MB39C015 [CYPRESS]

High efficiency : 96% (Max);
MB39C015
型号: MB39C015
厂家: CYPRESS    CYPRESS
描述:

High efficiency : 96% (Max)

文件: 总43页 (文件大小:1608K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MB39C015  
2ch DC/DC Converter IC Datasheet  
The MB39C015 is a current mode type 2-channel DC/DC converter IC built-in voltage detection, synchronous rectifier, and down  
conversion support. The device is integrated with a switching FET, oscillator, error amplifier, PWM control circuit, reference voltage  
source, and voltage detection circuit.  
External inductor and decoupling capacitor are needed only for the external component.  
As combining with external parts enables a DC/DC converter with a compact and high load response characteristic, this is suitable  
as the built-in power supply for such as mobile phone/PDA, DVDs, and HDDs.  
Features  
High efficiency  
: 96% (Max)  
Output current (DC/DC)  
Input voltage range  
Operating frequency  
No flyback diode needed  
Low dropout operation  
: 800 mA/ch (Max)  
: 2.5 V to 5.5 V  
: 2.0 MHz (Typ)  
: For 100% on duty  
Built-in high-precision reference voltage generator : 1.30 V 2%  
Consumption current in shutdown mode  
: 1 A or less  
Built-in switching FET  
: P-ch MOS 0.3 (Typ) N-ch MOS 0.2 (Typ)  
High speed for input and load transient response in the current mode  
Over temperature protection  
Packaged in a compact package  
: QFN-24  
Applications  
Flash ROMs  
MP3 players  
Electronic dictionary devices  
Surveillance cameras  
Portable GPS navigators  
DVD drives  
IP phones  
Network hubs  
Mobile phones etc.  
Cypress Semiconductor Corporation  
Document Number: 002-08364 Rev. *A  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised March 1, 2016  
MB39C015  
Contents  
Pin Assignment ................................................................3  
Pin Descriptions ...............................................................4  
I/O Pin Equivalent Circuit Diagram .................................5  
Block Diagram ..................................................................6  
Function of Each Block ....................................................8  
Absolute Maximum Ratings ..........................................10  
Recommended Operating Conditions ..........................11  
Electrical Characteristics ...............................................12  
Test Circuit For Measuring Typical  
Operating Characteristics ..............................................14  
Application Notes ...........................................................15  
Selection of components ...........................................15  
Output voltage setting ..............................................16  
About conversion efficiency .......................................16  
Power dissipation and heat considerations............... 17  
XPOR threshold voltage setting  
[VPORH, VPORL] .......................................................18  
Transient response ....................................................19  
Board layout, design example ...................................20  
Example Of Standard Operation Characteristics ........21  
Application Circuit Examples ........................................29  
Application Circuit Examples ........................................30  
Usage Precautions .........................................................32  
Ordering Information ......................................................32  
RoHS Compliance Information of  
Lead (Pb) Free Version .................................................. 33  
Marking Format (Lead Free Version) ....................... 33  
Labeling Sample (Lead Free Version) ......................33  
Evaluation Board Specification .....................................34  
EV Board Ordering Information ....................................40  
Package Dimension ........................................................41  
Document Number: 002-08364 Rev. *A  
Page 2 of 43  
MB39C015  
1. Pin Assignment  
(Top View)  
LX2 DGND2 DGND2 DGND1 DGND1 LX1  
18  
17  
16  
15  
14  
13  
DVDD2  
DVDD2  
OUT2  
DVDD1  
DVDD1  
OUT1  
12  
11  
10  
9
19  
20  
21  
22  
23  
24  
MODE2  
MODE1  
VREFIN2  
VREFIN1  
8
7
XPOR  
VDET  
1
2
3
4
5
6
CTLP CTL2 CTL1 AGND AVDD VREF  
(LCC-24P-M10)  
Document Number: 002-08364 Rev. *A  
Page 3 of 43  
MB39C015  
2. Pin Descriptions  
Pin No.  
Pin Name  
I/O  
Description  
1
CTLP  
I
I
Voltage detection circuit block control input pin.  
(L : Voltage detection function stop, H : Normal operation)  
2/3  
CTL2/CTL1  
DC/DC converter block control input pin.  
(L : Shut down, H : Normal operation)  
4
5
6
7
AGND  
Control block ground pin.  
AVDD  
Control block power supply pin.  
Reference voltage output pin.  
Voltage detection input pin.  
VREF  
O
I
VDET  
8/23  
9/22  
10/21  
VREFIN1/VREFIN2  
MODE1/MODE2  
OUT1/OUT2  
DVDD1/DVDD2  
I
Error amplifier (Error Amp) non-inverted input pin.  
Use pin at L level or leave open.  
Output voltage feedback pin.  
I
I
11, 12/  
19, 20  
Drive block power supply pin.  
13/18  
LX1/LX2  
O
Inductor connection output pin.  
High impedance during shut down.  
14, 15/  
16, 17  
DGND1/DGND2  
XPOR  
Drive block ground pin.  
24  
O
VDET circuit output pin.  
Connected to an N-ch MOS open drain circuit.  
Document Number: 002-08364 Rev. *A  
Page 4 of 43  
MB39C015  
3. I/O Pin Equivalent Circuit Diagram  
VDD  
VDD  
LX1, LX2  
VREF  
GND  
GND  
VDD  
VREFIN1,  
VREFIN2,  
VDET  
OUT1, OUT2  
GND  
VDD  
CTL1, CTL2, CTLP  
GND  
VDD  
XPOR  
MODE1,  
MODE2  
GND  
* : ESD Protection device  
GND  
Document Number: 002-08364 Rev. *A  
Page 5 of 43  
MB39C015  
4. Block Diagram  
VIN  
AVDD  
ERR  
DVDD1  
DVDD2  
5
11, 12 19, 20  
CTL1  
3
ON/OFF  
OUT1  
×3  
Amplifier  
DVDD1  
10  
+
IOUT  
Comparator  
VREFIN1  
MODE1  
8
9
DAC  
PWM  
Logic  
LX1  
13  
VOUT1  
Control  
GND  
VIN  
VIN  
CTLP  
VDET  
1
7
ON/OFF  
24  
+
XPOR  
1.30 V  
VREF  
VREF  
6
2
CTL2  
OUT2  
ON/OFF  
ERR  
×3  
DVDD2  
Amplifier  
21  
+
IOUT  
Comparator  
VREFIN2  
23  
PWM  
Logic  
LX2  
18  
VOUT2  
Control  
MODE2  
GND  
22  
4
16, 17  
DGND2  
14, 15  
DGND1  
AGND  
Document Number: 002-08364 Rev. *A  
Page 6 of 43  
MB39C015  
Current mode  
Original voltage mode type :  
Stabilize the output voltage by comparing two items below and on-duty control.  
• Voltage (VC) obtained through negative feedback of the output voltage by Error Amp  
• Reference triangular wave (VTRI)  
Current mode type :  
Instead of the triangular wave (VTRI), the voltage (VIDET) obtained through I-V conversion of the sum of currents that flow in the  
oscillator (rectangular wave generation circuit) and SW FET is used.  
Stabilize the output voltage by comparing two items below and on-duty control.  
• Voltage (VC) obtained through negative feedback of the output voltage by Error Amp  
• Voltage (VIDET) obtained through I-V conversion of the sum of current that flow in the oscillator (rectangular wave generation  
circuit) and SW FET  
Voltage mode type model  
Current mode type model  
V
IN  
V
IN  
Oscillator  
+
S
R
Vc  
+
Vc  
Q
V
TRI  
V
IDET  
SR-FF  
Vc  
V
IDET  
V
TRI  
Vc  
ton  
toff  
toff  
ton  
Note : The above models illustrate the general operation and an actual operation will be preferred in the IC.  
Document Number: 002-08364 Rev. *A  
Page 7 of 43  
MB39C015  
5. Function of Each Block  
PWM Logic control circuit  
The built-in P-ch and N-ch MOS FETs are controlled for synchronization rectification according to the frequency (2.0 MHz) oscillated  
from the built-in oscillator (square wave oscillation circuit).  
IOUT Comparator circuit  
This circuit detects the current (ILX) which flows to the external inductor from the built-in P-ch MOS FET. By comparing VIDET obtained  
through I-V conversion of peak current IPK of ILX with the Error Amp output, the built-in P-ch MOS FET is turned off via the PWM Logic  
Control circuit.  
Error Amp phase compensation circuit  
This circuit compares the output voltage to reference voltages such as VREF. This IC has a built-in phase compensation circuit that  
is designed to optimize the operation of this IC.This needs neither to be considered nor addition of a phase compensation circuit and  
an external phase compensation device.  
VREF circuit  
A high accuracy reference voltage is generated with BGR (bandgap reference) circuit. The output voltage is 1.30 V (Typ).  
Voltage Detection (VDET) circuit  
The voltage detection circuit monitors the voltage at the VDET pin. Normally, use the XPOR pin through pull-up with an external  
resistor. When the VDET pin voltage reaches 0.6 V, it reaches the H level.  
Timing chart example : (XPOR pin pulled up to VIN)  
VIN  
V
UVLO  
CTLP  
V
THHPR  
THLPR  
V
VDET  
XPOR  
VUVLO : UVLO threshold voltage  
VTHHPR, VTHLPR : XPOR threshold voltage  
Protection circuit  
This IC has a built-in over-temperature protection circuit. The over-temperature protection circuit turns off both N-ch and P-ch switching  
FETs when the junction temperature reaches 135 °C . When the junction temperature comes down to 110 °C , the switching FET  
is returned to the normal operation. Since the PWM control circuit of this IC is in the control method in current mode, the current peak  
value is also monitored and controlled as required.  
Document Number: 002-08364 Rev. *A  
Page 8 of 43  
MB39C015  
Function table  
Input  
CTL2  
Output  
CH2 function  
MODE  
VDET  
function  
VREF  
function  
CTL1  
CTLP  
CH1 function  
Shutdown mode  
L
Stopped  
Operation  
Stopped  
Stopped  
Operation  
Stopped  
Operation  
Operation  
H
L
L
L
Stopped  
Operation  
Stopped  
Operation  
Operation  
Stopped  
Stopped  
H
L
L
Stopped  
L
H
L
Operation  
Stopped  
Operating mode  
Outputs 1.3 V  
H
L
H
H
L
H
H
Operation  
Operation  
H
H
Document Number: 002-08364 Rev. *A  
Page 9 of 43  
MB39C015  
6. Absolute Maximum Ratings  
Rating  
Parameter  
Symbol  
VDD  
Condition  
Unit  
Min  
Max  
Power supply voltage  
Signal input voltage  
AVDD DVDD1 DVDD2  
OUT1/OUT2 pins  
0.3  
0.3  
0.3  
6.0  
VDD 0.3  
VDD 0.3  
V
V
VISIG  
CTLP, CTL1/CTL2,  
MODE1/MODE2 pins  
VREFIN1/VREFIN2 pins  
VDET pin  
0.3  
0.3  
0.3  
0.3  
VDD 0.3  
VDD 0.3  
6.0  
VDD 0.3  
1.8  
XPOR pull-up voltage  
LX voltage  
VIXPOR  
VLX  
IPK  
XPOR pin  
V
LX1/LX2 pins  
ILX1/ILX2  
V
LX Peak current  
Power dissipation  
A
PD  
Ta  25 °C  
3125*1, *2, *3  
1563*1, *2, *4  
1250*1, *2, *3  
625*1, *2, *4  
85  
mW  
Ta  85 °C  
mW  
Operating ambient  
temperature  
Ta  
40  
°C  
°C  
Storage temperature  
TSTG  
55  
125  
*1 : Power dissipation value between + 25 °C and + 85 °C is obtained by connecting these two points with straight line.  
*2 : When mounted on a four-layer epoxy board of 11.7 cm × 8.4 cm  
*3 : Connection at exposure pad with thermal via. (Thermal via 9 holes)  
*4 : Connection at exposure pad, without a thermal via.  
Notes:  
• The use of negative voltages below 0.3 V to the AGND, DGND1, and DGND2 pin may create parasitic  
transistors on LSI lines, which can cause abnormal operation.  
• This device can be damaged if the LX1 pin and LX2 pin are short-circuited to AVDD and DVDD1/DVDD2,  
or AGND and DGND1/DGND2.  
WARNING:  
Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
Document Number: 002-08364 Rev. *A  
Page 10 of 43  
MB39C015  
7. Recommended Operating Conditions  
Value  
Typ  
Parameter  
Symbol  
VDD  
Condition  
Unit  
Min  
2.5  
Max  
Power supply voltage  
VREFIN voltage  
CTL voltage  
AVDD DVDD1 DVDD2  
3.7  
5.5  
V
VREFIN  
VCTL  
ILX  
0.15  
1.30  
5.0  
V
CTLP, CTL1, CTL2  
0
V
LX current  
ILX1/ILX2  
800  
0.5  
mA  
mA  
VREF output current  
IROUT  
2.5 V AVDD DVDD1 DVDD2 <  
3.0 V  
3.0 V AVDD DVDD1 DVDD2   
1
5.5 V  
XPOR current  
Inductor value  
IPOR  
L
1
mA  
2.2  
H  
Note :  
The output current from this device has a situation to decrease if the power supply voltage (VIN) and the DC/DC converter output  
voltage (VOUT) differ only by a small amount. This is a result of slope compensation and will not damage this device.  
WARNING:  
The recommended operating conditions are required in order to ensure the normal operation of  
the semiconductor device. All of the device's electrical characteristics are warranted when the  
device is operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges.  
Operation outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented  
on the data sheet. Users considering application outside the listed conditions are advised to contact  
their representatives beforehand.  
Document Number: 002-08364 Rev. *A  
Page 11 of 43  
MB39C015  
8. Electrical Characteristics  
(Ta  25 °C , AVDD DVDD1 DVDD2 3.7 V, VOUT1/VOUT2 setting value 2.5 V, MODE1/MODE2 0 V)  
Value  
Sym-  
bol  
Parameter  
Pin No.  
Condition  
Unit  
Min  
100  
2.45  
Typ  
Max  
100  
2.55  
Input current  
IREFIN  
8, 23  
10, 21  
VREFIN 0.15 V to 1.3 V  
0
nA  
Output voltage  
VOUT  
VREFIN 0.833 V,  
2.50  
V
OUT  100 mA  
Input stability  
Load stability  
LINE  
LOAD  
ROUT  
2.5 V AVDD DVDD1   
DVDD2 5.5 V*1  
10  
10  
1.5  
mV  
mV  
MΩ  
100 mA OUT ≥  
800 mA  
OUT pin input  
impedance  
OUT 2.0 V  
0.6  
1.0  
LX Peak current  
IPK  
13, 18  
Output shorted to GND  
0.9  
1.6  
1.2  
2.0  
1.7  
2.4  
A
DC/DC  
converter  
block  
Oscillation  
frequency  
fosc  
MHz  
Rise delay time  
tPG  
2, 3,  
10, 21  
C1/C2 4.7 F, OUT   
0 A, OUT1/OUT2 : 0 90%  
VOUT  
45  
80  
s  
SW NMOS-FET  
OFF voltage  
VNOFF  
13, 18  
10*  
0.30  
mV  
SWPMOS-FET ON RONP  
resistance  
LX1/LX2  100 mA  
LX1/LX2  100 mA  
0 LX VDD*2  
VDD 5.5 V, 0 LX VDD*2 2.0  
0.48  
0.42  
SWNMOS-FETON RONN  
resistance  
0.20  
LX leak current  
ILEAKM  
ILEAKH  
TOTPH  
1.0  
8.0  
16.0  
160*  
A  
A  
°C  
Overheating  
protection (Junction  
Temp.)  
120*  
135*  
TOTPL  
95*  
110*  
125*  
°C  
Protection  
circuit block  
UVLO threshold  
voltage  
VTHHUV  
VTHLUV  
VHYSUV  
5, 11,  
12, 19, 20  
2.17  
2.03  
0.08  
2.30  
2.15  
0.15  
2.43  
2.27  
0.25  
V
V
V
UVLO  
hysteresis width  
XPOR threshold  
voltage  
VTHHPR  
VTHLPR  
VHYSPR  
7
575  
558  
600  
583  
17  
625  
608  
mV  
mV  
mV  
Voltage  
detection  
circuit block  
XPOR  
hysteresis width  
XPOR output  
voltage  
VOL  
IOH  
24  
XPOR 25 A  
XPOR 5.5 V  
0.1  
1.0  
V
XPOR output  
current  
A  
* : Standard design value  
(Continued)  
Document Number: 002-08364 Rev. *A  
Page 12 of 43  
MB39C015  
(Continued)  
(Ta  25 °C , AVDD DVDD1 DVDD2 3.7 V, VOUT1/VOUT2 setting value 2.5 V, MODE1/MODE2 0 V)  
Value  
Parameter  
Symbol  
Pin No.  
Condition  
Unit  
Min  
0.55  
Typ  
0.95  
Max  
1.45  
CTL threshold  
voltage  
VTHHCT  
VTHLCT  
IICTL  
1, 2, 3  
V
0.40  
0.80  
1.30  
1.0  
V
Control block  
CTL pin  
input current  
0 V CTLP/CTL1/CTL2   
A  
3.7 V  
Reference  
voltage block  
VREF voltage  
VREF  
6
VREF 0 mA  
VREF  1.0 mA  
1.274  
1.300  
1.326  
20  
V
VREF Load  
stability  
LOADREF  
mV  
Shut down  
power supply  
current  
IVDD1  
CTLP/CTL1/CTL2 0 V  
1.0  
1.0  
A  
A  
State of all circuits OFF*3  
IVDD1H  
CTLP/CTL1/CTL2 0 V,  
VDD 5.5 V  
State of all circuits OFF*3  
Power supply current IVDD31  
(DC/DC mode)  
1. CTLP 0 V, CTL1 3.7 V,  
CTL2 0 V  
3.5  
10  
mA  
2. CTLP 0 V, CTL1 0 V,  
CTL2 3.7 V  
5, 11,  
12, 19,  
20  
General  
OUT 0 A  
IVDD32  
CTLP 0 V, CTL1/CTL2   
7.0  
15  
20.0  
24  
mA  
3.7 V, OUT 0 A  
Power supply current IVDD5  
(voltage detection  
mode)  
CTLP 3.7 V,  
A  
CTL1/CTL2 0 V,  
Power-on  
invalid current  
IVDD  
1. CTL1 3.7 V, CTL2 0 V  
2. CTL1 0 V, CTL2 3.7 V  
VOUT1/VOUT2 90%  
OUT 0 A*4  
1000  
2000  
A  
*1 : The minimum value of AVDD = DVDD1 = DVDD2 is the 2.5 V or VOUT setting value + 0.6 V, whichever is higher.  
*2 : The + leak at the LX1 pin and LX2 pin includes the current of the internal circuit.  
*3 : Sum of the current flowing into the AVDD, the DVDD1, and the DVDD2 pins.  
*4 : Current consumption based on 100% ON-duty (High side FET in full ON state). The SW FET gate drive current is not included  
because the device is in full ON state (no switching operation). Also the load current is not included.  
Document Number: 002-08364 Rev. *A  
Page 13 of 43  
MB39C015  
9. Test Circuit For Measuring Typical Operating Characteristics  
MB39C015  
VDD  
V
DD  
SW  
VIN  
CTL1/CTL2  
DVDD1/DVDD2  
C2  
R1  
4.7 μF  
1 MΩ  
AVDD  
MODE1/MODE2  
C3  
4.7 μF  
L1  
2.2 μH  
LX1/LX2  
VOUT1/  
VOUT2  
VREF  
VDET  
R5  
510 kΩ  
R3-1  
OUT1/OUT2  
20 kΩ  
R6  
100 kΩ  
I
OUT  
C1  
4.7 μF  
R3-2  
150 kΩ  
DGND1/DGND2  
VREFIN1/VREFIN2  
AGND  
C6  
0.1 μF  
GND  
R4  
300 kΩ  
Output voltage VREFIN × 3.01  
Component  
Specification  
Vendor  
KOA  
Part Number  
Remarks  
R1  
1 MΩ  
RK73G1JTTD D 1 MΩ  
R3-1  
R3-2  
20 kΩ  
SSM  
SSM  
RR0816-203-D  
RR0816-154-D  
150 kΩ  
300 kΩ  
510 kΩ  
100 kΩ  
4.7 F  
4.7 F  
0.1 F  
0.1 F  
2.2 H  
VOUT1/VOUT2 2.5 V  
Setting  
R4  
R5  
R6  
C1  
C2  
C3  
C6  
L1  
SSM  
KOA  
SSM  
TDK  
TDK  
TDK  
TDK  
TDK  
RR0816-304-D  
RK73G1JTTD D 510 kΩ  
RR0816-104-D  
C2012JB1A475K  
C2012JB1A475K  
C1608JB1E104K  
C1608JB1H104K  
VLF4012AT-2R2M  
For adjusting slow start time  
Note : These components are recommended based on the operating tests authorized.  
TDK : TDK Corporation  
SSM : SUSUMU Co., Ltd  
KOA : KOA Corporation  
Document Number: 002-08364 Rev. *A  
Page 14 of 43  
MB39C015  
10. Application Notes  
10.1 Selection of components  
Selection of an external inductor  
Basically it dose not need to design inductor. This IC is designed to operate efficiently with a 2.2 H inductor.  
The inductor should be rated for a saturation current higher than the LX peak current value during normal operating conditions, and  
should have a minimal DC resistance. (100 mor less is recommended.)  
LX peak current value IPK is obtained by the following formula.  
VIN VOUT  
D
1
2
(VIN VOUT) × VOUT  
IPK IOUT  
×
×
IOUT   
L
fosc  
2 × L × fosc × VIN  
L
: External inductor value  
: Load current  
IOUT  
VIN  
VOUT  
D
: Power supply voltage  
: Output setting voltage  
: ON-duty to be switched ( = VOUT/VIN)  
: Switching frequency (2.0 MHz)  
fosc  
ex) When VIN 3.7 V, VOUT 2.5 V, IOUT 0.8 A, L 2.2 H, fosc 2.0 MHz  
The maximum peak current value IPK;  
(VIN VOUT) × VOUT  
2 × L × fosc × VIN  
(3.7 V 2.5 V) × 2.5 V  
2 × 2.2 H × 2.0 MHz × 3.7 V  
IPK IOUT  
0.8 A   
=: 0.89 A  
I/O capacitor selection  
Select a low equivalent series resistance (ESR) for the VDD input capacitor to suppress dissipation from ripple currents.  
Also select a low equivalent series resistance (ESR) for the output capacitor. The variation in the inductor current causes ripple  
currents on the output capacitor which, in turn, causes ripple voltages an output equal to the amount of variation multiplied by the  
ESR value. The output capacitor value has a significant impact on the operating stability of the device when used as a DC/DC  
converter. Therefore, FUJITSU SEMICONDUCTOR generally recommends a 4.7 F capacitor, or a larger capacitor value can  
be used if ripple voltages are not suitable. If the VIN/VOUT voltage difference is within 0.6 V, the use of a 10 F output capacitor  
value is recommended.  
Types of capacitors  
Ceramiccapacitors are effective for reducing the ESR and afford smaller DC/DC converter circuit. However, power supply functions  
as a heat generator, therefore avoid to use capacitor with the F-temperature rating ( 80% to 20%).Cypress recommends  
capacitors with the B-temperature rating ( 10% to 20%). Normal electrolytic capacitors are not recommended due to their  
high ESR.Tantalum capacitor will reduce ESR, however, it is dangerous to use because it turns into short mode when damaged.  
If you insist on using a tantalum capacitor, Cypress recommends the type with an internal fuse.  
Document Number: 002-08364 Rev. *A  
Page 15 of 43  
MB39C015  
10.2 Output voltage setting  
The output voltage VOUT (VOUT1 or VOUT2) of this IC is defined by the voltage input to VREFIN (VREFIN1 or VREFIN2) . Supply the  
voltage for inputting to VREFIN from an external power supply, or set the VREF output by dividing it with resistors.  
The output voltage when the VREFIN voltage is set by dividing the VREF voltage with resistors is shown in the following formula.  
R2  
VOUT 3.01 × VREFIN, VREFIN  
× VREF  
R1 R2  
(VREF 1.30 V)  
MB39C015  
VREF  
VREF  
R1  
R2  
VREFIN  
VREFIN  
Note :  
Refer to “ Application Circuit Examples” for the an example of this circuit.  
Although the output voltage is defined according to the dividing ratio of resistance, select the resistance value so that the current  
flowing through the resistance does not exceed the VREF current rating (1 mA) .  
10.3 About conversion efficiency  
The conversion efficiency can be improved by reducing the loss of the DC/DC converter circuit.  
The total loss (PLOSS) of the DC/DC converter is roughly divided as follows :  
PLOSS = PCONT + PSW + PC  
PCONT : Control system circuit loss (The power used for this IC to operate, including the gate driving power for internal SW FETs)  
PSW  
PC  
: Switching loss (The loss caused during switching of the IC's internal SW FETs)  
: Continuity loss (The loss caused when currents flow through the IC's internal SW FETs and external circuits )  
Document Number: 002-08364 Rev. *A  
Page 16 of 43  
MB39C015  
The IC's control circuit loss (PCONT) is extremely small, less than 100 mW (with no load).  
As the IC contains FETs which can switch faster with less power, the continuity loss (PC) is more predominant as the loss during heavy-  
load operation than the control circuit loss (PCONT) and switching loss (PSW) .  
Furthermore, the continuity loss (PC) is divided roughly into the loss by internal SW FET ON-resistance and by external inductor series  
resistance.  
2
PC = IOUT × (RDC + D × RONP + (1 - D) × RONN)  
D
: Switching ON-duty cycle ( = VOUT / VIN)  
: Internal P-ch SW FET ON resistance  
: Internal N-ch SW FET ON resistance  
RONP  
RONN  
RDC : External inductor series resistance  
IOUT : Load current  
The above formula indicates that it is important to reduce RDC as much as possible to improve efficiency by selecting  
components.  
10.4 Power dissipation and heat considerations  
The IC is so efficient that no consideration is required in most cases. However, if the IC is used at a low power supply voltage, heavy  
load, high output voltage, or high temperature, it requires further consideration for higher efficiency.  
The internal loss (P) is roughly obtained from the following formula :  
2
P = IOUT × (D × RONP + (1 - D) × RONN)  
D
: Switching ON-duty cycle ( = VOUT / VIN)  
: Internal P-ch SW FET ON resistance  
: Internal N-ch SW FET ON resistance  
: Output current  
RONP  
RONN  
IOUT  
The loss expressed by the above formula is mainly continuity loss. The internal loss includes the switching loss and the control circuit  
loss as well but they are so small compared to the continuity loss they can be ignored.  
In this IC with RONP greater than RONN, the larger the on-duty cycle, the greater the loss.  
When assuming VIN 3.7 V, Ta   70 °C , for example, RONP 0.36 and RONN 0.30 according to the graph “MOS FET  
ON resistance vs. Operating ambient temperature”. The IC's internal loss P is 123 mW at VOUT 2.5 V and IOUT 0.6 A. According  
to the graph “Power dissipation vs. Operating ambient temperature”, the power dissipation at an operating ambient temperature Ta  
of 70 °C is 300 mW and the internal loss is smaller than the power dissipation.  
Document Number: 002-08364 Rev. *A  
Page 17 of 43  
MB39C015  
10.5 XPOR threshold voltage setting [VPORH, VPORL]  
Set the detection voltage by applying voltage to the VDET pin via an external resistor calculated according to this formula.  
R3 R4  
VPORH  
× VTHHPR  
R4  
R3 R4  
R4  
VPORL  
× VTHLPR  
VTHHPR = 0.600 V  
VTHLPR = 0.583 V  
Example for setting detection voltage to 3.7 V  
R3 = 510 kΩ  
R4 = 100 kΩ  
510 k100 kΩ  
VPORH  
× 0.600 3.66=: 3.7 [V]  
× 0.583 3.56=: 3.6 [V]  
100 kΩ  
510 k100 kΩ  
100 kΩ  
VPORL  
VIN  
MB39C015  
AVDD  
R3  
R4  
1 MΩ  
VDET  
XPOR  
XPOR  
Document Number: 002-08364 Rev. *A  
Page 18 of 43  
MB39C015  
10.6 Transient response  
Normally, IOUT is suddenly changed while VIN and VOUT are maintained constant, responsiveness including the response time and  
overshoot/undershoot voltage is checked. As this IC has built-in Error Amp with an optimized design, it shows good transient response  
characteristics. However, if ringing upon sudden change of the load is high due to the operating conditions, add capacitor C6 (e.g. 0.1  
F). (Since this capacitor C6 changes the start time, check the start waveform as well.) This action is not required for DAC input.  
MB39C015  
VREF  
VREF  
R1  
VREFIN  
VREFIN1/  
VREFIN2  
R2  
C6  
Document Number: 002-08364 Rev. *A  
Page 19 of 43  
MB39C015  
10.7 Board layout, design example  
The board layout needs to be designed to ensure the stable operation of this IC.  
Follow the procedure below for designing the layout.  
• Arrange the input capacitor (Cin) as close as possible to both the VDD and GND pins. Make a through hole (TH) near the pins  
of this capacitor if the board has planes for power and GND.  
• Large AC currents flow between this IC and the input capacitor (Cin), output capacitor (Co), and external inductor (L). Group  
these components as close as possible to this IC to reduce the overall loop area occupied by this group. Also try to mount these  
components on the same surface and arrange wiring without through hole wiring. Use thick, short, and straight routes to wire  
the net (The layout by planes is recommended.).  
• Arrange a bypass capacitor for AVDD as close as possible to both the AVDD and AGND pins. Make a through hole (TH) near  
the pins of this capacitor if the board has planes for power and GND.  
• The feedback wiring to the OUT should be wired from the voltage output pin closest to the output capacitor (Co). The OUT pin  
is extremely sensitive and should thus be kept wired away from the LX1 and pin LX2 pin of this IC as far as possible.  
• If applying voltage to the VREFIN1/VREFIN2 pins through dividing resistors, arrange the resistors so that the wiring can be kept  
as short as possible. Also arrange them so that the GND pin of VREFIN1/VREFIN2 resistor is close to the IC's AGND pin.  
Further, provide a GND exclusively for the control line so that the resistor can be connected via a path that does not carry current.  
If installing a bypass capacitor for the VREFIN, put it close to the VREFIN pin.  
• If applying voltage to the VDET pin through dividing resistors, arrange the resistors so that the wiring can be kept as short as  
possible. Also arrange so that the GND pin of the VDET resistor is close to the IC's AGND pin. Further, provide a GND exclusively  
for the control line so that the resistor can be connected via a path that does not carry current.  
• Try to make a GND plane on the surface to which this IC will be mounted. For efficient heat dissipation when using the QFN-24  
package, Cypress recommends providing a thermal via in the footprint of the thermal pad.  
Example of arranging IC SW system parts  
Co  
Co  
L
L
GND  
Cin  
Cin  
VIN  
VIN  
Feedback line  
Feedback line  
1pin  
GND  
VIN  
AVDD bypass capacitor  
Notes for circuit design  
The switching operation of this IC works by monitoring and controlling the peak current which, incidentally, serves as a form of short-  
circuit protection. However, do not leave the output short-circuited for long periods of time. If the output is short-circuited where VIN <  
2.9 V, the current limit value (peak current to the inductor) tends to rise. Leaving in the short-circuit state, the temperature of this IC  
will continue rising and activate the thermal protection.  
Once the thermal protection stops the output, the temperature of the IC will go down and operation will be restarted, after which the  
output will repeat the starting and stopping.  
Although this effect will not destroy the IC, the thermal exposure to the IC over prolonged hours may affect the peripherals surrounding  
it.  
Document Number: 002-08364 Rev. *A  
Page 20 of 43  
MB39C015  
11. Example Of Standard Operation Characteristics  
(Shown below is an example of characteristics for connection according to “Test Circuit For Measuring Typical Operating  
Characteristics”.)  
Characteristics CH1  
Conversion efficiency vs. Load current  
Conversion efficiency vs. Load current  
100  
100  
VIN = 3.7 V  
90  
90  
VIN = 3.7 V  
80  
80  
VIN = 3.0 V  
70  
70  
VIN = 3.0 V  
VIN = 4.2 V  
VIN = 5.0 V  
60  
50  
40  
30  
20  
10  
0
VIN = 4.2 V  
60  
50  
40  
30  
20  
10  
0
VIN = 5.0 V  
Ta = +25 °C  
1.2 V  
Ta = +25 °C  
2.5 V  
VOUT  
=
VOUT  
=
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
Conversion efficiency vs. Load current  
Conversion efficiency vs. Load current  
100  
100  
VIN = 3.7 V  
VIN = 3.7 V  
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
VIN = 3.0 V  
VIN = 4.2 V  
70  
VIN = 4.2 V  
60  
VIN = 5.0 V  
50  
VIN = 5.0 V  
40  
30  
20  
Ta = +25 °C  
Ta = +25 °C  
3.3 V  
10  
0
VOUT  
=
1.8 V  
VOUT  
=
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
(Continued)  
Document Number: 002-08364 Rev. *A  
Page 21 of 43  
MB39C015  
Output voltage vs. Load current  
Output voltage vs. Input voltage  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
Ta  25 °C  
Ta  25 °C  
VIN 3.7 V  
VOUT 2.5 V setting  
VOUT 2.5 V setting  
IOUT  
= 0 A  
IOUT  
= 100 mA  
2.0  
3.0  
4.0  
5.0  
6.0  
0
200  
400  
600  
800  
Input voltage VIN (V)  
Load current IOUT (mA)  
Reference voltage vs. Operating  
ambient temperature  
Reference voltage vs. Input voltage  
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.40  
VIN = 3.7 V  
VOUT = 2.5 V  
IOUT = 0 V  
1.38  
1.36  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
Ta = +25 °C  
2.5 V  
V
OUT  
=
I
OUT  
= 0 A  
I
OUT  
= 100 mA  
50  
0
+50  
+100  
2.0  
3.0  
4.0  
5.0  
6.0  
Operating ambient temperature Ta ( °C )  
Input voltage VIN (V)  
(Continued)  
Document Number: 002-08364 Rev. *A  
Page 22 of 43  
MB39C015  
Input current vs. Input voltage  
Input current vs. Operating ambient  
temperature  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
Ta = +25 °C  
V
V
IN  
=
3.7 V  
2.5 V  
VOUT  
=
2.5 V  
OUT  
=
50  
+50  
+100  
2.0  
3.0  
4.0  
5.0  
6.0  
0
Input voltage VIN (V)  
Operating ambient temperature Ta ( °C )  
Oscillation frequency vs. Operating  
ambient temperature  
Oscillation frequency vs. Input voltage  
2.4  
2.4  
Ta = +25 °C  
V
V
IN  
=
3.7 V  
2.5 V  
100 mA  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
V
OUT = 1.8 V  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
OUT  
=
IOUT = 100 mA  
IOUT  
=
1.6  
2.0  
3.0  
4.0  
5.0  
6.0  
50  
+50  
+100  
0
Operating ambient temperature Ta ( °C )  
Input voltage VIN (V)  
(Continued)  
Document Number: 002-08364 Rev. *A  
Page 23 of 43  
MB39C015  
MOS FET ON resistance vs.  
Input voltage  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
P-ch  
N-ch  
Ta = +25 °C  
2.0  
3.0  
4.0  
5.0  
6.0  
Input voltage VIN (V)  
N-ch MOS FET ON resistance vs.  
Operating ambient temperature  
P-ch MOS FET ON resistance vs.  
Operating ambient temperature  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V = 3.7 V  
IN  
V = 3.7 V  
IN  
V = 5.5 V  
IN  
V
IN  
=
5.5 V  
+50  
50  
0
+100  
50  
0
+50  
+100  
Operating ambient temperature Ta ( °C )  
Operating ambient temperature Ta ( °C )  
(Continued)  
Document Number: 002-08364 Rev. *A  
Page 24 of 43  
MB39C015  
(Continued)  
CTL threshold voltage VTH vs. Input voltage  
XPOR output voltage VXPOR vs. Input voltage  
1.4  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Ta = +25 °C  
VPORH = 3.7 V setting  
1.2  
V
THHCT  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
THLCT  
Ta = +25 °C  
2.5 V  
V
OUT  
=
VXPORL  
VXPORH  
VTHHCT : Circuit OFF ON  
VTHLCT : Circuit ON OFF  
2.0  
3.0  
4.0  
5.0  
6.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Input voltage VIN (V)  
Input voltage VIN (V)  
Power dissipation vs. Operating  
ambient temperature  
Power dissipation vs. Operating  
ambient temperature  
(with thermal via)  
(without thermal via)  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3125  
1563  
1250  
625  
0
0
+85  
+100  
+85  
+100  
50  
0
+50  
50  
0
+50  
Operating ambient temperature Ta ( °C )  
Operating ambient temperature Ta ( °C )  
Document Number: 002-08364 Rev. *A  
Page 25 of 43  
MB39C015  
Switching waveforms  
V
OUT : 20 mV/div  
VLX : 2.0 V/div  
I
LX : 500 mA/div  
Ta = +25 °C  
V
V
IN = 3.7 V  
OUT = 2.5 V  
1 µs/div  
IOUT = 800 mA  
Document Number: 002-08364 Rev. *A  
Page 26 of 43  
MB39C015  
Startup waveform  
VCTL : 5.0 V/div  
I
LX : 500 mA/div  
Ta = +25 °C  
VIN = 3.7 V  
VOUT = 2.5 V  
IOUT = 0 A  
VREFIN capacitor value =  
V
OUT : 1.0 V/div  
0.1 F  
10 ms/div  
V
CTL : 2.0 V/div  
I
LX : 500 mA/div  
Ta = +25 °C  
V
V
IN = 3.7 V  
OUT = 2.5 V  
VOUT : 1.0 V/div  
I
OUT = 0 A  
No VREFIN capacitor  
10 μs/div  
Document Number: 002-08364 Rev. *A  
Page 27 of 43  
MB39C015  
Output waveforms at sudden load changes (0 mA 800 mA)  
IOUT = 0 mA  
IOUT = 800 mA  
IOUT = 0 mA  
VOUT : 100 mV/div  
Ta = +25 °C  
VIN = 3.7 V  
VOUT = 2.5 V  
VREFIN capacitor value   
0.1 F  
10 μs/div  
Output waveforms at sudden load changes (100 mA 800 mA)  
I
OUT  
= 100 mA  
I
OUT  
= 100 mA  
I
OUT  
= 800 mA  
V
OUT : 100 mV/div  
Ta = +25 °C  
VIN = 3.7 V  
V
OUT = 2.5 V  
VREFIN capacitor value   
0.1 F  
10 μs/div  
Document Number: 002-08364 Rev. *A  
Page 28 of 43  
MB39C015  
12. Application Circuit Examples  
Application Circuit Example 1  
An external voltage is input to the reference voltage external input (VREFIN1, VREFIN2) , and the VOUT voltage is set to 3.01 times  
the VOUT setting gain.  
C3  
4.7 μF  
VIN  
11  
12  
DVDD1  
3
CTL1  
CPU  
R7  
DGND1 14  
15  
1 MΩ  
C4  
4.7 μF  
19  
20  
DVDD2  
DGND2  
8
2
16  
17  
VREFIN1  
CTL2  
DAC1  
5
4
AVDD  
AGND  
C5  
0.1 μF  
R8  
1 MΩ  
MB39C015  
L1  
2.2 μH  
23  
VREFIN2  
DAC2  
VOUT1  
13  
10  
LX1  
C1  
4.7 μF  
OUT1  
APLI1  
9
MODE1  
MODE2  
L2  
2.2 μH  
22  
VOUT2  
18  
21  
LX2  
C2  
6
VREF  
4.7 μF  
OUT2  
APLI2  
7
1
VDET  
CTLP  
24  
XPOR  
VOUT = 3.01 × VREFIN  
Document Number: 002-08364 Rev. *A  
Page 29 of 43  
MB39C015  
Application Circuit Example 2  
The voltage of VREF pin is input to the reference voltage external input (VREFIN1, VREFIN2) by dividing resistors. The VOUT1  
voltage is set to 2.5 V and VOUT2 voltage is set to 1.8 V.  
C3  
4.7 μF  
VIN  
11  
12  
DVDD1  
3
CTL1  
CPU  
R7  
DGND1 14  
15  
1 MΩ  
C4  
4.7 μF  
19  
20  
DVDD2  
DGND2  
R1 170 kΩ  
( 20 kΩ + 150 kΩ )  
16  
17  
8
2
VREFIN1  
R2  
300 kΩ  
5
4
AVDD  
AGND  
C5  
0.1 μF  
CTL2  
R8  
1 MΩ  
MB39C015  
L1  
2.2 μH  
VOUT1  
13  
10  
LX1  
R5 352 kΩ  
( 22 kΩ + 330 kΩ )  
C1  
23  
6
VREFIN2  
VREF  
4.7 μF  
OUT1  
R6  
APLI1  
300 kΩ  
L2  
2.2 μH  
VOUT2  
18  
21  
LX2  
9
MODE1  
MODE2  
C2  
4.7 μF  
22  
OUT2  
APLI2  
1
CTLP  
XPOR 24  
VOUT1 = 3.01 × VREFIN1  
R2  
VREFIN1 =  
× VREF  
R1 + R2  
(VREF = 1.30 V)  
300 kΩ  
170 kΩ + 300 kΩ  
VOUT1 = 3.01 ×  
× 1.30 V = 2.5 V  
× 1.30 V = 1.8 V  
300 kΩ  
352 kΩ + 300 kΩ  
VOUT12 = 3.01 ×  
Document Number: 002-08364 Rev. *A  
Page 30 of 43  
MB39C015  
Application Circuit Example Components List  
Component Item  
L1  
Part Number  
VLF4012AT-2R2M  
MIPW3226D2R2M  
VLF4012AT-2R2M  
MIPW3226D2R2M  
C2012JB1A475K  
C2012JB1A475K  
C2012JB1A475K  
C2012JB1A475K  
C1608JB1E104K  
Specification  
2.2 H, RDC 76 mΩ  
2.2 H, RDC 100 mΩ  
2.2 H, RDC 76 mΩ  
2.2 H, RDC 100 mΩ  
4.7 F (10 V)  
4.7 F (10 V)  
4.7 F (10 V)  
4.7 F (10 V)  
0.1 F (50 V)  
Package  
Vendor  
TDK  
Inductor  
SMD  
SMD  
SMD  
SMD  
2012  
2012  
2012  
2012  
2012  
FDK  
TDK  
FDK  
TDK  
TDK  
TDK  
TDK  
TDK  
L2  
Inductor  
C1  
C2  
C3  
C4  
C5  
R1  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Resistor  
RK73G1JTTD D 20 kΩ  
RK73G1JTTD D 150 kΩ  
20 kΩ  
150 kΩ  
1608  
1608  
KOA  
KOA  
R2  
R5  
Resistor  
Resistor  
RK73G1JTTD D 300 kΩ  
300 kΩ  
1608  
KOA  
RK73G1JTTD D 22 kΩ  
RK73G1JTTD D 330 kΩ  
22 kΩ  
330 kΩ  
1608  
1608  
KOA  
KOA  
R6  
R7  
R8  
Resistor  
Resistor  
Resistor  
RK73G1JTTD D 300 kΩ  
RK73G1JTTD D 1 MΩ  
RK73G1JTTD D 1 MΩ  
300 kΩ  
1608  
1608  
1608  
KOA  
KOA  
KOA  
1 M0.5%  
1 M0.5%  
TDK : TDK Corporation  
FDK : FDK Corporation  
KOA : KOA Corporation  
Document Number: 002-08364 Rev. *A  
Page 31 of 43  
MB39C015  
13. Usage Precautions  
1. Do not configure the IC over the maximum ratings  
If the lC is used over the maximum ratings, the LSl may be permanently damaged.It is preferable for the device to normally operate  
within the recommended usage conditions. Usage outside of these conditions adversely affect the reliability of the LSI.  
2. Use the devices within recommended operating conditions  
The recommended operating conditions are the conditions under which the LSl is guaranteed to operate.The electrical ratings are  
guaranteed when the device is used within the recommended operating conditions and under the conditions stated for each item.  
3. Printed circuit board ground lines should be set up with consideration for common impedance  
4. Take appropriate static electricity measures  
• Containers for semiconductor materials should have anti-static protection or be made of conductive material.  
• After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.  
• Work platforms, tools, and instruments should be properly grounded.  
• Working personnel should be grounded with resistance of 250 kto 1 Mbetween body and ground.  
5. Do not apply negative voltages  
The use of negative voltages below 0.3 V may create parasitic transistors on LSI lines, which can cause abnormal operation.  
14. Ordering Information  
Part number  
MB39C015WQN  
Package  
Remarks  
Exposed PAD  
24-pin plastic QFN  
(LCC-24P-M10)  
Document Number: 002-08364 Rev. *A  
Page 32 of 43  
MB39C015  
15. RoHS Compliance Information of Lead (Pb) Free Version  
The LSI products of Cypress with “E1” are compliant with RoHS Directive, and has observed the standard of lead, cadmium, mercury,  
hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE).  
A product whose part number has trailing characters “E1” is RoHS compliant.  
15.1 Marking Format (Lead Free Version)  
39C015  
Lead-free version(E1)  
XE1  
XXXXXX  
INDEX  
15.2 Labeling Sample (Lead Free Version)  
Lead-free mark  
JEITA logo  
JEDEC logo  
MB123456P - 789 - GE1  
(3N) 1MB123456P-789-GE1 1000  
G
Pb  
(3N)2 1561190005 107210  
QC PASS  
PCS  
1,000  
MB123456P - 789 - GE1  
ASSEMBLED IN JAPAN  
2006/03/01  
MB123456P - 789 - GE1  
1/1  
1561190005  
0605 - Z01A 1000  
“ASSEMBLED IN CHINA” is printed on the label  
of a product assembled in China.  
The part number of a lead-free product has  
the trailing characters “E1”.  
Document Number: 002-08364 Rev. *A  
Page 33 of 43  
MB39C015  
16. Evaluation Board Specification  
The MB39C015 Evaluation Board provides the proper for evaluating the efficiency and other characteristics of the MB39C015.  
Terminal information  
Symbol  
Functions  
VIN  
Power supply terminal  
In standard condition 3.1 V to 5.5 V*  
* : When the VIN/VOUT difference is to be held within 0.6 V or less, such as for devices with a  
standard output voltage (VOUT1 2.5 V) when VIN < 3.1 V, Cypress recommends changing  
the output capacity (C1, C2) to 10 F.  
VOUT1, VOUT2  
VCTL  
Output terminals  
(VOUT1: CH1, VOUT2: CH2)  
Power supply terminal for setting the CTL1, CTL2 and CTLP terminals.  
Use by connecting with CTL1,CTL2 and CTLP.  
CTL1, CTL2  
Direct supply terminal of CTL (CTL1 : for CH1, CTL2 : for CH2)  
CTL1, CTL2 0 V to 0.8 V (Typ.) : Shutdown  
CTL1, CTL2 0.95 V (Typ.) to VIN (5 V Max) : Normal operation  
MODE1, MODE2  
VREF  
TEST terminal  
MODE1, MODE2 OPEN or GND  
Reference voltage output terminal  
VREF 1.30 V (Typ.)  
VREFIN1, VREFIN2  
External reference voltage input terminals  
(VREFIN1 : for CH1, VREFIN2 : for CH2)  
When an external reference voltage is supplied, connect it to the terminal for each channel.  
VDET  
CTLP  
Voltage input terminal for voltage detection  
Voltage detection circuit block control terminal  
CTLP L : Voltage detection circuit block stop  
CTLP H : Normal operation  
XPOR  
Voltage detection circuit output terminal  
The N-ch MOS open drain circuit is connected.  
VXPOR  
PGND  
Pull-up voltage terminal for the XPOR terminal  
Ground terminal  
Connect power supply GND to the PGND terminal next to the VIN terminal.  
Connect output (load) GND to the PGND terminal between the VOUT1 terminal and the VOUT2 terminal.  
AGND  
Ground terminal  
Startup terminal information  
Terminal name  
Condition  
Functions  
CTL1  
CTL2  
CTLP  
L : Open  
H : Connect to VCTL  
ON/OFF switch for CH1  
L : Shutdown  
H : Normal operation.  
L : Open  
H : Connect to VCTL  
ON/OFF switch for CH2  
L : Shutdown  
H : Normal operation.  
L : Open  
H : Connect to VCTL  
ON/OFF switch for the voltage detection block  
L: Stops the voltage detection circuit  
H: Normal operation.  
Document Number: 002-08364 Rev. *A  
Page 34 of 43  
MB39C015  
Jumper information  
JP  
Functions  
Short-circuited in the layout pattern of the board (normally used shorted).  
Short-circuited in the layout pattern of the board (normally used shorted).  
Normally used shorted (0 )  
JP1  
JP2  
JP3  
JP6  
Normally used shorted (0 )  
Setup and checkup  
1. Setup  
a. Connect the CTL1 terminal and the CTL2 terminal to the VCTL terminal.  
b. Put it into “L” state by connecting the CTLP terminal to the AGND pad.  
c. Connect the power supply terminal to the VIN terminal, and the power supply GND terminal to the PGND terminal. Make sure  
PGND is connected to the PGND terminal next to the VIN terminal. (Example of setting power-supply voltage : 3.7 V)  
2. Checkup  
Supply power to VIN. The IC is operating normally if VOUT1 = 2.5 V (Typ) and VOUT2 = 1.8 V (Typ).  
Document Number: 002-08364 Rev. *A  
Page 35 of 43  
MB39C015  
Component layout on the evaluation board (Top View)  
C2  
C1  
C3  
VOUT2  
MODE2  
PGND  
VOUT1  
L1  
PGND  
L2  
C4  
VREFIN2  
VIN  
M1  
C7  
R5  
R9  
C6  
R2  
C5  
R4 - 1  
R7  
R6 - 2  
R6 - 1  
XPOR  
MODE1  
VREFIN1  
JP6  
AGND  
JP3  
SW1  
R1 - 3  
VCTL  
VREF  
Short  
R3  
VXPOR  
Open  
MB39C015EVB-06  
Rev.1.0  
CTL2  
CTL1  
CTLP  
VDET  
R8  
R10  
Top Side (Component side)  
Bottom Side (Soldering side)  
Document Number: 002-08364 Rev. *A  
Page 36 of 43  
MB39C015  
Evaluation board layout (Top View)  
Top Side (Layer1)  
Inside GND (Layer2)  
Inside VIN & GND (Layer3)  
Bottom Side (Layer4)  
Document Number: 002-08364 Rev. *A  
Page 37 of 43  
MB39C015  
Connection diagram  
I
IN  
VIN  
VIN  
PGND  
JP3  
SW1*  
11  
12  
DVDD1  
DGND1  
DVDD2  
DGND2  
C3  
C4  
VCTL  
CTL1  
3
9
CTL1  
R8  
14  
15  
SW1*  
19  
20  
MODE1  
16  
17  
MODE1  
VREF  
JP6  
R6-1 R6-2  
R7  
AVDD  
AGND  
5
4
8
VREFIN1  
C5  
VREFIN1  
C6  
AGND  
MB39C015  
SW1*  
SW1*  
2
CTL2  
R9  
I
OUT  
L1  
CTL2  
13  
10  
LX1  
VOUT1  
C1  
22  
MODE2  
JP1  
OUT1  
MODE2  
PGND  
VREF  
I
OUT  
R4-1 R4-2  
R5  
L2  
23  
VREFIN2  
VREFIN2  
VREF  
C7  
18  
LX2  
VOUT2  
C2  
JP2  
VREF  
OUT2 21  
VREF  
VIN  
6
R1-3  
VXPOR  
XPOR  
VDET  
7
1
VDET  
CTLP  
R1-1  
SW1*  
R1-2  
R3  
R2  
24  
XPOR  
R10  
CTLP  
*
Not mounted  
Document Number: 002-08364 Rev. *A  
Page 38 of 43  
MB39C015  
Component list  
COMPONENT  
Part Name  
MODEL NUMBER  
MB39C015WQN  
SPECIFICATION  
PACKAGE VENDOR REMARK  
M1  
L1  
IC  
QFN-24  
SMD  
Cypress  
TDK  
Inductor  
VLF4012AT-2R2M  
2.2 H,  
RDC 76 mΩ  
L2  
Inductor  
VLF4012AT-2R2M  
2.2 H,  
SMD  
TDK  
RDC 76 mΩ  
C1  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Jumper  
C2012JB1A475K  
C2012JB1A475K  
C2012JB1A475K  
C2012JB1A475K  
C1608JB1H104K  
C1608JB1H104K  
C1608JB1H104K  
RK73Z1J  
4.7 F (10 V)  
4.7 F (10 V)  
4.7 F (10 V)  
4.7 F (10 V)  
0.1 F (50 V)  
0.1 F (50 V)  
0.1 F (50 V)  
50 mMax, 1 A  
300 k0.5%  
50 mMax, 1 A  
75 k0.5%  
1 M0.5%  
22 k0.5%  
330 k0.5%  
300 k0.5%  
20 k0.5%  
150 k0.5%  
300 k0.5%  
1 M0.5%  
1 M0.5%  
1 M0.5%  
2012  
2012  
2012  
2012  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
KOA  
SSM  
KOA  
SSM  
KOA  
SSM  
SSM  
SSM  
SSM  
SSM  
SSM  
KOA  
KOA  
KOA  
C2  
C3  
C4  
C5  
C6  
C7  
R1-1  
R1-2  
R1-3  
R2  
Resistor  
RR0816P-304-D  
RK73Z1J  
Jumper  
Resistor  
RR0816P-753-D  
RK73G1JTTD D 1 MΩ  
RR0816P-223-D  
RR0816P-334-D  
RR0816P-304-D  
RR0816P-203-D  
RR0816P-154-D  
RR0816P-304-D  
RK73G1JTTD D 1 MΩ  
RK73G1JTTD D 1 MΩ  
RK73G1JTTD D 1 MΩ  
R3  
Resistor  
R4-1  
R4-2  
R5  
Resistor  
Resistor  
Resistor  
R6-1  
R6-2  
R7  
Resistor  
Resistor  
Resistor  
R8  
Resistor  
R9  
Resistor  
R10  
SW1  
Resistor  
Switch  
Not  
mounted  
JP1  
JP2  
Jumper  
Jumper  
Pattern-  
shorted  
Pattern-  
shorted  
JP3  
JP6  
Jumper  
Jumper  
RK73Z1J  
RK73Z1J  
50 mMax, 1 A  
50 mMax, 1 A  
1608  
1608  
KOA  
KOA  
Note:  
These components are recommended based on the operating tests authorized.  
TDK : TDK Corporation  
KOA : KOA Corporation  
SSM : SUSUMU Co., Ltd  
Document Number: 002-08364 Rev. *A  
Page 39 of 43  
MB39C015  
17. EV Board Ordering Information  
EV Board Part No.  
EV Board Version No.  
MB39C015EVB-06 Rev.1.0  
Remarks  
MB39C015EVB-06  
QFN-24  
Document Number: 002-08364 Rev. *A  
Page 40 of 43  
MB39C015  
18. Package Dimension  
24-pin plastic QFN  
Lead pitch  
0.50 mm  
Package width ×  
4.00 mm × 4.00 mm  
Plastic mold  
0.80 mm Max  
0.04 g  
package length  
Sealing method  
Mounting height  
Weight  
(LCC-24P-M10)  
24-pin plastic QFN  
(LCC-24P-M10)  
2.60 0.10  
(.102 .004)  
4.00 0.10  
(.157 .004)  
2.60 0.10  
(.102 .004)  
4.00 0.10  
(.157 .004)  
0.25 0.05  
(.010 .002)  
INDEX AREA  
0.40 0.05  
(.016 .002)  
1PIN CORNER  
(C0.35(C.014))  
0.50(.020)  
TYP  
0.75 0.05  
(.030 .002)  
(0.20(.008))  
0.02 +00..0023  
+.001  
(.001  
)
–.001  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2009-2010 FUJITSU SEMICONDUCTOR LIMITED C24060S-c-1-2  
Document Number: 002-08364 Rev. *A  
Page 41 of 43  
MB39C015  
Document History  
Document Title: MB39C015 2ch DC/DC Converter IC Datasheet  
Document Number: 002-08364  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
TAOA  
TAOA  
07/16/2008 Initial release  
*A  
5148534  
03/01/2016 Migrated Spansion Datasheet from DS04-27254-3E to Cypress format  
Document Number: 002-08364 Rev. *A  
Page 42 of 43  
MB39C015  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC® Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/powerpsoc  
cypress.com/memory  
cypress.com/psoc  
cypress.com/psoc  
Automotive  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Clocks & Buffers  
Interface  
Cypress Developer Community  
Community | Forums | Blogs | Video | Training  
Lighting & Power Control  
Memory  
Technical Support  
cypress.com/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify  
and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either  
directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right  
to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum  
extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software  
is prohibited.  
CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED  
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or  
programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application  
made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of  
weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or  
hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any  
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole  
or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify  
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress  
products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United  
States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-08364 Rev. *A  
Revised March 1, 2016  
Page 43 of 43  

相关型号:

MB39C015EVB-06

High efficiency : 96% (Max)
CYPRESS

MB39C015WQN

Switching Regulator, Current-mode, 0.8A, 2400kHz Switching Freq-Max, PQCC24
FUJITSU

MB39C022G

Buck DC/DC Converter Low Noise LDO
CYPRESS

MB39C022GPN

Buck DC/DC Converter Low Noise LDO
CYPRESS

MB39C022GPNE1

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
CYPRESS

MB39C022JPN

Buck DC/DC Converter Low Noise LDO
CYPRESS

MB39C022JPNE1

Switching Regulator, Current-mode, 1.6A, 2400kHz Switching Freq-Max, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, PLASTIC, SON-10
FUJITSU

MB39C022JPNE1

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
CYPRESS

MB39C022LPN

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
CYPRESS

MB39C022LPNE1

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
SPANSION

MB39C022LPNE1

Switching Regulator, Current-mode, 1.6A, 2400kHz Switching Freq-Max, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, PLASTIC, SON-10
FUJITSU

MB39C022LPNE1

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
CYPRESS