CY8C21323-24LQXI [CYPRESS]

Multifunction Peripheral, CMOS, QFN-24;
CY8C21323-24LQXI
型号: CY8C21323-24LQXI
厂家: CYPRESS    CYPRESS
描述:

Multifunction Peripheral, CMOS, QFN-24

时钟
文件: 总47页 (文件大小:1216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C21123/CY8C21223/CY8C21323  
PSoC® Programmable System-on-Chip™  
Features  
Powerful Harvard-architecture processor:  
M8C processor speeds up to 24 MHz  
Low power at high speed  
Additional system resources:  
I2C master, slave and multi-master to 400 kHz  
Watchdog and sleep timers  
Operating voltage: 2.4 V to 5.25 V  
User-configurable low-voltage detection (LVD)  
Operating voltages down to 1.0 V using on-chip switch mode  
pump (SMP)  
Integrated supervisory circuit  
On-chip precision voltage reference  
Industrial temperature range: –40 °C to +85 °C  
Advanced peripherals (PSoC® blocks):  
Four analog type “E” PSoC blocks provide:  
• Two comparators with digital to analog converter (DAC)  
references  
Logic Block Diagram  
Port 1 Port 0  
• Single or dual 10-Bit 8-to-1 analog to digital converter  
(ADC)  
Four digital PSoC blocks provide:  
• 8- to 32-bit timers and counters, 8- and 16-bit pulse-width  
modulators (PWMs)  
PSoC  
CORE  
SystemBus  
• CRC and PRS modules  
Global Digital Interconnect  
Full duplex UART, SPImaster or slave: Connectable to all  
Global Analog Interconnect  
Flash  
CPUCore  
general-purpose I/O (GPIO) pins  
Complex peripherals by combining blocks  
SROM  
SRAM  
Flexible on-chip memory:  
Sleep and  
Watchdog  
Interrupt  
Controller  
(M8C)  
4 KB flash program storage 50,000 erase/write cycles  
256 bytes SRAM data storage  
In-system serial programming (ISSP)  
Partial flash updates  
Clock Sources  
(Includes IMO and ILO)  
Flexible protection modes  
EEPROM emulation in flash  
DIGITAL SYSTEM  
ANALOG SYSTEM  
Analog  
Ref .  
Complete development tools:  
Digital  
PSoC Block  
Array  
Analog  
PSoC Block  
Array  
Free development software (PSoC Designer™)  
Full-featured, in-circuit emulator (ICE) and programmer  
Full-speed emulation  
Complex breakpoint structure  
128-KB trace memory  
Precision, programmable clocking:  
Internal ±5% 24- / 48-MHz main oscillator  
Internal low-speed, low-power oscillator for watchdog and  
sleep functionality  
Sw itch  
Mode  
Pump  
POR and LVD  
System Resets  
Internal  
Voltage  
Ref .  
Digital  
Clocks  
I2C  
Programmable pin configurations:  
25-mA sink, 10-mA source on all GPIOs  
SYSTEM RESOURCES  
Pull-up, pull-down, high Z, strong, or open-drain drive modes  
on all GPIOs  
Up to eight analog inputs on all GPIOs  
Configurable interrupt on all GPIOs  
Errata: When the device is operated within 0 °C to 70 °C, the frequency tolerance is reduced to ±2.5%, but if operated at extreme temperature (below 0 °C or above 70 °C),  
frequency tolerance deviates from ±2.5% to ±5%. For information on silicon errata, see “Errata” on page 43.  
Cypress Semiconductor Corporation  
Document Number: 38-12022 Rev. AB  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 14, 2017  
CY8C21123/CY8C21223/CY8C21323  
Contents  
PSoC Functional Overview ..............................................3  
PSoC Core ..................................................................3  
Digital System .............................................................3  
Analog System ............................................................4  
Additional System Resources .....................................4  
PSoC Device Characteristics ......................................5  
Getting Started ..................................................................5  
Application Notes ........................................................5  
Development Kits ........................................................5  
Training .......................................................................5  
CYPros Consultants ....................................................5  
Solutions Library ..........................................................5  
Technical Support .......................................................5  
Development Tool Selection ...........................................6  
Software ......................................................................6  
Designing with PSoC Designer .......................................7  
Select Components .....................................................7  
Configure Components ...............................................7  
Organize and Connect ................................................7  
Generate, Verify, and Debug .......................................7  
Pin Information .................................................................8  
8-Pin Part Pinout .........................................................8  
16-Pin Part Pinout .......................................................8  
20-Pin Part Pinout .....................................................10  
24-Pin Part Pinout .....................................................11  
Register Reference .........................................................12  
Register Conventions ................................................12  
Register Mapping Tables ..........................................12  
Electrical Specifications ................................................16  
Absolute Maximum Ratings .......................................16  
Operating Temperature ............................................17  
DC Electrical Characteristics .....................................17  
AC Electrical Characteristics .....................................23  
Packaging Information ...................................................31  
Packaging Dimensions ..............................................31  
Thermal Impedances ................................................35  
Solder Reflow Specifications .....................................35  
Ordering Information ......................................................36  
Ordering Code Definitions ........................................36  
Acronyms ........................................................................37  
Acronyms Used .........................................................37  
Reference Documents ....................................................37  
Document Conventions .................................................38  
Units of Measure .......................................................38  
Numeric Conventions ................................................38  
Glossary ..........................................................................38  
Errata ...............................................................................43  
Part Numbers Affected ..............................................43  
CY8C21123 Qualification Status ...............................43  
CY8C21123 Errata Summary ....................................43  
Document History Page .................................................44  
Sales, Solutions, and Legal Information ......................47  
Worldwide Sales and Design Support .......................47  
Products ....................................................................47  
PSoC® Solutions .......................................................47  
Cypress Developer Community .................................47  
Technical Support .....................................................47  
Document Number: 38-12022 Rev. AB  
Page 2 of 47  
CY8C21123/CY8C21223/CY8C21323  
PSoC Functional Overview  
The PSoC family consists of many programmable  
Digital System  
system-on-chip controller devices. These devices are designed  
to replace multiple traditional MCU-based system components  
with a low cost single-chip programmable component. A PSoC  
device includes configurable blocks of analog and digital logic,  
and programmable interconnect. This architecture allows you to  
create customized peripheral configurations, to match the  
requirements of each individual application. Additionally, a fast  
CPU, Flash program memory, SRAM data memory, and  
configurable I/O are included in a range of convenient pinouts.  
The digital system consists of four digital PSoC blocks. Each  
block is an 8-bit resource that can be used alone or combined  
with other blocks to form 8, 16, 24, and 32-bit peripherals, which  
are called user modules. Digital peripheral configurations  
include:  
PWMs (8- and 16-bit)  
PWMs with dead band (8- and 16-bit)  
Counters (8- to 32-bit)  
The PSoC architecture, as shown in Figure 1, consists of four  
main areas: the Core, the System Resources, the Digital  
System, and the Analog System. Configurable global bus  
resources allow the combining of all device resources into a  
complete custom system. Each PSoC device includes four digital  
blocks. Depending on the PSoC package, up to two analog  
comparators and up to 16 GPIO are also included. The GPIO  
provide access to the global digital and analog interconnects.  
Timers (8- to 32-bit)  
UART 8-bit with selectable parity (up to two)  
SPI master and slave  
I2C slave, master, multi-master (one available as a system  
resource)  
PSoC Core  
Cyclical redundancy checker/generator (8-bit)  
IrDA (up to two)  
The PSoC Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and internal main  
oscillator (IMO), and internal low-speed oscillator (ILO). The  
CPU core, called the M8C, is a powerful processor with speeds  
up to 24 MHz. The M8C is a four MIPS 8-bit Harvard-architecture  
microprocessor.  
Pseudo random sequence generators (8- to 32-bit)  
The digital blocks can be connected to any GPIO through a  
series of global bus that can route any signal to any pin. The  
busses also allow for signal multiplexing and performing logic  
operations. This configurability frees your designs from the  
constraints of a fixed peripheral controller.  
System Resources provide additional capability, such as digital  
clocks or I2C functionality for implementing an I2C master, slave,  
MultiMaster, an internal voltage reference that provides an  
absolute value of 1.3 V to a number of PSoC subsystems, an  
SMP that generates normal operating voltages off a single  
battery cell, and various system resets supported by the M8C.  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This provides an optimum  
choice of system resources for your application. Family  
resources are shown in Table 1 on page 5.  
Figure 1. Digital System Block Diagram  
The digital system consists of an array of digital PSoC blocks,  
which can be configured into any number of digital peripherals.  
The digital blocks can be connected to the GPIO through a series  
of global bus that can route any signal to any pin. This frees  
designs from the constraints of a fixed peripheral controller.  
Port1  
Port0  
ToSystemBus  
DigitalClocks  
FromCore  
ToAnalog  
System  
The analog system consists of four analog PSoC blocks,  
supporting comparators and analog-to-digital conversion up to  
10 bits of precision.  
DIGITAL SYSTEM  
DigitalPSoCBlockArray  
Row 0  
4
DBB00  
DBB01  
DCB02 DCB03  
4
8
8
8
8
GlobalDigital  
Interconnect  
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
Document Number: 38-12022 Rev. AB  
Page 3 of 47  
CY8C21123/CY8C21223/CY8C21323  
Analog System  
Additional System Resources  
The analog system consists of four configurable blocks to allow  
creation of complex analog signal flows. Analog peripherals are  
very flexible and may be customized to support specific  
application requirements. Some of the more common PSoC  
analog functions (most available as user modules) are:  
System resources, some of which listed in the previous sections,  
provide additional capability useful to complete systems.  
Additional resources include a switch mode pump, low voltage  
detection, and power on reset. The merits of each system  
resource are.  
Analog-to-digital converters (single or dual, with 8-bit or 10-bit  
resolution)  
Digital clock dividers provide three customizable clock  
frequencies for use in applications. The clocks can be routed  
to both the digital and analog systems. Additional clocks can  
be generated using digital PSoC blocks as clock dividers.  
Pin-to-pin comparators (one)  
Single-ended comparators (up to 2) with absolute (1.3 V)  
reference or 8-bit DAC reference  
TheI2Cmoduleprovides100and400kHzcommunicationover  
two wires. Slave, master, and multi-master modes are all  
supported.  
1.3 V reference (as a system resource)  
In most PSoC devices, analog blocks are provided in columns of  
three, which includes one CT (continuous time) and two SC  
(switched capacitor) blocks. The CY8C21x23 devices provide  
limited functionality Type “E” analog blocks. Each column  
contains one CT block and one SC block.  
LVD interrupts can signal the application of falling voltage  
levels, while the advanced POR (power on reset) circuit  
eliminates the need for a system supervisor.  
An internal 1.3 V voltage reference provides an absolute  
reference for the analog system, including ADCs and DACs.  
The number of blocks on the device family is listed in Table 1 on  
page 5.  
An integrated switch mode pump (SMP) generates normal  
operating voltages from a single 1.2 V battery cell, providing a  
low cost boost converter.  
Figure 2. CY8C21x23 Analog System Block Diagram  
Array Input  
Configuration  
ACI0[1:0]  
ACI1[1:0]  
ACOL1MUX  
Array  
ACE00  
ASE10  
ACE01  
ASE11  
Document Number: 38-12022 Rev. AB  
Page 4 of 47  
CY8C21123/CY8C21223/CY8C21323  
PSoC Device Characteristics  
Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks, and 12, 6, or 4  
analog blocks. Table 1 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is  
highlighted.  
Table 1. PSoC Device Characteristics  
PSoC Part  
Number  
Digital  
I/O  
Digital  
Rows  
Digital  
Blocks  
Analog  
Inputs  
Analog  
Analog  
Analog  
SRAM  
Size  
Flash  
Size  
Outputs Columns Blocks  
CY8C29x66  
CY8C28xxx  
up to 64  
up to 44  
4
16  
up to 12  
up to 44  
4
4
12  
2 K  
1 K  
32 K  
16 K  
up to 3  
up to 12  
up to 4  
up to 6  
up to  
12 + 4  
[1]  
CY8C27x43  
CY8C24x94  
CY8C24x23A  
CY8C23x33  
CY8C22x45  
CY8C21x45  
CY8C21x34  
CY8C21x23  
CY8C20x34  
CY8C20xx6  
up to 44  
up to 56  
up to 24  
up to 26  
up to 38  
up to 24  
up to 28  
up to 16  
up to 28  
up to 36  
2
1
1
1
2
1
1
1
0
0
8
4
4
4
8
4
4
4
0
0
up to 12  
up to 48  
up to 12  
up to 12  
up to 38  
up to 24  
up to 28  
4
2
2
2
0
0
0
0
0
0
4
2
2
2
4
4
2
2
0
0
12  
6
256  
1 K  
256  
256  
1 K  
512  
512  
256  
512  
16 K  
16 K  
4 K  
6
4
8 K  
[1]  
6
16 K  
8 K  
[1]  
6
[1]  
4
8 K  
[1]  
up to  
8
4
4 K  
[1,2]  
up to 28  
up to 36  
3
8 K  
[1,2]  
3
up to  
2 K  
up to  
32 K  
Getting Started  
The quickest way to understand PSoC silicon is to read this  
datasheet and then use the PSoC Designer Integrated Devel-  
opment Environment (IDE). This datasheet is an overview of the  
PSoC integrated circuit and presents specific pin, register, and  
electrical specifications.  
Training  
Free PSoC technical training (on demand, webinars, and  
workshops) is available online at http://www.cypress.com. The  
training covers a wide variety of topics and skill levels to assist  
you in your designs.  
For in depth information, along with detailed programming  
details, see the Technical Reference Manual for this PSoC  
device.  
CYPros Consultants  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to http://www.cypress.com and refer to  
CYPros Consultants.  
For up to date ordering, packaging, and electrical specification  
information, see the latest PSoC device datasheets on the web  
at http://www.cypress.com.  
Application Notes  
Solutions Library  
Application notes are an excellent introduction to the wide variety  
of possible PSoC designs. They can be found at  
http://www.cypress.com.  
Visit our growing library of solution focused designs at  
http://www.cypress.com. Here you can find various application  
designs that include firmware and hardware design files that  
enable you to complete your designs quickly.  
Development Kits  
Technical Support  
PSoC Development Kits are available online from Cypress at  
http://www.cypress.com and through a growing number of  
regional and global distributors, which include Arrow, Avnet,  
Digi-Key, Farnell, Future Electronics, and Newark.  
For assistance with technical issues, search KnowledgeBase  
articles and forums at http://www.cypress.com. If you cannot find  
an answer to your question, call technical support at  
1-800-541-4736.  
Notes  
1. Limited analog functionality.  
2. Two analog blocks and one CapSense .  
®
Document Number: 38-12022 Rev. AB  
Page 5 of 47  
CY8C21123/CY8C21223/CY8C21323  
Development Tool Selection  
Software  
Debugger  
PSoC Designer has a debug environment that provides  
hardware in-circuit emulation, allowing you to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow the designer to read and  
program and read and write data memory, read and write I/O  
registers, read and write CPU registers, set and clear break-  
points, and provide program run, halt, and step control. The  
debugger also allows the designer to create a trace buffer of  
registers and memory locations of interest.  
PSoC Designer  
At the core of the PSoC development software suite is  
PSoC Designer. Utilized by thousands of PSoC developers, this  
robust software has been facilitating PSoC designs for years.  
PSoC Designer is available free of charge at  
http://www.cypress.com. PSoC Designer comes with a free C  
compiler.  
PSoC Designer Software Subsystems  
You choose a base device to work with and then select different  
onboard analog and digital components called user modules that  
use the PSoC blocks. Examples of user modules are ADCs,  
DACs, Amplifiers, and Filters. You configure the user modules  
for your chosen application and connect them to each other and  
to the proper pins. Then you generate your project. This prepop-  
ulates your project with APIs and libraries that you can use to  
program your application.  
In-Circuit Emulator  
A low cost, high functionality In-Circuit Emulator (ICE) is  
available for development support. This hardware has the  
capability to program single devices. The emulator consists of a  
base unit that connects to the PC by way of a USB port. The base  
unit is universal and operates with all PSoC devices. Emulation  
pods for each device family are available separately. The  
emulation pod takes the place of the PSoC device in the target  
board and performs full speed (24MHz) operation.  
The tool also supports easy development of multiple configura-  
tions and dynamic reconfiguration. Dynamic reconfiguration  
allows for changing configurations at run time. Code Generation  
Tools PSoC Designer supports multiple third-party C compilers  
and assemblers. The code generation tools work seamlessly  
within the PSoC Designer interface and have been tested with a  
full range of debugging tools. The choice is yours.  
Standard Cypress PSoC IDE tools are available for debugging  
the CY8C20x36A/66A family of parts. However, the additional  
trace length and a minimal ground plane in the Flex-Pod can  
create noise problems that make it difficult to debug the design.  
A custom bonded On-Chip Debug (OCD) device is available in a  
48-pin QFN package. The OCD device is recommended for  
debugging designs that have high current and/or high analog  
accuracy requirements. The QFN package is compact and is  
connected to the ICE through a high density connector.  
Assemblers. The assemblers allow assembly code to be  
merged seamlessly with C code. Link libraries automatically use  
absolute addressing or are compiled in relative mode, and linked  
with other software modules to get absolute addressing.  
PSoC Programmer  
Flexible enough to be used on the bench in development, yet  
suitable for factory programming, PSoC Programmer works  
either as a standalone programming application or it can operate  
directly from PSoC Designer. PSoC Programmer software is  
compatible with both PSoC ICE-Cube in-circuit emulator and  
PSoC MiniProg. PSoC programmer is available free of charge at  
http://www.cypress.com/psocprogrammer.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices. The  
optimizing C compilers provide all the features of C tailored to  
the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
Document Number: 38-12022 Rev. AB  
Page 6 of 47  
CY8C21123/CY8C21223/CY8C21323  
Designing with PSoC Designer  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
Organize and Connect  
You build signal chains at the chip level by interconnecting user  
modules to each other and the I/O pins. You perform the  
selection, configuration, and routing so that you have complete  
control over all on-chip resources.  
Generate, Verify, and Debug  
The PSoC development process can be summarized in the  
following four steps:  
When you are ready to test the hardware configuration or move  
on to developing code for the project, you perform the "Generate  
Configuration Files" step. This causes PSoC Designer to  
generate source code that automatically configures the device to  
your specification and provides the software for the system. The  
generated code provides application programming interfaces  
(APIs) with high-level functions to control and respond to  
hardware events at run time and interrupt service routines that  
you can adapt as needed.  
1. Select User Modules  
2. Configure User Modules  
3. Organize and Connect  
4. Generate, Verify, and Debug  
Select Components  
PSoC Designer provides a library of pre-built, pre-tested  
hardware peripheral components called "user modules." User  
modules make selecting and implementing peripheral devices,  
both analog and digital, simple.  
A complete code development environment allows you to  
develop and customize your applications in C, assembly  
language, or both.  
The last step in the development process takes place inside  
PSoC Designer's Debugger (access by clicking the Connect  
icon). PSoC Designer downloads the HEX image to the ICE  
where it runs at full speed. PSoC Designer debugging capabil-  
ities rival those of systems costing many times more. In addition  
Configure Components  
Each of the User Modules you select establishes the basic  
register settings that implement the selected function. They also  
provide parameters and properties that allow you to tailor their  
precise configuration to your particular application. For example,  
a PWM User Module configures one or more  
to traditional single-step, run-to-breakpoint and watch-variable  
features, the debug interface provides a large trace buffer and  
allows you to define complex breakpoint events that include  
monitoring address and data bus values, memory locations and  
external signals.  
digital PSoC blocks, one for each 8 bits of resolution. The user  
module parameters permit you to establish the pulse width and  
duty cycle. Configure the parameters and properties to corre-  
spond to your chosen application. Enter values directly or by  
selecting values from drop-down menus. All the user modules  
are documented in datasheets that may be viewed directly in  
PSoC Designer or on the Cypress website. These user module  
datasheets explain the internal operation of the User Module and  
provide performance specifications. Each datasheet describes  
the use of each user module parameter, and other information  
you may need to successfully implement your design.  
Document Number: 38-12022 Rev. AB  
Page 7 of 47  
CY8C21123/CY8C21223/CY8C21323  
Pin Information  
This section describes, lists, and illustrates the CY8C21x23 PSoC device pins and pinout configurations. Every port pin (labeled with  
a “P”) is capable of Digital I/O. However, VSS, VDD, SMP, and XRES are not capable of Digital I/O.  
8-Pin Part Pinout  
Table 2. Pin Definitions – CY8C21123 8-Pin SOIC  
Type  
Figure 3. CY8C21123 8-Pin SOIC  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
A, I, P0[5]  
A, I, P0[3]  
1
2
3
8
7
6
5
VDD  
1
I/O  
I/O  
I/O  
I
I
P0[5] Analog column mux input  
P0[4], A, I  
P0[2], A, I  
SOIC  
2
3
4
5
6
7
8
P0[3] Analog column mux input  
P1[1] I2C serial clock (SCL), ISSP-SCLK[3]  
I2C SCL, P1[1]  
VSS  
P1[0], I2C SDA  
4
Power  
Power  
VSS  
Ground connection  
I/O  
I/O  
I/O  
P1[0] I2C serial data (SDA), ISSP-SDATA[3]  
I
I
P0[2] Analog column mux input  
P0[4] Analog column mux input  
VDD  
Supply voltage  
LEGEND: A = Analog, I = Input, and O = Output.  
16-Pin Part Pinout  
Table 3. Pin Definitions – CY8C21223 16-Pin SOIC  
Type  
Figure 4. CY8C21223 16-Pin SOIC  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
A, I, P0[7]  
A, I, P0[5]  
A, I, P0[3]  
A, I, P0[1]  
SMP  
VDD  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
I/O  
I/O  
I/O  
I/O  
I
I
I
I
P0[7] Analog column mux input  
P0[5] Analog column mux input  
P0[3] Analog column mux input  
P0[1] Analog column mux input  
P0[6], A, I  
P0[4], A, I  
P0[2], A, I  
P0[0], A, I  
P1[4], EXTCLK  
P1[2]  
2
3
4
5
SOIC  
VSS  
I2C SCL, P1[1]  
VSS  
Power  
Power  
SMP SMP connection to required external  
components  
P1[0], I2C SDA  
6
VSS  
P1[1] I2C SCL, ISSP-SCLK[3]  
VSS Ground connection  
Ground connection  
7
I/O  
8
Power  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P1[0] I2C SDA, ISSP-SDATA[3]  
10  
11  
12  
13  
14  
15  
16  
P1[2]  
P1[4] Optional external clock input (EXTCLK)  
P0[0] Analog column mux input  
P0[2] Analog column mux input  
P0[4] Analog column mux input  
P0[6] Analog column mux input  
I
I
I
I
Power  
VDD  
Supply voltage  
LEGEND A = Analog, I = Input, and O = Output.  
Note  
3. These are the ISSP pins, which are not high Z at POR (power on reset). See the PSoC Technical Reference Manual for details.  
Document Number: 38-12022 Rev. AB  
Page 8 of 47  
CY8C21123/CY8C21223/CY8C21323  
Table 4. Pin Definitions – CY8C21223 16-Pin QFN with no E-Pad [4]  
Type  
Figure 5. CY8C21223 16-Pin QFN  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
2
3
4
5
6
7
8
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
P0[3]  
P0[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
VSS  
Analog column mux input  
Analog column mux input  
I2C SCL  
AI, P0[3]  
AI, P0[1]  
P0[4], VREF  
XRES  
P1[4]  
1
2
3
4
12  
11  
) 10  
9
I2C SDA  
QFN  
Top View  
(
I2C SCL, P1[7]  
I2C SDA, P1[5]  
P1[6]  
I2C SCL, ISSP-SCLK[5]  
Ground connection  
I2C SDA, ISSP-SDATA[5]  
Power  
I/O  
I/O  
I/O  
P1[0]  
P1[6]  
P1[4]  
XRES  
10  
11  
EXTCLK  
Input  
Active high external reset with internal  
pull-down  
12  
13  
14  
15  
16  
I/O  
I
P0[4]  
VDD  
VREF  
Power  
Supply voltage  
I/O  
I/O  
I
I
P0[7]  
P0[5]  
NC  
Analog column mux input  
Analog column mux input  
No Connection. Pin must be left floating  
LEGEND A = Analog, I = Input, and O = Output.  
Notes  
4. The center pad on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it  
must be electrically floated and not connected to any other signal.  
5. These are the ISSP pins, which are not high Z at POR (power on reset). See the PSoC Technical Reference Manual for details.  
Document Number: 38-12022 Rev. AB  
Page 9 of 47  
CY8C21123/CY8C21223/CY8C21323  
20-Pin Part Pinout  
Table 5. Pin Definitions – CY8C21323 20-Pin SSOP  
Type  
Figure 6. CY8C21323 20-Pin SSOP  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
A, I, P0[7]  
A, I, P0[5]  
A, I, P0[3]  
A, I, P0[1]  
VSS  
VDD  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
1
2
3
4
5
6
7
8
9
I/O  
I/O  
I/O  
I/O  
I
I
I
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
VSS  
Analog column mux input  
Analog column mux input  
Analog column mux input  
Analog column mux input  
Ground connection[6]  
I2C SCL  
P0[6], A, I  
P0[4], A, I  
P0[2], A, I  
P0[0], A, I  
XRES  
3
4
5
SSOP  
I2C SCL, P1[7]  
I2C SDA, P1[5]  
P1[3]  
6
Power  
Power  
Input  
P1[6]  
7
I/O  
I/O  
I/O  
I/O  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
VSS  
P1[4], EXTCLK  
P1[2]  
8
I2C SDA  
I2C SCL, P1[1]  
VSS  
9
P1[0], I2C SDA  
10  
I2C SCL, ISSP-SCLK[7]  
Ground connection[6]  
I2C SDA, ISSP-SDATA[7]  
10  
11  
12  
13  
14  
15  
I/O  
I/O  
I/O  
I/O  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
Optional EXTCLK input  
XRES Active high external reset with internal  
pull-down  
16  
17  
18  
19  
20  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
P0[0]  
P0[2]  
P0[4]  
P0[6]  
VDD  
Analog column mux input  
Analog column mux input  
Analog column mux input  
Analog column mux input  
Supply voltage  
Power  
LEGEND A = Analog, I = Input, and O = Output.  
Notes  
6. All V pins should be brought out to one common GND plane.  
SS  
7. These are the ISSP pins, which are not high Z at POR (power on reset). See the PSoC Technical Reference Manual for details.  
Document Number: 38-12022 Rev. AB  
Page 10 of 47  
CY8C21123/CY8C21223/CY8C21323  
24-Pin Part Pinout  
Table 6. Pin Definitions – CY8C21323 24-Pin QFN[8]  
Type  
Figure 7. CY8C21323 24-Pin QFN  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
2
I/O  
I
P0[1]  
SMP  
Analog column mux input  
Power  
Power  
SMP connection to required external  
components  
Ground connection[9]  
I2C SCL  
I2C SDA  
3
4
5
6
7
8
9
VSS  
A, I, P0[1]  
SMP  
18  
17  
16  
15  
14  
13  
P0[4], A, I  
P0[2], A, I  
1
2
3
4
5
6
I/O  
I/O  
I/O  
I/O  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
NC  
VSS  
QFN  
(Top View)  
P0[0], A, I  
NC  
XRES  
I2C SCL, P1[7]  
I2C SDA, P1[5]  
P1[3]  
I2C SCL, ISSP-SCLK[10]  
P1[6]  
No connection. Pin must be left floating  
Ground connection[9]  
I2C SDA, ISSP-SDATA[10]  
Power  
Input  
VSS  
10  
11  
12  
13  
14  
I/O  
I/O  
I/O  
I/O  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
Optional (EXTCLK) input  
XRES Active high external reset with internal  
pull-down  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
NC  
No connection. Pin must be left floating  
Analog column mux input  
Analog column mux input  
Analog column mux input  
Analog column mux input  
Supply voltage  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
P0[0]  
P0[2]  
P0[4]  
P0[6]  
VDD  
Power  
Power  
VSS  
Ground connection[9]  
I/O  
I/O  
I/O  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Analog column mux input  
Analog column mux input  
Analog column mux input  
LEGEND A = Analog, I = Input, and O = Output.  
Notes  
8. The center pad on the QFN package must be connected to ground (V ) for best mechanical, thermal, and electrical performance. If not connected to ground, it  
SS  
must be electrically floated and not connected to any other signal.  
9. All V pins should be brought out to one common GND plane.  
SS  
10. These are the ISSP pins, which are not high Z at POR (power on reset). See the PSoC Technical Reference Manual for details.  
Document Number: 38-12022 Rev. AB  
Page 11 of 47  
CY8C21123/CY8C21223/CY8C21323  
Register Reference  
This section lists the registers of the CY8C21x23 PSoC device.  
For detailed register information, refer the PSoC Technical  
Reference Manual.  
Register Mapping Tables  
The PSoC device has a total register address space of  
512 bytes. The register space is referred to as I/O space and is  
divided into two banks. The XOI bit in the Flag register (CPU_F)  
determines the bank you are currently in. When the XOI bit is set,  
you are in Bank 1.  
Register Conventions  
The register conventions specific to this section are listed in the  
following table.  
Note In the following register mapping tables, blank fields are  
Reserved and must not be accessed.  
Table 7. Register Conventions  
Convention  
Description  
Read register or bit(s)  
R
W
L
Write register or bit(s)  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
C
#
Document Number: 38-12022 Rev. AB  
Page 12 of 47  
CY8C21123/CY8C21223/CY8C21323  
Table 8. Register Map Bank 0 Table: User Space  
Addr  
Addr  
(0,Hex)  
40  
Addr  
Addr  
Name  
Access  
Name  
Access  
Name  
ASE10CR0  
Access  
Name  
Access  
(0,Hex)  
(0,Hex)  
(0,Hex)  
PRT0DR  
00  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
80  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
PRT0IE  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
ASE11CR0  
RW  
PRT1GS  
PRT1DM2  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
I2C_CFG  
RW  
#
I2C_SCR  
I2C_DR  
RW  
#
I2C_MSCR  
INT_CLR0  
INT_CLR1  
RW  
RW  
INT_CLR3  
INT_MSK3  
RW  
RW  
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
DCB03CR0  
#
AMX_IN  
RW  
RW  
#
INT_MSK0  
INT_MSK1  
INT_VC  
RW  
RW  
RC  
W
W
RW  
#
PWM_CR  
CMP_CR0  
CMP_CR1  
RES_WDT  
#
W
RW  
#
RW  
DEC_CR0  
DEC_CR1  
RW  
RW  
#
ADC0_CR  
ADC1_CR  
#
#
W
RW  
#
#
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
W
RW  
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 38-12022 Rev. AB  
Page 13 of 47  
CY8C21123/CY8C21223/CY8C21323  
Table 8. Register Map Bank 0 Table: User Space (continued)  
Addr  
Addr  
Addr  
Addr  
Name  
Access  
Name  
Access  
Name  
RDI0RI  
Access  
Name  
Access  
(0,Hex)  
(0,Hex)  
(0,Hex)  
(0,Hex)  
30  
70  
B0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
F0  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RDI0SYN  
RDI0IS  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
ACE00CR1  
ACE00CR2  
RW  
RW  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Table 9. Register Map Bank 1 Table: Configuration Space  
Addr  
Addr  
Addr  
(1,Hex)  
80  
Addr  
Name  
Access  
Name  
Access  
Name  
Access  
Name  
Access  
(1,Hex)  
(1,Hex)  
(1,Hex)  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
PRT0DM0  
00  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
ASE10CR0  
RW  
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
ASE11CR0  
RW  
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
RW  
RW  
RW  
RW  
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 38-12022 Rev. AB  
Page 14 of 47  
CY8C21123/CY8C21223/CY8C21323  
Table 9. Register Map Bank 1 Table: Configuration Space (continued)  
Addr  
Addr  
Addr  
Addr  
Name  
Access  
Name  
Access  
Name  
Access  
Name  
Access  
(1,Hex)  
(1,Hex)  
(1,Hex)  
(1,Hex)  
1C  
5C  
9C  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
OSC_GO_EN  
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
DBB00FN  
RW  
RW  
RW  
CLK_CR0  
RW  
RW  
RW  
RW  
RW  
DBB00IN  
CLK_CR1  
DBB00OU  
ABF_CR0  
AMD_CR0  
CMP_GO_EN  
DBB01FN  
DBB01IN  
DBB01OU  
RW  
RW  
RW  
VLT_CMP  
ADC0_TR  
ADC1_TR  
RW  
RW  
AMD_CR1  
ALT_CR0  
RW  
RW  
DCB02FN  
DCB02IN  
DCB02OU  
RW  
RW  
RW  
IMO_TR  
ILO_TR  
BDG_TR  
ECO_TR  
W
W
RW  
W
CLK_CR3  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
RW  
DCB03FN  
DCB03IN  
DCB03OU  
RW  
RW  
RW  
RDI0RI  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI0SYN  
RDI0IS  
ACE00CR1  
ACE00CR2  
RW  
RW  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
FLS_PR1  
RW  
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 38-12022 Rev. AB  
Page 15 of 47  
CY8C21123/CY8C21223/CY8C21323  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY8C21x23 PSoC device. For up to date electrical specifications,  
check if you have the latest datasheet by visiting the web at http://www.cypress.com.  
Specifications are valid for –40 °C TA 85 °C and TJ 100 °C, except where noted.  
Refer to Table 24 on page 25 for the electrical specifications on the IMO using SLIMO mode.  
Figure 11. Voltage versus IMO Frequency  
Figure 10. Voltage versus CPU Frequency  
5.25  
4.75  
5.25  
4.75  
SLIMO  
Mode=1  
SLIMO  
Mode=0  
3.60  
3.00  
2.40  
SLIMO  
Mode=1  
SLIMO SLIMO  
Mode=1 Mode=1  
SLIMO  
Mode=0  
3.00  
2.40  
93kHz  
12MHz  
CPUFrequency  
24MHz  
93kHz  
6MHz  
IMOFrequency  
3MHz  
12MHz  
24MHz  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.  
Table 10. Absolute Maximum Ratings  
Symbol  
Description  
Storage temperature  
Min  
Typ  
Max  
Units  
Notes  
T
T
–55  
+100  
°C  
Higher storage temperatures  
reduce data retention time.  
Recommended storage  
STG  
temperature is +25 °C ± 25 °C.  
Extended duration storage  
temperatures higher than 65 °C  
degrade reliability.  
Bake temperature  
125  
See  
package  
label  
°C  
BAKETEMP  
t
Bake time  
See  
package  
label  
72  
Hours  
BAKETIME  
T
Ambient temperature with power applied  
–40  
+85  
°C  
V
A
V
V
V
Supply voltage on V relative to V  
SS  
–0.5  
+6.0  
DD  
IO  
DD  
DC input voltage  
V
V
– 0.5  
– 0.5  
V
V
+ 0.5  
+ 0.5  
V
SS  
SS  
DD  
DD  
DC voltage applied to tristate  
Maximum current into any port pin  
Electro static discharge voltage  
Latch-up current  
V
IOZ  
MIO  
I
–25  
+50  
mA  
V
ESD  
LU  
2000  
Human body model ESD  
200  
mA  
Document Number: 38-12022 Rev. AB  
Page 16 of 47  
CY8C21123/CY8C21223/CY8C21323  
Operating Temperature  
Table 11. Operating Temperature  
Symbol  
Description  
Min  
–40  
–40  
Typ  
Max  
+85  
Units  
°C  
Notes  
T
T
Ambient temperature  
Junction temperature  
A
+100  
°C  
The temperature rise from  
ambient to junction is package  
specific. SeeTable 36 on page  
35. You must limit the power  
consumption to comply with this  
requirement.  
J
DC Electrical Characteristics  
DC Chip-Level Specifications  
Table 12 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –  
40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical parameters  
apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 12. DC Chip-Level Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
V
Supply voltage  
2.40  
5.25  
V
See DC POR and LVD  
specifications,  
DD  
Table 19 on page 21.  
I
I
I
Supply current, IMO = 24 MHz  
Supply current, IMO = 6 MHz  
Supply current, IMO = 6 MHz  
3
4
2
mA Conditions are V = 5.0 V,  
DD  
DD  
25 °C, CPU = 3 MHz, SYSCLK  
doubler disabled. VC1 = 1.5 MHz  
VC2 = 93.75 kHz  
VC3 = 0.366 kHz  
1.2  
1.1  
mA Conditions are V = 3.3 V,  
DD3  
DD  
25 °C, CPU = 3 MHz, clock doubler  
disabled. VC1 = 375 kHz  
VC2 = 23.4 kHz  
VC3 = 0.091 kHz  
1.5  
mA Conditions are V = 2.55 V,  
DD27  
DD  
25 °C, CPU = 3 MHz, clock doubler  
disabled. VC1 = 375 kHz VC2 =  
23.4 kHz  
VC3 = 0.091 kHz  
I
I
Sleep (mode) current with POR, LVD, sleep  
timer, WDT, and internal slow  
oscillator active. Mid temperature range.  
2.6  
2.8  
4
5
µA  
µA  
V
= 2.55 V, 0 °C to 40 °C  
SB27  
SB  
DD  
Sleep (mode) current with POR, LVD, sleep  
timer, WDT, and internal slow  
oscillator active.  
V
= 3.3 V, –40 °C T 85 °C  
DD  
A
V
V
Reference voltage (bandgap)  
Reference voltage (bandgap)  
Analog ground  
1.28  
1.16  
1.30  
1.30  
1.32  
V
V
V
Trimmed for appropriate V . V  
DD DD  
= 3.0 V to 5.25 V  
REF  
1.330  
Trimmed for appropriate V . V  
REF27  
DD DD  
= 2.4 V to 3.0 V  
AGND  
V
– 0.003  
V
V
+ 0.003  
REF  
REF  
REF  
Document Number: 38-12022 Rev. AB  
Page 17 of 47  
CY8C21123/CY8C21223/CY8C21323  
DC GPIO Specifications  
Table 13 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –  
40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and  
are for design guidance only.  
Table 13. 5-V and 3.3-V DC GPIO Specifications  
Symbol  
Description  
Min  
4
Typ  
5.6  
5.6  
Max  
Units  
k  
Notes  
R
Pull-up resistor  
8
8
PU  
PD  
OH  
R
Pull-down resistor  
High output level  
4
k  
V
V
– 1.0  
V
I
= 10 mA, V = 4.75 to 5.25 V (8 total  
OH DD  
DD  
loads, 4 on even port pins (for example,  
P0[2], P1[4]), 4 on odd port pins (for  
example, P0[3], P1[5])).  
80 mA maximum combined I budget.  
OH  
V
Low output level  
0.75  
V
I
= 25 mA, V = 4.75 to 5.25 V (8 total  
OL DD  
OL  
loads, 4 on even port pins (for example,  
P0[2], P1[4]), 4 on odd port pins (for  
example, P0[3], P1[5])).  
150 mA maximum combined I budget.  
OL  
I
I
High level source current  
Low level sink current  
10  
25  
mA  
mA  
V
= V – 1.0 V, see the limitations of the  
OH DD  
OH  
total current in the note for V  
OH  
V
= 0.75 V, see the limitations of the total  
OL  
OL  
current in the note for V  
OL  
V
V
V
Input low level  
2.1  
0.8  
V
V
V
V
= 3.0 to 5.25  
= 3.0 to 5.25  
IL  
IH  
H
DD  
DD  
Input high level  
Input hysteresis  
60  
1
mV  
nA  
pF  
I
Input leakage (absolute value)  
Capacitive load on pins as input  
Gross tested to 1 µA  
IL  
C
3.5  
10  
Package and pin dependent.  
Temp = 25 °C  
IN  
C
Capacitive load on pins as output  
3.5  
10  
pF  
Package and pin dependent.  
Temp = 25 °C  
OUT  
Table 14 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 2.4 V to 3.0 V and  
–40 °C TA 85 °C. Typical parameters apply to 2.7 V at 25 °C and are for design guidance only.  
Table 14. 2.7-V DC GPIO Specifications  
Symbol  
Description  
Min  
4
Typ  
5.6  
5.6  
Max  
Units  
k  
Notes  
R
Pull-up resistor  
8
8
PU  
R
Pull-down resistor  
High output level  
4
k  
PD  
V
V
– 0.4  
V
I
= 2.5 mA (6.25 Typ), V = 2.4 to  
OH DD  
OH  
DD  
3.0 V (16 mA maximum, 50 mA Typ  
combined I budget).  
OH  
V
Low output level  
0.75  
V
I
= 10 mA, V = 2.4 to 3.0 V (90 mA  
OL DD  
OL  
maximum combined I budget).  
OL  
I
I
High level source current  
Low level sink current  
2.5  
10  
mA  
mA  
V
= V – 0.4 V, see the limitations of the  
OH DD  
OH  
total current in the note for V  
OH  
V
= 0.75 V, see the limitations of the total  
OL  
OL  
current in the note for V  
OL  
V
V
V
Input low level  
2.0  
0.75  
V
V
V
V
= 2.4 to 3.0  
= 2.4 to 3.0  
IL  
IH  
H
DD  
DD  
Input high level  
Input hysteresis  
60  
1
mV  
nA  
pF  
I
Input leakage (absolute value)  
Capacitive load on pins as input  
Gross tested to 1 µA  
IL  
C
3.5  
10  
Package and pin dependent.  
Temp = 25 °C  
IN  
C
Capacitive load on pins as output  
3.5  
10  
pF  
Package and pin dependent.  
Temp = 25 °C  
OUT  
Document Number: 38-12022 Rev. AB  
Page 18 of 47  
CY8C21123/CY8C21223/CY8C21323  
DC Amplifier Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to  
5.25 V and –40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively.  
Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 15. 5-V DC Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
10  
Max  
15  
Units  
mV  
Notes  
V
Input offset voltage (absolute value)  
Average input offset voltage drift  
Input leakage current (port 0 analog pins)  
Input capacitance (port 0 analog pins)  
OSOA  
TCV  
µV/°C  
pA  
OSOA  
EBOA  
I
200  
4.5  
Gross tested to 1 µA  
C
9.5  
pF  
Package and pin dependent.  
Temp = 25 °C  
INOA  
V
Common mode voltage range  
0.0  
V
– 1  
DD  
V
CMOA  
G
Open loop gain  
80  
dB  
µA  
OLOA  
I
Amplifier supply current  
10  
30  
SOA  
Table 16. 3.3-V DC Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
10  
Max  
15  
Units  
mV  
Notes  
V
Input offset voltage (absolute value)  
Average input offset voltage drift  
Input leakage current (port 0 analog pins)  
Input capacitance (port 0 analog pins)  
OSOA  
TCV  
µV/°C  
pA  
OSOA  
EBOA  
I
200  
4.5  
Gross tested to 1 µA  
C
9.5  
pF  
Package and pin dependent.  
Temp = 25 °C  
INOA  
V
Common mode voltage range  
Open loop gain  
0
80  
V
– 1  
DD  
V
CMOA  
G
dB  
µA  
OLOA  
I
Amplifier supply current  
10  
30  
SOA  
Table 17. 2.7V DC Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
10  
Max  
15  
Units  
mV  
Notes  
V
Input offset voltage (absolute value)  
Average input offset voltage drift  
Input leakage current (port 0 analog pins)  
Input capacitance (port 0 analog pins)  
OSOA  
TCV  
µV/°C  
pA  
OSOA  
EBOA  
I
200  
4.5  
Gross tested to 1 µA  
C
9.5  
pF  
Package and pin dependent.  
Temp = 25 °C  
INOA  
V
Common mode voltage range  
Open loop gain  
0
80  
V
– 1  
DD  
V
CMOA  
G
dB  
µA  
OLOA  
I
Amplifier supply current  
10  
30  
SOA  
Document Number: 38-12022 Rev. AB  
Page 19 of 47  
CY8C21123/CY8C21223/CY8C21323  
DC Switch Mode Pump Specifications  
Table 18 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –  
40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical parameters  
apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 18. DC Switch Mode Pump (SMP) Specifications  
Symbol  
Description  
Min  
Typ  
Max Units  
Notes  
[11]  
V
V
V
5 V output voltage from pump  
4.75  
5.0  
5.25  
3.60  
2.80  
V
V
V
Configuration of footnote. Average,  
neglecting ripple. SMP trip voltage is set to  
5.0 V.  
PUMP5V  
[11]  
3.3 V output voltage from pump  
2.6 V output voltage from pump  
Available output current  
3.00  
2.45  
3.25  
2.55  
Configuration of footnote. Average,  
PUMP3V  
PUMP2V  
PUMP  
neglecting ripple. SMP trip voltage is set to  
3.25 V.  
[11]  
Configuration of footnote. Average,  
neglecting ripple. SMP trip voltage is set to  
2.55 V.  
[11]  
I
Configuration of footnote.  
V
V
V
= 1.8 V, V  
= 1.5 V, V  
= 1.3 V, V  
= 5.0 V  
= 3.25 V  
= 2.55 V  
5
8
8
mA SMP trip voltage is set to 5.0 V.  
mA SMP trip voltage is set to 3.25 V.  
mA SMP trip voltage is set to 2.55 V.  
[11]  
BAT  
BAT  
BAT  
PUMP  
PUMP  
PUMP  
V
V
V
V
Input voltage range from battery  
Input voltage range from battery  
Input voltage range from battery  
1.8  
1.0  
1.0  
1.2  
5
5.0  
3.3  
2.8  
V
Configuration of footnote. SMP trip  
BAT5V  
voltage is set to 5.0 V.  
[11]  
V
Configuration of footnote.  
voltage is set to 3.25 V.  
SMP trip  
SMP trip  
0 °C T  
BAT3V  
[11]  
V
Configuration of footnote.  
voltage is set to 2.55 V.  
BAT2V  
[11]  
Minimum input voltage from battery to start  
pump  
V
Configuration of footnote.  
A
BATSTART  
100. 1.25 V at T = –40 °C.  
A
[11]  
V  
V  
V  
Line regulation (over Vi range)  
%V  
Configuration of footnote.  
V is the  
O
PUMP_Line  
PUMP_Load  
PUMP_Ripple  
O
“V Value for PUMPTrip” specified by the  
DD  
VM[2:0] setting in the DC POR and LVD  
Specification, Table 19 on page 21.  
[11]  
Load regulation  
5
%V  
Configuration of footnote.  
V is the  
O
O
“V Value for PUMPTrip” specified by the  
DD  
VM[2:0] setting in the DC POR and LVD  
Specification, Table 19 on page 21.  
[11]  
Output voltage ripple (depends on cap/load)  
100  
50  
mVpp Configuration of footnote.  
5 mA.  
Load is  
[11]  
E
E
Efficiency  
Efficiency  
35  
35  
%
Configuration of footnote.  
Load is  
3
2
5 mA. SMP trip voltage is set to 3.25 V.  
80  
%
For I load = 1 mA, V = 2.55 V,  
PUMP  
V
= 1.3 V, 10 uH inductor, 1 uF  
BAT  
capacitor, and Schottky diode.  
F
Switching frequency  
Switching duty cycle  
1.3  
50  
MHz  
%
PUMP  
DC  
PUMP  
Note  
11. L = 2 mH inductor, C = 10 mF capacitor, D = Schottky diode. Refer to Figure 12 on page 21.  
1
1
1
Document Number: 38-12022 Rev. AB  
Page 20 of 47  
CY8C21123/CY8C21223/CY8C21323  
Figure 12. Basic Switch Mode Pump Circuit  
D1  
VPUMP  
V
DD  
L1  
C1  
SMP  
V ss  
+
VBAT  
PSoC
Battery  
DC POR and LVD Specifications  
Table 19 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –  
40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical parameters  
apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 19. DC POR and LVD Specifications  
Symbol  
Description  
value for PPOR trip  
Min  
Typ  
Max  
Units  
Notes  
V
V
must be greater than or equal to  
DD  
DD  
V
V
V
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
2.36  
2.82  
4.55  
2.40  
2.95  
4.70  
V
V
V
2.5 V during startup, reset from the  
XRES pin, or reset from watchdog.  
PPOR0  
PPOR1  
PPOR2  
V
value for LVD trip  
DD  
[12]  
V
V
V
V
V
V
V
V
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
2.40  
2.85  
2.95  
3.06  
4.37  
4.50  
4.62  
4.71  
2.45  
2.92  
3.02  
3.13  
4.48  
4.64  
4.73  
4.81  
2.51  
2.99  
V
V
V
V
V
V
V
V
LVD0  
LVD1  
LVD2  
LVD3  
LVD4  
LVD5  
LVD6  
LVD7  
[13]  
3.09  
3.20  
4.55  
4.75  
4.83  
4.95  
V
value for PUMP trip  
DD  
[14]  
V
V
V
V
V
V
V
V
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
2.45  
2.96  
3.03  
3.18  
4.54  
4.62  
4.71  
4.89  
2.55  
3.02  
3.10  
3.25  
4.64  
4.73  
4.82  
5.00  
2.62  
V
V
V
V
V
V
V
V
PUMP0  
PUMP1  
PUMP2  
PUMP3  
PUMP4  
PUMP5  
PUMP6  
PUMP7  
3.09  
3.16  
[15]  
3.32  
4.74  
4.83  
4.92  
5.12  
Notes  
12. Always greater than 50 mV above V  
13. Always greater than 50 mV above V  
14. Always greater than 50 mV above V  
15. Always greater than 50 mV above V  
(PORLEV = 00) for falling supply.  
(PORLEV = 01) for falling supply.  
PPOR  
PPOR  
.
.
LVD0  
LVD3  
Document Number: 38-12022 Rev. AB  
Page 21 of 47  
CY8C21123/CY8C21223/CY8C21323  
DC Programming Specifications  
Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –  
40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical parameters  
apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 20. DC Programming Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
V
V
V
V
V
for programming and erase  
4.5  
5.0  
5.5  
V
This specification applies to  
the functional requirements  
of external programmer tools  
DDP  
DD  
Low V for verify  
2.4  
5.1  
2.5  
5.2  
2.6  
5.3  
V
V
V
This specification applies to  
the functional requirements  
of external programmer tools  
DDLV  
DD  
High V for verify  
This specification applies to  
the functional requirements  
of external programmer tools  
DDHV  
DD  
Supply voltage for flash write operations  
2.70  
5.25  
This specification applies to  
this device when it is  
executing internal flash  
writes  
DDIWRITE  
I
Supply current during programming or verify  
Input low voltage during programming or verify  
Input high voltage during programming or verify  
5
25  
0.8  
mA  
V
DDP  
V
V
ILP  
2.2  
V
IHP  
I
Input current when applying V to P1[0] or P1[1]  
0.2  
mA  
Driving internal pull-down  
resistor  
ILP  
ILP  
during programming or verify  
I
Input current when applying V  
during programming or verify  
to P1[0] or P1[1]  
IHP  
1.5  
mA  
Driving internal pull-down  
resistor  
IHP  
V
V
Output low voltage during programming or verify  
Output high voltage during programming or verify  
Flash endurance (per block)  
V
+ 0.75  
SS  
V
V
OLV  
V
– 1.0  
V
DD  
OHV  
DD  
[16]  
Flash  
Flash  
Flash  
50,000  
Erase/write cycles per block  
Erase/write cycles  
ENPB  
ENT  
DR  
[17]  
0
0
0
0
Flash endurance (total)  
1,800,000  
10  
Flash data retention  
Years  
DC I2C Specifications  
Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –  
40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical parameters  
apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 21. DC I2C Specifications[18]  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
V
V
Input low level  
Input high level  
0.3 × V  
V
V
V
2.4 V V 3.6 V  
ILI2C  
DD  
DD  
0.25 × V  
4.75 V V 5.25 V  
DD  
DD  
0.7 × V  
2.4 V V 5.25 V  
IHI2C  
DD  
DD  
Notes  
16. The 50,000 cycle flash endurance per block is guaranteed if the flash is operating within one voltage range. Voltage ranges are 2.4 V to 3.0 V, 3.0 V to 3.6 V,  
and 4.75 V to 5.25 V.  
17. A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36 × 1 blocks of 50,000 maximum cycles each, 36 × 2  
blocks of 25,000 maximum cycles each, or 36 × 4 blocks of 12,500 maximum cycles each (and so forth to limit the total number of cycles to 36 × 50,000 and that no  
single block ever sees more than 50,000 cycles).For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to  
®
the temperature argument before writing. Refer to the application note, Design Aids — Reading and Writing PSoC Flash – AN2015 for more information on Flash APIs.  
2
18. All GPIO meet the DC GPIO V and V specifications mentioned in section DC GPIO Specifications on page 18. The I C GPIO pins also meet the mentioned specs.  
IL  
IH  
Document Number: 38-12022 Rev. AB  
Page 22 of 47  
CY8C21123/CY8C21223/CY8C21323  
AC Electrical Characteristics  
AC Chip-Level Specifications  
Table 22 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –  
40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical parameters  
apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 22. 5-V and 3.3-V AC Chip-Level Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
[19]  
[20,21]  
F
IMO frequency for 24 MHz  
22.8  
24  
MHz Trimmed for 5 V or 3.3 V  
operation using factory trim  
values. Refer to Figure 11 on  
page 16.  
IMO24  
25.2  
SLIMO mode = 0.  
[20,21]  
[20]  
F
F
IMO frequency for 6 MHz  
5.5  
6
MHz Trimmedfor3.3Voperationusing  
factory trim values. See Figure 11  
on page 16.  
IMO6  
6.5  
SLIMO mode = 1.  
CPU frequency (5 V nominal)  
CPU frequency (3.3 V nominal)  
0.0937  
24  
MHz 12 MHz only for  
SLIMO mode = 0.  
CPU1  
24.6  
[21]  
F
F
0.0937  
0
12  
48  
MHz SLIMO Mode = 0.  
CPU2  
12.3  
0
[20,22]  
Digital PSoC block frequency  
(5 V nominal)  
MHz Refer to the section AC Digital  
Block Specifications on page 26.  
BLK5  
49.2  
[22]  
F
Digital PSoC block frequency  
(3.3 V nominal)  
0
24  
MHz  
BLK33  
24.6  
F
F
ILO frequency  
15  
5
32  
64  
kHz  
32K1  
ILO untrimmed frequency  
100  
kHz After a reset and before the M8C  
starts to run, the ILO is not  
trimmed. See the system resets  
section of the PSoC Technical  
Reference Manual for details on  
this timing.  
32K_U  
t
External reset pulse width  
24 MHz duty cycle  
10  
40  
50  
60  
80  
µs  
%
XRST  
DC24M  
DC  
ILO duty cycle  
20  
50  
%
ILO  
Step24M  
Fout48M  
24 MHz trim step size  
48 MHz output frequency  
50  
kHz  
[20,21]  
46.8  
48.0  
MHz Trimmed. Using factory trim  
values.  
49.2  
F
Maximum frequency of signal on row input or  
row output.  
12.3  
MHz  
MAX  
SR  
Power supply slew rate  
250  
100  
V/ms  
V
slew rate during power-up.  
DD  
POWER_UP  
t
Time from end of POR to CPU executing code  
16  
ms Power-up from 0 V. See the  
system resets section of the  
PSoC Technical Reference  
Manual.  
POWERUP  
[23]  
t
24-MHz IMO cycle-to-cycle jitter (RMS)  
200  
300  
700  
900  
ps  
jit_IMO  
24-MHz IMO long term N cycle-to-cycle jitter  
ps  
N = 32  
[23]  
(RMS)  
[23]  
24-MHz IMO period jitter (RMS)  
100  
400  
ps  
Notes  
19. Errata: When the device is operated within 0 °C to 70 °C, the frequency tolerance is reduced to ±2.5%, but if operated at extreme temperature (below 0 °C or above  
70 °C), frequency tolerance deviates from ±2.5% to ±5%. For more information, see “Errata” on page 43.  
20. 4.75 V < V < 5.25 V.  
DD  
21. 3.0 V < V < 3.6 V. Refer to the application note, Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation – AN2012 for more information on trimming  
DD  
for operation at 3.3 V.  
22. See the individual user module datasheets for information on maximum frequencies for user modules.  
23. Refer to the application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information on jitter specifications.  
Document Number: 38-12022 Rev. AB  
Page 23 of 47  
CY8C21123/CY8C21223/CY8C21323  
Table 23. 2.7-V AC Chip-Level Specifications  
Symbol Description  
IMO frequency for 12 MHz  
Min  
Typ  
Max  
Units  
Notes  
0
[24,25]  
F
11.5  
12  
MHz Trimmed for 2.7 V operation  
using factory trim values. See  
Figure 11 on page 16.  
IMO12  
12.7  
SLIMO mode = 1.  
[24,25]  
F
IMO frequency for 6 MHz  
5.5  
6
MHz Trimmed for 2.7 V operation  
using factory trim values. See  
Figure 11 on page 16.  
IMO6  
6.5  
SLIMO mode = 1.  
[24]  
F
F
CPU frequency (2.7 V nominal)  
0.093  
0
3
MHz 24 MHz only for  
SLIMO mode = 0.  
CPU1  
3.15  
[24,25]  
Digital PSoC block frequency (2.7 V nominal)  
12  
MHz Refer to the section AC Digital  
Block Specifications on page 26.  
BLK27  
12.5  
F
F
ILO frequency  
8
5
32  
96  
kHz  
32K1  
ILO untrimmed frequency  
100  
kHz After a reset and before the M8C  
starts to run, the ILO is not  
trimmed. See the system resets  
section of the PSoC Technical  
Reference Manual for details on  
this timing.  
32K_U  
t
External reset pulse width  
ILO duty cycle  
10  
20  
50  
µs  
%
XRST  
DC  
80  
ILO  
F
Maximum frequency of signal on row input or row  
output  
12.3  
MHz  
MAX  
SR  
Power supply slew rate  
250  
100  
V/ms  
V
slew rate during power-up.  
POWER_UP  
DD  
t
Time from end of POR to CPU executing code  
16  
ms Power-up from 0 V. See the  
system resets section of the  
PSoC Technical Reference  
Manual.  
POWERUP  
[26]  
t
12-MHz IMO cycle-to-cycle jitter (RMS)  
400  
600  
1000  
1300  
ps  
jit_IMO  
12-MHz IMO long term N cycle-to-cycle jitter  
ps  
N = 32  
[26]  
(RMS)  
[26]  
12-MHz IMO period jitter (RMS)  
100  
500  
ps  
Notes  
24. 2.4 V < V < 3.0 V.  
DD  
25. Refer to the application note Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation – AN2012 for more information on maximum frequency  
for user modules.  
26. Refer to the application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information on jitter specifications.  
Document Number: 38-12022 Rev. AB  
Page 24 of 47  
CY8C21123/CY8C21223/CY8C21323  
AC General Purpose I/O Specifications  
Table 24 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –  
40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical parameters  
apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 24. 5-V and 3.3-V AC GPIO Specifications  
Symbol  
Description  
GPIO operating frequency  
Min  
0
Typ  
Max  
12  
18  
18  
Units  
Notes  
F
MHz Normal strong mode  
GPIO  
tRiseF  
tFallF  
tRiseS  
tFallS  
Rise time, normal strong mode, Cload = 50 pF  
Fall time, normal strong mode, Cload = 50 pF  
Rise time, slow strong mode, Cload = 50 pF  
Fall time, slow strong mode, Cload = 50 pF  
3
ns  
ns  
ns  
ns  
V
V
V
V
= 4.5 V to 5.25 V, 10% to 90%  
= 4.5 V to 5.25 V, 10% to 90%  
= 3 V to 5.25 V, 10% to 90%  
= 3 V to 5.25 V, 10% to 90%  
DD  
DD  
DD  
DD  
2
10  
10  
27  
22  
Table 25. 2.7-V AC GPIO Specifications  
Symbol  
Description  
GPIO operating frequency  
Min  
0
Typ  
Max  
3
Units  
Notes  
F
MHz Normal strong mode  
GPIO  
tRiseF  
tFallF  
tRiseS  
tFallS  
Rise time, normal strong mode, Cload = 50 pF  
Fall time, normal strong mode, Cload = 50 pF  
Rise time, slow strong mode, Cload = 50 pF  
Fall time, slow strong mode, Cload = 50 pF  
6
50  
ns  
ns  
ns  
ns  
V
V
V
V
= 2.4 V to 3.0 V, 10% to 90%  
= 2.4 V to 3.0 V, 10% to 90%  
= 2.4 V to 3.0 V, 10% to 90%  
= 2.4 V to 3.0 V, 10% to 90%  
DD  
DD  
DD  
DD  
6
50  
18  
18  
40  
40  
120  
120  
Figure 13. GPIO Timing Diagram  
90%  
GPIO  
Pin  
10%  
TRiseF  
TRi seS  
TFallF  
TFallS  
AC Amplifier Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25  
V and –40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical  
parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Settling times, slew rates, and gain bandwidth are based on the analog continuous time PSoC block.  
Table 26. 5-V and 3.3-V AC Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
100  
300  
Units  
ns  
t
t
Comparator mode response time, 50 mVpp signal centered on Ref  
Comparator mode response time, 2.5 V input, 0.5 V overdrive  
COMP1  
COMP2  
ns  
Table 27. 2.7-V AC Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
600  
300  
Units  
ns  
t
t
Comparator mode response time, 50 mVpp signal centered on Ref  
Comparator mode response time, 1.5 V input, 0.5 V overdrive  
COMP1  
COMP2  
ns  
Document Number: 38-12022 Rev. AB  
Page 25 of 47  
CY8C21123/CY8C21223/CY8C21323  
AC Digital Block Specifications  
Table 28 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –  
40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical parameters  
apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 28. 5-V and 3.3-V AC Digital Block Specifications  
Function  
Description  
Min  
Typ  
Max  
Unit  
Notes  
All functions Block input clock frequency  
V
V
4.75 V  
50.4  
25.2  
MHz  
MHz  
DD  
DD  
< 4.75 V  
Timer  
Input clock frequency  
No capture, V 4.75 V  
50.4  
25.2  
25.2  
MHz  
MHz  
MHz  
ns  
DD  
No capture, V < 4.75 V  
DD  
With capture  
[27]  
Capture pulse width  
Input clock frequency  
50  
Counter  
Dead Band  
No enable input, V 4.75 V  
50.4  
25.2  
25.2  
MHz  
MHz  
MHz  
ns  
DD  
No enable input, V < 4.75 V  
DD  
With enable input  
Enable input pulse width  
Kill pulse width  
[27]  
50  
Asynchronous restart mode  
Synchronous restart mode  
Disable mode  
20  
ns  
ns  
ns  
[27]  
50  
50  
[27]  
Input clock frequency  
V
V
4.75 V  
50.4  
25.2  
MHz  
MHz  
DD  
< 4.75 V  
DD  
CRCPRS  
(PRS  
Mode)  
Input clock frequency  
V
V
4.75 V  
50.4  
25.2  
25.2  
MHz  
MHz  
MHz  
DD  
< 4.75 V  
DD  
CRCPRS  
(CRC  
Input clock frequency  
Mode)  
SPIM  
SPIS  
Input clock frequency  
8.2  
MHz  
The SPI serial clock (SCLK) frequency is equal to  
the input clock frequency divided by 2.  
Input clock (SCLK) frequency  
4.1  
MHz  
ns  
The input clock is the SPI SCLK in SPIS mode.  
[27]  
Width of SS_negated between  
transmissions  
50  
Transmitter  
Receiver  
Input clock frequency  
The baud rate is equal to the input clock frequency  
divided by 8.  
V
V
V
4.75 V, 2 stop bits  
4.75 V, 1 stop bit  
< 4.75 V  
50.4  
25.2  
25.2  
MHz  
MHz  
MHz  
DD  
DD  
DD  
Input clock frequency  
The baud rate is equal to the input clock frequency  
divided by 8.  
V
V
V
4.75 V, 2 stop bits  
50.4  
25.2  
25.2  
MHz  
MHz  
MHz  
DD  
DD  
DD  
4.75 V, 1 stop bit  
< 4.75 V  
Note  
27. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).  
Document Number: 38-12022 Rev. AB  
Page 26 of 47  
CY8C21123/CY8C21223/CY8C21323  
Table 29. 2.7-V AC Digital Block Specifications  
Function  
All  
Description  
Min  
Typ  
Max  
Units  
Notes  
Block input clock frequency  
12.7  
MHz 2.4 V < V < 3.0 V.  
DD  
functions  
[28]  
Timer  
Capture pulse width  
100  
ns  
Input clock frequency, with or without capture  
Enable input pulse width  
Input clock frequency, no enable input  
Input clock frequency, enable input  
Kill pulse width:  
100  
12.7  
MHz  
ns  
Counter  
12.7  
12.7  
MHz  
MHz  
Dead band  
Asynchronous restart mode  
Synchronous restart mode  
Disable mode  
20  
100  
100  
ns  
ns  
ns  
Input clock frequency  
12.7  
12.7  
MHz  
MHz  
CRCPRS  
(PRS mode)  
Input clock frequency  
CRCPRS  
(CRC mode)  
Input clock frequency  
Input clock frequency  
12.7  
6.35  
MHz  
SPIM  
MHz The SPI serial clock (SCLK)  
frequency is equal to the input clock  
frequency divided by 2.  
SPIS  
Input clock (SCLK) frequency  
Width of SS_ Negated between transmissions  
Input clock frequency  
100  
4.1  
MHz  
ns  
Transmitter  
Receiver  
12.7  
MHz The baud rate is equal to the input  
clock frequency divided by 8.  
Input clock frequency  
12.7  
MHz The baud rate is equal to the input  
clock frequency divided by 8.  
Note  
28. 100 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
Document Number: 38-12022 Rev. AB  
Page 27 of 47  
CY8C21123/CY8C21223/CY8C21323  
AC External Clock Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to  
5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or  
2.7 V at 25 °C and are for design guidance only.  
Table 30. 5-V AC External Clock Specifications  
Symbol  
Description  
Min  
0.093  
20.6  
20.6  
150  
Typ  
Max  
24.6  
5300  
Units  
MHz  
ns  
Notes  
F
Frequency  
High period  
Low period  
OSCEXT  
ns  
Power-up IMO to switch  
µs  
Table 31. 3.3-V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
F
Frequency with CPU clock divide by 1  
0.093  
12.3  
MHz Maximum CPU frequency is 12 MHz at  
3.3 V. With the CPU clock divider set to  
1, the external clock must adhere to the  
maximum frequency and duty cycle  
requirements.  
OSCEXT  
F
Frequency with CPU clock divide by 2 or  
greater  
0.186  
24.6  
MHz If the frequency of the external clock is  
greater than 12 MHz, the CPU clock  
divider must be setto 2 or greater. In this  
case, the CPU clock divider ensures  
that the fifty percent duty cycle  
OSCEXT  
requirement is met.  
High period with CPU clock divide by 1  
Low period with CPU clock divide by 1  
Power-up IMO to switch  
41.7  
41.7  
150  
5300  
ns  
ns  
µs  
Table 32. 2.7-V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
0
F
Frequency with CPU clock divide by 1  
0.093  
6.06  
MHz Maximum CPU frequency is 3 MHz at  
2.7 V. With the CPU clock divider set to  
1, the external clock must adhere to the  
maximum frequency and duty cycle  
requirements.  
OSCEXT  
F
Frequency with CPU clock divide by 2 or  
greater  
0.186  
12.12  
MHz If the frequency of the external clock is  
greater than 3 MHz, the CPU clock  
divider must be set to 2 or greater. In this  
case, the CPU clock divider ensures  
that the fifty percent duty cycle  
OSCEXT  
requirement is met.  
High period with CPU clock divide by 1  
Low period with CPU clock divide by 1  
Power-up IMO to switch  
83.4  
83.4  
150  
5300  
ns  
ns  
µs  
Document Number: 38-12022 Rev. AB  
Page 28 of 47  
CY8C21123/CY8C21223/CY8C21323  
AC Programming Specifications  
Table 33 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –  
40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C  
and are for design guidance only.  
Table 33. AC Programming Specifications  
Symbol  
Description  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
Notes  
t
t
t
t
Rise time of SCLK  
Fall time of SCLK  
RSCLK  
1
ns  
FSCLK  
SSCLK  
HSCLK  
Data set up time to falling edge of SCLK  
Data hold time from falling edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
F
8
MHz  
ms  
ms  
ns  
SCLK  
t
t
t
t
t
Flash erase time (block)  
10  
80  
ERASEB  
WRITE  
Flash block write time  
Data out delay from falling edge of SCLK  
Data out delay from falling edge of SCLK  
Flash erase time (bulk)  
50  
70  
3.0 V 3.6.  
DSCLK3  
DSCLK2  
ERASEALL  
DD  
ns  
2.4 V 3.0.  
DD  
20  
ms  
Erase all blocks and  
protection fields at once.  
[30]  
t
t
Flash block erase + flash block write time  
Flash block erase + flash block write time  
180  
360  
ms  
ms  
0 °C Tj 100 °C.  
–40 °C Tj 0 °C.  
PROGRAM_HOT  
PROGRAM_COLD  
[30]  
AC I2C Specifications  
Table 34 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –  
40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical parameters  
apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 34. AC Characteristics of the I2C SDA and SCL Pins for VCC 3.0 V  
Standard Mode  
Fast Mode  
Symbol  
Description  
Units  
Min  
Max  
Min  
Max  
F
SCL clock frequency  
0
100  
0
400  
kHz  
µs  
SCLI2C  
t
Hold time (repeated) START condition. After this  
period, the first clock pulse is generated.  
4.0  
0.6  
HDSTAI2C  
t
t
t
t
t
t
t
t
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
4.7  
4.0  
4.7  
0
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
LOWI2C  
HIGHI2C  
SUSTAI2C  
HDDATI2C  
SUDATI2C  
SUSTOI2C  
BUFI2C  
0
0
0
0
0
[29]  
Data setup time  
250  
4.0  
4.7  
ns  
100  
Setup time for STOP condition  
0.6  
1.3  
0
µs  
µs  
ns  
Bus free time between a STOP and START condition  
Pulse width of spikes are suppressed by the input filter  
50  
SPI2C  
Notes  
2
2
29. A fast-mode I C-bus device can be used in a standard-mode I C-bus system, but the requirement t  
250 ns must then be met. This automatically becomes  
SUDAT  
the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next  
2
data bit to the SDA line t  
+ t  
= 1000 + 250 = 1250 ns (according to the standard-mode I C-bus specification) before the SCL line is released.  
rmax  
SUDAT  
30. For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing.  
®
Refer to the application note, Design Aids — Reading and Writing PSoC Flash – AN2015 for more information on Flash APIs.  
Document Number: 38-12022 Rev. AB  
Page 29 of 47  
CY8C21123/CY8C21223/CY8C21323  
Table 35. 2.7-V AC Characteristics of the I2C SDA and SCL Pins (Fast Mode Not Supported)  
Standard Mode  
Fast Mode  
Symbol  
Description  
Units  
Min  
Max  
Min  
Max  
F
SCL clock frequency  
0
100  
kHz  
µs  
SCLI2C  
t
Hold time (repeated) START Condition. After this period, the first clock  
pulse is generated.  
4.0  
HDSTAI2C  
t
t
t
t
t
t
t
t
Low period of the SCL clock  
4.7  
4.0  
4.7  
0
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
LOWI2C  
High period of the SCL clock  
HIGHI2C  
SUSTAI2C  
HDDATI2C  
SUDATI2C  
SUSTOI2C  
BUFI2C  
Setup time for a repeated START condition  
Data hold time  
Data setup time  
250  
4.0  
4.7  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
Pulse width of spikes are suppressed by the input filter.  
SPI2C  
Figure 14. Definition for Timing for Fast/Standard Mode on the I2C Bus  
I2C_SDA  
I2C_SCL  
TSUDATI2C  
THDSTAI2C  
TSPI2C  
TSUSTAI2C  
TBUFI2C  
THDDATI2C  
THIGHI2C TLOWI2C  
TSUSTOI2C  
P
S
S
Sr  
Repeated START Condition  
STOP Condition  
START Condition  
Document Number: 38-12022 Rev. AB  
Page 30 of 47  
CY8C21123/CY8C21223/CY8C21323  
Packaging Information  
This section illustrates the packaging specifications for the CY8C21x23 PSoC device, along with the thermal impedances for each  
package and minimum solder reflow peak temperature.  
Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of  
the emulation tools' dimensions, refer to the emulator pod drawings at http://www.cypress.com.  
Packaging Dimensions  
Figure 15. 8-pin SOIC (150 Mils) S0815/SZ815/SW815 Package Outline, 51-85066  
51-85066 *H  
Document Number: 38-12022 Rev. AB  
Page 31 of 47  
CY8C21123/CY8C21223/CY8C21323  
Figure 16. 16-Pin (150-Mil) SOIC  
51-85068 *E  
Figure 17. 16-Pin QFN with no E-Pad  
001-09116 *J  
Document Number: 38-12022 Rev. AB  
Page 32 of 47  
CY8C21123/CY8C21223/CY8C21323  
Figure 18. 20-pin SSOP (210 Mils) O20.21 Package Outline, 51-85077  
51-85077 *F  
Figure 19. 24-Pin (4 4) QFN (Punched)  
51-85203 *D  
Document Number: 38-12022 Rev. AB  
Page 33 of 47  
CY8C21123/CY8C21223/CY8C21323  
Figure 20. 24-Pin (4 4) QFN (Sawn)  
001-13937 *F  
Important Note For information on the preferred dimensions for mounting QFN packages, refer the application note,  
Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com.  
Note that pinned vias for thermal conduction are not required for the low power 24, 32, and 48-pin QFN PSoC devices.  
Document Number: 38-12022 Rev. AB  
Page 34 of 47  
CY8C21123/CY8C21223/CY8C21323  
Thermal Impedances  
Table 36. Thermal Impedances per Package  
[31]  
Package  
8-pin SOIC  
16-pin SOIC  
16-pin QFN  
20-pin SSOP  
Typical   
JA  
186 °C/W  
125 °C/W  
46 °C/W  
117 °C/W  
40 °C/W  
[32]  
24-pin QFN  
Solder Reflow Specifications  
Table 37 shows the solder reflow temperature limits that must not be exceeded.  
Table 37. Solder Reflow Specifications  
Package  
8-pin SOIC  
16-pin SOIC  
16-pin QFN  
20-pin SSOP  
24-pin QFN  
Maximum Peak Temperature (T ) Maximum Time above T – 5 °C  
C C  
260 °C  
260 °C  
260 °C  
260 °C  
260 °C  
30 seconds  
30 seconds  
30 seconds  
30 seconds  
30 seconds  
Notes  
31. T = T + POWER × JA  
J
A
32. To achieve the thermal impedance specified for the QFN package, refer to "Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF)  
Packages" available at http://www.amkor.com.  
33. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220+/-5 °C with Sn-Pb or 245+/-5 °C with Sn-Ag-Cu  
paste. Refer to the solder manufacturer specifications.  
Document Number: 38-12022 Rev. AB  
Page 35 of 47  
CY8C21123/CY8C21223/CY8C21323  
Ordering Information  
The following table lists the CY8C21x23 PSoC device’s key package features and ordering codes.  
Table 38. CY8C21x23 PSoC Device Key Features and Ordering Information  
Switch  
Mode  
Pump  
Flash  
(Bytes) (Bytes)  
RAM  
Temperature  
Range  
Package  
Ordering Code  
8-Pin (150-Mil) SOIC  
CY8C21123-24SXI  
CY8C21123-24SXIT  
4 K  
4 K  
4 K  
4 K  
256  
256  
256  
256  
No  
No  
–40 °C to +85 °C  
–40 °C to +85 °C  
–40 °C to +85 °C  
–40 °C to +85 °C  
4
4
4
4
4
4
4
4
6
6
4
4
8
8
0
0
0
0
No  
No  
No  
No  
8-Pin (150-Mil) SOIC  
(Tape and Reel)  
16-Pin (150-Mil) SOIC CY8C21223-24SXI  
Yes  
Yes  
12  
12  
16-Pin (150-Mil) SOIC  
CY8C21223-24SXIT  
(Tape and Reel)  
16-Pin (3 × 3) QFN with  
CY8C21223-24LGXI  
no E-Pad  
4 K  
4 K  
4 K  
256  
256  
256  
No  
No  
No  
–40 °C to +85 °C  
–40 °C to +85 °C  
–40 °C to +85 °C  
4
4
4
4
4
4
12  
16  
16  
8
8
8
0
0
0
Yes  
Yes  
Yes  
20-Pin (210-Mil) SSOP CY8C21323-24PVXI  
20-Pin (210-Mil) SSOP  
CY8C21323-24PVXIT  
(Tape and Reel)  
24-Pin (4 × 4) QFN  
CY8C21323-24LFXI  
(Punched)  
4 K  
4 K  
256  
256  
Yes  
Yes  
–40 °C to +85 °C  
–40 °C to +85 °C  
4
4
4
4
16  
16  
8
8
0
0
Yes  
Yes  
24-Pin (4 × 4) QFN  
(Punched) (Tape and  
Reel)  
CY8C21323-24LFXIT  
24-Pin (4 × 4) QFN  
(Sawn)  
CY8C21323-24LQXI  
CY8C21323-24LQXIT  
4 K  
4 K  
256  
256  
Yes  
Yes  
–40 °C to +85 °C  
–40 °C to +85 °C  
4
4
4
4
16  
16  
8
8
0
0
Yes  
Yes  
24-Pin (4 × 4) QFN  
(Sawn) (Tape and Reel)  
Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).  
Ordering Code Definitions  
CY 8 C 21 xxx-24xx  
Package Type:  
SX = SOIC Pb-Free  
PVX = SSOP Pb-Free  
Thermal Rating:  
C = Commercial  
I = Industrial  
LGX = QFN (sawn, 3 × 3 mm), Pb-Free  
LFX = QFN (punched, 4 × 4 mm), Pb-Free  
LQX = QFN (sawn, 4 × 4 mm), Pb-Free  
E = Extended  
Speed: 24 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Cypress PSoC  
Company ID: CY = Cypress  
Document Number: 38-12022 Rev. AB  
Page 36 of 47  
CY8C21123/CY8C21223/CY8C21323  
Acronyms  
Acronyms Used  
Table 39 lists the acronyms that are used in this document.  
Table 39. Acronyms Used in this Datasheet  
Acronym  
AC  
Description  
alternating current  
Acronym  
Description  
printed circuit board  
PCB  
PGA  
ADC  
API  
analog-to-digital converter  
application programming interface  
complementary metal oxide semiconductor  
central processing unit  
programmable gain amplifier  
power on reset  
POR  
CMOS  
CPU  
CRC  
CT  
PPOR  
PRS  
precision power on reset  
pseudo-random sequence  
Programmable System-on-Chip  
pulse width modulator  
quad flat no leads  
cyclic redundancy check  
continuous time  
PSoC®  
PWM  
QFN  
DAC  
DC  
digital-to-analog converter  
direct current  
SC  
switched capacitor  
EEPROM electrically erasable programmable read-only  
memory  
SLIMO  
slow IMO  
GPIO  
ICE  
general purpose I/O  
SMP  
SOIC  
SPITM  
SRAM  
SROM  
SSOP  
UART  
USB  
switch mode pump  
in-circuit emulator  
small-outline integrated circuit  
serial peripheral interface  
static random access memory  
supervisory read only memory  
shrink small-outline package  
universal asynchronous reciever / transmitter  
universal serial bus  
IDE  
integrated development environment  
internal low speed oscillator  
internal main oscillator  
input/output  
ILO  
IMO  
I/O  
IrDA  
ISSP  
LVD  
MCU  
MIPS  
infrared data association  
in-system serial programming  
low voltage detect  
WDT  
watchdog timer  
microcontroller unit  
XRES  
external reset  
million instructions per second  
Reference Documents  
CY8CPLC20, CY8CLED16P01, CY8C29x66, CY8C27x43, CY8C24x94, CY8C24x23, CY8C24x23A, CY8C22x13, CY8C21x34,  
CY8C21x23, CY7C64215, CY7C603xx, CY8CNP1xx, and CYWUSB6953 PSoC® Programmable System-on-Chip Technical  
Reference Manual (TRM) (001-14463)  
Design Aids – Reading and Writing PSoC® Flash – AN2015 (001-40459)  
Adjusting PSoC® Trims for 3.3 V and 2.7 V Operation – AN2012 (001-17397)  
Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 (001-14503)  
Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages – available at http://www.amkor.com.  
Document Number: 38-12022 Rev. AB  
Page 37 of 47  
CY8C21123/CY8C21223/CY8C21323  
Document Conventions  
Units of Measure  
Table 40 lists the units of measures.  
Table 40. Units of Measure  
Symbol  
dB  
Unit of Measure  
Symbol  
Unit of Measure  
decibels  
mH  
µH  
µs  
millihenry  
°C  
degree Celsius  
microfarad  
picofarad  
kilohertz  
microhenry  
microsecond  
millisecond  
nanosecond  
picosecond  
microvolt  
µF  
pF  
ms  
ns  
kHz  
MHz  
rt-Hz  
k  
megahertz  
root hertz  
kilohm  
ps  
µV  
mV  
mVpp  
V
millivolt  
ohm  
millivolts peak-to-peak  
µA  
microampere  
milliampere  
nanoampere  
pikoampere  
volt  
mA  
nA  
W
watt  
mm  
%
millimeter  
percent  
pA  
Numeric Conventions  
Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or ‘3Ah’).  
Hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an appended  
lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimals.  
Glossary  
active high  
1. A logic signal having its asserted state as the logic 1 state.  
2. A logic signal having the logic 1 state as the higher voltage of the two states.  
analog blocks  
The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks.  
These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.  
analog-to-digital Adevice that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts  
(ADC)  
a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.  
Application  
programming  
interface (API)  
A series of software routines that comprise an interface between a computer application and lower level services  
and functions (for example, user modules and libraries).APIs serve as building blocks for programmers that create  
software applications.  
asynchronous  
A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.  
bandgap  
reference  
A stable voltage reference design that matches the positive temperature coefficient of VT with the negative  
temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.  
bandwidth  
1. The frequency range of a message or information processing system measured in hertz.  
2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is  
sometimes represented more specifically as, for example, full width at half maximum.  
Document Number: 38-12022 Rev. AB  
Page 38 of 47  
CY8C21123/CY8C21223/CY8C21323  
Glossary (continued)  
bias  
1. A systematic deviation of a value from a reference value.  
2. The amount by which the average of a set of values departs from a reference value.  
3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to  
operate the device.  
block  
buffer  
1. A functional unit that performs a single function, such as an oscillator.  
2. A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or  
an analog PSoC block.  
1. A storage area for data that is used to compensate for a speed difference, when transferring data from one  
device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which  
data is written.  
2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received  
from an external device.  
3. An amplifier used to lower the output impedance of a system.  
bus  
1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing  
patterns.  
2. A set of signals performing a common function and carrying similar data. Typically represented using vector  
notation; for example, address[7:0].  
3. One or more conductors that serve as a common connection for a group of related devices.  
clock  
The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to  
synchronize different logic blocks.  
comparator  
compiler  
An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy  
predetermined amplitude requirements.  
A program that translates a high level language, such as C, into machine language.  
configuration  
space  
In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to ‘1’.  
crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less  
sensitive to ambient temperature than other circuit components.  
cyclicredundancy A calculation used to detect errors in data communications, typically performed using a linear feedback shift  
check (CRC)  
register. Similar calculations may be used for a variety of other purposes such as data compression.  
data bus  
A bi-directional set of signals used by a computer to convey information from a memory location to the central  
processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.  
debugger  
A hardware and software system that allows you to analyze the operation of the system under development. A  
debugger usually allows the developer to step through the firmware one step at a time, set break points, and  
analyze memory.  
dead band  
A period of time when neither of two or more signals are in their active state or in transition.  
digital blocks  
The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator,  
pseudo-random number generator, or SPI.  
digital-to-analog Adevice that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital (ADC)  
(DAC) converter performs the reverse operation.  
Document Number: 38-12022 Rev. AB  
Page 39 of 47  
CY8C21123/CY8C21223/CY8C21323  
Glossary (continued)  
duty cycle  
emulator  
The relationship of a clock period high time to its low time, expressed as a percent.  
Duplicates (provides an emulation of) the functions of one system with a different system, so that the second  
system appears to behave like the first system.  
External Reset  
(XRES)  
An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop  
and return to a pre-defined state.  
Flash  
An electrically programmable and erasable, non-volatile technology that provides you the programmability and  
data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is  
OFF.  
Flash block  
The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash  
space that may be protected. A Flash block holds 64 bytes.  
frequency  
gain  
The number of cycles or events per unit of time, for a periodic function.  
The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually  
expressed in dB.  
I2C  
Atwo-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated  
Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in  
the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building  
control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5 V and pulled high  
with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.  
ICE  
The in-circuit emulator that allows you to test the project in a hardware environment, while viewing the debugging  
device activity in a software environment (PSoC Designer).  
input/output (I/O) A device that introduces data into or extracts data from a system.  
interrupt  
A suspension of a process, such as the execution of a computer program, caused by an event external to that  
process, and performed in such a way that the process can be resumed.  
interrupt service A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many  
routine (ISR)  
interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends  
with the RETI instruction, returning the device to the point in the program where it left normal program execution.  
jitter  
1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on  
serial data streams.  
2. The abrupt and unwanted variations of one or more signal characteristics, such as the interval between  
successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.  
low-voltagedetect A circuit that senses VDD and provides an interrupt to the system when VDD falls lower than a selected threshold.  
(LVD)  
M8C  
An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by  
interfacing to the Flash, SRAM, and register space.  
master device  
A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in  
width, the master device is the one that controls the timing for data exchanges between the cascaded devices  
and an external interface. The controlled device is called the slave device.  
Document Number: 38-12022 Rev. AB  
Page 40 of 47  
CY8C21123/CY8C21223/CY8C21323  
Glossary (continued)  
microcontroller  
An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a  
microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the  
realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This  
in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for  
general-purpose computation as is a microprocessor.  
mixed-signal  
modulator  
noise  
The reference to a circuit containing both analog and digital techniques and components.  
A device that imposes a signal on a carrier.  
1. A disturbance that affects a signal and that may distort the information carried by the signal.  
2. The random variations of one or more characteristics of any entity such as voltage, current, or data.  
oscillator  
parity  
A circuit that may be crystal controlled and is used to generate a clock frequency.  
A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the  
digits of the binary data either always even (even parity) or always odd (odd parity).  
Phase-locked  
loop (PLL)  
An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference  
signal.  
pinouts  
The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their  
physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between  
schematic and PCB design (both being computer generated files) and may also involve pin names.  
port  
A group of pins, usually eight.  
Power on reset  
(POR)  
A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is one type of  
hardware reset.  
PSoC®  
Cypress Semiconductor’s PSoC® is a registered trademark and Programmable System-on-Chip™ is a trademark  
of Cypress.  
PSoC Designer™ The software for Cypress’ Programmable System-on-Chip technology.  
pulse width  
An output in the form of duty cycle which varies as a function of the applied measurand.  
modulator (PWM)  
RAM  
An acronym for random access memory. A data-storage device from which data can be read out and new data  
can be written in.  
register  
reset  
A storage device with a specific capacity, such as a bit or byte.  
A means of bringing a system back to a know state. See hardware reset and software reset.  
ROM  
An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot  
be written in.  
serial  
1. Pertaining to a process in which all events occur one after the other.  
2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or  
channel.  
settling time  
The time it takes for an output signal or value to stabilize after the input has changed from one value to another.  
Document Number: 38-12022 Rev. AB  
Page 41 of 47  
CY8C21123/CY8C21223/CY8C21323  
Glossary (continued)  
shift register  
slave device  
A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.  
A device that allows another device to control the timing for data exchanges between two devices. Or when  
devices are cascaded in width, the slave device is the one that allows another device to control the timing of data  
exchanges between the cascaded devices and an external interface. The controlling device is called the master  
device.  
SRAM  
SROM  
An acronym for static random access memory. A memory device where you can store and retrieve data at a high  
rate of speed. The term static is used because, after a value is loaded into an SRAM cell, it remains unchanged  
until it is explicitly altered or until power is removed from the device.  
An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate  
circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code,  
operating from Flash.  
stop bit  
A signal following a character or block that prepares the receiving device to receive the next character or block.  
synchronous  
1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal.  
2. A system whose operation is synchronized by a clock signal.  
tri-state  
A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any  
value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit,  
allowing another output to drive the same net.  
UART  
A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.  
user modules  
Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower  
level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming  
Interface) for the peripheral function.  
user space  
The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal  
program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during  
the initialization phase of the program.  
VDD  
A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.  
A name for a power net meaning "voltage source." The most negative power supply signal.  
VSS  
watchdog timer  
A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.  
Document Number: 38-12022 Rev. AB  
Page 42 of 47  
CY8C21123/CY8C21223/CY8C21323  
Errata  
This section describes the errata for the CY8C21x23 PSoC® programmable system-on-chip family. Details include errata trigger  
conditions, scope of impact, available workarounds, and silicon revision applicability.  
Contact your local Cypress Sales Representative if you have questions.  
Part Numbers Affected  
Part Number  
Ordering Information  
CY8C21123-24SXI  
CY8C21123-24SXIT  
CY8C21223-24SXI  
CY8C21223-24SXIT  
CY8C21323-24PVXI  
CY8C21323-24PVXIT  
CY8C21323-24LFXI  
CY8C21323-24LFXIT  
CY8C21323-24LQXI  
CY8C21323-24LQXIT  
CY8C21123  
CY8C21123 Qualification Status  
Product Status: Production  
CY8C21123 Errata Summary  
The following table defines the errata applicability to available CY8C21123 family devices. An "X" indicates that the errata pertains to  
the selected device.  
Note Errata items, in the table below, are hyperlinked. Click on any item entry to jump to its description.  
Items  
Part Number  
Silicon Revision  
Fix Status  
[1.] Internal Main Oscillator (IMO) Tolerance Deviation at  
Temperature Extremes  
No silicon fix is planned.  
Workaround is required.  
CY8C21123  
A
1. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes  
Problem Definition  
Asynchronous Digital Communications Interfaces may fail framing beyond 0 to 70 °C. This problem does not affect end-product  
usage between 0 and 70 °C.  
Parameters Affected  
The IMO frequency tolerance. The worst case deviation when operated below 0 °C and above +70 °C and within the upper  
and lower datasheet temperature range is ±5%.  
Trigger Condition(S)  
The asynchronous Rx/Tx clock source IMO frequency tolerance may deviate beyond the data sheet limit of ±2.5% when  
operated beyond the temperature range of 0 to +70 °C.  
Scope of Impact  
This problem may affect UART, IrDA, and FSK implementations.  
Workaround  
Implement a quartz crystal stabilized clock source on at least one end of the asynchronous digital communications interface.  
Fix Status  
No silicon fix is planned. The workaround mentioned above should be used.  
Document Number: 38-12022 Rev. AB  
Page 43 of 47  
CY8C21123/CY8C21223/CY8C21323  
Document History Page  
Document Title: CY8C21123/CY8C21223/CY8C21323, PSoC® Programmable System-on-Chip™  
Document Number: 38-12022  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
133248  
208900  
212081  
227321  
NWJ  
NWJ  
See ECN New silicon and document (Revision **).  
See ECN Add new part, new package and update all ordering codes to Pb-free.  
See ECN Expand and prepare Preliminary version.  
See ECN Update specs., data, format.  
*A  
*B  
*C  
NWJ  
CMS Team  
Updated Overview and Electrical Spec. chapters, along with 24-pin pinout.  
See ECN  
*D  
235973  
SFV  
Added CMP_GO_EN register (1,64h) to mapping table.  
Update datasheet standards per SFV memo. Fix device table. Add part  
See ECN numbers to pinouts and fine tune. Change 20-pin SSOP to CY8C21323. Add  
Reflow Temp. table. Update diagrams and specs.  
*E  
*F  
290991  
301636  
HMT  
HMT  
See ECN DC Chip-Level Specification changes. Update links to new CY.com Portal.  
Obtained clearer 16 SOIC package. Update Thermal Impedances and Solder  
Reflow tables. Re-add pinout ISSP notation. FixADC type-o. Fix TMP register  
names. Update Electrical Specifications. Add CY logo. Update CY copyright.  
Make datasheet Final.  
*G  
*H  
*I  
324073  
2588457  
2618175  
HMT  
See ECN  
KET / HMI /  
AESA  
New package information on page 9. Converted datasheet to new template.  
Added 16-Pin OFN package diagram.  
10/22/2008  
Added Note in Ordering Information Section. Changed title from PSoC  
Mixed-Signal Array to PSoC Programmable System-on-Chip. Updated  
‘Development Tools’ and ‘Designing with PSoC Designer’ sections on pages  
OGNE /  
PYRS  
12/09/2008  
5 and 6  
MAXK /  
AESA  
*J  
2682782  
2699713  
04/03/2009 Corrected 16 COL pinout.  
*K  
MAXK  
JVY  
04/29/2009 Minor ECN to correct paragraph style of 16 COLPinout. No change in content.  
Updated DC GPIO, AC Chip-Level, and AC Programming Specifications as  
follows:  
Modified FIMO6 and TWRITE specifications.  
Replaced TRAMP time) specification with SRPOWER_UP (slew rate) specifi-  
cation.  
*L  
*M  
*N  
*O  
2762497  
2792630  
2901653  
2928895  
09/11/2009  
Added note [11] to Flash Endurance specification.  
Added IOH, IOL, DCILO, F32K_U, TPOWERUP, TERASEALL, TPROGRAM_HOT, and  
T
PROGRAM_COLD specifications..  
Updated ordering information for CY8C21223-24LGXI to indicate availability  
of XRES pin.  
TTO  
NJF  
YJI  
10/26/2009  
03/30/2010  
05/06/2010  
Changed 16-pin COL to 16-pin QFN in the datasheet.  
Added Contents.  
Updated links in Sales, Solutions, and Legal Information  
Updated Cypress website links.  
Added TBAKETEMP and TBAKETIME parameters in Absolute Maximum Ratings  
Updated 5-V and 3.3-V AC Chip-Level Specifications  
Updated Notes in Packaging Information and package diagrams.  
Updated Ordering Code Definitions  
No technical updates.  
Included with EROS spec.  
Document Number: 38-12022 Rev. AB  
Page 44 of 47  
CY8C21123/CY8C21223/CY8C21323  
Document History Page (continued)  
Document Title: CY8C21123/CY8C21223/CY8C21323, PSoC® Programmable System-on-Chip™  
Document Number: 38-12022  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
Added PSoC Device Characteristics table.  
Added DC I2C Specifications table.  
Added F32K_U max limit.  
Added Tjit_IMO specification, removed existing jitter specifications.  
Updated Units of Measure, Acronyms, Glossary, and References sections.  
Updated solder reflow specifications.  
No specific changes were made to AC Digital Block Specifications table and  
I2C Timing Diagram. They were updated for clearer understanding.  
Updated Figure 13 since the labelling for y-axis was incorrect.  
Template and styles update.  
*P  
3044869  
NJF  
YJI  
10/01/2010  
Updated 16-pin SOIC and 20-pin SSOP package diagrams.  
05/23/2011 Updated Development Tool Selection and Designing with PSoC Designer  
sections.  
*Q  
*R  
3263669  
3383787  
The text “Pin must be left floating” is included under Description of NC pin in  
09/26/2011 Table 6 on page 11.  
GIR  
Updated Table 37 on page 35 for improved clarity.  
*S  
*T  
*U  
3558729  
3598261  
3649990  
RJVB  
03/22/2012 Updated 16-pin SOIC package.  
LURE /  
XZNG  
04/24/2012 Changed the PWM description string from “8- to 32-bit” to “8- and 16-bit”.  
BVI / YLIU  
06/19/2012 Updated description of NC pin as “No Connection. Pin must be left floating”  
Updated Packaging Information:  
spec 51-85068 – Changed revision from *D to *E.  
*V  
3873870  
3993321  
UVS  
01/18/2013  
spec 001-09116 – Changed revision from *F to *G.  
spec 51-85203 – Changed revision from *C to *D.  
*W  
UVS  
05/07/2013 Added Errata.  
Added Errata footnotes (Note 19).  
Updated Features:  
Replaced 2.5% with 5% under “Precision, programmable clocking”.  
Updated Electrical Specifications:  
Updated AC Electrical Characteristics:  
Updated AC Chip-Level Specifications:  
Added Note 19 and referred the same note in FIMO24 parameter.  
07/18/2013 Updated minimum and maximum values of FIMO24 parameter.  
Updated AC Digital Block Specifications:  
*X  
4067216  
UVS  
Replaced all instances of maximum value “49.2” with “50.4” and “24.6” with  
“25.2” in Table 28.  
Updated Packaging Information:  
spec 51-85066 – Changed revision from *E to *F.  
spec 001-09116 – Changed revision from *G to *H.  
Updated to new template.  
Updated Errata:  
Updated CY8C21123 Errata Summary:  
*Y  
4479648  
RJVB  
08/20/2014  
Updated details in “Fix Status” column in the table.  
Updated details in “Fix Status” bulleted point below the table.  
Document Number: 38-12022 Rev. AB  
Page 45 of 47  
CY8C21123/CY8C21223/CY8C21323  
Document History Page (continued)  
Document Title: CY8C21123/CY8C21223/CY8C21323, PSoC® Programmable System-on-Chip™  
Document Number: 38-12022  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
Updated Pin Information:  
Updated 20-Pin Part Pinout:  
Updated Table 5:  
Added Note 6 and referred the same note in description of pin 5 and pin 10.  
Updated 24-Pin Part Pinout:  
Updated Table 6:  
*Z  
4623500  
DIMA  
01/14/2015  
Added Note 9 and referred the same note in description of pin 3, pin 9 and  
pin 21.  
Updated Packaging Information:  
spec 51-85066 – Changed revision from *F to *G.  
spec 51-85077 – Changed revision from *E to *F.  
Completing Sunset Review.  
Updated Ordering Information, Ordering Code Definitions, and Errata.  
Updated figure title in Figure 19.  
01/18/2016 Updated Table 38.  
Updated Figure 15 (spec 51-85066 *G to *H) in Packaging Information.  
Added Figure 20 (spec 001-13937 *F) in Packaging Information.  
AA  
AB  
5090662  
ARVI  
5773393 AESATMP9 06/14/2017 Updated logo and copyright.  
Document Number: 38-12022 Rev. AB  
Page 46 of 47  
CY8C21123/CY8C21223/CY8C21323  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6  
Automotive  
Clocks & Buffers  
Interface  
Cypress Developer Community  
Community | Forums | Blogs | Video | Training  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/go/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2004-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 38-12022 Rev. AB  
Revised June 14, 2017  
Page 47 of 47  

相关型号:

CY8C21323-24PVXI

PSoC® Mixed Signal Array
CYPRESS

CY8C21323-24PVXIT

PSoC Programmable System-on-Chip
CYPRESS

CY8C21323_06

PSoC㈢ Mixed-Signal Array
CYPRESS

CY8C21323_08

PSoC® Mixed Signal Array
CYPRESS

CY8C21334

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-12PVXE

Multifunction Peripheral, CMOS, PDSO20, SSOP-20
CYPRESS

CY8C21334-24AX

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24C

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24E

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24I

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24LFX

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24PVX

PSoC Mixed-Signal Array
CYPRESS