MB39C011AEVB-01 [CYPRESS]

2ch DC/DC Converter IC with Synchronous Rectification Datasheet;
MB39C011AEVB-01
型号: MB39C011AEVB-01
厂家: CYPRESS    CYPRESS
描述:

2ch DC/DC Converter IC with Synchronous Rectification Datasheet

文件: 总53页 (文件大小:1523K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MB39C011A  
2ch DC/DC Converter IC with  
Synchronous Rectification Datasheet  
The MB39C011A is a two-channel DC/DC converter IC suitable for down-conversion that utilizes synchronous rectification and pulse  
width modulation (PWM). The MB39C011A can operate over a wide range of power supply voltages (4.5 V to 17 V), making it optimal  
as a built-in power supply in digital audio visual equipment and various other electronic devices.  
Features  
Wide range of power supply voltages: 4.5 V to 17 V  
Supports high frequency operation: 2.0 MHz (Max)  
Supports synchronous rectification method (CH1, CH2)  
An arbitrary output voltage can be configured using an external resistance.  
Built-in standby function: 0 μA (Typ)  
Low current consumption: 2.2 mA (Typ, At quiescence)  
Built-in soft-start circuit that can control each channel separately independent of the load  
Built-in timer latch type short-circuit protection circuit (shares the soft-start capacitor)  
Built-in totem pole type output stage for external P-ch/N-ch MOS FET devices  
Package : TSSOP-16-pin  
Applications  
Digital TV  
Photocopiers  
Surveillance cameras  
Set-top boxes (STB)  
DVD players, DVD recorders  
Projectors  
IP phones  
Vending machines  
Consoles and other non-portable devices  
Cypress Semiconductor Corporation  
Document Number: 002-08369 Rev. *B  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised July 24, 2017  
MB39C011A  
Contents  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Pin Assignment............................................................. 3  
23. Ordering Information.................................................. 46  
24. EV Board Ordering Information................................. 46  
Pin Description ............................................................ 4  
Block Diagram............................................................... 5  
Absolute Maximum Ratings......................................... 6  
Recommended Operating Conditions ........................ 7  
Electrical Characteristics............................................. 8  
Typical Characteristics............................................... 10  
Functional Description............................................... 12  
25. RoHS Compliance Information Of Lead (Pb) Free  
Version......................................................................... 47  
26. Marking Format (Lead-free version) ........................ 47  
27. Labeling Sample (Lead-free version) ....................... 48  
28. MB39C011APFT-❏❏❏E1 Recommended Mounting  
Conditions................................................................... 49  
28.1 Recommended Mounting Conditions............................ 49  
28.2 Parameters for Each Mounting Method........................ 50  
8.1 DC/DC Converter Block................................................ 12  
8.2 Protection Function....................................................... 13  
29. Package Dimensions.................................................. 51  
9.  
Switching Scheme Selection..................................... 20  
10. Setting The Output Voltage........................................ 21  
11. Setting The Triangular Oscillation Frequency ......... 22  
11.1 Power Dissipation and Thermal Design........................ 22  
12. Setting The Soft-start And Short-circuit Detection  
Times............................................................................ 24  
13. VB Pin And VH Pin Connections In Condition  
Of Vcc Voltage............................................................. 24  
14. Design Of Phase Compensation Circuit................... 26  
14.1 Phase compensation circuit when low ESR capacitor is  
used as output capacitor............................................... 26  
14.2 Notes on Phase Compensation Circuit Constants........ 27  
15. Handling the Unused Channel Pins when using  
a Single Channel......................................................... 29  
16. I/O Equivalent Circuit ................................................. 31  
17. Example Application Circuit ...................................... 33  
18. Parts List ..................................................................... 34  
19. Part Selection.............................................................. 35  
19.1 Coil selection ................................................................ 35  
19.2 SW FET selection......................................................... 36  
19.3 Fly-back Diode Selection.............................................. 38  
19.4 Output capacitor selection ............................................ 39  
19.5 Input capacitor selection............................................... 39  
19.6 VB pin capacitor............................................................ 40  
19.7 VH pin capacitor ........................................................... 40  
20. PCB Layout ................................................................ 41  
21. Reference Data............................................................ 43  
22. Usage Precaution ....................................................... 45  
22.1 Do not configure the IC over the maximum ratings ...... 45  
22.2 Use the device within the recommended operating  
conditions...................................................................... 45  
22.3 Printed circuit board ground lines should be set up with  
consideration for common Impedance.......................... 45  
22.4 Take appropriate measures against static electricity.... 45  
22.5 Do not apply negative voltages..................................... 45  
Document Number: 002-08369 Rev. *B  
Page 2 of 53  
MB39C011A  
1. Pin Assignment  
(TOP VIEW)  
16  
15  
14  
13  
12  
11  
10  
9
VCC  
OUT1-1  
OUT1-2  
VB  
1
2
3
4
5
6
7
8
VH  
OUT2-1  
OUT2-2  
CTL  
RT  
GND  
FB1  
FB2  
-INE1  
CSCP1  
-INE2  
CSCP2  
(FPT-16P-M07)  
Document Number: 002-08369 Rev. *B  
Page 3 of 53  
MB39C011A  
2. Pin Description  
Pin No.  
Pin Name  
I/O  
-
O
O
I/O  
-
Description  
1
2
VCC  
Power supply pin for the reference voltage circuit and control circuit.  
OUT1-1  
OUT1-2  
VB  
Output pin for P-ch drive (drives the gate of the external High side FET).  
Output pin for N-ch drive (drives the gate of the external Low side FET).  
Power supply pin for the N-ch FET drive circuit (VB = 5 V).  
Triangular-wave oscillation frequency setting resistor connection pin.  
Error amplifier (Error Amp1) output pin.  
3
4
5
RT  
6
FB1  
O
7
-INE1  
CSCP1  
CSCP2  
-INE2  
FB2  
I
Error amplifier (Error Amp1) inverted input pin.  
8
-
-
Timer-latch short-circuit protection circuit 1 capacitor connection pin.  
Timer-latch short-circuit protection circuit 2 capacitor connection pin.  
Error amplifier (Error Amp2) inverted input pin.  
9
10  
11  
12  
13  
14  
15  
16  
I
O
-
Error amplifier (Error Amp2) output pin.  
GND  
Ground pin for the reference voltage circuit, control circuit, and output circuit.  
Power supply control pin. IC becomes a stand-by mode by setting CTL pin “L” level.  
Output pin for N-ch drive (drives the gate of the external Low side FET).  
Output pin for P-ch drive (drives the gate of the external High side FET).  
Power supply pin for the N-ch FET drive circuit (VH = VCC 5 V).  
CTL  
I
OUT2-2  
OUT2-1  
VH  
O
O
O
Document Number: 002-08369 Rev. *B  
Page 4 of 53  
MB39C011A  
3. Block Diagram  
-INE1  
step-down  
Vo1  
A
7
VB  
VB  
VB  
VB  
<< CH1 >>  
Vcc  
(1.8 V)  
A
Error  
Amp1  
PWM  
Comp.1  
(2.3u) (1.0u)  
(2.3u) (1.0u)  
Drive1-1  
P-ch  
OUT1-1  
OUT1-2  
2
3
(1.0 V)  
FB1  
Drive1-2  
N-ch  
6
step-down  
B
Vo2  
(3.3 V)  
-INE2  
<< CH2 >>  
B
10  
Error  
Amp2  
PWM  
Comp.2  
Drive2-1  
P-ch  
OUT2-1  
OUT2-2  
15  
14  
V
IN  
(6 V to 17 V)  
(1.0 V)  
FB2  
11  
Drive2-2  
N-ch  
2.5 V  
SCP  
Comp.2  
(1.7 V)  
(0.7 V)  
(1.7 V)  
CSCP2  
(1.9 V)  
VB  
9
4
(0.7 V)  
2.5 V  
SCP  
(2.0 V)  
Comp.1  
VH  
(Vcc-5 V)  
16  
VH  
(1.9 V)  
Bias  
Voltage  
CSCP1  
8
SR Latch  
Reset  
(2.0 V)  
UVLO  
VCC  
CTL  
1
VB  
(5 V)  
ErrorAmp Ref.  
(1.0 V)  
OSC  
Power  
ON/OFF  
CTL  
Bias  
Voltage  
bias  
13  
H:ON (Power ON)  
L:OFF(Standbymode)  
VTH=1.4 V  
VR1  
CT  
12  
5
GND  
RT  
Document Number: 002-08369 Rev. *B  
Page 5 of 53  
MB39C011A  
4. Absolute Maximum Ratings  
Rating  
Parameter  
Symbol  
Condition  
Unit  
Min  
Max  
18  
Power supply voltage  
V
VCC pin  
-
V
V
CC  
V
VB pin (When VCC pin connected to VB pin)  
-
0.3  
-
-
-
7
B
Input voltage  
V
-INE1, -INE2 pins  
V
V
INE  
B
V
CTL pin  
18  
60  
V
CTL  
Output current  
I
OUT1-1, OUT1-2, OUT2-1, OUT2-2 pins  
mA  
mA  
O
Peak output current  
Power dissipation  
Storage temperature  
I
Duty 5% (t = 1/fosc × Duty)  
700  
OP  
[1]  
P
Ta ≤ + 25˚C  
-
55  
1060  
+ 125  
mW  
D
T
-
˚C  
STG  
[1] : When mounted on a 10 cm square double-sided epoxy circuit board.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in  
excess of absolute maximum ratings. Do not exceed these ratings.  
Document Number: 002-08369 Rev. *B  
Page 6 of 53  
MB39C011A  
5. Recommended Operating Conditions  
Value  
Typ  
12  
Parameter  
Symbol  
Condition  
Unit  
Min  
4.5  
0
Max  
Power supply voltage  
V
I
VCC pin  
VH pin  
VB pin  
17  
V
CC  
VH pin output current  
VB pin output current  
-
-
40  
0
mA  
mA  
VH  
I
40  
VB  
VB pin(When VCC pin connected to  
VB pin)  
VB pin input voltage  
V
4.5  
5
6
V
B
Input voltage  
V
V
-INE1, -INE2 pins  
CTL pin  
0
0
-
-
V
0.9  
B
V
V
INE  
CTL pin input voltage  
17  
CTL  
OUT1-1, OUT1-2, OUT2-1, OUT2-2  
pins  
Output current  
I
f
45  
-
+ 45  
mA  
OUT  
Oscillation frequency  
Timing resistor  
Tj ≤ + 85˚C  
RT pin  
100  
3.6  
-
500  
16  
2000  
100  
4.7  
kHz  
kΩ  
μF  
OSC  
R
T
VH pin capacitor  
VB pin capacitor  
C
VH pin  
1.0  
1.0  
VH  
VB  
C
VB pin  
-
4.7  
μF  
CSCP1,  
CSCP2  
CSCP1, CSCP2 pin capacitor  
CSCP1, CSCP2 pins  
-
0.047  
1.0  
μF  
˚C  
Operating ambient  
temperature  
Ta  
-
30  
+ 25  
+ 85  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor  
device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these  
ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet.  
Users considering application outside the listed conditions are advised to contact their representatives beforehand.  
Document Number: 002-08369 Rev. *B  
Page 7 of 53  
MB39C011A  
6. Electrical Characteristics  
(Ta = +25˚C, VCC = 12 V)  
Value  
Typ  
4.0  
Parameter  
Symbol Pin No.  
Condition  
Unit  
Max  
Min  
3.8  
3.6  
-
1.9  
3.2  
3.6  
Under Voltage  
V
V
4
4
VB  
4.2  
4.0  
-
V
V
TLH  
THL  
Threshold voltage  
Lockout Protection  
Circuit Block  
[UVLO]  
VB  
3.8  
[1]  
Hysteresis width  
Threshold voltage  
Input source current  
Reset voltage  
V
4
-
-
0.2  
V
H
V
8, 9  
8, 9  
4
2.0  
2.3  
3.8  
2.1  
1.4  
4.0  
V
TH  
Short-circuitprotection  
circuit Block  
I
RT = 16 kΩ  
μA  
V
CSCP  
[SCP]  
V
VB =  
RST  
Triangular Wave Oscil- Oscillation  
fosc  
2, 15  
8, 9  
RT = 16 kΩ  
450  
500  
3.3  
1.00  
0
550  
kHz  
μA  
V
lator Block [OSC]  
frequency  
CSCP1, 2 = 0 V,  
RT = 16 kΩ  
Soft-Start Block [CS]  
Charge current  
I
4.6  
0.99  
2.0  
1.01  
CS  
FB1 = 1 V,  
FB2 = 1 V  
Threshold voltage  
V
6, 11  
TH  
-INE1 = 0 V,  
-INE2 = 0 V  
Input bias current  
Voltage gain  
I
7, 10  
6, 11  
6, 11  
100  
+ 100  
nA  
dB  
B
[1]  
A
DC  
-
-
80  
-
-
V
Frequency band-  
width  
1]  
Error Amp Block  
[Error Amp1,  
Error Amp2]  
BW  
A
= 0 dB  
5.0[  
MHz  
V
V
6, 11  
6, 11  
-
-
V
0.3  
V 0.1  
B
-
200  
V
OH  
B
Output voltage  
V
-
-
40  
mV  
OL  
Output source  
current  
FB1 = 1 V,  
FB2 = 1 V  
I
6, 11  
6, 11  
-400  
8.0  
300  
μA  
SOURCE  
FB1 = 1 V,  
FB2 = 1 V  
Output sink current  
I
4.0  
-
mA  
SINK  
PWM Comparator  
Block [PWM Comp.1, Threshold voltage  
PWM Comp.2]  
V
6, 11  
6, 11  
Duty cycle = 0 %  
0.6  
0.7  
1.7  
-
V
V
T0  
V
Duty cycle = 100 %  
-
1.8  
T100  
VH Bias Voltage Block  
Output voltage  
[VH]  
VCC = 6 V to 17 V  
VH = 0 to 40 mA  
V
16  
4
V
5.5  
V
5.0  
V 4.5  
CC  
V
H
CC  
CC  
VB Bias Voltage Block  
Output voltage  
[VB]  
VCC = 6 V to 17 V  
VB = 0 to 40 mA  
V
4.5  
5.0  
5.5  
V
B
(Continued)  
Document Number: 002-08369 Rev. *B  
Page 8 of 53  
MB39C011A  
(Continued)  
(Ta = +25˚C, VCC = 12 V)  
Value  
Typ  
Parameter  
Symbol Pin No.  
Condition  
Unit  
Max  
Min  
OUT1-1 = 7 V  
OUT2-1 = 7 V  
Duty 5%  
2, 15  
Output source  
current  
[1]  
I
-
500  
-
mA  
SOURCE  
VB = VCC = 5 V  
OUT1-2 = 0 V  
OUT2-2 = 0 V  
Duty 5%  
3, 14  
2, 15  
VCC = 5 V,  
At connect VH-GND  
OUT1-1 = 5 V  
OUT2-1 = 5 V  
Duty 5%  
[1]  
Output sink current  
I
-
-
500  
-
mA  
SINK  
OUT1-2 = 5 V  
OUT2-2 = 5 V  
Duty 5%  
3, 14  
2, 3,  
OutputBlock[Drive1to  
2]  
OUT1-1, OUT1-2,  
OUT2-1, OUT2-2 = − 45  
mA  
R
4.0  
6.0  
Ω
OH  
14, 15  
Output on resistor  
OUT1-1, OUT2-1 = 45  
2, 15  
-
-
4.0  
2.6  
6.0  
3.9  
Ω
Ω
mA  
R
OL  
OUT1-2, OUT2-2 = 45  
3, 14  
mA  
OUT1-1, OUT2-1 : HL  
OUT1-2, OUT2-2 : HL  
2, 3,  
14, 15  
Dead time  
td  
20  
40  
80  
ns  
OUT1-1, OUT2-1 : L H  
OUT1-2, OUT2-2: L H  
V
13  
13  
13  
13  
1
IC active mode  
IC standby mode  
CTL = 5 V  
2
0
-
-
-
-
-
17  
0.8  
100  
1
V
IH  
CTL input voltage  
V
V
IL  
CTLH  
Control Block  
General  
I
50  
μA  
μA  
μA  
Input current  
I
CTL = 0 V  
-
0
CTLL  
Standby current  
I
CTL = 0 V  
10  
CCS  
Power supply  
current  
I
1
CTL = 5 V  
-
2.2  
3.3  
mA  
CC  
[1] : Standard design value  
Document Number: 002-08369 Rev. *B  
Page 9 of 53  
MB39C011A  
7. Typical Characteristics  
Power supply current vs.Power supply voltage  
VB bias voltage vs.Power supply voltage  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
Ta = + 25˚C  
Ta = + 25˚C  
VB = 0 A  
4
6
8
10  
12  
14  
16  
18  
4
6
8
10 12 14 16 18  
Power supply voltage VCC (V)  
Power supply voltage VCC (V)  
VB bias voltage vs.Operating ambient  
temperature  
VB bias voltage vs.VB bias output current  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
Ta = + 25˚C  
VCC = 12 V  
VCC = 12 V  
VB = 0 A  
-40 -20  
0
+20 +40 +60 +80 +100  
-100  
-80  
-60  
-40  
-20  
0
VB bias output current IVB (mA)  
Operating ambient temperature Ta (˚C)  
Voltage between VCC and VH vs.Power supply  
voltage  
Voltage between VCC and VH vs.VH bias output  
current  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
Ta = + 25˚C  
VH = 0 A  
Ta = + 25˚C  
VCC = 12 V  
4.7  
4.6  
4.5  
4.7  
4.6  
4.5  
4
6
8
10  
12  
14  
16  
18  
0
20  
40  
60  
80  
100  
Power supply voltage VCC (V)  
VH bias output current IVH (mA)  
(Continued)  
Document Number: 002-08369 Rev. *B  
Page 10 of 53  
MB39C011A  
(Continued)  
Voltage between VCC and VH vs.  
Operating ambient temperature  
Triangular-wave generator frequency vs.  
Timing resistance  
5.5  
10000  
1000  
100  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
Ta = + 25˚C  
VCC = VB =  
5 V  
VCC = 12 V  
VH = 0 A  
1
10  
100  
-40 -20  
0
+20 +40 +60 +80 +100  
Operating ambient temperature Ta (˚C)  
Timing resistance RT (kΩ)  
Triangular-wave generator frequency vs.  
Power supply voltage  
Triangular-wave generator frequency vs.  
Operating ambient temperature  
650  
600  
550  
500  
450  
400  
350  
650  
600  
550  
500  
450  
400  
350  
Ta = + 25˚C  
VCC = VB  
fosc = 500 kHz  
VCC = VB = 5 V  
fosc = 500 kHz  
-40 -20  
0
+20 +40 +60 +80 +100  
4.5  
5.0  
5.0  
6.0  
6.5  
7.0  
Power supply voltage VCC (V)  
Operating ambient temperature Ta (˚C)  
Error Amp threshold voltage vs.  
Operating ambient temperature  
Power dissipation vs.  
Operating ambient temperature  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
1200  
1060  
1000  
800  
600  
400  
200  
0
VCC = VB = 5 V  
-50 -25  
0
+25 +50 +75 +100 +125  
-40 -20  
0
+20 +40 +60 +80 +100  
Operating ambient temperature Ta (˚C)  
Operating ambient temperature Ta (˚C)  
Document Number: 002-08369 Rev. *B  
Page 11 of 53  
MB39C011A  
8. Functional Description  
8.1 DC/DC Converter Block  
8.1.1 Triangular Wave Oscillator Block (OSC)  
The triangular wave oscillator block has a built-in capacitor for setting the oscillator frequency. The triangular wave is  
generated by connecting a resistor for selecting the frequency of the triangular wave to the RT pin (pin 5).The triangular  
wave is input internally to the PWM comparator in the IC.  
8.1.2 Error Amplifier Block (Error Amp1, Error Amp2)  
The error amplifiers (Error Amp1, Error Amp2) detect the DC/DC converter output voltages and output the PWM control  
signals. The output voltages can be set to an arbitrary level by externally connecting output voltage setting resistors to the  
error amplifier inverted input pins.  
In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the error amplifier output  
(FB1 pin (pin 6), FB2 pin (pin 11)) to inverted input terminal (-INE1 pin (pin 7), -INE2 pin (pin 10)), enabling stable phase  
compensation of the system.Connecting a soft-start capacitor to the CSCP1 and CSCP2 pins (pins 8 and 9) prevents rush  
currents when the IC is turned on. Using an error amplifier for soft-start detection makes the soft-start time constant,  
independent of the output load of DC/DC converter.  
8.1.3 PWM Comparator Block (PWM Comp.)  
The PWM comparator circuit is a voltage-pulse width converter for controlling the output duty of the error amplifiers (Error  
Amp1, Error Amp2) depending on their output voltage.  
The PWM comparator circuit compares the triangular wave generated by the triangular wave oscillator to the error amplifier  
output voltage and turns on the external output transistor during the interval in which the triangular wave voltage is lower  
than the error amplifier output voltage.  
8.1.4 Output Block (Drive1-1, 1-2, Drive 2-1, 2-2)  
The output circuit consists of CMOS drivers on both the high side and the low side, and is capable of driving an external  
P-ch MOS FET on the high side and an external N-ch MOS FET on the low side.  
8.1.5 Power Supply Control Block (CTL)  
The DC/DC converter can be put into standby mode by setting the CTL pin (pin 13) to the “L” level (the maximum power  
supply current in standby mode is 10 μA), and put into operating mode by setting the CTL pin (pin 13) to the “H” level.  
Control Function Table  
CTL  
L
IC  
OFF (Standby)  
ON (Operating)  
H
Document Number: 002-08369 Rev. *B  
Page 12 of 53  
MB39C011A  
8.2  
Protection Function  
8.2.1 Soft-start Circuit  
To prevent rush currents when the IC is turned on, soft-start can be performed by connecting soft-start capacitors (CSCP1  
and CSCP2) to the CSCP1 and CSCP2 pins (pins 8 and 9). When CTL pin (pin 13) is driven to the “H” level and the IC  
begins operation (VCC UVLO threshold voltage), the external soft-start capacitors (CSCP1 and CSCP2) connected to the  
CSCP1 and CSCP2 pins (pins 8 and 9) are charged by the charging current obtained from the following formula.  
ICS 5.4 × 105 / RT  
ICS :Charge current [A]  
RT :Timing resistance [kΩ]  
The error amplifier output (FB1 pin (pin 6), FB2 pin (pin 11)) is determined by comparing the voltages of the two non-inverted  
input pins (whichever of the internal 1.0 V reference voltage and the CSCP1 and CSCP2 pins (pin 8 and pin 9) has the lowest  
voltage) against the inverted input pin voltages (-INE1 pin (pin 7) voltage, -INE2 pin (pin 10) voltage). During the soft-start  
period, FB1 and FB2 are determined by comparing the internal 1.0 V reference voltage against the voltages of the CSCP1  
and CSCP2 pins (pins 8 and 9), and the DC/DC converter output voltages rise in proportion to voltages of the CSCP1 and  
CSCP2 pins (pins 8 and 9) as the soft-start capacitors (CSCP1 and CSCP2) connected to the CSCP1 and CSCP2 pins (pins  
8 and 9) are charged.  
The soft-start time can be found from the following formula.  
ts 0.019 × CSCP × RT  
ts  
:Soft-start time (time to output voltage 100%) [s]  
CSCP :Capacitance of CSCP pin [μF]  
RT  
:Timing resistance [kΩ]  
CSCP pin voltage  
1.3 V  
reference voltage 1.0 V  
0 V  
Error Amp block -INE1 (-INE2) voltage  
t
Soft start time, ts  
Document Number: 002-08369 Rev. *B  
Page 13 of 53  
MB39C011A  
Soft-start circuit  
VB  
Ic1[A] 3.7×105/RT [kΩ]  
Ic2[A] 1.7×105/RT [kΩ]  
Vo  
Ic1  
Ic2  
RT : Timing resistor  
(-INE2)  
-INE1  
R1  
R2  
10  
7
Ics  
L priority  
Error Amp  
CSCP1  
8
9
(1.0 V)  
(CSCP2)  
CSCP  
FB1  
6
(FB2)  
UVLO  
11  
8.2.2  
Timer-Latch Short-Circuit Protection Circuit  
Each channel has a short-circuit detection comparator (SCP Comp1 and Comp2) that constantly compares the output level of the  
error amplifier against the reference voltage. While the DC/DC converter load conditions remain stable, the error amplifier output  
does not change and the short-circuit protection comparator remains in an equilibrium state. At this time, the CSCP1 and CSCP2  
pins (pins 8 and 9) maintain the voltage from when the soft-start finished (about 1.3 V). If the output voltage of the DC/DC converter  
falls drastically due to a short-circuit or other load conditions, the output voltage of the error amplifier rises 1.9 V or more, and the  
external CSCP1 and CSCP2 capacitors are further charged. When the CSCP1 or CSCP2 capacitors are charged to about 2.0 V,  
a latch is set that turns off the external P-ch/N-ch MOSFETs (dead time is set to 100%). At this time, the latch input is closed and  
the CSCP1 and CSCP2 pins (pins 8 and 9) are held at the “L” level. Once the protection circuit has been activated, it can be reset  
by allowing the VB pin (pin 4) voltage to 3.8 V (minimum) or loss by turning the power off and on again.  
tCSCP 0.019 × CSCP × RT  
tCSCP :Short-circuit detection time [s]  
CSCP :Capacitance of CSCP pin [μF]  
RT  
:Timing resistance [kΩ]  
Document Number: 002-08369 Rev. *B  
Page 14 of 53  
MB39C011A  
Timer-latch short-circuit protection circuit  
(FB2)  
FB1  
11  
6
Vo  
R1  
R2  
Error  
Amp1  
-INE1  
7
(-INE2)  
10  
(1.0 V)  
2.5 V  
Ic1  
Ic2  
SCP  
Comp.  
(1.9 V)  
Ics  
to Drive  
CSCP1  
8
9
(CSCP2)  
(2.0 V)  
VB  
S
Latch  
R
UVLO  
Document Number: 002-08369 Rev. *B  
Page 15 of 53  
MB39C011A  
Soft-start and short-circuit protection timing chart  
CSCP voltage  
Soft-start time  
Short-circuit detection time  
ts  
tcscp  
2.0 V  
1.3 V  
1.0 V  
Output short  
Output short  
t
(1)  
(2) (3)  
(4)  
(5)  
(6)  
(7)  
1. When the CTL pin (pin 13) is set to the “H” level and the IC becomes active, the voltages of the CSCP1 and CSCP2 pins (pins  
8 and 9) rise due to the capacitors attached externally to the CSCP1 and CSCP2 pins (pins 8 and 9) being charged. During  
this time, Error Amp1 and Error Amp2 are controlled by the CSCP1 and CSCP2 pins (pins 8 and 9) and the -INE1 and -INE2  
pins (pins 7 and 10) inputs, thus performing a soft-start.  
2. When the CSCP1 and CSCP2 pins (pins 8 and 9) reach 1 V or more, Error Amp1 and Error Amp2 become controlled by the  
internal reference voltage (1 V) and the -INE1 and -INE2 pin (pins 7 and 10) inputs, and the output voltage is held at a constant  
level.  
3. The CSCP1 and CSCP2 pins (pins 8 and 9) are clamped to about 1.3 V.  
4. When there is a short circuit in the load and the error amplifier output becomes 1.9 V or more, the short-circuit protection  
comparator (SCP Comp.) is activated and the CSCP1 and CSCP2 capacitors are charged further.  
5. If the short-circuit in the load is cleared within the short-circuit detection time tCSCP, the CSCP1 and CSCP2 pins (pins 8 and  
9) return to the clamping voltage of about 1.3 V.  
6. When there is a short-circuit in the load and the error amplifier output becomes 1.9 V or more, the short-circuit protection  
comparator (SCP Comp.) is activated and the CSCP1 and CSCP2 capacitors are charged further.  
7. The latch is set when the load short-circuit is not released even if short-circuit detection time tCSCP passes, external MOS FET  
P-ch/N-ch are turned off, and the CSCP1,CSCP2 pins (pins 8 and 9) are hold at “L” level.  
Document Number: 002-08369 Rev. *B  
Page 16 of 53  
MB39C011A  
Notes :  
The output is stopped by the short-circuit protection (SCP) function when the DC/DC output is short-circuited to GND etc.  
However, care needs to be taken because the short-circuit protection (SCP) function will not stop the output when a half  
short-circuit occurs. Measures such as placing a fuse in the input can be used for this situation. [ Half short-circuit refers to a  
short-circuit condition where an overcurrent flows, but it is not sufficient to reduce the output voltage.]  
In the event that an output short current flows that exceeds the capacity of the input power supply, the power supply voltage  
may drop. If the power supply voltage at this time drops below 3.8 V, the output is stopped by the under voltage lockout  
protection circuit (UVLO). However, once the input power supply voltage recovers after the output has been stopped, the  
output will begin again. Care needs to be taken because this situation may result in a repeating cycle of “short-circuit  
power-supply voltage drop output stop power-supply voltage recovery output start short-circuit”. There are putting  
a fuse in the input etc. as measures.  
Notestheshort-circuitprotection(SCP)functionwhentheDC/DCconverterisstarted/stopped. Theoutputmayalsobestopped  
by the short-circuit protection (SCP) function under the following conditions.  
Operations that act on the input power supply and the CTL pin (for example, shorting the input power supply to the CTL pin).  
During the transition period when the input power supply voltage (VIN) is changing (such as when the input power supply is  
turned on or turned off), the condition is met that input power supply voltage (VIN) < output setting voltage (VO).  
Although this is normal IC operation, as an example of startup of the IC, the output may be stopped due to the following  
process.  
(1) DC/DC converter output begins when VIN ( = VB) > UVLO threshold voltage.  
(2) A period of time occurs where the input power supply voltage (VIN) < the output voltage setting (VO), and the duty cycle  
becomes 100% on. The error amplifier output rises above 1.9 V due to the feedback control.  
(3) The output is stopped after the short-circuit detection time has elapsed.  
Document Number: 002-08369 Rev. *B  
Page 17 of 53  
MB39C011A  
Example where the output stops when the DC/DC converter is activated by the input power supply (example of output  
stopped by SCP during startup)  
Voltage [V]  
Input power supply voltage VIN ( = CTL)  
Output voltage setting  
Output voltage (VO)  
Time [s]  
(1) (2) (3)  
In this case, the output can be prevented from being stopped by the SCP function during startup by  
controlling the CTL pin independently.  
Example of the DC/DC converter being started by the CTL pin  
Voltage [V]  
Input power supply voltage VIN  
CTL  
Output voltage setting  
Output voltage (VO)  
Time [s]  
Furthermore, when turning off the input power supply, set the CTL pin to “L” before turning off the input power supply.  
8.2.3 Under Voltage Lockout Protection Circuit (UVLO)  
A drop in the power supply voltage may cause the IC to malfunction, resulting in breakdown or degradation of the system.  
To prevent such malfunctions, the under voltage lockout protection circuit detects decreases in VB voltage due to the power  
supply voltage, and locks, the OUT1-1 pin (pin 2) and OUT2-1 pin (pin 15) at the “H” level and the OUT1-2 pin (pin 3) and  
OUT2-2 pin (pin 14) at the “L” level. The system is restored if the VB voltage rises above the threshold voltage of the under  
voltage lockout protection circuit.  
Function Table When the Protection Circuit (UVLO) is Operating  
When the UVLO circuit is operating (the VB voltage is below the UVLO threshold voltage), the following pins are fixed at the  
following logic levels.  
OUT1-1  
OUT1-2  
OUT2-1  
OUT2-2  
CSCP1  
CSCP2  
H
L
H
L
L
L
Document Number: 002-08369 Rev. *B  
Page 18 of 53  
MB39C011A  
8.2.4 Operation When CTL is Turned On and Off  
When CTL is turned on, the internal reference voltages VR1 and VB begin to rise. When VB exceeds the threshold voltage  
(VTH) of UVLO (under voltage lockout protection circuit), UVLO is released, and the output drive circuits of each channel  
are allowed to operate.When CTL is off, the output drive circuit of each channel is locked in the full off state and the CSCP1  
and CSCP2 pins (pins 8 and 9) are fixed at the “L” level, even if the UVLO circuit is in the clear state. When the internal  
reference voltages VR1 and VB begin to fall and when VB falls below the threshold voltage of the UVLO (under voltage  
lockout protection circuit), the UVLO circuit is activated.  
8.2.5 Independent Control Of Each Channel  
The on/off state of each output voltage can be controlled independently by externally connecting the CSCP1 and CSCP2  
pins (pins 8 and 9) to the drain pin of an NMOS transistor or to an NMOS open drain pin of a microcontroller, etc. When the  
CSCP1 or CSCP2 pins (pins 8 and 9) is set to the “L” level by turning on the external NMOS transistor, the output voltage  
turns off. Furthermore, when the external NMOS transistor is turned off, the soft-start function begins and the output voltage  
turns on. Note that the internal operation of the IC continues when the output voltages are turned off using the CSCP1 and  
CSCP2 pins (pins 8 and 9). Set the CTL pin (pin 13) to the “L” level to enter standby mode (the maximum power supply  
current in standby mode is 10 μA).  
V
Vo1  
MB39C011A  
CSCP1  
Vo2  
CTL1  
CS  
CS  
CSCP2  
CTL  
CTL1  
CTL2  
CTL  
CTL2  
CTL  
t
Document Number: 002-08369 Rev. *B  
Page 19 of 53  
MB39C011A  
9. Switching Scheme Selection  
This device can operate even by a synchronous rectification and an asynchronous rectification. There is superiority or  
inferiority respectively. Select the switching type considering the features as a guide.  
Switching type  
Parts  
Feature  
Superior cost advantages  
Asynchronous rectification P-ch FET + Fly-back diode  
P-ch FET + N-ch FET  
Underlargeloadcurrentsandlowoutputvoltages,itisinefficient because  
generation of heat of the Fly-back diode (SBD) is large.  
Offers a balance between cost and efficiency.  
Supports large load currents and low output voltages  
Emphasis on efficiency (particularly effective at high oscillator  
Synchronous rectification  
P-ch FET + N-ch FET + Fly-back  
diode  
frequencies)  
Supports large load currents and low output voltages  
Because of the increased number of parts, the cost is a disadvantage.  
Document Number: 002-08369 Rev. *B  
Page 20 of 53  
MB39C011A  
10. Setting The Output Voltage  
The output voltage can be set to an arbitrary value by the ratio of the feedback resistance to -INE1 (-INE2).  
Set the output voltage to a value higher than the reference voltage (1 V) of the Error Amp.  
Under usage conditions where the duty cycle is 30% or less, set VO1 < VO2 as much as possible.  
VO  
D =  
×100  
VIN  
D
:Duty cycle [%]  
VIN  
VO  
:Power supply voltage of switching system [V]  
:Output setting voltage [V]  
R1, R2 :Output voltage setting resistors [Ω]  
Vo1,2  
(-INE2)  
R1  
Error  
Amp  
10  
1.0  
R2  
7
Vo =  
(R1+R2)  
-INE1  
R2  
1.0 V  
(CSCP2)  
CSCP1  
9
8
Document Number: 002-08369 Rev. *B  
Page 21 of 53  
MB39C011A  
11. Setting The Triangular Oscillation Frequency  
The triangular oscillation frequency is determined by the timing resistor (RT) connected to the RT pin (pin 5).  
0.001  
fosc ≅  
122.4 × 10 12 × RT ×103 + 96 × 10 9  
fosc : Triangular oscillation frequency [kHz]  
RT  
: Timing resistance [kΩ]  
The upper limit on the oscillation frequency that can be set depends on the junction temperature and duty cycle. It is recommended  
that the device is used within the range shown in the following graph.  
Oscillation frequency vs. Junction temperature  
2100  
1900  
1700  
1500  
1300  
1100  
900  
700  
500  
300  
100  
-30  
0
+30  
+60  
+90  
+120  
Junction temperature Tj (˚C)  
Note : Refer to “ Power Dissipation and Thermal Design” for details on calculating the junction temperature.  
11.1 Power Dissipation and Thermal Design  
It is necessary to examine it for the use at a high power-supply voltage, a high oscillation frequency, and the high temperature.  
Also use within the range of Oscillation frequency vs. Junction temperature.  
The junction temperature can be investigated from the internal power dissipation of the IC.  
The internal power dissipation of the IC (PIC) is given by the following formula.  
PIC = VCC × (ICC + Qg × fosc)  
PIC  
: Internal IC power dissipation [W]  
VCC : Power supply voltage (VIN : [V])  
ICC  
Qg  
: Power supply current (3.3 mA Max)  
: Total electric charge (Vgs = 5 V) of all SW FET for 2ch [C]  
fosc : Oscillation frequency [Hz]  
The junction temperature is given by the following formula.  
Document Number: 002-08369 Rev. *B  
Page 22 of 53  
MB39C011A  
Tj = Ta + θja × PIC  
Tj  
:Junction temperature ( + 125˚C Max)  
:Ambient temperature [˚C]  
Ta  
θja :TSSOP-16 package thermal resistance (94˚C/W)  
PIC :Internal IC power dissipation [W]  
Synchronous rectification,  
Synchronous rectification,  
at 4.5 V VIN 6 V (VCC = VB)  
at VIN > 6 V(VB = 5 V)  
Duty cycle vs. Oscillation frequency  
Duty cycle vs. Oscillation frequency  
100  
100  
80  
60  
40  
20  
0
80  
60  
Applicability  
Applicability  
40  
20  
0
0
500  
1000  
1500  
2000  
0
500  
1000  
1500  
2000  
Oscillation frequency fosc(kHz)  
Oscillation frequency fosc(kHz)  
Asynchronous rectification,  
Asynchronous rectification,  
at 4.5 V VIN 6 V(VCC = VB)  
at VIN > 6 V(VB = 5 V)  
Duty cycle vs. Oscillation frequency  
Duty cycle vs. Oscillation frequency  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
Applicability  
Applicability  
0
500  
1000  
1500  
2000  
0
500  
1000  
1500  
2000  
Oscillation frequency fosc(kHz)  
Oscillation frequency fosc(kHz)  
Notes :  
Refer to Setting The Output Voltage” for details on calculating the duty cycle.  
When using the IC outside of the ranges shown in the above graphs, check for jitter and other adverse effects on  
the output voltage before use.  
Document Number: 002-08369 Rev. *B  
Page 23 of 53  
MB39C011A  
12. Setting The Soft-start And Short-circuit Detection Times  
Set the soft-start time and the short-circuit detection time using the CSCP pins. Both become the same time.  
ts = tCSCP 0.019 × CSCP × RT  
ts  
:Soft-start time (time to output voltage 100%) [s]  
tCSCP :Short-circuit detection time [s]  
CSCP :CSCP pin capacitor [μF]  
RT  
:Timing resistance [kΩ]  
13. VB Pin And VH Pin Connections In Condition Of Vcc Voltage  
In the range of 4.5 V VCC 6.0 V, there is a chance that the VB voltage[1] and VH voltage[2] may drop due to the internal IC  
regulator saturating. As a result, there are drive voltage shortage and a bird clapper of SW FET. It is therefore recommended that  
the VB pin (pin 4) and VH pin (pin 16) are connected as shown in the “VB pin and VH pin connection table”.  
[1]: Voltage between VB pin (pin 4) and GND pin (pin 12) : 5 V  
[2] : Voltage between VCC pin (pin 1) and VH pin (pin 16) : 5 V  
VB pin and VH pin connection table  
VCC condition  
VB pin  
VH pin  
4.5 VCC 6 V  
6 V VCC 17 V  
Connected to VCC  
VB capacitor connection  
Connected to GND  
VH capacitor connection  
[4]  
[4]  
[4]  
[4]  
[3]  
Used with VCC crossing 6 V (ex. 5 V ≤  
VCC 7 V)  
VB capacitor connection  
VH capacitor connection  
[3]: Check that the switching operation is functioning normally.  
[4]: Refer to the connection of the VB pin (pin 4) and the VH pin (pin 16) in the “Block Diagram”.  
Document Number: 002-08369 Rev. *B  
Page 24 of 53  
MB39C011A  
Transition diagram of the VB voltage and VH voltage (VB pin: VB capacitor connection, VH pin: VH capacitor connection)  
VCC  
Voltage  
VH voltage  
VH pin voltage  
VB pin voltage  
5 V  
VB voltage  
Power supply voltage VCC  
VCC 6 V  
Document Number: 002-08369 Rev. *B  
Page 25 of 53  
MB39C011A  
14. Design Of Phase Compensation Circuit  
14.1 Phase compensation circuit when low ESR capacitor is used as output  
capacitor  
When a low-ESR capacitor such as a ceramic capacitor is used as the output capacitor, it becomes easy to vibrate for a phase  
delay of the 180° to be generated due to the resonant frequency of the LC. In this case, it is common to use a phase compensation  
circuit that can advance the phase, such as a 2-pole/2-zero circuit.  
2-pole/2-zero phase compensation circuit  
VO1,VO2  
R3  
Rc  
Cc  
R1  
C1  
-
To PWM  
Comp.1,2  
-INE1,-INE2  
R2  
FB1,FB2  
+
Error  
Amp1,Amp2  
Vref  
Set the R3, Rc, C1, and Cc constants in the phase compensation circuit by using the following formula as a guide. As for frequency  
(fCO) of crossover, in which the band width of the control loop of DC/DC is shown, height is excellent in the rapid response. However,  
vibration may be generated due to an insufficient phase margin. Although the  
crossover frequency (fCO) can be set to any value, the maximum value must be 1/2 of the oscillation frequency (fOSC), or 1/5 of  
the oscillation frequency (fOSC) as preferable. Furthermore, the crossover frequency (fCO) should be set such that the phase margin  
is a minimum of 30°, or more than 45° as preferable.  
Document Number: 002-08369 Rev. *B  
Page 26 of 53  
MB39C011A  
fLC × R1  
R3, Rc : [Ω]  
R3 ≅  
2 × fESR fLC  
C1, Cc : [F]  
fLC  
: Resonant frequency [Hz] of the coil L [H] and output  
capacitor C [F]  
1
fLC  
fESR  
=
2 × π√L × C  
1
: Resonant frequency [Hz] of the output capacitor C [F] and ESR  
C1 ≅  
[Ω]  
π × fLC (R1 + R3)  
1
fESR  
=
2 × π × ESR × C  
(R1//R3) × fESR × fCO  
Rc ≅  
Cc ≅  
2
VIN × fLC  
fCO  
: Crossover frequency (arbitrary setting) [Hz]  
1
R1//R3 : Resistance of R1 and R3 connected in parallel [Ω]  
VIN : Switching system power supply voltage [V]  
2 × π × RC × fLC  
14.2 Notes on Phase Compensation Circuit Constants  
Select the constants of the following three points and select the constant for the design of the phase compensation circuit when  
the large load sudden change, or the capacitor is connected to DC/DC converter operating.  
In particular, if a capacitance much larger than the output capacitance of the DC/DC converter is connected by hard-switching  
while the DC/DC converter is operating, the output voltage may begin vibrating or the protection function may be activated, due  
to the sudden response. Note the following points.  
14.2.1 Error Amp output (FB1 and FB2 pins) current capacity  
The resistance constants of the phase compensation circuit need to be designed by considering the current capacities of the Error  
Amp outputs (FB1 and FB2 pins (pins 6 and 11)). Take the output source current  
( 300 μA Max) of the Error Amp and the threshold voltage VT100 (1.7 V Typ) of the PWM Comp into consideration, select the  
resistance values such that the following formula is satisfied.  
1.7 [V]  
R1//R2//R3 = Resistance of R1, R2 and R3 connected in parallel [Ω]  
RC : [Ω]  
300 [μA] >  
R1//R2//R3 + RC  
Although low resistance values may be desired to improve the noise immunity, the above formula may not be satisfied as a result.  
While it is ideal for each of the resistance values to satisfy the above formula, in this situation the values may be used after  
confirming that there are no problems when used under the rapidly varying load conditions.  
14.2.2 Phase Margin at the Output Load changes  
Select phase compensation constants that ensure the phase margin when the output load (resistive load, capacitative load,  
inductive load) is connected.  
Document Number: 002-08369 Rev. *B  
Page 27 of 53  
MB39C011A  
14.2.3 Phase Margin at the rEverse Current Flow from the Output Pin  
Under usage conditions where current from the DC/DC converter output (VO) pin flows by the load sudden change,  
select phase compensation constants that ensure the phase margin even when reverse current flow occurs.  
Example of measuring the phase margin during reverse current flow  
R
VIN  
VO  
DC/DC  
Document Number: 002-08369 Rev. *B  
Page 28 of 53  
MB39C011A  
15. Handling the Unused Channel Pins when using a Single Channel  
Although this device is a 2-channel DC/DC converter control IC, it is also able to be used as a 1-channel DC/DC converter by  
handling the pins of the unused channel as shown in the following diagram.  
1. Connection when CH 1 is not used  
“Open”  
2
3
OUT1-1  
OUT1-2  
“Open”  
“Open”  
6
FB1  
-INE1  
7
8
CSCP1  
Document Number: 002-08369 Rev. *B  
Page 29 of 53  
MB39C011A  
2. Connection when CH 2 is not used  
“Open”  
“Open”  
“Open”  
OUT2-1  
OUT2-2  
FB2  
15  
14  
11  
-INE2  
10  
9
CSCP2  
Document Number: 002-08369 Rev. *B  
Page 30 of 53  
MB39C011A  
16. I/O Equivalent Circuit  
<VB bias voltage block>  
<CTL block>  
VCC  
VCC  
CTL  
13  
VB  
4
GND  
GND  
<PWM comparator block>  
<Triangular wave oscillator block>  
VB  
VB  
FBx  
RT  
5
GND  
GND  
x : Each channel No.  
(Continued)  
Document Number: 002-08369 Rev. *B  
Page 31 of 53  
MB39C011A  
(Continued)  
<Soft-start block, Error Amp block>  
VB  
-INEx  
CSCPx  
GND  
<Output block(OUTx-1)>  
<VH bias voltage block>  
VCC  
VCC  
1
VH  
16  
OUTx-1  
VH  
GND  
GND  
<Output block (OUTx-2)>  
VB  
OUTx-2  
GND  
GND  
12  
x : Each channel No.  
Document Number: 002-08369 Rev. *B  
Page 32 of 53  
MB39C011A  
17. Example Application Circuit  
VIN  
GND  
CTL  
MB39C011A  
VCC  
1
C7  
13  
7
CTL  
16  
VH  
VB  
C9  
C3  
C5  
R3  
R4  
4
2
-INE1  
C8  
Q1  
R7  
C4  
OUT1-1  
L1  
R6  
V
o1  
1.8 V  
GND1  
6
FB1  
C10  
C11  
C13  
3
OUT1-2  
R9  
Q2  
10  
11  
-INE2  
FB2  
R10  
R12  
R13  
C6  
15  
14  
OUT2-1  
OUT2-2  
L2  
Q3  
Q4  
V
3.3 V  
o2  
C12  
8
9
5
GND2  
CSCP1  
CSCP2  
RT  
C1  
C2  
12  
GND  
R1  
Document Number: 002-08369 Rev. *B  
Page 33 of 53  
MB39C011A  
18. Parts List  
Component  
Item  
Specification  
Component  
Item  
Specification  
VDS = − 30 V,  
ID = − 4 A (Max)  
Q1  
Q2  
Q3  
Q4  
P-ch FET  
C1  
Ceramic condenser  
0.015 μF (50 V)  
VDS = 30 V,  
ID = 5 A (Max)  
N-ch FET  
P-ch FET  
N-ch FET  
C2  
C3  
C4  
Ceramic condenser  
Ceramic condenser  
Ceramic condenser  
0.015 μF (50 V)  
100 pF (50 V)  
470 pF (50 V)  
VDS = − 30 V,  
ID = − 4 A (Max)  
VDS = 30 V,  
ID = 5 A (Max)  
R1  
R3  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
16 kΩ  
C5  
C6  
Ceramic condenser  
Ceramic condenser  
Ceramic condenser  
Ceramic condenser  
Ceramic condenser  
Ceramic condenser  
Ceramic condenser  
Ceramic condenser  
Ceramic condenser  
220 pF (50 V)  
2200 pF (50 V)  
0.1 μF (50 V)  
1 μF (16 V)  
2 kΩ  
R4  
5.1 kΩ + 75 kΩ  
100 kΩ  
10 kΩ  
C7  
R6  
C8  
R7  
C9  
1 μF (16 V)  
R9  
1 kΩ  
C10  
C11  
C12  
C13  
22 μF (25 V)  
33 μF (6.3 V)  
22 μF (25 V)  
33 μF (6.3 V)  
R10  
R12  
R13  
1.5 kΩ + 33 kΩ  
15 kΩ  
5.6 kΩ  
3.3 μH  
(IDC = 6.7 A)  
L1  
L2  
Inductor  
Inductor  
-
-
-
-
-
-
4.7 μH (IDC = 6 A)  
Document Number: 002-08369 Rev. *B  
Page 34 of 53  
MB39C011A  
19. Part Selection  
19.1 Coil selection  
As a rough guide, choose the inductance of the coil such that the peak-to-peak ripple current of the coil is less than 50% of the  
maximum load current. The inductance in this case is given by the following formula.  
VIN VO  
LOR × IOMAX  
VO  
L ≥  
×
VIN × fosc  
L
: Coil inductance [H]  
IOMAX : Maximum load current [A]  
LOR  
VIN  
: 0.5  
: Switching system power-supply voltage [V]  
: Output voltage setting [V]  
: Oscillation frequency [Hz]  
VO  
fosc  
When the IC is used with asynchronous rectification, it is recommended that the IC be used in the load current range where the  
coil current is continuous in order to ensure responsiveness to the load. For asynchronous rectification it is therefore recommended  
that the minimum value of the load current is used as the basis for setting the inductance value.  
VIN VO  
2 × IOMIN  
VO  
L ≥  
×
VIN × fosc  
L
: Coil inductance [H]  
IOMIN  
: Minimum load current [A]  
: Switching system power-supply voltage [V]  
: Output voltage setting [V]  
: Oscillation frequency [Hz]  
VIN  
VO  
fosc  
The maximum value of the current flowing through the coil needs to be found in order to determine whether the current flowing  
through the coil is within the rated value. The maximum current flowing through the coil is given by the following formula.  
ΔIL  
2
ILMAX = IOMAX  
+
VIN VO  
VO  
ΔIL ≥  
×
L
VIN × fosc  
Coil current  
ILMAX  
IOMAX  
The coil current changes  
according to the load current.  
ΔIL  
IOMIN  
Time  
0
Document Number: 002-08369 Rev. *B  
Page 35 of 53  
MB39C011A  
ILMAX  
IOMAX  
ΔIL  
: Maximum coil current [A]  
: Maximum load current [A]  
: Coil ripple current peak to peak value [A]  
: Coil inductance [H]  
L
VIN  
: Switching system power-supply voltage [V]  
: Output setting voltage [V]  
VO  
fosc  
: Oscillation frequency [Hz]  
19.2 SW FET selection  
The maximum value of the current flowing through the SW FET needs to be found in order to determine whether the current flowing  
through the SW FET is within the rated value. The maximum current flowing through the  
SW FET is given by the following formula.  
ΔIL  
2
IDMAX IOMAX  
+
IDMAX  
IOMAX  
ΔIL  
: Maximum SW FET drain current [A]  
: Maximum load current [A]  
: Coil ripple current peak to peak value [A]  
Furthermore, the power dissipation of the SW FET needs to be found in order to determine whether the power dissipation of the  
SW FET is within the rated value. The power dissipation of the SW FET is given by the following formula.  
High side FET (P-ch MOS FET) power dissipation PHiSideFET = PRon + PSW  
VO  
2
PRon : High side FET (P-ch MOS FET) conduction loss  
PRon = IOMAX  
×
×Ron  
VIN  
IOMAX : Maximum load current [A]  
VIN  
VO  
: Switching system power supply voltage [V]  
: Output voltage [V]  
Ron  
: High side FET ON resistance [Ω]  
VIN × fOSC (Ibtm × tr × Itop × tf)  
PSW : High side FET (P-ch MOS FET) switching loss  
PSW =  
2
VIN  
: Switching system power supply voltage [V]  
: Oscillation frequency [Hz]  
fosc  
Ibtm  
: Bottom value of ripple current of coil [A]  
ΔIL  
2
Ibtm = IOMAX  
Itop  
:Top value of ripple current of coil [A]  
ΔIL  
2
Itop = IOMAX  
+
Document Number: 002-08369 Rev. *B  
Page 36 of 53  
MB39C011A  
ΔIL  
tr  
: Coil ripple current peak to peak value [A]  
: Turn-on time of High side FET [s]  
: Turn-off time of High side FET [s]  
tf  
tr and tf are simply obtained by the following formula.  
Qgd × 4  
5 Vgs (on)  
Qgd × 4  
Vgs (on)  
tr =  
tf =  
Qgd  
: Quantity of charge between the gate and drain of High side FET [C]  
: Absolute value of voltage difference between the gate and source of the High side FET at Qgd  
[V]  
Vgs(on)  
VO  
Low side FET(N-ch MOS FET)  
conduction loss  
PLoSideFET = PRon = IOMAX2× (1 −  
) × Ron  
VIN  
PRon  
IOMAX  
VIN  
: Low side FET conduction loss [W]  
: Maximum load current [A]  
: Switching system power supply voltage [V]  
: Output voltage [V]  
VO  
Ron  
: Low side FET ON resistance [Ω]  
To select SW FETs that offer good conversion efficiency, the High side FET in particular should select such that the switching loss  
is small (the power dissipated when the SW FET changes between ON and OFF). However, because there is generally a trade-off  
between switching loss and conduction loss, this balance needs to be considered when making the selection.  
As a guide, select FETs such that the total Qg of the SW FETs is as follows.  
0.04  
fosc  
0.04  
fosc  
QgHiSideFET<  
QgLoSideFET<  
QgHiSideFET  
: Sum total electric charge of the CH1 and CH2 High side FETs [C]  
QgLoSideFET : Sum total electric charge of the CH1 and CH2 Low side FETs [C]  
fosc : Oscillation frequency [Hz]  
The SW FETs used with this device typically have a drive voltage of 4 V. Although there are FETs that support a drive voltage of  
less than 4 V, low drive voltage FETs generally have a larger Qg even at equal value of Ron, the efficiency lowers. If a FET with  
a low drive voltage is used, check that the low side FET does not self turn-on and that the dead-time is secured under the usage  
conditions.  
Document Number: 002-08369 Rev. *B  
Page 37 of 53  
MB39C011A  
19.3 Fly-back Diode Selection  
Select a Schottky barrier diode (SBD) that has a small forward voltage drop.  
The peak current flowing through the Fly-back diode needs to be found in order to determine whether the current flowing through  
the Fly-back diode is within the rated value. When the DC/DC converter IC is used with asynchronous rectification, the maximum  
current through the Fly-back diode is given by the following formula.  
ΔIL  
2
If IOMAX  
If  
: Forward current [A]  
IOMAX  
ΔIL  
: Maximum load current [A]  
: Coil ripple current peak to peak value [A]  
Furthermore, the power dissipation of the Fly-back diode needs to be found in order to determine whether the power dissipation  
of the Fly-back diode is within the rated value. The power dissipation of the Fly-back diode is given by the following formula.  
VO  
PSBD = IOMAX × (1 −  
) × Vf  
VIN  
PSBD : Fly-back diode power dissipation [W]  
IOMAX : Maximum load current [A]  
VIN  
VO  
Vf  
: Switching system power supply voltage [V]  
: Output voltage [V]  
:Forward voltage [V]  
When the DC/DC converter is used with synchronous rectification, the length of time that the current flows through the Fly-back  
diode is limited to the synchronous rectification period (dead time). For example, at an oscillating frequency of 500 kHz, the  
proportion of time that current flows is less than 5%. Therefore, select that Fly-back diode current does not exceed the peak forward  
surge current (IFSM) rated value. The peak forward surge current value of the SBD is given by the following formula.  
ΔIL  
2
IFSM IOMAX  
+
IFSM  
IOMAX : Maximum load current [A]  
ΔIL : Coil ripple current peak to peak value [A]  
: Peak forward surge current value of Fly-back diode [A]  
Document Number: 002-08369 Rev. *B  
Page 38 of 53  
MB39C011A  
19.4 Output capacitor selection  
Because the ripple voltage increases if the ESR is large, a low ESR capacitor needs to be used in order to reduce the ripple voltage.  
However, using a capacitor with a low ESR has a large effect on the phase characteristics of the loop, and care needs to be taken  
to prevent the system from losing stability. Furthermore, the capacitor that is used should have sufficient tolerance for the ripple  
current.  
If taking into account the switching ripple voltage, the minimum necessary capacitance is given by the following formula.  
1
CO  
2π × fosc× (ΔVO/ΔIL ESR)  
ESR : Series resistance element of output capacitance [Ω]  
ΔVO : Switching ripple voltage [V]  
ΔIL  
: Coil ripple current peak to peak value [A]  
CO  
: Output capacitance [F]  
fosc : Oscillation frequency [Hz]  
When a capacitive load is connected, it is recommended that the DC/DC converter output capacitor have the same capacitance  
as the load capacitance.  
The allowable ripple current of the output capacitor is given by the following formula.  
ΔIL  
Irms ≥  
23  
Irms : Allowable ripple current (Root-mean-square value) [A]  
ΔIL  
: Coil ripple current peak to peak value [A]  
19.5 Input capacitor selection  
Select an input capacitor that has as small an ESR as possible. Ceramic capacitors are ideal. If a large capacitance is required  
that cannot be provided by a ceramic capacitor, use a polymer capacitor or a tantalum capacitor with a low ESR. Furthermore, the  
capacitor that is used should have sufficient tolerance for the ripple current.  
The allowable ripple current is given by the following formula.  
VO (VIN VO)  
Irms IOMAX  
VIN  
Irms  
: Allowable ripple current (Root-mean-square value) [A]  
IOMAX : Maximum load current [A]  
VIN  
VO  
: Switching system power supply voltage [V]  
: Output voltage [V]  
Document Number: 002-08369 Rev. *B  
Page 39 of 53  
MB39C011A  
19.6 VB pin capacitor  
Although the VB pin capacitor typically has a capacitance of 1 μF, this needs to be adjusted if theSW FETbeing used has a large Qg.  
The following formula provides a guide to the lower limit of the VB pin capacitor. If this lower limit exceeds 1 μF, use the formula  
as a guide to set the capacitance.  
CVBmin 0.1 × QgLoSideFET  
CVBmin  
: Lower limit of VB pin capacitor [μF]  
QgLoSideFET  
: Sum total electric charge of CH1 and CH2 Low side FETs [nC]  
19.7 VH pin capacitor  
The VH pin capacitor typically has a capacitance of 1 μF (when the VB pin capacitor 1 μF). However, this needs to be adjusted,  
if the VB pin capacitor exceeds 1 μF or if the SW FET being used has a large Qg.  
The following formula provides a guide to the lower limit of the VH pin capacitor. If this lower limit exceeds 1 μF, use the formula  
as a guide to set the capacitance.  
Large one either of  
CVHmin 0.01×QgHiSideFET or CVHmin CVB  
CVHmin  
QgHiSideFET  
CVB  
: Lower limit of VH pin capacitor [μF]  
: Sum total electric charge of CH1 and CH2 high side FETs [nC]  
: Capacitance of VB pin capacitor [μF]  
Document Number: 002-08369 Rev. *B  
Page 40 of 53  
MB39C011A  
20. PCB Layout  
Consider the following points when designing the PCB layout :  
Make the input capacitor (Cin), SW FET, Fly-back diode (SBD), coil (L), and output capacitor (Cout) connections on the surface  
as much as possible, and avoid making the connections with the through-holes.  
Take the most care with the loop consisting of the input capacitor (Cin), SW FET, and Fly-back diode (SBD), and make the  
current loop as small as possible.  
Create through-hole directly next to the GND pins of the input capacitor (Cin), SW FET, Fly-back diode (SBD), and output  
capacitor (Cout), and connect these to the SW system GND inner layer.  
Large currents flow momentarily through the wiring of the OUTx-x pins that are connected to the SW FET gates. Use a wiring  
width of about 0.8 mm as a guide, and make the wiring as short as possible.  
Arrange the bypass capacitors that are connected to the VCC, VB, and VH pins (pins 1, 4, and 16) near the pins as possible.  
Furthermore, connect the GND pin of the VCC and VB by-pass capacitor with a nearest GND pin of the IC. (Create a  
through-hole directly next to the GND pin of the IC (pin 12) and the GND pins of the bypass capacitors to reinforce the  
connection to the inner ground layer).  
The wiring for the -INE1, -INE2, FB1, FB2, and RT pins (pins 7, 10, 6, 11, and 5) is sensitive to noise and should be made as  
short as possible. Furthermore, the feedback line from the output (VO) should be kept as far away from SW system components  
as possible.  
Create as much ground plane on the side where the IC is mounted as possible. To prevent creating a large current path to the  
control system GND, connect this to the PGND (SW system GND) at a single point.  
Document Number: 002-08369 Rev. *B  
Page 41 of 53  
MB39C011A  
Example of arranging  
SW system parts  
GND wiring example  
SWFET  
VIN  
Cin  
SW system GND  
SW system  
GND  
SWFET  
SBD  
Cout  
L
VH  
VCC  
VO  
SW system GND  
VB  
Feedback line  
To -INE  
Control system  
GND  
RT  
Control system GND  
Control system GND and SW  
system GND are connected  
by one point.  
Through-hole  
Surface  
GND layer  
(Layer1)  
(Layer2)  
Document Number: 002-08369 Rev. *B  
Page 42 of 53  
MB39C011A  
21. Reference Data  
CH1  
CH2  
Conversion Efficiency vs. Load Current  
Conversion Efficiency vs. Load Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
Ta = + 25˚C  
VIN = 12 V  
VO1 = 1.8 V  
fosc = 500 kHz  
Ta = + 25˚C  
VIN = 12 V  
VO2 = 3.3 V  
fosc = 500 kHz  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Load Current IO1 (A)  
Load Current IO2 (A)  
Output Voltage vs. Load Current  
Output Voltage vs. Load Current  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
Ta = + 25˚C  
Ta = + 25˚C  
VIN = 12 V  
VO2 = 3.3 V setting  
fosc = 500 kHz  
VIN = 12 V  
VO1=1.8 V setting  
fosc = 500 kHz  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Load Current IO1 (A)  
Load Current IO2 (A)  
(Continued)  
Document Number: 002-08369 Rev. *B  
Page 43 of 53  
MB39C011A  
(Continued)  
CH2 Switching Wave Form  
CH1 Switching Wave Form  
OUT-1  
OUT-2  
OUT-1  
OUT-2  
Ta = + 25˚C  
Ta = + 25˚C  
V
= 12 V  
V
V
= 12 V  
= 1.8 V  
IN  
IN  
V
= 3.3 V  
O2  
O1  
fosc = 500 kHz  
fosc = 500 kHz  
5 V/div, 80 ns/div  
5 V/div, 200 ns/div  
CH2 Sudden Load Variation Waveform  
CH1 Sudden Load Variation Waveform  
IO1 2 A/div  
I
O2 2 A/div  
VO1 500 mV/div  
VO2 500 mV/div  
Ta = + 25˚C  
Ta = + 25˚C  
V
V
I
= 12 V  
= 3.3 V  
= 0 3 A  
IN  
V
V
I
= 12 V  
= 1.8 V  
= 0 3 A  
IN  
O2  
O1  
O2  
O1  
fosc = 500 kHz  
fosc = 500 kHz  
40 μs/div  
40 μs/div  
CTL Startup Waveform  
CTL 5 V/div  
V
O
O
2 1 V/div  
V
1 1 V/div  
Ta = + 25˚C  
V
= 12 V,  
IN  
V 1=1.8 V, I = 3 A,  
O
O1  
V 2 = 3.3 V, I = 3 A,  
O
O2  
fosc = 500 kHz  
Soft start setting time = 4.5 ms  
1 ms/div  
Document Number: 002-08369 Rev. *B  
Page 44 of 53  
MB39C011A  
22. Usage Precaution  
22.1 Do not configure the IC over the maximum ratings  
If the IC is used over the maximum ratings, the LSI may be permanently damaged.  
It is preferable for the device to normally operate within the recommended usage conditions. Usage outside of these conditions  
can have a bad effect on the reliability of the LSI.  
22.2 Use the device within the recommended operating conditions  
The recommended operating conditions are under which the LSI is guaranteed to operate. The electrical ratings are guaranteed  
when the device is used within the recommended operating conditions and under the conditions stated for each item.  
22.3 Printed circuit board ground lines should be set up with consideration for  
common Impedance  
22.4 Take appropriate measures against static electricity  
Containers for semiconductor materials should have anti-static protection or be made of conductive material.  
After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.  
Work platforms, tools, and instruments should be properly grounded.  
Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground.  
22.5 Do not apply negative voltages  
The use of negative voltages below 0.3 V may create parasitic transistors on LSI lines, which can cause malfunctions.  
Document Number: 002-08369 Rev. *B  
Page 45 of 53  
MB39C011A  
23. Ordering Information  
Part number  
Package  
Remarks  
16-pin plastic TSSOP  
(FPT-16P-M07)  
MB39C011APFT-❏❏❏E1  
Lead-free version  
24. EV Board Ordering Information  
Part number  
EV board version No.  
Remarks  
MB39C011AEVB-01  
Board rev.1.0  
TSSOP-16-pin  
Document Number: 002-08369 Rev. *B  
Page 46 of 53  
MB39C011A  
25. RoHS Compliance Information Of Lead (Pb) Free Version  
The LSI products with “E1” are compliant with RoHS Directive, and has observed the standard of lead, cadmium, mercury,  
Hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE). Products that are complied  
with this standard have “E1” appended to the part number.  
26. Marking Format (Lead-free version)  
Lead-free  
version  
INDEX  
Document Number: 002-08369 Rev. *B  
Page 47 of 53  
MB39C011A  
27. Labeling Sample (Lead-free version)  
Lead-free mark  
JEITA logo JEDEC logo  
MB123456P - 789 - GE1  
(3N) 1MB123456P-789-GE1 1000  
G
Pb  
(3N)2 1561190005 107210  
QC PASS  
PCS  
1,000  
MB123456P - 789 - GE1  
ASSEMBLED IN JAPAN  
2006/03/01  
MB123456P - 789 - GE1  
1/1  
1561190005  
0605 - Z01A 1000  
The part number of a lead-free product has  
the trailing characters "E1".  
Document Number: 002-08369 Rev. *B  
Page 48 of 53  
MB39C011A  
28. MB39C011APFT-❏❏❏E1 Recommended Mounting Conditions  
28.1 Recommended Mounting Conditions  
Item  
Condition  
IR (infrared reflow), Manual soldering (partial heating method)  
2 times  
Mounting Method  
Mounting times  
Please use it within two years after  
Before opening  
Manufacture.  
From opening to the 2nd  
reflow  
Storage period  
Less than 8 days  
When the storage period after  
opening was exceeded  
Please processes within 8 days  
after baking (125˚C, 24H)  
Storage conditions  
5˚C to 30˚C, 70%RH or less (the lowest possible humidity)  
Document Number: 002-08369 Rev. *B  
Page 49 of 53  
MB39C011A  
28.2 Parameters for Each Mounting Method  
28.2.1  
IR (infrared reflow)  
H rank : 260˚C Max  
260 °C  
255 °C  
170 °C  
to  
190 °C  
(b)  
(c)  
(d)  
(e)  
RT  
(a)  
(d')  
(a) Temperature Increase gradient  
(b) Preliminary heating  
(c) Temperature Increase gradient  
(d) Actual heating  
: Average 1˚C/s to 4˚C/s  
: Temperature 170˚C to 190˚C, 60s to 180s  
: Average 1˚C/s to 4˚C/s  
: Temperature 260˚C Max; 255˚C or more, 10s or less  
(d’)  
: Temperature 230˚C or more, 40s or less or  
Temperature 225˚C or more, 60s or less or  
Temperature 220˚C or more, 80s or less  
(e) Cooling  
: Natural cooling or forced cooling  
Note : Temperature : the top of the package body  
28.2.2  
Manual soldering (partial heating method)  
Conditions : Temperature 400˚C Max  
Times : 5 s max/pin  
Document Number: 002-08369 Rev. *B  
Page 50 of 53  
MB39C011A  
29. Package Dimensions  
16-pin plastic TSSOP  
Lead pitch  
0.65 mm  
Package width  
package length  
×
4.40 × 5.00 mm  
Gullwing  
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.10mm MAX  
0.06g  
Code  
(Reference)  
P-TSSOP16-4.4×5.0-0.65  
(FPT-16P-M07)  
16-pin plastic TSSOP  
(FPT-16P-M07)  
Note 1) *1 : Resin protrusion. (Each side : +0.15 (.006) Max).  
Note 2) *2 : These dimensions do not include resin protrusion.  
Note 3) Pins width and pins thickness include plating thickness.  
Note 4) Pins width do not include tie bar cutting remainder.  
15.00 0.10(.197 .004)  
*
0.17 0.05  
(.007 .002)  
16  
9
2 4.40 0.10 6.40 0.20  
*
(.173 .004) (.252 .008)  
INDEX  
Details of "A" part  
1.05 0.05  
(Mounting height)  
(.041 .002)  
1
8
LEAD No.  
"A"  
0.65(.026)  
0.24 0.08  
(.009 .003)  
0~8  
˚
M
0.13(.005)  
0.07 +00..0073 .003 +..000031  
(Stand off)  
(0.50(.020))  
0.60 0.15  
0.25(.010)  
(.024 .006)  
0.10(.004)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
©2003-2008 FUJITSU MICROELECTRONICS LIMITED F16020S-c-3-4  
003 JTLI1602Sc3-3  
Document Number: 002-08369 Rev. *B  
Page 51 of 53  
MB39C011A  
Document History  
Spansion Publication Number: DS04-27260-2E  
Document Title: MB39C011A 2ch DC/DC Converter IC with Synchronous Rectification Datasheet  
Document Number: 002-08369  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
TAOA  
08/07/2008 Migrated to Cypress and assigned document number 002-08369.  
No change to document contents or format.  
*A  
*B  
5187215  
5830510  
TAOA  
03/19/2016 Updated to Cypress template  
07/24/2017 Adapted Cypress new logo.  
MASG  
Document Number: 002-08369 Rev. *B  
Page 52 of 53  
MB39C011A  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC® Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IOT Forums | Projects | Video | Blogs | Training  
| Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/wireless  
ARM and Cortex are the trademarks of ARM Limited in the EU and other countries  
© Cypress Semiconductor Corporation, 2007-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
53  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-08369 Rev. *B  
Revised July 24, 2017  
Page 53 of 53  

相关型号:

MB39C011APFT

2 ch DC/DC Converter IC with Synchronous Rectification
CYPRESS

MB39C011APFT-G-BND-ERE1

2 ch DC/DC Converter IC with Synchronous Rectification
CYPRESS

MB39C011APFT-XXXE1

Dual Switching Controller, 0.7A, 2000kHz Switching Freq-Max, PDSO16, 4.40 X 5 MM, 1.10 MM HEIGHT, 0.65 MM PITCH, ROHS COMPLIANT, PLASTIC, TSSOP-16
FUJITSU

MB39C011APFT-XXXE1

Switching Regulator/Controller,
CYPRESS

MB39C014PN-G-K1ERE1

Switching Regulator/Controller, Current-mode, 0.8A, 3200kHz Switching Freq-Max, PDSO10
FUJITSU

MB39C014PN-XXXE1

Switching Regulator, Voltage-mode, 1.7A, 3840kHz Switching Freq-Max, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, PLASTIC, SON-10
FUJITSU

MB39C015

High efficiency : 96% (Max)
CYPRESS

MB39C015EVB-06

High efficiency : 96% (Max)
CYPRESS

MB39C015WQN

Switching Regulator, Current-mode, 0.8A, 2400kHz Switching Freq-Max, PQCC24
FUJITSU

MB39C022G

Buck DC/DC Converter Low Noise LDO
CYPRESS

MB39C022GPN

Buck DC/DC Converter Low Noise LDO
CYPRESS

MB39C022GPNE1

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
CYPRESS