MB39C022JPN [CYPRESS]

Buck DC/DC Converter Low Noise LDO;
MB39C022JPN
型号: MB39C022JPN
厂家: CYPRESS    CYPRESS
描述:

Buck DC/DC Converter Low Noise LDO

文件: 总29页 (文件大小:809K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MB39C022G/J/L/N  
Buck DC/DC Converter  
+ Low Noise LDO  
Description  
The MB39C022 is a 2 channels power supply IC. It consists of one channel Buck DC/DC Converter and one channel LDO regulator.  
The DC/DC converter has fast transient response with current mode control topology. Moreover, the integrated LDO provides an  
auxiliary output supply for noise sensitive circuit.  
Features  
Power supply voltage range  
: 2.5 V to 5.5 V  
For Buck DC/DC included SW FET (CH1) : output 0.8 V to 4.5 V, 600 mA Max DC  
For LDO (CH2)  
: output 3.30 V (MB39C022G) 300 mA Max DC  
: output 2.85 V (MB39C022J) 300 mA Max DC  
: output 1.80 V (MB39C022L) 300 mA Max DC  
: output 1.20 V (MB39C022N) 300 mA Max DC  
Error amplifier threshold voltage  
: 0.3 V  
(2.5 %) (CH1)  
Fast line transient response with current mode topology (CH1)  
PFM mode at light load current with VO1/VIN1 80 % (IO1 10 mA) (CH1)  
Power-on-reset with 66 ms delay (CH1)  
Built-in short circuit protect (CH2)  
Built-in over current protect (CH1, CH2)  
Built-in thermal protection function  
Small size plastic SON-10 (3 mm × 3 mm) package  
Applications  
Portable Equipment  
PND, GPS  
PMP  
Mobile TV, USB-dongle (CMMB, DVB-T, DMB-T)  
Smart-phone  
MP3  
Cypress Semiconductor Corporation  
Document Number: 002-08460 Rev. *C  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 19, 2017  
MB39C022G/J/L/N  
Contents  
Description ............................................................................. 1  
Features .................................................................................. 1  
Applications ........................................................................... 1  
10. Application Notes ......................................................... 14  
10.1 Selection of components ....................................... 14  
10.2 DC/DC Output voltage setting ............................... 15  
10.3 Power On Reset (POR) ......................................... 15  
10.4 Power dissipation and heat considerations ........... 16  
10.5 Board layout, design example ............................... 17  
1. Pin Assignment ................................................................ 3  
2. Pin Descriptions ............................................................... 4  
3. I/O Terminal Equivalent Circuit Diagram ........................ 5  
4. Block Diagram .................................................................. 6  
11. Example Of Standard Operation Characteristics ...... 18  
11.1 DC/DC Conversion Efficiency ............................... 18  
11.2 DC/DC Load Regulation ........................................ 18  
11.3 DC/DC Line Regulation ......................................... 19  
11.4 DC/DC Switching Waveform ................................. 19  
11.5 LDO Load Regulation ............................................ 20  
11.6 LDO Line Regulation ............................................. 20  
11.7 LDO Power Supply Rejection Ratio ...................... 21  
11.8 DC/DC Load Transient Waveforms ....................... 21  
11.9 DC/DC Power MOS FET ON Resistance .............. 22  
5. Function Descriptions ...................................................... 7  
5.1 PFM/PWM Logic Control Block (CH1) ...................... 7  
5.2 Level converter and Iout Comparator circuit (CH1) ... 7  
5.3 Error Amp. circuit (CH1) ............................................ 7  
5.4 LDO Block (CH2) ....................................................... 7  
5.5 POR Block ................................................................. 7  
5.6 Reference Voltage Block (VREF) .............................. 7  
5.7 Under Voltage Lockout Protection Circuit Block  
(UVLO) ........................................................................ 8  
5.8 Over Temperature Protection Block (OTP) ............... 8  
5.9 Control Block (CTL) ................................................... 8  
12. Application Circuits Examples .................................... 24  
13. Usage Precautions ....................................................... 26  
14. Ordering Information .................................................... 26  
15. RoHS Compliance Information .................................... 26  
6. Absolute Maximum Ratings ............................................ 9  
7. Recommended Operating Conditions .......................... 10  
8. Electrical Characteristics ............................................... 11  
16. Package Dimension ...................................................... 27  
Document History ................................................................ 28  
Sales, Solutions, and Legal Information ........................... 29  
9. Test Circuit For Measuring Typical Operating  
Characteristics ............................................................... 13  
Document Number: 002-08460 Rev. *C  
Page 2 of 29  
MB39C022G/J/L/N  
1. Pin Assignment  
(TOP VIEW)  
GND1  
10  
LX  
9
VIN1  
EN1  
7
FB  
6
8
1
2
3
4
5
EN2  
VIN2  
VOUT2  
POR  
GND2  
(WNK010)  
Document Number: 002-08460 Rev. *C  
Page 3 of 29  
MB39C022G/J/L/N  
2. Pin Descriptions  
Block  
Pin No.  
Pin Name  
FB  
I/O  
I
Descriptions  
CH1 Error Amplifier input pin  
6
9
CH1 (Buck DC/DC)  
CH2 (LDO)  
LX  
O
O
I
CH1 Inductor connection pin  
CH2 LDO output pin  
3
VOUT2  
EN1  
7
CH1 Control pin (L : shutdown / H : operation)  
CH2 Control pin (L : shutdown / H : operation)  
CH1 Power supply pin  
Control  
1
EN2  
I
8
VIN1  
VIN2  
GND1  
GND2  
POR  
O
2
CH2 Power supply pin  
Power  
10  
5
CH1 Ground pin  
CH2 Ground pin  
Power-on Reset  
4
CH1 Power on reset output pin (NMOS open drain)  
Document Number: 002-08460 Rev. *C  
Page 4 of 29  
MB39C022G/J/L/N  
3. I/O Terminal Equivalent Circuit Diagram  
VIN1  
EN∗  
POR  
GND2  
GND2  
VIN1  
VIN1  
LX  
FB  
GND1  
GND2  
VIN2  
VOUT2  
GND2  
* : ESD Protection device  
Document Number: 002-08460 Rev. *C  
Page 5 of 29  
MB39C022G/J/L/N  
4. Block Diagram  
<<CH1 Buck DC/DC>>  
VIN1  
Error  
Amp.  
6
8
9
FB  
IO1 (600 mA Max)  
VO1 (0.8 V to 4.5 V)  
ICOMP  
LX  
PFM  
PWM  
Logic  
DRV  
Control  
Current  
Limit  
LEVEL  
CONV.  
OSC  
GND1  
VIN2  
10  
VIN or VO1  
POR  
<<CH2: LDO>>  
2
3
Error  
Amp.  
4
VOUT2  
POR  
POR  
IO2 (300 mA Max)  
VO2  
3.3 V: MB39C022G  
2.85 V: MB39C022J  
1.8 V: MB39C022L  
1.2 V: MB39C022N  
OCP/SCP  
VIN  
GND2  
(2.5 V to 5.5 V)  
5
OTP  
VREF  
UVLO  
EN1  
EN2  
7
1
enb1 (H: CH1 ON)  
enb2 (H: CH2 ON)  
<<10 PIN>>  
Document Number: 002-08460 Rev. *C  
Page 6 of 29  
MB39C022G/J/L/N  
5. Function Descriptions  
5.1 PFM/PWM Logic Control Block (CH1)  
The built-in P-ch and N-ch MOS FETs are controlled for synchronization rectification according to the frequency (2.0 MHz) oscillated  
from the built-in oscillator (square wave oscillation circuit). Under light load, it operates intermittently.  
This circuit protects the through current caused by synchronous rectification and the reverse current in Discontinuous Conduction  
Mode.  
Since the PWM control circuit of this IC is in the control method in current mode, the current peak value is monitored and controlled  
as required.  
5.2 Level Converter and Iout Comparator Circuit (CH1)  
The Level converter circuit detects the current (ILX) which flows to the external inductor from the built-in P-ch MOS FET. By comparing  
VIDET obtained through I-V conversion of peak current IPK of ILX with the Error Amp. output, the Iout Comparator turns off the built-in  
P-ch MOS FET via the PWM Logic Control circuit.  
5.3 Error Amp. Circuit (CH1)  
The error amplifier (Error Amp.) detects the output voltage from the DC/DC converter and output to the current comparators (ICOMP).  
The output voltage setting resistor externally connected to FB allows an arbitrary output voltage to be set.  
5.4 LDO Block (CH2)  
The integrated low noise low dropout regulator (LDO) is available up to 300 mA current capability and 700 mA over current protection  
(OCP) 350 mA short circuit protection (SCP). The LDO output VOUT2 requires a 4.7 μF capacitor for MB39C022G and MB39C022N  
and a 1.0 μF capacitor for MB39C022J and MB39C022L for stability. MB39C022G, MB39C022J, MB39C022L and MB39C022N have  
fixed 3.3 V, 2.85 V, 1.8 V and 1.2 V output voltages respectively, eliminating the need for an external resistor divider.  
5.5 POR Block  
The POR circuit monitors the VO1 through the FB pin voltage. When the FB pin voltage reaches 97% of VFBTH, POR pin becomes  
high level after the hold time of 66 ms. The POR pin is an open-drain output and pulled up to VIN or VO1 with an external resistor.  
Timing Chart : (POR Pin Pulled up to VIN With Resistor)  
VUVLO  
VIN  
EN1  
VTH × 97%  
FB  
POR  
thold  
thold  
VUVLO : UVLO threshold voltage (VTLH = 2.050 V)  
VTH : FB pin threshold voltage (VTH = 0.3 V)  
5.6 Reference Voltage Block (VREF)  
A high accuracy reference voltage is generated with BGR (bandgap reference) circuit.  
Document Number: 002-08460 Rev. *C  
Page 7 of 29  
MB39C022G/J/L/N  
5.7 Under Voltage Lockout Protection Circuit Block (UVLO)  
The circuit protects against IC malfunction and system destruction/deterioration in a transitional state or a momentary drop of when  
the internal reference voltage starts. It detects a voltage drop at the VIN1 pin and stops IC operation. When voltages at the VIN1 pin  
exceed the threshold voltage of the under voltage lockout protection circuit, the system is restored.  
5.8 Over Temperature Protection Block (OTP)  
The circuit protects an IC from heat-destruction. If the junction temperature reaches 135°C, the circuit turns off the CH1 and CH2  
operation, When the junction temperature comes down to + 110°C, the CH1 and CH2 are returned to the normal operation.  
5.9 Control Block (CTL)  
Control function table  
EN1  
L
EN2  
L
CH1 and POR  
CH2  
OFF  
OFF  
ON  
VREF, UVLO, OTP  
OFF  
ON  
OFF  
ON  
ON  
ON  
H
L
L
H
OFF  
ON  
H
H
ON  
Document Number: 002-08460 Rev. *C  
Page 8 of 29  
MB39C022G/J/L/N  
6. Absolute Maximum Ratings  
Rating  
Parameter  
Symbol  
Condition  
Unit  
Min  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
Max  
+ 6.0  
VIN1 + 0.3  
VIN1 + 0.3  
+ 6.0  
+ 6.0  
+ 6.0  
VIN1 + 0.3  
1.6  
Power supply voltage  
VIN1  
VIN2  
VFB  
VEN1  
VEN2  
VPOR  
VLX  
VIN1 pin  
VIN2 pin  
V
V
Input voltage  
FB pin  
V
EN1 pin  
V
EN2 pin  
V
POR pull-up voltage  
LX voltage  
POR pin  
V
LX pin  
V
LX peak current  
VOUT2 peak current  
Power dissipation  
ILX  
LX pin AC  
VOUT2 pin AC  
Ta ≤ + 25°C  
A
IO2  
0.8  
A
2
PD  
2632*1,  
*
mW  
3
980*1,  
*
2,  
4
Ta = + 85°C  
1053*1,  
* *  
3,  
4
392*1,  
* *  
Storage temperature  
TSTG  
55  
+ 125  
°C  
*1: When mounted on four layer epoxy board of 11.7 cm × 8.4 cm  
*2: At connect the exposure pad and with thermal via (Thermal via 4 pcs).  
*3: At connect the exposure pad and not thermal via.  
*4: Power dissipation value between + 25°C and + 85°C is obtained by connecting these two points with a straight line  
Notes:  
• The use of negative voltages below 0.3 V to the GND pin may create parasitic transistors on LSI lines, which can cause  
abnormal operation.  
• If LX terminal is short-circuited to VIN1 or VIN2 or GND line, there is a possibility to destroy it. Such usage is prohibit  
WARNING:  
Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
Document Number: 002-08460 Rev. *C  
Page 9 of 29  
MB39C022G/J/L/N  
7. Recommended Operating Conditions  
Value  
Typ  
Parameter  
Symbol  
Condition  
Unit  
Max  
Min  
3, 4,  
5
Power supply voltage  
VIN1  
VIN2  
VFB  
VIN1 pin*1,  
*
*
*
*
2.5  
3.7  
5.5  
V
3
VIN2 pin*2,  
Input voltage  
FB pin  
0
0.30  
V
V
VEN1  
VEN2  
VO1  
EN1 pin  
EN2 pin  
5.5  
5.5  
4.5  
0.6  
0.3  
+ 85  
0
V
5
Output voltage  
Output current  
CH1 : Buck DC/DC*1,  
*
0.8  
V
ILX  
LX pin DC  
A
IVOUT2  
Ta  
VOUT2 pin DC  
A
Operating ambient  
temperature  
40  
+ 25  
°C  
*1 : The minimum VIN1 has to meet two conditions : VIN1 (VIN1 Min) and VIN1 VO1 + 0.5 V  
*2 : The minimum VIN2 has to meet two conditions : VIN2 (VIN2 Min) and VIN2 VO2 + Vdrop (VO2 and Vdrop values are specified  
in “ Electrical Characteristics”)  
*3 : VIN1 VIN2  
*4 : VIN1 startup rise time 1 ms is recommended  
*5 : PFM mode at light load current with VO1/VIN1 80% (IO1 10 mA)  
WARNING:  
The recommended operating conditions are required in order to ensure the normal operation of  
the semiconductor device. All of the device's electrical characteristics are warranted when the  
device is operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges.  
Operation outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented  
on the data sheet. Users considering application outside the listed conditions are advised to contact  
their representatives beforehand.  
Document Number: 002-08460 Rev. *C  
Page 10 of 29  
MB39C022G/J/L/N  
8. Electrical Characteristics  
(Ta = + 25°C, VIN1 = VIN2 = 3.7 V)  
Value  
Unit  
Parameter  
Symbol Pin No.  
Condition  
Min  
2.5%  
100  
Typ  
0.3  
0
Max  
+ 2.5%  
+ 100  
Threshold voltage  
Input Bias current  
VTH  
IFB  
6
6
FB pin  
FB = 0 V  
V
nA  
SW PMOS-Tr On  
resistor  
RPON  
8,9  
ILX = 100 mA  
0.35  
CH1  
[ Buck  
DC/DC ]  
SW NMOS-Tr On  
resistor  
RNON  
9,10  
ILX = 100 mA  
0.25  
Line regulation  
Vline1  
Vload1  
ILIM1  
VO2  
9
3
VIN1 = 2.5 V to 5.5 V*1  
IO1 = 100 mA to 600 mA  
VOUT1 × 0.9  
10  
10  
mV  
mV  
A
Load regulation  
Over current protect  
0.9  
1.2  
3.30  
1.5  
IO2 = 0 mA to 300 mA  
2.5%  
+ 2.5%  
V
MB39C022G  
IO2 = 0 mA to 300 mA  
2.5%  
2.5%  
2.5%  
2.85  
1.80  
1.20  
+ 2.5%  
+ 2.5%  
+ 2.5%  
V
V
V
MB39C022J  
Output voltage  
IO2 = 0 mA to 300 mA  
MB39C022L  
IO2 = 0 mA to 300 mA  
MB39C022N  
Line regulation  
Load regulation  
Vline2  
3
3
VIN2 = 2.5 V to 5.5 V*2  
10  
25  
mV  
mV  
mV  
Vload2  
IO2 = 0 mA to 300 mA  
IO2 = 300 mA,  
200  
Drop out voltage  
Vdrop  
3
VIN2 = VO2 :  
MB39C022G, MB39C022J  
MB39C022G*3  
MB39C022J*3  
MB39C022L*3  
MB39C022N*3  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
f = 10 kHz  
70*4  
70*4  
65*4  
65*4  
60*4  
60*4  
55*4  
55*4  
55*4  
dB  
dB  
CH2  
[ LDO ]  
dB  
Power supply  
rejection ratio  
dB  
PSRR  
3
dB  
dB  
dB  
dB  
Output noise  
voltage  
Vnoise  
ILIM2  
3
3
3
f = 10 Hz to 100 kHz,  
EN1 = 0 V  
μVrms  
Over current  
protect  
VO2 × 0.9  
500  
150  
700  
350  
980  
700  
mA  
mA  
Short circuit  
protect  
ISCP2  
VO2 = 0 V  
Document Number: 002-08460 Rev. *C  
Page 11 of 29  
MB39C022G/J/L/N  
(Ta = + 25°C, VIN1 = VIN2 = 3.7 V)  
Value  
Unit  
Parameter  
Hold time  
Symbol  
Pin No.  
Condition  
Min  
52.8  
Typ  
66  
Max  
79.2  
0.1  
Thold  
VPOR  
IPOR  
VTHL  
4
4
fosc = 2 MHz  
POR = 250 μA  
POR = 5.5 V  
VIN1  
ms  
V
Power On Reset  
[ POR ]  
Output voltage  
Output current  
Threshold voltage  
4
1
μA  
V
Under Voltage  
Lockout  
2, 8  
1.95  
2.10  
2.25  
Protection  
Circuit Block  
[ UVLO ]  
Hysteresis width  
VH  
2, 8  
0.20  
V
Over  
Stop temperature  
Hysteresis width  
TOTPH  
+ 135  
+ 25  
°C  
°C  
Temperature  
Protection Block  
[ OTP ]  
TOTPHYS  
Oscillator Block Output  
fosc  
9
1.6  
2.0  
2.4  
MHz  
[ OSC ]  
frequency  
Control Block  
[CTL ]  
Input voltage  
VIH  
VIL  
1, 7  
1, 7  
1, 7  
8
EN1, EN2 ON  
EN1, EN2 OFF  
EN1, EN2 = 0 V  
EN1, EN2 = 0 V  
EN1, EN2 = 0 V  
1.5  
0
0
0
0.4  
+ 100  
1
V
V
Input current  
IEN  
100  
nA  
μA  
μA  
Shut down  
power supply  
current  
ICC1  
ICC1  
2
1
Standby power  
supply current  
(DC/DC)  
ICC2  
ICC2  
8
2
EN1 = VIN1, EN2 = 0 V  
IO1 = 0 mA, VFB = VIN1  
30  
0
60  
1
μA  
General  
Standby power  
supply current  
(LDO)  
ICC3  
ICC3  
8
2
EN1 = 0 V, EN2 = VIN1  
IO2 = 0 mA  
10  
60  
18  
μA  
120  
Power-on  
invalid  
current  
ICC4  
ICC4  
8
2
EN1, EN2 = VIN1,  
VFB = 0.2 V  
0.9  
60  
1.5  
mA  
120  
μA  
*1 : The minimum VIN1 has to meet two conditions : VIN1 (VIN1 Min) and VIN1 VO1 + 0.5 V  
*2 : The minimum VIN2 has to meet two conditions : VIN2 (VIN2 Min) and VIN2 VO2 + Vdrop (VO2 and Vdrop  
values are specified in “ Electrical Characteristics”)  
*3 : VIN2 = VO2 + 1 V, (MB39C022N: VIN2 = 2.5 V), IO2 = 100 mA  
*4 : This value is not be specified. This should be used as a reference to support designing the circuits.  
Document Number: 002-08460 Rev. *C  
Page 12 of 29  
MB39C022G/J/L/N  
9. Test Circuit For Measuring Typical Operating Characteristics  
EN2  
EN2  
GND1  
LX  
C2  
VIN2  
VO1  
C4  
C5  
L1  
VO2  
VOUT2  
POR  
VIN1  
EN1  
FB  
VIN  
C1  
POR  
EN1  
R3  
R5  
R6  
C3  
GND2  
Component  
Item  
Specification  
10 μF  
Remarks  
C1  
C2  
C3  
C4  
C5  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
4.7 μF  
22 pF  
4.7 μF  
1 μF  
for MB39C022J, MB39C022L  
for MB39C022G, MB39C022N  
4.7 μF  
2.2 μH  
1 MΩ  
L1  
R3  
R5  
R6  
Inductor  
Resistor  
Resistor  
Resistor  
600 kΩ  
200 kΩ  
at VO1 = 1.2 V*  
* : The output voltage of VO1 can be adjusted by the external resistor divider R5.  
(R5 + R6)  
R6  
(600 k+ 200 k)  
200 kΩ  
VO1 = Vref  
×
= 0.3 V ×  
= 1.2 V  
Document Number: 002-08460 Rev. *C  
Page 13 of 29  
MB39C022G/J/L/N  
10. Application Notes  
10.1 Selection of Components  
Selection of an External Inductor for DC/DC  
This IC is designed to operate well with a 2.2 μH inductor. Choosing larger values would lead to larger overshoot/undershoot during  
load transient. Choosing a smaller value would lead to larger ripple voltage.  
The inductor should be rated for a saturation current higher than the LX peak current value during normal operating conditions, and  
should have a minimal DC resistance. (100 mor less is recommended to improve efficiency.)  
LX peak current value IPK is obtained by the following formula.  
VIN - VOUT  
L
D
1
2
(VIN - VOUT) × VOUT  
2 × L × fosc × VIN  
IPK = IOUT  
+
×
×
= IOUT +  
fosc  
L
: External inductor value  
IOUT : Load current (DC)  
VIN : Power supply voltage  
VOUT : Output setting voltage  
D
: ON- duty to be switched ( = VOUT/VIN)  
fosc : Switching frequency (2.0 MHz)  
ex) At VIN = 3.7 V, VOUT = 1.2 V, IOUT = 0.6 A, L = 2.2 μH, fosc = 2.0 MHz  
The maximum peak current value IPK  
;
(VIN VOUT) × VOUT  
2 × L × fosc × VIN  
(3.7 V 1.2 V) × 1.2 V  
2 × 2.2 μH × 2 MHz × 3.7 V  
IPK = IOUT  
+
= 0.6 A +  
= 0.69 A  
I/O Capacitor Selection  
• DC/DC's output capacitor's finite equivalent series resistance (ESR) causes ripple voltages on output equal to the amount of  
current variation multiplied by the ESR value. The output capacitor value also has a significant impact on the operating stability  
of the device when used as a DC/DC converter. Therefore, Cypress generally recommends C2 = 4.7 μF as DC/DC output  
capacitor, or a larger capacitor value can be used if ripple voltages are not suitable.  
• For DC/DC, select a low ESR for the VIN1/VIN2 input capacitor to suppress dissipation from ripple currents. In addition, to  
reduce startup overshoot for DC/DC and LDO, it is recommended that larger ceramic capacitor be used for input capacitors C1  
and C4. Recommended values are C1 = 10 μF, C4 = 4.7 μF.  
• Types of capacitors  
Ceramic capacitors are effective for reducing the ESR and afford smaller DC/DC converter circuit. However, power supply  
functions as a heat generator, therefore avoid using capacitor with the F-temperature rating ( 80% to + 20%). Cypress  
recommends capacitors with the B-temperature rating ( 10% to 20%).  
Normal electrolytic capacitors are not recommended due to their high ESR.  
Tantalum capacitor will reduce ESR, however, it is dangerous to use because it turns into short mode when damaged. If you  
insist on using a tantalum capacitor, Cypress recommends the type with an internal fuse.  
Document Number: 002-08460 Rev. *C  
Page 14 of 29  
MB39C022G/J/L/N  
10.2 DC/DC Output Voltage Setting  
The output voltage VO1 of this IC is defined by the external resistive divider R5 & R6. Note that C3 is a capacitor used for improving  
stability. Use a 22 pF cap for C3 should be suitable in all cases.  
R5 + R6  
600 k+ 200 kΩ  
200 kΩ  
VO1 = Vref  
×
= 0.3 V ×  
= 1.2 V  
R6  
VO1  
MB39C022  
C3  
R5  
6
FB  
Vref  
(0.3 V)  
-
R6  
+
10.3 Power on Reset (POR)  
R3 and R4 are the pull-up resistors for POR (Pin 4). A 1 Mresistor is required to placed at either R3 or R4. When R3 has a 1 MΩ  
resistor and R4 is open; the POR will be connected VIN. When R4 has a 1 Mresistor and R3 is open; the POR pin will be connected  
to VO1.  
By default, only R3 require a 1 Mresistor while R4 is open.  
Document Number: 002-08460 Rev. *C  
Page 15 of 29  
MB39C022G/J/L/N  
10.4 Power Dissipation and Heat Considerations  
The DC/DC is so efficient that no consideration is required in most cases. The LDO, on the other hand, would be the dominant heat  
generator due to its inherent efficiency loss. Thus, if the IC is used at a high power supply voltage, heavy load, and low LDO output  
voltage, or high temperature, it requires further consideration.  
The internal loss (Pc) is roughly obtained from the following formula :  
2
PC = PC1 + PC2 = IO1 × (RDC + D × RONP + (1 - D) × RONN) + IO2 × Vdrop  
PC1  
PC2  
RDC  
D
: DC/DC continuity loss  
: LDO continuity loss  
: External inductor series resistance ( < 100 mrecommended)  
: Switching ON-duty cycle ( = VOUT / VIN)  
: Internal P-ch SW FET ON resistance  
: Internal N-ch SW FET ON resistance  
: DC/DC Load current  
RONP  
RONN  
IO1  
IO2  
: LDO Load current  
Vdrop  
: LDO Dropout voltage  
The loss expressed by the above formula is continuity loss. The internal loss includes the switching loss and the control circuit loss  
as well but they are so small compared to the continuity loss they can be ignored.  
For PC1, consider the scenario with high temperature and heavy load (VIN = 3.7 V, VO1 = 1.2 V, IO1 = 0.6 A, Ta = + 70°C). Here,  
RONP 0.4 and RONN 0.3 according to the graph “MOS FET ON resistance vs. Operating ambient temperature”.  
PC1 = 156 mW.  
For PC2, consider the scenario with low output voltage (MB39C022N), high temperature and heavy load (VIN = 3.7 V,  
V
O2 = 1.2 V, IO2 = 0.3 A, Ta = + 70°C). Here, PC2 = 0.75 W. Note that PC2 >> PC1  
.
According to the graph “Power dissipation vs. Operating ambient temperature”, the maximum permissible power dissipation at an  
operating ambient temperature Ta of + 70°C is 1.4 W. The internal loss is lower than the maximum permissible power dissipation.  
Document Number: 002-08460 Rev. *C  
Page 16 of 29  
MB39C022G/J/L/N  
10.5 Board Layout, Design Example  
Some basic design guidelines should be used when physically placing the MB39C022 on a Printed Circuit Board (PCB).  
• Regarding to GND pattern of PCB layout of MB39C022, It needs to separate like AGND (analog ground) and PGND (power  
ground). By separating grounds, it is possible to minimize the switching frequency noise on the LDO output.  
• Arrange the input capacitor C1 and C4 as close as possible between VIN1 & PGND pins and VIN2 &AGND pins. Make a through  
hole near the pins of this capacitor if the board has planes for power and GND.  
• Large AC currents flow between this IC and the input capacitor (C1), output capacitor (C2), and external inductor (L1). Group  
these components as close as possible to this IC to reduce the overall loop area occupied by this group. Also try to mount these  
components on the same surface and arrange wiring without through hole wiring. Use thick, short, and straight routes to wire  
the net (The layout by planes is recommended.).  
• The C1 and C2 capacitor returns are connected closely together at the PGND plane.  
• The LDO input capacitor (C4) and LDO output capacitor (C5) are returned to the AGND plane.  
• The analog ground plane and power ground plane are connected at one point.  
• All other signals (EN1, EN2, FB) should be referenced to AGND and have the AGND plane underneath them.  
• The feedback wiring to the VO1 and the VO1 pin should be wired closest to the output capacitor (C2). The resistive divider and  
FB pin is extremely sensitive and should thus be kept wired away from the LX pin of this IC as far as possible.  
• Try to make a GND plane on the surface to which this IC will be mounted. For efficient heat dissipation when using the SON-10  
package, Cypress recommends providing a thermal via in the footprint of the thermal pad.  
Layout Example of IC Components  
PGND  
Plane  
VO1  
L1  
PGND  
C2  
AGND Plane  
VVIINN22  
PGND  
C4  
AGND  
CC11  
C5  
VIN1  
VVOO22  
RR66  
R5  
Document Number: 002-08460 Rev. *C  
Page 17 of 29  
MB39C022G/J/L/N  
11. Example of Standard Operation Characteristics  
(Shown below is an example of characteristics for connection according to “ Test Circuit For Measuring Typical Operating  
Characteristics”.)  
11.1 DC/DC Conversion Efficiency  
CH1 Test Condition :  
EN1 = VIN; EN2 = 0 V  
VO1 = 1.2 V; C1 = 10 μF; C2 = 4.7 μF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.7 V  
VIN = 4.3 V  
VIN = 5.5 V  
0.001  
0.01  
0.1  
1
Load Current IO1 (A)  
11.2 DC/DC Load Regulation  
CH1 Test Condition :  
EN1 = VIN; EN2 = 0 V  
VO1 = 1.2 V; C1 = 10 μF; C2 = 4.7 μF  
1.3  
1.28  
VIN = 3.7 V  
VIN = 4.3 V  
VIN = 5.5 V  
1.26  
1.24  
1.22  
1.2  
1.18  
1.16  
1.14  
1.12  
1.1  
0
0.2  
0.4  
0.6  
Load Current IO1 (A)  
Document Number: 002-08460 Rev. *C  
Page 18 of 29  
MB39C022G/J/L/N  
11.3 DC/DC Line Regulation  
CH1 Test Condition :  
EN1 = VIN; EN2 = 0 V  
VO1 = 1.2 V; C1 = 10 μF; C2 = 4.7 μF  
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
IO1 = 0 mA  
IO1 = 300 mA  
IO1 = 600 mA  
1.18  
1.16  
1.14  
1.12  
1.1  
3.2  
3.7  
4.2  
4.7  
5.2  
Input Voltage VIN (V)  
11.4 DC/DC Switching Waveform  
CH1 Test Condition :  
EN1 = EN2 = VIN = 3.7 V;  
VO1 = 1.8 V; IO1 = 250 mA; C1 = 10 μF; C2 = 4.7 μF  
VO2 = 3.3 V; IO2 = 150 mA; C4 = C5 = 4.7 μF  
VLx  
5 V/div  
ILx  
100 mA/div  
VO1  
20 mV/div  
VO2  
20 mV/div  
500 ns/div  
Document Number: 002-08460 Rev. *C  
Page 19 of 29  
MB39C022G/J/L/N  
11.5 LDO Load Regulation  
MB39C022G CH2 Test Condition :  
EN2 = VIN; EN1 = 0 V  
VO2 = 3.3 V; C4 = C5 = 4.7 μF  
3.4  
VIN = 3.7 V  
3.38  
VIN = 4.3 V  
3.36  
VIN = 5.5 V  
3.34  
3.32  
3.3  
3.28  
3.26  
3.24  
3.22  
3.2  
0.25  
0
0.05  
0.1  
0.15  
0.2  
0.3  
Load Current IO2 (A)  
11.6 LDO Line Regulation  
MB39C022G CH2 Test Condition :  
EN2 = VIN; EN1 = 0 V  
VO2 = 3.3 V; C4 = C5 = 4.7 μF  
3.4  
3.38  
IO2 = 0 mA  
3.36  
3.34  
3.32  
3.3  
IO2 = 120 mA  
IO2 = 300 mA  
3.28  
3.26  
3.24  
3.22  
3.2  
3.6  
4.1  
4.6  
5.1  
Input Voltage VIN (V)  
Document Number: 002-08460 Rev. *C  
Page 20 of 29  
MB39C022G/J/L/N  
11.7 LDO Power Supply Rejection Ratio  
MB39C022G CH2 Test Condition :  
EN2 = VIN = 3.7 V; EN1 = 0 V  
VO2 = 3.3 V; IO2 = 100 mA; C1 = C4 = 0 μF  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
VIN = 3.7 V  
VIN = 4.3 V  
10  
100  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
11.8 DC/DC Load Transient Waveforms  
Test Condition :  
VIN = EN1 = EN2 = 3.7 V; VO1 = 1.2 V; C1 = 10 μF; C2 = 4.7 μF; VO2 = 3.3 V; C4 = C5 = 4.7 μF  
T
IO1 = 10 mA to 400 mA  
IO1  
500 mA/div  
VO1  
100 mV/div  
VO2  
IO2 = 150 mA  
20 mV/div  
100 μs/div  
CH1 Load Transient Waveforms  
Document Number: 002-08460 Rev. *C  
Page 21 of 29  
MB39C022G/J/L/N  
11.9 DC/DC Power MOS FET ON Resistance  
P-ch MOS FET ON Resistance vs.  
Operating Ambient Temperature  
MOS FET ON Resistance vs. Input Voltage  
0.6  
0.5  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
P-ch  
VIN = 3.7 V  
0.4  
0.3  
0.2  
N-ch  
VIN = 5.5 V  
0.1  
0.0  
2.0  
3.0  
4.0  
5.0  
6.0  
-50  
0
50  
100  
Input voltage VIN (V)  
Operating Ambient Temperature Ta (°C)  
N-ch MOS FET ON Resistance vs.  
Operating Ambient Temperature  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 3.7 V  
VIN = 5.5 V  
-50  
0
50  
100  
Operating Ambient Temperature Ta (°C)  
Document Number: 002-08460 Rev. *C  
Page 22 of 29  
MB39C022G/J/L/N  
Permissible Power Dissipation vs. Operating Ambient Temperature  
3000  
2630  
2500  
2000  
1500  
1000  
500  
0
-40  
-20  
0
20  
40  
60  
80  
100  
Operating Ambient Temperature Ta (°C)  
Document Number: 002-08460 Rev. *C  
Page 23 of 29  
MB39C022G/J/L/N  
12. Application Circuits Examples  
Example 1 (VIN1 = VIN2)  
VIN1 and VIN2 are connected together and POR is pulled up to VIN  
(MB39C022)  
EN2  
EN2  
GND1  
LX  
C2  
VO1  
VIN2  
IO1 600 mA  
C4  
C5  
L1  
VO2  
IO2 300 mA  
VOUT2  
POR  
VIN1  
EN1  
FB  
VIN  
C1  
POR  
EN1  
R3  
R6  
R5  
C3  
GND2  
Example 2 (VIN2 = VO1)  
• VIN2 is connected to VO1 and POR is pulled up to VIN  
• It is possible to maximize LDO efficiency by connecting DC/DC Output to LDO supply.  
• Maximum DC/DC output current ( = IO1) is limited by VIN2 input current (IO2)  
(MB39C022)  
EN2  
EN2  
GND1  
LX  
C2  
VO1  
VIN2  
IO1 600 mA - IO2  
C4  
C5  
L1  
VO2  
VOUT2  
POR  
VIN1  
EN1  
FB  
IO2 300 mA  
VIN  
C1  
POR  
EN1  
R3  
R6  
C3  
GND2  
R5  
Document Number: 002-08460 Rev. *C  
Page 24 of 29  
MB39C022G/J/L/N  
Example 3 (POR and RC Delay Channel Control)  
• EN1 is controlled by RC delay and EN2 is controlled by POR output.  
• It is possible to control each channel without signal from MCU  
R3  
(MB39C022)  
EN2  
GND1  
LX  
C2  
VO1  
VIN2  
IO1 600 mA  
C4  
C5  
L1  
VO2  
IO2 300 mA  
VOUT2  
POR  
VIN1  
EN1  
FB  
VIN  
C1  
100 kΩ  
POR  
1 μF  
R5  
R6  
C3  
GND2  
Timing chart  
VIN  
VUVLO  
Vth(POR)  
VO1  
(1.2 V)  
VO2  
tc  
td  
(1.8 V)  
ta  
tb  
Start up control  
ta : RC delay time (28 ms at VIN = 3.7 V, R = 100 k, C = 1 μF)  
tb : POR hold time (66 ms fixed)  
Power down control  
tc, td : depend on internal discharge path and output loading  
Document Number: 002-08460 Rev. *C  
Page 25 of 29  
MB39C022G/J/L/N  
13. Usage Precautions  
1. Never Use Setting Exceeding Maximum Rated Conditions.  
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of  
absolute maximum ratings. Do not exceed these ratings.  
2. Use the Devices Within Recommended Conditions  
It is recommended that devices be operated within recommended conditions.  
Exceeding the recommended operating condition may adversely affect devices reliability.  
Nominal electrical characteristics are warranted within the range of recommended operating conditions otherwise specified on each  
parameter in the section of electrical characteristics.  
3. Design the Ground Line on Printed Circuit Boards With Consideration of Common Impedance.  
4. Take Appropriate Measures Against Static Electricity.  
The LX pin has less built-in ESD protection than other pins.  
LX pin : 150 V (MM), 1500 V (HBM), Other pins : 200 V (MM), 2000 V (HBM)  
Containers for semiconductor materials should have anti-static protection or be made of conductive material.  
After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.  
Work platforms, tools, and instruments should be properly grounded.  
Working personnel should be grounded with resistance of 250 kto 1 Mbetween body and ground.  
5. Do not Apply Negative Voltages  
The use of negative voltages below 0.3 V may activate parasitic transistors on the device, which can cause abnormal operation.  
14. Ordering Information  
Part Number  
MB39C022GPN  
MB39C022JPN  
MB39C022LPN  
MB39C022NPN  
Package  
Remarks  
10-pin plastic SON  
(WNK010)  
15. RoHS Compliance Information  
The LSI products of Cypress with “E1” are compliant with RoHS Directive, and has observed the standard of lead, cadmium, mercury,  
chromium, polybrominated biphenyls (PBB), and polybrominated diphenylethers (PBDE).  
A product whose part number has trailing characters “E1” is RoHS compliant.  
Document Number: 002-08460 Rev. *C  
Page 26 of 29  
MB39C022G/J/L/N  
16. Package Dimension  
Package Code: WNK010  
D
0.10  
C
A
B
A
D2  
6
10  
0.10  
2X  
C
0.10  
C A B  
E2  
E
9
5
1
INDEX MARK  
8
4b  
L
B
0.10  
0.05  
C A B  
C
TOP VIEW  
e
0.10  
2X  
C
5
(ND-1)×  
e
BOTTOM VIEW  
0.10  
C
A
SEATING PLANE  
0.05  
C
9
C
A1  
SIDE VIEW  
NOTE  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
MILLIMETER  
SYMBOL  
A
2. DIMENSIONING AND TOLERANCINC CONFORMS TO ASME Y14.5-1994.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
MIN. NOM. MAX.  
0.75  
4. DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED  
BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.IF THE TERMINAL HAS  
THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL. THE  
DIMENSION "b"SHOULD NOT BE MEASURED IN THAT RADIUS AREA.  
A
D
E
0.00  
0.05  
1
3.00 BSC  
3.00 BSC  
0.25  
5. ND REFER TO THE NUMBER OF TERMINALS ON D OR E SIDE.  
6. MAX. PACKAGE WARPAGE IS 0.05mm.  
0.22  
0.28  
b
D
2.40 BSC  
1.70 BSC  
0.50 BSC  
0.30 REF  
0.40  
2
2
7. MAXIMUM ALLOWABLE BURRS IS 0.076mm IN ALL DIRECTIONS.  
8. PIN #1 ID ON TOP WILL BE LOCATED WITHIN INDICATED ZONE.  
E
e
c
9. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT  
SINK SLUG AS WELL AS THE TERMINALS.  
10. JEDEC SPECIFICATION NO. REF : N/A  
L
0.30  
0.50  
002-15676 Rev. **  
Document Number: 002-08460 Rev. *C  
Page 27 of 29  
MB39C022G/J/L/N  
Document History  
Document Title: MB39C022G/J/L/N Buck DC/DC Converter + Low Noise LDO  
Document Number: 002-08460  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
TAOA  
TAOA  
04/13/2009 Initial release  
*A  
5150068  
02/24/2016 Migrated Spansion Datasheet from DS04-27271-2E to Cypress format  
Updated Pin Assignment:  
Change the package name from LCC-10P-M04 to WNK010  
*B  
*C  
5640458  
5777611  
HIXT  
02/23/2017  
06/19/2017  
Updated Ordering Information:  
Change the package name from LCC-10P-M04 to WNK010  
Updated Package Dimension: Updated to Cypress format  
MASG  
Adapted Cypress new logo.  
Document Number: 002-08460 Rev. *C  
Page 28 of 29  
MB39C022G/J/L/N  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC® Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IOT Forums | Projects | Video | Blogs | Training  
| Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2009-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,  
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners..  
Document Number: 002-08460 Rev. *C  
Revised June 19, 2017  
Page 29 of 29  

相关型号:

MB39C022JPNE1

Switching Regulator, Current-mode, 1.6A, 2400kHz Switching Freq-Max, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, PLASTIC, SON-10
FUJITSU

MB39C022JPNE1

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
CYPRESS

MB39C022LPN

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
CYPRESS

MB39C022LPNE1

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
SPANSION

MB39C022LPNE1

Switching Regulator, Current-mode, 1.6A, 2400kHz Switching Freq-Max, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, PLASTIC, SON-10
FUJITSU

MB39C022LPNE1

Switching Regulator, Current-mode, 1.6A, PDSO10, SON-10
CYPRESS

MB39C022NPN

Buck DC/DC Converter Low Noise LDO
CYPRESS

MB39C022NPNE1

1.6A SWITCHING REGULATOR, 2400kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, PLASTIC, SON-10
FUJITSU

MB39C031

2ch Buck DC/DC Converter 1ch LDO with I2C Interface and SW FET
CYPRESS

MB39C308

6ch DC/DC Converter IC for LPIA Platform VR
FUJITSU

MB39C308BGF

6ch DC/DC Converter IC for LPIA Platform VR
FUJITSU

MB39C308BGF-E1

Switching Regulator, Current-mode, 4.5A, 840kHz Switching Freq-Max, PBGA208, 9 X 9 MM, 1.30 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, PLASTIC, FBGA-208
FUJITSU