  
Function (CY7C1383D)  
Read  
BWB  
X
BWA  
X
BWE  
H
GW  
H
Read  
H
H
H
H
L
L
L
L
L
X
H
H
L
L
X
H
L
H
L
Write Byte A – ( DQA and DQPA)  
Write Byte B – ( DQB and DQPB)  
Write All Bytes  
Write All Bytes  
X
IEEE 1149.1 Serial Boundary Scan (JTAG)  
TAP Controller State Diagram  
TEST-LOGIC  
1
The CY7C1381D/CY7C1383D incorporates a serial boundary  
scan test access port (TAP) in the BGA package only. The  
TQFP package does not offer this functionality. This part  
operates in accordance with IEEE Standard 1149.1-1900, but  
doesn’t have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 3.3V or 2.5V I/O logic levels.  
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
0
IR-SCAN  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
The CY7C1381D/CY7C1383D contains a TAP controller,  
instruction register, boundary scan register, bypass register,  
and ID register.  
0
0
PAUSE-DR  
0
PAUSE-IR  
0
1
1
Disabling the JTAG Feature  
0
0
EXIT2-DR  
1
EXIT2-IR  
1
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Test MODE SELECT (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
Test Data-In (TDI)  
Document #: 38-05544 Rev. *A  
Page 10 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
TAP Controller Block Diagram  
0
Bypass Register  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
2
1
0
0
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
S
election  
TDI  
TDO  
Circuitr  
y
.
.
. 2 1  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
x
.
.
.
.
. 2 1  
Boundary Scan Register  
TCK  
TMS  
TAP CONTROLLER  
TAP Instruction Set  
Overview  
Performing a TAP Reset  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
Document #: 38-05544 Rev. *A  
Page 11 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK# captured in the  
boundary scan register.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells  
prior to the selection of another boundary scan test operation.  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required - that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Reserved  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document #: 38-05544 Rev. *A  
Page 12 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
TAP AC Switching Characteristics Over the operating Range[9, 10]  
Parameter  
Description  
Min.  
Max.  
Unit  
Clock  
tTCYC  
tTF  
tTH  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
5
25  
25  
tTL  
ns  
Output Times  
tTDOV  
tTDOX  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
ns  
ns  
0
Set-up Times  
tTMSS  
tTDIS  
tCS  
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
5
5
5
ns  
ns  
Hold Times  
tTMSH  
tTDIH  
tCH  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
Capture Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ................................................ VSS to 3.3V  
Input rise and fall times................................................... 1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels ......................................... VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
Notes:  
t
t
9. CS and CH refer to the setup and hold time requirements of latching data from the boundary scan register.  
10. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1ns  
R
F
Document #: 38-05544 Rev. *A  
Page 13 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; Vdd = 3.3V ±0.165V unless otherwise noted)[11]  
Parameter  
VOH1  
Description  
IOH = –4.0 mA  
Conditions  
Min.  
2.4  
Max.  
Unit  
V
V
DDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
2.0  
2.9  
2.1  
V
V
IOH = –1.0 mA  
IOH = –100 µA  
VOH2  
VOL1  
VOL2  
VIH  
V
DDQ = 2.5V  
VDDQ = 3.3V  
DDQ = 2.5V  
VDDQ = 3.3V  
DDQ = 2.5V  
VDDQ = 3.3V  
V
0.4  
0.4  
V
IOL = 8.0 mA  
IOL = 8.0 mA  
IOL = 100 µA  
V
V
0.2  
V
V
0.2  
V
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
DDQ = 2.5V  
DDQ = 3.3V  
V
V
–0.3  
–0.3  
-5  
V
VIL  
VDDQ = 2.5V  
0.7  
V
5
µA  
IX  
GND < VIN < VDDQ  
Identification Register Definitions  
CY7C1381D  
CY7C1383D  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)[12]  
(512K × 36)  
(1M × 18)  
000  
Description  
Describes the version number.  
Reserved for Internal Use  
000  
01011  
01011  
000001  
100101  
00000110100  
1
000001  
010101  
00000110100  
1
Device Width (23:18)  
Defines memory type and architecture  
Defines width and density  
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
Scan Register Sizes  
Register Name  
Bit Size (×36)  
Bit Size (×18)  
Instruction Bypass  
3
3
Bypass  
ID  
1
1
32  
85  
89  
32  
85  
89  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball fBGA package)  
Notes:  
11. All voltages referenced to VSS (GND).  
12. Bit #24 is “1” in the Register Definitions for both 2.5v and 3.3v versions of this device.  
Document #: 38-05544 Rev. *A  
Page 14 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Identification Codes  
Instruction  
Code  
Description  
000  
EXTEST  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
001  
010  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
SAMPLE Z  
011  
100  
RESERVED  
SAMPLE/PRELOAD  
Do Not Use: This instruction is reserved for future use.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
101  
110  
111  
RESERVED  
RESERVED  
BYPASS  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document #: 38-05544 Rev. *A  
Page 15 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
119-Ball BGA Boundary Scan Order [13, 14]  
CY7C1381D (256K × 36)  
CY7C1383D (512K × 18)  
Bit#  
1
2
3
4
5
6
7
8
Ball ID  
Bit#  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Ball ID  
E4  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
Bit#  
1
2
3
4
5
6
7
8
Ball ID  
Bit#  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Ball ID  
E4  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
H4  
T4  
T5  
T6  
R5  
L5  
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
K6  
P7  
N6  
L6  
K7  
J5  
H6  
G7  
F6  
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
B6  
D4  
B4  
F4  
M4  
A5  
K4  
H4  
T4  
T5  
T6  
R5  
L5  
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
K6  
P7  
N6  
L6  
K7  
J5  
H6  
G7  
F6  
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
B6  
D4  
B4  
F4  
M4  
A5  
K4  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
K2  
L1  
K2  
L1  
M2  
N1  
P1  
K1  
L2  
N2  
P2  
R3  
T1  
R1  
T2  
L3  
R2  
T3  
L4  
M2  
N1  
P1  
K1  
L2  
N2  
P2  
R3  
T1  
R1  
T2  
L3  
R2  
T3  
L4  
N4  
P4  
Internal  
N4  
P4  
Internal  
Notes:  
13. Balls that are NC (No Connect) are Pre-Set LOW.  
14. Bit# 85 is Pre-Set HIGH.  
Document #: 38-05544 Rev. *A  
Page 16 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
165-Ball BGA Boundary Scan Order [13, 15]  
CY7C1381D (256K x 36)  
CY7C1381D (256Kx36)  
Bit#  
Ball ID  
Bit#  
Ball ID  
Bit#  
Ball ID  
1
2
3
4
5
6
7
8
N6  
N7  
10N  
P11  
P8  
R8  
R9  
P9  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
A9  
B9  
C10  
A8  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
G1  
D2  
E2  
F2  
G2  
H1  
H3  
J1  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
K2  
L2  
M2  
N1  
N2  
P1  
R1  
R2  
P3  
R3  
P2  
R4  
P4  
N5  
P6  
R6  
Internal  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
K1  
L1  
M1  
J2  
Note:  
15. Bit# 89 is Pre-Set HIGH.  
Document #: 38-05544 Rev. *A  
Page 17 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
165-Ball BGA Boundary Scan Order [13, 15]  
CY7C1383D (512K x 18)  
CY7C1383D (512Kx18)  
Bit#  
1
2
3
4
5
6
7
8
Ball ID  
N6  
N7  
10N  
P11  
P8  
R8  
R9  
P9  
Bit#  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Ball ID  
A9  
B9  
C10  
A8  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
G1  
D2  
E2  
F2  
G2  
H1  
H3  
J1  
K1  
L1  
M1  
J2  
Bit#  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
K2  
L2  
M2  
N1  
N2  
P1  
R1  
R2  
P3  
R3  
P2  
R4  
P4  
N5  
P6  
R6  
Internal  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Document #: 38-05544 Rev. *A  
Page 18 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Latch-up Current.................................................... > 200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
Supply Voltage on VDD Relative to GND........ –0.3V to +4.6V  
Range  
Temperature  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
to VDD  
Industrial  
–40°C to +85°C  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Electrical Characteristics Over the Operating Range [16, 17]  
Parameter  
VDD  
VDDQ  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
VDD  
Unit  
V
V
V
V
V
V
V
V
VDDQ = 3.3V  
VDDQ = 2.5V  
2.625  
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
VDDQ = 3.3V, VDD = Min., IOH = –4.0 mA  
VDDQ = 2.5V, VDD = Min., IOH = –1.0 mA  
VDDQ = 3.3V, VDD = Min., IOL = 8.0 mA  
VDDQ = 2.5V, VDD = Min., IOL = 1.0 mA  
2.0  
0.4  
0.4  
VDD + 0.3V  
VDD + 0.3V  
0.8  
Input HIGH Voltage[16] VDDQ = 3.3V  
VDDQ = 2.5V  
2.0  
1.7  
–0.3  
–0.3  
–5  
V
V
V
Input LOW Voltage[16]  
VDDQ = 3.3V  
VDDQ = 2.5V  
GND VI VDDQ  
0.7  
5
Input Load  
Input Current of MODE Input = VSS  
Input = VDD  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
–5  
30  
Input Current of ZZ  
Input = VSS  
Input = VDD  
–30  
–5  
5
5
210  
175  
140  
120  
IOZ  
IDD  
Output Leakage Current GND VI VDD, Output Disabled  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
Current  
f = fMAX = 1/tCYC  
ISB1  
ISB2  
ISB3  
Automatic CE  
Max. VDD, Device Deselected,  
Power-down  
VIN VIH or VIN VIL, f = fMAX,  
Current—TTL Inputs  
inputs switching  
Automatic CE  
Max. VDD, Device Deselected,  
All speeds  
70  
mA  
Power-down  
V
IN VDD – 0.3V or VIN 0.3V,  
Current—CMOS Inputs f = 0, inputs static  
Automatic CE  
Max. VDD, Device Deselected,  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
130  
110  
mA  
mA  
Power-down  
V
IN VDDQ – 0.3V or VIN 0.3V,  
Current—CMOS Inputs f = fMAX, inputs switching  
ISB4  
Automatic CE  
Max. VDD, Device Deselected,  
IN VDD – 0.3V or VIN 0.3V,  
f = 0, inputs static  
All Speeds  
80  
mA  
Power-down  
V
Current—TTL Inputs  
Notes:  
16. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > -2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
17. T  
: Assumes a linear ramp from 0v to V (min.) within 200ms. During this time V < V and V  
< V  
DDQ DD  
Power-up  
DD  
IH  
DD  
Document #: 38-05544 Rev. *A  
Page 19 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Thermal Resistance[18]  
Parameter  
Description  
Test Conditions  
TQFP Package BGA Package fBGA Package Unit  
ΘJA  
Thermal Resistance  
Test conditions follow standard  
31  
45  
46  
°C/W  
(Junction to Ambient) test methods and procedures  
for measuring thermal  
Thermal Resistance  
ΘJC  
6
7
3
°C/W  
impedence, per EIA / JESD51.  
(Junction to Case)  
Capacitance[18]  
Parameter  
Description  
Test Conditions  
TQFP Package BGA Package fBGA Package Unit  
CIN  
CCLK  
CI/O  
Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
TA = 25°C, f = 1 MHz,  
5
5
5
8
8
8
9
9
9
pF  
pF  
pF  
V
DD = 3.3V.  
DDQ = 2.5V  
V
AC Test Loads and Waveforms  
3.3V I/O Test Load  
OUTPUT  
R = 317Ω  
3.3V  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
10%  
L
5 pF  
R = 351Ω  
1ns  
1ns  
INCLUDING  
JIG AND  
SCOPE  
V = 1.5V  
T
(a)  
(b)  
(c)  
2.5V I/O Test Load  
OUTPUT  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
L
5 pF  
R =1538Ω  
1ns  
1ns  
INCLUDING  
JIG AND  
SCOPE  
V = 1.25V  
T
(a)  
(b)  
(c)  
Switching Characteristics Over the Operating Range [20, 21]  
133 MHz  
100 MHz  
Parameter  
tPOWER  
Clock  
tCYC  
tCH  
tCL  
Description  
Min.  
1
Max.  
Min.  
1
Max.  
Unit  
ms  
VDD(Typical) to the first Access[19]  
Clock Cycle Time  
Clock HIGH  
7.5  
2.1  
2.1  
10  
2.5  
2.5  
ns  
ns  
ns  
Clock LOW  
Output Times  
tCDV  
tDOH  
tCLZ  
tCHZ  
tOEV  
tOELZ  
tOEHZ  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[20, 21, 22]  
6.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.0  
2.0  
0
2.0  
2.0  
0
Clock to High-Z[20, 21, 22]  
4.0  
3.2  
5.0  
3.8  
OE LOW to Output Valid  
OE LOW to Output Low-Z[20, 21, 22]  
OE HIGH to Output High-Z[20, 21, 22]  
0
0
4.0  
5.0  
Setup Times  
tAS  
Address Set-up Before CLK Rise  
1.5  
1.5  
ns  
Document #: 38-05544 Rev. *A  
Page 20 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Switching Characteristics Over the Operating Range (continued)[20, 21]  
133 MHz  
Min. Max.  
100 MHz  
Min. Max.  
Parameter  
tADS  
tADVS  
tWES  
tDS  
tCES  
Description  
ADSP, ADSC Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
Unit  
ns  
ns  
ns  
ns  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
Set-up Before CLK Rise  
GW, BWE, BW[A:D]  
Data Input Set-up Before CLK Rise  
Chip Enable Set-up  
ns  
Hold Times  
tAH  
tADH  
tWEH  
tADVH  
tDH  
Address Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ADSP, ADSC Hold After CLK Rise  
,
,
GW BWE BW[A:D] Hold After CLK Rise  
ADV Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tCEH  
Notes:  
18. Tested initially and after any design or process change that may affect these parameters.  
19. This part has a voltage regulator internally; t  
can be initiated.  
is the time that the power needs to be supplied above V ( minimum) initially, before a read or write operation  
DD  
POWER  
20. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
OEHZ  
CHZ CLZ OELZ  
21. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions  
Document #: 38-05544 Rev. *A  
Page 21 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Timing Diagrams  
Read Cycle Timing[25]  
t
CYC  
t
CLK  
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
X
Deselect Cycle  
t
t
CES  
CEH  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
Note:  
22. This parameter is sampled and not 100% tested.  
Document #: 38-05544 Rev. *A  
Page 22 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Timing Diagrams (continued)  
3
Write Cycle Timing[25, 26]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW  
X
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
Notes:  
23. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
24. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05544 Rev. *A  
Page 23 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Timing Diagrams (continued)  
Read/Write Cycle Timing[25, 27, 28]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
DS  
t
OELZ  
t
High-Z  
D(A3)  
D(A5)  
D(A6)  
Data In (D)  
t
OEHZ  
CDV  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back  
WRITEs  
Back-to-Back READs  
Single WRITE  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes:  
25. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
26.  
27.  
28.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by  
GW is HIGH.  
.
ADSP or ADSC  
Document #: 38-05544 Rev. *A  
Page 24 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Timing Diagrams (continued)  
ZZ Mode Timing [29, 30]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
Part and Package Type  
133  
CY7C1381D-133AXC  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm) 3  
Commercial  
CY7C1383D-133AXC  
Chip Enables  
CY7C1381D-133BGC  
CY7C1383D-133BGC  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and JTAG  
CY7C1381D-133BZC  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm)  
3 Chip Enables and JTAG  
CY7C1383D-133BZC  
CY7C1381D-133BGXC  
CY7C1383D-133BGXC  
BG119 Lead-Free 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables  
and JTAG  
CY7C1381D-133BZXC  
BB165D Lead-Free 165-ball Fine-Pitch Ball Grid Array (13 x 15 x  
1.4mm) 3 Chip Enables and JTAG  
CY7C1383D-133BZXC  
100  
CY7C1381D-100AXC  
CY7C1383D-100AXC  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm) 3  
Commercial  
Chip Enables  
CY7C1381D-100BGC  
CY7C1383D-100BGC  
CY7C1381D-100BZC  
CY7C1383D-100BZC  
CY7C1381D-100BGXC  
CY7C1383D-100BGXC  
CY7C1381D-100BZXC  
CY7C1383D-100BZXC  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm)  
3 Chip Enables and JTAG  
BG119 Lead-Free 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables  
and JTAG  
BB165D Lead-Free 165-ball Fine-Pitch Ball Grid Array (13 x 15 x  
1.4mm) 3 Chip Enables and JTAG  
Notes:  
29. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
30. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05544 Rev. *A  
Page 25 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Ordering Information (continued)  
Speed  
Package  
Operating  
Range  
Industrial  
(MHz)  
Ordering Code  
CY7C1381D-100AXI  
CY7C1383D-100AXI  
CY7C1381D-100BGI  
CY7C1383D-100BGI  
CY7C1381D-100BZI  
CY7C1383D-100BZI  
CY7C1381D-100BGXI  
CY7C1383D-100BGXI  
CY7C1381D-100BZXI  
CY7C1383D-100BZXI  
Name  
Part and Package Type  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm) 3  
100  
A101  
Chip Enables  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm)  
3 Chip Enables and JTAG  
BG119 Lead-Free 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables  
and JTAG  
BB165D Lead-Free 165-ball Fine-Pitch Ball Grid Array (13 x 15 x  
1.4mm) 3 Chip Enables and JTAG  
Shaded areas contain advance information. Please contact your local sales representative for availability of these parts.  
Lead-free BG packages (ordering Code:BGX) will be available in 2005.  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
DIMENSIONS ARE IN MILLIMETERS.  
ꢁ6.00 0.20  
ꢁ4.00 0.ꢁ0  
ꢁ.40 0.05  
ꢁ00  
ꢀꢁ  
ꢀ0  
0.30 0.0ꢀ  
0.65  
TYP.  
ꢁ2° ꢁ°  
SEE DETAIL  
A
(ꢀX)  
30  
5ꢁ  
3ꢁ  
50  
0.20 MAX.  
ꢁ.60 MAX.  
R 0.0ꢀ MIN.  
0.20 MAX.  
0° MIN.  
STAND-OFF  
0.05 MIN.  
0.ꢁ5 MAX.  
SEATING PLANE  
0.25  
GAUGE PLANE  
R 0.0ꢀ MIN.  
0.20 MAX.  
0°-7°  
0.60 0.ꢁ5  
ꢁ.00 REF.  
0.20 MIN.  
51-85050-*A  
DETAIL  
A
Document #: 38-05544 Rev. *A  
Page 26 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Document #: 38-05544 Rev. *A  
Page 27 of 29  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Package Diagrams (continued)  
165 FBGA 13 x 15 x 1.40 MM BB165D  
51-85180-**  
i486 is a trademark, and Intel and Pentium are registered trademarks, of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05544 Rev. *A  
Page 28 of 29  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
PRELIMINARY  
CY7C1381D  
CY7C1383D  
Document History Page  
Document Title: CY7C1381D/CY7C1383D 18-Mbit (512K x 36/1M x 18) Flow-Through SRAM  
Document Number: 38-05544  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
254518  
See ECN  
RKF  
New data sheet  
*A  
288531  
See ECN  
SYT  
Edited description under “IEEE 1149.1 Serial Boundary Scan (JTAG)” for  
non-compliance with 1149.1  
Removed 117 Mhz Speed Bin  
Added lead-free information for 100-Pin TQFP, 119 BGA and 165 FBGA  
package  
Added comment of ‘Lead-free BG packages availability’ below the Ordering  
Information  
Document #: 38-05544 Rev. *A  
Page 29 of 29  

相关型号:

CY7C1381D-100AXCT

Standard SRAM, 512KX36, 8.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100
CYPRESS

CY7C1381D-100AXI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100BGC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100BGCT

Cache SRAM, 512KX36, 8.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, BGA-119
CYPRESS

CY7C1381D-100BGI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100BGIT

Cache SRAM, 512KX36, 8.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, BGA-119
CYPRESS

CY7C1381D-100BGXC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100BGXI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100BZC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100BZI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS

CY7C1381D-100BZIT

Standard SRAM, 512KX36, 8.5ns, CMOS, PBGA165, 13 X 15 MM, 1.40 MM HEIGHT, MO-216, FBGA-165
CYPRESS

CY7C1381D-100BZXC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
CYPRESS