S6BT112A02SSBB002 [CYPRESS]

Interface Circuit,;
S6BT112A02SSBB002
型号: S6BT112A02SSBB002
厂家: CYPRESS    CYPRESS
描述:

Interface Circuit,

接口集成电路
文件: 总38页 (文件大小:1373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S6BT112A01/S6BT112A02  
ASSP CXPI Transceiver IC for  
Automotive Network  
The S6BT112A01 and S66BT112A02 are integrated transceiver ICs for automotive communication network with Clock Extension  
Peripheral Interface (CXPI). It has a flexible bit rate ranging from 2.4 Kbps to 20 Kbps and is JASO CXPI compliant. This CXPI  
transceiver IC connects the CXPI data link controller and the CXPI Bus line, and enables direct connection to the vehicle battery  
with a high surge protection. Additionally, these devices have an optional Spread Spectrum Clock Generator (SSCG) function.  
During Sleep mode, S6BT112A01 and S6BT112A02 reduce power consumption. The Cypress CXPI transceiver IC supports master  
node and slave node as selected SELMS pins.  
Features  
Compliant with the JASO CXPI (JASO D 015-3-15) standard  
Compliant with the SAE CXPI ( J3076_201510) standard  
Supports 2.4 Kbps to 20 Kbps bitrate  
Overtemperature protection  
Low-voltage detection.  
Supports Sleep and Wakeup modes  
Sleep mode current: 6 µA (typical at Slave)  
Halogen-free 8-pin SOIC package  
Waveshaping for low Electromagnetic Interference (EMI)  
Operating voltage range: 5.3 V to 18 V  
Direct battery operation with protection against load dump,  
jump start, and transients  
ESD protection HBM (1.5 kΩ, 100 pF) ±8 kV (BUS pin, BAT  
pin)  
BUS short to VBAT overcurrent protection.  
Voltage tolerance ±40 V (BUS pin)  
Loss of ground protection; BUS pin leakage is lower than  
±1 mA.  
S6BT112A01: With SSCG.  
S6BT112A02: Without SSCG.  
Easy selection of master node or slave node.  
Cypress Semiconductor Corporation  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Document Number: 002-10203 Rev.*C  
Revised December 9, 2016  
 
S6BT112A01/S6BT112A02  
S6BT112A Block Diagram  
Document Number: 002-10203 Rev.*C  
Page 2 of 38  
 
S6BT112A01/S6BT112A02  
Table of Contents  
Features  
............................................................................................................................................................. 1  
S6BT112A Block Diagram...................................................................................................................................................... 2  
1. Applications  
............................................................................................................................................................. 4  
............................................................................................................................................................. 5  
2. Pin Assignment  
3. Pin Descriptions ............................................................................................................................................................. 6  
4. Block Diagram ............................................................................................................................................................. 7  
5. Function Description.......................................................................................................................................................... 8  
5.1  
5.2  
Operation Modes........................................................................................................................................................... 8  
Master Node.................................................................................................................................................................. 9  
5.2.1 Normal Mode.................................................................................................................................................................. 9  
5.2.2 Sleep Mode.................................................................................................................................................................. 10  
5.2.3 Standby Mode.............................................................................................................................................................. 11  
5.2.4 Power-on Sequence..................................................................................................................................................... 11  
5.3  
Slave Node.................................................................................................................................................................. 12  
5.3.1 Normal Mode................................................................................................................................................................ 12  
5.3.2 Sleep Mode.................................................................................................................................................................. 13  
5.3.3 Standby Mode.............................................................................................................................................................. 15  
5.3.4 Power-on Sequence..................................................................................................................................................... 15  
5.4  
Common Functions ..................................................................................................................................................... 16  
5.4.1 Overtemperature Protection......................................................................................................................................... 16  
5.4.2 WP_ThermalShutdown ................................................................................................................................................ 16  
5.4.3 Low-voltage Reset ....................................................................................................................................................... 17  
5.4.4 Overcurrent Protection................................................................................................................................................. 18  
5.4.5 Secondary Clock Master.............................................................................................................................................. 18  
5.4.6 Arbitration..................................................................................................................................................................... 20  
5.4.7 TXD Toggle.................................................................................................................................................................. 21  
6. Absolute Maximum Ratings............................................................................................................................................. 23  
7. Recommended Operating Conditions ............................................................................................................................ 24  
8. Electrical Characteristics................................................................................................................................................. 25  
9. Ordering Information........................................................................................................................................................ 36  
10. Package Dimensions...................................................................................................................................................... 36  
Document History  
........................................................................................................................................................... 37  
Sales, Solutions, and Legal Information............................................................................................................................. 38  
Document Number: 002-10203 Rev.*C  
Page 3 of 38  
S6BT112A01/S6BT112A02  
1. Applications  
The following figures illustrate the typical applications of S6BT112A01 or S6BT112A02.  
S6BT112A AS MASTER  
12V Battery  
CXPI BUS LINE  
BAT  
Regulator  
S6BT112A: CXPI Transceiver IC  
RC  
LDO Regulator  
OSC  
5 V  
VCC  
Thermal Shutdown  
Low Voltage Detection  
Over Current Protection  
SELMS  
MCU  
CLK  
TXD  
CXPI  
Control  
Logic  
UART  
RXD  
NSLP  
VSS  
BUS  
CXPI  
PHY  
GND  
S6BT112A AS SLAVE  
12V Battery  
CXPI BUS LINE  
BAT  
Regulator  
S6BT112A: CXPI Transceiver IC  
RC  
LDO Regulator  
OSC  
5 V  
VCC  
Thermal Shutdown  
Low Voltage Detection  
Over Current Protection  
SELMS  
MCU  
CLK  
TXD  
CXPI  
Control  
Logic  
UART  
RXD  
NSLP  
VSS  
BUS  
CXPI  
PHY  
GND  
Document Number: 002-10203 Rev.*C  
Page 4 of 38  
S6BT112A01/S6BT112A02  
2. Pin Assignment  
Figure 2-1 Pin Assignment  
(TOP VIEW)  
RXD  
SELMS  
1
2
3
4
8
7
6
5
BAT  
BUS  
GND  
NSLP  
CLK  
TXD  
Document Number: 002-10203 Rev.*C  
Page 5 of 38  
S6BT112A01/S6BT112A02  
3. Pin Descriptions  
Table 3-1 Pin Descriptions  
Pin  
Symbol  
Number  
Direction  
Description  
Receive data output (open-drain).  
1
2
RXD  
Output  
Requires external pull-up resistor. (refer to Table 7-1 )  
Sleep control input.  
Low: Sleep mode or Standby mode  
High: Normal mode.  
NSLP  
Input  
Refer to section 5.2.2 or section 5.3.2  
When the SELMS pin is Low, the CLK pin is the Baud rate clock input.  
Input clock signal with baud rate frequency.  
(When the input clock frequency is 20 kHz, the bit rate is 20 Kbps)  
When the SELMS pin is High, the CLK pin is Baud rate clock output.  
Outputs clock signal with baud rate frequency.  
(When the output clock frequency is 20 kHz , the bit rate is 20 Kbps)  
Open drain output.  
3
CLK  
I/O  
Requires external pull-up resistor. (refer to Table 7-1)  
Transmit data input  
4
5
6
7
TXD  
GND  
BUS  
BAT  
Input  
Ground  
-
I/O  
-
CXPI BUS line Input/Output  
Battery (voltage source) supply.  
Master / slave node select input.  
8
SELMS  
Input  
Low: Master  
High: Slave  
Document Number: 002-10203 Rev.*C  
Page 6 of 38  
S6BT112A01/S6BT112A02  
4. Block Diagram  
Figure 4-1 Block Diagram  
RXD  
SELMS  
BAT  
Filter  
Power On Rest  
Low Voltage  
RPU_TXD  
BUS  
NSLP  
Control logic  
CLK  
TXD  
Waveform Shaping  
RPD_NSLP  
Thermal Shutdown  
GND  
Document Number: 002-10203 Rev.*C  
Page 7 of 38  
S6BT112A01/S6BT112A02  
5. Function Description  
5.1 Operation Modes  
Figure 5-1 State Transition Diagram  
Notes  
[1] : Hi-zmeans high-impedance.  
[2] : Switching of the master / slave during operation is prohibited. Refer to section 5.4.5.  
[3] : The operation mode, after the transceiver powers on, has to start from sleep mode.  
[4] : If TXD is Low when releasing the thermal shutdown, TXD has to toggle "High" before valid.  
TXD is a Low signal input. For details, refer to section 5.4.7.  
Document Number: 002-10203 Rev.*C  
Page 8 of 38  
S6BT112A01/S6BT112A02  
5.2 Master Node  
There is only one node in a system, which functions as a schedule manager and a primary clock master.  
The transceiver works in Master mode when low-level is applied on SELMS.  
The baud rate clock is applied on the CLK pin in the Master state.  
The transceiver is usually used as the "Master" or "Slave", except for the “Secondary Clock master function”.  
The SELMS input should not be changed in normal mode.  
The SELMS input should not be changed during wakeup pulse transmission in Sleep mode.  
The CLK pin inputs for the baud rate clock in Master state.  
Table 5-1 SELMS Pin State for Master  
Pin  
Input Signal  
Master/Slave  
SELMS  
Low  
Master  
Figure 5-2 CLK Input -> BUS signal (Master)  
5.2.1  
Normal Mode  
The Normal mode denotes the state to which communication is possible. The master node transmits the clock to the CXPI BUS,  
which means that the clock is master. During the Normal mode, the transmitted signal is encoded and the received signal is  
decoded. When the transmitting node transmits data to the CXPI BUS, it transmits to the TXD pin after converting the data to UART  
format by 1 byte. The data is transmitted to the CXPI BUS as LSB first.  
When the receiving node receives data from the CXPI BUS, it receives from the RXD pin in the UART format by 1 byte. The UART  
format is listed in Table 5-2. Refer to the JASO CXPI (JASO D 015-3:2015) standard for details of the operation.  
Table 5-2 UART Format  
Start bit bit 0 (LSB) bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7(MSB) Stop bit  
Document Number: 002-10203 Rev.*C  
Page 9 of 38  
 
S6BT112A01/S6BT112A02  
5.2.2  
Sleep Mode  
The Sleep mode denotes a power-saving state during which each node stops transmitting and receiving data. All nodes transition to  
Sleep mode immediately after power-on. The nodes also transition to Sleep mode after the Sleep processing is executed from the  
Normal mode and transition from Standby mode or Normal mode due to CXPI BUS error.  
When each node receives the Wakeup factor during the Sleep mode, it transitions to the Standby mode.The Wakeup factor (for  
example, detecting that the ignition has been turned on) of each node is different from each application (for example, detecting that  
the ignition has been turned on) and the external factor that receives the Wakeup pulse from the CXPI BUS. During the Sleep mode,  
the reception signal is received without decoding. The MCU can detect a wakeup pulse width monitor using the RXD signal.  
The sleep mode is initiated by a falling edge on the NSLP pin while TXD is already set High. The CXPI BUS transmit path is  
immediately disabled when the NSLP pin goes Low. All wake-up events must be maintained for a specific period (refer to the  
TMODE_CHG parameter in Table 8-7).  
Table 5-3 Transition from Normal to Sleep mode  
Pin  
TXD  
Pin State  
High  
Description  
No data transmitting  
CLK  
High  
No clock receiving  
NSLP  
RXD  
High to Low  
High impedance  
High impedance  
Low  
-
High level with external pull-up resistor.  
BUS  
High level with external pull-up resistor.  
-
SELMS  
Note: The “Pin State” indicates before the falling edge in the NSLP pin  
Table 5-4 Transition from Sleep to Normal mode  
Pin  
TXD  
Pin State  
High  
Description  
No data transmitting  
CLK  
High  
No clock receiving  
NSLP  
RXD  
Low to High  
High impedance  
High impedance  
Low  
-
High level with external pull-up resistor.  
BUS  
High level with external pull-up resistor.  
-
SELMS  
Note: The “Pin State” indicates the state before the rising edge in the NSLP pin  
Figure 5-3 Transition Sequence Between Sleep and Normal Mode  
Note:  
[1] Hi-Zmeans high-impedance.  
Document Number: 002-10203 Rev.*C  
Page 10 of 38  
S6BT112A01/S6BT112A02  
Table 5-5 Bitrate of 20 Kbps (50 µs/Bit)  
UART Receive Data Number of Bits of L Level Wakeup Pulse Width  
FCH  
F8H  
F0H  
E0H  
C0H  
80H  
00H  
3-bit  
4-bit  
5-bit  
6-bit  
7-bit  
8-bit  
9-bit  
150 µs  
200 µs  
250 µs  
300 µs  
350 µs  
400 µs  
450 µs  
5.2.3  
Standby Mode  
The Standby mode denotes the prepared state to the Normal mode after releasing the Sleep mode. During the CLK state (in slave  
node), the RXD pin and the BUS pin are in a high-impedance state. After TMODE_CHG, the state changes to the Normal mode.  
5.2.4  
Power-on Sequence  
The power-on sequence occurs at power-up while setting up Sleep mode. When VBAT is above 5.3 V, the NSLP pin should be in a  
High state. After transition to the normal mode, activate the BUS pin after a clock input of 33 periods.  
Figure 5-4 Power-on Sequence of Master Node  
Document Number: 002-10203 Rev.*C  
Page 11 of 38  
S6BT112A01/S6BT112A02  
5.3 Slave Node  
All the nodes, except the master node, are connected with the system. The transceiver works as Slave when High level is applied on  
SELMS. The CLK pin outputs the baud rate clock during the Slave state.  
The transceiver is usually used as the "Master" or "Slave", except for the “Secondary Clock master function”.  
Table 5-6 SELMS Pin State for Slave  
Pin  
Input Signal  
Master/Slave  
SELMS  
High  
Slave  
The SELMS input should not be changed during the Normal mode or during wakeup pulse transmission in the Sleep mode. The  
CLK pin outputs the baud rate clock in Slave node.  
Figure 5-5 CLK Pin Clock Output (Slave)  
5.3.1  
Normal Mode  
The Normal mode can perform data transmit and receive. During the Normal mode, the signal that is transmitted is encoded and the  
signal that is received is decoded. When the transmitting node transmits data to the CXPI BUS, it transmits to the TXD pin after  
converting the data to UART format by 1 byte. The data is transmitted to the CXPI BUS by LSB first. When the receiving node  
receives data from the CXPI BUS , it revises from the RXD pin in the UART format by 1 byte. The UART format is shown in Table 5-7.  
Refer to the JASO CXPI (JASO D 015-3:2015) standard for details of the operation.  
Table 5-7 UART Format  
Start bit bit 0 (LSB) bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7(MSB) Stop bit  
Document Number: 002-10203 Rev.*C  
Page 12 of 38  
 
S6BT112A01/S6BT112A02  
5.3.2  
Sleep Mode  
The Sleep mode denotes a state of power saving during which each node stops transmit and receive of data. All nodes transition to  
the Sleep mode immediately after power-on. They also transition to the Sleep mode after the sleep processing is executed from the  
Normal mode and transition from the Standby mode or the Normal mode due to CXPI BUS error.  
During the Sleep mode, when each node receives the Wakeup factor, it transitions to the Standby mode. The Wakeup factor is  
different from each application and is composed of the internal factor (for example, detecting that the ignition has been turned on)  
and the external factor that receives the Wakeup pulse from the CXPI BUS.  
During the Sleep mode, the reception signal is received without decoding. The sleep mode is initiated by a falling edge on the NSLP  
pin while the TXD pin is already set High. The CXPI BUS transmit path is immediately disabled when the NSLP pin goes Low.  
All wake-up events must be maintained for a specific period (refer to TMODE_CHG in Table 8-7).  
Figure 5-6 Transition Sequence Between Sleep and Normal Mode  
Table 5-8 Transition from Normal to Sleep mode  
Pin  
TXD  
Pin State  
High  
Description  
No data transmitting  
CLK  
High impedance  
High to Low  
High impedance  
High impedance  
High  
High level with external pull-up resistor.  
NSLP  
RXD  
-
High level with external pull-up resistor.  
BUS  
High level with external pull-up resistor.  
-
SELMS  
Note: The “Pin State” indicates the state before the falling edge of the NSLP pin.  
Table 5-9 Transition from Sleep to Normal mode  
Pin  
TXD  
Pin State  
High  
Description  
No data transmitting  
CLK  
High impedance  
Low to High  
High impedance  
High impedance  
High  
High level with external pull-up resistor.  
NSLP  
RXD  
-
High level with external pull-up resistor.  
BUS  
High level with external pull-up resistor.  
-
SELMS  
Note: The “Pin State” indicates the state before the rising edge of the NSLP pin.  
Document Number: 002-10203 Rev.*C  
Page 13 of 38  
S6BT112A01/S6BT112A02  
Receiver function in Sleep mode  
During the Sleep mode, the received signal will be output from the CLK pin without decoding a received signal. The RXD pin outputs  
at High level. When the Master node transmits the encoded PWM clock signal to the CXPI BUS during a wake-up sequence, Slave  
MCUs receive shorter low-level width signals than the UART communication period and possibly get errors. This is because the  
Slave node is received without decoding. To avoid these errors, S6BT112A01 or S6BT112A02 CXPI transceiver IC outputs receive  
signals on the CLK pin in the Sleep mode.  
MCU can detect a wake-up pulse width to monitor the CLK signal. (Figure 5-7)  
Figure 5-7 CLK Output of Receive SignalRXD stays High (for Slave node)  
Wakeup function  
The WakeupPulseOutput state transmits out the wakeup pulse in the Slave node. When the slave device returns from the Sleep  
mode, it must transmit a wake-up pulse. As the NSLP pin is in a Low state, the TXD pin transmits a Low state. The TXD signal is  
transmitted to the BUS pin without encode. The TXD pin outputs the signal width, which is a value obtained by subtracting the  
TTXD_BT  
:
Signal width = TXD signal (“L”) – TTXD_BT(“L”)  
Figure 5-8 Wake-Up Pulse Transmission  
Document Number: 002-10203 Rev.*C  
Page 14 of 38  
 
S6BT112A01/S6BT112A02  
5.3.3  
Standby Mode  
This is the standby state during the Normal mode after releasing the Sleep mode. During this state, CLK (in slave node), the RXD  
pin, and the BUS pin enter the high-impedance state. After "TMODE_CHG," this state changes to the Normal mode.  
5.3.4  
Power-on Sequence  
This sequence occurs at power-up, while setting up the Sleep mode. When VBAT is above 5.3 V, the NSLP pin should be in a High  
state.  
Figure 5-9 Power-on Sequence of Slave Node  
Document Number: 002-10203 Rev.*C  
Page 15 of 38  
S6BT112A01/S6BT112A02  
5.4 Common Functions  
5.4.1 Overtemperature Protection  
The overtemperature protection (OTP) monitors the die temperature. If the junction temperature exceeds the shutdown junction  
temperature, TSD_H, the thermal protection circuit disables the output driver.  
The driver is enabled again when the junction temperature falls below TSD_L and theTXD pin is toggled. (see Table 5-10)  
5.4.2  
WP_ThermalShutdown  
The WP_ThermalShutdown state detects the "shutdown temperature" during the WakeupPulseOutput mode. The overtemperature  
protection is inactive during the Sleep mode.  
Table 5-10 Input Signal Change after Recovery from thermal shutdown  
Master/Slave  
Master  
Pin  
TXD  
TXD  
Toggle of Input Signal  
Required  
Required  
Slave  
Table 5-11 State Under Thermal Shutdown  
Master/Slave  
Pin  
Description  
TXD  
Normal function  
High: Normal mode / Low: Sleep mode (Thermal protection inactive)  
NSLP  
CLK(input)  
RXD  
Normal function  
Master  
Normal function  
BUS  
High impedance  
Normal function  
TXD  
High: Normal mode / Low: Sleep mode (Thermal protection inactive)  
NSLP  
CLK  
Slave  
Normal function  
Normal function  
High impedance  
RXD  
BUS  
Figure 5-10 Sequence of Thermal Shutdown  
Document Number: 002-10203 Rev.*C  
Page 16 of 38  
 
S6BT112A01/S6BT112A02  
5.4.3  
Low-voltage Reset  
The low-voltage reset state detects the low voltage of the BAT pin. This device has an integrated power-on reset and low-voltage  
detection at the supply BAT.  
If the supply voltage, VBAT, is dropping below the power-on reset level (that is, VBAT<VPOR_L), then change the LowPowerReset mode.  
In the LowPowerReset mode, the output stage is disabled and communication to the CXPI BUS is not possible.  
If the power supply reaches a higher level than the low-voltage reset level, VBAT> VPOR_H, then change the Standby mode (the NSLP  
pin is High) or Sleep mode (the NSLP pin is Low).  
After releasing LowPowerRest mode, enable the Power-up sequence.  
Table 5-12 Input Signal Change after Recovery from Low Voltage Reset  
Master/Slave  
Master  
Pin  
TXD  
TXD  
Toggle of Input Signal  
Required  
Required  
Slave  
Table 5-13 State Under Low voltage Reset  
Master/Slave  
Pin  
Description  
SELMS  
Reset  
Reset  
Reset  
TXD  
NSLP  
CLK  
Master  
Reset(High impedance)  
High impedance  
RXD  
BUS  
High impedance  
SELMS  
TXD  
Reset  
Reset  
Reset  
NSLP  
Slave  
Reset(High impedance)  
High impedance  
CLK  
RXD  
BUS  
High impedance  
Document Number: 002-10203 Rev.*C  
Page 17 of 38  
S6BT112A01/S6BT112A02  
Figure 5-11 Low-Voltage Detection  
After releasing the low-voltage reset mode, the logical value high is output to the BUS pin after a clock input of 33 periods. The TXD  
data is valid from the falling edge on the TXD pin.  
5.4.4  
Overcurrent Protection  
The current in the transmitter output stage is limited to protect the transmitter against short-circuit to BAT or GND pins.  
Table 5-14 Overcurrent Protection  
Master/Slave  
Pin  
Description  
Normal function  
TXD  
NSLP  
CLK  
Normal function  
Master  
Normal function  
Normal function  
RXD  
BUS  
TXD  
NSLP  
CLK  
Output current limited by IBUS_LIM  
Normal function  
Normal function  
Normal function  
Slave  
Normal function  
RXD  
BUS  
Output current limited by IBUS_LIM  
5.4.5  
Secondary Clock Master  
The node that detects the wakeup event transmits the wakeup pulse on to the CXPI BUS. If the primary clock master cannot  
transmit the clock to the CXPI BUS due to failure, the wakeup pulse is retransmitted. If the clock is not transmitted to the CXPI BUS,  
each node detects the CXPI BUS error.  
The secondary clock master may transmit the clock to the CXPI BUS instead of the primary clock master if it detects that the clock  
does not exist, and confirms that the clock does not exist on the CXPI BUS for the period during which it transitions from the Sleep  
mode  
Operation sequence from master to slave  
The TXD input pin is set High and the CLK pin is high-impedance. A Low setting on the NSLP pin initiates a transition to the Sleep  
mode. After the RXD pin is confirmed to High state, the SELMS pin goes to High state. Table 5-15 shows the pin states just before  
the SELMS pin input signal change.  
Document Number: 002-10203 Rev.*C  
Page 18 of 38  
S6BT112A01/S6BT112A02  
Table 5-15 Pin State Table (from Master to Slave)  
Pin Pin State Description  
TXD High No data transmitting  
CLK  
High impedance  
Low  
High level with external pull-up resistor.  
NSLP  
SELMS  
RXD  
Sleep mode  
Low to High  
High  
-
No data receiving  
BUS  
High  
No wakeup signal receiving preferred  
Figure 5-12 Application example Secondary Clock Master  
S6BT112A AS SLAVE (SECONDARY CLOCK MASTER )  
12V Battery  
CXPI BUS LINE  
BAT  
Regulator  
S6BT112A: CXPI Transceiver IC  
RC  
LDO Regulator  
OSC  
5 V  
VCC  
Thermal Shutdown  
Low Voltage Detection  
Over Current Protection  
SELMS  
MCU  
CLK  
TXD  
CXPI  
Control  
Logic  
UART  
RXD  
NSLP  
VSS  
BUS  
CXPI  
PHY  
GND  
Document Number: 002-10203 Rev.*C  
Page 19 of 38  
S6BT112A01/S6BT112A02  
Figure 5-13 Transition Sequence from Master to Slave  
Operation sequence from slave to master  
The TXD pin inputs high and the slave node transitions to the Sleep mode after the CLK pin was confirmed to High, and the SELMS  
pin goes to Low.  
Table 5-16 Pin State Table (from Slave to Master)  
Pin  
TXD  
Pin State  
High  
Description  
No data transmitting  
CLK  
High impedance  
Low  
No wakeup signal receiving  
NSLP  
SELMS  
RXD  
Sleep mode  
High to Low  
High  
-
-
BUS  
High  
No wakeup signal receiving preferred  
Note: The pin states just before the SELMS input signal change.  
Figure 5-14 Transition Sequence from Slave to Master  
5.4.6  
Arbitration  
Transceivers arbitrate bit-by-bit. Arbitration in bytes is done in the MCU.  
In the Normal mode, each node always compares the received bit from the CXPI BUS with the transmitted bit to the CXPI BUS.  
When the value of the bit is corresponding, the node may continuously transmit to the CXPI BUS. When the value of the bit is not  
corresponding, the loss of arbitration is detected, and the transmission of the bit after that shall discontinue. If the transmitting node  
detects the arbitration loss, it behaves as the receiving node. The data of each bit transmitted on the CXPI BUS performs arbitration  
from the start by the bit. Moreover, arbitration is targeted at the entire field of the frame. When two or more nodes begin transmitting  
at the same time, by arbitration only the node that transmits the highest priority frame can complete the transmission.  
Document Number: 002-10203 Rev.*C  
Page 20 of 38  
S6BT112A01/S6BT112A02  
The MCU compares between the transmitted data (TXD) and received data (RXD). If the data difference is detected, MCU has to  
stop data transmission until finding IFS.  
5.4.7  
TXD Toggle  
If the TXD pin is short to ground or open, the BUS pin output is not fixed Low (logic value). Therefore, it does not interfere with the  
communication of the other device.  
An initial TXD dominant check prevents the bus line being driven to a permanent dominant state (blocking all network  
communications) if the TXD pin is forced permanently Low by a hardware and/or software application failure. The TXD input level is  
checked after a transition to the Normal mode.  
If the TXD pin is Low, the transmit path remains disabled and is only enabled when the TXD pin goes High.  
A TXD toggle is required in the following cases.  
Data transmission after recovery from low-voltage reset.  
Data transmission after recovery from thermal shutdown.  
First TXD data transmission in the Normal mode.  
First wake-up pulse transmission in sleep mode.  
Short-circuit from the TXD pin to ground.(failure detect)  
In the event of a short-circuit to ground or an open-wire on the TXD pin, the BUS pin output remains High (logical value ‘1) by this  
toggle function. In this case, by comparing the sent data to the TXD pin and received data from the RXD pin of the transceiver IC,  
the MCU can detect the permanent Low on the TXD pin by the data difference. In this case too, the receiver is active.  
Figure 5-15 Normal Transmission Sequence of Master  
Figure 5-16 TXD Toggle of Master after Transition to Normal mode  
Document Number: 002-10203 Rev.*C  
Page 21 of 38  
S6BT112A01/S6BT112A02  
Figure 5-17 Slave TXD Toggle after Recovery from Low voltage State  
Document Number: 002-10203 Rev.*C  
Page 22 of 38  
S6BT112A01/S6BT112A02  
6. Absolute Maximum Ratings  
Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or  
temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.  
Rating  
Parameters  
Symbol  
VBAT  
Conditions  
BAT pin  
Unit  
V
Min  
Max  
-0.3  
40  
Power supply voltage  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-40  
6.9  
18  
V
VNSLP  
VSELMS  
VCLK  
NSLP pin  
SELMS pin  
CLK pin  
TXD pin  
RXD pin  
CLK pin  
BUS pin  
V
Input voltage  
6.9  
6.9  
6.9  
6.9  
40  
V
V
VTXD  
VRXD  
VCLK  
V
Output voltage  
V
V
BUS pin voltage  
VBUS  
BUS pin ESD  
-8  
-8  
8
8
kV  
kV  
VESDBUS  
BUS pin  
BAT pin  
(1.5 kΩ, 100 pF)  
BAT pin ESD  
VESDBAT  
(1.5 kΩ, 100 pF)  
NSLP pin  
SELMS pin  
CLK pin  
ESD  
-2  
2
kV  
VESD  
(1.5 kΩ, 100 pF)  
TXD pin  
RXD pin  
-55  
-40  
150  
150  
°C  
°C  
Storage temperature  
TSTG  
-
-
Maximum  
TJMAX  
junction temperature  
Document Number: 002-10203 Rev.*C  
Page 23 of 38  
S6BT112A01/S6BT112A02  
7. Recommended Operating Conditions  
Table 7-1 Recommended condition  
Value  
Unit  
Parameters  
Symbol  
Conditions  
Min  
Typ  
Max  
Power supply voltage  
BAT pin [1]  
VBAT  
TA  
5.3  
-
18  
V
Operating ambient temperature  
BUS pin pull-up resistance  
RXD pin pull-up resistance  
CLK pin pull-up resistance  
-
40  
+25  
+125  
°C  
RMASTER  
RRXD  
BUS pin (Master nodeSELMS=0V)  
RXD pin  
900  
2.4  
2.4  
1000  
10  
1100  
Ω
-
-
kΩ  
kΩ  
RCLK  
CLK pin (SELMS=5V)  
10  
Note  
[1]: (18 V < VBAT 27 V) less than 2 minutes.  
WARNING:  
1. The recommended operating conditions are requiredir to ensure the normal operation of the semiconductor device. All of the  
device's electrical characteristics are warranted when the device is operated under these conditions.  
2. Any use of semiconductor devices will be under their recommended operating condition.  
3. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device  
failure.  
4. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you  
are considering application under any conditions other than listed herein, please contact sales representatives beforehand.  
Document Number: 002-10203 Rev.*C  
Page 24 of 38  
S6BT112A01/S6BT112A02  
8. Electrical Characteristics  
Table 8-1 DC Characteristics  
VBAT = 5.3 V~27 V[1], TA = -40~125 °C; All voltages are referenced to Pin 8 (GND); Positive currents flow into the IC; unless  
otherwise specified.  
Pin  
Name  
Parameters  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Normal mode  
-
1.4  
2.9  
mA  
TXD=5 V  
CLK=20 kHz, Duty 50%  
Normal mode  
-
-
2.0  
4.0  
mA  
µA  
TXD=0 V  
CLK=20 kHz, Duty 50%  
Sleep mode  
VBAT =12 V  
TXD=5 V  
6
-
SELMS=5 V  
BUS= VBAT  
TA=25 °C  
Sleep mode  
VBAT =12 V  
TXD=5 V  
Power supply current  
IBAT  
BAT  
-
16  
-
µA  
SELMS=0 V  
BUS= VBAT  
TA=25 °C  
Sleep mode  
VBAT =12 V  
TXD=5 V  
-
-
-
-
50  
60  
µA  
µA  
SELMS=5 V  
BUS= VBAT  
Sleep mode  
VBAT =12 V  
TXD=5 V  
SELMS=0 V  
BUS= VBAT  
BUS pin pull-up  
resistance  
RBUSpu  
BUS  
BUS  
20  
40  
30  
-
47  
kΩ  
-
BUS short circuit  
current  
IBUS_LIM  
200  
mA  
VBUS=18 V  
Document Number: 002-10203 Rev.*C  
Page 25 of 38  
S6BT112A01/S6BT112A02  
Pin  
Name  
Parameters  
Symbol  
Conditions  
BUS=18 V  
Min  
Typ  
Max  
Unit  
BUS input leak current  
(HIGH)  
VBAT =5.3 V  
TXD=5 V  
TA=25 °C  
IBUS_PAS_rec  
BUS  
BUS  
-
-
20  
µA  
BUS=0 V  
VBAT =12 V  
TXD=5 V  
BUS input leak current  
(LOW)  
IBUS_PAS_dom  
-1  
-
-
mA  
loss of ground BUS  
leak current  
VBAT =GND=18 V  
BUS=0 V  
IBUS_NO_GND  
IBUS_NO_BAT  
VBUSDR  
BUS  
BUS  
BUS  
-1  
-
-
-
-
1
mA  
µA  
V
VBAT =0 V  
BUS=18 V  
TA=25 °C  
loss of battery BUS  
leak current  
30  
5.7  
VBAT =13.5 V  
IBUSsource=-100 µA  
BUS drop voltage  
2.4  
TXD=0 V  
VBAT =7 V  
BUS pull-up resistance=  
500 Ω  
VO_dom  
BUS  
BUS  
-
-
-
1.4  
2
V
V
BUS low level output  
voltage  
TXD=0 V  
VBAT =18 V  
BUS pull-up resistance=  
500 Ω  
VO_dom  
-
-
Receiver low level  
threshold voltage  
0.423  
VBAT  
VBUSdom  
VBUSrec  
VHYS  
BUS  
BUS  
BUS  
BAT  
-
-
V
V
V
V
VBAT =12V, TA=25 °C  
VBAT =12V, TA=25 °C  
VBAT =12V, TA=25°C  
-
Receiver high level  
threshold voltage  
0.556  
VBAT  
-
Receiver hysteresis  
voltage  
0.133  
VBAT  
-
-
Low level power-on  
reset threshold voltage  
VPOR_L  
3.1  
3.8  
4.7  
High level power-on  
reset threshold  
voltage  
VPOR_H  
BAT  
3.3  
4.1  
4.9  
V
-
power-on reset  
hysteresis voltage  
VPOR_HYS  
TSD_H  
BAT  
0.2  
156  
151  
0.3  
165  
159  
0.5  
174  
168  
V
-
Temperature shutdown  
threshold  
-
-
°C  
°C  
[2]  
[2]  
Temperature shutdown  
release threshold  
TSD_L  
Notes  
[1]: (18 V < VBAT ≤ 27 V) less than 2 minutes.  
[2]: Guaranteed by design  
Document Number: 002-10203 Rev.*C  
Page 26 of 38  
S6BT112A01/S6BT112A02  
Table 8-2 DC Characteristics CLK Pin  
(If SELMS = 5 V, this pin operates as Open Drain Output Pin. If SELMS = 0 V, this pin operates as an input pin)  
VBAT = 5.3 V27 V[1], TA = -40125 °C; all voltages are referenced to Pin 8 (GND). Positive current flow into the IC; unless  
otherwise specified.  
Pin  
Name  
Parameters  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
VIH_CLK  
CLK  
2
-
-
-
6
V
High level input voltage  
SELMS = 0 V  
VIL_CLK  
CLK  
CLK  
-0.3  
0.8  
0.5  
V
V
Low level input voltage  
SELMS = 0 V  
SELMS = 0 V  
VHYS_CLK  
0.03  
Hysteresis range of input voltage  
ICLK = 2.2 mA  
SELMS = 5 V  
VOL_CLK  
CLK  
-
-
0.6  
V
Low level output voltage  
IOL_CLK  
IILH_CLK  
IILL_CLK  
CLK  
CLK  
CLK  
1.3  
-3  
3
-
-
mA  
µA  
µA  
Low level current  
SELMS = 5 V  
SELMS = 5 V  
SELMS = 5 V  
3
3
High level leak current  
Low level leak current  
-3  
-
Note  
[1]: (18 V < VBAT ≤ 27 V) less than 2 minutes.  
Table 8-3 DC Characteristics NSLP Pin  
VBAT = 5.3 V~27 V[1], TA = -40~125 °C; all voltages are referenced to Pin 8 (GND). Positive current flow into the IC; unless otherwise  
specified.  
Pin  
Name  
Parameters  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
High level input voltage  
VIH_NSLP  
NSLP  
2
-
6
0.8  
0.5  
650  
3
V
-
-
-
NSLP  
NSLP  
NSLP  
NSLP  
Low level input voltage  
VIL_NSLP  
VHYS_NSLP  
RPD_NSLP  
IILL_NSLP  
-0.3  
0.03  
100  
-3  
-
V
V
Hysteresis range of input voltage  
Internal pull-down resistance  
Low level leak current  
-
250  
-
kΩ  
µA  
NSLP = 5 V  
NSLP = 0 V  
Note  
[1]: (18 V < VBAT ≤ 27 V) less than 2 minutes  
Document Number: 002-10203 Rev.*C  
Page 27 of 38  
S6BT112A01/S6BT112A02  
Table 8-4 TXD Pin  
VBAT = 5.3 V~27 V[1], TA = -40~125 °C; all voltages are referenced to Pin 8 (GND). Positive current flow into the IC; unless otherwise  
specified.  
Pin  
Name  
Parameters  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VIH_TXD  
TXD  
2
-
6
V
High level input voltage  
-
VIL_TXD  
VHYS_TXD  
RPU_TXD  
IILH_TXD  
TXD  
TXD  
TXD  
TXD  
-0.3  
0.03  
50  
-
0.8  
0.5  
325  
3
V
V
Low level input voltage  
-
-
125  
-
Hysteresis range of input voltage  
Internal pull-up resistance  
High level leak current  
-
kΩ  
µA  
TXD = 0 V  
TXD = 5 V  
-3  
Note  
[1]: (18V < VBAT 27V) less than 2 minutes  
Table 8-5 SELMS Pin  
VBAT = 5.3 V~27 V[1], TA = -40~125 °C; all voltages are referenced to Pin 8 (GND). Positive current flow into the IC; unless otherwise  
specified.  
Pin  
Name  
Parameters  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VIH_SELMS  
SELMS  
2
-
6
V
High level input voltage  
-
-
-
SELMS  
SELMS  
SELMS  
SELMS  
VIL_SELMS  
VHYS_SELMS  
RPU_SELMS  
IILH_SELMS  
-0.3  
0.03  
200  
-3  
-
0.8  
0.5  
1300  
3
V
V
Low level input voltage  
-
500  
-
Hysteresis range of input voltage  
Internal pull-up resistance  
High level leak current  
kΩ  
µA  
SELMS = 0 V  
SELMS = 5 V  
Note  
[1]: (18 V < VBAT ≤ 27 V) less than 2 minutes.  
Document Number: 002-10203 Rev.*C  
Page 28 of 38  
S6BT112A01/S6BT112A02  
Table 8-6 RXD Pin (Open Drain Output)  
VBAT = 5.3 V~27 V[1], TA = -40~125 °C; all voltages are referenced to Pin 8 (GND). Positive current flow into the IC; unless otherwise  
specified.  
Parameters  
Symbol  
Pin Name  
Conditions  
Min  
Typ  
Max  
Unit  
RXD  
Low level output voltage  
VOL_RXD  
-
-
0.6  
V
IRXD = 2.2 mA  
RXD  
RXD  
RXD  
Low level current  
IOL_RXD  
IOLH_RXD  
IOLL_RXD  
1.3  
-3  
3
-
-
mA  
µA  
µA  
RXD = 0.4 V  
RXD = 5 V  
RXD = 0 V  
High level leak current  
Low level leak current  
3
3
-3  
-
Note  
[1]: (18 V < VBAT27 V) less than 2 minutes.  
Table 8-7 AC Characteristics  
VBAT = 5.3 V~27 V[1], TA = -40~125 °C BUS Load 1 kΩ /1 nF; unless otherwise specified.  
Pin  
Parameters  
Bitrate  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Name  
TBUAD  
BUS  
2.4  
-
20  
kbps  
VTH(bus) [3] = 0.5VBAT  
Mode transition time  
(Sleep to Normal or  
Normal to Sleep.)  
VTH(5v)[4] = 50%  
TMODE_CHG  
NSLP  
-
-
1
ms  
CLK  
NSLP wait time  
VTH(5 V) [4] = 50%  
-
TSLP_WT  
TSLP_MN  
100  
1
-
-
-
-
µs  
NSLP  
Minimum sleep time  
NSLP  
ms  
NLSP = 0 V  
Driver boot time under  
sleep mode. [2]  
SELMS = 5 V  
VTH(5v)[4]=50%  
VTH(bus)[3]=0.3VBAT  
TTXD_BT  
TXD  
-
-
-
-
195  
µs  
NLSP = 5 V  
SELMS = 0 V  
CLK=input clock  
TXD=5 V  
CLK transmission delay  
time  
TCLK_PD  
CLK  
0.9  
Tbit[5]  
VTH(5v)[4]=50%  
VTH(bus)[3]=0.3VBAT  
Document Number: 002-10203 Rev.*C  
Page 29 of 38  
S6BT112A01/S6BT112A02  
Pin  
Name  
Parameters  
Symbol  
Conditions  
NLSP = 5 V  
Min  
Typ  
Max  
Unit  
SELMS = 0 V  
CLK=input clock  
TXD=5 V  
Time of Low level of  
logic value '1'  
0.39Tbit  
+6τ  
Ttx_1_lo_rec  
BUS  
BUS  
-
-
-
VTH(bus)[3] = 0.7VBAT  
NLSP = 5 V  
SELMS = 0 V  
CLK=input clock  
TXD=5 V  
Time of Low level of  
logic value '1'  
Ttx_1_lo_dom  
0.11  
-
-
Tbit  
VTH(bus)[3] = 0.3 VBAT  
NLSP = 5 V  
Ttx_1_lo_rec  
+0.06Tbit  
Time of Low level of  
logic value '0'  
Ttx_0_lo_rec  
BUS  
BUS  
-
-
-
-
-
-
TXD = 0 V  
VTH(bus) [3] = 0.7 VBAT  
NLSP = 5 V  
Ttx_1_lo_dom  
+0.06Tbit  
Time of Low level of  
logic value '0'  
Ttx_0_lo_dom  
TXD=0 V  
VTH(bus) [3] = 0.3 VBAT  
NLSP = 5 V  
TXD = 0 V  
VTH(bus)[3]  
High level time at  
receiving node.  
Ttx_0_hi  
BUS  
RXD  
0.06  
-
-
-
Tbit  
Tbit  
=
0.556  
VBAT  
NSLP = 5 V  
VTH(bus)[3]  
VBUSdom  
Receiver delay time  
TRXD_PD  
-
2.4  
=
Delay time of  
transmission if logic  
value '0'.  
NSLP = 5 V  
VTH(bus) [3]=0.3 VBAT  
TTXD_PD  
TICLK_DY  
TOCLK_DY  
TXD  
CLK  
CLK  
-
-
-
-
3.3  
70  
50  
Tbit  
%
SELMS = 0 V  
VTH(5 V)[4] = 50%  
Input clock duty  
30  
14  
SELMS = 5 V  
VTH(5 V)[4] = 50%  
Output clock duty[6]  
%
NSLP = 0 V  
Wakeup pulse filter  
constant(Master)  
Trx_wakeup_master  
BUS  
SELMS = 0 V  
30  
-
150  
µs  
VTH(bus) [3]=42.3%  
Document Number: 002-10203 Rev.*C  
Page 30 of 38  
S6BT112A01/S6BT112A02  
Pin  
Parameters  
Symbol  
Conditions  
NSLP = 0 V  
Min  
Typ  
Max  
Unit  
Name  
Wakeup pulse filter  
constant(Slave)  
Trx_wakeup_slave  
BUS  
0.5  
-
5
µs  
SELMS = 5 V  
VTH(bus) [3] = 42.3%  
NSLP = 5 V  
Time of bus slope from  
minimum  
SELMS = 0 V  
Ttx_1_dom_m  
BUS  
BUS  
-
-
-
0.16  
-
Tbit  
VBAT = 7V  
VTH(bus) [3] = 0.3 VBAT  
Recessive level of  
logical value 0.  
V_rec_0  
0.93  
V_rec_1  
NSLP = 5 V  
Notes  
[1]: (18 V < VBAT ≤ 27 V) less than 2 minutes  
RXD pin load: 20 pF  
[2]: CXPI BUS load (Figure 8-11) : 10 nF/500 Ω  
[3]: VTH(bus)threshold of BUS pin  
[4]: VTH(5v)threshold of NSLP,CLK,TXD,SELMS,RXD pins.  
[5]: Tbit stands for 1bit time.(Figure 8-1)  
[6]: logic '0/1' threshold clock  
Figure 8-1 Definition of Tbit  
Figure 8-2 Mode Transition Time  
Document Number: 002-10203 Rev.*C  
Page 31 of 38  
 
S6BT112A01/S6BT112A02  
Figure 8-3 NSLP Wait Time  
Figure 8-4 Minimum Sleep Time  
Figure 8-5 Driver boot Time Under Sleep Mode  
Document Number: 002-10203 Rev.*C  
Page 32 of 38  
S6BT112A01/S6BT112A02  
Figure 8-6 CLK Transmission Delay Time  
Figure 8-7 Logic low and high CXPI BUS Waveform  
Document Number: 002-10203 Rev.*C  
Page 33 of 38  
S6BT112A01/S6BT112A02  
Figure 8-8 Receiver Delay Time  
Figure 8-9 Logic low Transmission Delay Time  
Document Number: 002-10203 Rev.*C  
Page 34 of 38  
S6BT112A01/S6BT112A02  
Figure 8-10 Wakeup Pulse Waveform  
Figure 8-11 CXPI BUS Load Connection  
Document Number: 002-10203 Rev.*C  
Page 35 of 38  
S6BT112A01/S6BT112A02  
9. Ordering Information  
Part Number  
Package  
S6BT112A01SSBB002  
8-pin 150-mil SOIC Tape and Reel (SOA008)  
8-pin 150-mil SOIC Tape and Reel (SOA008)  
S6BT112A02SSBB002  
10.Package Dimensions  
Package Type  
Package Code  
SOP 8  
SOA 008  
SIDE VIEW  
TOP VIEW  
SIDE VIEW  
Document Number: 002-10203 Rev.*C  
Page 36 of 38  
S6BT112A01/S6BT112A02  
Document History  
Document Title: S6BT112A01/S6BT112A02 ASSP CXPI Transceiver IC for Automotive Network  
Document Number: 002-10203  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
Initial release  
New Spec.  
**  
5046456  
AKFU  
12/11/2015  
04/06/2016  
Revised the sentence style of the cover page  
Changed all section 5 for easy to understand.  
Changed figure of application.  
*A  
5208207  
AKFU  
Changed Figure 4-1 and Figure 5-1.  
Removed Driver recovery time when over-temperature detection is released.”  
Changed figure of application.  
Changed Figure 4-1 Block Diagram  
Changed Figure 5-12 Application example Secondary clock master  
Added the conditions of VBUSdom/VBUSrec/ VHYS/Ttx_1_dom_m.  
Removed the prameter of Receiver center level voltage (VBUS_CNT).  
Changed Figure 8-11 CXPI BUS Load Connection  
*B  
5528948  
AKFU  
11/24/2016  
Changed Ordering Information.  
Changed Package Dimensions.  
Updated Introduction.  
Updated Note [3] (Page 8).  
Updated 5.2 Master Node.  
Updated 5.2.2 Sleep Mode.  
*C  
5547736  
AKFU  
12/09/2016  
Document Number: 002-10203 Rev.*C  
Page 37 of 38  
S6BT112A01/S6BT112A02  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the  
office closest to you, visit us at Cypress Locations.  
Products  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC® Solutions  
Automotive  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Clocks & Buffers  
Interface  
Cypress Developer Community  
Forums | WICED IOT Forums | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Memory  
cypress.com/memory  
cypress.com/mcu  
Technical Support  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2015-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,  
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or  
other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software,  
then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source  
code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form  
externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are  
infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction,  
modification, translation, or compilation of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It  
is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress  
products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support  
devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the  
failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can  
be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from  
any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages,  
and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-10203 Rev.*C  
December 9, 2016  
Page 38 of 38  

相关型号:

S6BT112A02SSBB202

S6BT112A CXPI Transceiver
INFINEON

S6C0641

6 BIT 300 / 309 CHANNEL TFT-LCD SOURCE DRIVER
SAMSUNG

S6C0647

256 CHANNEL TFT-LCD GATE DRIVER
SAMSUNG

S6C0649

256 CHANNEL TFT-LCD GATE DRIVER
SAMSUNG

S6C0655

120 / 128 CHANNEL TFT-LCD GATE DRIVER
SAMSUNG

S6C0657

263 / 256 CHANNEL TFT-LCD GATE DRIVER
SAMSUNG

S6C0666

6 BIT 384 CHANNEL RSDS TFT-LCD SOURCE DRIVER
SAMSUNG

S6C0668

6 BIT 384 CHANNEL TFT-LCD SOURCE DRIVER
SAMSUNG

S6C0670

8 BIT 384 / 402 CHANNEL TFT-LCD SOURCE DRIVER
SAMSUNG

S6C0671

8 BIT 384 CHANNEL TFT-LCD SOURCE DRIVER
SAMSUNG

S6C0672

6 BIT 384 CHANNEL TFT-LCD SOURCE DRIVER
SAMSUNG

S6C0676

6 BIT 480 CHANNEL TFT-LCD SOURCE DRIVER
SAMSUNG