CYD04S18V-133BBI [CYPRESS]

FLEx18⑩ 3.3V 64K/128K/256K/512K x 18 Synchronous Dual-Port RAM; FLEx18 ™ 3.3V 64K / 128K / 256K / 512K ×18同步双端口RAM
CYD04S18V-133BBI
型号: CYD04S18V-133BBI
厂家: CYPRESS    CYPRESS
描述:

FLEx18⑩ 3.3V 64K/128K/256K/512K x 18 Synchronous Dual-Port RAM
FLEx18 ™ 3.3V 64K / 128K / 256K / 512K ×18同步双端口RAM

文件: 总26页 (文件大小:587K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
FLEx18™ 3.3V 64K/128K/256K/512K x 18  
Synchronous Dual-Port RAM  
Functional Description  
Features  
• True dual-ported memory cells that allow simultaneous  
access of the same memory location  
The FLEx18family includes 1-Mbit, 2-Mbit, 4-Mbit and  
9-Mbit pipelined, synchronous, true dual-port static RAMs that  
are high-speed, low-power 3.3V CMOS. Two ports are  
provided, permitting independent, simultaneous access to any  
location in memory. The result of writing to the same location  
by more than one port at the same time is undefined. Registers  
on control, address, and data lines allow for minimal set-up  
and hold time.  
• Synchronous pipelined operation  
• Organization of 1 Mbit, 2 Mbits, 4 Mbits and 9 Mbits  
devices  
• Pipelined output mode allows fast operation  
• 0.18-micron CMOS for optimum speed and power  
• High-speed clock to data access  
During a Read operation, data is registered for decreased  
cycle time. Each port contains a burst counter on the input  
address register. After externally loading the counter with the  
initial address, the counter will increment the address inter-  
nally (more details to follow). The internal Write pulse width is  
independent of the duration of the R/W input signal. The  
internal Write pulse is self-timed to allow the shortest possible  
cycle times.  
• 3.3V low power  
— Active as low as 225 mA (typ)  
— Standby as low as 55 mA (typ)  
• Mailbox function for message passing  
• Global master reset  
A HIGH on CE0 or LOW on CE1 for one clock cycle will power  
down the internal circuitry to reduce the static power  
consumption. One cycle with chip enables asserted is required  
to reactivate the outputs.  
• Separate byte enables on both ports  
• Commercial and industrial temperature ranges  
• IEEE 1149.1-compatible JTAG boundary scan  
• 256-ball FBGA (1 mm pitch)  
Additional features include: readback of burst-counter internal  
address value on address lines, counter-mask registers to  
control the counter wrap-around, counter interrupt (CNTINT)  
flags, readback of mask register value on address lines,  
retransmit functionality, interrupt flags for message passing,  
JTAG for boundary scan, and asynchronous Master Reset  
(MRST).  
• Counter wrap-around control  
— Internal mask register controls counter wrap-around  
— Counter-interrupt flags to indicate wrap-around  
— Memory block retransmit operation  
• Counter readback on address lines  
• Mask register readback on address lines  
The CYD09S18V device in this family has limited features.  
Please see Address Counter and Mask Register Operations  
on page 5 for details.  
• Dual Chip Enables on both ports for easy depth  
expansion  
Seamless Migration to Next Generation Dual Port Family  
• Seamless migration to next-generation dual-port family  
Cypress offers a migration path for all devices in this family to  
the next-generation devices in the Dual-Port family with a  
compatible footprint. Please contact Cypress Sales for more  
details.  
Table 1. Product Selection Guide  
1 Mbit  
2 Mbit  
4 Mbit  
9 Mbit  
Density  
(64K x 18)  
CYD01S18V  
167  
(128K x 18)  
(256K x 18)  
(512K x 18)  
Part Number  
CYD02S18V  
167  
CYD04S18V  
167  
CYD09S18V  
133  
Max. Speed (MHz)  
Max. Access Time – Clock to Data (ns)  
Typical operating current (mA)  
Package  
4.0  
4.0  
4.0  
4.7  
225  
225  
225  
270  
256FBGA  
256FBGA  
256FBGA  
256FBGA  
(17 mm x 17 mm) (17 mm x 17 mm) (17 mm x 17 mm) (17 mm x 17 mm)  
Cypress Semiconductor Corporation  
Document #: 38-06077 Rev. *C  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised May 5, 2005  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Logic Block Diagram[1]  
FTSEL  
L
FTSEL  
R
CONFIG Block  
CONFIG Block  
PORTSTD(1:0)  
PORTSTD(1:0)  
L
R
DQ (17:0)  
R
DQ (17:0)  
L
BE (1:0)  
BE (1:0)  
R
L
CE0  
CE1  
CE0  
R
L
IO  
Control  
IO  
Control  
CE1  
R
L
OE  
OE  
R
L
R/W  
R/W  
R
L
Dual Ported Array  
Arbitration Logic  
BUSY  
BUSY  
L
R
A (18:0)  
A (18:0)  
L
R
CNT/MSK  
CNT/MSK  
L
R
ADS  
ADS  
L
R
CNTEN  
CNTEN  
R
L
Address &  
Counter Logic  
Address &  
Counter Logic  
CNTRST  
CNTRST  
L
R
RET  
RET  
L
R
CNTINT  
L
CNTINT  
R
C
C
L
R
WRP  
L
WRP  
R
TRST  
TMS  
TDI  
Mailboxes  
INT  
INT  
R
L
JTAG  
TDO  
TCK  
MRST  
READY  
LowSPD  
RESET  
LOGIC  
READY  
L
R
R
LowSPD  
L
Note:  
1. CYD01S18V has 16 address bits, CYD02S18V has 17 address bits, CY04S18V has 18 address bits and CYD09S18V has 19 address bits.  
Document #: 38-06077 Rev. *C  
Page 2 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Pin Configurations  
256-ball BGA Top View  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
NC  
NC  
NC  
DQ17  
DQ16  
DQ13  
DQ12  
DQ9  
DQ9  
DQ12  
DQ13  
DQ16  
DQ17  
R
NC  
NC  
NC  
A
B
C
D
E
F
L
L
L
L
L
L
L
R
R
R
R
NC  
NC  
NC  
NC  
NC  
NC  
DQ15  
DQ14  
DQ11  
DQ10  
DQ10  
DQ11  
R
DQ14  
DQ15  
NC  
NC  
NC  
NC  
A1  
NC  
NC  
A0  
L
L
R
R
R
NC  
[2,5]  
NC  
[2,5]  
NC  
[2,5]  
NC  
[2,5]  
REV  
[2,4]  
TRST  
[2,5]  
NC  
[2,5]  
RET  
[2,3]  
RET  
L
L
R
INT  
L
MRST  
VTTL  
INT  
R
[2,3]  
VREF  
[2,4]  
VREF  
[2,4]  
WRP  
R
[2,3]  
FTSELL  
[2,3]  
LowSPDL  
[2,4]  
LowSPDR  
[2,4]  
FTSELR  
[2,3]  
WRP  
[2,3]  
L
R
L
A0  
L
A1  
L
VSS  
VTTL  
VSS  
R
R
CE0  
[10]  
CE1  
[9]  
CE1  
[9]  
CE0  
[10]  
L
L
R
R
A2  
L
A3  
L
VDDIO  
VDDIO  
L
VDDIO  
VSS  
VCORE VCORE VDDIO  
VDDIO  
R
VDDIO  
A3  
A5  
A7  
A9  
A2  
A4  
A6  
A8  
L
L
R
R
R
R
R
R
R
R
R
R
CNTINTL  
[11]  
CNTINTR  
[11]  
A4  
L
A5  
L
NC  
VDDIO  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDIO  
VDDIO  
NC  
L
R
R
BUSY  
R
[2,5]  
BUSY  
L
REV  
L
A6  
L
A7  
L
NC  
VSS  
NC  
G
H
J
[2,5]  
[2,3]  
A8  
L
A9  
L
C
L
VTTL  
VCORE  
VCORE  
VSS  
VCORE  
VCORE  
VTTL  
C
R
PortSTD1L  
[2,4]  
PortSTD1R  
[2,4]  
A10  
A11  
VSS  
VSS  
VSS  
A11  
A10  
A12  
A14  
L
L
R
R
A12  
A14  
A13  
A15  
OE  
L
BE1  
L
VDDIO  
L
VSS  
VDDIO  
R
BE1  
R
OE  
R
A13  
A15  
K
L
L
L
R
R
ADS  
[10]  
BE0  
ADS  
[10]  
L
R
R
BE0  
L
VDDIO  
L
VSS  
VDDIO  
R
L
L
R
R
REV  
L
[2,4]  
REV  
R
[2,4]  
A16  
[6]  
A17  
[7]  
A17  
[7]  
A16  
[6]  
L
L
R
R
RW  
VDDIO  
L
VDDIO  
L
VDDIO  
VCORE VCORE VDDIO  
VDDIO  
R
VDDIO  
R
RW  
R
M
N
P
R
L
L
R
CNT/  
MSKL  
[9]  
REV  
CNT/  
MSKR  
[9]  
R
VREFL  
[2,4]  
VREFR  
[2,4]  
A18  
[8]  
A18  
[8]  
PortSTD0L  
[2,4]  
READYL  
[2,5]  
READYR  
[2,5]  
PortSTD0R  
[2,4]  
REV  
L
L
R
NC  
NC  
NC  
NC  
VTTL  
TMS  
VTTL  
TDO  
NC  
NC  
NC  
NC  
[2,3]  
[2,3]  
NC  
[2,5]  
NC  
[2,5]  
NC  
[2,5]  
NC  
[2,5]  
CNTENL  
[10]  
CNTENR  
[10]  
CNTRSTL  
[9]  
CNTRSTR  
[9]  
NC  
NC  
NC  
TCK  
TDI  
NC  
NC  
NC  
NC  
NC  
NC  
DQ6  
L
DQ5  
L
DQ2  
L
DQ1  
L
DQ1  
R
DQ2  
DQ5  
R
DQ6  
R
NC  
NC  
NC  
R
DQ8  
L
DQ7  
L
DQ4  
L
DQ3  
L
DQ0  
L
DQ0  
R
DQ3  
DQ4  
R
DQ7  
R
DQ8  
R
T
R
Notes:  
2. This ball will represent a next generation FLEx18-E Dual-Port feature. For more information about this feature, contact Cypress Sales.  
3. Connect this ball to VDDIO. For more information about this next generation FLEx18-E Dual-Port feature contact Cypress Sales.  
4. Connect this ball to VSS. For more information about this next generation FLEx18-E Dual-Port feature, contact Cypress Sales.  
5. Leave this ball unconnected. For more information about this feature, contact Cypress Sales.  
6. Leave this ball unconnected for a 64K x 18.  
7. Leave this ball unconnected for a 128K x 18 and 64K x 18.  
8. Leave this ball unconnected for a 256K x 18, 128K x 18 and 64K x 18.  
9. These balls are not applicable for CYD09S18V device. They need to be tied to VDDIO.  
10. These balls are not applicable for CYD09S18V device. They need to be tied to VSS.  
11. These balls are not applicable for CYD09S18V device. They need to be no connected.  
Document #: 38-06077 Rev. *C  
Page 3 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Pin Definitions  
Left Port  
A0L–A18L  
Right Port  
A0R–A18R  
Description  
Address Inputs.  
BE0L–BE1L  
BE0R–BE1R  
Byte Enable Inputs. Asserting these signals enables Read and Write operations to  
the corresponding bytes of the memory array.  
[2,5]  
[2,5]  
BUSYL  
BUSYR  
Port Busy Output. When the collision is detected, a BUSY is asserted.  
Input Clock Signal.  
CL  
CR  
[10]  
[10]  
CE0L  
CE0R  
Active Low Chip Enable Input.  
[9]  
[9]  
CE1L  
CE1R  
Active High Chip Enable Input.  
DQ0L–DQ17L  
OEL  
DQ0R–DQ17R  
OER  
Data Bus Input/Output.  
Output Enable Input. This asynchronous signal must be asserted LOW to enable  
the DQ data pins during Read operations.  
INTL  
INTR  
Mailbox Interrupt Flag Output. The mailbox permits communications between ports.  
The upper two memory locations can be used for message passing. INTL is asserted  
LOW when the right port writes to the mailbox location of the left port, and vice versa.  
An interrupt to a port is deasserted HIGH when it reads the contents of its mailbox.  
[2,4]  
[2,4]  
LowSPDL  
LowSPDR  
Port Low Speed Select Input. When operating at less than 100 MHz, the LowSPD  
disables the port DLL.  
[2,4]  
[2,4]  
PORTSTD[1:0]L  
R/WL  
PORTSTD[1:0]R  
R/WR  
Port Address/Control/Data I/O Standard Select Input.  
Read/Write Enable Input. Assert this pin LOW to write to, or HIGH to read from the  
dual-port memory array.  
[2,5]  
[2,5]  
READYL  
READYR  
Port Ready Output. This signal will be asserted when a port is ready for normal  
operation.  
[9]  
[9]  
CNT/MSKL  
CNT/MSKR  
Port Counter/Mask Select Input. Counter control input.  
Port Counter Address Load Strobe Input. Counter control input.  
Port Counter Enable Input. Counter control input.  
Port Counter Reset Input. Counter control input.  
[10]  
[10]  
ADSL  
ADSR  
[10]  
[10]  
CNTENL  
CNTENR  
[9]  
[9]  
CNTRSTL  
CNTRSTR  
[11]  
[11]  
CNTINTL  
CNTINTR  
Port Counter Interrupt Output. This pin is asserted LOW when the unmasked  
portion of the counter is incremented to all “1s”.  
[2,3]  
[2,3]  
WRPL  
WRPR  
Port Counter Wrap Input. After the burst counter reaches the maximum count, if  
WRP is low, the unmasked counter bits will be set to 0. If high, the counter will be  
loaded with the value stored in the mirror register.  
[2,3]  
[2,3]  
RETL  
RETR  
Port Counter Retransmit Input. Counter control input.  
Flow-Through Mode Select Input.  
[2,3]  
[2,3]  
FTSELL  
FTSELR  
[2,4]  
[2,4]  
VREFL  
VREFR  
Port External High-Speed IO Reference Input.  
Port IO Power Supply.  
VDDIOL  
VDDIOR  
REVL[2,4]  
REVR[2,4]  
Reserved pins for future features.  
MRST  
Master Reset Input. MRST is an asynchronous input signal and affects both ports.  
A master reset operation is required at power-up.  
TRST[2,5]  
TMS  
JTAG Reset Input.  
JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine.  
State machine transitions occur on the rising edge of TCK.  
TDI  
JTAG Test Data Input. Data on the TDI input will be shifted serially into selected  
registers.  
TCK  
TDO  
JTAG Test Clock Input.  
JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is  
normally three-stated except when captured data is shifted out of the JTAG TAP.  
Document #: 38-06077 Rev. *C  
Page 4 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Pin Definitions (continued)  
Left Port  
Right Port  
Description  
VSS  
Ground Inputs.  
[12]  
VCORE  
Core Power Supply.  
LVTTL Power Supply.  
VTTL  
Master Reset  
Address Counter and Mask Register  
Operations  
The FLEx18 family devices undergo a complete reset by  
taking its MRST input LOW. The MRST input can switch  
asynchronously to the clocks. The MRST initializes the  
internal burst counters to zero, and the counter mask registers  
to all ones (completely unmasked). The MRST also forces the  
Mailbox Interrupt (INT) flags and the Counter Interrupt  
(CNTINT) flags HIGH. The MRST must be performed on the  
FLEx18 family devices after power-up.  
This section describes the features only apply to 1-Mbit,  
2-Mbit, and 4-Mbit devices. It does not apply to a 9-Mbit  
device. Each port of these devices has a programmable burst  
address counter. The burst counter contains three registers: a  
counter register, a mask register, and a mirror register.[17]  
The counter register contains the address used to access the  
RAM array. It is changed only by the Counter Load, Increment,  
Counter Reset, and by master reset (MRST) operations.  
Mailbox Interrupts  
The mask register value affects the Increment and Counter  
Reset operations by preventing the corresponding bits of the  
counter register from changing. It also affects the counter  
interrupt output (CNTINT). The mask register is changed only  
by the Mask Load and Mask Reset operations, and by the  
MRST. The mask register defines the counting range of the  
counter register. It divides the counter register into two  
regions: zero or more “0s” in the most significant bits define  
the masked region, one or more “1s” in the least significant bits  
define the unmasked region. Bit 0 may also be “0,” masking  
the least significant counter bit and causing the counter to  
increment by two instead of one.  
The upper two memory locations may be used for message  
passing and permit communications between ports. Table  
shows the interrupt operation for both ports of CYD09S18V.  
The highest memory location, 7FFFF is the mailbox for the  
right port and 7FFFE is the mailbox for the left port. Table  
shows that in order to set the INTR flag, a Write operation by  
the left port to address 7FFFF will assert INTR LOW. At least  
one byte has to be active for a Write to generate an interrupt.  
A valid Read of the 7FFFF location by the right port will reset  
INTR HIGH. At least one byte has to be active in order for a  
Read to reset the interrupt. When one port Writes to the other  
port’s mailbox, the INT of the port that the mailbox belongs to  
is asserted LOW. The INT is reset when the owner (port) of the  
mailbox Reads the contents of the mailbox. The interrupt flag  
is set in a flow-thru mode (i.e., it follows the clock edge of the  
writing port). Also, the flag is reset in a flow-thru mode (i.e., it  
follows the clock edge of the reading port).  
The mirror register is used to reload the counter register on  
increment operations (see “retransmit,” below). It always  
contains the value last loaded into the counter register, and is  
changed only by the Counter Load, and Counter Reset opera-  
tions, and by the MRST.  
Table 3 summarizes the operation of these registers and the  
required input control signals. The MRST control signal is  
asynchronous. All the other control signals in Table 3  
(CNT/MSK, CNTRST, ADS, CNTEN) are synchronized to the  
port’s CLK. All these counter and mask operations are  
independent of the port’s chip enable inputs (CE0 and CE1).  
Each port can read the other port’s mailbox without resetting  
the interrupt. And each port can write to its own mailbox  
without setting the interrupt. If an application does not require  
message passing, INT pins should be left open.  
Table 2. Interrupt Operation Example [1, 13, 14, 15, 16]  
Left Port  
Right Port  
Function  
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
R/WL  
CEL  
L
A0L–18L  
7FFFF  
X
INTL  
X
R/WR  
CER  
X
A0R–18R  
X
INTR  
L
L
X
X
H
X
H
L
X
X
L
7FFFF  
7FFFE  
X
H
X
X
L
L
X
Reset Left INTL Flag  
L
7FFFE  
H
X
X
X
Notes:  
12. This family of Dual-Ports does not use V  
, and these pins are internally NC. The next generation Dual-Port family, the FLEx18-E™, will use V  
of 1.5V  
CORE  
CORE  
or 1.8V. Please contact local Cypress FAE for more information.  
13. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the CLK  
0
1
and can be deasserted after that. Data will be out after the following CLK edge and will be three-stated after the next CLK edge.  
14. OE is “Don’t Care” for mailbox operation.  
15. At least one of BE0, BE1 must be LOW.  
16. A18x is a NC for CYD04S18V, therefore the Interrupt Addresses are 3FFFF and 3FFFE. A18x and A17x are NC for CYD02S18V, therefore the Interrupt addresses  
are 1FFFF and 1FFFE; A18x, A17x and A16x are NC for CYD01S18V, therefore the Interrupt Addresses are FFFF and FFFE.  
17. This section describes the CYD04S18V, CYD02S18V, CYD01S18V 18, 17, and 16 address bits.  
Document #: 38-06077 Rev. *C  
Page 5 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Table 3. Address Counter and Counter-Mask Register Control Operation (Any Port) [18, 19]  
CLK MRST CNT/MSK CNTRST  
ADS CNTEN  
Operation  
Description  
X
L
X
X
X
X
Master Reset  
Reset address counter to all 0s and mask  
register to all 1s.  
H
H
H
H
L
X
L
X
L
Counter Reset  
Counter Load  
Reset counter unmasked portion to all 0s.  
H
Load counter with external address value  
presented on address lines.  
H
H
H
L
H
Counter Readback Read out counter internal value on address  
lines.  
H
H
H
H
H
H
H
H
L
Counter Increment Internally increment address counter value.  
H
Counter Hold  
Constantly hold the address value for  
multiple clock cycles.  
H
H
L
L
L
X
L
X
L
Mask Reset  
Mask Load  
Reset mask register to all 1s.  
H
Load mask register with value presented on  
the address lines.  
H
H
L
L
H
H
L
H
X
Mask Readback  
Reserved  
Readoutmaskregistervalueonaddress lines.  
H
Operation undefined  
Counter enable (CNTEN) inputs are provided to stall the  
operation of the address input and utilize the internal address  
generated by the internal counter for fast, interleaved memory  
applications. A port’s burst counter is loaded when the port’s  
address strobe (ADS) and CNTEN signals are LOW. When the  
port’s CNTEN is asserted and the ADS is deasserted, the  
address counter will increment on each LOW to HIGH  
transition of that port’s clock signal. This will Read/Write one  
word from/into each successive address location until CNTEN  
is deasserted. The counter can address the entire memory  
array, and will loop back to the start. Counter reset (CNTRST)  
is used to reset the unmasked portion of the burst counter to  
0s. A counter-mask register is used to control the counter  
wrap.  
if it is masked. If all unmasked bits are “1,” the next increment  
will wrap the counter back to the initially loaded value. If an  
Increment results in all the unmasked bits of the counter being  
“1s,” a counter interrupt flag (CNTINT) is asserted.  
The next Increment will return the counter register to its initial  
value, which was stored in the mirror register. The counter  
address can instead be forced to loop to 00000 by externally  
connecting CNTINT to CNTRST.[20] An increment that results  
in one or more of the unmasked bits of the counter being “0”  
will deassert the counter interrupt flag. The example in  
Figure 2 shows the counter mask register loaded with a mask  
value of 0003Fh unmasking the first 6 bits with bit “0” as the  
LSB and bit “16” as the MSB. The maximum value the mask  
register can be loaded with is 3FFFFh. Setting the mask  
register to this value allows the counter to access the entire  
memory space. The address counter is then loaded with an  
initial value of 8h. The base address bits (in this case, the 6th  
address through the 16th address) are loaded with an address  
value but do not increment once the counter is configured for  
increment operation. The counter address will start at address  
8h. The counter will increment its internal address value till it  
reaches the mask register value of 3Fh. The counter wraps  
around the memory block to location 8h at the next count.  
CNTINT is issued when the counter reaches its maximum  
value.  
Counter Reset Operation  
All unmasked bits of the counter and mirror registers are reset  
to “0.” All masked bits remain unchanged. A Mask Reset  
followed by a Counter Reset will reset the counter and mirror  
registers to 00000, as will master reset (MRST).  
Counter Load Operation  
The address counter and mirror registers are both loaded with  
the address value presented at the address lines.  
Counter Increment Operation  
Counter Hold Operation  
Once the address counter register is initially loaded with an  
external address, the counter can internally increment the  
address value, potentially addressing the entire memory array.  
Only the unmasked bits of the counter register are incre-  
mented. The corresponding bit in the mask register must be  
a “1” for a counter bit to change. The counter register is incre-  
mented by 1 if the least significant bit is unmasked, and by 2  
The value of all three registers can be constantly maintained  
unchanged for an unlimited number of clock cycles. Such  
operation is useful in applications where wait states are  
needed, or when address is available a few cycles ahead of  
data in a shared bus interface.  
Notes:  
18. “X” = “Don’t Care,” “H” = HIGH, “L” = LOW.  
19. Counter operation and mask register operation is independent of chip enables.  
20. CNTINT and CNTRST specs are guaranteed by design to operate properly at speed grade operating frequency when tied together.  
Document #: 38-06077 Rev. *C  
Page 6 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Counter Interrupt  
Mask Reset Operation  
The counter interrupt (CNTINT) is asserted LOW when an  
increment operation results in the unmasked portion of the  
counter register being all “1s.” It is deasserted HIGH when an  
Increment operation results in any other value. It is also  
deasserted by Counter Reset, Counter Load, Mask Reset and  
Mask Load operations, and by MRST.  
The mask register is reset to all “1s,” which unmasks every bit  
of the counter. Master reset (MRST) also resets the mask  
register to all “1s.”  
Mask Load Operation  
The mask register is loaded with the address value presented  
at the address lines. Not all values permit correct increment  
operations. Permitted values are of the form 2n – 1 or 2n – 2.  
From the most significant bit to the least significant bit,  
permitted values have zero or more “0s,” one or more “1s,” or  
one “0.” Thus 3FFFF, 003FE, and 00001 are permitted values,  
but 3F0FF, 003FC, and 00000 are not.  
Counter Readback Operation  
The internal value of the counter register can be read out on  
the address lines. Readback is pipelined; the address will be  
valid tCA2 after the next rising edge of the port’s clock. If  
address readback occurs while the port is enabled (CE0 LOW  
and CE1 HIGH), the data lines (DQs) will be three-stated.  
Figure 1 shows a block diagram of the operation.  
Mask Readback Operation  
The internal value of the mask register can be read out on the  
address lines. Readback is pipelined; the address will be valid  
tCM2 after the next rising edge of the port’s clock. If mask  
readback occurs while the port is enabled (CE0 LOW and CE1  
HIGH), the data lines (DQs) will be three-stated. Figure 1  
shows a block diagram of the operation.  
Retransmit  
Retransmit is a feature that allows the Read of a block of  
memory more than once without the need to reload the initial  
address. This eliminates the need for external logic to store  
and route data. It also reduces the complexity of the system  
design and saves board space. An internal “mirror register” is  
used to store the initially loaded address counter value. When  
the counter unmasked portion reaches its maximum value set  
by the mask register, it wraps back to the initial value stored in  
this “mirror register.” If the counter is continuously configured  
in increment mode, it increments again to its maximum value  
and wraps back to the value initially stored into the “mirror  
register.” Thus, the repeated access of the same data is  
allowed without the need for any external logic.  
Counting by Two  
When the least significant bit of the mask register is “0,” the  
counter increments by two. This may be used to connect the  
x18 devices as a 36-bit single port SRAM in which the counter  
of one port counts even addresses and the counter of the other  
port counts odd addresses. This even-odd address scheme  
stores one half of the 36-bit data in even memory locations,  
and the other half in odd memory locations.  
Document #: 38-06077 Rev. *C  
Page 7 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
CNT/MSK  
CNTEN  
ADS  
Decode  
Logic  
CNTRST  
MRST  
Bidirectional  
Address  
Lines  
Mask  
Register  
Counter/  
Address  
Register  
Address  
Decode  
RAM  
Array  
CLK  
Load/Increment  
17  
17  
From  
Address  
Lines  
Mirror  
Counter  
To Readback  
and Address  
Decode  
1
0
1
0
From  
Increment  
Logic  
Mask  
Register  
17  
Wrap  
17  
17  
17  
Bit 0  
From  
Mask  
From  
Counter  
+1  
+2  
Wrap  
Detect  
Wrap  
To  
1
0
17  
1
0
Counter  
Figure 1. Counter, Mask, and Mirror Logic Block Diagram[1]  
Document #: 38-06077 Rev. *C  
Page 8 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
CNTINT  
H
Example:  
Load  
Counter-Mask  
Register = 3F  
0
0
0s  
0
1
1
1
1
1
1
216 215  
26 25 24 23 22 21 20  
Unmasked Address  
Mask  
Register  
bit-0  
Masked Address  
Load  
Address  
Counter = 8  
H
L
X
X
Xs  
Xs  
Xs  
X
0
0
1
0
0
0
216 215  
26 25 24 23 22 21 20  
Address  
Counter  
bit-0  
Max  
Address  
Register  
X
X
X
1
1
1
1 1  
1
216 215  
26 25 24 23 22 21 20  
Max + 1  
Address  
Register  
H
X
X
X
0
0
1
0
0
0
216 215  
26 25 24 23 22 21 20  
Figure 2. Programmable Counter-Mask Register Operation[1, 21]  
IEEE 1149.1 Serial Boundary Scan (JTAG)[22]  
Boundary Scan Hierarchy for 9-Mbit Device  
Internally, the CYD09S18V have two DIEs. Each DIE contains  
all the circuitry required to support boundary scan testing. The  
circuitry includes the TAP, TAP controller, instruction register,  
and data registers. The circuity and operation of the DIE  
boundary scan are described in detail below. The scan chain  
of each DIEs are connected serially to form the scan chain of  
the CYD09S18V as shown in Figure 3. TMS and TCK are  
connected in parallel to each DIE to drive all TAP controllers  
in unison. In many cases, each DIE will be supplied with the  
same instruction. In other cases, it might be useful to supply  
different instructions to each DIE. One example would be  
testing the device ID of one DIE while bypassing the others.  
The FLEx18 family devices incorporate an IEEE 1149.1 serial  
boundary scan test access port (TAP). The TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1-compliant TAPs. The TAP  
operates using JEDEC-standard 3.3V I/O logic levels. It is  
composed of three input connections and one output  
connection required by the test logic defined by the standard.  
Performing a TAP Reset  
A reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This reset does not affect the operation of the  
devices, and may be performed while the device is operating.  
An MRST must be performed on the devices after power-up.  
Each pin of the FLEx18 9-Mb device is typically connected to  
two DIEs. For connectivity testing with the EXTEST  
instruction, it is desirable to check the internal connections  
between DIEs as well as the external connections to the  
package. This can be accomplished by merging the netlist of  
the devices with the netlist of the user’s circuit board. To facil-  
itate boundary scan testing of the devices, Cypress provides  
the BSDL file for each DIE, the internal netlist of the device,  
and a description of the device scan chain. The user can use  
these materials to easily integrate the devices into the board’s  
boundary scan environment. Further information can be found  
in the Cypress application note Using JTAG Boundary Scan  
For System In a Package (SIP) Dual-Port SRAMs.  
Performing a Pause/Restart  
When a SHIFT-DR PAUSE-DR SHIFT-DR is performed the  
scan chain will output the next bit in the chain twice. For  
example, if the value expected from the chain is 1010101, the  
device will output a 11010101. This extra bit will cause some  
testers to report an erroneous failure for the devices in a scan  
test. Therefore the tester should be configured to never enter  
the PAUSE-DR state.  
Notes:  
21. The “X” in this diagram represents the counter upper bits.  
22. Boundary scan is IEEE 1149.1-compatible. See “Performing a Pause/Restart” for deviation from strict 1149.1 compliance.  
Document #: 38-06077 Rev. *C  
Page 9 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
TDO  
TDO  
D2  
TDI  
TDO  
D1  
TDI  
TDI  
Figure 3. Scan Chain for 9-Mbit Device  
Table 4. Identification Register Definitions  
Instruction Field  
Revision Number (31:28)  
Cypress Device ID (27:12)  
Value  
Description  
0h  
Reserved for version number.  
C090h  
C091h  
C093h  
034h  
1
Defines Cypress part number for CYD04S18V and CYD09S18V DIE  
Defines Cypress part number for CYD02S18V  
Defines Cypress part number for CYD01S18V  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
Allows unique identification of the DP family device vendor.  
Indicates the presence of an ID register.  
Table 5. Scan Register Sizes  
Register Name  
Instruction  
Bit Size  
4
1
Bypass  
Identification  
Boundary Scan  
32  
n[23]  
Table 6. Instruction Identification Codes  
Instruction  
EXTEST  
Code  
Description  
0000  
1111  
1011  
0111  
0100  
Captures the Input/Output ring contents. Places the BSR between the TDI and TDO.  
Places the BYR between TDI and TDO.  
BYPASS  
IDCODE  
HIGHZ  
Loads the IDR with the vendor ID code and places the register between TDI and TDO.  
Places BYR between TDI and TDO. Forces all device output drivers to a High-Z state.  
Controls boundary to 1/0. Places BYR between TDI and TDO.  
CLAMP  
SAMPLE/PRELOAD 1000  
Captures the input/output ring contents. Places BSR between TDI and TDO.  
Resets the non-boundary scan logic. Places BYR between TDI and TDO.  
NBSRST  
1100  
RESERVED  
All other codes Other combinations are reserved. Do not use other than the above.  
Note:  
23. See details in the device BSDL file.  
Document #: 38-06077 Rev. *C  
Page 10 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Maximum Ratings[24]  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage...........................................> 2000V  
(JEDEC JESD22-A114-2000B)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current.....................................................> 200 mA  
Storage Temperature ................................. –65°C to +150°C  
Ambient Temperature with  
Operating Range  
Power Applied.............................................55°C to +125°C  
Supply Voltage to Ground Potential............... –0.5V to +4.6V  
Ambient  
Temperature  
[12]  
Range  
VDDIO/VTTL  
VCORE  
DC Voltage Applied to  
Commercial 0°C to +70°C 3.3V±165 mV 1.8V±100 mV  
Outputs in High-Z State...........................–0.5V to VDD +0.5V  
DC Input Voltage...............................–0.5V to VDD + 0.5V[25]  
Industrial  
–40°Cto+85°C 3.3V±165 mV 1.8V±100 mV  
Electrical Characteristics Over the Operating Range  
-167  
-133  
-100  
Parameter  
VOH  
VOL  
VIH  
Description  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit  
Output HIGH Voltage (VDD = Min., IOH= –4.0 mA) 2.4  
Output LOW Voltage (VDD = Min., IOL= +4.0 mA)  
2.4  
2.4  
V
V
0.4  
0.4  
0.4  
Input HIGH Voltage  
Input LOW Voltage  
2.0  
2.0  
2.0  
V
VIL  
0.8  
10  
10  
0.8  
10  
10  
0.8  
10  
10  
V
IOZ  
Output Leakage Current  
–10  
–10  
–10  
–10  
–10  
µA  
µA  
IIX1  
Input Leakage Current Except TDI, TMS, MRST –10  
Input Leakage Current TDI, TMS, MRST –1.0  
IIX2  
0.1 –1.0  
225 300  
0.1 –1.0  
225 300  
0.1 mA  
mA  
ICC  
Operating Current for  
(VDD = Max.,IOUT = 0 mA),  
Outputs Disabled  
CYD01S18V  
CYD02S18V  
CYD04S18V  
CYD09S18V  
270 400  
90 115  
200 310 mA  
mA  
[26]  
ISB1  
Standby Current (Both Ports TTL Level)  
90  
160 210  
55 75  
160 210  
115  
CEL and CER VIH, f = fMAX  
[26]  
ISB2  
Standby Current (One Port TTL Level)  
160 210  
55 75  
mA  
mA  
mA  
CEL | CER VIH, f = fMAX  
[26]  
ISB3  
Standby Current (Both Ports CMOS Level)  
CEL and CER VDD – 0.2V, f = 0  
[26]  
ISB4  
Standby Current (One Port CMOS Level)  
160 210  
75  
CEL | CER VIH, f = fMAX  
ISB5  
Operating Current (VDDIO =  
Max, Iout=0mA,f=0)  
Outputs Disabled  
CYD09S18V  
75  
0
mA  
mA  
[12]  
ICORE  
Core Operating Current for (VDD = Max.,  
0
0
0
0
0
IOUT = 0 mA), Outputs Disabled  
Capacitance[27]  
Part Number  
Parameter  
CIN  
Description  
Test Conditions  
Max.  
Unit  
CYD01S18V  
CYD02S18V  
CYD04S18V  
Input Capacitance  
Output Capacitance  
TA = 25°C, f = 1 MHz,  
VDD = 3.3V  
13  
10  
pF  
pF  
COUT  
CYD09S18V  
CIN  
Input Capacitance  
Output Capacitance  
22  
20  
pF  
pF  
COUT  
Notes:  
24. The voltage on any input or I/O pin can not exceed the power pin during power-up.  
25. Pulse width < 20 ns.  
26. I  
27. C  
, I  
, I  
and I  
are not applicable for CYD09S18V because it can not be powered down by using chip enable pins.  
also references C  
I/O  
SB1 SB2 SB3  
SB4  
OUT  
Document #: 38-06077 Rev. *C  
Page 11 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
AC Test Load and Waveforms  
3.3V  
Z0 = 50  
R = 50Ω  
OUTPUT  
R1 = 590Ω  
OUTPUT  
C = 10 pF  
C = 5 pF  
R2 = 435Ω  
VTH = 1.5V  
(a) Normal Load (Load 1)  
(b) Three-state Delay (Load 2)  
3.0V  
90%  
10%  
90%  
10%  
ALL INPUT PULSES  
Vss  
< 2 ns  
< 2 ns  
Switching Characteristics Over the Operating Range  
-167  
-133  
-100  
CYD01S18V  
CYD02S18V  
CYD04S18V  
CYD01S18V  
CYD02S18V  
CYD04S18V  
CYD09S18V  
CYD09S18V  
Parameter  
fMAX2  
Description  
Maximum Operating Frequency  
Clock Cycle Time  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
167  
133  
133  
100  
tCYC2  
6.0  
2.7  
2.7  
7.5  
3.0  
3.0  
7.5  
3.0  
3.0  
10  
4.0  
4.0  
tCH2  
Clock HIGH Time  
tCL2  
Clock LOW Time  
[28]  
tR  
Clock Rise Time  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
3.0  
3.0  
[28]  
tF  
Clock Fall Time  
tSA  
Address Set-up Time  
Address Hold Time  
Byte Select Set-up Time  
Byte Select Hold Time  
Chip Enable Set-up Time  
Chip Enable Hold Time  
R/W Set-up Time  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
NA  
NA  
2.5  
0.6  
2.5  
0.6  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
3.0  
0.6  
3.0  
0.6  
NA  
NA  
3.0  
0.6  
3.0  
0.6  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
tHA  
tSB  
tHB  
tSC  
tHC  
tSW  
tHW  
tSD  
R/W Hold Time  
Input Data Set-up Time  
Input Data Hold Time  
ADS Set-up Time  
tHD  
tSAD  
tHAD  
tSCN  
tHCN  
tSRST  
tHRST  
tSCM  
tHCM  
tOE  
ADS Hold Time  
CNTEN Set-up Time  
CNTEN Hold Time  
CNTRST Set-up Time  
CNTRST Hold Time  
CNT/MSK Set-up Time  
CNT/MSK Hold Time  
Output Enable to Data Valid  
OE to Low Z  
4.0  
4.4  
4.7  
5.0  
[29, 30]  
tOLZ  
0
0
0
0
Notes:  
28. Except JTAG signals (t and t < 10 ns [max.]).  
r
f
29. This parameter is guaranteed by design, but it is not production tested.  
30. Test conditions used are Load 2.  
Document #: 38-06077 Rev. *C  
Page 12 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Switching Characteristics Over the Operating Range (continued)  
-167  
-133  
-100  
CYD01S18V  
CYD02S18V  
CYD04S18V  
CYD01S18V  
CYD02S18V  
CYD04S18V  
CYD09S18V  
CYD09S18V  
Parameter  
Description  
OE to High Z  
Min.  
Max.  
4.0  
Min.  
Max.  
4.4  
Min.  
Max.  
4.7  
Min.  
Max.  
5.0  
Unit  
ns  
[29, 30]  
tOHZ  
0
0
0
0
tCD2  
tCA2  
tCM2  
Clock to Data Valid  
4.0  
4.4  
4.7  
5.0  
ns  
Clock to Counter Address Valid  
4.0  
4.4  
NA  
NA  
ns  
Clock to Mask Register Readback  
Valid  
4.0  
4.4  
NA  
NA  
ns  
tDC  
Data Output Hold After Clock HIGH  
Clock HIGH to Output High Z  
Clock HIGH to Output Low Z  
Clock to INT Set Time  
1.0  
0
1.0  
0
1.0  
0
1.0  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[29,30]  
tCKHZ  
4.0  
4.0  
6.7  
6.7  
5.0  
5.0  
4.4  
4.4  
7.5  
7.5  
5.7  
5.7  
4.7  
4.7  
7.5  
7.5  
NA  
NA  
5.0  
5.0  
10  
[29, 30]  
tCKLZ  
1.0  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
0.5  
NA  
NA  
1.0  
0.5  
0.5  
NA  
NA  
tSINT  
tRINT  
Clock to INT Reset Time  
10  
tSCINT  
tRCINT  
Clock to CNTINT Set Time  
Clock to CNTINT Reset time  
NA  
NA  
Port to Port Delays  
tCCS  
Clock to Clock Skew  
5.2  
6.0  
6.0  
8.0  
ns  
Master Reset Timing  
tRS  
Master Reset Pulse Width  
5.0  
6.0  
5.0  
5.0  
6.0  
5.0  
5.0  
6.0  
5.0  
5.0  
8.5  
5.0  
cycles  
ns  
tRS  
Master Reset Set-up Time  
tRSR  
tRSF  
tRSINT  
Master Reset Recovery Time  
Master Reset to Outputs Inactive  
cycles  
ns  
10.0  
10.0  
10.0  
10.0  
10.0  
NA  
10.0  
NA  
Master Reset to Counter and Mailbox  
Interrupt Flag Reset Time  
ns  
JTAG Timing and Switching Waveforms  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Parameter  
fJTAG  
tTCYC  
tTH  
Description  
Min.  
Max.  
Unit  
MHz  
ns  
Maximum JTAG TAP Controller Frequency  
TCK Clock Cycle Time  
10  
100  
40  
40  
10  
10  
10  
10  
TCK Clock HIGH Time  
ns  
tTL  
TCK Clock LOW Time  
ns  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOV  
tTDOX  
TMS Set-up to TCK Clock Rise  
TMS Hold After TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
TDI Hold After TCK Clock Rise  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
ns  
ns  
ns  
ns  
30  
ns  
0
ns  
Document #: 38-06077 Rev. *C  
Page 13 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
tTH  
tTL  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOX  
tTDOV  
Switching Waveforms  
Master Reset  
tRS  
MRST  
tRSF  
ALL  
ADDRESS/  
DATA  
tRSS  
INACTIVE  
LINES  
tRSR  
ALL  
OTHER  
INPUTS  
ACTIVE  
TMS  
tRSINT  
CNTINT  
INT  
TDO  
Document #: 38-06077 Rev. *C  
Page 14 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Switching Waveforms (continued)  
Read Cycle[13, 31, 32, 33, 34]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSC  
tHC  
tSB  
tHB  
BE0–BE1  
R/W  
tSW  
tSA  
tHW  
tHA  
ADDRESS  
DATAOUT  
An  
An+1  
An+2  
An+3  
tDC  
1 Latency  
tCD2  
Qn  
Qn+1  
Qn+2  
tOHZ  
tCKLZ  
tOLZ  
OE  
t
OE  
Notes:  
31. OE is asynchronously controlled; all other inputs (excluding MRST and JTAG) are synchronous to the rising clock edge.  
32. ADS = CNTEN = LOW, and MRST = CNTRST = CNT/MSK = HIGH.  
33. The output is disabled (high-impedance state) by CE = V following the next rising edge of the clock.  
IH  
34. Addresses do not have to be accessed sequentially since ADS = CNTEN = V with CNT/MSK = V constantly loads the address on the rising edge of the CLK.  
IL  
IH  
Numbers are for reference only.  
Document #: 38-06077 Rev. *C  
Page 15 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Switching Waveforms (continued)  
Bank Select Read[35, 36]  
tCYC2  
tCH2  
tCL2  
CLK  
tHA  
tSA  
A3  
A4  
ADDRESS(B1)  
A5  
A0  
A1  
A2  
tHC  
tSC  
CE(B1)  
tCD2  
tCD2  
tCD2  
tCKHZ  
tHC  
tCKHZ  
tSC  
Q0  
Q3  
Q1  
DATAOUT(B1)  
ADDRESS(B2)  
tHA  
tSA  
tDC  
A2  
tDC  
A3  
tCKLZ  
A4  
A5  
A0  
A1  
tHC  
tSC  
CE(B2)  
tCD2  
tCKHZ  
tCD2  
tSC  
tHC  
DATAOUT(B2)  
Q4  
Q2  
tCKLZ  
tCKLZ  
Read-to-Write-to-Read (OE = LOW)[34, 37, 38, 39, 40]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSW  
tHW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
An+2  
An+3  
ADDRESS  
tSD tHD  
Dn+2  
tSA  
tHA  
DATAIN  
tCD2  
tDC  
tCKHZ  
DATAOUT  
Qn  
READ  
NO OPERATION  
WRITE  
Notes:  
35. In this depth-expansion example, B1 represents Bank #1 and B2 is Bank #2; each bank consists of one Cypress FLEx18 device from this data sheet. ADDRESS  
(B1)  
= ADDRESS  
.
(B2)  
36. ADS = CNTEN= BE0 – BE1 = OE = LOW; MRST = CNTRST = CNT/MSK = HIGH.  
37. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.  
38. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
39. CE = OE = BE0 – BE1 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
40. CE = BE0 – BE1 = R/W = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH. When R/W first switches low, since OE = LOW, the Write operation cannot be  
0
1
completed (labelled as no operation). One clock cycle is required to three-state the I/O for the Write operation on the next rising edge of CLK.  
Document #: 38-06077 Rev. *C  
Page 16 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Switching Waveforms (continued)  
Read-to-Write-to-Read (OE Controlled)[34, 37, 39, 40]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tHW  
tSW  
R/W tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
ADDRESS  
tSA  
tHA  
tSD tHD  
Dn+2  
DATAIN  
Dn+3  
tCD2  
tCD2  
DATAOUT  
Qn  
Qn+4  
tOHZ  
OE  
READ  
WRITE  
READ  
Read with Address Counter Advance[39]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
ADDRESS  
An  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tSCN  
tHCN  
tCD2  
Qx–1  
Qx  
tDC  
Qn  
Qn+1  
COUNTER HOLD  
Qn+2  
DATAOUT  
Qn+3  
READ  
READ WITH COUNTER  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
Document #: 38-06077 Rev. *C  
Page 17 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Switching Waveforms (continued)  
Write with Address Counter Advance [40]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
INTERNAL  
ADDRESS  
An  
An+1  
An+2  
An+3  
An+4  
tSAD  
tHAD  
ADS  
CNTEN  
DATAIN  
tSCN  
tHCN  
Dn  
Dn+1  
Dn+1  
Dn+2  
Dn+3  
Dn+4  
tSD  
tHD  
WRITE EXTERNAL  
ADDRESS  
WRITE WITH WRITE COUNTER  
COUNTER HOLD  
WRITE WITH COUNTER  
Document #: 38-06077 Rev. *C  
Page 18 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Switching Waveforms (continued)  
Counter Reset[41, 42]  
tCYC2  
tCH2 tCL2  
CLK  
tHA  
Am  
tSA  
Ap  
An  
ADDRESS  
INTERNAL  
Ax  
Ap  
An  
1
0
Am  
ADDRESS  
tHW  
tSW  
R/W  
ADS  
CNTEN  
CNTRST  
tHRST  
tSRST  
tHD  
tSD  
DATAIN  
D0  
tCD2  
tCD2  
[43]  
DATAOUT  
Q0  
Qn  
Q1  
tCKLZ  
READ  
ADDRESS 0  
READ  
ADDRESS 1  
READ  
ADDRESS An  
COUNTER  
RESET  
WRITE  
ADDRESS 0  
READ  
ADDRESS Am  
Notes:  
41. CE = BE0 – BE1 = LOW; CE = MRST = CNT/MSK = HIGH.  
0
1
42. No dead cycle exists during counter reset. A Read or Write cycle may be coincidental with the counter reset.  
43. Retransmit happens if the counter remains in increment mode after it wraps to initially loaded value.  
Document #: 38-06077 Rev. *C  
Page 19 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Switching Waveforms (continued)  
Readback State of Address Counter or Mask Register[44, 45, 46, 47]  
tCYC2  
tCH2 tCL2  
CLK  
tCA2 or tCM2  
tSA  
tHA  
EXTERNAL  
An*  
An  
ADDRESS  
A0–A16  
INTERNAL  
ADDRESS  
An+4  
An+1  
An+2  
An+3  
An  
tSAD  
tHAD  
ADS  
CNTEN  
tSCN  
tHCN  
tCD2  
tCKHZ  
Qn  
tCKLZ  
DATAOUT  
Qn+1  
Qx-1  
Qn+2  
Qx-2  
Q
n+3  
LOAD  
EXTERNAL  
ADDRESS  
READBACK  
COUNTER  
INTERNAL  
ADDRESS  
INCREMENT  
Notes:  
44. CE = OE = BE0 – BE1 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
45. Address in output mode. Host must not be driving address bus after t  
in next clock cycle.  
CKLZ  
46. Address in input mode. Host can drive address bus after t  
.
CKHZ  
47. An * is the internal value of the address counter (or the mask register depending on the CNT/MSK level) being Read out on the address lines.  
Document #: 38-06077 Rev. *C  
Page 20 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Switching Waveforms (continued)  
Left_Port (L_Port) Write to Right_Port (R_Port) Read[48, 49, 50]  
tCYC2  
tCH2  
tCL2  
CLKL  
tHA  
tSA  
L_PORT  
ADDRESS  
An  
tSW  
tHW  
R/WL  
tCKHZ  
tSD  
tHD  
tCKLZ  
L_PORT  
DATAIN  
Dn  
tCCS  
tCYC2  
tCL2  
CLKR  
tCH2  
tSA  
tHA  
R_PORT  
ADDRESS  
An  
R/WR  
tCD2  
R_PORT  
DATAOUT  
Qn  
tDC  
Notes:  
48. CE = OE = ADS = CNTEN = BE0 – BE1 = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.  
0
1
49. This timing is valid when one port is writing, and other port is reading the same location at the same time. If t  
is violated, indeterminate data will be Read out.  
CCS  
50. If t  
< minimum specified value, then R_Port will Read the most recent data (written by L_Port) only (2 * t  
+ t  
) after the rising edge of R_Port's clock. If  
CCS  
CYC2  
CD2  
t
> minimum specified value, then R_Port will Read the most recent data (written by L_Port) (t  
+ t  
) after the rising edge of R_Port's clock.  
CCS  
CYC2  
CD2  
Document #: 38-06077 Rev. *C  
Page 21 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Switching Waveforms (continued)  
Counter Interrupt and Retransmit[16, 43, 51, 52, 53, 54]  
tCYC2  
tCH2  
tCL2  
CLK  
tSCM  
tHCM  
CNT/MSK  
ADS  
CNTEN  
COUNTER  
INTERNAL  
ADDRESS  
3FFFE  
tSCINT  
3FFFC  
Last_Loaded  
3FFFD  
3FFFF  
tRCINT  
Last_Loaded +1  
CNTINT  
Notes:  
51. CE = OE = BE0 – BE1 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
52. CNTINT is always driven.  
53. CNTINT goes LOW when the unmasked portion of the address counter is incremented to the maximum value.  
54. The mask register assumed to have the value of 3FFFFh.  
Document #: 38-06077 Rev. *C  
Page 22 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Switching Waveforms (continued)  
MailBox Interrupt Timing[55, 56, 57, 58, 59]  
tCYC2  
tCH2  
tCL2  
CLKL  
tSA tHA  
7FFFF  
L_PORT  
ADDRESS  
An+1  
An  
An+2  
An+3  
tSINT  
tRINT  
INTR  
tCYC2  
tCL2  
tCH2  
CLKR  
tSA tHA  
Am  
R_PORT  
ADDRESS  
Am+1  
7FFFF  
Am+3  
Am+4  
Table 7. Read/Write and Enable Operation (Any Port)[1, 18, 60, 61, 62]  
Inputs  
Outputs  
OE  
CLK  
CE0  
CE1  
R/W  
DQ0 DQ17  
Operation  
X
H
X
X
High-Z  
Deselected  
Deselected  
Write  
X
X
L
X
L
L
L
L
H
H
H
X
L
High-Z  
DIN  
H
DOUT  
High-Z  
Read  
H
X
X
Outputs Disabled  
Notes:  
55. CE = OE = ADS = CNTEN = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.  
0
1
56. Address “7FFFF” is the mailbox location for R_Port of the 9Mb device.  
57. L_Port is configured for Write operation, and R_Port is configured for Read operation.  
58. At least one byte enable (BE0 – BE1) is required to be active during interrupt operations.  
59. Interrupt flag is set with respect to the rising edge of the Write clock, and is reset with respect to the rising edge of the Read clock.  
60. OE is an asynchronous input signal.  
61. When CE changes state, deselection and Read happen after one cycle of latency.  
62. CE = OE = LOW; CE = R/W = HIGH.  
0
1
Document #: 38-06077 Rev. *C  
Page 23 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Ordering Information  
512K  
×
18 (9Mb) 3.3V Synchronous CYD09S18V Dual-Port SRAM  
Package  
Speed  
(MHz)  
Operating  
Ordering Code  
Name  
BB256  
BB256  
BB256  
Package Type  
Range  
256-ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (BGA) Industrial  
133 CYD09S18V-133BBC  
100 CYD09S18V-100BBC  
CYD09S18V-100BBI  
256K  
×
18 (4Mb) 3.3V Synchronous CYD04S36V Dual-Port SRAM  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Name  
BB256  
BB256  
BB256  
Package Type  
167 CYD04S18V-167BBC  
133 CYD04S18V-133BBC  
CYD04S18V-133BBI  
256-ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (BGA) Industrial  
128K  
×
18 (2Mb) 3.3V Synchronous CYD02S18V Dual-Port SRAM  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Name  
BB256  
BB256  
BB256  
Package Type  
167 CYD02S18V-167BBC  
133 CYD02S18V-133BBC  
CYD02S18V-133BBI  
256-ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (BGA) Industrial  
64K  
× 18 (1Mb) 3.3V Synchronous CYD01S18V Dual-Port SRAM  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
167 CYD01S18V-167BBC  
133 CYD01S18V-133BBC  
CYD01S18V-133BBI  
BB256  
BB256  
BB256  
256-ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (BGA) Commercial  
256-ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (BGA) Industrial  
Document #: 38-06077 Rev. *C  
Page 24 of 26  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Package Diagram  
256-Ball FBGA (17 x 17 mm) BB256  
TOP VIEW  
BOTTOM VIEW  
Ø0.05 M C  
Ø0.25 M C A B  
PIN 1 CORNER  
Ø0.45 0.05(256X)ꢀCPꢁD DEVICES (37K & 39K)  
PIN 1 CORNER  
+0.10  
Ø0.50 (256X)ꢀAꢁꢁ OTHER DEVICES  
ꢀ0.05  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
A
B
C
D
E
F
F
G
H
J
G
H
J
K
K
M
N
P
R
T
M
N
P
R
T
1.00  
B
7.50  
15.00  
A
17.00 0.10  
A
SEATING PꢁANE  
0.20(4X)  
A1  
C
REFERENCE JEDEC MOꢀ192  
A1 0.36 0.56  
1.40 MAX. 1.70 MAX.  
A
51-85108-*F  
FLEx18 and FLEx18-E are trademarks of Cypress Semiconductor Corporation. All products and company names mentioned in  
this document may be the trademarks of their respective holders.  
Document #: 38-06077 Rev. *C  
Page 25 of 26  
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CYD01S18V/CYD02S18V  
CYD04S18V/CYD09S18V  
Document History Page  
Document Title: CYD01S18V/CYD02S18V/CYD04S18V/CYD09S18V FLEx18™ 3.3V 64K/128K/256K/512K x 18  
Synchronous Dual-Port RAM  
Document Number: 38-06077  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
259671  
289711  
See ECN  
See ECN  
WWZ  
YDT  
New data sheet  
*A  
Change Pinout D10 from NC to VSS  
Changed tRSCNTINT to tRSINT  
Added tRSINT to the master reset timing diagram  
Added ISB5 and changed IIX2  
*B  
*C  
327354  
365320  
See ECN  
See ECN  
AEQ  
YDT  
Change Pinout C10 from REVR[2,4] to NC[2,5]  
Change Pinout G5 from VDDIOL to REVL[2,3]  
Added note for VCORE  
Removed preliminary status  
Document #: 38-06077 Rev. *C  
Page 26 of 26  

相关型号:

CYD04S18V-167BBC

FLEx18⑩ 3.3V 64K/128K/256K/512K x 18 Synchronous Dual-Port RAM
CYPRESS

CYD04S18V18

18-Mb/9-Mb/4-Mb x36/x18 FullFlex⑩ Dual-Ports
CYPRESS

CYD04S18V18-167BBI

Dual-Port SRAM, 256KX18, 11ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, MO-192, FBGA-256
CYPRESS

CYD04S18V18-167BBXC

Dual-Port SRAM, 256KX18, 11ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, LEAD FREE, MO-192, FBGA-256
CYPRESS

CYD04S18V18-250BBC

Dual-Port SRAM, 256KX18, 7.2ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, MO-192, FBGA-256
CYPRESS

CYD04S18V18-250BBXC

Dual-Port SRAM, 256KX18, 7.2ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, LEAD FREE, MO-192, FBGA-256
CYPRESS

CYD04S36V

FLEx36 3.3V 32K/64K/128K/256K/512 x 36 Synchronous Dual-Port RAM
CYPRESS

CYD04S36V-133BBC

FLEx36 3.3V 32K/64K/128K/256K/512 x 36 Synchronous Dual-Port RAM
CYPRESS

CYD04S36V-133BBI

FLEx36 3.3V 32K/64K/128K/256K/512 x 36 Synchronous Dual-Port RAM
CYPRESS

CYD04S36V-167BBC

FLEx36 3.3V 32K/64K/128K/256K/512 x 36 Synchronous Dual-Port RAM
CYPRESS

CYD04S36V18

18-Mb/9-Mb/4-Mb x36/x18 FullFlex⑩ Dual-Ports
CYPRESS

CYD04S36V18-167BBC

Dual-Port SRAM, 128KX36, 11ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, MO-192, FBGA-256
CYPRESS