MB39C015WQN [FUJITSU]

Switching Regulator, Current-mode, 0.8A, 2400kHz Switching Freq-Max, PQCC24;
MB39C015WQN
型号: MB39C015WQN
厂家: FUJITSU    FUJITSU
描述:

Switching Regulator, Current-mode, 0.8A, 2400kHz Switching Freq-Max, PQCC24

开关
文件: 总44页 (文件大小:1894K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-27254-3E  
ASSP for Power Management Applications  
2 ch DC/DC Converter IC Built-in  
SwitchingFET, SynchronousRectification, and  
Down Conversion Support  
MB39C015  
DESCRIPTION  
The MB39C015 is a current mode type 2-channel DC/DC converter IC built-in voltage detection, synchronous  
rectifier, and down conversion support. The device is integrated with a switching FET, oscillator, error am-  
plifier, PWM control circuit, reference voltage source, and voltage detection circuit.  
External inductor and decoupling capacitor are needed only for the external component.  
As combining with external parts enables a DC/DC converter with a compact and high load response  
characteristic, this is suitable as the built-in power supply for such as mobile phone/PDA, DVDs, and HDDs.  
FEATURES  
• High efficiency  
: 96% (Max)  
• Output current (DC/DC)  
• Input voltage range  
• Operating frequency  
• No flyback diode needed  
• Low dropout operation  
• Built-in high-precision reference voltage generator : 1.30 V 2%  
• Consumption current in shutdown mode  
• Built-in switching FET  
: 800 mA/ch (Max)  
: 2.5 V to 5.5 V  
: 2.0 MHz (Typ)  
: For 100% on duty  
: 1 μA or less  
: P-ch MOS 0.3 Ω (Typ) N-ch MOS 0.2 Ω (Typ)  
• High speed for input and load transient response in the current mode  
• Over temperature protection  
• Packaged in a compact package  
: QFN-24  
APPLICATIONS  
• Flash ROMs  
• MP3 players  
• Electronic dictionary devices  
• Surveillance cameras  
• Portable GPS navigators  
• DVD drives  
• IP phones  
• Network hubs  
• Mobile phones  
etc.  
Copyright©2008-2011 FUJITSU SEMICONDUCTOR LIMITED All rights reserved  
2011.1  
MB39C015  
PIN ASSIGNMENT  
(Top View)  
LX2 DGND2 DGND2 DGND1 DGND1 LX1  
18  
17  
16  
15  
14  
13  
DVDD2  
DVDD1  
DVDD1  
OUT1  
12  
11  
10  
9
19  
20  
21  
22  
23  
24  
DVDD2  
OUT2  
MODE2  
MODE1  
VREFIN2  
VREFIN1  
8
7
XPOR  
VDET  
1
2
3
4
5
6
CTLP CTL2 CTL1 AGND AVDD VREF  
(LCC-24P-M10)  
2
DS04-27254-3E  
MB39C015  
PIN DESCRIPTIONS  
Pin No.  
Pin Name  
I/O  
Description  
Voltage detection circuit block control input pin.  
(L : Voltage detection function stop, H : Normal operation)  
1
CTLP  
I
DC/DC converter block control input pin.  
(L : Shut down, H : Normal operation)  
2/3  
CTL2/CTL1  
I
4
5
AGND  
AVDD  
O
I
Control block ground pin.  
Control block power supply pin.  
Reference voltage output pin.  
Voltage detection input pin.  
6
VREF  
7
VDET  
8/23  
9/22  
10/21  
VREFIN1/VREFIN2  
MODE1/MODE2  
OUT1/OUT2  
I
Error amplifier (Error Amp) non-inverted input pin.  
Use pin at L level or leave open.  
Output voltage feedback pin.  
I
I
11, 12/  
19, 20  
DVDD1/DVDD2  
LX1/LX2  
O
Drive block power supply pin.  
Inductor connection output pin.  
High impedance during shut down.  
13/18  
14, 15/  
16, 17  
DGND1/DGND2  
XPOR  
O
Drive block ground pin.  
VDET circuit output pin.  
Connected to an N-ch MOS open drain circuit.  
24  
DS04-27254-3E  
3
MB39C015  
I/O PIN EQUIVALENT CIRCUIT DIAGRAM  
VDD  
VDD  
LX1, LX2  
VREF  
GND  
VDD  
GND  
VREFIN1  
VREFIN2  
VDET  
,
,
OUT1  
,
OUT2  
GND  
VDD  
CTL1, CTL2, CTLP  
GND  
VDD  
XPOR  
MODE1  
MODE2  
,
GND  
* : ESD Protection device  
GND  
4
DS04-27254-3E  
MB39C015  
BLOCK DIAGRAM  
VIN  
AVDD  
ERR  
DVDD1  
DVDD2  
5
11, 12 19, 20  
CTL1  
3
ON/OFF  
OUT1  
10  
×3  
Amplifier  
DVDD1  
+
IOUT  
Comparator  
VREFIN1  
8
9
DAC  
PWM  
Logic  
LX1  
VOUT1  
13  
Control  
MODE1  
GND  
VIN  
VIN  
CTLP  
VDET  
1
7
ON/OFF  
24  
+
XPOR  
1.30 V  
VREF  
VREF  
6
2
CTL2  
OUT2  
ON/OFF  
ERR  
Amplifier  
×3  
DVDD2  
21  
+
I
OUT  
Comparator  
VREFIN2  
23  
PWM  
Logic  
LX2  
VOUT2  
18  
Control  
MODE2  
GND  
22  
4
16, 17  
DGND2  
14, 15  
DGND1  
AGND  
DS04-27254-3E  
5
MB39C015  
Current mode  
• Original voltage mode type :  
Stabilize the output voltage by comparing two items below and on-duty control.  
- Voltage (VC) obtained through negative feedback of the output voltage by Error Amp  
- Reference triangular wave (VTRI)  
• Current mode type :  
Instead of the triangular wave (VTRI), the voltage (VIDET) obtained through I-V conversion of the sum of  
currents that flow in the oscillator (rectangular wave generation circuit) and SW FET is used.  
Stabilize the output voltage by comparing two items below and on-duty control.  
- Voltage (VC) obtained through negative feedback of the output voltage by Error Amp  
- Voltage (VIDET) obtained through I-V conversion of the sum of current that flow in the oscillator (rectangular  
wave generation circuit) and SW FET  
Voltage mode type model  
Current mode type model  
VIN  
VIN  
Oscillator  
S
Vc  
+
Vc  
Q
R
+
VTRI  
VIDET  
SR-FF  
Vc  
VIDET  
VTRI  
Vc  
ton  
toff  
toff  
ton  
Note : The above models illustrate the general operation and an actual operation will be preferred in the IC.  
6
DS04-27254-3E  
MB39C015  
FUNCTION OF EACH BLOCK  
• PWM Logic control circuit  
The built-in P-ch and N-ch MOS FETs are controlled for synchronization rectification according to the fre-  
quency (2.0 MHz) oscillated from the built-in oscillator (square wave oscillation circuit).  
• IOUT Comparator circuit  
This circuit detects the current (ILX) which flows to the external inductor from the built-in P-ch MOS FET.  
By comparing VIDET obtained through I-V conversion of peak current IPK of ILX with the Error Amp output, the  
built-in P-ch MOS FET is turned off via the PWM Logic Control circuit.  
• Error Amp phase compensation circuit  
This circuit compares the output voltage to reference voltages such as VREF. This IC has a built-in phase  
compensation circuit that is designed to optimize the operation of this IC.  
This needs neither to be considered nor addition of a phase compensation circuit and an external phase  
compensation device.  
• VREF circuit  
A high accuracy reference voltage is generated with BGR (bandgap reference) circuit. The output voltage is  
1.30 V (Typ).  
• Voltage Detection (VDET) circuit  
The voltage detection circuit monitors the voltage at the VDET pin. Normally, use the XPOR pin through pull-  
up with an external resistor. When the VDET pin voltage reaches 0.6 V, it reaches the H level.  
Timing chart example : (XPOR pin pulled up to VIN)  
VIN  
VUVLO  
CTLP  
VTHHPR  
VTHLPR  
VDET  
XPOR  
VUVLO : UVLO threshold voltage  
VTHHPR, VTHLPR : XPOR threshold voltage  
• Protection circuit  
This IC has a built-in over-temperature protection circuit.  
The over-temperature protection circuit turns off both N-ch and P-ch switching FETs when the junction  
temperature reaches + 135 °C. When the junction temperature comes down to + 110 °C, the switching FET  
is returned to the normal operation. Since the PWM control circuit of this IC is in the control method in current  
mode, the current peak value is also monitored and controlled as required.  
DS04-27254-3E  
7
MB39C015  
• Function table  
Input  
CTL2  
Output  
MODE  
VDET  
function  
VREF  
function  
CTL1  
CTLP CH1 function CH2 function  
Shutdown mode  
Operating mode  
L
L
Stopped  
H
L
L
L
Operation  
Stopped  
Stopped  
Operation  
Stopped  
Operation  
Stopped  
Operation  
Stopped  
Stopped  
Stopped  
H
L
L
H
L
Operation  
Stopped  
H
L
H
H
L
Operation  
Operation  
Stopped  
Outputs 1.3 V  
H
H
Operation  
Operation  
H
H
Operation  
8
DS04-27254-3E  
MB39C015  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Condition  
Unit  
Min  
0.3  
0.3  
Max  
+6.0  
Power supply voltage  
VDD  
AVDD = DVDD1 = DVDD2  
V
OUT1/OUT2 pins  
VDD + 0.3  
CTLP, CTL1/CTL2,  
MODE1/MODE2 pins  
0.3  
VDD + 0.3  
Signal input voltage  
VISIG  
V
VREFIN1/VREFIN2 pins  
VDET pin  
0.3  
0.3  
0.3  
0.3  
VDD + 0.3  
VDD + 0.3  
+6.0  
XPOR pull-up voltage  
LX voltage  
VIXPOR  
VLX  
XPOR pin  
V
V
A
LX1/LX2 pins  
ILX1/ILX2  
VDD + 0.3  
1.8  
LX Peak current  
IPK  
3125*1, *2, *3  
1563*1, *2, *4  
1250*1, *2, *3  
625*1, *2, *4  
Ta ≤ +25 °C  
Ta = +85 °C  
mW  
mW  
Power dissipation  
PD  
Operating ambient  
temperature  
Ta  
40  
55  
+85  
°C  
°C  
Storage temperature  
TSTG  
+125  
*1 : Power dissipation value between + 25 °C and + 85 °C is obtained by connecting these two points with  
straight line.  
*2 : When mounted on a four-layer epoxy board of 11.7 cm × 8.4 cm  
*3 : Connection at exposure pad with thermal via. (Thermal via 9 holes)  
*4 : Connection at exposure pad, without a thermal via.  
Notes: The use of negative voltages below 0.3 V to the AGND, DGND1, and DGND2 pin may create parasitic  
transistors on LSI lines, which can cause abnormal operation.  
ThisdevicecanbedamagediftheLX1pinandLX2pinareshort-circuitedtoAVDDandDVDD1/DVDD2,  
or AGND and DGND1/DGND2.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
DS04-27254-3E  
9
MB39C015  
RECOMMENDED OPERATING CONDITIONS  
Value  
Typ  
3.7  
Parameter  
Symbol  
Condition  
Unit  
Min  
2.5  
0.15  
0
Max  
5.5  
Power supply voltage  
VREFIN voltage  
CTL voltage  
VDD  
VREFIN  
VCTL  
ILX  
AVDD = DVDD1 = DVDD2  
V
V
CTLP, CTL1, CTL2  
ILX1/ILX2  
1.30  
5.0  
V
LX current  
800  
mA  
2.5 V AVDD = DVDD1 =  
0.5  
1
DVDD2 < 3.0 V  
VREF output current  
IROUT  
mA  
3.0 V AVDD = DVDD1 =  
DVDD2 5.5 V  
XPOR current  
Inductor value  
IPOR  
L
1
mA  
2.2  
μH  
Note : The output current from this device has a situation to decrease if the power supply voltage (VIN) and the  
DC/DC converter output voltage (VOUT) differ only by a small amount. This is a result of slope compen-  
sation and will not damage this device.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of  
the semiconductor device. All of the device's electrical characteristics are warranted when the  
device is operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges.  
Operation outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented  
onthedatasheet.Usersconsideringapplicationoutsidethelistedconditionsareadvisedtocontact  
their representatives beforehand.  
10  
DS04-27254-3E  
MB39C015  
ELECTRICAL CHARACTERISTICS  
(Ta = +25 °C, AVDD = DVDD1 = DVDD2 = 3.7 V, VOUT1/VOUT2 setting value = 2.5 V, MODE1/MODE2 = 0 V)  
Value  
Sym-  
Parameter  
Input current  
Pin No.  
Condition  
Unit  
bol  
Min  
Typ  
Max  
+ 100 nA  
IREFIN  
8, 23 VREFIN = 0.15 V to 1.3 V 100  
0
VREFIN = 0.833 V,  
2.45  
Output voltage  
Input stability  
Load stability  
VOUT  
LINE  
LOAD  
2.50  
2.55  
10  
V
OUT = −100 mA  
2.5 V AVDD = DVDD1 =  
mV  
mV  
DVDD2 5.5 V*1  
10, 21  
100 mA OUT ≥  
800 mA  
10  
OUT pin input  
impedance  
ROUT  
IPK  
OUT = 2.0 V  
0.6  
0.9  
1.6  
1.0  
1.2  
2.0  
1.5  
1.7  
2.4  
MΩ  
A
LX Peak current  
Output shorted to GND  
13, 18  
Oscillation  
frequency  
DC/DC  
converter  
block  
fosc  
MHz  
C1/C2 = 4.7 μF, OUT =  
0 A, OUT1/OUT2 : 0 →  
90% VOUT  
2, 3,  
10, 21  
Rise delay time  
tPG  
45  
80  
μs  
SW NMOS-FET  
OFF voltage  
VNOFF  
RONP  
10*  
mV  
SW PMOS-FET  
ON resistance  
LX1/LX2 = −100 mA  
0.30  
0.48  
Ω
SW NMOS-FET  
ON resistance  
13, 18  
RONN  
ILEAKM  
ILEAKH  
LX1/LX2 = −100 mA  
0 LX VDD*2  
0.20  
0.42  
Ω
1.0  
2.0  
+ 8.0  
μA  
LX leak current  
VDD = 5.5 V, 0 LX ≤  
+ 16.0 μA  
VDD*2  
Overheating  
protection  
(Junction Temp.)  
TOTPH  
TOTPL  
+ 120* + 135* + 160* °C  
+ 95*  
+ 110* + 125* °C  
Protection  
circuit  
block  
VTHHUV  
2.17  
2.03  
2.30  
2.15  
2.43  
2.27  
V
V
UVLO threshold  
voltage  
5, 11,  
12, 19,  
20  
VTHLUV  
UVLO  
hysteresis width  
VHYSUV  
0.08  
0.15  
0.25  
V
VTHHPR  
575  
558  
600  
583  
625  
608  
mV  
mV  
XPOR threshold  
voltage  
VTHLPR  
7
Voltage  
XPOR  
VHYSPR  
XPOR = 25 μA  
XPOR = 5.5 V  
17  
mV  
V
detection hysteresis width  
circuit  
block  
XPOR output  
voltage  
VOL  
0.1  
1.0  
24  
XPOR output  
current  
IOH  
μA  
* : Standard design value  
DS04-27254-3E  
(Continued)  
11  
MB39C015  
(Continued)  
(Ta = +25 °C, AVDD = DVDD1 = DVDD2 = 3.7 V, VOUT1/VOUT2 setting value = 2.5 V, MODE1/MODE2 = 0 V)  
Value  
Parameter  
Symbol Pin No.  
Condition  
Unit  
Min  
0.55  
0.40  
Typ  
0.95  
0.80  
Max  
1.45  
1.30  
VTHHCT  
V
V
CTL threshold  
voltage  
Control  
block  
VTHLCT  
1, 2, 3  
CTL pin  
input current  
0 V CTLP/CTL1/CTL2 ≤  
IICTL  
1.0  
μA  
V
3.7 V  
VREF voltage  
VREF  
VREF = 0 mA  
1.274 1.300 1.326  
Reference  
voltage  
block  
6
VREF Load  
stability  
LOADREF  
VREF = −1.0 mA  
20  
mV  
CTLP/CTL1/CTL2 = 0 V  
IVDD1  
1.0  
μA  
μA  
State of all circuits OFF*3  
Shut down  
power supply  
current  
CTLP/CTL1/CTL2 = 0 V,  
VDD = 5.5 V  
IVDD1H  
1.0  
State of all circuits OFF*3  
1. CTLP = 0 V, CTL1 =  
3.7 V,  
CTL2 = 0 V  
IVDD31  
3.5  
10  
mA  
Power supply  
current  
(DC/DC mode)  
2. CTLP = 0 V, CTL1 = 0 V,  
CTL2 = 3.7 V  
OUT = 0 A  
5, 11,  
General  
12, 19,  
20  
CTLP = 0 V, CTL1/CTL2 =  
3.7 V, OUT = 0 A  
IVDD32  
7.0  
15  
20.0 mA  
Power supply  
current  
(voltagedetection  
mode)  
CTLP = 3.7 V,  
CTL1/CTL2 = 0 V,  
IVDD5  
24  
μA  
1. CTL1 = 3.7 V, CTL2 =  
0 V  
Power-on  
invalid current  
2. CTL1 = 0 V, CTL2 =  
3.7 V  
IVDD  
1000 2000 μA  
VOUT1/VOUT2 = 90%  
OUT = 0 A*4  
*1 : The minimum value of AVDD = DVDD1 = DVDD2 is the 2.5 V or VOUT setting value + 0.6 V, whichever is  
higher.  
*2 : The + leak at the LX1 pin and LX2 pin includes the current of the internal circuit.  
*3 : Sum of the current flowing into the AVDD, the DVDD1, and the DVDD2 pins.  
*4 : Current consumption based on 100% ON-duty (High side FET in full ON state). The SW FET gate drive  
current is not included because the device is in full ON state (no switching operation). Also the load current  
is not included.  
12  
DS04-27254-3E  
MB39C015  
TEST CIRCUIT FOR MEASURING TYPICAL OPERATING CHARACTERISTICS  
MB39C015  
VDD  
V
DD  
SW  
VIN  
CTL1/CTL2  
DVDD1/DVDD2  
C2  
4.7 μF  
R1  
1 MΩ  
AVDD  
MODE1/MODE2  
C3  
4.7 μF  
L1  
2.2 μH  
LX1/LX2  
VOUT1/  
VOUT2  
VREF  
VDET  
R5  
510 kΩ  
R3-1  
OUT1/OUT2  
20 kΩ  
R6  
100 kΩ  
I
OUT  
C1  
4.7 μF  
R3-2  
150 kΩ  
DGND1/DGND2  
VREFIN1/VREFIN2  
AGND  
C6  
0.1 μF  
GND  
R4  
300 kΩ  
Output voltage = VREFIN × 3.01  
Component  
Specification  
Vendor  
Part Number  
Remarks  
R1  
1 MΩ  
KOA  
RK73G1JTTD D 1 MΩ  
R3-1  
R3-2  
20 kΩ  
SSM  
SSM  
RR0816-203-D  
RR0816-154-D  
VOUT1/VOUT2 = 2.5 V  
Setting  
150 kΩ  
R4  
R5  
R6  
C1  
C2  
C3  
300 kΩ  
510 kΩ  
100 kΩ  
4.7 μF  
4.7 μF  
0.1 μF  
SSM  
KOA  
SSM  
TDK  
TDK  
TDK  
RR0816-304-D  
RK73G1JTTD D 510 kΩ  
RR0816-104-D  
C2012JB1A475K  
C2012JB1A475K  
C1608JB1E104K  
For adjusting slow start  
time  
C6  
L1  
0.1 μF  
2.2 μH  
TDK  
TDK  
C1608JB1H104K  
VLF4012AT-2R2M  
Note : These components are recommended based on the operating tests authorized.  
TDK : TDK Corporation  
SSM : SUSUMU Co., Ltd  
KOA : KOA Corporation  
DS04-27254-3E  
13  
MB39C015  
APPLICATION NOTES  
[1] Selection of components  
• Selection of an external inductor  
Basically it dose not need to design inductor. This IC is designed to operate efficiently with a 2.2 μH inductor.  
The inductor should be rated for a saturation current higher than the LX peak current value during normal  
operating conditions, and should have a minimal DC resistance. (100 mΩ or less is recommended.)  
LX peak current value IPK is obtained by the following formula.  
VIN VOUT  
D
1
2
(VIN VOUT) × VOUT  
2 × L × fosc × VIN  
IPK = IOUT +  
×
×
= IOUT +  
L
fosc  
L
: External inductor value  
: Load current  
IOUT  
VIN  
: Power supply voltage  
VOUT : Output setting voltage  
: ON-duty to be switched ( = VOUT/VIN)  
fosc : Switching frequency (2.0 MHz)  
D
ex) When VIN = 3.7 V, VOUT = 2.5 V, IOUT = 0.8 A, L = 2.2 μH, fosc = 2.0 MHz  
The maximum peak current value IPK;  
(VIN VOUT) × VOUT  
(3.7 V 2.5 V) × 2.5 V  
IPK = IOUT +  
= 0.8 A +  
=: 0.89 A  
2 × L × fosc × VIN  
2 × 2.2 μH × 2.0 MHz × 3.7 V  
• I/O capacitor selection  
• Select a low equivalent series resistance (ESR) for the VDD input capacitor to suppress dissipation from  
ripple currents.  
• Also select a low equivalent series resistance (ESR) for the output capacitor. The variation in the inductor  
current causes ripple currents on the output capacitor which, in turn, causes ripple voltages an output  
equal to the amount of variation multiplied by the ESR value. The output capacitor value has a significant  
impact on the operating stability of the device when used as a DC/DC converter. Therefore, FUJITSU  
SEMICONDUCTOR generally recommends a 4.7 μF capacitor, or a larger capacitor value can be used if  
ripple voltages are not suitable. If the VIN/VOUT voltage difference is within 0.6 V, the use of a 10 μF output  
capacitor value is recommended.  
Types of capacitors  
Ceramic capacitors are effective for reducing the ESR and afford smaller DC/DC converter circuit. However,  
power supply functions as a heat generator, therefore avoid to use capacitor with the F-temperature rating  
( 80% to + 20%) . FUJITSU SEMICONDUCTOR recommends capacitors with the B-temperature rating  
(
10% to 20%).  
Normal electrolytic capacitors are not recommended due to their high ESR.  
Tantalum capacitor will reduce ESR, however, it is dangerous to use because it turns into short mode when  
damaged. If you insist on using a tantalum capacitor, FUJITSU SEMICONDUCTOR recommends the type  
with an internal fuse.  
14  
DS04-27254-3E  
MB39C015  
[2] Output voltage setting  
The output voltage VOUT (VOUT1 or VOUT2) of this IC is defined by the voltage input to VREFIN (VREFIN1 or  
VREFIN2) . Supply the voltage for inputting to VREFIN from an external power supply, or set the VREF  
output by dividing it with resistors.  
The output voltage when the VREFIN voltage is set by dividing the VREF voltage with resistors is shown in  
the following formula.  
R2  
VOUT = 3.01 × VREFIN,  
(VREF = 1.30 V)  
VREFIN =  
× VREF  
R1 + R2  
MB39C015  
VREF  
VREF  
R1  
VREFIN  
VREFIN  
R2  
Note : Refer to “APPLICATION CIRCUIT EXAMPLES” for the an example of this circuit.  
Although the output voltage is defined according to the dividing ratio of resistance, select the resistance  
value so that the current flowing through the resistance does not exceed the VREF current rating (1 mA) .  
[3] About conversion efficiency  
The conversion efficiency can be improved by reducing the loss of the DC/DC converter circuit.  
The total loss (PLOSS) of the DC/DC converter is roughly divided as follows :  
PLOSS = PCONT + PSW + PC  
PCONT : Control system circuit loss (The power used for this IC to operate, including the gate driving  
power for internal SW FETs)  
PSW  
PC  
: Switching loss (The loss caused during switching of the IC's internal SW FETs)  
: Continuity loss (The loss caused when currents flow through the IC's internal SW FETs and  
external circuits )  
The IC's control circuit loss (PCONT) is extremely small, less than 100 mW (with no load).  
As the IC contains FETs which can switch faster with less power, the continuity loss (PC) is more predominant  
as the loss during heavy-load operation than the control circuit loss (PCONT) and switching loss (PSW) .  
Furthermore, the continuity loss (PC) is divided roughly into the loss by internal SW FET ON-resistance and  
by external inductor series resistance.  
2
PC = IOUT × (RDC + D × RONP + (1 D) × RONN)  
D
: Switching ON-duty cycle ( = VOUT / VIN)  
DS04-27254-3E  
15  
MB39C015  
RONP : Internal P-ch SW FET ON resistance  
RONN : Internal N-ch SW FET ON resistance  
RDC : External inductor series resistance  
IOUT  
: Load current  
The above formula indicates that it is important to reduce RDC as much as possible to improve efficiency  
by selecting components.  
[4] Power dissipation and heat considerations  
The IC is so efficient that no consideration is required in most cases. However, if the IC is used at a low  
power supply voltage, heavy load, high output voltage, or high temperature, it requires further consideration  
for higher efficiency.  
The internal loss (P) is roughly obtained from the following formula :  
2
P = IOUT × (D × RONP + (1 D) × RONN)  
D
: Switching ON-duty cycle ( = VOUT / VIN)  
RONP : Internal P-ch SW FET ON resistance  
RONN : Internal N-ch SW FET ON resistance  
IOUT  
: Output current  
The loss expressed by the above formula is mainly continuity loss. The internal loss includes the switching  
loss and the control circuit loss as well but they are so small compared to the continuity loss they can be  
ignored.  
In this IC with RONP greater than RONN, the larger the on-duty cycle, the greater the loss.  
When assuming VIN = 3.7 V, Ta = + 70 °C, for example, RONP = 0.36 Ω and RONN = 0.30 Ω according to  
thegraphMOSFETONresistancevs. Operatingambienttemperature”. TheIC'sinternallossPis123mWat  
VOUT = 2.5 V and IOUT = 0.6 A. According to the graph “Power dissipation vs. Operating ambient temperature”,  
the power dissipation at an operating ambient temperature Ta of + 70 °C is 300 mW and the internal loss  
is smaller than the power dissipation.  
16  
DS04-27254-3E  
MB39C015  
[5] XPOR threshold voltage setting [VPORH, VPORL]  
Set the detection voltage by applying voltage to the VDET pin via an external resistor calculated according  
to this formula.  
R3 + R4  
VPORH =  
× VTHHPR  
× VTHLPR  
R4  
R3 + R4  
R4  
VPORL =  
VTHHPR = 0.600 V  
VTHLPR = 0.583 V  
Example for setting detection voltage to 3.7 V  
R3 = 510 kΩ  
R4 = 100 kΩ  
510 kΩ + 100 kΩ  
VPORH =  
× 0.600 = 3.66=: 3.7 [V]  
100 kΩ  
510 kΩ + 100 kΩ  
100 kΩ  
VPORL =  
× 0.583 = 3.56=: 3.6 [V]  
VIN  
MB39C015  
AVDD  
R3  
1 MΩ  
VDET  
XPOR  
R4  
XPOR  
DS04-27254-3E  
17  
MB39C015  
[6] Transient response  
Normally, IOUT is suddenly changed while VIN and VOUT are maintained constant, responsiveness including  
the response time and overshoot/undershoot voltage is checked. As this IC has built-in Error Amp with an  
optimized design, it shows good transient response characteristics. However, if ringing upon sudden change  
of the load is high due to the operating conditions, add capacitor C6 (e.g. 0.1 μF). (Since this capacitor C6  
changes the start time, check the start waveform as well.) This action is not required for DAC input.  
MB39C015  
VREF  
VREF  
R1  
VREFIN  
VREFIN1/  
VREFIN2  
R2  
C6  
18  
DS04-27254-3E  
MB39C015  
[7] Board layout, design example  
The board layout needs to be designed to ensure the stable operation of this IC.  
Follow the procedure below for designing the layout.  
• Arrange the input capacitor (Cin) as close as possible to both the VDD and GND pins. Make a through  
hole (TH) near the pins of this capacitor if the board has planes for power and GND.  
• Large AC currents flow between this IC and the input capacitor (Cin), output capacitor (Co), and external  
inductor (L). Group these components as close as possible to this IC to reduce the overall loop area  
occupied by this group. Also try to mount these components on the same surface and arrange wiring  
without through hole wiring. Use thick, short, and straight routes to wire the net (The layout by planes is  
recommended.).  
• Arrange a bypass capacitor for AVDD as close as possible to both the AVDD and AGND pins. Make a  
through hole (TH) near the pins of this capacitor if the board has planes for power and GND.  
• The feedback wiring to the OUT should be wired from the voltage output pin closest to the output capacitor  
(Co). The OUT pin is extremely sensitive and should thus be kept wired away from the LX1 and pin LX2  
pin of this IC as far as possible.  
• If applying voltage to the VREFIN1/VREFIN2 pins through dividing resistors, arrange the resistors so that  
the wiring can be kept as short as possible. Also arrange them so that the GND pin of VREFIN1/VREFIN2  
resistor is close to the IC's AGND pin. Further, provide a GND exclusively for the control line so that the  
resistor can be connected via a path that does not carry current. If installing a bypass capacitor for the  
VREFIN, put it close to the VREFIN pin.  
• If applying voltage to the VDET pin through dividing resistors, arrange the resistors so that the wiring can  
be kept as short as possible. Also arrange so that the GND pin of the VDET resistor is close to the IC's  
AGND pin. Further, provide a GND exclusively for the control line so that the resistor can be connected  
via a path that does not carry current.  
Try to make a GND plane on the surface to which this IC will be mounted. For efficient heat dissipation  
when using the QFN-24 package, FUJITSU SEMICONDUCTOR recommends providing a thermal via in  
the footprint of the thermal pad.  
Example of arranging IC SW system parts  
Co  
Co  
L
L
GND  
Cin  
Cin  
VIN  
VIN  
Feedback line  
Feedback line  
1pin  
GND  
VIN  
AVDD bypass capacitor  
DS04-27254-3E  
19  
MB39C015  
• Notes for circuit design  
The switching operation of this IC works by monitoring and controlling the peak current which, incidentally,  
serves as a form of short-circuit protection. However, do not leave the output short-circuited for long periods  
of time. If the output is short-circuited where VIN < 2.9 V, the current limit value (peak current to the inductor)  
tends to rise. Leaving in the short-circuit state, the temperature of this IC will continue rising and activate  
the thermal protection.  
Once the thermal protection stops the output, the temperature of the IC will go down and operation will be  
restarted, after which the output will repeat the starting and stopping.  
Although this effect will not destroy the IC, the thermal exposure to the IC over prolonged hours may affect  
the peripherals surrounding it.  
20  
DS04-27254-3E  
MB39C015  
EXAMPLE OF STANDARD OPERATION CHARACTERISTICS  
(Shown below is an example of characteristics for connection according to “TEST CIRCUIT FOR MEA-  
SURING TYPICAL OPERATING CHARACTERISTICS”.)  
• Characteristics CH1  
Conversion efficiency vs. Load current  
Conversion efficiency vs. Load current  
100  
100  
VIN = 3.7 V  
90  
90  
VIN = 3.7 V  
80  
80  
VIN = 3.0 V  
70  
70  
VIN = 3.0 V  
VIN = 4.2 V  
VIN = 5.0 V  
60  
50  
40  
30  
20  
10  
0
VIN = 4.2 V  
60  
50  
40  
30  
20  
10  
0
VIN = 5.0 V  
Ta = +25 °C  
1.2 V  
Ta = +25 °C  
2.5 V  
VOUT  
=
VOUT  
=
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
Conversion efficiency vs. Load current  
Conversion efficiency vs. Load current  
100  
100  
VIN = 3.7 V  
VIN = 3.7 V  
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
VIN = 3.0 V  
VIN = 4.2 V  
70  
VIN = 4.2 V  
60  
VIN = 5.0 V  
50  
VIN = 5.0 V  
40  
30  
20  
Ta = +25 °C  
Ta = +25 °C  
3.3 V  
10  
0
VOUT  
=
1.8 V  
VOUT  
=
1
10  
100  
1000  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
(Continued)  
DS04-27254-3E  
21  
MB39C015  
Output voltage vs. Load current  
Output voltage vs. Input voltage  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
Ta = +25 °C  
Ta = +25 °C  
VIN = 3.7 V  
VOUT = 2.5 V setting  
VOUT = 2.5 V setting  
IOUT  
= 0 A  
IOUT  
=
100 mA  
2.0  
3.0  
4.0  
5.0  
6.0  
0
200  
400  
600  
800  
Input voltage VIN (V)  
Load current IOUT (mA)  
Reference voltage vs. Operating  
ambient temperature  
Reference voltage vs. Input voltage  
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.40  
VIN = 3.7 V  
VOUT = 2.5 V  
IOUT = 0 V  
1.38  
1.36  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
Ta = +25 °C  
2.5 V  
V
OUT  
=
I
OUT  
= 0 A  
I
OUT  
= 100 mA  
50  
0
+50  
+100  
2.0  
3.0  
4.0  
5.0  
6.0  
Operating ambient temperature Ta ( °C)  
Input voltage VIN (V)  
(Continued)  
22  
DS04-27254-3E  
MB39C015  
Input current vs. Input voltage  
Input current vs. Operating ambient  
temperature  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
Ta = +25 °C  
V
V
IN  
=
3.7 V  
2.5 V  
VOUT  
=
2.5 V  
OUT  
=
50  
+50  
+100  
2.0  
3.0  
4.0  
5.0  
6.0  
0
Input voltage VIN (V)  
Oscillation frequency vs. Input voltage  
Operating ambient temperature Ta ( °C)  
Oscillation frequency vs. Operating  
ambient temperature  
2.4  
2.4  
Ta = +25 °C  
V
V
IN  
=
3.7 V  
2.5 V  
100 mA  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
V
OUT = 1.8 V  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
OUT  
=
I
OUT = 100 mA  
IOUT  
=
1.6  
2.0  
3.0  
4.0  
5.0  
6.0  
50  
+50  
+100  
0
Operating ambient temperature Ta ( °C)  
Input voltage VIN (V)  
(Continued)  
DS04-27254-3E  
23  
MB39C015  
MOS FET ON resistance vs.  
Input voltage  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
P-ch  
N-ch  
Ta = +25 °C  
2.0  
3.0  
4.0  
5.0  
6.0  
Input voltage VIN (V)  
N-ch MOS FET ON resistance vs.  
Operating ambient temperature  
P-ch MOS FET ON resistance vs.  
Operating ambient temperature  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V = 3.7 V  
IN  
V = 3.7 V  
IN  
V = 5.5 V  
IN  
V
IN  
=
5.5 V  
+50  
50  
0
+100  
50  
0
+50  
+100  
Operating ambient temperature Ta ( °C)  
Operating ambient temperature Ta ( °C)  
(Continued)  
24  
DS04-27254-3E  
MB39C015  
(Continued)  
CTL threshold voltage VTH vs. Input voltage  
XPOR output voltage VXPOR vs. Input voltage  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
6.0  
Ta = +25 °C  
5.0  
V
THHCT  
VPORH = 3.7 V setting  
V
THLCT  
4.0  
3.0  
2.0  
Ta = +25 °C  
2.5 V  
V
OUT  
=
VXPORL  
VXPORH  
1.0  
0.0  
VTHHCT : Circuit OFF ON  
VTHLCT : Circuit ON OFF  
2.0  
3.0  
4.0  
5.0  
6.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Input voltage VIN (V)  
Input voltage VIN (V)  
Power dissipation vs. Operating  
ambient temperature  
Power dissipation vs. Operating  
ambient temperature  
(with thermal via)  
(without thermal via)  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3125  
1563  
1250  
625  
0
0
+85  
+100  
+85  
+100  
50  
0
+50  
50  
0
+50  
Operating ambient temperature Ta ( °C)  
Operating ambient temperature Ta ( °C)  
DS04-27254-3E  
25  
MB39C015  
• Switching waveforms  
V
OUT : 20 mV/div  
VLX : 2.0 V/div  
I
LX : 500 mA/div  
Ta = +25 °C  
V
V
IN = 3.7 V  
OUT = 2.5 V  
1 μs/div  
I
OUT = 800 mA  
26  
DS04-27254-3E  
MB39C015  
• Startup waveform  
VCTL : 5.0 V/div  
I
LX : 500 mA/div  
Ta = +25 °C  
VIN = 3.7 V  
VOUT = 2.5 V  
IOUT = 0 A  
VREFIN capacitor value =  
0.1 μF  
VOUT : 1.0 V/div  
10 ms/div  
V
CTL : 2.0 V/div  
I
LX : 500 mA/div  
Ta = +25 °C  
VIN = 3.7 V  
VOUT = 2.5 V  
IOUT = 0 A  
VOUT : 1.0 V/div  
No VREFIN capacitor  
10 μs/div  
DS04-27254-3E  
27  
MB39C015  
• Output waveforms at sudden load changes (0 mA 800 mA)  
IOUT = 0 mA  
IOUT = 800 mA  
IOUT = 0 mA  
VOUT : 100 mV/div  
Ta = +25 °C  
VIN = 3.7 V  
VOUT = 2.5 V  
VREFIN capacitor value =  
0.1 μF  
10 μs/div  
• Output waveforms at sudden load changes (100 mA 800 mA)  
IOUT  
= 100 mA  
IOUT  
= 100 mA  
I
OUT  
= 800 mA  
VOUT : 100 mV/div  
Ta = +25 °C  
V
V
IN = 3.7 V  
OUT = 2.5 V  
VREFIN capacitor value =  
0.1 μF  
10 μs/div  
28  
DS04-27254-3E  
MB39C015  
APPLICATION CIRCUIT EXAMPLES  
• APPLICATION CIRCUIT EXAMPLE 1  
• An external voltage is input to the reference voltage external input (VREFIN1, VREFIN2) , and the VOUT  
voltage is set to 3.01 times the VOUT setting gain.  
C3  
4.7 μF  
VIN  
11  
12  
DVDD1  
3
CTL1  
CPU  
R7  
DGND1 14  
15  
1 MΩ  
C4  
4.7 μF  
19  
20  
DVDD2  
DGND2  
8
2
16  
17  
VREFIN1  
CTL2  
DAC1  
5
4
AVDD  
AGND  
C5  
0.1 μF  
R8  
1 MΩ  
MB39C015  
L1  
2.2 μH  
23  
VREFIN2  
DAC2  
V
OUT1  
13  
10  
LX1  
C1  
4.7 μF  
OUT1  
APLI1  
9
MODE1  
MODE2  
L2  
2.2 μH  
22  
VOUT2  
18  
21  
LX2  
C2  
4.7 μF  
6
VREF  
OUT2  
APLI2  
7
1
VDET  
CTLP  
24  
XPOR  
V
OUT = 3.01 × VREFIN  
DS04-27254-3E  
29  
MB39C015  
• APPLICATION CIRCUIT EXAMPLE 2  
• The voltage of VREF pin is input to the reference voltage external input (VREFIN1, VREFIN2) by dividing  
resistors. The VOUT1 voltage is set to 2.5 V and VOUT2 voltage is set to 1.8 V.  
C3  
4.7 μF  
VIN  
11  
12  
DVDD1  
3
CTL1  
CPU  
R7  
DGND1 14  
15  
1 MΩ  
C4  
4.7 μF  
19  
20  
DVDD2  
DGND2  
R1 170 kΩ  
( 20 kΩ + 150 kΩ )  
16  
17  
8
2
VREFIN1  
R2  
300 kΩ  
5
4
AVDD  
AGND  
C5  
0.1 μF  
CTL2  
R8  
1 MΩ  
MB39C015  
L1  
2.2 μH  
VOUT1  
13  
10  
LX1  
R5 352 kΩ  
( 22 kΩ + 330 kΩ )  
C1  
23  
6
VREFIN2  
4.7 μF  
OUT1  
R6  
APLI1  
300 kΩ  
VREF  
L2  
2.2 μH  
VOUT2  
18  
21  
LX2  
9
MODE1  
MODE2  
C2  
4.7 μF  
22  
OUT2  
APLI2  
1
CTLP  
XPOR 24  
VOUT1 = 3.01 × VREFIN1  
R2  
VREFIN1 =  
× VREF  
R1 + R2  
(VREF = 1.30 V)  
300 kΩ  
170 kΩ + 300 kΩ  
VOUT1 = 3.01 ×  
× 1.30 V = 2.5 V  
× 1.30 V = 1.8 V  
300 kΩ  
352 kΩ + 300 kΩ  
VOUT12 = 3.01 ×  
30  
DS04-27254-3E  
MB39C015  
• APPLICATION CIRCUIT EXAMPLE COMPONENTS LIST  
Component  
Item  
Part Number  
VLF4012AT-2R2M  
MIPW3226D2R2M  
VLF4012AT-2R2M  
MIPW3226D2R2M  
C2012JB1A475K  
C2012JB1A475K  
C2012JB1A475K  
C2012JB1A475K  
C1608JB1E104K  
Specification  
2.2 μH, RDC = 76 mΩ  
2.2 μH, RDC = 100 mΩ  
2.2 μH, RDC = 76 mΩ  
2.2 μH, RDC = 100 mΩ  
4.7 μF (10 V)  
Package Vendor  
SMD  
SMD  
SMD  
SMD  
2012  
2012  
2012  
2012  
2012  
TDK  
FDK  
TDK  
FDK  
TDK  
TDK  
TDK  
TDK  
TDK  
L1  
Inductor  
Inductor  
L2  
C1  
C2  
C3  
C4  
C5  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
4.7 μF (10 V)  
4.7 μF (10 V)  
4.7 μF (10 V)  
0.1 μF (50 V)  
RK73G1JTTD D 20 kΩ 20 kΩ  
RK73G1JTTD D 150 kΩ 150 kΩ  
1608  
1608  
KOA  
KOA  
R1  
R2  
R5  
Resistor  
Resistor  
Resistor  
RK73G1JTTD D 300 kΩ 300 kΩ  
1608  
KOA  
RK73G1JTTD D 22 kΩ 22 kΩ  
RK73G1JTTD D 330 kΩ 330 kΩ  
1608  
1608  
KOA  
KOA  
R6  
R7  
R8  
Resistor  
Resistor  
Resistor  
RK73G1JTTD D 300 kΩ 300 kΩ  
1608  
1608  
1608  
KOA  
KOA  
KOA  
RK73G1JTTD D 1 MΩ 1 MΩ 0.5%  
RK73G1JTTD D 1 MΩ 1 MΩ 0.5%  
TDK : TDK Corporation  
FDK : FDK Corporation  
KOA : KOA Corporation  
DS04-27254-3E  
31  
MB39C015  
USAGE PRECAUTIONS  
1. Do not configure the IC over the maximum ratings  
If the lC is used over the maximum ratings, the LSl may be permanently damaged.  
It is preferable for the device to normally operate within the recommended usage conditions. Usage outside  
of these conditions adversely affect the reliability of the LSI.  
2. Use the devices within recommended operating conditions  
The recommended operating conditions are the conditions under which the LSl is guaranteed to operate.  
The electrical ratings are guaranteed when the device is used within the recommended operating conditions  
and under the conditions stated for each item.  
3. Printed circuit board ground lines should be set up with consideration for common  
impedance  
4. Take appropriate static electricity measures  
• Containers for semiconductor materials should have anti-static protection or be made of conductive ma-  
terial.  
• After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.  
• Work platforms, tools, and instruments should be properly grounded.  
• Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground.  
5. Do not apply negative voltages  
The use of negative voltages below 0.3 V may create parasitic transistors on LSI lines, which can cause  
abnormal operation.  
32  
DS04-27254-3E  
MB39C015  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
24-pin plastic QFN  
(LCC-24P-M10)  
MB39C015WQN  
Exposed PAD  
DS04-27254-3E  
33  
MB39C015  
RoHS COMPLIANCE INFORMATION OF LEAD (Pb) FREE VERSION  
The LSI products of FUJITSU SEMICONDUCTOR with “E1” are compliant with RoHS Directive, and has  
observed the standard of lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyls (PBB),  
and polybrominated diphenyl ethers (PBDE).  
A product whose part number has trailing characters “E1” is RoHS compliant.  
MARKING FORMAT (LEAD FREE VERSION)  
39C015  
Lead-free version(E1)  
XE1  
XXXXXX  
INDEX  
LABELING SAMPLE (LEAD FREE VERSION)  
Lead-free mark  
JEITA logo  
JEDEC logo  
MB123456P - 789 - GE1  
(3N) 1MB123456P-789-GE1 1000  
G
Pb  
(3N)2 1561190005 107210  
QC PASS  
PCS  
1,000  
MB123456P - 789 - GE1  
ASSEMBLED IN JAPAN  
2006/03/01  
MB123456P - 789 - GE1  
1/1  
1561190005  
0605 - Z01A 1000  
“ASSEMBLED IN CHINA” is printed on the label  
of a product assembled in China.  
The part number of a lead-free product has  
the trailing characters “E1”.  
34  
DS04-27254-3E  
MB39C015  
EVALUATION BOARD SPECIFICATION  
The MB39C015 Evaluation Board provides the proper for evaluating the efficiency and other characteristics  
of the MB39C015.  
Terminal information  
Symbol  
Functions  
Power supply terminal  
In standard condition 3.1 V to 5.5 V*  
VIN  
* : When the VIN/VOUT difference is to be held within 0.6 V or less, such as for devices  
with a standard output voltage (VOUT1 = 2.5 V) when VIN < 3.1 V, FUJITSU SEMI-  
CONDUCTOR recommends changing the output capacity (C1, C2) to 10 μF.  
Output terminals  
(VOUT1: CH1, VOUT2: CH2)  
VOUT1, VOUT2  
VCTL  
Power supply terminal for setting the CTL1, CTL2 and CTLP terminals.  
Use by connecting with CTL1,CTL2 and CTLP.  
Direct supply terminal of CTL (CTL1 : for CH1, CTL2 : for CH2)  
CTL1, CTL2  
CTL1, CTL2 = 0 V to 0.8 V (Typ.)  
: Shutdown  
CTL1, CTL2 = 0.95 V (Typ.) to VIN (5 V Max) : Normal operation  
TEST terminal  
MODE1, MODE2 = OPEN or GND  
MODE1, MODE2  
VREF  
Reference voltage output terminal  
VREF = 1.30 V (Typ.)  
External reference voltage input terminals  
(VREFIN1 : for CH1, VREFIN2 : for CH2)  
When an external reference voltage is supplied, connect it to the terminal for each chan-  
nel.  
VREFIN1, VREFIN2  
VDET  
CTLP  
Voltage input terminal for voltage detection  
Voltage detection circuit block control terminal  
CTLP = L : Voltage detection circuit block stop  
CTLP = H : Normal operation  
Voltage detection circuit output terminal  
The N-ch MOS open drain circuit is connected.  
XPOR  
VXPOR  
Pull-up voltage terminal for the XPOR terminal  
Ground terminal  
Connect power supply GND to the PGND terminal next to the VIN terminal.  
Connect output (load) GND to the PGND terminal between the VOUT1 terminal and the  
VOUT2 terminal.  
PGND  
AGND  
Ground terminal  
DS04-27254-3E  
35  
MB39C015  
• Startup terminal information  
Terminal name  
Condition  
Functions  
ON/OFF switch for CH1  
L : Shutdown  
H : Normal operation.  
L : Open  
H : Connect to VCTL  
CTL1  
ON/OFF switch for CH2  
L : Shutdown  
H : Normal operation.  
L : Open  
H : Connect to VCTL  
CTL2  
CTLP  
ON/OFF switch for the voltage detection block  
L: Stops the voltage detection circuit  
H: Normal operation.  
L : Open  
H : Connect to VCTL  
• Jumper information  
JP  
Functions  
Short-circuited in the layout pattern of the board (normally used shorted).  
Short-circuited in the layout pattern of the board (normally used shorted).  
Normally used shorted (0 Ω)  
JP1  
JP2  
JP3  
JP6  
Normally used shorted (0 Ω)  
Setup and checkup  
(1) Setup  
1. Connect the CTL1 terminal and the CTL2 terminal to the VCTL terminal.  
2. Put it into “L” state by connecting the CTLP terminal to the AGND pad.  
3. Connect the power supply terminal to the VIN terminal, and the power supply GND terminal to the  
PGND terminal. Make sure PGND is connected to the PGND terminal next to the VIN terminal.  
(Example of setting power-supply voltage : 3.7 V)  
(2) Checkup  
Supply power to VIN. The IC is operating normally if VOUT1 = 2.5 V (Typ) and VOUT2 = 1.8 V (Typ).  
36  
DS04-27254-3E  
MB39C015  
• Component layout on the evaluation board (Top View)  
C2  
C1  
C3  
VOUT2  
PGND  
VOUT1  
L1  
MODE2  
VREFIN2  
XPOR  
PGND  
L2  
C4  
VIN  
M1  
C7  
R5  
C6  
R2  
C5  
R4 - 1  
R9  
R7  
R6 - 2  
R6 - 1  
MODE1  
VREFIN1  
JP6  
AGND  
JP3  
SW1  
R1 - 3  
VCTL  
VREF  
Short  
R3  
VXPOR  
Open  
MB39C015EVB-06  
Rev.1.0  
CTL2  
CTL1  
CTLP  
VDET  
R8  
R10  
Top Side (Component side)  
Bottom Side (Soldering side)  
DS04-27254-3E  
37  
MB39C015  
• Evaluation board layout (Top View)  
Top Side (Layer1)  
Inside GND (Layer2)  
Inside VIN & GND (Layer3)  
Bottom Side (Layer4)  
38  
DS04-27254-3E  
MB39C015  
• Connection diagram  
IIN  
VIN  
VIN  
PGND  
JP3  
SW1*  
11  
12  
DVDD1  
DGND1  
DVDD2  
DGND2  
C3  
C4  
VCTL  
CTL1  
3
9
CTL1  
R8  
14  
15  
SW1*  
19  
20  
MODE1  
16  
17  
MODE1  
VREF  
JP6  
R6-1 R6-2  
R7  
AVDD  
AGND  
5
4
8
VREFIN1  
C5  
VREFIN1  
C6  
AGND  
MB39C015  
SW1*  
SW1*  
2
CTL2  
R9  
IOUT  
L1  
CTL2  
13  
10  
LX1  
VOUT1  
C1  
22  
MODE2  
JP1  
OUT1  
MODE2  
VREF  
PGND  
IOUT  
R4-1 R4-2  
R5  
L2  
23  
6
VREFIN2  
VREFIN2  
VREF  
C7  
18  
LX2  
VOUT2  
C2  
JP2  
VREF  
OUT2 21  
VREF  
VIN  
R1-3  
VXPOR  
XPOR  
VDET  
7
1
VDET  
CTLP  
R1-1  
SW1*  
R1-2  
R3  
R2  
24  
XPOR  
R10  
CTLP  
*
Not mounted  
DS04-27254-3E  
39  
MB39C015  
• Component list  
COMPO-  
VEN-  
DOR  
RE-  
MARK  
Part Name  
MODEL NUMBER  
MB39C015WQN  
SPECIFICATION PACKAGE  
NENT  
M1  
IC  
QFN-24  
SMD  
FSL  
2.2 μH,  
L1  
L2  
Inductor  
VLF4012AT-2R2M  
TDK  
RDC = 76 mΩ  
2.2 μH,  
RDC = 76 mΩ  
Inductor  
VLF4012AT-2R2M  
SMD  
TDK  
C1  
C2  
Ceramic capacitor C2012JB1A475K  
Ceramic capacitor C2012JB1A475K  
Ceramic capacitor C2012JB1A475K  
Ceramic capacitor C2012JB1A475K  
Ceramic capacitor C1608JB1H104K  
Ceramic capacitor C1608JB1H104K  
Ceramic capacitor C1608JB1H104K  
4.7 μF (10 V)  
4.7 μF (10 V)  
4.7 μF (10 V)  
4.7 μF (10 V)  
0.1 μF (50 V)  
0.1 μF (50 V)  
0.1 μF (50 V)  
50 mΩ Max, 1 A  
300 kΩ 0.5%  
50 mΩ Max, 1 A  
75 kΩ 0.5%  
2012  
2012  
2012  
2012  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
KOA  
SSM  
KOA  
SSM  
KOA  
SSM  
SSM  
SSM  
SSM  
SSM  
SSM  
KOA  
KOA  
KOA  
C3  
C4  
C5  
C6  
C7  
R1-1  
R1-2  
R1-3  
R2  
Jumper  
Resistor  
Jumper  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
RK73Z1J  
RR0816P-304-D  
RK73Z1J  
RR0816P-753-D  
R3  
RK73G1JTTD D 1 MΩ 1 MΩ 0.5%  
R4-1  
R4-2  
R5  
RR0816P-223-D  
RR0816P-334-D  
RR0816P-304-D  
RR0816P-203-D  
RR0816P-154-D  
RR0816P-304-D  
22 kΩ 0.5%  
330 kΩ 0.5%  
300 kΩ 0.5%  
20 kΩ 0.5%  
150 kΩ 0.5%  
300 kΩ 0.5%  
R6-1  
R6-2  
R7  
R8  
RK73G1JTTD D 1 MΩ 1 MΩ 0.5%  
RK73G1JTTD D 1 MΩ 1 MΩ 0.5%  
RK73G1JTTD D 1 MΩ 1 MΩ 0.5%  
R9  
R10  
Not  
mounted  
SW1  
JP1  
JP2  
Switch  
Jumper  
Jumper  
Pattern-  
shorted  
Pattern-  
shorted  
JP3  
JP6  
Jumper  
Jumper  
RK73Z1J  
RK73Z1J  
50 mΩ Max, 1 A  
50 mΩ Max, 1 A  
1608  
1608  
KOA  
KOA  
Note : These components are recommended based on the operating tests authorized.  
FSL : FUJITSU SEMICONDUCTOR LIMITED  
TDK : TDK Corporation  
KOA : KOA Corporation  
SSM : SUSUMU Co., Ltd  
40  
DS04-27254-3E  
MB39C015  
EV BOARD ORDERING INFORMATION  
EV Board Part No.  
EV Board Version No.  
MB39C015EVB-06 Rev.1.0  
Remarks  
MB39C015EVB-06  
QFN-24  
DS04-27254-3E  
41  
MB39C015  
PACKAGE DIMENSION  
24-pin plastic QFN  
Lead pitch  
0.50 mm  
4.00 mm × 4.00 mm  
Plastic mold  
0.80 mm Max  
0.04 g  
Package width ×  
package length  
Sealing method  
Mounting height  
Weight  
(LCC-24P-M10)  
24-pin plastic QFN  
(LCC-24P-M10)  
2.60 0.10  
(.102 .004)  
4.00 0.10  
(.157 .004)  
2.60 0.10  
(.102 .004)  
4.00 0.10  
(.157 .004)  
0.25 0.05  
(.010 .002)  
INDEX AREA  
0.40 0.05  
(.016 .002)  
1PIN CORNER  
(C0.35(C.014))  
0.50(.020)  
TYP  
0.75 0.05  
(.030 .002)  
(0.20(.008))  
0.02 +00..0023  
+.001  
(.001  
)
–.001  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2009-2010 FUJITSU SEMICONDUCTOR LIMITED C24060S-c-1-2  
Please check the latest package dimension at the following URL.  
http://edevice.fujitsu.com/package/en-search/  
42  
DS04-27254-3E  
MB39C015  
CONTENTS  
page  
- DESCRIPTION .................................................................................................................................................... 1  
- FEATURES .......................................................................................................................................................... 1  
- APPLICATIONS .................................................................................................................................................. 1  
- PIN ASSIGNMENT ............................................................................................................................................. 2  
- PIN DESCRIPTIONS .......................................................................................................................................... 3  
- I/O PIN EQUIVALENT CIRCUIT DIAGRAM ................................................................................................... 4  
- BLOCK DIAGRAM .............................................................................................................................................. 5  
- FUNCTION OF EACH BLOCK ......................................................................................................................... 7  
- ABSOLUTE MAXIMUM RATINGS ................................................................................................................... 9  
- RECOMMENDED OPERATING CONDITIONS ............................................................................................ 10  
- ELECTRICAL CHARACTERISTICS ................................................................................................................ 11  
- TEST CIRCUIT FOR MEASURING TYPICAL OPERATING CHARACTERISTICS ................................ 13  
- APPLICATION NOTES ...................................................................................................................................... 14  
- EXAMPLE OF STANDARD OPERATION CHARACTERISTICS ............................................................... 21  
- APPLICATION CIRCUIT EXAMPLES ............................................................................................................. 29  
- USAGE PRECAUTIONS ................................................................................................................................... 32  
- ORDERING INFORMATION ............................................................................................................................. 33  
- RoHS COMPLIANCE INFORMATION OF LEAD (Pb) FREE VERSION .................................................. 34  
- MARKING FORMAT (LEAD FREE VERSION) .............................................................................................. 34  
- LABELING SAMPLE (LEAD FREE VERSION) ............................................................................................. 34  
- EVALUATION BOARD SPECIFICATION ....................................................................................................... 35  
- EV BOARD ORDERING INFORMATION ....................................................................................................... 41  
- PACKAGE DIMENSION .................................................................................................................................... 42  
DS04-27254-3E  
43  
MB39C015  
FUJITSU SEMICONDUCTOR LIMITED  
Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome,  
Kohoku-ku Yokohama Kanagawa 222-0033, Japan  
Tel: +81-45-415-5858  
http://jp.fujitsu.com/fsl/en/  
For further information please contact:  
North and South America  
Asia Pacific  
FUJITSU SEMICONDUCTOR AMERICA, INC.  
1250 E. Arques Avenue, M/S 333  
Sunnyvale, CA 94085-5401, U.S.A.  
Tel: +1-408-737-5600 Fax: +1-408-737-5999  
http://us.fujitsu.com/micro/  
FUJITSU SEMICONDUCTOR ASIA PTE. LTD.  
151 Lorong Chuan,  
#05-08 New Tech Park 556741 Singapore  
Tel : +65-6281-0770 Fax : +65-6281-0220  
http://www.fujitsu.com/sg/services/micro/semiconductor/  
Europe  
FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD.  
Rm. 3102, Bund Center, No.222 Yan An Road (E),  
Shanghai 200002, China  
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605  
http://cn.fujitsu.com/fss/  
FUJITSU SEMICONDUCTOR EUROPE GmbH  
Pittlerstrasse 47, 63225 Langen, Germany  
Tel: +49-6103-690-0 Fax: +49-6103-690-122  
http://emea.fujitsu.com/semiconductor/  
Korea  
FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD.  
10/F., World Commerce Centre, 11 Canton Road,  
Tsimshatsui, Kowloon, Hong Kong  
Tel : +852-2377-0226 Fax : +852-2376-3269  
http://cn.fujitsu.com/fsp/  
FUJITSU SEMICONDUCTOR KOREA LTD.  
206 Kosmo Tower Building, 1002 Daechi-Dong,  
Gangnam-Gu, Seoul 135-280, Republic of Korea  
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111  
http://kr.fujitsu.com/fmk/  
Specifications are subject to change without notice. For further information please contact each office.  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with sales representatives before ordering.  
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose  
of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does  
not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating  
the device based on such information, you must assume any responsibility arising out of such use of the information.  
FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.  
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use  
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any  
third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right  
by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or  
other rights of third parties which would result from the use of information contained herein.  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured  
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect  
to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in  
nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in  
weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).  
Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages aris-  
ing in connection with above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-  
current levels and other abnormal operating conditions.  
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations  
of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.  
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.  
Edited: Sales Promotion Department  

相关型号:

MB39C022G

Buck DC/DC Converter Low Noise LDO
CYPRESS

MB39C022GPN

Buck DC/DC Converter Low Noise LDO
CYPRESS

MB39C022GPNE1

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
CYPRESS

MB39C022JPN

Buck DC/DC Converter Low Noise LDO
CYPRESS

MB39C022JPNE1

Switching Regulator, Current-mode, 1.6A, 2400kHz Switching Freq-Max, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, PLASTIC, SON-10
FUJITSU

MB39C022JPNE1

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
CYPRESS

MB39C022LPN

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
CYPRESS

MB39C022LPNE1

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
SPANSION

MB39C022LPNE1

Switching Regulator, Current-mode, 1.6A, 2400kHz Switching Freq-Max, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, PLASTIC, SON-10
FUJITSU

MB39C022LPNE1

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
CYPRESS

MB39C022NPN

Buck DC/DC Converter Low Noise LDO
CYPRESS

MB39C022NPNE1

1.6A SWITCHING REGULATOR, 2400kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, PLASTIC, SON-10
FUJITSU