CY7C1480V33-250BZC [CYPRESS]

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM; 72兆位( 2M ×36 / 4M ×18 / 1M X 72 ),流水线同步SRAM
CY7C1480V33-250BZC
型号: CY7C1480V33-250BZC
厂家: CYPRESS    CYPRESS
描述:

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
72兆位( 2M ×36 / 4M ×18 / 1M X 72 ),流水线同步SRAM

静态存储器
文件: 总30页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined  
Sync SRAM  
Features  
Functional Description[1]  
• Supports bus operation up to 250 MHz  
• Available speed grades are 250, 200,167 MHz  
• Registered inputs and outputs for pipelined operation  
• 3.3V core power supply  
The CY7C1480V33/CY7C1482V33/CY7C1486V33 SRAM  
integrates 2,097,152 x 36/4,194,304 x 18,1,048,576 × 72  
SRAM cells with advanced synchronous peripheral circuitry  
and a two-bit counter for internal burst operation. All  
synchronous inputs are gated by registers controlled by a  
positive-edge-triggered Clock Input (CLK). The synchronous  
inputs include all addresses, all data inputs, address-pipelining  
Chip Enable (CE1), depth-expansion Chip Enables (CE2 and  
CE3), Burst Control inputs (ADSC, ADSP, and ADV), Write  
Enables (BWX, and BWE), and Global Write (GW).  
Asynchronous inputs include the Output Enable (OE) and the  
ZZ pin.  
• 2.5V / 3.3V I/O operation  
• Fast clock-to-output times  
— 3.0 ns (for 250-MHz device)  
— 3.0 ns (for 200-MHz device)  
— 3.4 ns (for 167-MHz device)  
• Provide high-performance 3-1-1-1 access rate  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or  
Address Strobe Controller (ADSC) are active. Subsequent  
burst addresses can be internally generated as controlled by  
the Advance pin (ADV).  
User-selectable burst counter supporting Intel®  
Pentium® interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to two or four bytes wide as  
controlled by the byte write control inputs. GW when active  
• Asynchronous output enable  
• Single Cycle Chip Deselect  
• CY7C1480V33 and CY7C1482V33 offered in  
JEDEC-standardlead-free100-pinTQFP, 165-BallfBGA  
packages. CY7C1486V33 available in 209-Ball BGA  
packages  
causes all bytes to be written.  
LOW  
The CY7C1480V33/CY7C1482V33/CY7C1486V33 operates  
from a +3.3V core power supply while all outputs may operate  
with either a +2.5 or +3.3V supply. All inputs and outputs are  
JEDEC-standard JESD8-5-compatible.  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• “ZZ” Sleep Mode Option  
Selection Guide  
250 MHz  
3.0  
200 MHz  
3.0  
167 MHz  
3.4  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
Shaded areas contain advance information.  
500  
500  
450  
mA  
mA  
120  
120  
120  
Please contact your local Cypress sales representative for availability of these parts.  
Note:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
Document #: 38-05283 Rev. *C  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised December 3, 2004  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
1
Logic Block Diagram – CY7C1480V33 (2M x 36)  
A0, A1, A  
ADDRESS  
REGISTER  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER  
AND  
CLR  
Q0  
LOGIC  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D ,DQPD  
DQ  
BYTE  
WRITE DRIVER  
D ,DQPD  
BW  
D
DQC ,DQP  
BYTE  
WRITE DRIVER  
C
DQC ,DQP  
BYTE  
WRITE REGISTER  
C
BW  
C
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
MEMORY  
ARRAY  
DQ s  
SENSE  
AMPS  
DQPA  
DQB ,DQP  
BYTE  
WRITE DRIVER  
B
E
DQB ,DQP  
BYTE  
WRITE REGISTER  
B
DQP  
DQP  
B
C
BW  
BW  
B
A
DQPD  
DQ  
BYTE  
WRITE DRIVER  
A ,DQPA  
DQ  
A ,DQPA  
BYTE  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
2
Logic Block Diagram – CY7C1482V33 (4M x 18)  
ADDRESS  
A0, A1, A  
REGISTER  
A[1:0]  
2
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQB,DQP  
B
DQB,DQP  
WRITE REGISTER  
B
WRITE DRIVER  
OUTPUT  
BUFFERS  
BW  
B
A
DQs  
DQP  
DQP  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
B
DQA,DQP  
A
E
DQA,DQP  
WRITE REGISTER  
A
WRITE DRIVER  
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE1  
CE2  
PIPELINED  
ENABLE  
CE3  
OE  
ZZ  
SLEEP  
CONTROL  
Document #: 38-05283 Rev. *C  
Page 2 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Logic Block Diagram – CY7C1486V33 (1M x 72)  
ADDRESS  
REGISTER  
A0, A1,A  
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BINARY  
COUNTER  
CLR  
Q0  
ADSC  
ADSP  
DQ  
WRITE DRIVER  
H
, DQP  
H
DQ  
WRITE DRIVER  
H, DQPH  
BW  
BW  
H
G
DQG, DQPG  
WRITE DRIVER  
DQF, DQPF  
WRITE DRIVER  
DQF, DQPF  
WRITE DRIVER  
DQF, DQPF  
WRITE DRIVER  
BW  
BW  
F
E
DQ E  
E
, DQP  
WRITE DRIVER  
DQE, DQPE  
WRITE DRIVER  
MEMORY  
ARRAY  
DQD, DQPD  
WRITE DRIVER  
DQD, DQPD  
WRITE DRIVER  
BW  
D
DQC, DQPC  
WRITE DRIVER  
DQC, DQPC  
WRITE DRIVER  
BW  
C
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
DQs  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
A
B
C
D
E
E
DQB, DQPB  
WRITE DRIVER  
DQB, DQPB  
WRITE DRIVER  
BW  
BW  
B
A
DQA, DQPA  
WRITE DRIVER  
DQ  
WRITE DRIVER  
A
, DQP  
A
F
G
H
BWE  
INPUT  
REGISTERS  
GW  
CE1  
CE2  
CE3  
OE  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
SLEEP  
CONTROL  
ZZ  
Document #: 38-05283 Rev. *C  
Page 3 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Pin Configurations  
100-pin TQFP Pinout  
DQPC  
1
DQP  
B
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQP  
DQ  
DQ  
VSSQ  
VDDQ  
DQ  
DQ  
VSS  
NC  
VDD  
ZZ  
DQ  
DQ  
VDDQ  
VSSQ  
DQ  
DQ  
NC  
NC  
VSSQ  
VDDQ  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
DQB  
2
3
4
5
6
7
8
9
DQc  
VDDQ  
VSSQ  
DQB  
VDDQ  
VSSQ  
DQ  
DQ  
DQ  
DQ  
C
DQB  
DQB  
DQB  
DQB  
C
NC  
A
C
DQB  
A
C
DQB  
A
9
VSSQ  
VDDQ  
VSSQ  
VDDQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VSSQ  
VDDQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
DQ  
DQC  
NC  
VDD  
NC  
VSS  
DQD  
DQD  
VDDQ  
VSSQ  
C
DQB  
DQB  
A
DQB  
DQB  
A
VSS  
NC  
VDD  
ZZ  
NC  
VDD  
NC  
CY7C1482V33  
(4M x 18)  
CY7C1480V33  
(2M x 36)  
VSS  
DQA  
DQB  
A
DQA  
DQB  
A
VDDQ  
VSSQ  
VDDQ  
VSSQ  
DQ  
DQ  
DQ  
DQ  
D
DQA  
DQA  
DQA  
DQA  
DQ  
DQ  
DQP  
B
B
B
A
D
A
D
D
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
DQ  
DQ  
DQP  
D
DQA  
D
DQA  
NC  
NC  
D
DQP  
A
Document #: 38-05283 Rev. *C  
Page 4 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Pin Configurations (continued)  
165-ball fBGA  
CY7C1480V33 (2M x 36)  
1
NC / 288M  
NC  
2
3
4
5
6
7
8
9
10  
A
11  
NC  
A
B
C
D
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
ADSC  
A
BWE  
GW  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
A
CE2  
VDDQ  
VDDQ  
A
NC / 144M  
DQPB  
DQB  
OE  
VSS  
VDD  
DQPC  
DQC  
NC  
NC  
DQC  
VSS  
DQB  
DQC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
E
F
DQC  
DQC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQB  
ZZ  
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
TDI  
A1  
TDO  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1482V33 (4M x 18)  
1
NC / 288M  
NC  
2
A
3
4
5
NC  
6
7
8
9
10  
A
11  
A
A
BWB  
NC  
CE  
CE1  
CE2  
BWE  
GW  
VSS  
ADSC  
OE  
ADV  
ADSP  
VDDQ  
VDDQ  
3
A
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
A
NC / 144M  
DQPA  
DQA  
B
C
D
NC  
NC  
VDDQ  
VDDQ  
VSS  
VDD  
VSS  
NC  
NC  
NC  
DQB  
VSS  
VDD  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
E
F
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQA  
DQA  
ZZ  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
TDI  
A1  
TDO  
MODE  
A
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05283 Rev. *C  
Page 5 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Pin Configurations (continued)  
209-ball BGA  
CY7C1486V33 (1M × 72)  
1
2
3
4
5
6
7
8
9
10  
11  
DQG  
DQG  
DQG  
A
B
C
D
E
F
DQG  
DQG  
CE3  
DQB  
DQB  
CE2  
ADSC  
BWE  
CE1  
DQB  
DQB  
A
ADSP  
NC  
ADV  
A
A
BWSB  
BWSC  
BWSH  
VSS  
BWSF  
BWSG  
BWSD  
DQG  
DQG  
NC  
NC  
NC  
BWSE  
NC  
BWSA DQB  
DQB  
DQB  
DQG  
GW  
OE  
VSS  
NC  
DQB  
DQPG DQPC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
VDD  
VSS  
VDD  
DQPF DQPB  
DQC  
DQC  
VSS  
DQF  
DQF  
VSS  
VDDQ  
VSS  
VSS  
G
H
J
DQC  
DQC  
DQC  
VDDQ  
VSS  
VDDQ  
VSSQ  
DQF  
DQF  
DQF  
DQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
DQC  
DQC  
NC  
F
VDDQ  
DQC  
NC  
VDDQ  
VDDQ  
CLK  
VDDQ  
VSS  
VDDQ  
NC  
DQF  
NC  
DQF  
NC  
K
L
NC  
NC  
DQH  
DQH  
DQH  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
DQA  
DQA  
DQ  
A
M
N
P
R
T
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQH  
DQH  
DQH  
VSS  
VDD  
VSS  
DQA  
DQA  
DQA  
VDDQ  
DQH  
DQH  
DQPD  
DQD  
DQD  
VDDQ  
VSS  
VDDQ  
VSS  
NC  
ZZ  
DQA  
DQA  
DQPA  
DQE  
DQE  
VSS  
VDDQ  
VSS  
A
VDDQ  
VDD  
NC  
A
DQPH  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDD  
DQPE  
DQE  
DQE  
DQE  
DQE  
VSS  
NC  
A
MODE  
A
U
V
W
A
A
A
A
A1  
A
DQD  
DQD  
A
A
A
A
DQE  
DQE  
TDI  
TDO  
TCK  
A0  
A
TMS  
Document #: 38-05283 Rev. *C  
Page 6 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Pin Definitions  
Pin Name  
I/O  
Description  
Address Inputs used to select one of the address locations. Sampled at the rising  
A0, A1, A  
Input-  
Synchronous edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled  
active. A1: A0 are fed to the two-bit counter.  
BWA,BWB,BWC,BWD,  
BWE,BWF,BWG,BWH  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to  
Synchronous the SRAM. Sampled on the rising edge of CLK.  
GW  
Input- Global Write Enable Input, active LOW. When asserted LOW on the rising edge of  
Synchronous CLK, a global write is conducted (ALL bytes are written, regardless of the values on  
BWX and BWE).  
BWE  
CLK  
CE1  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal  
Synchronous must be asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to  
increment the burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE2 and CE3 to select/deselect the device. ADSP is ignored if CE1 is  
HIGH.  
CE2  
CE3  
OE  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE1 and CE3 to select/deselect the device.  
Input- Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE1 and CE2 to select/deselect the device.  
Input- Output Enable, asynchronous input, active LOW. Controls the direction of the I/O  
Asynchronous pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are  
tri-stated, and act as input data pins. OE is masked during the first clock of a read cycle  
when emerging from a deselected state.  
ADV  
Input-  
Advance Input signal, sampled on the rising edge of CLK, active LOW. When  
Synchronous asserted, it automatically increments the address in a burst cycle.  
ADSP  
Input- Address Strobe from Processor, sampled on the rising edge of CLK, active LOW.  
Synchronous When asserted LOW, addresses presented to the device are captured in the address  
registers. A1: A0 are also loaded into the burst counter. When ADSP and ADSC are  
both asserted, only ADSP is recognized. ASDP is ignored when CE1 is deasserted  
HIGH.  
ADSC  
Input-  
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW.  
Synchronous When asserted LOW, addresses presented to the device are captured in the address  
registers. A1: A0 are also loaded into the burst counter. When ADSP and ADSC are  
both asserted, only ADSP is recognized.  
ZZ  
Input-  
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a  
Asynchronous non-time-critical “sleep” condition with data integrity preserved. For normal operation,  
this pin has to be LOW or left floating. ZZ pin has an internal pull-down.  
I/O-  
Synchronous triggered by the rising edge of CLK. As outputs, they deliver the data contained in the  
memory location specified by the addresses presented during the previous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is  
DQs, DQPs  
clock rise  
of the read cycle. The direction of the pins is controlled by OE. When OE is asserted  
LOW, the pins behave as outputs. When HIGH, DQs and DQPX are placed in a tri-state  
condition.  
VDD  
Power Supply Power supply inputs to the core of the device.  
VSS  
Ground  
Ground for the core of the device.  
VSSQ  
VDDQ  
I/O Ground Ground for the I/O circuitry.  
I/O Power  
Supply  
Power supply for the I/O circuitry.  
MODE  
Input Static Selects Burst Order. When tied to GND selects linear burst sequence. When tied to  
DD or left floating selects interleaved burst sequence. This is a strap pin and should  
remain static during device operation. Mode Pin has an internal pull-up.  
V
Document #: 38-05283 Rev. *C  
Page 7 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Pin Definitions (continued)  
Pin Name  
I/O  
JTAG Serial Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the  
Output JTAG feature is not being utilized, this pin should be disconnected. This pin is not  
Description  
TDO  
Synchronous available on TQFP packages.  
TDI  
JTAG Serial Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
Input  
feature is not being utilized, this pin can be disconnected or connected to VDD. This pin  
Synchronous is not available on TQFP packages.  
TMS  
TCK  
JTAG Serial Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
Input  
feature is not being utilized, this pin can be disconnected or connected to VDD. This pin  
Synchronous is not available on TQFP packages.  
JTAG Clock Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin  
must be connected to VSS. This pin is not available on TQFP packages.  
NC  
-
No Connects. Not internally connected to the die  
access. After the first cycle of the access, the outputs are  
Functional Overview  
controlled by the OE signal. Consecutive single Read cycles  
are supported. Once the SRAM is deselected at clock rise by  
the chip select and either ADSP or ADSC signals, its output  
will tri-state immediately.  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise (tCO) is 3.0 ns  
(250-MHz device).  
Single Write Accesses Initiated by ADSP  
The CY7C1480V33/CY7C1482V33/CY7C1486V33 supports  
secondary cache in systems utilizing either a linear or inter-  
leaved burst sequence. The interleaved burst order supports  
Pentium and i486processors. The linear burst sequence is  
suited for processors that utilize a linear burst sequence. The  
burst order is user selectable, and is determined by sampling  
the MODE input. Accesses can be initiated with either the  
Processor Address Strobe (ADSP) or the Controller Address  
Strobe (ADSC). Address advancement through the burst  
sequence is controlled by the ADV input. A two-bit on-chip  
wraparound burst counter captures the first address in a burst  
sequence and automatically increments the address for the  
rest of the burst access.  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) CE1, CE2, CE3 are all asserted active. The address  
presented to A is loaded into the address register and the  
address advancement logic while being delivered to the  
memory array. The Write signals (GW, BWE, and BWX) and  
ADV inputs are ignored during this first cycle.  
ADSP-triggered Write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQs inputs is written into the corre-  
sponding address location in the memory array. If GW is HIGH,  
then the Write operation is controlled by BWE and BWX  
signals.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all Byte Write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed Write circuitry.  
The CY7C1480V33/CY7C1482V33/CY7C1486V33 provides  
Byte Write capability that is described in the Write Cycle  
Descriptions table. Asserting the Byte Write Enable input  
(BWE) with the selected Byte Write (BWX) input, will selec-  
tively write to only the desired bytes. Bytes not selected during  
a Byte Write operation will remain unaltered. A synchronous  
self-timed Write mechanism has been provided to simplify the  
Write operations.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if CE1  
is HIGH.  
Because CY7C1480V33/CY7C1482V33/CY7C1486V33 is a  
common I/O device, the Output Enable (OE) must be  
deasserted HIGH before presenting data to the DQs inputs.  
Doing so will tri-state the output drivers. As a safety  
precaution, DQs are automatically tri-stated whenever a Write  
cycle is detected, regardless of the state of OE.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
CE1, CE2, CE3 are all asserted active, and (3) the Write  
signals (GW, BWE) are all deasserted HIGH. ADSP is ignored  
if CE1 is HIGH. The address presented to the address inputs  
(A) is stored into the address advancement logic and the  
Address Register while being presented to the memory array.  
The corresponding data is allowed to propagate to the input of  
the Output Registers. At the rising edge of the next clock the  
data is allowed to propagate through the output register and  
onto the data bus within 3.0 ns (250-MHz device) if OE is  
active LOW. The only exception occurs when the SRAM is  
emerging from a deselected state to a selected state, its  
outputs are always tri-stated during the first cycle of the  
Single Write Accesses Initiated by ADSC  
ADSC Write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) CE1, CE2, CE3 are all asserted active,  
and (4) the appropriate combination of the Write inputs (GW,  
BWE, and BWX) are asserted active to conduct a Write to the  
desired byte(s). ADSC-triggered Write accesses require a  
single clock cycle to complete. The address presented to A is  
loaded into the address register and the address  
advancement logic while being delivered to the memory array.  
Document #: 38-05283 Rev. *C  
Page 8 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
The ADV input is ignored during this cycle. If a global Write is  
conducted, the data presented to the DQs is written into the  
corresponding address location in the memory core. If a Byte  
Write is conducted, only the selected bytes are written. Bytes  
not selected during a Byte Write operation will remain  
unaltered. A synchronous self-timed Write mechanism has  
been provided to simplify the Write operations.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, CE3, ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
Interleaved Burst Address Table  
Because CY7C1480V33/CY7C1482V33/CY7C1486V33 is a  
common I/O device, the Output Enable (OE) must be  
deasserted HIGH before presenting data to the DQs inputs.  
Doing so will tri-state the output drivers. As a safety  
precaution, DQs are automatically tri-stated whenever a Write  
cycle is detected, regardless of the state of OE.  
(MODE = Floating or VDD  
)
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Burst Sequences  
The CY7C1480V33/CY7C1482V33/CY7C1486V33 provides  
a two-bit wraparound counter, fed by A1: A0, that implements  
either an interleaved or linear burst sequence. The interleaved  
burst sequence is designed specifically to support Intel  
Pentium applications. The linear burst sequence is designed  
to support processors that follow a linear burst sequence. The  
burst sequence is user selectable through the MODE input.  
Linear Burst Address Table  
(MODE = GND)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both Read and Write burst operations are supported.  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
Unit  
mA  
ns  
120  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ Active to Sleep current  
ZZ Inactive to exit Sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ns  
Document #: 38-05283 Rev. *C  
Page 9 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Truth Table[ 2, 3, 4, 4, 5, 6]  
Operation  
Add. Used CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Sleep Mode, Power Down  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle,Suspend Burst  
None  
None  
H
L
X
L
X
X
H
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
None  
L
X
L
L
None  
L
H
H
X
L
None  
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
L
X
X
X
L
X
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
L-H  
L
L
L
H
X
L
L-H Tri-State  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
L
L
L
H
H
H
H
H
H
L
L
L
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
Q
H
X
X
L-H  
L-H  
D
D
WRITE Cycle,Suspend Burst  
L
Notes:  
2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
3. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.  
4. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.  
OE  
OE  
5. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks  
X
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a  
don't care for the remainder of the write cycle  
6. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are Tri-State when OE is  
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
7. BWx represents any byte write signal.To enable any byte write BWx, a Logic LOW signal should be applied at clock rise. Any number of byte writes can be  
enabled at the same time for any given write.  
Document #: 38-05283 Rev. *C  
Page 10 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Truth Table for Read/Write[4]  
Function (CY7C1480V33)  
Read  
GW  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE  
H
L
BWD  
X
H
H
H
H
H
H
H
H
L
BWC  
X
H
H
H
H
L
BWB  
X
H
H
L
BWA  
X
H
L
Read  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
L
L
H
L
L
L
Write Byte C – (DQC and DQPC)  
Write Bytes C, A  
L
H
H
L
H
L
L
L
Write Bytes C, B  
L
L
H
L
Write Bytes C, B, A  
Write Byte D – (DQD and DQPD)  
Write Bytes D, A  
L
L
L
L
H
H
H
H
L
H
H
L
H
L
L
L
Write Bytes D, B  
L
L
H
L
Write Bytes D, B, A  
Write Bytes D, C  
L
L
L
L
L
H
H
L
H
L
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
L
L
L
L
L
H
L
L
L
L
L
Write All Bytes  
X
X
X
X
X
Truth Table for Read/Write[4]  
Function (CY7C1482V33)  
Read  
GW  
H
BWE  
BWB  
X
BWA  
H
L
L
L
L
L
X
X
H
L
Read  
H
H
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
H
H
H
L
H
L
H
L
Write All Bytes  
H
L
L
Write All Bytes  
L
X
X
Document #: 38-05283 Rev. *C  
Page 11 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1480V33/CY7C1482V33 incorporates a serial  
boundary scan test access port (TAP). This port operates in  
accordance with IEEE Standard 1149.1-1990 but does not  
have the set of functions required for full 1149.1 compliance.  
These functions from the IEEE specification are excluded  
because their inclusion places an added delay in the critical  
speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 3.3V or 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see the TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
(See Tap Controller Block Diagram.)  
The CY7C1480V33/CY7C1482V33 contains a TAP controller,  
instruction register, boundary scan register, bypass register,  
and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
TAP Controller State Diagram  
0
Bypass Register  
TEST-LOGIC  
1
RESET  
0
2
1
0
0
0
1
1
1
Selection  
Circuitry  
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
Instruction Register  
31 30 29  
Identification Register  
0
S
election  
TDI  
TDO  
Circuitr  
y
0
0
.
.
. 2 1  
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
0
0
TAP CONTROLLER  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Test Access Port (TAP)  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Document #: 38-05283 Rev. *C  
Page 12 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Instruction Register  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
Bypass Register  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The x36 configuration has a  
73-bit-long register, and the x18 configuration has  
54-bit-long register.  
a
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
SAMPLE/PRELOAD  
Identification (ID) Register  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the device TAP controller is not fully 1149.1 compliant.  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls  
is captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture set-up plus  
hold time (tCS plus tCH).  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
The SRAM clock input might not be captured correctly if there  
is no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
Document #: 38-05283 Rev. *C  
Page 13 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
possible to capture all other signals and simply ignore the  
BYPASS  
value of the CLK captured in the boundary scan register.  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO balls.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction will have the  
same effect as the Pause-DR command.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
[ , ]  
TAP AC Switching Characteristics Over the Operating Range 8 9  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
tTH  
25  
25  
tTL  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-up to TCK Clock Rise  
tTDIS  
5
ns  
ns  
0
5
5
5
ns  
ns  
ns  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes:  
8. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
9. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05283 Rev. *C  
Page 14 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ............................................... .VSS to 3.3V  
Input rise and fall times................................................... 1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.135 to 3.6V unless otherwise noted)[10]  
Parameter  
VOH1  
Description  
Output HIGH Voltage IOH = –4.0 mA, VDDQ = 3.3V  
OH = –1.0 mA, VDDQ = 2.5V  
Test Conditions  
Min.  
2.4  
2.0  
2.9  
2.1  
Max.  
Unit  
V
I
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = –100 µA  
VDDQ = 3.3V  
DDQ = 2.5V  
V
V
V
Output LOW Voltage IOL = 8.0 mA  
IOL = 1.0 mA  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
0.4  
0.4  
V
V
Output LOW Voltage IOL = 100 µA  
0.2  
V
V
DDQ = 2.5V  
VDDQ = 3.3V  
DDQ = 2.5V  
0.2  
V
Input HIGH Voltage  
Input LOW Voltage  
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
V
VIL  
VDDQ = 3.3V  
VDDQ = 2.5V  
–0.3  
–0.3  
–5  
V
0.7  
V
IX  
Input Load Current  
GND < VIN < VDDQ  
5
µA  
Identification Register Definitions  
CY7C1480V33 CY7C1482V33 CY7C1486V33  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)  
(2M x36)  
(4M x 18)  
(1M x72)  
Description  
000  
000  
000  
Describes the version number  
Reserved for internal use  
01011  
01011  
01011  
Architecture/Memory Type(23:18)  
Bus Width/Density(17:12)  
Cypress JEDEC ID Code (11:1)  
000000  
100100  
000000  
010100  
000000  
110100  
Defines memory type and architecture  
Defines width and density  
00000110100 00000110100 00000110100 Allows unique identification of SRAM  
vendor  
ID Register Presence Indicator (0)  
1
1
1
Indicates the presence of an ID register  
Notes:  
10. All voltages referenced to V (GND).  
SS  
11. Bit #24 is “1” in the ID Register Definitions for both 2.5V and 3.3V versions of this device.  
Document #: 38-05283 Rev. *C  
Page 15 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Bit Size (x72)  
Instruction  
3
1
3
1
3
1
Bypass  
ID  
32  
73  
-
32  
54  
-
32  
-
Boundary Scan Order-165FBGA  
Boundary Scan Order-209BGA  
112  
Identification Codes  
Instruction  
EXTEST  
Code  
000  
Description  
Captures the I/O ring contents.  
IDCODE  
001  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
010  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Boundary Scan Order (x36) (continued)  
Boundary Scan Order (x36)  
Bit #  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
165-Ball ID  
N6  
Bit #  
1
2
3
4
5
6
7
8
165-Ball ID  
C1  
D1  
E1  
P11  
R8  
P3  
P4  
P8  
P9  
P10  
R9  
R10  
R11  
N11  
M11  
L11  
M10  
L10  
K11  
J11  
K10  
J10  
H11  
G11  
F11  
E11  
D10  
D2  
E2  
F1  
G1  
F2  
G2  
J1  
K1  
L1  
J2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
M1  
N1  
K2  
L2  
M2  
R1  
R2  
R3  
P2  
R4  
P6  
R6  
Document #: 38-05283 Rev. *C  
Page 16 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Boundary Scan Order (x36) (continued)  
Boundary Scan Order (x18) (continued)  
Bit #  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
165-Ball ID  
D11  
C11  
G10  
F10  
E10  
A10  
B10  
A9  
Bit #  
165-Ball ID  
R9  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
R10  
R11  
M10  
L10  
K10  
J10  
H11  
G11  
F11  
E11  
D11  
C11  
A11  
A10  
B10  
A9  
B9  
A8  
B8  
A7  
B7  
B6  
A6  
B5  
B9  
A8  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
Boundary Scan Order (x18)  
Bit #  
1
2
3
4
165-Ball ID  
D2  
A4  
B3  
A3  
A2  
E2  
F2  
G2  
J1  
B2  
5
Boundary Scan Exit Order (x72)  
6
K1  
7
8
9
L1  
M1  
N1  
Bit #  
1
2
209-Ball ID  
A1  
A2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
R1  
R2  
R3  
P2  
R4  
P6  
R6  
N6  
P11  
R8  
P3  
P4  
P8  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
B1  
B2  
C1  
C2  
D1  
D2  
E1  
E2  
F1  
F2  
G1  
G2  
H1  
H2  
J1  
P9  
P10  
Document #: 38-05283 Rev. *C  
Page 17 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Boundary Scan Exit Order (x72) (continued)  
Boundary Scan Exit Order (x72) (continued)  
Bit #  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
209-Ball ID  
J2  
Bit #  
68  
69  
209-Ball ID  
M11  
M10  
L11  
L10  
P6  
L1  
L2  
70  
M1  
M2  
N1  
N2  
P1  
P2  
R2  
R1  
T1  
T2  
U1  
U2  
V1  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
J11  
J10  
H11  
H10  
G11  
G10  
F11  
F10  
E10  
E11  
D11  
D10  
C11  
C10  
B11  
B10  
A11  
A10  
A9  
U8  
A7  
A5  
A6  
D6  
B6  
D7  
K3  
A8  
B4  
B3  
C3  
C4  
C8  
C9  
B9  
B8  
A4  
C6  
B7  
V2  
W1  
W2  
T6  
V3  
V4  
U4  
W5  
V6  
W6  
U3  
U9  
V5  
U5  
U6  
W7  
V7  
U7  
V8  
V9  
W11  
W10  
V11  
V10  
U11  
U10  
T11  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
A3  
Document #: 38-05283 Rev. *C  
Page 18 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Storage Temperature .................................65°C to +150°C  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Ambient  
Supply Voltage on VDD Relative to GND........ –0.3V to +4.6V  
Range  
Temperature  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
to VDD  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Electrical Characteristics Over the Operating Range[12, 13]  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
Unit  
V
VDDQ  
VDDQ = 3.3V  
DDQ = 2.5V  
VDD  
V
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
VDDQ = 3.3V, VDD = Min., IOH = –4.0 mA  
VDDQ = 2.5V, VDD = Min., IOH = –1.0 mA  
VDDQ = 3.3V, VDD = Min., IOL = 8.0 mA  
V
2.0  
V
Output LOW Voltage  
0.4  
0.4  
V
V
DDQ = 2.5V, VDD = Min., IOL = 1.0 mA  
Input HIGH Voltage[12] VDDQ = 3.3V  
DDQ = 2.5V  
V
2.0  
1.7  
VDD + 0.3V  
VDD + 0.3V  
0.8  
V
V
V
Input LOW Voltage[12]  
VDDQ = 3.3V  
–0.3  
–0.3  
–5  
V
VDDQ = 2.5V  
0.7  
V
Input Load Current  
except ZZ and MODE  
GND VI VDDQ  
5
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–5  
–30  
–5  
µA  
µA  
30  
Input Current of ZZ  
Input = VSS  
Input = VDD  
µA  
5
µA  
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
5
µA  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
All speeds  
500  
500  
450  
245  
245  
245  
120  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
Power-down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL  
f = fMAX = 1/tCYC  
ISB2  
Automatic CE  
Power-down  
Current—CMOS Inputs f = 0  
VDD = Max, Device Deselected,  
VIN 0.3V or VIN > VDDQ – 0.3V,  
ISB3  
Automatic CE  
Power-down  
Current—CMOS Inputs f = fMAX = 1/tCYC  
V
DD = Max, Device Deselected, or 4.0-ns cycle, 250 MHz  
245  
245  
245  
135  
mA  
mA  
mA  
mA  
VIN 0.3V or VIN > VDDQ – 0.3V  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
All speeds  
ISB4  
Automatic CE  
Power-down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL, f = 0  
Shaded areas contain advance information.  
Notes:  
12. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
< V  
DD\  
13. Power-up: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
DD  
IH  
DD  
DDQ  
Document #: 38-05283 Rev. *C  
Page 19 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Thermal Resistance[14]  
TQFP  
Package  
209-BGA  
Package  
fBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
24.63  
2.28  
15.2  
16.3  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
1.7  
2.1  
°C/W  
impedance, per EIA / JESD51.  
Capacitance[14]  
TQFP  
Max.  
209-BGA  
Max.  
165-fBGA  
Max.  
Parameter  
Description  
Test Conditions  
Unit  
pF  
CADDRESS  
CDATA  
CCTRL  
CCLK  
Address Input Capacitance TA = 25°C, f = 1 MHz,  
6
5
8
6
5
6
5
8
6
5
6
5
8
6
5
V
DD = 3.3V  
VDDQ = 2.5V  
Data Input Capacitance  
Control Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
pF  
CI/O  
pF  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
R = 50Ω  
L
5 pF  
R = 351Ω  
1ns  
1ns  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
5 pF  
R =1538Ω  
1ns  
1ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
14. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05283 Rev. *C  
Page 20 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Switching Characteristics Over the Operating Range[19, 20]  
250 MHz  
200 MHz  
167 MHz  
Parameter  
tPOWER  
Clock  
tCYC  
Description  
VDD(Typical) to the first access[15]  
Min. Max. Min. Max. Min. Max.  
Unit  
1
1
1
ms  
Clock Cycle Time  
Clock HIGH  
4.0  
2.0  
2.0  
5.0  
2.0  
2.0  
6.0  
2.4  
2.4  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCO  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[16, 17, 18]  
3.0  
3.0  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
1.3  
1.3  
1.3  
1.3  
1.5  
1.5  
tCLZ  
tCHZ  
Clock to High-Z[16, 17, 18]  
3.0  
3.0  
3.0  
3.0  
3.4  
3.4  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
OE LOW to Output Low-Z[16, 17, 18]  
OE HIGH to Output High-Z[16, 17, 18]  
0
0
0
3.0  
3.0  
3.4  
Address Set-up Before CLK Rise  
ADSC, ADSP Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
Chip Enable Set-Up Before CLK Rise  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
ADV Hold After CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tADVH  
tWEH  
GW, BWE, BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tDH  
tCEH  
Shaded areas contain advance information.  
Notes:  
15. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially before a read or write operation  
DD  
POWER  
can be initiated.  
16. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
OEHZ  
CHZ CLZ OELZ  
17. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
OEHZ  
OELZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions  
18. This parameter is sampled and not 100% tested.  
19. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
20. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05283 Rev. *C  
Page 21 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Switching Waveforms  
Read Cycle Timing[21]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,  
BWx  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV  
suspends  
burst.  
t
t
OEV  
CO  
t
t
OEHZ  
t
OELZ  
t
CHZ  
DOH  
t
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Note:  
21. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05283 Rev. *C  
Page 22 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Switching Waveforms (continued)  
Write Cycle Timing[21, 22]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
ADDRESS  
BWE,  
t
t
AH  
AS  
A1  
A2  
A3  
Byte write signals are  
ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
Data In (D)  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
Data Out (Q)  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Note:  
22.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05283 Rev. *C  
Page 23 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Switching Waveforms (continued)  
Read/Write Cycle Timing[21, 23, 24]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
BWE,  
t
t
WEH  
WES  
BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back READs  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
DON’T CARE  
UNDEFINED  
Notes:  
23. The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.  
24. GW is HIGH.  
Document #: 38-05283 Rev. *C  
Page 24 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Switching Waveforms (continued)  
ZZ Mode Timing[27, 28]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
25. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
26. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05283 Rev. *C  
Page 25 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Ordering Information  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Part and Package Type  
250  
CY7C1480V33-250AXC  
CY7C1482V33-250AXC  
A101  
Lead-Free 100-lead 14 × 20 × 1.4 mm Thin Quad Flat  
Pack  
Commercial  
CY7C1486V33-250BGC  
BB209A 209-ball BGA (14 × 22 × 1.76 mm)  
BB165C 165 fBGA(15 x 17 x1.4 mm)  
CY7C1480V33-250BZC  
CY7C1482V33-250BZC  
CY7C1486V33-250BGXC  
BB209A Lead-Free 209-ball BGA (14 × 22 × 1.76 mm)  
BB165C Lead-Free 165 fBGA(15 x 17 x1.4 mm)  
CY7C1480V33-250BZXC  
CY7C1482V33-250BZXC  
200  
CY7C1480V33-200AXC  
CY7C1482V33-200AXC  
A101  
Lead-Free 100-lead 14 × 20 × 1.4 mm Thin Quad Flat  
Pack  
CY7C1486V33-200BGC  
BB209A 209-ball BGA (14 × 22 × 1.76 mm)  
BB165C 165 fBGA(15 x 17 x1.4 mm)  
CY7C1480V33-200BZC  
CY7C1482V33-200BZC  
CY7C1486V33-200BGXC  
BB209A Lead-Free 209-ball BGA (14 × 22 × 1.76 mm)  
BB165C Lead-Free 165 fBGA(15 x 17 x1.4 mm)  
CY7C1480V33-200BZXC  
CY7C1482V33-200BZXC  
167  
CY7C1480V33-167AXC  
CY7C1482V33-167AXC  
A101  
Lead-Free 100-lead 14 × 20 × 1.4 mm Thin Quad Flat  
Pack  
CY7C1486V33-167BGC  
BB209A 209-ball BGA (14 × 22 × 1.76 mm)  
BB165C 165 fBGA(15 x 17x1.4 mm)  
CY7C1480V33-167BZC  
CY7C1482V33-167BZC  
CY7C1486V33-167BGXC  
BB209A Lead-Free 209-ball BGA (14 × 22 × 1.76 mm)  
BB165C Lead-Free 165 fBGA(15 x 17x1.4 mm)  
CY7C1480V33-167BZXC  
CY7C1482V33-167BZXC  
Shaded areas contain advance information.  
Please contact your local sales representative for availability of these parts.  
Lead-free BG packages (Ordering Code: BGX) will be available in 2005.  
Notes:  
27. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
28. DQs are in high-Z when exiting ZZ sleep mode  
Document #: 38-05283 Rev. *C  
Page 26 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
DIMENSIONS ARE IN MILLIMETERS.  
ꢁ6.00 0.20  
ꢁ4.00 0.ꢁ0  
ꢁ.40 0.05  
ꢁ00  
ꢀꢁ  
ꢀ0  
0.30 0.0ꢀ  
0.65  
TYP.  
ꢁ2° ꢁ°  
(ꢀX)  
SEE DETAIL  
A
30  
5ꢁ  
3ꢁ  
50  
0.20 MAX.  
ꢁ.60 MAX.  
R 0.0ꢀ MIN.  
0.20 MAX.  
0° MIN.  
STAND-OFF  
0.05 MIN.  
0.ꢁ5 MAX.  
SEATING PLANE  
0.25  
GAUGE PLANE  
R 0.0ꢀ MIN.  
0.20 MAX.  
0°-7°  
0.60 0.ꢁ5  
0.20 MIN.  
ꢁ.00 REF.  
51-85050-*A  
DETAIL  
A
Document #: 38-05283 Rev. *C  
Page 27 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Package Diagrams (continued)  
209-Ball FBGA (14 x 22 x 1.76 mm) BB209A  
51-85167-**  
Document #: 38-05283 Rev. *C  
Page 28 of 30  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Package Diagrams (continued)  
165-Ball FBGA (15 x 17 x 1.40 mm) BB165C  
PIN ꢁ CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN ꢁ CORNER  
Ø0.25 M C A B  
Ø0.45 0.05(ꢁ65X)  
2
3
4
5
6
7
9
ꢁ0  
ꢁꢁ  
ꢁꢁ ꢁ0  
9
7
6
5
4
3
2
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
ꢁ.00  
5.00  
ꢁ0.00  
B
ꢁ5.00 0.ꢁ0  
0.ꢁ5(4X)  
SEATING PLANE  
C
51-85165-*A  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05283 Rev. *C  
Page 29 of 30  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
PRELIMINARY  
Document History Page  
Document Title: CY7C1480V33/CY7C1482V33/CY7C1486V3372-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM  
Document Number: 38-05283  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
114670  
118281  
08/06/02  
01/21/03  
PKS  
HGK  
New Data Sheet  
*A  
Changed tCO from 2.4 to 2.6 ns for 250 MHz  
Updated features on page 1 for package offering  
Removed 30-MHz offering  
Updated Ordering Information  
Changed Advanced Information to Preliminary  
*B  
233368  
See ECN  
NJY  
Changed timing diagrams  
Changed logic block diagrams  
Modified Functional Description  
Modified “Functional Overview” section  
Added boundary scan order for all packages  
Included thermal numbers and capacitance values for all packages  
Included IDD and ISB values  
Removed 250-MHz speed grade offering and included 225-MHz speed bin  
Changed package outline for 165FBGA package and 209-ball BGA package  
Removed 119-BGA package offering  
*C  
299452  
See ECN  
SYT  
Removed 225-MHz offering and included 250-MHz speed bin  
Changed tCYC from 4.4 ns to 4.0 ns for 250-MHz Speed Bin  
Changed ΘJA from 16.8 to 24.63 °C/W and ΘJC from 3.3 to 2.28 °C/W for 100  
TQFP Package on Page # 20  
Added lead-free information for 100-Pin TQFP, 165 FBGA and 209 BGA  
Packages.  
Added comment of ‘Lead-free BG packages availability’ below the Ordering  
Information  
Document #: 38-05283 Rev. *C  
Page 30 of 30  

相关型号:

CY7C1480V33-250BZI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480V33-250BZXC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480V33-250BZXI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480V33_06

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480V33_07

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480V33_11

72-Mbit (2 M x 36/4 M x 18/1 M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480V33_13

72-Mbit (2 M x 36) Pipelined Sync SRAM
CYPRESS

CY7C1481BV25-133AXI

72-Mbit (2 M x 36) Flow-Through SRAM
CYPRESS

CY7C1481BV25_13

72-Mbit (2 M x 36) Flow-Through SRAM
CYPRESS

CY7C1481BV33

72-Mbit (2 M × 36) Flow-Through SRAM
CYPRESS

CY7C1481BV33-133AXI

Cache SRAM, 2MX36, 6.5ns, CMOS, PQFP100, TQFP-100
CYPRESS

CY7C1481BV33-133BZI

Cache SRAM, 2MX36, 6.5ns, CMOS, PBGA165, 15 X 17 MM, 1.40 MM HEIGHT, MO-216, FBGA-165
CYPRESS