CY7C1386DV25-225BZI [CYPRESS]

Cache SRAM, 512KX36, 2.8ns, CMOS, PBGA165, 13 X 15 MM, 1.40 MM HEIGHT, FBGA-165;
CY7C1386DV25-225BZI
型号: CY7C1386DV25-225BZI
厂家: CYPRESS    CYPRESS
描述:

Cache SRAM, 512KX36, 2.8ns, CMOS, PBGA165, 13 X 15 MM, 1.40 MM HEIGHT, FBGA-165

静态存储器
文件: 总32页 (文件大小:501K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
18-Mbit (512K x 36/1M x 18) Pipelined DCD  
Sync SRAM  
Features  
Functional Description[1]  
• Supports bus operation up to 250 MHz  
The CY7C1386DV25/CY7C1387DV25 SRAM integrates  
524,288 x 36 and 1048,576 x 18 SRAM cells with advanced  
synchronous peripheral circuitry and a two-bit counter for  
internal burst operation. All synchronous inputs are gated by  
registers controlled by a positive-edge-triggered Clock Input  
(CLK). The synchronous inputs include all addresses, all data  
• Available speed grades are 250, 225, 200, and 167 MHz  
• Registered inputs and outputs for pipelined operation  
• Optimal for performance (Double-Cycle deselect)  
• Depth expansion without wait state  
inputs,  
address-pipelining  
Chip  
Enable  
(CE1),  
• 2.5V + 5% power supply (VDD  
)
depth-expansion Chip Enables (CE2 and CE3[2]), Burst  
Control inputs (ADSC, ADSP, and ADV), Write Enables (BWX,  
and BWE), and Global Write (GW). Asynchronous inputs  
include the Output Enable (OE) and the ZZ pin.  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or  
Address Strobe Controller (ADSC) are active. Subsequent  
burst addresses can be internally generated as controlled by  
the Advance pin (ADV).  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to four bytes wide as  
• Fast clock-to-output times  
— 2.6 ns (for 250-MHz device)  
— 2.8 ns (for 225-MHz device)  
— 3.0 ns (for 200-MHz device)  
— 3.4 ns (for 167-MHz device)  
• Provide high-performance 3-1-1-1 access rate  
User-selectable burst counter supporting Intel  
Pentiuminterleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
• Asynchronous output enable  
controlled by the byte write control inputs. GW  
active  
LOW  
This device incorporates an  
causes all bytes to be written.  
additional pipelined enable register which delays turning off  
the output buffers an additional cycle when a deselect is  
executed.This feature allows depth expansion without penal-  
izing system performance.  
• Offered in JEDEC-standard 100-pin TQFP, 119-ball BGA  
and 165-Ball fBGA packages  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• “ZZ” Sleep Mode Option  
The CY7C1386DV25/CY7C1387DV25 operates from a +2.5V  
power supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Selection Guide  
250 MHz  
225 MHz  
2.8  
200 MHz  
3.0  
167 MHz  
3.4  
Unit  
ns  
mA  
mA  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
2.6  
350  
70  
325  
70  
300  
70  
275  
70  
Shaded areas contain advance information.  
Please contact your local Cypress sales representative for availability of these parts.  
Notes:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE and CE are for TQFP and 165 fBGA package only. 119 BGA is offered only in Single Chip Enable.  
3
2
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05548 Rev. **  
Revised August 12, 2004  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
1
Logic Block Diagram – CY7C1386DV25 (512K x 36)  
ADDRESS  
A0,A1,A  
REGISTER  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQD,DQP  
D
DQD,DQP  
D
BYTE  
BYTE  
BW  
D
WRITE REGISTER  
WRITE DRIVER  
DQ  
BYTE  
WRITE DRIVER  
c,DQPC  
DQ  
BYTE  
WRITE REGISTER  
c,DQPC  
MEMORY  
ARRAY  
BW  
C
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
DQs  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE DRIVER  
B,DQPB  
E
DQ  
BYTE  
WRITE REGISTER  
B,DQPB  
B
C
BW  
BW  
B
A
DQP  
D
DQA,DQP  
A
DQA,DQP  
A
BYTE  
WRITE DRIVER  
BYTE  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
ZZ  
CONTROL  
2
Logic Block Diagram – CY7C1387DV25 (1M x 18)  
ADDRESS  
REGISTER  
A0, A1, A  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQB , DQP  
BYTE  
WRITE DRIVER  
B
DQB, DQP  
BYTE  
WRITE REGISTER  
B
OUTPUT  
BUFFERS  
BW  
B
A
OUTPUT  
REGISTERS  
DQs,  
DQP  
DQP  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
DQA, DQP  
BYTE  
WRITE DRIVER  
A
B
E
DQA , DQP  
BYTE  
WRITE REGISTER  
A
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
CE  
1
PIPELINED  
ENABLE  
2
3
OE  
SLEEP  
ZZ  
CONTROL  
Document #: 38-05548 Rev. **  
Page 2 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Pin Configurations  
100-pin TQFP Pinout (3 Chip Enables)  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
A
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
NC  
2
DQC  
3
NC  
NC  
3
VDDQ  
4
5
VDDQ  
VSSQ  
NC  
VDDQ  
VSSQ  
NC  
4
VSSQ  
5
DQC  
6
6
DQC  
7
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
7
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
8
DQC  
9
9
VSSQ  
10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
11  
DQC  
12  
DQC  
13  
NC  
14  
VDD  
15  
NC  
VDD  
NC  
CY7C1387DV25  
(1M x 18)  
CY7C1386DV25  
(512K X 36)  
NC  
16  
VDD  
ZZ  
VDD  
ZZ  
VSS  
17  
VSS  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
VDDQ  
20  
VSSQ  
21  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
NC  
VSSQ  
26  
VSSQ  
VDDQ  
NC  
VSSQ  
VDDQ  
NC  
VDDQ  
27  
DQD  
28  
DQD  
29  
NC  
NC  
DQPD  
30  
NC  
NC  
Document #: 38-05548 Rev. **  
Page 3 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Pin Configurations (continued)  
119-ball BGA (1 Chip Enable with JTAG)  
CY7C1386DV25 (512K x 36)  
1
2
3
4
5
6
7
VDDQ  
A
A
A
A
A
A
VDDQ  
A
B
C
ADSP  
ADSC  
VDD  
NC  
NC  
A
A
A
A
A
A
NC  
NC  
DQC  
DQC  
VDDQ  
DQPC  
DQC  
DQC  
VSS  
VSS  
VSS  
NC  
CE1  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
DQB  
VDDQ  
D
E
F
OE  
DQC  
DQC  
VDDQ  
DQD  
DQD  
VDDQ  
DQD  
DQC  
DQC  
VDD  
BWC  
VSS  
NC  
BWB  
VSS  
NC  
DQB  
DQB  
VDD  
DQA  
DQA  
DQA  
DQA  
DQB  
DQB  
VDDQ  
DQA  
DQA  
VDDQ  
DQA  
G
H
J
ADV  
GW  
VDD  
CLK  
NC  
BWE  
A1  
DQD  
VSS  
VSS  
K
L
M
N
DQD  
DQD  
DQD  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
P
R
DQD  
NC  
DQPD  
A
VSS  
MODE  
A0  
VDD  
VSS  
NC  
DQPA  
A
DQA  
NC  
T
U
NC  
VDDQ  
NC  
TMS  
A
TDI  
A
TCK  
A
TDO  
NC  
NC  
ZZ  
VDDQ  
CY7C1387DV25 (1M x 18)  
2
A
A
1
3
A
A
4
5
A
A
6
A
A
7
A
B
C
D
E
F
VDDQ  
NC  
NC  
VDDQ  
NC  
NC  
ADSP  
ADSC  
VDD  
A
A
A
A
DQB  
NC  
VDDQ  
NC  
DQB  
NC  
VSS  
VSS  
VSS  
NC  
CE1  
OE  
VSS  
VSS  
VSS  
DQPA  
NC  
DQA  
NC  
DQA  
VDDQ  
G
H
J
NC  
DQB  
VDDQ  
DQB  
NC  
VDD  
NC  
VSS  
NC  
NC  
DQA  
VDD  
DQA  
NC  
VDDQ  
BWB  
VSS  
NC  
ADV  
GW  
VDD  
NC  
DQB  
VSS  
CLK  
NC  
BWE  
A1  
VSS  
NC  
DQA  
NC  
DQA  
NC  
DQA  
K
L
M
N
P
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
NC  
VSS  
VSS  
VSS  
NC  
VDDQ  
NC  
BWA  
VSS  
VSS  
VSS  
DQPB  
A0  
DQA  
R
T
NC  
NC  
A
A
MODE  
A
VDD  
NC  
NC  
A
A
A
NC  
ZZ  
U
VDDQ  
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
Document #: 38-05548 Rev. **  
Page 4 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Pin Configurations (continued)  
165-ball fBGA (3 Chip Enable)  
CY7C1386DV25 (512K x 36)  
1
NC / 288M  
NC  
DQPC  
DQC  
2
A
A
NC  
DQC  
DQC  
DQC  
DQC  
NC  
3
4
5
6
7
8
9
10  
11  
NC  
NC / 144M  
DQPB  
DQB  
A
A
B
C
D
E
F
G
H
J
K
L
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
ADSC  
BWE  
GW  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
DQB  
DQB  
DQB  
DQB  
NC  
DQA  
DQA  
DQA  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DQC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQC  
DQC  
NC  
DQD  
DQD  
DQD  
DQB  
DQB  
ZZ  
DQA  
DQA  
DQA  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
DQD  
DQPD  
NC  
DQD  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
A
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
A0  
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1387DV25 (1M x 18)  
1
NC / 288M  
NC  
2
3
CE1  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
4
BWB  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
5
6
7
8
9
10  
11  
A
A
NC  
A
A
CE  
BWE  
GW  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ADSC  
OE  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
3
A
NC  
DQB  
DQB  
DQB  
DQB  
NC  
NC  
NC  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
‘VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
NC  
NC  
NC  
NC  
NC  
NC / 144M  
DQPA  
DQA  
B
C
D
E
F
G
H
J
K
L
NC  
NC  
NC  
NC  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DQA  
DQA  
DQA  
ZZ  
NC  
NC  
NC  
NC  
DQB  
DQB  
DQB  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
A
A1  
A0  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
Document #: 38-05548 Rev. **  
Page 5 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Pin Definitions  
Name  
I/O  
Description  
Address Inputs used to select one of the address locations. Sampled at the  
A0, A1, A  
Input-  
[2]  
Synchronous  
rising edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3  
are sampled active. A1: A0 are fed to the two-bit counter.  
.
BWA, BWB  
BWC, BWD  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes  
Synchronous  
to the SRAM. Sampled on the rising edge of CLK.  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge  
of CLK, a global write is conducted (ALL bytes are written, regardless of the values  
on BWX and BWE).  
GW  
Synchronous  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This  
BWE  
CLK  
Synchronous  
signal must be asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to  
increment the burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in  
conjunction with CE2 and CE3[2] to select/deselect the device. ADSP is ignored if  
CE1 is HIGH. CE1 is sampled only when a new external address is loaded.  
CE1  
Synchronous  
[2]  
CE2  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in  
conjunction with CE1 and CE3[2] to select/deselect the device. CE2 is sampled only  
when a new external address is loaded.  
Synchronous  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in  
conjunction with CE1 andCE2 to select/deselect the device. Not connected for BGA.  
Where referenced, CE3[2] is assumed active throughout this document for BGA.  
CE3 is sampled only when a new external address is loaded.  
[2]  
CE3  
Synchronous  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the  
I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, DQ  
pins are tri-stated, and act as input data pins. OE is masked during the first clock of  
a read cycle when emerging from a deselected state.  
OE  
Asynchronous  
Input-  
Advance Input signal, sampled on the rising edge of CLK, active LOW. When  
ADV  
Synchronous  
asserted, it automatically increments the address in a burst cycle.  
Input-  
Address Strobe from Processor, sampled on the rising edge of CLK, active  
LOW. When asserted LOW, addresses presented to the device are captured in the  
address registers. A1: A0 are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE1 is  
deasserted HIGH.  
ADSP  
Synchronous  
Input-  
Address Strobe from Controller, sampled on the rising edge of CLK, active  
LOW. When asserted LOW, addresses presented to the device are captured in the  
address registers. A1: A0 are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized.  
ADSC  
Synchronous  
ZZ  
Input-  
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a  
non-time-critical “sleep” condition with data integrity preserved. For normal  
operation, this pin has to be LOW or left floating. ZZ pin has an internal pull-down.  
Asynchronous  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that  
is triggered by the rising edge of CLK. As outputs, they deliver the data contained  
in the memory location specified by the addresses presented during the previous  
DQs, DQPs  
Synchronous  
clock rise of the read  
cycle. The direction of the pins is controlled by OE. When OE  
is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQPX are  
placed in a tri-state condition.  
VDD  
VSS  
Power Supply  
Ground  
Power supply inputs to the core of the device.  
Ground for the core of the device.  
Ground for the I/O circuitry.  
VSSQ  
I/O Ground  
Document #: 38-05548 Rev. **  
Page 6 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Pin Definitions (continued)  
Name  
I/O  
Description  
Power supply for the I/O circuitry.  
VDDQ  
I/O Power Supply  
MODE  
TDO  
TDI  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied  
to VDD or left floating selects interleaved burst sequence. This is a strap pin and  
should remain static during device operation. Mode Pin has an internal pull-up.  
JTAG serial output  
Synchronous  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If  
the JTAG feature is not being utilized, this pin should be disconnected. This pin is  
not available on TQFP packages.  
JTAG serial  
input  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
feature is not being utilized, this pin can be disconnected or connected to VDD. This  
pin is not available on TQFP packages.  
Synchronous  
TMS  
JTAG serial  
input  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
feature is not being utilized, this pin can be disconnected or connected to VDD. This  
pin is not available on TQFP packages.  
Synchronous  
TCK  
NC  
JTAG-Clock  
-
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin  
must be connected to VSS. This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die  
Document #: 38-05548 Rev. **  
Page 7 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
The write signals (GW, BWE, and  
) and ADV inputs are  
BWX  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
The CY7C1386DV25/CY7C1387DV25 supports secondary  
cache in systems utilizing either a linear or interleaved burst  
sequence. The interleaved burst order supports Pentium and  
i486processors. The linear burst sequence is suited for  
processors that utilize a linear burst sequence. The burst order  
is user selectable, and is determined by sampling the MODE  
ignored during this first cycle.  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQx inputs is written into the corre-  
sponding address location in the memory core. If GW is HIGH,  
then the write operation is controlled by BWE and BWX  
signals. The CY7C1386DV25/CY7C1387DV25 provides byte  
write capability that is described in the Write Cycle Description  
table. Asserting the Byte Write Enable input (BWE) with the  
selected Byte Write input will selectively write to only the  
desired bytes. Bytes not selected during a byte write operation  
input. Accesses can  
be initiated with either the Processor  
will remain unaltered.  
A synchronous self-timed write  
Address Strobe (ADSP)  
or the Controller Address Strobe  
mechanism has been provided to simplify the write operations.  
(ADSC). Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Because the CY7C1386DV25/CY7C1387DV25 is a common  
I/O device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQ inputs. Doing so will tri-state  
the output drivers. As a safety precaution, DQ are automati-  
cally tri-stated whenever a write cycle is detected, regardless  
of the state of OE.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed write circuitry.  
Single Write Accesses Initiated by ADSC  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) chip select is asserted active, and (4)  
the appropriate combination of the write inputs (GW, BWE,  
[2]  
Synchronous Chip Selects CE1, CE2, CE3  
and an  
asynchronous Output Enable (OE) provide for easy bank  
output tri-state control.  
selection and  
is HIGH.  
ADSP is ignored if CE1  
and  
) are asserted active to conduct a write to the desired  
BWX  
byte(s). ADSC triggered write accesses require a single clock  
cycle to complete. The address presented is loaded into the  
address register and the address advancement logic while  
being delivered to the memory core. The ADV input is ignored  
during this cycle. If a global write is conducted, the data  
presented to the DQX is written into the corresponding address  
location in the memory core. If a byte write is conducted, only  
the selected bytes are written. Bytes not selected during a byte  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
chip selects are all asserted active, and (3) the write signals  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1  
is HIGH. The address presented to the address inputs is  
stored into the address advancement logic and the Address  
Register while being presented to the memory core. The corre-  
sponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within tCO if OE is active LOW. The only exception  
occurs when the SRAM is emerging from a deselected state  
to a selected state, its outputs are always tri-stated during the  
first cycle of the access. After the first cycle of the access, the  
outputs are controlled by the OE signal. Consecutive single  
read cycles are supported.  
write operation will remain unaltered.  
A synchronous  
self-timed write mechanism has been provided to simplify the  
write operations.  
Because the CY7C1386DV25/CY7C1387DV25 is a common  
I/O device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQX inputs. Doing so will tri-state  
the output drivers. As a safety precaution, DQX are automati-  
cally tri-stated whenever a write cycle is detected, regardless  
of the state of OE.  
Burst Sequences  
The CY7C1386DV25/CY7C1387DV25 is a double-cycle  
deselect part. Once the SRAM is deselected at clock rise by  
the chip select and either ADSP or ADSC signals, its output  
will tri-state immediately after the next clock rise.  
The CY7C1386DV25/CY7C1387DV25 provides a two-bit  
wraparound counter, fed by A[1:0], that implements either an  
interleaved or linear burst sequence. The interleaved burst  
sequence is designed specifically to support Intel Pentium  
applications. The linear burst sequence is designed to support  
processors that follow a linear burst sequence. The burst  
sequence is user selectable through the MODE input. Both  
read and write burst operations are supported.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and (2)  
chip select is asserted active. The address presented is  
loaded into the address register and the address  
advancement logic while being delivered to the memory core.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
Document #: 38-05548 Rev. **  
Page 8 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Sleep Mode  
Interleaved Burst Address Table  
(MODE = Floating or VDD)  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CEs, ADSP, and ADSC must remain  
inactive for the duration of tZZREC after the ZZ input returns  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
LOW  
.
Linear Burst Address Table  
(MODE = GND)  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
.
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
tZZS  
tZZREC  
tZZI  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
ZZ Active to sleep current  
ZZ Inactive to exit sleep current  
Test Conditions  
ZZ > VDD – 0.2V  
ZZ > VDD – 0.2V  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
Min.  
Max.  
80  
2tCYC  
Unit  
mA  
ns  
ns  
ns  
2tCYC  
0
2tCYC  
tRZZI  
ns  
Truth Table[ 3, 4, 5, 6, 7, 8]  
Operation  
Add. Used CE1 CE2  
ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
CE3  
X
X
H
X
H
X
L
L
L
L
L
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Sleep Mode, Power Down  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
None  
None  
H
L
L
L
L
X
L
L
L
L
L
X
L
L
L
L
L
L
H
L
L
L
L
L
X
L
L
H
H
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
H
X
L
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
None  
None  
X
L
None  
None  
X
X
H
H
H
H
H
L
X
X
X
L
L
L
X
L-H  
Tri-State  
Q
External  
External  
External  
External  
External  
L
L-H Tri-State  
L-H  
L-H  
H
H
H
D
Q
H
H
READ Cycle, Begin Burst  
H
L-H Tri-State  
Notes:  
3. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW= L. WRITE = H when all Byte write enable signals, BWE, GW = H.  
5. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.  
OE  
OE  
7. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks  
6. CE , CE , and CE are available only in the TQFP package. BGA package has only 2 chip selects CE and CE .  
1
2
3
1
2
X
after the  
or with the assertion of  
. As a result,  
ADSC  
must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state.  
is a  
OE  
OE  
ADSP  
don't care for the remainder of the write cycle  
OE  
8.  
is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are Tri-State when  
is  
OE  
.
is active (LOW)  
inactive or when the device is deselected, and all data bits behave as output when  
OE  
9. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05548 Rev. **  
Page 9 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Truth Table[ 3, 4, 5, 6, 7, 8] (continued)  
Operation  
Add. Used CE1 CE2  
ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
CE3  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
Next  
Next  
Next  
Next  
Next  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
H
H
X
X
H
X
H
H
X
X
H
X
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
H
H
H
H
L
L
H
L
H
X
X
L
H
L
H
X
X
L-H  
Q
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
L-H  
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
L-H  
Q
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
Q
D
D
L
Partial Truth Table for Read/Write[5, 9]  
Function (CY7C1386DV25)  
BWD  
X
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
X
BWC  
BWB  
X
H
H
L
BWA  
X
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
GW  
BWE  
Read  
Read  
H
H
X
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
Write Byte C – (DQC and DQPC)  
Write Bytes C, A  
L
H
H
L
Write Bytes C, B  
Write Bytes C, B, A  
Write Byte D – (DQD and DQPD)  
Write Bytes D, A  
Write Bytes D, B  
Write Bytes D, B, A  
Write Bytes D, C  
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
H
H
L
L
H
H
L
L
X
L
X
Write All Bytes  
X
Truth Table for Read/Write[5, 9]  
Function (CY7C1387DV25)  
BWB  
X
H
H
L
L
X
BWA  
GW  
BWE  
Read  
Read  
H
H
L
L
L
L
X
X
H
L
H
L
H
H
H
H
L
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write All Bytes  
Write All Bytes  
X
Document #: 38-05548 Rev. **  
Page 10 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Test Data-In (TDI)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see figure. TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
The CY7C1386DV25/CY7C1387DV25 incorporates a serial  
boundary scan test access port (TAP). This part is fully  
compliant with 1149.1. The TAP operates using  
JEDEC-standard 3.3V or 2.5V I/O logic levels.  
The CY7C1386DV25/CY7C1387DV25 contains  
a
TAP  
controller, instruction register, boundary scan register, bypass  
register, and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
TAP Controller State Diagram  
0
Bypass Register  
TEST-LOGIC  
1
RESET  
0
2
1
0
0
0
Selection  
Circuitry  
1
1
1
Instruction Register  
31 30 29  
Identification Register  
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
Selection  
0
TDI  
TDO  
Circuitr  
y
.
.
. 2 1  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
0
0
TAP CONTROLLER  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Instruction Register  
Test MODE SELECT (TMS)  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
Document #: 38-05548 Rev. **  
Page 11 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
SAMPLE Z  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
SAMPLE/PRELOAD  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the in-  
struction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is cap-  
tured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is possi-  
ble that during the Capture-DR state, an input or output will  
undergo a transition. The TAP may then try to capture a signal  
while in transition (metastable state). This will not harm the  
device, but there is no guarantee as to the value that will be  
captured. Repeatable results may not be possible.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the bound-  
ary scan register between the TDI and TDO pins.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells pri-  
or to the selection of another boundary scan test operation.  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required—that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
Document #: 38-05548 Rev. **  
Page 12 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document #: 38-05548 Rev. **  
Page 13 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
TAP AC Switching Characteristics Over the operating Range[10, 11]  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Clock  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
tTCYC  
tTF  
tTH  
50  
ns  
MHz  
ns  
20  
25  
25  
tTL  
ns  
Output Times  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
Set-up Times  
tTDOV  
tTDOX  
5
ns  
ns  
0
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
Hold Times  
tTMSS  
tTDIS  
tCS  
5
5
5
ns  
ns  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
Capture Hold after Clock Rise  
tTMSH  
tTDIH  
tCH  
5
5
5
ns  
ns  
ns  
Notes:  
10. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05548 Rev. **  
Page 14 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Test load termination supply voltage ....... ........1.25VTAPAC  
Output Load Equivalent  
TAP AC Test Conditions  
Input pulse levels ................................................ VSS to 2.5V  
Input rise and fall time..................................................... 1 ns  
Input timing reference levels.........................................1.25V  
Output reference levels.................................................1.25V  
1.25V  
50  
TDO  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 2.5V ±0.165V unless otherwise noted)[12]  
Parameter  
VOH1  
VOH2  
VOL1  
VOL2  
VIH  
Description  
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
Test Conditions  
IOH = –1.0 mA  
IOH = –100 µA  
IOL = 1.0 mA  
IOL = 100 µA  
Min.  
1.7  
2.1  
Max.  
Unit  
V
V
V
V
V
V
µA  
0.4  
0.2  
VDD + 0.3  
1.7  
–0.3  
–5  
VIL  
IX  
0.7  
5
GND < VIN < VDDQ  
Note:  
12. All voltages referenced to V (GND).  
SS  
Document #: 38-05548 Rev. **  
Page 15 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Identification Register Definitions  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)  
Device Width (23:18)  
CY7C1386DV25  
CY7C1387DV25  
Description  
Describes the version number.  
Reserved for Internal Use  
Defines memory type and archi-  
tecture  
000  
01011  
000110  
000  
01011  
000110  
Cypress Device ID (17:12)  
100101  
010101  
Defines width and density  
Cypress JEDEC ID Code (11:1)  
00000110100  
00000110100  
Allows unique identification of  
SRAM vendor.  
ID Register Presence Indicator (0)  
1
1
Indicates the presence of an ID  
register.  
Scan Register Sizes  
Bit Size (x18)  
Register Name  
Bit Size(x36)  
Instruction  
Bypass  
ID  
3
1
32  
85  
89  
3
1
32  
85  
89  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball fBGA package)  
Identification Codes  
Instruction  
EXTEST  
Code  
000  
Description  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
SAMPLE Z  
RESERVED  
SAMPLE/PRELOAD  
011  
100  
Do Not Use: This instruction is reserved for future use.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document #: 38-05548 Rev. **  
Page 16 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
119-Ball BGA Boundary Scan Order  
CY7C1366C (256K x 36)  
BALL  
CY7C1367C (512K x 18)  
BIT#  
1
2
3
4
5
6
7
8
ID  
BIT# BALL ID  
BIT#  
1
2
3
4
5
6
7
8
BALL ID  
BIT#  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
BALL ID  
E4  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
E4  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
H4  
T4  
T5  
T6  
R5  
L5  
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
K6  
P7  
N6  
L6  
K7  
J5  
H6  
G7  
F6  
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
B6  
D4  
B4  
F4  
M4  
A5  
H4  
T4  
T5  
T6  
R5  
L5  
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
K6  
P7  
N6  
L6  
K7  
J5  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
B1  
C1  
D2  
E1  
F2  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
K2  
L1  
M2  
N1  
P1  
K1  
L2  
N2  
P2  
R3  
T1  
R1  
T2  
L3  
R2  
T3  
L4  
H6  
G7  
F6  
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
B6  
D4  
B4  
F4  
M4  
A5  
K2  
L1  
M2  
N1  
P1  
K1  
L2  
N2  
P2  
R3  
T1  
R1  
T2  
L3  
R2  
T3  
L4  
N4  
P4  
Internal  
N4  
P4  
Internal  
Document #: 38-05548 Rev. **  
Page 17 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
119-Ball BGA Boundary Scan Order (continued)  
CY7C1366C (256K x 36)  
BALL  
CY7C1367C (512K x 18)  
BIT#  
ID  
BIT# BALL ID  
BIT#  
BALL ID  
BIT#  
BALL ID  
43  
K4  
43  
K4  
Notes:  
Balls which are NC (No Connect) are Pre-Set LOW  
Bit# 85 is Pre-Set HIGH  
Document #: 38-05548 Rev. **  
Page 18 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
165-Ball BGA Boundary Scan Order  
CY7C1386DV25 (256K x 36)  
CY7C1386DV25 (256Kx36)  
BIT#  
BALL  
ID  
BIT#  
BALL ID  
BIT#  
BALL ID  
1
N6  
N7  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
A9  
B9  
C10  
A8  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
G1  
D2  
E2  
F2  
G2  
H1  
H3  
J1  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
K2  
L2  
2
3
10N  
P11  
P8  
M2  
N1  
4
5
N2  
6
R8  
P1  
7
R9  
R1  
8
P9  
R2  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
P3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
R3  
P2  
R4  
P4  
N5  
P6  
R6  
Internal  
Notes:  
Balls which are (NC) No Connect are Pre-Set LOW  
Bit# 89 is Pre-Set HIGH  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
K1  
L1  
M1  
J2  
Document #: 38-05548 Rev. **  
Page 19 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
165-Ball BGA Boundary Scan Order  
CY7C1387DV25 (512K x 18)  
CY7C1387DV25 (512Kx18)  
BIT#  
BALL  
ID  
BIT#  
BALL ID  
BIT#  
BALL ID  
1
N6  
N7  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
A9  
B9  
C10  
A8  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
G1  
D2  
E2  
F2  
G2  
H1  
H3  
J1  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
K2  
L2  
2
3
10N  
P11  
P8  
M2  
N1  
4
5
N2  
6
R8  
P1  
7
R9  
R1  
8
P9  
R2  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
P3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
R3  
P2  
R4  
P4  
N5  
P6  
R6  
Internal  
Notes:  
Balls which are (NC) No Connect are Pre-Set LOW  
Bit# 89 is Pre-Set HIGH  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
K1  
L1  
M1  
J2  
Document #: 38-05548 Rev. **  
Page 20 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Storage Temperature .................................65°C to +150°C  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND........ –0.5V to +3.6V  
Ambient  
Range  
Temperature  
VDD  
2.5V + 5%  
VDDQ  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
Commercial 0°C to +70°C  
2.5V– 5%  
to VDD  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Industrial  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range[13, 14]  
Parameter  
VDD  
VDDQ  
VOH  
VOL  
VIH  
VIL  
IX  
Description  
Test Conditions  
Min.  
2.375  
2.375  
2.0  
Max.  
2.625  
VDD  
Unit  
V
V
V
V
V
V
µA  
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
Output LOW Voltage  
VDDQ = 2.5V  
VDDQ = 2.5V, VDD = Min., IOH = –1.0 mA  
VDDQ = 2.5V, VDD = Min., IOL = 1.0 mA  
0.4  
VDD + 0.3V  
Input HIGH Voltage[13] VDDQ = 2.5V  
1.7  
–0.3  
–5  
Input LOW Voltage[13]  
VDDQ = 2.5V  
GND VI VDDQ  
0.7  
5
Input Load Current  
except ZZ and MODE  
Input Current of MODE Input = VSS  
Input = VDD  
–5  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
30  
Input Current of ZZ  
Input = VSS  
Input = VDD  
5
5
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
4.0-ns cycle, 250 MHz  
4.4-ns cycle, 225 MHz  
5-ns cycle, 200 MHz  
6-ns cycle, 167 MHz  
4.0-ns cycle, 250 MHz  
4.4-ns cycle, 225 MHz  
5-ns cycle, 200 MHz  
6-ns cycle, 167 MHz  
All speeds  
350  
325  
300  
275  
160  
TBD  
150  
140  
70  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
VDD = Max, Device Deselected,  
Power-down  
VIN VIH or VIN VIL  
Current—TTL Inputs  
f = fMAX = 1/tCYC  
ISB2  
Automatic CE  
Power-down  
VDD = Max, Device Deselected,  
V
IN 0.3V or VIN > VDDQ – 0.3V,  
Current—CMOS Inputs f = 0  
ISB3  
Automatic CE  
VDD = Max, Device Deselected, or 4.0-ns cycle, 250 MHz  
135  
TBD  
130  
125  
80  
mA  
mA  
mA  
mA  
mA  
Power-down  
V
IN 0.3V or VIN > VDDQ – 0.3V  
4.4-ns cycle, 225 MHz  
5-ns cycle, 200 MHz  
6-ns cycle, 167 MHz  
All Speeds  
Current—CMOS Inputs f = fMAX = 1/tCYC  
ISB4  
Automatic CE  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL, f = 0  
Power-down  
Current—TTL Inputs  
Shaded areas contain advance information.  
Notes:  
13. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > -2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
14. T  
: Assumes a linear ramp from 0v to V (min.) within 200ms. During this time V < V and V  
< V  
DDQ DD\  
Power-up  
DD  
IH  
DD  
Document #: 38-05548 Rev. **  
Page 21 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Thermal Resistance[15]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Package  
Unit  
ΘJA  
Thermal Resistance  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
31  
45  
46  
°C/W  
(Junction to Ambient)  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6
7
3
°C/W  
impedance, per EIA / JESD51.  
Capacitance[15]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Package  
Unit  
pF  
CIN  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
5
5
5
8
8
8
9
9
9
VDD / VDDQ = 2.5V  
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
AC Test Loads and Waveforms  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
1 ns  
5 pF  
R = 1538Ω  
1 ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Notes:  
15. Tested initially and after any design or process change that may affect these parameters  
Document #: 38-05548 Rev. **  
Page 22 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Switching Characteristics Over the Operating Range[20, 21]  
250 MHz  
225 MHz  
200 MHz  
167 MHz  
Parameter  
tPOWER  
Clock  
tCYC  
tCH  
tCL  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Unit  
VDD(Typical) to the first Access[16]  
1
1
1
1
ms  
Clock Cycle Time  
Clock HIGH  
4.0  
1.7  
1.7  
4.4  
2.0  
2.0  
5.0  
2.0  
2.0  
6.0  
2.2  
2.2  
ns  
ns  
ns  
Clock LOW  
Output Times  
tCO  
tDOH  
tCLZ  
tCHZ  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[17, 18, 19]  
2.6  
2.8  
3.0  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.0  
1.0  
1.0  
1.0  
1.3  
1.3  
1.3  
1.3  
Clock to High-Z[17, 18, 19]  
2.6  
2.6  
2.8  
2.8  
3.0  
3.0  
3.4  
3.4  
tOEV  
OE LOW to Output Valid  
OE LOW to Output Low-Z[17, 18, 19]  
OE HIGH to Output High-Z[17, 18, 19]  
tOELZ  
tOEHZ  
Setup Times  
tAS  
tADS  
tADVS  
tWES  
0
0
0
0
2.6  
2.8  
3.0  
3.4  
Address Set-up Before CLK Rise  
ADSC, ADSP Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
GW, BWE, BWX Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
Chip Enable Set-Up Before CLK Rise  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
tCES  
Hold Times  
tAH  
tADH  
tADVH  
tWEH  
tDH  
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
ADV Hold After CLK Rise  
GW, BWE, BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tCEH  
Shaded areas contain advance information.  
Notes:  
16. This part has a voltage regulator internally; t  
can be initiated.  
is the time that the power needs to be supplied above V (minimum) initially before a read or write operation  
DD  
POWER  
17. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
18. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions  
19. This parameter is sampled and not 100% tested.  
20. Timing reference level is 1.25V when V  
= 2.5V.  
DDQ  
21. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05548 Rev. **  
Page 23 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Switching Waveforms  
Read Cycle Timing[22]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,BWX  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
OEV  
CO  
t
t
CHZ  
t
t
t
OELZ  
OEHZ  
DOH  
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A3)  
Q(A1)  
Data Out (DQ)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes:  
22. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
23.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05548 Rev. **  
Page 24 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Switching Waveforms (continued)  
Write Cycle Timing[22, 23]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
BWE,  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
Data in (D)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
DON’T CARE  
Single WRITE  
Extended BURST WRITE  
UNDEFINED  
Document #: 38-05548 Rev. **  
Page 25 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Switching Waveforms (continued)  
Read/Write Cycle Timing[22, 24, 25]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
t
DH  
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Back-to-Back READs  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
BURST READ  
Back-to-Back  
Single WRITE  
DON’T CARE  
WRITEs  
UNDEFINED  
Note:  
24.  
ADSP or ADSC.  
The data bus (Q) remains in high-Z following a Write cycle, unless a new read access is initiated by  
25. GW is HIGH.  
Document #: 38-05548 Rev. **  
Page 26 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Switching Waveforms (continued)  
ZZ Mode Timing [26, 27]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
26. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
27. DQs are in high-Z when exiting ZZ sleep mode  
Document #: 38-05548 Rev. **  
Page 27 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Ordering Information  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
Part and Package Type  
225  
CY7C1386DV25-250AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
Commercial  
CY7C1387DV25-250AC  
3 Chip Enables  
CY7C1386DV25-250AI  
CY7C1387DV25-250AI  
Industrial  
CY7C1386DV25-250BGC  
CY7C1387DV25-250BGC  
CY7C1386DV25-250BGI  
CY7C1387DV25-250BGI  
CY7C1386DV25-250BZC  
CY7C1387DV25-250BZC  
CY7C1386DV25-250BZI  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables with Commercial  
JTAG  
Industrial  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm) Commercial  
3 Chip Enables with JTAG  
Industrial  
225  
225  
CY7C1386DV25-225AC  
A101  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Commercial  
Commercial  
Industrial  
CY7C1387DV25-225AC  
CY7C1386DV25-225AC  
CY7C1387DV25-225AC  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
CY7C1386DV25-225AI  
CY7C1387DV25-225AI  
CY7C1386DV25-225BGC  
CY7C1387DV25-225BGC  
CY7C1386DV25-225BGI  
CY7C1387DV25-225BGI  
CY7C1386DV25-225BZC  
CY7C1387DV25-225BZC  
CY7C1386DV25-225BZI  
CY7C1387DV25-225BZI  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables with Commercial  
JTAG  
Industrial  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm) Commercial  
3 Chip Enables with JTAG  
Industrial  
200  
CY7C1386DV25-200AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Commercial  
Industrial  
CY7C1387DV25-200AC  
CY7C1386DV25-200AI  
CY7C1387DV25-200AI  
CY7C1386DV25-200BGC  
CY7C1387DV25-200BGC  
CY7C1386DV25-200BGI  
CY7C1387DV25-200BGI  
CY7C1386DV25-200BZC  
CY7C1387DV25-200BZC  
CY7C1386DV25-200BZI  
CY7C1387DV25-200BZI  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables with Commercial  
JTAG  
Industrial  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm) Commercial  
3 Chip Enables with JTAG  
Industrial  
Document #: 38-05548 Rev. **  
Page 28 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Ordering Information  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
Part and Package Type  
167  
CY7C1386DV25-167AC  
CY7C1387DV25-167AC  
CY7C1386DV25-167AI  
CY7C1387DV25-167AI  
CY7C1386DV25-167BGC  
CY7C1387DV25-167BGC  
CY7C1386DV25-167BGI  
ICY7C1387DV25-167BGI  
CY7C1386DV25-167BZC  
CY7C1387DV25-167BZC  
CY7C1386DV25-167BZI  
CY7C1387DV25-167BZI  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
Commercial  
3 Chip Enables  
Industrial  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables with Commercial  
JTAG  
Industrial  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm) Commercial  
3 Chip Enables with JTAG  
Industrial  
Shaded areas contain advance information.  
Please contact your local sales representative for availability of these parts.  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
DIMENSIONS ARE IN MILLIMETERS.  
ꢁ6.00 0.20  
ꢁ4.00 0.ꢁ0  
ꢁ.40 0.05  
ꢁ00  
ꢀꢁ  
ꢀ0  
0.30 0.0ꢀ  
0.65  
TYP.  
ꢁ2° ꢁ°  
SEE DETAIL  
A
(ꢀX)  
30  
5ꢁ  
3ꢁ  
50  
0.20 MAX.  
ꢁ.60 MAX.  
R 0.0ꢀ MIN.  
0.20 MAX.  
0° MIN.  
STAND-OFF  
0.05 MIN.  
0.ꢁ5 MAX.  
SEATING PLANE  
0.25  
GAUGE PLANE  
R 0.0ꢀ MIN.  
0.20 MAX.  
0°-7°  
0.60 0.ꢁ5  
ꢁ.00 REF.  
0.20 MIN.  
51-85050-*A  
DETAIL  
A
Document #: 38-05548 Rev. **  
Page 29 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Document #: 38-05548 Rev. **  
Page 30 of 32  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Package Diagrams (continued)  
165 FBGA 13 x 15 x 1.40 MM BB165D  
51-85180-**  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05548 Rev. **  
Page 31 of 32  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1386DV25  
CY7C1387DV25  
PRELIMINARY  
Document History Page  
Document Title: CY7C1386DV25/CY7C1387DV25 18-Mbit (512K x 36/1M x 18) Pipelined DCD Sync SRAM (Preliminary)  
Document Number: 38-05548  
Orig. of  
REV.  
ECN NO. Issue Date Change  
Description of Change  
*A  
254550  
See ECN  
RKF  
New Data Sheet  
Document #: 38-05548 Rev. **  
Page 32 of 32  

相关型号:

CY7C1386DV25-250AXC

18-Mbit (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386DV25-250AXI

18-Mbit (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386DV25-250BGC

Cache SRAM, 512KX36, 2.6ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, BGA-119
CYPRESS

CY7C1386DV25-250BGI

Cache SRAM, 512KX36, 2.6ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, BGA-119
CYPRESS

CY7C1386DV25-250BGXC

Cache SRAM, 512KX36, 2.6ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, LEAD FREE, BGA-119
CYPRESS

CY7C1386DV25-250BGXI

Cache SRAM, 512KX36, 2.6ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, LEAD FREE, BGA-119
CYPRESS

CY7C1386DV25-250BZC

18-Mbit (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386DV25-250BZI

18-Mbit (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386DV25-250BZXC

18-Mbit (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386DV25-250BZXI

18-Mbit (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386D_07

18-Mbit (512K x 36/1 Mbit x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386D_11

18-Mbit (512 K x 36/1 M x 18) Pipelined DCD Sync SRAM
CYPRESS