CY7C1381FV25-133BGXI [CYPRESS]

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM; 18兆位( 512K ×36 / 1M ×18 )流通型SRAM
CY7C1381FV25-133BGXI
型号: CY7C1381FV25-133BGXI
厂家: CYPRESS    CYPRESS
描述:

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM
18兆位( 512K ×36 / 1M ×18 )流通型SRAM

存储 内存集成电路 静态存储器 时钟
文件: 总28页 (文件大小:1198K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
18-Mbit (512K x 36/1M x 18) Flow-Through SRAM  
Features  
Functional Description [1]  
• Supports 133 MHz bus operations  
• 512K x 36/1M x 18 common IO  
The  
CY7C1381DV25/CY7C1383DV25/CY7C1381FV25/  
CY7C1383FV25 is a 2.5V, 512K x 36 and 1M x 18  
synchronous flow through SRAMs, designed to interface with  
high-speed microprocessors with minimum glue logic.  
Maximum access delay from clock rise is 6.5 ns (133 MHz  
version). A 2-bit on-chip counter captures the first address in  
a burst and increments the address automatically for the rest  
of the burst access. All synchronous inputs are gated by  
registers controlled by a positive edge triggered clock input  
(CLK). The synchronous inputs include all addresses, all data  
inputs, address pipelining chip enable (CE1), depth expansion  
chip enables (CE2 and CE3 [2]), burst control inputs (ADSC,  
• 2.5V core power supply (VDD  
)
• 2.5V IO supply (VDDQ  
)
• Fast clock-to-output times, 6.5 ns (133 MHz version)  
• Provides high-performance 2-1-1-1 access rate  
• User selectable burst counter supporting Intel® Pentium®  
interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self timed write  
ADSP, and ADV), write enables BW , and BWE), and global  
write (GW). Asynchronous inputs include the output enable  
(OE) and the ZZ pin.  
(
x
• Asynchronous output enable  
• CY7C1381DV25/CY7C1383DV25 available in  
JEDEC-standard Pb-free 100-pin TQFP, Pb-free and non  
Pb-free 165-ball FBGA package.  
CY7C1381FV25/CY7C1383FV25 available in Pb-free and  
non Pb-free 119-ball BGA package  
CY7C1381DV25/CY7C1383DV25/CY7C1381FV25/  
CY7C1383FV25  
The  
allows interleaved or linear burst sequences,  
selected by the MODE input pin. A HIGH selects an  
interleaved burst sequence, while a LOW selects a linear burst  
sequence. Burst accesses can be initiated with the processor  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• ZZ sleep mode option  
(ADSP) or the cache controller address strobe  
address strobe  
(ADSC) inputs. Address advancement is controlled by the  
address advancement (ADV) input.  
Addresses and chip enables are registered at rising edge of  
clock when either address strobe processor (ADSP) or  
address strobe controller (ADSC) are active. Subsequent  
burst addresses can be internally generated as controlled by  
the advance pin (ADV).  
The  
CY7C1381DV25/CY7C1383DV25/CY7C1381FV25/  
CY7C1383FV25 operates from a +2.5V core power supply  
while all outputs also operate with a +2.5 supply. All inputs and  
outputs are JEDEC-standard and JESD8-5-compatible.  
Selection Guide  
133 MHz  
6.5  
100 MHz  
8.5  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
210  
175  
mA  
mA  
70  
70  
Notes  
1. For best practices or recommendations, please refer to the Cypress application note AN1064, SRAM System Design Guidelines on www.cypress.com.  
2. CE CE are for TQFP and 165 FBGA package only. 119 BGA is offered only in 1 chip enable.  
3,  
2
Cypress Semiconductor Corporation  
Document #: 38-05547 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised Feburary 14, 2007  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Logic Block Diagram – CY7C1381DV25/CY7C1381FV25 [3] (512K x 36)  
ADDRESS  
REGISTER  
A0, A1, A  
A
[1:0]  
MODE  
ADV  
CLK  
Q1  
Q0  
BURST  
COUNTER  
AND LOGIC  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQP D  
DQ  
BYTE  
WRITE REGISTER  
D, DQP D  
BW  
D
DQ C , DQP C  
DQ C , DQP C  
BW  
C
WRITE REGISTER  
DQ DQP  
OUTPUT  
BUFFERS  
DQs  
DQP  
DQP  
DQP  
DQP  
WRITE REGISTER  
MEMORY  
ARRAY  
SENSE  
AMPS  
A
B
B
,
B
DQ B, DQP B  
BW  
B
C
D
WRITE REGISTER  
DQ DQP  
WRITE REGISTER  
A
,
BYTE  
DQ  
BYTE  
WRITE REGISTER  
A, DQP A  
BW  
A
WRITE REGISTER  
BWE  
INPUT  
GW  
REGISTERS  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
Logic Block Diagram – CY7C1383DV25/CY7C1383FV25 [3] (1M x 18)  
ADDRESS  
REGISTER  
A0,A1,A  
A[1:0]  
MODE  
ADV  
Q1  
COUNTER AND  
BURST  
Q0  
DQ  
B,DQP B  
DQ  
DQ  
B
,DQP  
,DQP  
B
WRITE DRIVER  
BW  
BW  
B
MEMORY  
ARRAY  
OUTPUT  
BUFFERS  
DQs  
DQP  
DQP  
SENSE  
AMPS  
A
B
DQ  
A,DQP A  
A
A
WRITE DRIVER  
A
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
CE  
CE  
1
2
CE  
3
OE  
SLEEP  
CONTROL  
Note  
3. CY7C1381FV25 and CY7C1383FV25 have only 1 chip enable (CE ).  
1
Document #: 38-05547 Rev. *E  
Page 2 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Pin Configurations  
100-pin TQFP Pinout (3 Chip Enable)  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQC  
VDDQ  
VSSQ  
DQC  
3
4
5
6
DQC  
7
NC  
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
VDD  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQC  
9
10  
11  
9
VSSQ  
VDDQ  
DQC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQC  
13  
NC  
14  
VDD  
NC  
VSS  
NC  
VDD  
ZZ  
15  
CY7C1383DV25  
(1 Mbit x 18)  
CY7C1381DV25  
(512K x 36)  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
ZZ  
DQD  
DQD  
VDDQ  
VSSQ  
DQD  
DQD  
DQD  
DQD  
VSSQ  
VDDQ  
DQD  
DQD  
DQPD  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
Document #: 38-05547 Rev. *E  
Page 3 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Pin Configurations (continued)  
119-Ball BGA  
Pinout  
CY7C1381FV25 (512K x 36)  
1
2
3
4
5
6
7
A
VDDQ  
A
A
A
A
VDDQ  
ADSP  
B
C
NC/288M  
NC/144M  
A
A
A
A
A
A
A
A
NC/576M  
NC/1G  
ADSC  
VDD  
D
E
F
DQC  
DQC  
VDDQ  
DQPC  
DQC  
VSS  
VSS  
VSS  
NC  
CE1  
OE  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
DQC  
DQB  
VDDQ  
G
H
J
DQC  
DQC  
VDDQ  
DQD  
DQC  
DQC  
VDD  
DQB  
DQB  
VDD  
DQA  
DQB  
DQB  
VDDQ  
DQA  
ADV  
BWC  
VSS  
NC  
BWB  
VSS  
NC  
GW  
VDD  
K
DQD  
VSS  
CLK  
NC  
VSS  
L
M
N
DQD  
VDDQ  
DQD  
DQD  
DQD  
DQD  
DQA  
DQA  
DQA  
DQA  
VDDQ  
DQA  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
BWE  
A1  
DQD  
NC  
DQPD  
A
VSS  
A0  
VSS  
NC  
DQPA  
A
DQA  
NC  
P
R
MODE  
VDD  
T
NC  
NC/72M  
TMS  
A
A
A
NC/36M  
NC  
ZZ  
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
U
CY7C1383FV25 (1M x 18)  
2
A
1
3
A
4
5
6
7
VDDQ  
NC/576M  
NC/1G  
NC  
A
B
C
D
E
F
VDDQ  
A
A
ADSP  
NC/288M  
NC/144M  
DQB  
A
A
A
ADSC  
VDD  
A
A
A
A
A
NC  
DQB  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
DQPA  
NC  
NC  
DQA  
CE1  
OE  
VDDQ  
DQA  
VDDQ  
NC  
DQB  
NC  
VDD  
NC  
DQA  
VDD  
DQA  
NC  
VDDQ  
G
H
J
BWB  
VSS  
NC  
ADV  
DQB  
VDDQ  
GW  
VDD  
NC  
K
NC  
DQB  
VSS  
CLK  
NC  
VSS  
NC  
DQA  
L
M
N
P
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
NC  
VSS  
VSS  
VSS  
DQA  
NC  
NC  
VDDQ  
NC  
BWA  
VSS  
BWE  
A1  
VSS  
VSS  
DQA  
NC  
DQPB  
A0  
DQA  
R
T
NC  
A
A
MODE  
A
VDD  
NC/36M  
TCK  
NC  
A
A
A
NC  
ZZ  
NC/72M  
VDDQ  
TMS  
TDI  
TDO  
NC  
VDDQ  
U
Document #: 38-05547 Rev. *E  
Page 4 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Pin Configurations (continued)  
165-Ball FBGA Pinout(3 Chip Enable)  
CY7C1381DV25 (512K x 36)  
1
2
A
3
CE1  
4
BWC  
5
BWB  
6
CE3  
7
8
9
ADV  
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
BWE  
GW  
VSS  
VSS  
ADSC  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
BWD  
VSS  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
NC  
DQC  
NC/1G  
DQB  
DQC  
VDD  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
A0  
MODE NC/36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1383DV25 (1Mx 18)  
1
2
A
3
CE1  
4
BWB  
5
NC  
6
CE3  
7
8
9
ADV  
10  
A
11  
A
NC/288M  
NC/144M  
NC  
BWE  
GW  
VSS  
VSS  
ADSC  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPA  
DQA  
NC  
NC/1G  
NC  
NC  
DQB  
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
ZZ  
E
F
NC  
NC  
G
H
J
VSS  
DQB  
DQB  
DQB  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
MODE NC/36M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05547 Rev. *E  
Page 5 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Pin Definitions  
Name  
IO  
Description  
A0, A1, A  
Input-  
Synchronous  
Address inputs used to select one of the address locations. Sampled at the rising edge  
of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 [2] are sampled active.  
A[1:0] feed the 2-bit counter.  
BWA, BWB  
BWC, BWD  
Input-  
Synchronous  
Byte write select inputs, active LOW. Qualified with BWE to conduct byte writes to the  
SRAM. Sampled on the rising edge of CLK.  
GW  
CLK  
CE1  
Input-  
Synchronous  
Global write enable input, active LOW. When asserted LOW on the rising edge of CLK, a  
global write is conducted (all bytes are written, regardless of the values on BW[A:D] and BWE).  
Input-  
Clock  
Clock input. Used to capture all synchronous inputs to the device. Also used to increment  
the burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Synchronous  
Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE2 and CE3 [2] to select or deselect the device. ADSP is ignored if CE1 is HIGH. CE1  
is sampled only when a new external address is loaded.  
CE2  
Input-  
Synchronous  
Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 [2] to select or deselect the device. CE2 is sampled only when a new  
external address is loaded.  
[2]  
CE3  
Input-  
Synchronous  
Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE2 to select or deselect the device. CE3 is sampled only when a new external  
address is loaded.  
OE  
Input-  
Output enable, asynchronous input, active LOW. Controls the direction of the IO pins.  
Asynchronous When LOW, the IO pins behave as outputs. When deasserted HIGH, IO pins are tri-stated,  
and act as input data pins. OE is masked during the first clock of a read cycle when emerging  
from a deselected state.  
ADV  
Input-  
Advance input signal. Sampled on the rising edge of CLK. When asserted, it automatically  
Synchronous  
increments the address in a burst cycle.  
ADSP  
Input-  
Address strobe from processor, sampled on the rising edge of CLK, active LOW. When  
Synchronous  
asserted LOW, addresses presented to the device are captured in the address registers.  
A[1:0] are also loaded into the burst counter. When ADSP and ADSC are both asserted, only  
ADSP is recognized. ASDP is ignored when CE1 is deasserted HIGH.  
ADSC  
Input-  
Address strobe from controller, sampled on the rising edge of CLK, active LOW. When  
Synchronous  
asserted LOW, addresses presented to the device are captured in the address registers.  
A
[1:0] are also loaded into the burst counter. When ADSP and ADSC are both asserted, only  
.
ADSP is recognized  
BWE  
ZZ  
Input-  
Synchronous  
Byte write enable input, active LOW. Sampled on the rising edge of CLK. This signal must  
be asserted LOW to conduct a byte write.  
Input-  
ZZ sleep input. This active HIGH input places the device in a non-time critical sleep  
Asynchronous condition with data integrity preserved. For normal operation, this pin has to be LOW or left  
floating. ZZ pin has an internal pull down.  
IO-  
Bidirectional dataIO lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by the addresses presented during the previous clock rise of the read cycle. The  
direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as  
outputs. When HIGH, DQs and DQPX are placed in a tri-state condition.The outputs are  
automatically tri-stated during the data portion of a write sequence, during the first clock  
when emerging from a deselected state, and when the device is deselected, regardless of  
the state of OE.  
DQs  
Synchronous  
IO-  
Bidirectional data parity IO lines. Functionally, these signals are identical to DQs. During  
DQPX  
Synchronous  
write sequences, DQPX is controlled by BWX correspondingly.  
Document #: 38-05547 Rev. *E  
Page 6 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Pin Definitions (continued)  
Name  
MODE  
IO  
Description  
Input-Static  
Selects burst order. When tied to GND selects linear burst sequence. When tied to VDD or  
left floating selects interleaved burst sequence. This is a strap pin and must remain static  
during device operation. Mode pin has an internal pull up.  
VDD  
Power Supply Power supply inputs to the core of the device.  
IO Power Supply Power supply for the IO circuitry.  
VDDQ  
VSS  
Ground  
Ground for the core of the device.  
Ground for the IO circuitry.  
VSSQ  
TDO  
IO Ground  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the JTAG  
Synchronous  
feature is not used, this pin can be left unconnected. This pin is not available on TQFP  
packages.  
TDI  
JTAG serial input Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature  
Synchronous  
is not used, this pin can be left floating or connected to VDD through a pull up resistor. This  
pin is not available on TQFP packages.  
TMS  
TCK  
JTAG serial input Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature  
Synchronous  
is not used, this pin can be disconnected or connected to VDD. This pin is not available on  
TQFP packages.  
JTAG-  
Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not used, this pin must be  
connected to VSS. This pin is not available on TQFP packages.  
NC, NC/(36M,  
72M, 144M,  
288M, 576M,  
1G)  
-
No Connects. Not internally connected to the die. 36M, 72M, 144M, 288M, 576M, and 1G  
are address expansion pins and are not internally connected to the die.  
VSS/DNU  
Ground/DNU  
This pin can be connected to ground or can be left floating.  
selection and output tri-state control. ADSP is ignored if CE1  
is HIGH.  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. Maximum access delay from  
the clock rise (tCDV) is 6.5 ns (133 MHz device).  
Single Read Accesses  
A single read access is initiated when the following conditions  
[2]  
The  
CY7C1381DV25/CY7C1383DV25/CY7C1381FV25/  
are satisfied at clock rise: (1) CE1, CE2, and CE3  
are all  
CY7C1383FV25 supports secondary cache in systems using  
a linear or interleaved burst sequence. The interleaved burst  
order supports Pentium® and i486™ processors. The linear  
burst sequence is suited for processors that use a linear burst  
sequence. The burst order is user selectable, and is  
determined by sampling the MODE input. Accesses can be  
initiated with either the processor address strobe (ADSP) or  
the controller address strobe (ADSC). Address advancement  
through the burst sequence is controlled by the ADV input. A  
two-bit on-chip wraparound burst counter captures the first  
address in a burst sequence and automatically increments the  
address for the rest of the burst access.  
asserted active, and (2) ADSP or ADSC is asserted LOW (if  
the access is initiated by ADSC, the write inputs must be  
deserted during this first cycle). The address presented to the  
address inputs is latched into the address register and the  
burst counter and/or control logic, and presented to the  
memory core. If the OE input is asserted LOW, the requested  
data will be available at the data outputs with a maximum to  
tCDV after clock rise. ADSP is ignored if CE1 is HIGH.  
Single Write Accesses Initiated by ADSP  
This access is initiated when the following conditions are  
[2]  
satisfied at clock rise: (1) CE1, CE2, CE3  
are all asserted  
active, and (2) ADSP is asserted LOW. The addresses  
presented are loaded into the address register and the burst  
inputs (GW, BWE, and BWX) are ignored during this first clock  
Byte write operations are qualified with the byte write enable  
(BWE) and byte write select (BWX) inputs. A global write  
enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self timed write circuitry.  
cycle. If the write inputs are asserted active (see Truth Table  
[4, 9]  
for Read/Write  
on page 10 for appropriate states that  
indicate a write) on the next clock rise, the appropriate data will  
be latched and written into the device. Byte writes are allowed.  
All IOs are tri-stated during a byte write. As this is a common  
IO device, the asynchronous OE input signal must be deserted  
Three synchronous chip selects (CE1, CE2, CE3 [2]) and an  
asynchronous output enable (OE) provide for easy bank  
Document #: 38-05547 Rev. *E  
Page 7 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
and the IOs must be tri-stated prior to the presentation of data  
to DQs. As a safety precaution, the data lines are tri-stated  
once a write cycle is detected, regardless of the state of OE.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation sleep mode. Two  
clock cycles are required to enter into or exit from this sleep  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the sleep mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the sleep mode. CE1, CE2, CE3 [2], ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
Single Write Accesses Initiated by ADSC  
This write access is initiated when the following conditions are  
[2]  
satisfied at clock rise: (1) CE1, CE2, and CE3  
are all  
asserted active, (2) ADSC is asserted LOW, (3) ADSP is  
deserted HIGH, and (4) the write input signals (GW, BWE, and  
BWX) indicate a write access. ADSC is ignored if ADSP is  
active LOW.  
The addresses presented are loaded into the address register  
and the burst counter, the control logic, or both, and delivered  
to the memory core. The information presented to DQX will be  
written into the specified address location. Byte writes are  
allowed. All IOs are tri-stated when a write is detected, even a  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
byte write. Since this is  
a common IO device, the  
asynchronous OE input signal must be deasserted and the IOs  
must be tri-stated prior to the presentation of data to DQs. As  
a safety precaution, the data lines are tri-stated once a write  
cycle is detected, regardless of the state of OE.  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Burst Sequences  
Linear Burst Address Table (MODE = GND)  
The  
CY7C1383FV25 provides an on-chip two-bit wraparound burst  
counter inside the SRAM. The burst counter is fed by A[1:0]  
CY7C1381DV25/CY7C1383DV25/CY7C1381FV25/  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
,
and can follow either a linear or interleaved burst order. The  
burst order is determined by the state of the MODE input. A  
LOW on MODE will select a linear burst sequence. A HIGH on  
MODE will select an interleaved burst order. Leaving MODE  
unconnected will cause the device to default to a interleaved  
burst sequence.  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
Unit  
mA  
ns  
80  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ns  
Document #: 38-05547 Rev. *E  
Page 8 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Truth Table [4, 5, 6, 7, 8]  
Address  
Used  
Cycle Description  
CE1 CE2 CE3 ZZ  
ADSP  
ADSC ADV WRITE OE CLK  
DQ  
Deselected Cycle, Power  
Down  
None  
None  
None  
None  
None  
H
L
L
L
X
X
L
X
X
H
X
X
L
L
L
L
L
X
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
Deselected Cycle, Power  
Down  
L
L
Deselected Cycle, Power  
Down  
X
L
Deselected Cycle, Power  
Down  
H
H
Deselected Cycle, Power  
Down  
X
L
Sleep Mode, Power Down  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
None  
External  
External  
External  
External  
External  
Next  
X
L
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
X
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
X
X
X
L
X
X
X
X
X
X
L
X
X
X
L
X
L
X
Tri-State  
Q
L-H  
L
L
L
H
X
L
L-H Tri-State  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
L
L
L
H
H
H
H
H
H
L
L
L
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
Q
H
X
X
L-H  
L-H  
D
D
L
Notes  
4. X = Don't Care, H = Logic HIGH, L = Logic LOW.  
5. WRITE = L when any one or more byte write enable signals, and BWE = L or GW = L. WRITE = H when all byte write enable signals, BWE, GW = H.  
6. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
7. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after  
X
the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't  
care for the remainder of the write cycle.  
8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is  
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document #: 38-05547 Rev. *E  
Page 9 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Truth Table for Read/Write [4, 9]  
Function (CY7C1381DV25/CY7C1381FV25)  
Read  
GW  
H
BWE  
BWD  
X
BWC  
X
BWB  
X
BWA  
X
H
L
L
L
L
L
L
L
L
Read  
H
H
H
H
H
Write Byte A (DQA, DQPA)  
H
H
H
H
L
Write Byte B (DQB, DQPB)  
H
H
H
L
H
Write Bytes A, B (DQA, DQB, DQPA, DQPB)  
Write Byte C (DQC, DQPC)  
H
H
H
L
L
H
H
L
H
H
Write Bytes C, A (DQC, DQA, DQPC, DQPA)  
Write Bytes C, B (DQC, DQB, DQPC, DQPB)  
H
H
L
H
L
H
H
L
L
H
Write Bytes C, B, A (DQC, DQB, DQA, DQPC,  
DQPB, DQPA)  
H
H
L
L
L
Write Byte D (DQD, DQPD)  
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
L
H
L
Write Bytes D, A (DQD, DQA, DQPD, DQPA)  
Write Bytes D, B (DQD, DQA, DQPD, DQPA)  
H
L
Write Bytes D, B, A (DQD, DQB, DQA, DQPD,  
DQPB, DQPA)  
L
Write Bytes D, B (DQD, DQB, DQPD, DQPB)  
H
H
L
L
L
L
L
L
H
H
H
L
Write Bytes D, B, A (DQD, DQC, DQA, DQPD,  
DQPC, DQPA)  
Write Bytes D, C, A (DQD, DQB, DQA, DQPD,  
DQPB, DQPA)  
H
L
L
L
L
H
Write All Bytes  
Write All Bytes  
H
L
L
L
L
L
L
X
X
X
X
X
Truth Table for Read/Write [4, 9]  
Function (CY7C1383DV25/CY7C1383FV25)  
GW  
H
BWE  
BWB  
BWA  
Read  
H
L
L
L
L
X
X
H
H
L
X
H
L
Read  
H
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write All Bytes  
H
H
H
L
H
L
Write All Bytes  
L
X
X
Note  
9. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05547 Rev. *E  
Page 10 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Test Data-In (TDI)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
(See TAP Controller Block Diagram).  
The CY7C1381DV25/CY7C1383DV25 incorporates a serial  
boundary scan test access port (TAP). This part is fully  
compliant with 1149.1. The TAP operates using  
JEDEC-standard 3.3V or 2.5V IO logic levels.  
The CY7C1381DV25/CY7C1383DV25 contains  
a
TAP  
controller, instruction register, boundary scan register, bypass  
register, and ID register.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may  
alternately be connected to VDD through a pull up resistor.  
TDO may be left unconnected. Upon power up, the device will  
come up in a reset state, which will not interfere with the  
operation of the device.  
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See TAP Controller State Diagram.)  
TAP Controller Block Diagram  
TAP Controller State Diagram  
0
TEST-LOGIC  
1
Bypass Register  
RESET  
0
2
1
0
0
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
S
election  
TDI  
TDO  
0
0
Circuitr  
y
.
.
. 2 1  
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
TCK  
TMS  
TAP CONTROLLER  
PAUSE-DR  
1
0
PAUSE-IR  
1
0
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
UPDATE-DR  
UPDATE-IR  
A Reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This Reset does not affect the operation of the  
SRAM and may be performed while the SRAM is operating. At  
power up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
1
0
1
0
The 0 or 1 next to each state represents the value of TMS at  
the rising edge of TCK.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned in and out of the SRAM test circuitry.  
Only one register can be selected at a time through the  
instruction registers. Data is serially loaded into the TDI ball on  
the rising edge of TCK. Data is output on the TDO ball on the  
falling edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Instruction Register  
Test MODE SELECT (TMS)  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the TAP Controller Block  
Diagram. Upon power up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. This pin may be left  
unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
Document #: 38-05547 Rev. *E  
Page 11 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary ‘01’ pattern to  
allow for fault isolation of the board level serial test data path.  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power up or whenever the TAP controller is given a test  
logic reset state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command  
places all SRAM outputs into a High-Z state.  
Boundary Scan Register  
SAMPLE/PRELOAD  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The boundary scan register is loaded with the contents of the  
RAM IO ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD, and SAMPLE Z instructions can be used  
to capture the contents of the input and output ring.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
The boundary scan order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
(ID) Register  
The ID register is loaded with a vendor specific 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions on page 14.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture setup plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
TAP Instruction Set  
Overview  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in Identification  
Codes on page 15. Three of these instructions are listed as  
RESERVED and must not be used. The other five instructions  
are described in detail below.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells  
prior to the selection of another boundary scan test operation.  
Instructions are loaded into the TAP controller during the  
Shift-IR state, when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required; that is, while data  
captured is shifted out, the preloaded data is shifted in.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
EXTEST  
The EXTEST instruction enables the preloaded data to be  
driven out through the system output pins. This instruction also  
selects the boundary scan register to be connected for serial  
access between the TDI and TDO in the Shift-DR controller  
state.  
EXTEST Output Bus Tri-State  
IEEE Standard 1149.1 mandates that the TAP controller be  
able to put the output bus into a tri-state mode.  
IDCODE  
The IDCODE instruction causes a vendor specific 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
The boundary scan register has a special bit located at bit #85  
(for 119-BGA package) or bit #89 (for 165-fBGA package).  
When this scan cell, called the “extest output bus tri-state,” is  
latched into the preload register during the Update-DR state in  
Document #: 38-05547 Rev. *E  
Page 12 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
the TAP controller, it will directly control the state of the output  
(Q-bus) pins, when the EXTEST is entered as the current  
instruction. When HIGH, it will enable the output buffers to  
drive the output bus. When LOW, this bit will place the output  
bus into a High-Z condition.  
register. When the EXTEST instruction is entered, this bit will  
directly control the output Q-bus pins. Note that this bit is  
preset HIGH to enable the output when the device is powered  
up, and also when the TAP controller is in the Test-Logic-Reset  
state.  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that  
cell, during the Shift-DR state. During Update-DR, the value  
loaded into that shift-register cell will latch into the preload  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics  
Over the Operating Range [10, 11]  
Parameter  
Clock  
Description  
Min.  
Max.  
Unit  
tTCYC  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
tTF  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
tTDOX  
Setup Times  
tTMSS  
tTDIS  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
10  
ns  
ns  
0
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes  
10. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11. Test conditions are specified using the load in TAP AC test conditions. t /t = 1 ns.  
R
F
Document #: 38-05547 Rev. *E  
Page 13 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
2.5V TAP AC Test Conditions  
2.5V TAP AC Output Load Equivalent  
1.25V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time..................................................... 1 ns  
Input timing reference levels.........................................1.25V  
Output reference levels.................................................1.25V  
Test load termination supply voltage.............................1.25V  
50  
TDO  
ZO= 50 Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 2.5V ±0.125V unless otherwise noted) [12]  
Parameter  
VOH1  
Description  
Test Conditions  
Min.  
2.0  
Max.  
Unit  
V
Output HIGH Voltage IOH = –1.0 mA, VDDQ = 2.5V  
Output HIGH Voltage IOH = –100 µA, VDDQ = 2.5V  
Output LOW Voltage IOL = 8.0 mA, VDDQ = 2.5V  
VOH2  
VOL1  
VOL2  
VIH  
2.1  
V
0.4  
0.2  
V
Output LOW Voltage IOL = 100 µA  
Input HIGH Voltage  
VDDQ = 2.5V  
V
VDDQ = 2.5V  
VDDQ = 2.5V  
1.7  
–0.3  
–5  
VDD + 0.3  
V
VIL  
Input LOW Voltage  
0.7  
5
V
IX  
Input Load Current  
GND < VIN < VDDQ  
µA  
Identification Register Definitions  
CY7C1381DV25/  
CY7C1381FV25  
(512K x 36)  
CY7C1383DV25/  
CY7C1383FV25  
(1 Mbit x 18)  
Instruction Field  
Description  
Revision Number (31:29)  
000  
01011  
000  
01011  
Describes the version number  
Reserved for internal use.  
Device Depth (28:24)  
Device Width (23:18) 119-BGA  
Device Width (23:18) 165-FBGA  
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
101001  
000001  
100101  
00000110100  
1
101001  
000001  
010101  
00000110100  
1
Defines the memory type and architecture  
Defines the memory type and architecture  
Defines the width and density  
Allows unique identification of SRAM vendor  
Indicates the presence of an ID register  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Instruction Bypass  
3
3
Bypass  
ID  
1
1
32  
85  
89  
32  
85  
89  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball FBGA package)  
Note  
12. All voltages referenced to V (GND).  
SS  
Document #: 38-05547 Rev. *E  
Page 14 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Identification Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use. This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use. This instruction is reserved for future use.  
Do Not Use. This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
119-Ball BGA Boundary Scan Order [13, 14]  
Bit #  
1
Ball ID  
Bit #  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Ball ID  
F6  
Bit #  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
Ball ID  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
Bit #  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Ball ID  
L1  
H4  
T4  
T5  
T6  
R5  
L5  
2
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
B6  
D4  
B4  
F4  
M2  
N1  
3
4
P1  
5
K1  
6
L2  
7
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
N2  
P2  
8
9
R3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
T1  
R1  
T2  
L3  
R2  
K6  
P7  
N6  
L6  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
T3  
L4  
N4  
P4  
K7  
J5  
M4  
A5  
K4  
E4  
Internal  
H6  
G7  
2K  
Notes  
13. Balls that are NC (No Connect) are preset LOW.  
14. Bit #85 is preset HIGH.  
Document #: 38-05547 Rev. *E  
Page 15 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
165-Ball BGA Boundary Scan Order [13, 15]  
Bit #  
1
Ball ID  
N6  
Bit #  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Ball ID  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
G1  
D2  
E2  
2
N7  
3
N10  
P11  
P8  
4
F2  
5
G2  
H1  
H3  
J1  
6
R8  
7
R9  
8
P9  
B9  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
C10  
A8  
K1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
L1  
B8  
M1  
J2  
A7  
B7  
K2  
B6  
L2  
A6  
M2  
N1  
N2  
P1  
B5  
A5  
A4  
B4  
R1  
R2  
P3  
B3  
A3  
A2  
R3  
P2  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
B2  
C2  
R4  
P4  
B1  
A1  
N5  
P6  
C1  
D1  
R6  
Internal  
E1  
F1  
Note  
15. Bit #89 is preset HIGH.  
Document #: 38-05547 Rev. *E  
Page 16 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW) ........................................ 20 mA  
Maximum Ratings  
Exceeding the maximum ratings may impair the useful life of  
the device. For user guidelines, not tested.  
Static Discharge Voltage.......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature .................................65°C to +150°C  
Latch-up Current ................................................... > 200 mA  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND ....... –0.3V to +3.6V  
Supply Voltage on VDDQ Relative to GND ...... –0.3V to +VDD  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
VDD  
VDDQ  
2.5V ± 5% 2.5V – 5%  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
to VDD  
–40°C to +85°C  
Electrical Characteristics  
Over the Operating Range [16, 17]  
Parameter  
VDD  
Description  
Power Supply Voltage  
IO Supply Voltage  
Test Conditions  
Min.  
Max.  
2.625  
VDD  
Unit  
V
2.375  
2.375  
2.0  
VDDQ  
VOH  
for 2.5V IO  
V
Output HIGH Voltage  
for 2.5V IO, IOH = –1.0 mA  
for 2.5V IO, IOL = 1.0 mA  
V
VOL  
Output LOW Voltage  
0.4  
V
VIH  
Input HIGH Voltage [16] for 2.5V IO  
Input LOW Voltage [16] for 2.5V IO  
1.7  
–0.3  
–5  
VDD + 0.3V  
V
VIL  
0.7  
5
V
IX  
Input Leakage Current GND VI VDDQ  
except ZZ and MODE  
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
30  
5
IOZ  
IDD  
Output Leakage Current GND VI VDD, Output Disabled  
–5  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
210  
175  
140  
120  
Current  
f = fMAX = 1/tCYC  
ISB1  
ISB2  
ISB3  
ISB4  
Automatic CE  
Power Down  
Current—TTL Inputs  
Max. VDD, Device Deselected,  
VIN VIH or VIN VIL, f = fMAX,  
inputs switching  
Automatic CE  
Power Down  
Current—CMOS Inputs f = 0, inputs static  
Max. VDD, Device Deselected,  
VIN VDD – 0.3V or VIN 0.3V,  
All speeds  
70  
mA  
Automatic CE  
Power Down  
Current—CMOS Inputs f = fMAX, inputs switching  
Max. VDD, Device Deselected,  
VIN VDDQ – 0.3V or VIN 0.3V,  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
130  
110  
mA  
mA  
Automatic CE  
Power Down  
Current—TTL Inputs  
Max. VDD, Device Deselected,  
VIN VDD – 0.3V or VIN 0.3V,  
f = 0, inputs static  
All speeds  
80  
mA  
Notes  
16. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
17. T  
: assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
.
DD  
power up  
DD  
IH  
DD  
DDQ  
Document #: 38-05547 Rev. *E  
Page 17 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Capacitance [18]  
100 TQFP  
Package  
119 BGA  
Package  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
CIN  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
VDD/VDDQ= 2.5V  
5
5
5
8
8
8
9
9
9
pF  
pF  
pF  
CCLK  
CIO  
Clock Input Capacitance  
Input/Output Capacitance  
Thermal Resistance [18]  
100 TQFP  
Package  
119 BGA  
Package  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow  
standard test methods and  
procedures for measuring  
thermal impedance, in  
accordance with  
28.66  
23.8  
20.7  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
4.08  
6.2  
4.0  
°C/W  
EIA/JESD51.  
AC Test Loads and Waveforms  
2.5V IO Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
INCLUDING  
JIG AND  
SCOPE  
V = 1.25V  
T
(a)  
(b)  
(c)  
Note  
18. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05547 Rev. *E  
Page 18 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Switching Characteristics  
Over the Operating Range [19, 20]  
133 MHz  
100 MHz  
Parameter  
Description  
Unit  
Min.  
Max.  
Min.  
Max.  
tPOWER  
Clock  
tCYC  
VDD(Typical) to the first Access [21]  
1
1
ms  
Clock Cycle Time  
Clock HIGH  
7.5  
2.1  
2.1  
10  
2.5  
2.5  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCDV  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z [22, 23, 24]  
6.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
2.0  
2.0  
0
2.0  
2.0  
0
tCLZ  
tCHZ  
Clock to High-Z [22, 23, 24]  
4.0  
3.2  
5.0  
3.8  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Setup Times  
tAS  
OE LOW to Output Low-Z [22, 23, 24]  
OE HIGH to Output High-Z [22, 23, 24]  
0
0
4.0  
5.0  
Address Setup Before CLK Rise  
ADSP, ADSC Setup Before CLK Rise  
ADV Setup Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BW[A:D] Setup Before CLK Rise  
Data Input Setup Before CLK Rise  
Chip Enable Setup  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
ADSP, ADSC Hold After CLK Rise  
GW, BWE, BW[A:D] Hold After CLK Rise  
ADV Hold After CLK Rise  
tWEH  
tADVH  
tDH  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tCEH  
Notes  
19. Timing reference level is 1.25V.  
20. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
21. This part has a voltage regulator internally; t  
can be initiated.  
is the time that the power needs to be supplied above V (minimum) initially, before a read or write operation  
DD  
POWER  
22. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
OEHZ  
CHZ CLZ OELZ  
23. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
OEHZ  
OELZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
24. This parameter is sampled and not 100% tested.  
Document #: 38-05547 Rev. *E  
Page 19 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Timing Diagrams  
Read Cycle Timing [25]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
X
Deselect Cycle  
t
t
CES  
CEH  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
Note  
25. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05547 Rev. *E  
Page 20 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Timing Diagrams (continued)  
Write Cycle Timing [25, 26]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW  
X
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
Note  
26.  
Full width write can be initiated by either GW LOW, or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05547 Rev. *E  
Page 21 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Timing Diagrams (continued)  
Read/Write Cycle Timing [25, 27, 28]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
DS  
t
OELZ  
t
High-Z  
D(A3)  
D(A5)  
D(A6)  
Data In (D)  
t
OEHZ  
CDV  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back  
WRITEs  
Back-to-Back READs  
Single WRITE  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes  
27. The data bus (Q) remains in high-Z following a write cycle, unless a new read access is initiated by ADSP or ADSC.  
28. GW is HIGH.  
Document #: 38-05547 Rev. *E  
Page 22 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Timing Diagrams (continued)  
ZZ Mode Timing [29, 30]  
CLK  
ZZ  
t
t
ZZ  
ZZREC  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
29. Device must be deselected when entering ZZ sleep mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
30. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05547 Rev. *E  
Page 23 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Ordering Information  
Not all of the speed, package, and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
133 CY7C1381DV25-133AXC 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
CY7C1383DV25-133AXC  
Commercial  
CY7C1381FV25-133BGC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1383FV25-133BGC  
CY7C1381FV25-133BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
CY7C1383FV25-133BGXC  
CY7C1381DV25-133BZC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1383DV25-133BZC  
CY7C1381DV25-133BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
CY7C1383DV25-133BZXC  
CY7C1381DV25-133AXI  
CY7C1383DV25-133AXI  
CY7C1381FV25-133BGI  
CY7C1383FV25-133BGI  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
lndustrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1381FV25-133BGXI 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
CY7C1383FV25-133BGXI  
CY7C1381DV25-133BZI  
CY7C1383DV25-133BZI  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1381DV25-133BZXI 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
CY7C1383DV25-133BZXI  
100 CY7C1381DV25-100AXC 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
CY7C1383DV25-100AXC  
Commercial  
CY7C1381FV25-100BGC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1383FV25-100BGC  
CY7C1381FV25-100BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
CY7C1383FV25-100BGXC  
CY7C1381DV25-100BZC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1383DV25-100BZC  
CY7C1381DV25-100BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
CY7C1383DV25-100BZXC  
CY7C1381DV25-100AXI  
CY7C1383DV25-100AXI  
CY7C1381FV25-100BGI  
CY7C1383FV25-100BGI  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
lndustrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1381FV25-100BGXI 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
CY7C1383FV25-100BGXI  
CY7C1381DV25-100BZI  
CY7C1383DV25-100BZI  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1381DV25-100BZXI 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
CY7C1383DV25-100BZXI  
Document #: 38-05547 Rev. *E  
Page 24 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Package Diagrams  
Figure 1. 100-Pin Thin Plastic Quad Flat pack (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
Document #: 38-05547 Rev. *E  
Page 25 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Package Diagrams (continued)  
Figure 2. 119-Ball BGA (14 x 22 x 2.4 mm) (51-85115)  
51-85115-*B  
Document #: 38-05547 Rev. *E  
Page 26 of 28  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Package Diagrams (continued)  
Figure 3. 165-Ball FBGA (13 x 15 x 1.4 mm) (51-85180)  
BOTTOM VIEW  
PIN 1 CORNER  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
-0.06  
Ø0.50
(165X)  
+0.14  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
A
B
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
A
1.00  
5.00  
10.00  
13.00 0.10  
B
B
13.00 0.10  
0.15(4X)  
NOTES :  
SOLDER PAD TYPE : NON-SOLDER MASK DEFINED (NSMD)  
PACKAGE WEIGHT : 0.475g  
JEDECREFERENCE: MO-216 / DESIGN 4.6C  
PACKAGE CODE : BB0AC  
SEATING PLANE  
C
51-85180-*A  
Intel and Pentium are registered trademarks, and i486 is a trademark of Intel Corporation. All product and company names  
mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05547 Rev. *E  
Page 27 of 28  
© Cypress Semiconductor Corporation, 2006-2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for  
the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended  
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CY7C1381DV25, CY7C1381FV25  
CY7C1383DV25, CY7C1383FV25  
Document History Page  
Document Title: CY7C1381DV25/CY7C1383DV25/CY7C1381FV25/CY7C1383FV25, 18-Mbit (512K x 36/1M x 18)  
Flow-Through SRAM  
Document Number: 38-05547  
Orig. of  
Change  
REV.  
ECN NO. Issue Date  
Description of Change  
**  
254518  
288531  
See ECN  
See ECN  
RKF  
New data sheet  
*A  
SYT  
Edited description under “IEEE 1149.1 Serial Boundary Scan (JTAG)” for  
non-compliance with 1149.1  
Removed 117Mhz Speed Bin  
Added Pb-free information for 100-Pin TQFP, 119 BGA and 165 FBGA  
Packages  
Added comment of ‘Pb-free BG packages availability’ below the Ordering  
Information  
*B  
326078  
See ECN  
PCI  
Address expansion pins/balls in the pinouts for all packages are modified as  
per JEDEC standard  
Added description on EXTEST Output Bus Tri-State  
Changed description on the Tap Instruction Set Overview and Extest  
Changed Device Width (23:18) for 119-BGA from 000001 to 101001  
Added separate row for 165 -FBGA Device Width (23:18)  
Changed ΘJA and ΘJC for TQFP Package from 31 and 6 °C/W to 28.66 and  
4.08 °C/W respectively  
Changed ΘJA and ΘJc or BGA Package from 45 and 7 °C/W to 23.8 and 6.2  
°C/W respectively  
Changed ΘJA and ΘJc for FBGA Package from 46 and 3 °C/W to 20.7 and  
4.0 °C/W respectively  
Modified VOL, VOH test conditions  
Removed comment of ‘Pb-free BG packages availability’ below the Ordering  
Information  
Updated Ordering Information Table  
*C  
416321  
See ECN  
NXR  
Changed address of Cypress Semiconductor Corporation on Page# 1 from  
“3901 North First Street” to “198 Champion Court”  
Changed the description of IX from Input Load Current to Input Leakage  
Current on page# 17  
Changed the IX current values of MODE on page # 18 from –5 µA and 30 µA  
to –30 µA and 5 µA  
Changed the IX current values of ZZ on page # 18 from –30 µA and 5 µA  
to –5 µA and 30 µA  
Changed VIH < VDD to VIH < VDDon page # 18  
Replaced Package Name column with Package Diagram in the Ordering  
Information table  
*D  
*E  
475009  
793579  
See ECN  
See ECN  
VKN  
VKN  
Converted from Preliminary to Final.  
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND  
Changed tTH, tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP  
AC Switching Characteristics table.  
Updated the Ordering Information table.  
Added Part numbers CY7C1381FV25 and CY7C1383FV25  
Added footnote# 3 regarding Chip Enable  
Updated Ordering Information table  
Document #: 38-05547 Rev. *E  
Page 28 of 28  
[+] Feedback  

相关型号:

CY7C1381KV33

18-Mbit (512K × 36/1M × 18) Flow-Through SRAM (With ECC)
CYPRESS

CY7C1381KV33-100AXC

18-Mbit (512K × 36/1M × 18) Flow-Through SRAM (With ECC)
CYPRESS

CY7C1381KV33-100BZXI

Cache SRAM, 512KX36, 8.5ns, CMOS, PBGA165, 13 X 15 MM, 1.40 MM HEIGHT, LEAD FREE, MO-216, FBGA-165
CYPRESS

CY7C1381KV33-133AXC

18-Mbit (512K × 36/1M × 18) Flow-Through SRAM (With ECC)
CYPRESS

CY7C1381KV33-133AXI

18-Mbit (512K × 36/1M × 18) Flow-Through SRAM (With ECC)
CYPRESS

CY7C1381KVE33

18-Mbit (512K × 36/1M × 18) Flow-Through SRAM (With ECC)
CYPRESS

CY7C1381KVE33-133AXI

18-Mbit (512K × 36/1M × 18) Flow-Through SRAM (With ECC)
CYPRESS

CY7C1382A-100AC

Cache SRAM, 1MX18, 5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1382A-100BGC

Cache SRAM, 1MX18, 5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

CY7C1382A-133BGC

Cache SRAM, 1MX18, 4.2ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

CY7C1382A-150AC

Cache SRAM, 1MX18, 3.8ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1382A-150BGC

Cache SRAM, 1MX18, 3.8ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS