CYV15G0203TB-BGC [CYPRESS]

Independent Clock Dual HOTLink II Serializer; 独立时钟双的HOTLink II串行器
CYV15G0203TB-BGC
型号: CYV15G0203TB-BGC
厂家: CYPRESS    CYPRESS
描述:

Independent Clock Dual HOTLink II Serializer
独立时钟双的HOTLink II串行器

电信集成电路 电信电路 信息通信管理 时钟
文件: 总19页 (文件大小:516K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
CYV15G0203TB  
Independent Clock Dual HOTLink II™ Serializer  
Features  
Functional Description  
• Dual channel video serializer  
The CYV15G0203TB Independent Clock Dual HOTLink II™  
Serializer is a point-to-point or point-to-multipoint communica-  
tions building block enabling transfer of data over a variety of  
high-speed serial links including SMPTE 292M and SMPTE  
259M video applications. It supports signaling rates in the  
range of 195 to 1500 Mbps per serial link. The two channels  
are independent and can simultaneously operate at different  
rates. Each channel accepts 10-bit parallel characters in an  
Input Register and converts them to serial data. Figure 1 illus-  
trates typical connections between independent video co-  
processors and corresponding CYV15G0203TB Serializer  
and CYV15G0204RB Reclocking Deserializer chips.  
— 195- to 1500-Mbps serial data signaling rate  
— Simultaneous operation at different signaling rates  
• Second-generation HOTLink® technology  
• Compliant to SMPTE 292M and SMPTE 259M video  
standards  
• Supports half-rate and full-rate clocking  
• Internal phase-locked loops (PLLs) with no external  
PLL components  
• Redundant differential PECL-compatible serial outputs  
per channel  
The CYV15G0203TB satisfies the SMPTE-259M and SMPTE-  
292M compliance as per SMPTE EG34-1999 Pathological  
Test Requirements.  
— No external bias resistors required  
— Signaling-rate controlled edge-rates  
— Internal source termination  
• Synchronous LVTTL parallel interface  
• JTAG boundary scan  
• Built-In Self-Test (BIST) for at-speed link testing  
• Low-power 1.4W @ 3.3V typical  
• Single 3.3V supply  
• Thermally enhanced BGA  
• 0.25µ BiCMOS technology  
As  
a
second-generation  
HOTLink  
device,  
the  
CYV15G0203TB extends the HOTLink family with enhanced  
levels of integration and faster data rates, while maintaining  
serial-link compatibility (data, and BIST) with other HOTLink  
devices. Each channel of the CYV15G0203TB Dual HOTLink  
II device accepts scrambled 10-bit transmission characters.  
These characters are serialized and output from dual Positive  
ECL (PECL) compatible differential transmission-line drivers  
at a bit-rate of either 10- or 20-times the input reference clock  
for that channel.  
Each channel contains an independent BIST pattern  
generator. This BIST hardware allows at-speed testing of the  
high-speed serial data paths in each transmit section of this  
device, each receive section of a connected HOTLink II  
device, and across the interconnecting links.  
The CYV15G0203TB is ideal for SMPTE applications where  
different data rates and serial interface standards are  
necessary for each channel. Some applications include multi-  
format routers, switchers, format converters, and cameras.  
Reclocked  
Output  
10  
10  
Independent  
Channel  
Independent  
Channel  
Serial Links  
CYV15G0203TB  
Serializer  
CYV15G0204RB  
Reclocking Deserializer  
10  
10  
Reclocked  
Output  
Figure 1. HOTLink II™ System Connections  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-02105 Rev. **  
Revised July 21, 2004  
CYV15G0203TB  
PRELIMINARY  
CYV15G0203TB Serializer Logic Block Diagram  
x10  
x10  
Phase  
Align  
Phase  
Align  
Buffer  
Buffer  
Serializer  
Serializer  
TX  
TX  
Document #: 38-02105 Rev. **  
Page 2 of 19  
CYV15G0203TB  
PRELIMINARY  
Serializer Path Block Diagram  
Bit-Rate Clock A  
= Internal Signal  
REFCLKA+  
REFCLKA–  
TXRATEA  
Transmit PLL  
OE[2..1]A  
Clock Multiplier A  
RESET  
SPDSELA  
TXCLKOA  
Character-Rate Clock A  
PABRSTA  
TXERRA  
TXCLKA  
OE[2..1]A  
TXBISTA  
0
1
TXCKSELA  
OUTA1+  
OUTA1–  
10  
10  
10  
TXDA[9:0]  
10  
OUTA2+  
OUTA2–  
Bit-Rate Clock B  
OE[2..1]B  
REFCLKB+  
REFCLKB–  
Transmit PLL  
TXRATEB  
Clock Multiplier B  
SPDSELB  
TXCLKOB  
Character-Rate Clock B  
PABRSTB  
TXERRB  
TXCLKB  
OE[2..1]B  
TXBISTB  
0
1
TXCKSELB  
OUTB1+  
OUTB1–  
10  
10  
10  
TXDB[9:0]  
10  
OUTB2+  
OUTB2–  
JTAG and Device Configuration and Control Block Diagram  
= Internal Signal  
RESET  
TRST  
TXRATE[A..B]  
TXCKSEL[A..B]  
JTAG  
Boundary  
Scan  
WREN  
TMS  
TCLK  
TDI  
PABRST[A..B]  
TXBIST[A..B]  
OE[2..1][A..B]  
Device Configuration  
and Control Interface  
ADDR[2:0]  
DATA[3:0]  
Controller  
TDO  
Document #: 38-02105 Rev. **  
Page 3 of 19  
CYV15G0203TB  
PRELIMINARY  
Pin Configuration (Top View)[1]  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A
B
C
D
E
F
OUT  
B1–  
OUT  
B2–  
OUT  
A1–  
OUT  
A2–  
NC  
NC  
NC  
NC  
V
NC  
GND GND  
GND  
GND GND  
V
V
NC  
V
NC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
OUT  
B1+  
OUT  
B2+  
OUT  
A1+  
OUT  
A2+  
V
NC  
V
NC  
V
V
V
V
GND  
GND  
NC  
NC  
NC  
GND  
GND  
NC  
NC  
V
V
V
NC  
NC  
NC  
NC  
CC  
CC  
CC  
CC  
CC  
CC  
TDI  
TMS  
DATA  
[2]  
DATA  
[0]  
SPD  
TRST  
TDO  
V
V
V
V
V
NC  
NC  
NC  
NC  
NC  
NC  
GND  
CC  
CC  
CC  
SELB  
TCLK RESET  
DATA  
[3]  
DATA  
[1]  
SCAN TMEN3  
EN2  
V
V
V
GND GND  
GND GND GND  
NC  
NC  
CC  
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
CC  
G
H
J
WREN  
SPD  
GND  
GND GND  
NC  
SELA  
GND GND GND GND  
GND GND GND GND  
GND GND GND GND  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
K
L
NC  
NC  
NC  
NC  
NC  
NC  
GND GND  
NC  
NC  
GND  
NC  
GND  
GND  
M
N
P
R
T
GND GND GND GND  
GND GND GND GND  
GND GND GND GND  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
U
V
W
Y
TX  
TX  
TX  
TX  
TX  
ADDR  
[0]  
REF  
TX  
TX  
TX  
V
V
V
V
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
GND  
GND  
GND  
GND  
V
V
V
V
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
DB[0]  
DB[1]  
DB[2]  
DB[9]  
DA[9]  
CLKB– DA[1]  
DA[4]  
DA[8]  
TX  
TX  
TX  
REF  
TX  
TX  
TX  
NC  
GND  
GND  
GND  
NC  
GND  
NC  
DB[3]  
DB[4]  
DB[8]  
CLKB+ CLKOA  
DA[3]  
DA[7]  
TX  
TX  
ADDR ADDR  
TX  
TX  
TX  
REF  
NC  
NC  
NC  
NC  
NC  
NC  
TX  
DB[5]  
DB[7]  
[2]  
[1]  
ERRA  
DA[2]  
DA[6]  
CLKA+  
TX  
TX  
TX  
NC  
TX  
TX  
TX  
REF  
NC  
DB[6] CLKB  
CLKOB  
CLKA  
DA[0]  
DA[5]  
ERRB CLKA–  
1. NC = Do not connect.  
Document #: 38-02105 Rev. **  
Page 4 of 19  
CYV15G0203TB  
PRELIMINARY  
Pin Configuration (Bottom View)[1]  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
OUT  
A2–  
OUT  
A1–  
OUT  
B2–  
OUT  
B1–  
NC  
V
NC  
V
V
GND GND  
GND  
GND GND  
NC  
V
NC  
NC  
NC  
NC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
A
B
C
D
E
F
OUT  
A2+  
OUT  
A1+  
OUT  
B2+  
OUT  
B1+  
NC  
NC  
NC  
NC  
V
V
V
NC  
NC  
GND  
GND  
NC  
NC  
NC  
GND  
GND  
V
V
V
V
NC  
V
NC  
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
TDO  
TRST  
SPD  
DATA  
[0]  
DATA  
[2]  
TMS  
TDI  
GND  
NC  
NC  
NC  
NC  
NC  
NC  
V
V
V
V
V
CC  
CC  
CC  
SELB  
TMEN3 SCAN  
EN2  
DATA  
[1]  
DATA  
[3]  
RESET TCLK  
NC  
NC  
GND GND GND  
GND GND  
V
V
V
CC  
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
SPD  
WREN  
NC  
GND GND  
GND  
G
H
J
SELA  
GND GND GND GND  
GND GND GND GND  
GND GND GND GND  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND GND  
NC  
NC  
NC  
NC  
NC  
NC  
K
L
GND  
GND  
GND  
NC  
NC  
NC  
M
N
P
R
T
GND GND GND GND  
GND GND GND GND  
GND GND GND GND  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
V
V
V
CC  
CC  
CC  
CC  
TX  
TX  
TX  
REF  
ADDR  
[0]  
TX  
TX  
TX  
TX  
TX  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V
V
V
V
GND  
GND  
GND  
GND  
GND  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
U
V
W
Y
DA[8]  
DA[4]  
DA[1] CLKB–  
DA[9]  
DB[9]  
DB[2]  
DB[1]  
DB[0]  
TX  
TX  
TX  
REF  
TX  
TX  
TX  
NC  
GND  
NC  
GND  
GND  
GND  
NC  
DA[7]  
DA[3]  
CLKOA CLKB+  
DB[8]  
DB[4]  
DB[3]  
REF  
TX  
TX  
TX  
ADDR ADDR  
TX  
TX  
NC  
TX  
NC  
NC  
NC  
NC  
NC  
CLKA+  
DA[6]  
DA[2]  
ERRA  
[1]  
[2]  
DB[7]  
DB[5]  
REF  
TX  
TX  
TX  
NC  
TX  
TX  
TX  
NC  
CLKA– ERRB  
DA[5]  
DA[0]  
CLKA  
CLKOB  
CLKB DB[6]  
Document #: 38-02105 Rev. **  
Page 5 of 19  
CYV15G0203TB  
PRELIMINARY  
Pin Definitions  
CYV15G0203TB Dual HOTLink II Serializer  
Name  
I/O Characteristics  
Signal Description  
Transmit Path Data and Status Signals  
TXDA[9:0]  
TXDB[9:0]  
LVTTL Input,  
synchronous,  
sampled by the  
associated  
Transmit Data Inputs. TXDx[9:0] data inputs are captured on the rising edge of the  
transmit interface clock. The transmit interface clock is selected by the TXCKSELx  
latch via the device configuration interface.  
TXCLKxor  
REFCLKx[2]  
TXERRA  
TXERRB  
LVTTL Output,  
synchronous to  
Transmit Path Error. TXERRx is asserted HIGH to indicate detection of a transmit  
Phase-Align Buffer underflow or overflow. If an underflow or overflow condition is  
detected, TXERRx, for the channel in error, is asserted HIGH and remains asserted  
until the transmit Phase-Align Buffer is re-centered with the PABRSTx latch via the  
device configuration interface. When TXBISTx = 0, the BIST progress is presented  
on the associated TXERRx output. The TXERRx signal pulses HIGH for one  
REFCLKx[3]  
,
asynchronous to  
transmit channel  
enable / disable,  
asynchronous to loss transmit-character clock period to indicate a pass through the BIST sequence once  
or return of  
REFCLKx±  
every 511 character times.  
TXERRx is also asserted HIGH, when any of the following conditions is true:  
• The TXPLL for the associated channel is powered down. This occurs when OE2x  
and OE1x for a given channel are both disabled by setting OE2x = 0 and OE1x = 0.  
• The absence of the REFCLKx± signal.  
Transmit Path Clock Signals  
REFCLKA±  
Differential LVPECL  
Reference Clock. REFCLKx± clock inputs are used as the timing references for the  
associated transmit PLL. These input clocks may also be selected to clock the  
transmit parallel interface. When driven by a single-ended LVCMOS or LVTTL clock  
source, connect the clock source to either the true or complement REFCLKx input,  
and leave the alternate REFCLKx input open (floating). When driven by an LVPECL  
clock source, the clock must be a differential clock, using both inputs.  
REFCLKB±  
or single-ended  
LVTTL input clock  
TXCLKA  
TXCLKB  
LVTTL Clock Input,  
internal pull-down  
Transmit Path Input Clock. When configuration latch TXCKSELx = 0, the  
associated TXCLKx input is selected as the character-rate input clock for the  
TXDB[9:0] input. In this mode, the TXCLKx input must be frequency-coherent to its  
associated TXCLKOx output clock, but may be offset in phase by any amount. Once  
initialized, TXCLKx is allowed to drift in phase as much as ±180 degrees. If the input  
phase of TXCLKx drifts beyond the handling capacity of the Phase Align Buffer,  
TXERRx is asserted to indicate the loss of data, and remains asserted until the  
Phase Align Buffer is initialized. The phase of the TXCLKx input clock relative to its  
associated REFCLKx± is initialized when the configuration latch PABRSTx is written  
as 0. When the associated TXERRx is deasserted, the Phase Align Buffer is  
initialized and input characters are correctly captured.  
TXCLKOA  
TXCLKOB  
LVTTL Output  
Transmit Clock Output. TXCLKOx output clock is synthesized by each channel’s  
transmit PLL and operates synchronous to the internal transmit character clock.  
TXCLKOx operates at either the same frequency as REFCLKx± (TXRATEx = 0), or  
at twice the frequency of REFCLKx± (TXRATEx = 1). The transmit clock outputs  
have no fixed phase relationship to REFCLKx±.  
Device Control Signals  
RESET  
LVTTL Input,  
Asynchronous Device Reset. RESET initializes all state machines, counters, and  
configuration latches in the device to a known state. RESET must be asserted LOW  
for a minimum pulse width. When the reset is removed, all state machines, counters  
and configuration latches are at an initial state. See Table 2 for the initialize values  
of the device configuration latches.  
asynchronous,  
internal pull-up  
Notes:  
2. When REFCLKx± is configured for half-rate operation, these inputs are sampled relative to both the rising and falling edges of the associated REFCLKx±.  
3. When REFCLKx± is configured for half-rate operation, these outputs are presented relative to both the rising and falling edges of the associated REFCLKx±.  
Document #: 38-02105 Rev. **  
Page 6 of 19  
CYV15G0203TB  
PRELIMINARY  
Pin Definitions (continued)  
CYV15G0203TB Dual HOTLink II Serializer  
Name  
I/O Characteristics  
Signal Description  
SPDSELA  
3-Level Select[4]  
Serial Rate Select. The SPDSELx inputs specify the operating signaling-rate range  
SPDSELB  
static control input  
of each channel’s PLL.  
LOW = 195 – 400 MBd  
MID = 400 – 800 MBd  
HIGH = 800 – 1500 MBd.  
Device Configuration and Control Bus Signals  
WREN  
LVTTL input,  
Control Write Enable. The WREN input writes the values of the DATA[3:0] bus into  
asynchronous,  
internal pull-up  
the latch specified by the address location on the ADDR[2:0] bus.[5]  
ADDR[2:0]  
LVTTL input  
Control Addressing Bus. The ADDR[2:0] bus is the input address bus used to  
configure the device. The WREN input writes the values of the DATA[3:0] bus into  
the latch specified by the address location on the ADDR[2:0] bus.[5] Table 2 lists the  
configuration latches within the device, and the initialization value of the latches upon  
the assertion of RESET. Table 3 shows how the latches are mapped in the device.  
asynchronous,  
internal pull-up  
DATA[3:0]  
LVTTL input  
Control Data Bus. The DATA[3:0] bus is the input data bus used to configure the  
device. The WREN input writes the values of the DATA[3:0] bus into the latch  
specified by address location on the ADDR[2:0] bus.[5 ] Table 2 lists the configuration  
latches within the device, and the initialization value of the latches upon the assertion  
of RESET. Table 3 shows how the latches are mapped in the device.  
asynchronous,  
internal pull-up  
Internal Device Configuration Latches  
TXCKSEL[A..B] Internal Latch[6]  
Transmit Clock Select.  
TXRATE[A..B]  
TXBIST[A..B]  
OE2[A..B]  
OE1[A..B]  
PABRST[A..B]  
Internal Latch[6]  
Internal Latch[6]  
Internal Latch[6]  
Internal Latch[6]  
Internal Latch[6]  
Transmit PLL Clock Rate Select.  
Transmit Bist Disabled.  
Differential Serial Output Driver 2 Enable.  
Differential Serial Output Driver 1 Enable.  
Transmit Clock Phase Alignment Buffer Reset.  
Factory Test Modes  
SCANEN2  
LVTTL input,  
Factory Test 2. SCANEN2 input is for factory testing only. This input may be left as  
internal pull-down  
a NO CONNECT, or GND only.  
TMEN3  
LVTTL input,  
Factory Test 3. TMEN3 input is for factory testing only. This input may be left as a  
internal pull-down  
NO CONNECT, or GND only.  
Analog I/O  
OUTA1±  
CML Differential  
Output  
Primary Differential Serial Data Output. The OUTx1± PECL-compatible CML  
outputs (+3.3V referenced) are capable of driving terminated transmission lines or  
standard fiber-optic transmitter modules, and must be AC-coupled for PECL-  
compatible connections.  
OUTB1±  
OUTA2±  
OUTB2±  
CML Differential  
Output  
Secondary Differential Serial Data Output. The OUTx2± PECL-compatible CML  
outputs (+3.3V referenced) are capable of driving terminated transmission lines or  
standard fiber-optic transmitter modules, and must be AC-coupled for PECL-compatible  
connections.  
Notes:  
4. 3-Level Select inputs are used for static configuration. These are ternary inputs that make use of logic levels of LOW, MID, and HIGH. The LOW level is usually  
implemented by direct connection to V (ground). The HIGH level is usually implemented by direct connection to V (power). The MID level is usually  
SS  
CC  
implemented by not connecting the input (left floating), which allows it to self bias to the proper level.  
5. See Device Configuration and Control Interface for detailed information on the operation of the Configuration Interface.  
6. See Device Configuration and Control Interface for detailed information on the internal latches.  
Document #: 38-02105 Rev. **  
Page 7 of 19  
CYV15G0203TB  
PRELIMINARY  
Pin Definitions (continued)  
CYV15G0203TB Dual HOTLink II Serializer  
Name  
I/O Characteristics  
Signal Description  
JTAG Interface  
TMS  
LVTTL Input,  
Test Mode Select. Used to control access to the JTAG Test Modes. If maintained  
high for 5 TCLK cycles, the JTAG test controller is reset.  
internal pull-up  
TCLK  
TDO  
TDI  
LVTTL Input,  
JTAG Test Clock.  
internal pull-down  
3-State LVTTL Output Test Data Out. JTAG data output buffer. High-Z while JTAG test mode is not  
selected.  
Test Data In. JTAG data input port.  
LVTTL Input,  
internal pull-up  
TRST  
LVTTL Input,  
JTAG reset signal. When asserted (LOW), this input asynchronously resets the  
internal pull-up  
JTAG test access port controller.  
Power  
VCC  
+3.3V Power.  
GND  
Signal and Power Ground for all internal circuits.  
CYV15G0203TB HOTLink II Operation  
The CYV15G0203TB is a highly configurable, independent  
clocking, dual-channel serializer, designed to support reliable  
transfer of large quantities of digital video data, using high-  
speed serial links from multiple sources to multiple destina-  
tions. This device supports two 10-bit channels.  
reset. While the error remains active, the transmitter for that  
channel outputs a continuous “1001111000” character (LSB  
first) to indicate to the remote receiver that an error condition  
is present in the link.  
Transmit BIST  
CYV15G0203TB Transmit Data Path  
Input Register  
Each channel contains an internal pattern generator that can  
be used to validate both the link and device operation. These  
generators are enabled by the associated TXBISTx latch via  
the device configuration interface. When enabled, a register in  
The parallel input bus TXDx[9:0] can be clocked in using  
TXCLKx (TXCKSELx = 0) or REFCLKx (TXCKSELx = 1).  
the associated channel becomes  
a signature pattern  
generator by logically converting to a Linear Feedback Shift  
Register (LFSR). This LFSR generates a 511-character  
sequence. This provides a predictable yet pseudo-random  
sequence that can be matched to an identical LFSR in the  
attached Receiver(s).  
Phase-Align Buffer  
Data from each Input Register is passed to the associated  
Phase-Align Buffer, when the TXDx[9:0] input registers are  
clocked using TXCLKx (TXCKSELx = 0 and TXRATEx = 0).  
When the TXDx[9:0] input registers are clocked using  
REFCLKx± (TXCKSELx = 1) and REFCLKx± is a full-rate  
clock, the associated Phase Alignment Buffer in the transmit  
path is bypassed. These buffers are used to absorb clock  
phase differences between the TXCLKx input clock and the  
internal character clock for that channel.  
A device reset (RESET sampled LOW) presets the BIST  
Enable Latches to disable BIST on both channels.  
All data present at the associated TXDx[9:0] inputs are ignored  
when BIST is active on that channel.  
Transmit PLL Clock Multiplier  
Once initialized, TXCLKx is allowed to drift in phase as much  
as ±180 degrees. If the input phase of TXCLKx drifts beyond  
the handling capacity of the Phase Align Buffer, TXERRx is  
asserted to indicate the loss of data, and remains asserted  
until the Phase Align Buffer is initialized. The phase of the  
TXCLKx relative to its associated internal character rate clock  
is initialized when the configuration latch PABRSTx is written  
as 0. When the associated TXERRx is deasserted, the Phase  
Align Buffer is initialized and input characters are correctly  
captured.  
If the phase offset, between the initialized location of the input  
clock and REFCLKx, exceeds the skew handling capabilities  
of the Phase-Align Buffer, an error is reported on that  
channel’s TXERRx output. This output indicates an error  
continuously until the Phase-Align Buffer for that channel is  
Each Transmit PLL Clock Multiplier accepts a character-rate  
or half-character-rate external clock at the associated  
REFCLKx± input, and that clock is multiplied by 10 or 20 (as  
selected by TXRATEx) to generate a bit-rate clock for use by  
the transmit shifter. It also provides a character-rate clock used  
by the transmit paths, and outputs this character rate clock as  
TXCLKOx.  
Each clock multiplier PLL can accept a REFCLKx± input  
between 19.5 MHz and 150 MHz, however, this clock range is  
limited by the operating mode of the CYV15G0203TB clock  
multiplier (TXRATEx) and by the level on the associated  
SPDSELx input.  
SPDSELx are 3-level select[4] inputs that select one of three  
operating ranges for the serial data outputs and inputs of the  
Document #: 38-02105 Rev. **  
Page 8 of 19  
CYV15G0203TB  
PRELIMINARY  
associated channel. The serial signaling-rate and allowable  
When a driver is disabled via the configuration interface, it is  
internally powered down to reduce device power. If both serial  
drivers for a channel are in this disabled state, the associated  
internal logic for that channel is also powered down. A device  
reset (RESET sampled LOW) disables all output drivers.  
range of REFCLKx± frequencies are listed in Table 1.  
Table 1. Operating Speed Settings  
REFCLKx±  
Frequency  
(MHz)  
Signaling  
Note. When a disabled channel (i.e., both outputs disabled) is  
SPDSELx  
TXRATEx  
Rate (Mbps)  
re-enabled:  
LOW  
1
0
1
0
1
0
reserved  
19.5 – 40  
20 – 40  
40 – 80  
40 – 75  
195 – 400  
400 – 800  
800 – 1500  
• data on the serial outputs may not meet all timing specifi-  
cations for up to 250 µs  
• the state of the phase-align buffer cannot be guaranteed,  
and a phase-align reset is required if the phase-align buffer  
is used  
MID (Open)  
HIGH  
Device Configuration and Control Interface  
80 – 150  
The CYV15G0203TB is highly configurable via the configu-  
ration interface. The configuration interface allows each  
channel to be configured independently. Table 2 lists the  
configuration latches within the device including the initial-  
ization value of the latches upon the assertion of RESET.  
Table 3 shows how the latches are mapped in the device.  
Each row in the Table 3 maps to a 4-bit latch bank. There are  
6 such write-only latch banks. When WREN = 0, the logic value  
in the DATA[3:0] is latched to the latch bank specified by the  
values in ADDR[2:0]. The second column of Table 3 specifies  
the channels associated with the corresponding latch bank.  
For example, the first three latch banks (0,1 and 2) consist of  
configuration bits for channel A.  
The REFCLKx± inputs are differential inputs with each input  
internally biased to 1.4V. If the REFCLKx+ input is connected  
to a TTL, LVTTL, or LVCMOS clock source, the input signal is  
recognized when it passes through the internally biased  
reference point. When driven by a single-ended TTL, LVTTL,  
or LVCMOS clock source, connect the clock source to either  
the true or complement REFCLKx input, and leave the  
alternate REFCLKx input open (floating).  
When both the REFCLKx+ and REFCLKx– inputs are  
connected, the clock source must be a differential clock. This  
can either be a differential LVPECL clock that is DC-or  
AC-coupled or a differential LVTTL or LVCMOS clock.  
By connecting the REFCLKx– input to an external voltage  
source, it is possible to adjust the reference point of the  
REFCLKx+ input for alternate logic levels. When doing so, it  
is necessary to ensure that the input differential crossing point  
remains within the parametric range supported by the input.  
Latch Types  
There are two types of latch banks: static (S) and dynamic (D).  
Each channel is configured by 2 static and 1 dynamic latch  
banks. The S type contain those settings that normally do not  
change for a given application, whereas the D type controls  
the settings that could change during the application's lifetime.  
The first and second rows of each channel (address numbers  
0, 1, 5, and 6) are the static control latches. The third row of  
latches for each channel (address numbers 2 and 7) are the  
dynamic control latches. Address numbers 3 and 4 are internal  
test registers.  
Serial Output Drivers  
The serial output interface drivers use differential Current  
Mode Logic (CML) drivers to provide source-matched drivers  
for 50transmission lines. These drivers accept data from the  
Transmit Shifter, which shifts the data out LSB first. These  
drivers have signal swings equivalent to that of standard PECL  
drivers, and are capable of driving AC-coupled optical  
modules or transmission lines.  
Static Latch Values  
There are some latches in the table that have a static value  
(i.e. 1, 0, or X). The latches that have a ‘1’ or ‘0’ must be  
configured with their corresponding value each time that their  
associated latch bank is configured. The latches that have an  
‘X’ are don’t cares and can be configured with any value.  
Transmit Channels Enabled  
Each driver can be enabled or disabled separately via the  
device configuration interface.  
Table 2. Device Configuration and Control Latch Descriptions  
Name  
Signal Description  
TXCKSELA  
Transmit Clock Select. The initialization value of the TXCKSELx latch = 1. TXCKSELx selects the clock  
source used to write data into the Transmit Input Register. When TXCKSELx = 1, the associated input  
register TXDx[9:0] is clocked by REFCLKx↑. In this mode, the phase alignment buffer is bypassed. When  
TXCKSELx = 0, the associated TXCLKxis used to clock in the input register TXDx[9:0].  
TXCKSELB  
TXRATEA  
TXRATEB  
Transmit PLL Clock Rate Select. The initialization value of the TXRATEx latch = 0. TXRATEx is used  
to select the clock multiplier for the Transmit PLL. When TXRATEx = 0, each transmit PLL multiples the  
associated REFCLKx± input by 10 to generate the serial bit-rate clock. When TXRATEx = 0, the  
TXCLKOx output clocks are full-rate clocks and follow the frequency and duty cycle of the associated  
REFCLKx± input. When TXRATEx = 1, each Transmit PLL multiplies the associated REFCLKx± input  
by 20 to generate the serial bit-rate clock. When TXRATEx = 1, the TXCLKOx output clocks are twice  
the frequency rate of the REFCLKx± input. When TXCLKSELx = 1 and TXRATEx = 1, the Transmit Data  
Inputs are captured using both the rising and falling edges of REFCLKx. TXRATEx = 1 and SPDSELx  
= LOW, is an invalid state and this combination is reserved.  
Document #: 38-02105 Rev. **  
Page 9 of 19  
CYV15G0203TB  
PRELIMINARY  
Table 2. Device Configuration and Control Latch Descriptions (continued)  
TXBISTA  
TXBISTB  
Transmit Bist Disabled. The initialization value of the TXBISTx latch = 1. TXBISTx selects if the transmit  
BIST is disabled or enabled. When TXBISTx = 1, the transmit BIST function is disabled. When  
TXBISTx = 0, the transmit BIST function is enabled.  
OE2A  
OE2B  
Secondary Differential Serial Data Output Driver Enable. The initialization value of the OE2x latch =  
0. OE2x selects if the OUT2x± secondary differential output drivers are enabled or disabled. When OE2x  
= 1, the associated serial data output driver is enabled allowing data to be transmitted from the transmit  
shifter. When OE2x = 0, the associated serial data output driver is disabled. When a driver is disabled  
via the configuration interface, it is internally powered down to reduce device power. If both serial drivers  
for a channel are in this disabled state, the associated internal logic for that channel is also powered  
down. A device reset (RESET sampled LOW) disables all output drivers.  
OE1A  
OE1B  
Primary Differential Serial Data Output Driver Enable. The initialization value of the OE1x latch = 0.  
OE1x selects if the OUT1x± primary differential output drivers are enabled or disabled. When OE1x =  
1, the associated serial data output driver is enabled allowing data to be transmitted from the transmit  
shifter. When OE1x = 0, the associated serial data output driver is disabled. When a driver is disabled  
via the configuration interface, it is internally powered down to reduce device power. If both serial drivers  
for a channel are in this disabled state, the associated internal logic for that channel is also powered  
down. A device reset (RESET sampled LOW) disables all output drivers.  
PABRSTA  
PABRSTB  
Transmit Clock Phase Alignment Buffer Reset. The initialization value of the PABRSTx latch = 1. The  
PABRSTx is used to re-center the Transmit Phase Align Buffer. When the configuration latch PABRSTx  
is written as a 0, the phase of the TXCLKx input clock relative to its associated REFCLKx+/- is initialized.  
PABRST is an asynchronous input, but is sampled by each TXCLKxto synchronize it to the internal  
clock domain. PABRSTx is a self clearing latch. This eliminates the requirement of writing a 1 to complete  
the initialization of the Phase Alignment Buffer.  
Device Configuration Strategy  
2. Set the static latch banks for the target channel.  
The following is a series of ordered events needed to load the  
3. Set the dynamic bank of latches for the target channel.  
configuration latches on a per channel basis:  
Enable the output drivers. [Required step.]  
1. Pulse RESET Low after device power-up. This operation  
resets both channels.  
4. Reset the Phase Alignment Buffer for the target channel.  
[Optional if phase align buffer is bypassed.]  
Table 3. Device Control Latch Configuration Table  
Reset  
ADDR  
Channel  
Type  
DATA3  
DATA2  
DATA1  
DATA0  
Value  
0
A
S
X
X
0
X
1111  
(000b)  
1
A
A
B
B
B
S
D
S
S
D
X
TXBISTA  
X
0
OE2A  
X
TXCKSELA  
OE1A  
TXRATEA  
PABRSTA  
X
0110  
1001  
1111  
0110  
1001  
(001b)  
2
(010b)  
9
0
(101b)  
10  
X
0
TXCKSELB  
OE1B  
TXRATEB  
PABRSTB  
(110b)  
11  
TXBISTB  
OE2B  
(111b)  
3-Level Select Inputs  
JTAG Support  
Each 3-Level select inputs reports as two bits in the scan  
register. These bits report the LOW, MID, and HIGH state of  
the associated input as 00, 10, and 11 respectively  
The CYV15G0203TB contains a JTAG port to allow system  
level diagnosis of device interconnect. Of the available JTAG  
modes, boundary scan, and bypass are supported. This  
capability is present only on the LVTTL inputs and outputs and  
the REFCLKx± clock input. The high-speed serial inputs and  
outputs are not part of the JTAG test chain.  
JTAG ID  
The JTAG device ID for the CYV15G0203TB is ‘0C810069’x.  
Document #: 38-02105 Rev. **  
Page 10 of 19  
CYV15G0203TB  
PRELIMINARY  
Static Discharge Voltage..........................................> 2000 V  
Maximum Ratings  
(per MIL-STD-883, Method 3015)  
Above which the useful life may be impaired. User guidelines  
Latch-up Current.....................................................> 200 mA  
only, not tested  
Power-up Requirements  
Storage Temperature ..................................65°C to +150°C  
The CYV15G0203TB requires one power-supply. The Voltage  
on any input or I/O pin cannot exceed the power pin during  
power-up.  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Supply Voltage to Ground Potential............... –0.5V to +3.8V  
Operating Range  
DC Voltage Applied to LVTTL Outputs  
in High-Z State .......................................–0.5V to VCC + 0.5V  
Range  
Ambient Temperature  
VCC  
+3.3V ±5%  
Output Current into LVTTL Outputs (LOW)..................60 mA  
DC Input Voltage....................................–0.5V to VCC + 0.5V  
Commercial  
0°C to +70°C  
CYV15G0203TB DC Electrical Characteristics  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
LVTTL-compatible Outputs  
VOHT  
VOLT  
IOST  
IOZL  
Output HIGH Voltage  
Output LOW Voltage  
Output Short Circuit Current  
IOH = 4 mA, VCC = Min.  
IOL = 4 mA, VCC = Min.  
VOUT = 0V[7], VCC = 3.3V  
VOUT = 0V, VCC  
2.4  
V
V
mA  
µA  
0.4  
–100  
20  
–20  
–20  
High-Z Output Leakage Current  
LVTTL-compatible Inputs  
VIHT  
VILT  
IIHT  
Input HIGH Voltage  
Input LOW Voltage  
Input HIGH Current  
2.0  
–0.5  
VCC + 0.3  
0.8  
V
V
REFCLKx Input, VIN = VCC  
Other Inputs, VIN = VCC  
REFCLKx Input, VIN = 0.0V  
Other Inputs, VIN = 0.0V  
1.5  
+40  
–1.5  
–40  
+200  
–200  
mA  
µA  
mA  
µA  
µA  
µA  
IILT  
Input LOW Current  
IIHPDT  
IILPUT  
Input HIGH Current with internal pull-down VIN = VCC  
Input LOW Current with internal pull-up  
VIN = 0.0V  
LVDIFF Inputs: REFCLKx±  
[8]  
VDIFF  
Input Differential Voltage  
400  
1.2  
0.0  
1.0  
VCC  
VCC  
VCC/2  
mV  
V
V
VIHHP  
Highest Input HIGH Voltage  
Lowest Input LOW voltage  
Common Mode Range  
VILLP  
VCOMREF  
[9]  
VCC – 1.2V  
V
3-Level Inputs  
VIHH  
VIMM  
VILL  
IIHH  
IIMM  
IILL  
Three-Level Input HIGH Voltage  
Min. VCC Max.  
Min. VCC Max.  
Min. VCC Max.  
VIN = VCC  
VIN = VCC/2  
VIN = GND  
0.87 * VCC  
0.47 * VCC  
0.0  
VCC  
0.53 * VCC  
0.13 * VCC  
200  
V
V
V
µA  
µA  
µA  
Three-Level Input MID Voltage  
Three-Level Input LOW Voltage  
Input HIGH Current  
Input MID current  
–50  
50  
–200  
Input LOW current  
Differential CML Serial Outputs: OUTA1±, OUTA2±, OUTB1±, OUTB2±, OUTC1±, OUTC2±, OUTD1±, OUTD2±  
VOHC  
VOLC  
VODIF  
Output HIGH Voltage  
100differential load  
150differential load  
100differential load  
150differential load  
100differential load  
150differential load  
V
CC – 0.5  
VCC – 0.2  
VCC – 0.2  
V
V
V
V
mV  
mV  
(Vcc Referenced)  
VCC – 0.5  
VCC – 1.4 VCC – 0.7  
VCC – 1.4  
450  
Output LOW Voltage  
(VCC Referenced)  
VCC – 0.7  
900  
1000  
Output Differential Voltage  
|(OUT+) (OUT)|  
560  
7. Tested one output at a time, output shorted for less than one second, less than 10% duty cycle.  
8. This is the minimum difference in voltage between the true and complement inputs required to ensure detection of a logic-1 or logic-0. A logic-1 exists when  
the true (+) input is more positive than the complement () input. A logic-0 exists when the complement () input is more positive than true (+) input.  
9. The common mode range defines the allowable range of REFCLKx+ and REFCLKxwhen REFCLKx+ = REFCLKx. This marks the zero-crossing between  
the true and complement inputs as the signal switches between a logic-1 and a logic-0.  
Document #: 38-02105 Rev. **  
Page 11 of 19  
CYV15G0203TB  
PRELIMINARY  
CYV15G0203TB DC Electrical Characteristics (continued)  
Parameter  
Description  
Test Conditions  
Min.  
Typ.  
435  
Max.  
Max.  
530  
Unit  
Power Supply  
[10,11]  
ICC  
Max Power Supply Current  
REFCLKx Commercial  
= MAX  
REFCLKx Commercial  
mA  
mA  
[10,11]  
ICC  
Typical Power Supply Current  
425  
520  
= 125 MHz  
AC Test Loads and Waveforms  
3.3V  
RL = 100Ω  
R
L
R1  
R2  
R1 = 590Ω  
R2 = 435Ω  
CL 7 pF  
(Includes fixture and  
probe capacitance)  
CL  
(b) CML Output Test LoadNote 12  
(Includes fixture and  
probe capacitance)  
(a) LVTTL Output Test Load Note 12  
VIHE  
3.0V  
VIHE  
VILE  
2.0V  
0.8V  
2.0V  
0.8V  
80%  
80%  
Vth = 1.4V  
Vth = 1.4V  
20%  
20%  
GND  
VILE  
270 ps  
270 ps  
1 ns  
1 ns  
(c) LVTTL Input Test Waveform Note 13  
(d) CML/LVPECL Input Test Waveform  
CYV15G0203TB AC Electrical Characteristics  
Parameter  
Description  
Min.  
Max  
Unit  
CYV15G0203TB Transmitter LVTTL Switching Characteristics Over the Operating Range  
fTS  
tTXCLK  
tTXCLKH  
tTXCLKL  
TXCLKx Clock Cycle Frequency  
TXCLKx Period=1/fTS  
TXCLKx HIGH Time  
TXCLKx LOW Time  
TXCLKx Rise Time  
19.5  
6.66  
2.2  
2.2  
0.2  
150  
51.28  
MHz  
ns  
ns  
ns  
ns  
[14]  
[14]  
[14, 15, 16,  
tTXCLKR  
1.7  
1.7  
17]  
[14, 15, 16,  
tTXCLKF  
TXCLKx Fall Time  
0.2  
ns  
17]  
tTXDS  
tTXDH  
fTOS  
tTXCLKO  
tTXCLKOD  
Transmit Data Set-up Time to TXCLKx(TXCKSELx = 0)  
Transmit Data Hold Time from TXCLKx(TXCKSELx = 0)  
TXCLKOx Clock Frequency = 1x or 2x REFCLKx Frequency  
TXCLKOx Period=1/fTOS  
2.2  
0.8  
19.5  
6.66  
-1.9  
ns  
ns  
MHz  
ns  
150  
51.28  
0
TXCLKO Duty Cycle centered at 60% HIGH time  
ns  
Notes:  
10. Maximum I is measured with V = MAX, T = 25°C, with both channels and Serial Line Drivers enabled, sending a continuous alternating 01 pattern, and  
CC  
CC  
A
outputs unloaded.  
11. Typical I is measured under similar conditions except with V = 3.3V, T = 25°C, with both channels enabled and one Serial Line Driver per channel sending  
CC  
CC  
A
a continuous alternating 01 pattern. The redundant outputs on each channel are powered down.  
12. Cypress uses constant current (ATE) load configurations and forcing functions. This figure is for reference only.  
13. The LVTTL switching threshold is 1.4V. All timing references are made relative to where the signal edges cross the threshold voltage.  
14. Tested initially and after any design or process changes that may affect these parameters, but not 100% tested.  
15. The ratio of rise time to falling time must not vary by greater than 2:1.  
16. For a given operating frequency, neither rise or fall specification can be greater than 20% of the clock-cycle period or the data sheet maximum time.  
17. All transmit AC timing parameters measured with 1ns typical rise time and fall time.  
Document #: 38-02105 Rev. **  
Page 12 of 19  
CYV15G0203TB  
PRELIMINARY  
CYV15G0203TB AC Electrical Characteristics (continued)  
Parameter  
Description  
Min.  
Max  
Unit  
CYV15G0203TB REFCLKx Switching Characteristics Over the Operating Range  
fREF  
tREFCLK  
tREFH  
REFCLKx Clock Frequency  
REFCLKx Period = 1/fREF  
REFCLKx HIGH Time (TXRATEx = 1)(Half Rate)  
REFCLKx HIGH Time (TXRATEx = 0)(Full Rate)  
REFCLKx LOW Time (TXRATEx = 1)(Half Rate)  
REFCLKx LOW Time (TXRATEx = 0)(Full Rate)  
REFCLKx Duty Cycle  
19.5  
6.6  
150  
51.28  
MHz  
ns  
ns  
ns  
ns  
ns  
%
ns  
ns  
ns  
5.9  
2.9[14]  
5.9  
tREFL  
2.9[14]  
30  
[18]  
tREFD  
tREFR  
tREFF  
tTREFDS  
70  
2
2
[14, 15, 16, 17]  
REFCLKx Rise Time (20%–80%)  
REFCLKx Fall Time (20%–80%)  
[14, 15, 16, 17]  
Transmit Data Set-up Time to REFCLKx - Full Rate (TXRATEx = 0,  
2.2  
1.9  
0.8  
1.5  
TXCKSELx = 1)  
Transmit Data Set-up Time to REFCLKx - Half Rate (TXRATEx = 1,  
ns  
ns  
ns  
TXCKSELx = 1)  
tTREFDH  
Transmit Data Hold Time from REFCLKx - Full Rate (TXRATEx = 0,  
TXCKSELx = 1)  
Transmit Data Hold Time from REFCLKx - Half Rate (TXRATEx = 1,  
TXCKSELx = 1)  
CYV15G0203TB Bus Configuration Write Timing Characteristics Over the Operating Range  
tDATAH  
tDATAS  
tWRENP  
Bus Configuration Data Hold  
Bus Configuration Data Setup  
Bus Configuration WREN Pulse Width  
0
10  
10  
ns  
ns  
ns  
CYV15G0203TB JTAG Test Clock Characteristics Over the Operating Range  
fTCLK  
tTCLK  
JTAG Test Clock Frequency  
JTAG Test Clock Period  
20  
MHz  
ns  
50  
30  
CYV15G0203TB Device RESET Characteristics Over the Operating Range  
tRST Device RESET Pulse Width  
ns  
CYV15G0203TB Transmit Serial Outputs and TX PLL Characteristics Over the Operating Range  
Parameter  
Description  
Condition  
Min.  
5128  
50  
Max.  
660  
270  
Unit  
ps  
ps  
tB  
tRISE  
Bit Time  
[14]  
CML Output Rise Time 2080% (CML Test Load)  
SPDSELx =  
HIGH  
SPDSELx = MID  
SPDSELx =LOW  
100  
180  
50  
500  
1000  
270  
ps  
ps  
ps  
[14]  
tFALL  
CML Output Fall Time 8020% (CML Test Load)  
SPDSELx =  
HIGH  
SPDSELx = MID  
SPDSELx =LOW  
100  
180  
500  
1000  
ps  
ps  
PLL Characteristics  
Parameter  
Description  
Condition  
Min. Typ.  
Max. Unit  
CYV15G0203TB Transmitter PLL Characteristics  
[14, 19]  
tJTGENSD  
Transmit Jitter Generation - SD Data Rate  
Transmit Jitter Generation - HD Data Rate  
Transmit PLL lock to REFCLKx±  
REFCLKx = 27 MHz  
REFCLKx = 148.5 MHz  
200  
76  
ps  
ps  
µs  
[14, 19]  
tJTGENHD  
tTXLOCK  
200  
Notes:  
18. The duty cycle specification is a simultaneous condition with the t  
and t  
parameters. This means that at faster character rates the REFCLKx± duty  
REFL  
REFH  
cycle cannot be as large as 30%–70%.  
19. While sending BIST data at the corresponding data rate, after 10,000 histogram hits on a digital sampling oscilloscope, time referenced to REFCLKx± input.  
Document #: 38-02105 Rev. **  
Page 13 of 19  
CYV15G0203TB  
PRELIMINARY  
Capacitance[14]  
Parameter  
CINTTL  
CINPECL  
Description  
TTL Input Capacitance  
PECL input Capacitance  
Test Conditions  
TA = 25°C, f0 = 1 MHz, VCC = 3.3V  
TA = 25°C, f0 = 1 MHz, VCC = 3.3V  
Max.  
7
4
Unit  
pF  
pF  
CYV15G0203TB HOTLink II Transmitter Switching Waveforms  
t
TXCLK  
Transmit Interface  
Write Timing  
t
t
TXCLKL  
TXCLKH  
TXCLKx selected  
TXCLKx  
t
t
TXDH  
TXDS  
TXDx[9:0]  
Transmit Interface  
Write Timing  
t
REFCLK  
REFCLKx selected  
TXRATEx = 0  
t
t
REFL  
REFH  
REFCLKx  
TXDx[9:0]  
t
t
TREFDS  
TREFDH  
Transmit Interface  
Write Timing  
t
REFCLK  
REFCLKx selected  
TXRATEx = 1  
t
t
REFL  
REFH  
REFCLKx  
TXDx[9:0]  
Note 20  
t
t
t
TREFDS  
t
TREFDH  
TREFDS  
TREFDH  
Transmit Interface  
TXCLKOx Timing  
tREFCLK  
tREFH  
tREFL  
TXRATEx = 1  
REFCLKx  
Note 21  
tTXCLKO  
Note 22  
TXCLKOx  
(internal)  
Document #: 38-02105 Rev. **  
Page 14 of 19  
CYV15G0203TB  
PRELIMINARY  
CYV15G0203TB HOTLink II Transmitter Switching Waveforms (continued)  
Transmit Interface  
TXCLKOx Timing  
t
REFCLK  
t
t
REFH  
REFL  
TXRATEx = 0  
Note21  
REFCLKx  
tTXCLKO  
Note22  
TXCLKOx  
CYV15G0203TB HOTLink II Bus Configuration Switching Waveforms  
Bus Configuration  
Write Timing  
ADDR[2:0]  
DATA[3:0]  
tWRENP  
tDATAS  
WREN  
tDATAH  
Notes:  
20. When REFCLKx± is configured for half-rate operation (TXRATEx = 1) and data is captured using REFCLKx instead of a TXCLKx clock. Data is captured using  
both the rising and falling edges of REFCLKx.  
21. The TXCLKOx output remains at the character rate regardless of the state of TXRATEx and does not follow the duty cycle of REFCLKx±.  
22. The rising edge of TXCLKOx output has no direct phase relationship to the REFCLKx± input.  
Document #: 38-02105 Rev. **  
Page 15 of 19  
CYV15G0203TB  
PRELIMINARY  
Table 4. Package Coordinate Signal Allocation  
Ball  
Ball  
Ball  
ID  
ID  
Signal Name  
NC  
Signal Type  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
POWER  
NO CONNECT  
CML OUT  
GROUND  
GROUND  
CML OUT  
GROUND  
CML OUT  
GROUND  
GROUND  
CML OUT  
POWER  
POWER  
NO CONNECT  
POWER  
NO CONNECT  
POWER  
NO CONNECT  
POWER  
NO CONNECT  
POWER  
POWER  
CML OUT  
ID  
Signal Name  
NC  
Signal Type  
NO CONNECT  
Signal Name  
Signal Type  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
GROUND  
LVTTL IN PU  
GROUND  
GROUND  
NO CONNECT  
NO CONNECT  
3-LEVEL SEL  
NO CONNECT  
GROUND  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
C01  
C02  
C03  
C07  
C08  
C09  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
E01  
E02  
E03  
E04  
E17  
E18  
E19  
E20  
F01  
F17  
F18  
F19  
F20  
G01  
G02  
G03  
G04  
G17  
G18  
G19  
G20  
H01  
H02  
H03  
H04  
H17  
H18  
H19  
H20  
J01  
J02  
J03  
J04  
J17  
J18  
J19  
J20  
K01  
K02  
K03  
K04  
K17  
K18  
K19  
K20  
L01  
L02  
L03  
L04  
L17  
L18  
L19  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
NC  
OUTB1–  
GND  
GND  
OUTB2–  
GND  
OUTA1–  
GND  
GND  
OUTA2–  
VCC  
VCC  
NC  
VCC  
NC  
VCC  
NC  
VCC  
NC  
VCC  
VCC  
OUTB1+  
GND  
NC  
OUTB2+  
NC  
OUTA1+  
GND  
NC  
GND  
NC  
NC  
GROUND  
NO CONNECT  
NO CONNECT  
LVTTL IN PU  
LVTTL IN PU  
GROUND  
NO CONNECT  
3-LEVEL SEL  
POWER  
NO CONNECT  
LVTTL IN PU  
GROUND  
LVTTL 3-S OUT  
LVTTL IN PD  
LVTTL IN PU  
POWER  
DATA[2]  
DATA[0]  
GND  
NC  
SPDSELB  
VCC  
GND  
WREN  
GND  
GND  
NC  
NC  
SPDSELA  
NC  
NC  
TRST  
GND  
TDO  
TCLK  
RESET  
VCC  
VCC  
VCC  
VCC  
NC  
GND  
GND  
DATA[3]  
DATA[1]  
GND  
GND  
GND  
NC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
POWER  
POWER  
POWER  
NO CONNECT  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
LVTTL IN PU  
LVTTL IN PU  
GROUND  
GROUND  
GROUND  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
GROUND  
NC  
NC  
NC  
NC  
GROUND  
NO CONNECT  
CML OUT  
NO CONNECT  
CML OUT  
GROUND  
NO CONNECT  
CML OUT  
NO CONNECT  
POWER  
VCC  
NC  
NC  
NC  
NO CONNECT  
NO CONNECT  
LVTTL IN PD  
LVTTL IN PD  
POWER  
GND  
GND  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GROUND  
SCANEN2  
TMEN3  
VCC  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
GROUND  
OUTA2+  
VCC  
NC  
NC  
NC  
NC  
TDI  
TMS  
VCC  
POWER  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
NC  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
LVTTL IN PU  
LVTTL IN PU  
POWER  
GND  
NC  
NC  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NC  
Document #: 38-02105 Rev. **  
Page 16 of 19  
CYV15G0203TB  
PRELIMINARY  
Table 4. Package Coordinate Signal Allocation (continued)  
Ball  
Ball  
Ball  
ID  
ID  
Signal Name  
VCC  
VCC  
NC  
Signal Type  
POWER  
POWER  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
GROUND  
ID  
Signal Name  
NC  
Signal Type  
NO CONNECT  
POWER  
NO CONNECT  
LVTTL IN  
LVTTL IN  
POWER  
NO CONNECT  
NO CONNECT  
GROUND  
LVTTL IN  
LVTTL IN PU  
PECL IN  
LVTTL IN  
GROUND  
LVTTL IN  
LVTTL IN  
POWER  
NO CONNECT  
POWER  
Signal Name  
Signal Type  
GROUND  
C04  
C05  
C06  
M03  
M04  
M17  
M18  
M19  
M20  
N01  
N02  
N03  
N04  
N17  
N18  
N19  
N20  
P01  
P02  
P03  
P04  
P17  
P18  
P19  
P20  
R01  
R02  
R03  
R04  
R17  
R18  
R19  
R20  
T01  
T02  
T03  
T04  
T17  
T18  
T19  
T20  
U01  
U02  
F02  
F03  
F04  
U03  
U04  
U05  
U06  
U07  
U08  
U09  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
V01  
V02  
V03  
V04  
V05  
V06  
V07  
V08  
V09  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
W01  
W02  
L20  
M01  
M02  
W03  
W04  
W05  
W06  
W07  
W08  
W09  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
GND  
NC  
NC  
NC  
NC  
VCC  
NC  
NC  
GND  
ADDR [2]  
ADDR [1]  
NC  
TXERRA  
GND  
TXDA[2]  
TXDA[6]  
VCC  
VCC  
NC  
TXDB[2]  
TXDB[9]  
VCC  
NC  
NC  
GND  
TXDA[9]  
ADDR [0]  
REFCLKB–  
TXDA[1]  
GND  
TXDA[4]  
TXDA[8]  
VCC  
NC  
VCC  
NC  
NC  
TXDB[3]  
TXDB[4]  
TXDB[8]  
NC  
VCC  
NC  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
POWER  
NO CONNECT  
NO CONNECT  
GROUND  
LVTTL IN PU  
LVTTL IN PU  
NO CONNECT  
LVTTL OUT  
GROUND  
NC  
NC  
NC  
NC  
NC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
NC  
NC  
NC  
GND  
GND  
GND  
GND  
NC  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
LVTTL IN  
LVTTL IN  
POWER  
NO CONNECT  
PECL IN  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
GROUND  
NC  
W18 REFCLKA+  
NO CONNECT  
NO CONNECT  
LVTTL IN  
W19  
W20  
Y01  
Y02  
Y03  
Y04  
Y05  
Y06  
Y07  
Y08  
Y09  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
NC  
NC  
TXDB[6]  
TXCLKB  
NC  
NC  
VCC  
NC  
NC  
GND  
TXCLKOB  
NC  
TXCLKA  
NC  
GND  
TXDA[0]  
TXDA[5]  
VCC  
TXERRB  
REFCLKA–  
NC  
NO CONNECT  
NO CONNECT  
LVTTL IN  
LVTTL IN PD  
NO CONNECT  
NO CONNECT  
POWER  
NO CONNECT  
NO CONNECT  
GROUND  
LVTTL OUT  
NO CONNECT  
LVTTL IN PD  
NO CONNECT  
GROUND  
GROUND  
GROUND  
GROUND  
LVTTL IN  
LVTTL IN  
NO CONNECT  
POWER  
NO CONNECT  
NO CONNECT  
GROUND  
NO CONNECT  
GROUND  
PECL IN  
LVTTL OUT  
GROUND  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
POWER  
NC  
NC  
NC  
NC  
GND  
NC  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
TXDB[0]  
TXDB[1]  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
LVTTL IN  
REFCLKB+  
TXCLKOA  
GND  
TXDA[3]  
TXDA[7]  
VCC  
LVTTL IN  
LVTTL IN  
POWER  
LVTTL IN  
LVTTL IN  
POWER  
LVTTL OUT  
PECL IN  
NC  
NC  
NC  
NC  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
LVTTL IN  
NO CONNECT  
NO CONNECT  
NC  
TXDB[5]  
TXDB[7]  
LVTTL IN  
LVTTL IN  
Document #: 38-02105 Rev. **  
Page 17 of 19  
CYV15G0203TB  
PRELIMINARY  
Ordering Information  
Operating  
Range  
Commercial  
Speed  
Standard  
Ordering Code  
CYV15G0203TB-BGC  
Package Name  
BL256  
Package Type  
256-Ball Thermally Enhanced Ball Grid Array  
Package Diagram  
256-Lead L2 Ball Grid Array (27 x 27 x 1.57 mm) BL256  
51-85123-*E  
HOTLink is a registered trademark and HOTLink II is a trademark of Cypress Semiconductor. All product and company names  
mentioned in this document may be the trademarks of their respective holders.  
Document #: 38-02105 Rev. **  
Page 18 of 19  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CYV15G0203TB  
PRELIMINARY  
Document History Page  
Document Title: CYV15G0203TB Independent Clock Dual HOTLink II™ Serializer  
Document Number: 38-02105  
ISSUE  
ORIG. OF  
REV.  
ECN NO.  
DATE  
CHANGE  
DESCRIPTION OF CHANGE  
**  
246850  
See ECN  
FRE  
New Data Sheet  
Document #: 38-02105 Rev. **  
Page 19 of 19  

相关型号:

CYV15G0203TB-BGXC

Independent Clock Dual HOTLink II⑩ Serializer
CYPRESS

CYV15G0203TB_07

Independent Clock Dual HOTLink II⑩ Serializer
CYPRESS

CYV15G0203TB_09

Independent Clock Dual HOTLink II Serializer
CYPRESS

CYV15G0204RB

Independent Clock Dual HOTLink II⑩ Reclocking Deserializer
CYPRESS

CYV15G0204RB-BGC

Independent Clock Dual HOTLink II⑩ Reclocking Deserializer
CYPRESS

CYV15G0204RB-BGXC

Independent Clock Dual HOTLink II⑩ Reclocking Deserializer
CYPRESS

CYV15G0204RB_09

Independent Clock Dual HOTLink II Reclocking Deserializer
CYPRESS

CYV15G0204TRB

Independent Clock HOTLink II⑩ Dual Serializer and Dual Reclocking Deserializer
CYPRESS

CYV15G0204TRB-BGC

Independent Clock HOTLink II⑩ Dual Serializer and Dual Reclocking Deserializer
CYPRESS

CYV15G0204TRB-BGXC

Independent Clock HOTLink II⑩ Dual Serializer and Dual Reclocking Deserializer
CYPRESS

CYV15G0401DXB

Quad HOTLink II Transceiver
CYPRESS

CYV15G0401DXB-BGC

Quad HOTLink II Transceiver
CYPRESS