CYUSB3014-BZXI [CYPRESS]

EZ-USB FX3 SuperSpeed USB Controller UART support up to 4 Mbps; EZ- USB FX3超高速USB控制器UART支持高达4 Mbps
CYUSB3014-BZXI
型号: CYUSB3014-BZXI
厂家: CYPRESS    CYPRESS
描述:

EZ-USB FX3 SuperSpeed USB Controller UART support up to 4 Mbps
EZ- USB FX3超高速USB控制器UART支持高达4 Mbps

总线控制器 微控制器和处理器 外围集成电路 数据传输 PC 时钟
文件: 总38页 (文件大小:858K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
CYUSB3014  
®
EZ-USB FX3 SuperSpeed USB Controller  
Ultra low-power in core power-down mode  
Less than 60 µA with VBATT ON and 20 µA with VBATT off  
Features  
Universal serial bus (USB) integration  
USB 3.0 and USB 2.0 peripheral compliant with USB3.0  
specification 1.0  
5-Gbps USB3.0 PHY compliant with PIPE 3.0  
High-speed On-The-Go (HS-OTG) host and peripheral  
compliant with On-The-Go Supplement Version 2.0  
Thirty-two physical endpoints  
Support for battery charging Spec 1.1 and accessory charger  
adaptor (ACA) detection  
Independent power domains for core and I/O  
Core operation at 1.2 V  
I2S, UART and SPI operation at 1.8 to 3.3V  
I2C operation at 1.2 V  
10×10mm, 0.8mmpitchPb-freeballgridarray(BGA)package  
EZ USB® software and DVK for easy code development  
Applications  
General programmable interface (GPIF™ II)  
Programmable 100-MHz GPIF II interface enables  
Digital video camcorders  
Digital still cameras  
Printers  
connectivity to wide range of external devices  
8-/16-/32-bit data bus  
Up to 16 configurable control signals  
Fully accessible 32-bit CPU  
Scanners  
ARM926EJ Core with 200MHz operation  
512 kB Embedded SRAM  
Video capture cards  
Test and measurement equipment  
Surveillance cameras  
Personal navigation devices  
Medical imaging devices  
Video IP phones  
Additional connectivity to following peripherals  
I2C master controller at 1 MHz  
I2Smaster(transmitteronly)atsamplingfrequencies32 kHz,  
44.1 kHz, 48 kHz  
UART support up to 4 Mbps  
SPI master at 33 MHz  
Selectable clock input frequencies  
19.2, 26, 38.4, and 52 MHz  
19.2 MHz crystal input support  
Portable media players  
Industrial cameras  
Logic Block Diagram  
FSLC[0]  
FSLC[1]  
FSLC[2]  
JTAG  
CLKIN  
CLKIN_32  
XTALIN  
Embedded  
SRAm  
(512kB)  
ARM926EJ -S  
XTALOUT  
HS/FS/LS  
OTG Host  
OTG_ID  
SSRX -  
DATA[31:0  
]
SSRX +  
SS  
Peripheral  
CTL[12:0]  
SSTX -  
SSTX +  
32  
EPs  
PMODE[2:0  
]
GPIF™ II  
HS/FS  
Peripheral  
D+  
D-  
INT#  
RESET #  
EZ-Dtect™  
UART  
SPI  
I2S  
I2C  
Cypress Semiconductor Corporation  
Document Number 001-52136 Rev. *H  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 17, 2011  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Contents  
Functional Overview .......................................................... 3  
Digital I/Os......................................................................... 13  
GPIOs................................................................................. 13  
System Level ESD ............................................................ 13  
Absolute Maximum Ratings ............................................ 14  
Operating Conditions....................................................... 14  
Application Examples.................................................... 3  
USB Interface...................................................................... 4  
OTG............................................................................... 4  
ReNumeration ............................................................... 5  
EZ-Dtect ........................................................................ 5  
VBUS Overvoltage Protection....................................... 5  
Carkit UART Mode ........................................................ 5  
AC Timing Parameters..................................................... 16  
GPIF II Timing ............................................................. 16  
Slave FIFO Interface ................................................... 19  
Serial Peripherals Timing ............................................ 26  
GPIF II .................................................................................. 6  
CPU...................................................................................... 6  
JTAG Interface.................................................................... 7  
Reset Sequence................................................................ 30  
Pin Description ................................................................. 32  
Package Diagram.............................................................. 35  
Other Interfaces.................................................................. 7  
UART Interface.............................................................. 7  
I2C Interface.................................................................. 7  
I2S Interface.................................................................. 7  
SPI Interface.................................................................. 7  
Ordering Information ....................................................... 35  
Ordering Code Definition............................................. 35  
Acronyms.......................................................................... 36  
Document Conventions ................................................... 36  
Boot Options....................................................................... 7  
Units of Measure ......................................................... 36  
Reset.................................................................................... 8  
Hard Reset .................................................................... 8  
Soft Reset...................................................................... 8  
Document History Page................................................... 37  
Sales, Solutions, and Legal Information ........................ 38  
Worldwide Sales and Design Support......................... 38  
Products...................................................................... 38  
PSoC Solutions........................................................... 38  
Clocking .............................................................................. 8  
32-kHz Watchdog Timer Clock Input............................. 8  
Power................................................................................... 9  
Power Modes ................................................................ 9  
Configuration Options ..................................................... 13  
Document Number 001-52136 Rev. *H  
Page 2 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
EZ-USB FX3 contains 512 kB of on-chip SRAM for code and  
data. EZ-USB FX3 also provides interfaces to connect to serial  
peripherals such as UART, SPI, I2C, and I2S.  
Functional Overview  
Cypress EZ-USB FX3 is the next generation USB3.0 peripheral  
controller providing highly integrated and flexible features that  
enable developers to add USB3.0 functionality to any system.  
EZ-USB FX3 comes with the easy to use EZ-USB tools providing  
a complete solution for fast application development. The  
software development kit comes with application examples for  
accelerating time to market.  
EZ-USB FX3 has a fully configurable, parallel, General  
Programmable Interface called GPIF II, which can connect to  
any processor, ASIC, or FPGA. The General Programmable  
Interface GPIF II is an enhanced version of the GPIF in FX2LP,  
Cypress’s flagship USB2.0 product. It provides easy and  
glueless connectivity to popular interfaces such as  
asynchronous SRAM, asynchronous and synchronous Address  
Data Multiplexed interface, parallel ATA, and so on.  
EZ-USB FX3 is fully compliant to USB3.0 v1.0 specification and  
is also backward compatible with USB2.0. It is also complaint  
with the Battery Charging Specification v1.1 and USB2.0 OTG  
Specification v2.0.  
Application Examples  
EZ-USB FX3 has integrated USB3.0 and USB2.0 physical layer  
(PHYs) along with a 32-bit ARM926EJ-S microprocessor for  
powerful data processing and for building custom applications. It  
implements an ingenious architecture which enables data  
transfers of 320 MBps[1] from GPIF II to USB interface.  
Figure 1 and Figure 2 show typical application diagrams for  
EZ-USB FX3. Figure 1 shows a typical application diagram in  
which EZ-USB FX3 functions as a co-processor and connects to  
an external processor responsible for various system level  
functions. Figure 2 shows a typical application diagram when  
EZ-USB FX3 functions as the main processor in the system.  
An integrated USB2.0 OTG controller enables applications that  
need dual role usage scenarios, for example EZ-USB FX3 may  
function as OTG Host to MSC and HID class devices.  
Figure 1. EZ-USB FX3 as a Co-processor  
POWER  
SUBSYSTEM  
CRYSTAL*  
External Processor  
EZ-USB FX3  
(ARM9 Core)  
USB  
Port  
GPIF II  
USB Host  
(example: MCU/CPU/ASIC/  
FPGA)  
Serial Interfaces  
(example: I2C)  
External Serial Peripheral  
(example: EEPROM)  
* A clock input may be provided on the  
CLKIN pin instead of a crystal input  
Note  
1. Assuming that GPIF II is configured for 32 bit data bus synchronous interface operating at 100 MHz. This number also includes protocol overheads.  
Document Number 001-52136 Rev. *H  
Page 3 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Figure 2. EZ-USB FX3 as Main Processor  
CRYSTAL*  
EXTERNAL SLAVE  
DEVICE  
(Eg: IMAGE SENSOR)  
EZ-USB FX3  
(ARM9 Core)  
USB  
Port  
GPIF II  
USB Host  
I2C  
* A clock input may be provided on the  
CLKIN pin instead of a crystal input  
EEPROM  
Figure 3. USB Interface Signals  
USB Interface  
EZ-USB FX3  
EZ-USB FX3 supports USB peripheral functionality compliant  
with USB 3.0 Specification Revision 1.0 and is also backward  
compatible with the USB 2.0 Specification.  
VBATT  
VBUS  
EZ-USB FX3 is compliant with On-The-Go Supplement Revision  
2.0. It supports Hi-Speed, Full-Speed, and Low Speed OTG dual  
role device capability. It is SuperSpeed, High-Speed, and  
Full-Speed capable as a peripheral and High-Speed, Full-Speed,  
and Low-Speed capable as a host.  
OTG_ID  
SSRX-  
SSRX+  
SSTX-  
SSTX+  
D-  
D+  
EZ-USB FX3 supports Carkit Pass-Through UART functionality  
on USB D+/D- lines based on the CEA-936A specification.  
EZ-USB FX3 supports up to 16 IN and 16 OUT endpoints.  
OTG  
EZ-USB FX3 fully supports the USB3.0 Streams feature. It also  
supports USB Attached SCSI (UAS) device class to optimize  
mass storage access performance.  
EZ-USB FX3 is compliant with the On-The-Go (OTG) Specifi-  
cation Revision 2.0 .  
As a USB peripheral, EZ-USB FX3 supports UAS, USB Video  
Class (UVC), Mass Storage Class (MSC), and Media Transfer  
Protocol (MTP) USB peripheral classes. As a USB peripheral, all  
other device classes are supported only in pass through mode  
when handled entirely by a host processor external to the device.  
In OTG mode, EZ-USB FX3 supports both A and B device mode  
and supports Control, Interrupt, Bulk, and Isochronous data  
transfers.  
EZ-USB FX3 requires an external charge pump (either stand  
alone or integrated into a PMIC) to power VBUS in OTG A-device  
mode.  
As an OTG host, EZ-USB FX3 supports MSC and HID device  
classes.  
The Target Peripheral List for OTG host implementation consists  
of MSC and HID class devices.  
When the USB port is not in use, the PHY and transceiver may  
be disabled for power savings.  
Attach Detection Protocol (ADP) is not supported by EZ-USB  
FX3.  
Document Number 001-52136 Rev. *H  
Page 4 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
OTG Connectivity  
VBUS Overvoltage Protection  
In OTG mode, EZ-USB FX3 can be configured to be A, B, or dual  
role device. It is able to connect to:  
The maximum input voltage on EZ-USB FX3's VBUS pin is 6V.  
A charger can supply up to 9V on VBUS, in this case, it is  
necessary to have an external Over voltage Protection (OVP)  
device to protect EZ-USB FX3 from damage on VBUS. Figure 4  
shows the system application diagram with an OVP device  
connected on VBUS. Please refer to Table 7DC Specifications  
for the operating range of VBUS and VBATT.  
ACA device  
Targeted USB peripheral  
SRP capable USB peripheral  
HNP capable USB peripheral  
OTG host  
Figure 4. System Diagram with OVP Device For VBUS  
HNP capable host  
OTG device  
POWER SUBSYSTEM  
ReNumeration  
Because EZ-USB FX3's configuration is soft, one chip can take  
on the identities of multiple distinct USB devices.  
When first plugged into USB, EZ-USB FX3 enumerates  
automatically with the Cypress Vendor ID (0x04B4) and  
downloads firmware and USB descriptors over the USB  
interface. The downloaded firmware executes a electrical  
disconnect and connect. EZ-USB FX3 enumerates again, this  
time as a device defined by the downloaded information. This  
patented two step process called ReNumeration happens  
instantly when the device is plugged in.  
EZ-USB FX3  
VBUS  
OTG_ID  
1
2
OVP device  
SSRX-  
SSRX+  
SSTX-  
SSTX+  
D-  
3
4
5
6
7
8
9
D+  
GND  
EZ-Dtect  
EZ-USB FX3 supports USB Charger and accessory detection  
(EZ-Dtect). The charger detection mechanism is in compliance  
with the Battery Charging Specification Revision 1.1. In addition  
to supporting this version of the specification EZ-USB FX3 also  
provides hardware support to detect the resistance values on the  
ID pin.  
Carkit UART Mode  
The USB interface supports Carkit UART mode (UART over  
D+/D-) for non-USB serial data transfer. This is based on the  
CEA-936A specification.  
The following are the resistance ranges that EZ-USB FX3 can  
detect:  
In Carkit UART mode, the output signaling voltage is 3.3V. When  
configured for Carkit UART mode, TXD of UART (output) is  
mapped to D- line, and RXD of UART (input) is mapped to D+  
line.  
Less than 10 Ω  
Less than 1 kΩ  
In Carkit mode, EZ-USB FX3 disables the USB transceiver and  
D+ and D- pins serve as pass through pins to connect to the  
UART of the host processor. The Carkit UART signals may be  
routed to the GPIF II interface or to GPIO[48] and GPIO[49] as  
shown in Figure 5 on page 6.  
65 kΩ to 72 kΩ  
35 kΩ to 39 kΩ  
99.96 kΩ to 104.4 kΩ (102 kΩ ± 2%)  
119 kΩ to 132 kΩ  
A rate of up to 9600 bps is supported by EZ-USB FX3 in this  
mode.  
Higher than 220 kΩ  
431.2 kΩ to 448.8 kΩ (440 kΩ ± 2%)  
EZ-USB FX3's charger detection feature detects a dedicated  
wall charger, Host/Hub charger, and Host/Hub.  
Document Number 001-52136 Rev. *H  
Page 5 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Figure 5. Carkit UART Pass Through Block Diagram  
Carkit UART Pass Through  
Carkit UART pass through  
UART_TXD  
UART_RXD  
TXD  
RXD  
RXD (DP)  
TXD (DM)  
interface on GPIF(TM)II  
interface.  
DP  
USB PHY  
DM  
GPIO[48]  
(UART_TX)  
Carkit UART pass through  
interface on GPIOs  
GPIO[49]  
(UART_RX)  
Note: Access to all 32 buffer is also supported over Slave FIFO  
interface. For details, please contact Cypress Applications  
Support.  
GPIF II  
EZ-USB FX3 offers a high performance General Programmable  
Interface, GPIF II. This interface enables functionality similar to  
but more advanced than FX2LP's GPIF and Slave FIFO  
interfaces.  
Figure 6. Slave FIFO Interface  
SLCS#  
PKTEND  
FLAGB  
FLAGA  
The GPIF II is a programmable state machine that enables a  
flexible interface that may function either as a master or slave in  
industry standard or proprietary interfaces. Both parallel and  
serial interfaces may be implemented with GPIF II.  
A[1:0]  
External  
Processor  
D[31:0]  
SLWR#  
SLRD#  
EZ-USB FX3  
The features of the GPIF II are summarized as follows:  
Functions as master or slave  
SLOE#  
Provides 256 firmware programmable states  
Supports 8 bit, 16 bit and 32 bit parallel data bus  
Enables interface frequencies up to 100 MHz.  
Note: Multiple Flags may be configured.  
Supports 14 configurable control pins when 32 bit data bus is  
used. All control pins can be either input/output or bidirectional.  
CPU  
EZ-USB FX3 has an on chip 32-bit, 200 MHz ARM926EJ-S core  
CPU. The core has direct access to 16kB of Instruction Tightly  
Coupled Memory (TCM) and 8kB of Data TCM. The  
ARM926EJ-S core provides a JTAG interface for firmware  
debugging.  
Supports 16 configurable control pins when 16/8 data bus is  
used. All control pins can be either input/output or bidirectional.  
GPIFII state transitions occur based on control input signals. The  
control output signals are driven as a result of GPIFII state transi-  
tions. The behavior of the GPIFII state machine is defined by a  
GPIFII descriptor. The GPIFII descriptor is designed such that  
the required interface specifications are met. 8kB of memory  
(separate from the 512kB of embedded SRAM) is dedicated as  
GPIF II Waveform memory where the GPIF II descriptor is stored  
in a specific format.  
EZ-USB FX3 also integrates 512 kB of embedded SRAM for  
code and data, and 8kB of Instruction cache and Data cache.  
EZ-USB FX3 implements highly efficient and flexible DMA  
connectivity between the various peripherals (i.e. USB, GPIF II,  
I2S, SPI,UART), requiring firmware to only configure data  
accesses between peripherals which are then managed by the  
DMA fabric.  
Cypress’ GPIFII Designer Tool enables fast development of  
GPIFII descriptors and includes examples for common inter-  
faces.  
EZ-USB FX3 allows for easy application development on  
industry standard development tools for ARM926EJ-S.  
Example implementations of GPIF II are the Asynchronous  
Slave FIFO and Synchronous Slave FIFO interfaces.  
Examples of EZ-USB FX3 firmware are available with the  
Cypress EZ-USB FX3 Development Kit.  
Slave FIFO interface  
Software APIs that can be ported to an external processor are  
available with the Cypress EZ-USB FX3 Software Development  
Kit.  
The Slave FIFO interface signals are shown in Figure 6. This  
interface allows an external processor to directly access upto 4  
buffers internal to EZ-USB FX3. Further details of the Slave FIFO  
interface are described on page 19  
Document Number 001-52136 Rev. *H  
Page 6 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Both SCL and SDA signals of the I2C interface require external  
pull-up resistors. The pull-up resistors must be connected to  
VIO5.  
JTAG Interface  
EZ-USB FX3’s JTAG interface provides a standard five-pin  
interface for connecting to a JTAG debugger to debug firmware  
through the CPU-core's on-chip-debug circuitry.  
2
I S Interface  
EZ-USB FX3 has an I2S port to support external audio codec  
devices. EZ-USB FX3 functions as I2S Master as transmitter  
only. The I2S interface consists of four signals: clock line  
(I2S_CLK), serial data line (I2S_SD), word select line (I2S_WS),  
and master system clock (I2S_MCLK). EZ-USB FX3 can  
generate the system clock as an output on I2S_MCLK or accept  
an external system clock input on I2S_MCLK.  
Industry standard debugging tools for the ARM926EJ-S core can  
be used for EZ-USB FX3 application development.  
Other Interfaces  
EZ-USB FX3 supports the following serial peripherals:  
UART  
I2C  
The sampling frequencies supported by the I2S interface are  
32 kHz, 44.1 kHz, and 48 kHz.  
I2S  
SPI Interface  
SPI  
EZ-USB FX3 supports an SPI Master interface on the Serial  
Peripherals port.The maximum frequency of operation is  
33 MHz.  
The SPI, UART and I2S interfaces are multiplexed on the Serial  
Peripheral port.  
The SPI controller supports four modes of SPI communication  
with Start-Stop clock. The SPI controller is a single master  
controller with a single automated SSN control. It supports  
transaction sizes from 4-bit to 32 bits long.  
The Pin List on page 32 shows details of how these interfaces  
are multiplexed.  
UART Interface  
The UART interface of EZ-USB FX3 supports full duplex  
communication. It includes the signals noted in Table 1.  
Boot Options  
EZ-USB FX3 can load boot images from various sources,  
selected by the configuration of the PMODE pins. The boot  
options for EZ-USB FX3 are listed as follows:  
Table 1. UART Interface Signals  
Signal  
TX  
Description  
Output signal  
Input signal  
Flow control  
Flow control  
Boot from USB  
Boot from I2C  
RX  
CTS  
RTS  
Boot from SPI (SPI devices supported are M25P16 (16 Mbit),  
M25P80 (8 Mbit), and M25P40 (4 Mbit)) or their equivalents  
Boot from GPIF II ASync ADMUX mode  
Boot from GPIF II Sync ADMUX mode  
Boot from GPIF II ASync SRAM mode  
The UART is capable of generating a range of baud rates from  
300 bps to 4608 Kbps selectable by the firmware.  
2
I C Interface  
EZ-USB FX3 has an I2C interface compatible with the I2C Bus  
Specification Revision 3. EZ-USB FX3’s I2C interface is capable  
of operating as I2C Master only, hence may be used to  
communicate with other I2C slave devices. For example,  
EZ-USB FX3 may boot from an EEPROM connected to the I2C  
interface, as a selectable boot option.  
EZ-USB FX3’s I2C Master Controller also supports Multi-master  
mode functionality.  
The power supply for the I2C interface is VIO5, which is a  
separate power domain from the other serial peripherals. This is  
to allow the I2C interface the flexibility to operate at a different  
voltage than the other serial interfaces.  
Table 2. Booting Options for EZ-USB FX3  
PMODE[2:0][2]  
Boot From  
Sync ADMUX (16-bit)  
F00  
F01  
F11  
F0F  
F1F  
1FF  
0F1  
Async ADMUX (16-bit)  
USB boot  
Async SRAM (16-bit)  
I2C, On Failure, USB Boot is Enabled  
I2C only  
SPI, On Failure, USB Boot is Enabled  
The bus frequencies supported by the I2C controller are 100 kHz,  
400 kHz, and 1 MHz. When VIO5 is 1.2V, the maximum  
operating frequency supported is 100 kHz. When VIO5 is 1.8 V,  
2.5 V or 3.3 V, the operating frequencies supported are 400 kHz  
and 1 MHz.  
Note  
2. F indicates Floating.  
Document Number 001-52136 Rev. *H  
Page 7 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Reset  
Clocking  
EZ-USB FX3 allows either a crystal to be connected between the  
XTALIN and XTALOUT pins or an external clock to be connected  
at the CLKIN pin.  
Hard Reset  
A hard reset is initiated by asserting the Reset# pin on EZ-USB  
FX3. The specific reset sequence and timing requirements are  
detailed in Figure 17 and Table 15.  
Crystal frequency supported is 19.2 MHz, while the external  
clock frequencies supported are 19.2, 26, 38.4, and 52 MHz.  
Soft Reset  
EZ-USB FX3 has an on-chip oscillator circuit that uses an  
external 19.2 MHz (±100 ppm) crystal (when the crystal option is  
used). The FSLC[2:0] pins must be configured appropriately to  
select the crystal option/clock frequency option. The configu-  
ration options are shown in Table 3.  
Soft Reset involves the processor setting the appropriate bits in  
the PP_INIT control register. There are two types of Soft Reset:  
CPU Reset - The CPU Program Counter is reset. Firmware  
does not need to be reloaded following a CPU Reset.  
Clock inputs to EZ-USB FX3 must meet the phase noise and  
jitter requirements specified in Table 4.  
Whole Device Reset - This reset is identical to Hard Reset. The  
firmware must be reloaded following a Whole Device Reset.  
The input clock frequency is independent of the clock/data rate  
of EZ-USB FX3 core or any of the device interfaces (including  
P-Port and S-Port). The internal PLL applies the appropriate  
clock multiply option depending on the input frequency.  
Table 3. Crystal/Clock Frequency Selection  
FSLC[2]  
FSLC[1]  
FSLC[0]  
Crystal/ Clock Frequency  
19.2 MHz crystal  
0
1
1
1
1
0
0
0
1
1
0
0
1
0
1
19.2 MHz input CLK  
26 MHz input CLK  
38.4 MHz input CLK  
52 MHz input CLK  
Table 4. Input Clock Specifications for EZ-USB FX3  
Parameter Description  
Phase noise  
Specification  
Units  
Min  
Max  
–75  
–104  
–120  
–128  
–130  
150  
70  
100 Hz Offset  
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
dB  
dB  
dB  
dB  
dB  
ppm  
%
Maximum frequency deviation  
Duty cycle  
30  
Overshoot  
3
%
Undershoot  
–3  
%
Rise time/fall time  
3
ns  
Requirements for the optional 32 kHZ clock input are listed in  
Table 5.  
32-kHz Watchdog Timer Clock Input  
EZ-USB FX3 includes a watchdog timer. The watchdog timer can  
be used to interrupt the ARM926EJ-S core, auto wakeup  
EZ-USB FX3 in Standby mode and reset the ARM926EJ-S core.  
The watch dog timer runs off a 32 kHz clock. This 32 kHz clock  
may optionally be supplied from an external source on a  
dedicated pin of EZ-USB FX3.  
Table 5. 32 kHz Clock Input Requirements  
Parameter  
Duty cycle  
Min  
40  
Max  
60  
Units  
%
Frequency deviation  
Rise time/fall time  
±200  
3
ppm  
ns  
The watchdog timer can be disabled by firmware.  
Document Number 001-52136 Rev. *H  
Page 8 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
VBATT/VBUS: This is the 3.2V to 6V battery power supply for  
the USB I/O, and analog circuits. This supply powers the USB  
transceiver through EZ-USB FX3's internal voltage regulator.  
VBATT is internally regulated to 3.3V.  
Power  
EZ-USB FX3 has the following power supply domains.  
IO_VDDQ: This refers to a group of independent supply domains  
for digital I/Os. The voltage level on these supplies is 1.8V to  
3.3V. EZ-USB FX3 provides six independent supply domains for  
digital I/Os listed as follows. Refer to Table 16 for details on the  
signals assigned to each power domain.  
Power Modes  
EZ-USB FX3 supports different power modes as follows:  
Normal mode: This is the full functional operating mode. In this  
VIO1 - GPIF II I/O power supply domain  
VIO2 - IO2 power supply domain  
mode the internal CPU clock and the internal PLLs are enabled.  
Normal operating power consumption does not exceed the sum  
of ICC_CORE max and ICC_USB max (please refer to Table 7  
for current consumption specifications).  
VIO3 - IO3 power supply domain  
VIO4 - UART/SPI/I2S power supply domain  
The I/O power supplies (VIO1,VIO2,VIO3,VIO4, VIO5) may be  
turned off when the corresponding interface is not in use.  
VIO5 - I2C and JTAG power supply domain (1.2V to 3.3V is  
EZ-USB FX3 supports four low power modes:  
Suspend mode with USB 3.0 PHY enabled (L1)  
Suspend mode with USB 3.0 PHY disabled (L2)  
Standby mode (L3)  
supported)  
CVDDQ - Clock power supply domain  
VDD: This is the supply voltage for the logic core. The nominal  
supply voltage level is 1.2 V. This supplies the core logic  
circuits. The same supply must also be used for the following:  
Core power down mode (L4)  
AVDD: This is the 1.2 V supply for the PLL, crystal oscillator  
and other core analog circuits  
U3TXVDDQ/U3RXVDDQ: These are the 1.2 V supply volt-  
ages for the USB 3.0 interface.  
Document Number 001-52136 Rev. *H  
Page 9 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
The different low power modes are described in Table 6..  
Table 6. Entry and Exit Methods for Low Power Modes  
Low Power Mode Characteristics  
Suspend Mode with Thepowerconsumptioninthis Firmware executing on  
Methods of Entry  
Methods of Exit  
D+ transitioning to low or high  
D- transitioning to low or high  
Impedance change on OTG_ID pin  
Resume condition on SSRX +/-  
Detection of VBUS  
USB 3.0 PHY  
Enabled (L1)  
mode does not exceed ISB1  
ARM926EJ-ScorecanputEZ-USB  
FX3 into suspend mode. For  
example, on USB suspend  
condition, firmware may decide to  
put EZ-USB FX3 into suspend  
mode  
USB 3.0 PHY is enabled and  
is in U3 mode (one of the  
suspend modes defined by  
the USB3.0 specification).  
This one block alone is opera-  
tional with its internal clock  
while all other clocks are shut  
down  
External Processor, through the  
use of mailbox registers can put  
EZ-USB FX3 into suspend mode  
Level detect on UART_CTS  
(programmable polarity)  
GPIF II interface assertion of  
CTL[0]  
AllI/Osmaintaintheirprevious  
state  
Assertion of RESET#  
Power supply for the wakeup  
source and core power must  
be retained. All other power  
domains can be turned on/off  
individually  
Thestatesoftheconfiguration  
registers, buffer memory and  
all internal RAM are  
maintained  
All transactions must be  
completed before EZ-USB  
FX3 enters Suspend mode  
(state of outstanding transac-  
tions are not preserved)  
The firmware resumes  
operation from where it was  
suspended (except when  
woken up by RESET#  
assertion) because the  
program counter does not  
reset  
Document Number 001-52136 Rev. *H  
Page 10 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Table 6. Entry and Exit Methods for Low Power Modes (continued)  
Low Power Mode  
Characteristics  
Methods of Entry  
Methods of Exit  
Suspend Mode with Thepowerconsumptioninthis Firmware executing on  
D+ transitioning to low or high  
D- transitioning to low or high  
Impedance change on OTG_ID pin  
Resume condition on SSRX +/-  
Detection of VBUS  
USB 3.0 PHY  
Disabled (L2)  
mode does not exceed ISB2  
ARM926EJ-ScorecanputEZ-USB  
FX3 into suspend mode. For  
example, on USB suspend  
condition, firmware may decide to  
put EZ-USB FX3 into suspend  
mode  
USB 3.0 PHY is disabled and  
the USB interface is in  
suspend mode  
The clocks are shut off. The  
PLLs are disabled  
External Processor, through the  
use of mailbox registers can put  
EZ-USB FX3 into suspend mode  
Level detect on UART_CTS  
(programmable polarity)  
AllI/Osmaintaintheirprevious  
state  
GPIF II interface assertion of  
CTL[0]  
USB interface maintains the  
previous state  
Assertion of RESET#  
Power supply for the wakeup  
source and core power must  
be retained. All other power  
domains can be turned on/off  
individually  
Thestatesoftheconfiguration  
registers, buffer memory and  
all internal RAM are  
maintained  
All transactions must be  
completed before EZ-USB  
FX3 enters Suspend mode  
(state of outstanding transac-  
tions are not preserved)  
The firmware resumes  
operation from where it was  
suspended (except when  
woken up by RESET#  
assertion) because the  
program counter does not  
reset  
Document Number 001-52136 Rev. *H  
Page 11 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Table 6. Entry and Exit Methods for Low Power Modes (continued)  
Low Power Mode  
Characteristics  
Methods of Entry  
Methods of Exit  
Detection of VBUS  
Standby Mode (L3) Thepowerconsumptioninthis Firmware executing on  
mode does not exceed ISB3  
ARM926EJ-S core or external  
processor configures the appro-  
priate register  
Level detect on UART_CTS  
(Programmable Polarity)  
All configuration register  
settings and program/data  
RAM contents are preserved.  
However, datainthebuffersor  
other parts of the data path, if  
any, is not guaranteed.  
GPIF II interface assertion of  
CTL[0]  
Assertion of RESET#  
Therefore, the external  
processor should take care  
that needed data is read  
before putting EZ-USB FX3  
into this Standby Mode  
The program counter is reset  
on waking up from Standby  
mode  
GPIO pins maintain their  
configuration  
Crystal oscillator is turned off  
Internal PLL is turned off  
USB transceiver is turned off  
ARM926EJ-Scoreispowered  
down. Upon wakeup, the core  
re-startsandrunstheprogram  
stored in the program/data  
RAM  
Power supply for the wakeup  
source and core power must  
be retained. All other power  
domains can be turned on/off  
individually  
Core Power Down  
Mode (L4)  
Thepowerconsumptioninthis Turn off VDD  
mode does not exceed ISB4  
Reapply VDD  
Assertion of RESET#  
Core power is turned off  
All buffer memory, configu-  
ration registers and the  
program RAM do not maintain  
state. It is necessary to reload  
the firmware on exiting from  
this mode  
In this mode, all other power  
domains can be turned on/off  
individually  
Document Number 001-52136 Rev. *H  
Page 12 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Configuration Options  
EMI  
EZ-USB FX3 meets EMI requirements outlined by FCC 15B  
(USA) and EN55022 (Europe) for consumer electronics.  
EZ-USB FX3 can tolerate reasonable EMI conducted by  
aggressor outlined by these specifications and continue to  
function as expected.  
Configuration options are available for specific usage models.  
Contact Cypress Applications/Marketing for details.  
Digital I/Os  
EZ-USB FX3 provides firmware controlled pull up or pull down  
resistors internally on all digital I/O pins. The pins can be pulled  
high through an internal 50 kΩ resistor or can be pulled low  
through an internal 10 kΩ resistor to prevent the pins from  
floating. The I/O pins may have the following states:  
System Level ESD  
EZ-USB FX3 has built-in ESD protection on the D+, D-, GND  
pins on the USB interface. The ESD protection levels provided  
on these ports are:  
Tristated (High-Z)  
± 2.2 KV Human Body Model (HBM) based on JESD22-A114  
Specification  
Weak Pull up (via internal 50 kΩ)  
Pull down (via internal 10 kΩ)  
± 6 KV Contact Discharge and ± 8 KV Air Gap Discharge based  
on IEC61000-4-2 level 3A  
Hold (I/O hold its value) when in low power modes  
± 8 KV Contact Discharge and ± 15 KV Air Gap Discharge  
based on IEC61000-4-2 level 4C.  
The JTAG signals TDI, TMC, TRST# signals have fixed 50 kΩ  
internal pull-ups & the TCK signal has a fixed 10 kΩ pull down  
resistor.  
This protection ensures the device will continue to function after  
ESD events up to the levels stated.  
GPIOs  
The SSRX+, SSRX-, SSTX+, SSTX- pins only have up to +/-  
2.2KV Human Body Model (HBM) internal ESD protection.  
EZ-USB allows for a flexible pin configuration both on the GPIF  
II and the serial peripheral interfaces. Any unused control pins  
on the GPIF II interface may be used as GPIOs. Similarly, any  
unused pins on the serial peripheral interfaces may be  
configured as GPIOs. Please refer to the Pin List for pin config-  
uration options.  
All GPIF II and GPIO pins support an external load of up to 16pF  
per pin.  
Document Number 001-52136 Rev. *H  
Page 13 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Contact discharge, ± 8 KV air gap discharge based on  
IEC61000-4-2 level 3A and ± 8 KV contact discharge, ± 15 KV  
air gap discharge based on IEC61000-4-2 level 4C  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the  
device.  
Latch up current...........................................................> 200 mA  
Maximum output short circuit current  
Storage temperature..................................... –65 °C to +150 °C  
Ambient temperature with  
power supplied (Industrial).................... ......... –40 °C to +85 °C  
for all I/O configurations. (Vout = 0V)[1].................... .. –100 mA  
Operating Conditions  
Supply voltage to ground potential  
VDD, AVDDQ .......................................................................TBD  
TA (ambient temperature under bias)  
VIO1,VIO2, VIO3, VIO4, VIO5.............................................TBD  
U3TXVDDQ, U3RXVDDQ...................................................TBD  
DC input voltage to any input pin.........................................TBD  
Industrial......................................................... –40 °C to +85 °C  
VDD, AVDDQ, U3TXVDDQ, U3RXVDDQ  
Supply voltage...................................................1.15 V to 1.25 V  
VBATT supply voltage.......................... ....................3.2 V to 6 V  
VIO1, VIO2, VIO3, VIO4, CVDDQ  
DC voltage applied to  
outputs in high Z state.................... ..................................... TBD  
Static discharge voltage  
ESD protection levels............................................................  
Supply voltage.......................................................1.7 V to 3.6 V  
VIO5 supply voltage...................... .................... 1.15 V to 3.6 V  
± 2.2 KV human body model (HBM) based on JESD22-A114  
Additional ESD protection levels on D+, D-,  
GND pins and serial Peripherals pins................. ........... ± 6 KV  
Table 7. DC Specifications  
Parameter  
VDD  
Description  
Core voltage supply  
Min  
1.15  
1.15  
1.7  
Max  
1.25  
1.25  
3.6  
Units  
V
Notes  
1.2 V typical  
1.2 V typical  
AVDD  
Analog voltage supply  
V
VIO1  
GPIF II I/O power supply domain  
IO2 power supply domain  
IO3 power supply domain  
UART/SPI/I2S power supply domain  
USB voltage supply  
V
1.8, 2.5 and 3.3 V typical  
1.8, 2.5 and 3.3 V typical  
1.8, 2.5 and 3.3 V typical  
1.8, 2.5 and 3.3 V typical  
3.7 V typical  
VIO2  
1.7  
3.6  
V
VIO3  
1.7  
3.6  
V
VIO4  
1.7  
3.6  
V
VBATT  
VBUS  
3.2  
6
V
USB voltage supply  
4.1  
6
V
5 V typical  
U3TXVDDQ  
U3RXVDDQ  
CVDDQ  
VIO5  
USB3.0 1.2-V supply  
1.15  
1.15  
1.7  
1.25  
1.25  
3.6  
V
1.2 V typical  
USB3.0 1.2-V supply  
V
1.2 V typical  
Clock voltage supply  
I2C and JTAG voltage supply  
V
1.8,3.3 V typical  
1.15  
0.625 × VCC  
3.6  
V
1.2,1.8, 2.5 and 3.3 V typical  
VIH1  
Input HIGH voltage 1  
VCC + 0.3  
V
For 2.0V VCC 3.6 V  
(except USB port)  
VIH2  
Input HIGH voltage 2  
VCC – 0.4  
VCC + 0.3  
V
For 1.7 V VCC 2.0 V  
(except USB port)  
VIL  
Input LOW voltage  
Output HIGH voltage  
Output LOW voltage  
Input leakage current  
–0.3  
0.25 × VCC  
V
V
VOH  
VOL  
IIX  
0.9 × VCC  
0.1 × VCC  
1
IOH (max)= –100 µA  
IOL(min) = +100 µA  
V
–1  
µA  
All I/O signals held at VDDQ  
(For I/Os that have a  
pull-up/down resistor  
connected, the leakage  
current increases by  
VDDQ/Rpu or VDDQ/RPD  
IOZ  
Output High-Z leakage current  
–1  
1
µA  
All I/O signals held at VDDQ  
Document Number 001-52136 Rev. *H  
Page 14 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Table 7. DC Specifications (continued)  
Parameter  
Description  
Core and analog voltage operating  
current  
Min  
Max  
Units  
Notes  
ICC Core  
200  
mA  
Total current through AVDD,  
VDD  
ICC USB  
ISB1  
USB voltage supply operating current  
60  
mA  
mA  
Total suspend current during suspend  
mode with USB 3.0 PHY enabled (L1)  
Core Current: 1.5 mA  
IO Current: 20 uA  
USB Current: 2 mA  
for Typical PVT (Typical  
silicon, all power supplies at  
their respective nominal levels  
at 25°C.)  
ISB2  
ISB3  
ISB4  
Total suspend current during suspend  
mode with USB 3.0 PHY disabled (L2)  
mA  
µA  
µA  
Core Current: 250 uA  
IO Current: 20 uA  
USB Current: 1.2 mA  
for Typical PVT (Typical  
silicon, all power supplies at  
their respective nominal levels  
at 25°C.)  
Total standby current during standby  
mode (L3)  
Core Current: 60 uA  
IO Current: 20 uA  
USB Current: 40 uA  
for Typical PVT (Typical  
silicon, all power supplies at  
their respective nominal levels  
at 25°C.)  
Total standby current during core  
power-down mode (L4)  
Core Current: 0 uA  
IO Current: 20 uA  
USB Current: 40 uA  
for Typical PVT (Typical  
silicon, all power supplies at  
their respective nominal levels  
at 25°C.)  
VRAMP  
VN  
Voltage ramp rate on core and I/O  
supplies  
0.2  
50  
100  
20  
V/ms Voltage ramp must be  
monotonic  
Noise level permitted on VDD and I/O  
supplies  
mV  
Max p-p noise level permitted  
on all supplies except AVDD  
VN_AVDD  
Noise level permitted on AVDD supply  
mV  
Max p-p noise level permitted  
on AVDD  
Document Number 001-52136 Rev. *H  
Page 15 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
AC Timing Parameters  
GPIF II Timing  
Figure 7. GPIF II Timing in Synchronous Mode  
tCLKH tCLKL  
CLK  
tCLK  
tCO  
tHZ  
tDOH  
tCOE  
tDS tDH  
tDOH  
tLZ  
tLZ  
Data1  
( OUT)  
Data2  
( OUT)  
DQ- [31:0]  
Data(IN)  
tS tH  
CTL(IN)  
tCTLO  
tCOH  
CTL( OUT)  
Table 8. GPIF II Timing Parameters in Synchronous Mode[3]  
Parameter Description  
Frequency  
Min  
Max  
100  
Unit  
MHz  
ns  
Interface clock frequency  
Interface clock period  
Clock high time  
tCLK  
tCLKH  
tCLKL  
tS  
10  
4
ns  
Clock low time  
4
ns  
CTL input to clock setup time  
(Sync speed =1)  
2
ns  
tH  
CTL input to clock hold time  
(Sync speed =1)  
0.5  
2
8
9
ns  
ns  
ns  
ns  
tDS  
tDH  
tCO  
tCOE  
Data in to clock setup time  
(Sync speed =1)  
Data in to clock hold time  
(Sync speed =1)  
0.5  
Clock to data out propagation delay when DQ bus is already in  
output direction(Sync speed =1)  
Clock to data out propagation delay when DQ lines change to  
output from tristate and valid data is available on the DQ bus  
(Sync speed =1)  
-
tCTLO  
tDOH  
tCOH  
tHZ  
Clock to CTL out propagation delay (Sync speed =1)  
Clock to data out hold  
2
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock to CTL out hold  
0
Clock to High-Z  
8
tLZ  
Clock to Low-Z (Sync speed =1)  
0
tS_ss0  
tH_ss0  
tCO_ss0  
CTL input/data input to clock setup time (Sync speed = 0)  
CTL input/data input to clock hold time (Sync speed = 0)  
5
2.5  
Clock to data out / CTL out  
15  
propagation delay (sync speed = 0)  
tLZ_ss0  
Clock to low-Z (sync speed = 0)  
2
ns  
Note  
3. All parameters guaranteed by design and validated through characterization.  
Document Number 001-52136 Rev. *H  
Page 16 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Figure 8. GPIF II Timing in Asynchronous Mode  
tAH  
tDH/  
tDS/ tAS  
DATA/ ADDR  
DATA IN  
tCHZ  
tCTLassert_DQlatch  
tCTLdeassert_DQlatch  
CTL#  
(I/P, ALE/DLE)  
tAA/tDO  
tCHZ/tOEHZ  
tCLZ/ tOELZ  
DATA OUT  
DATA OUT  
CTL#  
(I/P, non ALE/ DLE  
tCTLdeassert  
tCTLassert  
tCTLalpha  
ALPHA  
O/P  
tCTLbeta  
BETA  
O/P  
1
tCTLassert + n * tGRANULARITY1  
tCTLdeassert + n * tGRANULARITY  
tCTL#  
(O/P)  
1. n is an integer >= 0  
tDST  
tDHT  
DATA/  
ADDR  
tCTLdeassert_DQassert  
tCTLassert_DQassert  
CTL#  
I/P (non DLE/ALE)  
Figure 9. GPIF II Timing in Asynchronous DDR Mode  
tDS  
tCTLdeassert_DqlatchDDR  
tCTLassert_DQlatchDDR  
CTL#  
(I/P)  
tDS  
tDH  
tDH  
DATA IN  
Document Number 001-52136 Rev. *H  
Page 17 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
[4]  
Table 9. GPIF II Timing in Asynchronous Mode  
Note The following parameters assume one state transition  
Parameter Description  
Min  
Max Units  
Notes  
tDS  
tDH  
Data In to DLE setup time. Valid in DDR async  
also.  
2.3  
ns  
Data In to DLE hold time. Valid in DDR async  
mode.  
2
ns  
tAS  
tAH  
Address In to ALE setup time  
Address In to ALE hold time  
2.3  
2
ns  
ns  
ns  
tCTLassert  
CTL I/O asserted width for CTRL inputs without  
DQ input association and for outputs.  
7
tCTLdeassert  
CTL I/O deasserted width for CTRL inputs  
without DQ input association and for outputs.  
7
ns  
ns  
tCTLassert_DQassert  
CTL asserted pulse width for CTL inputs that  
signify DQ inputs valid at the asserting edge but  
do not employ in-built latches (ALE/DLE) for  
those DQ inputs.  
20  
tCTLdeassert_DQassert  
tCTLassert_DQdeassert  
tCTLdeassert_DQdeassert  
tCTLassert_DQlatch  
CTL deasserted pulse width for CTL inputs that  
signify DQ input valid at the asserting edge but  
do not employ in-built latches (ALE/DLE) for  
those DQ inputs.  
7
7
ns  
ns  
ns  
ns  
ns  
CTL asserted pulse width for CTL inputs that  
signify DQ inputs valid at the de-asserting edge  
but do not employ in-built latches (ALE/DLE) for  
those DQ inputs.  
CTL deasserted pulse width for CTL inputs that  
signify DQ inputs valid at the deasserting edge  
but do not employ in-built latches (ALE/DLE) for  
those DQ inputs.  
20  
7
CTL asserted pulse width for CTL inputs that  
employ in-built latches (ALE/DLE) to latch the  
DQ inputs. In this non_DDR case, in-built  
latches always close at the de-asserting edge.  
tCTLdeassert_DQlatch  
CTL deasserted pulse width for CTL inputs that  
employ in-built latches (ALE/DLE) to latch the  
DQ inputs. In this non-DDR case, in-built  
latches always close at the de-asserting edge.  
10  
tCTLassert_DQlatchDDR  
tCTLdeassert_DQlatchDDR  
CTL asserted pulse width for CTL inputs that  
employ in-built latches (DLE) to latch the DQ  
inputs in DDR mode.  
10  
10  
ns  
ns  
CTL deasserted pulse width for CTL inputs that  
employ in-built latches (DLE) to latch the DQ  
inputs in DDR mode.  
tGRANULARITY  
tAA  
Granularity of tCTLassert/tCTLdeassert for all  
outputs  
5
ns  
ns  
At 200 MHz internal  
clock  
DQ/CTL input to DQ output time when DQ  
change or CTL change needs to be detected  
and affects internal updates of input and output  
DQ lines.  
30  
tDO  
CTL to data out when the CTL change merely  
enables the output flop update whose data was  
already established.  
25  
ns  
Note  
4. All parameters guaranteed by design and validated through characterization.  
Document Number 001-52136 Rev. *H  
Page 18 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
[4]  
Table 9. GPIF II Timing in Asynchronous Mode (continued)  
Note The following parameters assume one state transition  
Parameter Description  
Min  
Max Units  
Notes  
tOELZ  
CTL designated as OE to low-Z. Time when  
external devices should stop driving data.  
0
ns  
tOEHZ  
tCLZ  
CTL designated as OE to High-Z  
8
0
8
ns  
ns  
CTL (non OE) to Low-Z. Time when external  
devices should stop driving data.  
tCHZ  
CTL (non OE) to High-Z  
30  
30  
25  
30  
ns  
ns  
ns  
ns  
ns  
tCTLalpha  
tCTLbeta  
tDST  
CTL to alpha change at output  
CTL to Beta change at output  
Addr/data setup when DLE/ALE not used  
Addr/data hold when DLE/ALE not used  
2
tDHT  
20  
Slave FIFO Interface  
Synchronous Slave FIFO Timing  
Figure 10. Synchronous Slave FIFO Read Mode  
Synchronous Read Cycle Timing  
tCYC  
PCLK  
tCH tCL  
3 cycle latency  
from addr to data  
SLCS  
t
AS tAH  
FIFO ADDR  
An  
Am  
tRDH  
tRDS  
SLRD  
SLOE  
FLAGA  
(Dedicated thread Flag for An)  
(1 = Not Empty 0= Empty)  
FLAGB  
(Dedicated thread Flag for Am)  
(1 = Not Empty 0= Empty)  
tCDH  
tOEZ  
tOELZ  
tOEZ  
tCO  
tOELZ  
High-Z  
Data  
driven:DN(An)  
DN+2(Am)  
DN+1(An)  
DN(Am)  
Data Out  
DN+1(Am)  
SLWR (HIGH)  
Document Number 001-52136 Rev. *H  
Page 19 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
The same sequence of events is shown for a burst read.  
Synchronous Slave FIFO sequence description:  
1. FIFO address is stable and SLCS is asserted  
Note For burst mode, the SLRD# and SLOE# are left asserted  
during the entire duration of the read. When SLOE# is asserted,  
the data bus is driven (with data from the previously addressed  
FIFO). For each subsequent rising edge of PCLK, while the  
SLRD# is asserted, the FIFO pointer is incremented and the next  
data value is placed on the data bus.  
2. SLOE is asserted. SLOE is an output enable only, whose sole  
function is to drive the data bus.  
3. SLRD is asserted  
4. The FIFO pointer is updated on the rising edge of the PCLK,  
whilethe SLRD is asserted. This starts thepropagation ofdata  
from the newly addressed location to the data bus. After a  
propagation delay of tco (measured from the rising edge of  
PCLK) the new data value is present. N is the first data value  
read from the FIFO. To have data on the FIFO data bus, SLOE  
must also be asserted.  
Document Number 001-52136 Rev. *H  
Page 20 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Figure 11. Synchronous Slave FIFO Write Mode  
Synchronous Write Cycle Timing  
tCYC  
PCLK  
tCH tCL  
SLCS  
tAH  
tAS  
Am  
An  
FIFO ADDR  
SLWR  
tWRS  
tWRH  
tCFLG  
FLAGA  
dedicated thread FLAG for An  
(1 = Not Full 0= Full)  
tCFLG  
FLAGB  
current thread FLAG for Am  
(1 = Not Full 0= Full)  
tDS tDH  
tDS tDH  
tDH  
DN(Am)  
DN+1(Am) DN+2(Am)  
DN(An)  
Data IN  
High-Z  
t
PES tPEH  
PKTEND  
SLOE  
(HIGH)  
Synchronous ZLP Write Cycle Timing  
tCYC  
PCLK  
tCH tCL  
SLCS  
tAH  
tAS  
An  
FIFO ADDR  
SLWR  
(HIGH)  
t
PES tPEH  
PKTEND  
tCFLG  
FLAGA  
dedicated thread FLAG for An  
(1 = Not Full 0= Full)  
FLAGB  
current thread FLAG for Am  
(1 = Not Full 0= Full)  
Data IN  
High-Z  
SLOE  
(HIGH)  
Document Number 001-52136 Rev. *H  
Page 21 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
the FIFO data bus is written to the FIFO on every rising edge of  
PCLK. The FIFO pointer is updated on each rising edge of PCLK.  
Synchronous Slave FIFO Write Sequence Description  
FIFO address is stable and the signal SLCS# is asserted  
External master/peripheral outputs the data onto the data bus  
SLWR# is asserted  
Short Packet: A short packet can be committed to the USB host  
by using the PKTEND#. The external device/processor should  
be designed to assert the PKTEND# along with the last word of  
data and SLWR# pulse corresponding to the last word. The  
FIFOADDR lines have to be held constant during the PKTEND#  
assertion.  
While the SLWR# is asserted, data is written to the FIFO and  
on the rising edge of gthe PCLK, the FIFO pointer is incre-  
mented  
Zero Length Packet: The external device/processor can signal a  
Zero Length Packet (ZLP) to EZ-USB FX3, simply by asserting  
PKTEND#, without asserting SLWR#. SLCS# and address must  
be driven as shown in the above timing diagram.  
The FIFO flog is updated after a delay of t  
from the rising  
WFLG  
edge of the clock  
The same sequence of events is also shown for burst write  
FLAG Usage: The FLAG signals are monitored by the external  
processor for flow control. FLAG signals are outputs from  
EZ-USB FX3 that may be configured to show empty/full/partial  
status for a dedicated thread or the current thread being  
addressed.  
Note: Forthe burst mode, SLWR# and SLCS# are left asserted  
for the entire duration of writing all the required data values. In  
this burst write mode, after the SLWR# is asserted, the data on  
[5]  
Table 10. Synchronous Slave FIFO Parameters  
Parameter  
Description  
Min  
Max  
100  
Units  
MHz  
ns  
FREQ  
tCYC  
tCH  
Interface clock frequency  
Clock period  
10  
4
Clock high time  
ns  
tCL  
Clock low time  
4
ns  
tRDS  
tRDH  
tWRS  
tWRH  
tCO  
SLRD# to CLK setup time  
SLRD# to CLK hold time  
SLWR# to CLK setup time  
SLWR# to CLK hold time  
Clock to valid data  
2
ns  
0.5  
2
ns  
ns  
0.5  
ns  
8
ns  
tDS  
Data input setup time  
CLK to data input hold  
Address to CLK setup time  
CLK to address hold time  
SLOE# to data low-Z  
2
ns  
tDH  
0.5  
2
ns  
tAS  
ns  
tAH  
0.5  
0
ns  
tOELZ  
tCFLG  
tOEZ  
tPES  
tPEH  
tCDH  
ns  
CLK to flag output propagation delay  
SLOE# deassert to Data Hi Z  
PKTEND# to CLK setup  
CLK to PKTEND# hold  
CLK to data output hold  
8
ns  
8
ns  
2
ns  
0.5  
2
ns  
Note Three-cycle latency from ADDR to DATA/FLAGS  
.
Note  
5. All parameters guaranteed by design and validated through characterization.  
Document Number 001-52136 Rev. *H  
Page 22 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Asynchronous Slave FIFO Timing  
Figure 12. Asynchronous Slave FIFO Read Mode  
SLCS  
tAS  
tAH  
An  
Am  
FIFO ADDR  
tRDl tRDh  
SLRD  
SLOE  
tFLG  
tRFLG  
FLAGA  
dedicated thread Flag for An  
(1=Not empty 0 = Empty)  
FLAGB  
dedicated thread Flag for Am  
(1=Not empty 0 = Empty)  
tRDO  
tRDO  
tOH  
tOE  
tLZ  
tOE  
tRDO  
tOH  
DN(An)  
DN(An)  
DN(Am)  
DN+1(Am)  
DN+2(Am)  
Data Out  
High-Z  
SLWR  
(HIGH)  
In the above diagram , data N is the first valid data read from the  
FIFO. For data to appear on the data bus during the read cycle  
SLOE# must be in an asserted state. SLRD# and SLOE# can  
also be tied together.  
Asynchronous Slave FIFO Read Sequence  
Description  
FIFO address is stable and the SLCS# signal is asserted.  
SLOE# is asserted. This results in the data bus being driven.  
SLRD # is asserted.  
The same sequence of events is also shown for a burst read.  
Note: In burst read mode, during SLOE# assertion, the data bus  
is in a driven state (data driven is from previously addressed  
FIFO). On assertion of SLRD# data from the FIFO is driven on  
the data bus (SLOE# must also be asserted) and the FIFO  
pointer is incremented on de-assertion of SLRD#.  
Data from the FIFO is driven on assertion of SLRD#. This data  
is valid after a propagation delay of tRDO from the falling edge  
of SLRD#.  
FIFO pointer is incremented on de-assertion of SLRD#  
Document Number 001-52136 Rev. *H  
Page 23 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Figure 13. Asynchronous Slave FIFO Write Mode  
SLCS  
tAS  
tAH  
An  
Am  
FIFO ADDR  
tWRl  
tWRh  
SLWR  
tFLG  
tWFLG  
FLAGA  
dedicated thread Flag for An  
(1=Not Full 0 = Full)  
tWFLG  
FLAGB  
dedicated thread Flag for Am  
(1=Not Full 0 = Full)  
tWR  
tWR  
tWRH  
tWRH  
S
S
High-Z  
DN(An)  
DN(Am)  
DN+1(Am)  
DN+2(Am)  
DATA In  
tWRPE  
tPEh  
PKTEND  
SLOE  
(HIGH)  
Change tWRPE definition to SLWR# de-assert to PKTEND de-assert = 0ns min (This means that PKTEND should not be be deasserted before SLWR#)  
Note: PKTEND must be asserted at the same time as SLWR#.  
Asynchronous ZLP Write Cycle Timing  
SLCS  
tAS  
tAH  
An  
FIFO ADDR  
SLWR  
(HIGH)  
tPEl  
tPEh  
PKTEND  
tWFLG  
FLAGA  
dedicated thread Flag for An  
(1=Not Full 0 = Full)  
FLAGB  
dedicated thread Flag for Am  
(1=Not Full 0 = Full)  
High-Z  
DATA In  
SLOE  
(HIGH)  
Document Number 001-52136 Rev. *H  
Page 24 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Short Packet: A short packet can be committed to the USB host  
by using the PKTEND#. The external device/processor should  
be designed to assert the PKTEND# along with the last word of  
data and SLWR# pulse corresponding to the last word. The  
FIFOADDR lines have to be held constant during the PKTEND#  
assertion.  
Asynchronous Slave FIFO Write Sequence  
Description  
FIFO address is driven and SLCS# is asserted  
SLWR# is asserted. SLCS# must be asserted with SLWR# or  
before SLWR# is asserted  
Zero Length Packet: The external device/processor can signal a  
Zero Length Packet (ZLP) to EZ-USB FX3, simply by asserting  
PKTEND#, without asserting SLWR#. SLCS# and address must  
be driven as shown in the above timing diagram.  
Data must be present on the bus tWRS before the deasserting  
edge of SLWR#  
De-assertion of SLWR# causes the data to be written from the  
data bus to the FIFO and then FIFO pointer is incremented  
FLAG Usage: The FLAG signals are monitored by the external  
processor for flow control. FLAG signals are outputs from  
EZ-USB FX3 that may be configured to show empty/full/partial  
status for a dedicated address or the current address.  
TheFIFOflagisupdatedafterthetWFLGfromthede-asserting  
edge of SLWR.  
The same sequence of events is shown for a burst write.  
Note that in the burst write mode, on SLWR# de-assertion, the  
data is written to the FIFO and then the FIFO pointer is incre-  
mented.  
[6]  
Table 11. Asynchronous Slave FIFO Parameters  
Parameter  
Description  
Min  
20  
10  
7
Max  
Units  
ns  
tRDI  
SLRD# low  
tRDh  
tAS  
SLRD# high  
ns  
Address to SLRD#/SLWR# setup time  
SLRD#/SLWR#/PKTEND to address hold time  
SLRD# to FLAGS output propagation delay  
ADDR to FLAGS output propagation delay  
SLRD# to data valid  
ns  
tAH  
2
ns  
tRFLG  
tFLG  
tRDO  
tOE  
35  
22.5  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OE# low to data valid  
tLZ  
OE# low to data low-Z  
0
tOH  
SLOE# deassert data output hhold  
SLWR# low  
22.5  
tWRI  
tWRh  
tWRS  
tWRH  
tWFLG  
tPEI  
20  
10  
7
SLWR# high  
Data to SLWR# setup time  
SLWR# to Data Hold time  
SLWR#/PKTEND to Flags output propagation delay  
PKTEND low  
2
35  
7.5  
7.5  
0
tPEh  
tWRPE  
PKTEND high  
SLWR# deassert to PKTEND deassert  
Note  
6. All parameters guaranteed by design and validated through characterization.  
Document Number 001-52136 Rev. *H  
Page 25 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Serial Peripherals Timing  
I2C Timing  
Figure 14. I2C Timing Definition  
Document Number 001-52136 Rev. *H  
Page 26 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
[7]  
Table 12. I2C Timing Parameters  
Parameter  
I2C Standard Mode Parameters  
Description  
Min  
Max  
Units  
Notes  
fSCL  
SCL clock frequency  
0
4
100  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
tHD:STA  
tLOW  
Hold time START condition  
LOW period of the SCL  
HIGH period of the SCL  
4.7  
4
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tr  
Setup time for a repeated START condition  
Data hold time  
4.7  
0
Data setup time  
250  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
Data valid time  
1000  
300  
tf  
tSU:STO  
tBUF  
4
4.7  
tVD:DAT  
tVD:ACK  
tSP  
3.45  
3.45  
n/a  
Data valid ACK  
Pulse width of spikes that must be suppressed by input filter  
n/a  
I2C Fast Mode Parameters  
fSCL  
SCL clock frequency  
0
0.6  
1.3  
0.6  
0.6  
0
400  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
ns  
tHD:STA  
tLOW  
Hold time START condition  
LOW period of the SCL  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tr  
HIGH period of the SCL  
Setup time for a repeated START condition  
Data hold time  
Data setup time  
100  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
Data valid time  
300  
300  
tf  
tSU:STO  
tBUF  
0.6  
1.3  
tVD:DAT  
tVD:ACK  
tSP  
0.9  
0.9  
50  
Data valid ACK  
Pulse width of spikes that must be suppressed by input filter  
0
I2C Fast Mode Plus Parameters (Not supported at I2C_VDDQ=1.2V)  
fSCL  
SCL clock frequency  
0
0.26  
0.5  
0.26  
0.26  
0
1000  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
ns  
tHD:STA  
tLOW  
Hold time START condition  
LOW period of the SCL  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tr  
HIGH period of the SCL  
Setup time for a repeated START condition  
Data hold time  
Data setup time  
50  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
Data valid time  
120  
120  
tf  
tSU:STO  
tBUF  
0.26  
0.5  
tVD:DAT  
tVD:ACK  
tSP  
0.45  
0.45  
50  
Data valid ACK  
Pulse width of spikes that must be suppressed by input filter  
0
Note  
7. All parameters guaranteed by design and validated through characterization.  
Document Number 001-52136 Rev. *H  
Page 27 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
I2S Timing Diagram  
Figure 15. I2S Transmit Cycle  
[8]  
Table 13. I2S Timing Parameters  
Parameter  
Description  
Min  
Max  
Units  
ns  
2
tT  
I S transmitter clock cycle  
Ttr  
2
tTL  
tTH  
tTR  
tTF  
tThd  
tTd  
I S transmitter cycle LOW period  
0.35 Ttr  
ns  
2
I S transmitter cycle HIGH period  
0.35 Ttr  
ns  
2
I S transmitter rise time  
0
0.15 Ttr  
0.15 Ttr  
ns  
2
I S transmitter fall time  
ns  
2
I S transmitter data hold time  
ns  
2
I S transmitter delay time  
0.3tT  
ns  
Note tT is selectable through clock gears. Max Ttr is designed for 96 kHz codec at 32 bits to be 326 ns (3.072 MHz).  
Note  
8. All parameters guaranteed by design and validated through characterization.  
Document Number 001-52136 Rev. *H  
Page 28 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
SPI Timing Specification  
Figure 16. SPI Timing  
SSN  
(output)  
tssnh  
tsck  
tlag  
tlead  
SCK  
(CPOL=0,  
Output)  
trf  
twsck  
twsck  
SCK  
(CPOL=1,  
Output)  
tdis  
tsdi  
thoi  
LSB  
MISO  
(input)  
MSB  
MSB  
td  
tsdd  
tdi  
v
MOSI  
(output)  
LSB  
SPI Master Timing for CPHA = 0  
SSN  
(output)  
tssnh  
tsck  
tlag  
tlead  
trf  
SCK  
(CPOL=0,  
Output)  
twsck  
twsck  
SCK  
(CPOL=1,  
Output)  
tdis  
thoi  
LSB  
tsdi  
MISO  
(input)  
MSB  
MSB  
tdi  
tdv  
MOSI  
(output)  
LSB  
SPI Master Timing for CPHA = 1  
Document Number 001-52136 Rev. *H  
Page 29 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
[9]  
Table 14. SPI Timing Parameters  
Parameter  
Description  
Min  
0
Max  
33  
Units  
MHz  
ns  
fop  
Operating frequency  
Cycle time  
tsck  
twsck  
tlead  
tlag  
trf  
30  
Clock high/low time  
SSN-SCK lead time  
Enable lag time  
Rise/fall time  
13.5  
ns  
[10]  
[10]  
1/2 tsck -5  
1.5tsck + 5  
ns  
[10]  
0.5  
1.5 tsck +5  
ns  
8
5
5
ns  
tsdd  
tdv  
Output SSN to valid data delay time  
Output data valid time  
ns  
ns  
tdi  
Output data invalid  
0
ns  
tssnh  
tsdi  
thoi  
tdis  
Minimum SSN high time  
Data setup time input  
10  
8
ns  
ns  
Data hold time input  
0
ns  
Disable data output on SSN high  
0
ns  
Reset Sequence  
The hard reset sequence requirements for EZ-USB FX3 are specified here.  
Table 15. Reset and Standby Timing Parameters  
Parameter  
Definition  
Conditions  
Min (ms)  
Max (ms)  
tRPW  
Minimum RESET# pulse width  
Clock Input  
1
5
5
1
Crystal Input  
tRH  
tRR  
Minimum high on RESET#  
Reset recovery time (after which Boot loader begins  
firmware download)  
tSBY  
tWU  
Time to enter standby/suspend (from the time  
MAIN_CLOCK_EN/ MAIN_POWER_EN bit is set)  
1
Time to wakeup from standby  
Clock Input  
Crystal Input  
1
5
5
tWH  
Minimum time before Standby/Suspend source may  
be reasserted  
Notes  
9. All parameters guaranteed by design and validated through characterization.  
10. Depends on LAG and LEAD setting in SPI_CONFIG register.  
Document Number 001-52136 Rev. *H  
Page 30 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Figure 17. Reset Sequence  
VDD  
( core )  
xVDDQ  
XTALIN/  
CLKIN  
XTALIN/ CLKIN must be stable  
before exiting Standby/Suspend  
tRh  
tRR  
Mandatory  
Reset Pulse  
Hard Reset  
RESET #  
tWH  
tWU  
tRPW  
tSBY  
Standby/  
Suspend  
Source  
Standby/Suspend source Is asserted  
(MAIN_POWER_EN/ MAIN_CLK_EN bit  
is set)  
Standby/Suspend  
source Is deasserted  
Ball Map  
Figure 18. Ball Map for EZ-USB FX3 (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
U3VSSQ  
VIO4  
U3RXVDDQ  
FSLC[0]  
GPIO[55]  
GPIO[51]  
VSS  
SSRXM  
R_USB3  
VDD  
SSRXP  
FSLC[1]  
GPIO[57]  
GPIO[53]  
GPIO[49]  
GPIO[41]  
GPIO[30]  
GPIO[31]  
GPIO[34]  
VSS  
SSTXP  
SSTXM  
CVDDQ  
XTALIN  
CLKIN_32  
FSLC[2]  
TCK  
VSS  
DP  
DM  
VDD  
TDO  
AVDD  
AVSS  
XTALOUT  
CLKIN  
A
B
C
D
E
F
G
H
J
U3TXVDDQ  
RESET#  
GPIO[56]  
GPIO[48]  
GPIO[46]  
GPIO[25]  
GPIO[29]  
GPIO[28]  
GPIO[27]  
VDD  
VSS  
TRST#  
VIO5  
O[60]  
VSS  
R_USB2  
VSS  
GPIO[54]  
GPIO[50]  
GPIO[47]  
VIO2  
OTG_ID  
GPIO[52]  
VIO3  
I2C_GPIO[58] I2C_GPIO[59]  
TDI  
TMS  
VDD  
GPIO[1]  
GPIO[4]  
GPIO[7]  
GPIO[9]  
GPIO[13]  
VIO1  
VBATT  
GPIO[0]  
GPIO[3]  
GPIO[6]  
GPIO[8]  
GPIO[12]  
GPIO[11]  
VBUS  
VDD  
GPIO[45]  
GPIO[42]  
GPIO[39]  
GPIO[36]  
GPIO[33]  
VSS  
GPIO[44]  
GPIO[43]  
GPIO[40]  
GPIO[37]  
VSS  
GPIO[2]  
GPIO[21]  
GPIO[20]  
GPIO[19]  
GPIO[18]  
VDD  
GPIO[5]  
GPIO[15]  
GPIO[24]  
GPIO[14]  
GPIO[17]  
INT#  
VSS  
GPIO[22]  
GPIO[26]  
GPIO[16]  
GPIO[23]  
VSS  
VSS  
VDD  
VIO1  
GPIO[38]  
GPIO[35]  
VSS  
VDD  
GPIO[10]  
VSS  
K
L
VSS  
GPIO[32]  
Document Number 001-52136 Rev. *H  
Page 31 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Pin Description  
Table 16. Pin List  
Pin  
I/O  
Name  
Description  
GPIFII (VIO1 Power Domain)  
GPIF™II Interface  
DQ[0]  
Slave FIFO Interface  
F10  
F9  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
VIO1  
CVDDQ  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
GPIO[0]  
GPIO[1]  
GPIO[2]  
GPIO[3]  
GPIO[4]  
GPIO[5]  
GPIO[6]  
GPIO[7]  
GPIO[8]  
GPIO[9]  
GPIO[10]  
GPIO[11]  
GPIO[12]  
GPIO[13]  
GPIO[14]  
GPIO[15]  
GPIO[16]  
GPIO[17]  
GPIO[18]  
GPIO[19]  
GPIO[20]  
GPIO[21]  
GPIO[22]  
GPIO[23]  
GPIO[24]  
GPIO[25]  
GPIO[26]  
GPIO[27]  
GPIO[28]  
GPIO[29]  
GPIO[30]  
GPIO[31]  
GPIO[32]  
INT#  
DQ[0]  
DQ[1]  
DQ[1]  
F7  
DQ[2]  
DQ[2]  
G10  
G9  
F8  
DQ[3]  
DQ[3]  
DQ[4]  
DQ[4]  
DQ[5]  
DQ[5]  
H10  
H9  
J10  
J9  
DQ[6]  
DQ[6]  
DQ[7]  
DQ[7]  
DQ[8]  
DQ[8]  
DQ[9]  
DQ[9]  
K11  
L10  
K10  
K9  
J8  
DQ[10]  
DQ[11]  
DQ[12]  
DQ[13]  
DQ[14]  
DQ[15]  
PCLK  
DQ[10]  
DQ[11]  
DQ[12]  
DQ[13]  
DQ[14]  
DQ[15]  
CLK  
G8  
J6  
K8  
K7  
J7  
CTL[0]  
SLCS#  
SLWR#  
SLOE#  
SLRD#  
FLAGA  
FLAGB  
GPIO  
CTL[1]  
CTL[2]  
H7  
G7  
G6  
K6  
H8  
G5  
H6  
K5  
J5  
CTL[3]  
CTL[4]  
CTL[5]  
CTL[6]  
CTL[7]  
PKTEND#  
GPIO  
CTL[8]  
CTL[9]  
GPIO  
CTL[10]  
CTL[11]  
CTL[12]  
PMODE[0]  
PMODE[1]  
PMODE[2]  
INT#/CTL[15]  
RESET#  
GPIO  
A1  
H5  
G4  
H4  
L4  
A0  
PMODE[0]  
PMODE[1]  
PMODE[2]  
CTL[15]  
RESET#  
L8  
C5  
RESET#  
IO2 (VIO2 Power Domain)  
GPIF II (32-bit data mode)  
K2  
J4  
K1  
J2  
J3  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO[33]  
GPIO[34]  
GPIO[35]  
GPIO[36]  
GPIO[37]  
DQ[16]  
DQ[17]  
DQ[18]  
DQ[19]  
DQ[20]  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Document Number 001-52136 Rev. *H  
Page 32 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Table 16. Pin List (continued)  
Pin  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Name  
Description  
J1  
H2  
H3  
F4  
G2  
G3  
F3  
F2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
VIO2  
GPIO[38]  
GPIO[39]  
GPIO[40]  
GPIO[41]  
GPIO[42]  
GPIO[43]  
GPIO[44]  
GPIO[45]  
DQ[21]  
DQ[22]  
DQ[23]  
DQ[24]  
DQ[25]  
DQ[26]  
DQ[27]  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
IO3 (VIO3 Power Domain)  
GPIF II - 32  
(FX3)+UART+I2S  
GPIO+I2S  
UART+SPI+  
I2S  
F5  
E1  
E5  
E4  
D1  
D2  
D3  
VIO3  
VIO3  
VIO3  
VIO3  
VIO3  
VIO3  
VIO3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO[46]  
GPIO[47]  
GPIO[48]  
GPIO[49]  
GPIO[50]  
GPIO[51]  
GPIO[52]  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
DQ[28]  
DQ[29]  
DQ[30]  
DQ[31]  
I2S_CLK  
I2S_SD  
I2S_WS  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
UART_RTS  
UART_CTS  
UART_TX  
UART_RX  
I2S_CLK  
I2S_SD  
I2S_WS  
IO4 (VIO4) Power Domain  
D4  
C1  
C2  
D5  
C4  
VIO4  
VIO4  
VIO4  
VIO4  
VIO4  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO[53]  
GPIO[54]  
GPIO[55]  
GPIO[56]  
GPIO[57]  
SPI_SCK  
SPI_SSN  
SPI_MISO  
SPI_MOSI  
GPIO  
UART_RTS  
UART_CTS  
UART_TX  
UART_RX  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
UART_RTS  
UART_CTS  
UART_TX  
UART_RX  
I2S_MCLK  
GPIO  
I2S_CLK  
I2S_SD  
SPI_SCK  
SPI_SSN  
SPI_MISO  
SPI_MOSI  
I2S_MCLK  
I2S_WS  
I2S_MCLK  
USB Port (VBATT/VBUS Power Domain)  
C9  
VBUS/  
VBATT  
I
OTG_ID  
OTG_ID  
USB Port (U3TXVDDQ/U3RXVDDQ Power Domain)  
A3  
A4  
A6  
A5  
U3RXVDDQ  
U3RXVDDQ  
U3TXVDDQ  
U3TXVDDQ  
I
I
SSRXM  
SSRXP  
SSTXM  
SSTXP  
SSRX-  
SSRX+  
O
O
SSTX-  
SSTX+  
USB Port (VBATT/VBUS Power Domain)  
A9  
VBUS/VBATT  
VBUS/VBATT  
I/O  
I/O  
DP  
DM  
NC  
D+  
A10  
A11  
D-  
No connect  
Crystal/Clocks (CVDDQ Power Domain)  
B2  
C6  
C7  
B4  
E6  
D7  
D6  
CVDDQ  
AVDD  
I
FSLC[0]  
XTALIN  
FSLC[0]  
I/O  
XTALIN  
AVDD  
I/O  
XTALOUT  
FSLC[1]  
FSLC[2]  
CLKIN  
XTALOUT  
CVDDQ  
CVDDQ  
CVDDQ  
CVDDQ  
I
I
I
I
FSLC[1]  
FSLC[2]  
CLKIN  
CLKIN_32  
CLKIN_32  
I2C and JTAG (VIO5 Power Domain)  
2
D9  
VIO5  
VIO5  
I/O  
I/O  
I2C_GPIO[58]  
I2C_GPIO[59]  
I C_SCL  
2
D10  
I C_SDA  
Document Number 001-52136 Rev. *H  
Page 33 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Table 16. Pin List (continued)  
Pin  
I/O  
Name  
TDI  
Description  
E7  
C10  
B11  
E8  
VIO5  
VIO5  
VIO5  
VIO5  
VIO5  
VIO5  
I
O
I
TDI  
TDO  
TDO  
TRST#  
TRST#  
TMS  
I
TMS  
F6  
I
TCK  
TCK  
D11  
I/O  
O[60]  
Charger detect output  
Power  
E10  
B10  
A1  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VBATT  
VDD  
U3VSSQ  
VBUS  
VSS  
E11  
D8  
H11  
E2  
VIO1  
VSS  
L9  
VIO1  
VSS  
G1  
F1  
VIO2  
VSS  
G11  
E3  
PWR  
VIO3  
L1  
B1  
L6  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VSS  
VIO4  
VSS  
B6  
B5  
A2  
C11  
L11  
A7  
B7  
C3  
B8  
E9  
B9  
F11  
H1  
L7  
CVDDQ  
U3TXVDDQ  
U3RXVDDQ  
VIO5  
VSS  
AVDD  
AVSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
VDD  
J11  
L5  
VDD  
VDD  
K4  
L3  
VSS  
VSS  
K3  
L2  
VSS  
VSS  
A8  
VSS  
Precision Resistors  
C8  
B3  
VBUS/VBATT  
U3TXVDDQ  
I/O  
I/O  
R_usb2  
R_usb3  
Precision resistor for USB2.0 (Connect a 6.04 kΩ+/-1% resistor between this pin and GND)  
Precision resistor for USB3.0 (Connect a 200 Ω+/-1% resistor between this pin and GND)  
Document Number 001-52136 Rev. *H  
Page 34 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Package Diagram  
Figure 19. 121-Ball FBGA 10x10x1.2 Diagram  
001-54471 *B  
Ordering Information  
Table 17. Ordering Information  
Ordering Code  
Package Type  
CYUSB3014-BZXI  
121-ball BGA  
Ordering Code Definition  
3
CY USB  
XXX BZX I  
:
Temperature range  
Industrial  
Package type: BGA  
Marketing Part Number  
Base part number for USB 3.0  
Marketing Code: USB = USB Controller  
Company ID: CY = Cypress  
Document Number 001-52136 Rev. *H  
Page 35 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Acronyms  
Document Conventions  
Units of Measure  
Symbol  
Acronym  
DMA  
HNP  
MMC  
MTP  
PLL  
Description  
direct memory access  
Unit of Measure  
host negotiation protocol  
multimedia card  
°C  
degree Celsius  
µA  
µs  
microamperes  
microseconds  
milliamperes  
media transfer protocol  
phase locked loop  
mA  
Mbps  
MHz  
ms  
ns  
SD  
secure digital  
Megabytes per second  
mega hertz  
milliseconds  
nanoseconds  
ohms  
SD  
secure digital  
SDIO  
SLC  
secure digital input / output  
single-level cell  
SPI  
serial peripheral interface  
session request protocol  
universal serial bus  
wafer level chip scale package  
Ω
SRP  
pF  
pico Farad  
volts  
USB  
V
WLCSP  
Document Number 001-52136 Rev. *H  
Page 36 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Document History Page  
Document Title: CYUSB3014 EZ-USB® FX3 SuperSpeed USB Controller  
Document Number: 001-52136  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
2669761  
2758370  
VSO/PYRS  
VSO  
03/06/09  
09/01/09  
New Datasheet  
*A  
Updated the part# from CYX01XXBB to CYUSB3011-BZXI  
Changed the title from “ADVANCE” to “ADVANCE INFORMATION”  
In page 1, the second bullet (Flexible Host Interface), add “32-bit, 100 MHz”  
to first sub bullet.  
In page 1, changed the second bullet “Flexible Host Interface” to General  
Programmable Interface”.  
In page 1, the second bullet (Flexible Host Interface), removed "DMA Slave  
Support” and "MMC Slave support with Pass through Boot" sub bullets.  
In page 1, third bullet, changed "50 μA with Core Power" to "60 μA with  
Core Power"  
In page 1, fifth bullet, added "at 1 MHz"  
In page 1, seventh bullet, added "up to 4MHz" to UART  
In page 1, Applications Section, move “Digital Still Cameras” to second line.  
In page 1, Applications Section, added “Machine Vision” and Industrial  
Cameras”  
Added ™ to GPIF and FX3.  
In page 1, updated Logic Block Diagram.  
In page 2, section of “Functional Overview”, updated the whole section.  
In page 2, removed the section of “Product Interface”  
In page 2, removed the section of “Processor Interface (P-Port)”  
In page 2, removed the section of “USB Interface (U-Port)”  
In page 2, removed the section of “Other Interfaces”  
In page 2, added a section of "GPIF II"  
In page 2, added a section of "CPU"  
In page 2, added a section of "JTAG Interface"  
In page 2, added a section of "Boot Options"  
In page 2, added a section of "ReNumeration"  
In page 2, added a section of "Power"  
In the section of “Package”, replaced “West Bridge USB 3.0 Platform” by  
FX3.  
In the section of “Package”, added 0.8 mm pitch in front of BGA.  
Added Pin List (Table 1)  
*B  
2779196  
VSO/PYRS  
09/29/09  
12/08/09  
Features:  
Added the thrid bullet “Fully accessible 32-bit ARM9 core with 512kB of  
embedded SRAM”  
Added the thrid line “EZ USB™ Software and DVK for easy code devel-  
opment”  
Table 1: Pin 74, corrected to NC - No Connect.  
Changed title to EZ-USB™ FX3: SuperSpeed USB Controller  
*C  
*D  
2823531  
3080927  
OSG  
OSG  
Added data sheet to the USB3.0 EROS spec 001-51884. No technical  
updates.  
11/08/2010 Changed status from Advance to Preliminary  
Changed part number from CYUSB3011 to CYUSB3014  
Added the following sections: Power, Configuration Options, Digital I/Os,  
System Level ESD, Absolute Maximum Ratings, AC Timing Parameters,  
Reset Sequence, Package Diagram  
Added DC Specifications table  
Updated feature list  
Updated Pin List  
Added support for selectable clock input frequencies.  
Updated block diagram  
Updated part number  
Updated package diagram  
Document Number 001-52136 Rev. *H  
Page 37 of 38  
[+] Feedback  
PRELIMINARY  
CYUSB3014  
Document Title: CYUSB3014 EZ-USB® FX3 SuperSpeed USB Controller  
Document Number: 001-52136  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*E  
3204393  
OSG  
03/24/2011 Updated Slave FIFO protocol and added ZLP signaling protocol  
Changed GPIFII asynchronous tDO parameter  
Changed Async Slave FIFO tOE parameter  
Changed Async Slave FIFO tRDO parameter  
Added tCOE parameter to GPIFII Sync mode timing parameters  
Renamed GPIFII Sync mode tDO to tCO and tDO_ss0 to tCO_ss0  
Modified description of GPIFII Sync tCO (previously tDO) parameter  
Changed tAH(address hold time) parameter in Async Slave FIFO modes  
to be with respect to rising edge of SLWR#/SLRD# instead of falling edge.  
Correspondingly, changed the tAH number.  
Removed 24 bit data bus support for GPIFII.  
*F  
*G  
*H  
3218493  
3235250  
3217917  
OSG  
GSZ  
OSG  
04/07/2011 Minor ECN - Release to web. No content changes.  
04/20/2011 Minor updates in Features.  
04/06/2011 Updated GPIFII Synchronous Timing diagram. Added SPI Boot option.  
Corrected values of R_USB2 and R_USB3. Corrected TCK and TRST#  
pull-up/pull-down configuration. Minor updates to block diagrams.  
Corrected Synchronous Slave FIFO tDH parameter.  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC Solutions  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Clocks & Buffers  
Interface  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2009-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number 001-52136 Rev. *H  
Revised May 17, 2011  
Page 38 of 38  
®
EZ-USB™ is a trademark and West Bridge is a registered trademark of Cypress Semiconductor Corp. All products and company names mentioned in this document may be the trademarks of their  
respective holders.  
[+] Feedback  

相关型号:

CYUSB3014-BZXIT

IC ARM9 USB CONTROLLER 121FBGA
CYPRESS

CYUSB3014-BZXIT

EZ-USB™ FX3 USB 5 Gbps外设控制器
INFINEON

CYUSB3014-FBXCT

EZ-USB® FX3: SuperSpeed USB Controller
CYPRESS

CYUSB3014-FBXIT

EZ-USB® FX3: SuperSpeed USB Controller
CYPRESS

CYUSB3014_1107

EZ-USB FX3 SuperSpeed USB Controller
CYPRESS

CYUSB301X

EZ-USB® FX3 SuperSpeed USB Controller
CYPRESS

CYUSB301X_13

EZ-USB® FX3: SuperSpeed USB Controller
CYPRESS

CYUSB3023-FBXCT

SD3™ USB and Mass Storage Peripheral Controller
CYPRESS

CYUSB3025-BZXI

USB Bus Controller, CMOS, PBGA121, FBGA-121
CYPRESS

CYUSB3025-BZXI

EZ-USB™ SD3 USB 5 Gbps存储控制器
INFINEON

CYUSB302X

SD3™ USB and Mass Storage Peripheral Controller
CYPRESS

CYUSB3031-BZXC

EZ-USB® FX3S SuperSpeed USB Controller
CYPRESS