W161H [CYPRESS]

Processor Specific Clock Generator, 133MHz, CMOS, PDSO48, 0.300 INCH, MO-118AA, SSOP-48;
W161H
型号: W161H
厂家: CYPRESS    CYPRESS
描述:

Processor Specific Clock Generator, 133MHz, CMOS, PDSO48, 0.300 INCH, MO-118AA, SSOP-48

光电二极管
文件: 总10页 (文件大小:115K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
W161  
133-MHz Spread Spectrum FTG for Pentium® II Platforms  
Spread Spectrum Modulation:..................................... 0.5%  
Features  
CPU to 3V66 Output Offset:............. 0.01.5 ns (CPU leads)  
• Maximized EMI Suppression using Cypress’s Spread  
Spectrum Technology  
3V66 to PCI Output Offset:.............. 1.53.0 ns (3V66 leads)  
CPU to IOAPIC Output Offset: ......... 1.54.0 ns (CPU leads)  
• Three copies of CPU outputs at 100 or 133 MHz  
• Three copies of 66-MHz output at 3.3V  
• Ten copies of PCI clocks at 33 MHz, 3.3V  
• Two copies of 14.318-MHz reference output at 3.3V  
• One copy of 48-MHz USB clock  
• One copy of CPU-divide-by-2 output as reference input  
to Direct Rambus™ Clock Generator (Cypress W134)  
• Available in 48-pin SSOP (300 mils)  
Table 1. Pin Selectable Frequency  
SEL133/100# SEL1 SEL0  
Function  
All outputs Three-State  
(Reserved)  
0
0
0
0
0
1
0
1
0
Active 100-MHz, 48-MHz  
PLL inactive  
0
1
1
Active 100-MHz, 48-MHz  
PLL active  
Key Specifications  
Supply Voltages:...................................... VDDQ2 = 2.5V±5%  
VDDQ3 = 3.3V±5%  
1
1
1
0
0
1
0
1
0
Test Mode  
(Reserved)  
CPU, CPUdiv2 Output Jitter:....................................... 250 ps  
CPU, CPUdiv2 Output Skew:...................................... 175 ps  
IOAPIC, 3V66 Output Skew:....................................... 250 ps  
PCI0:9 Output Skew: .................................................. 500 ps  
Duty Cycle: ................................................................... 45/55  
Active 133-MHz, 48-MHz  
PLL inactive  
1
1
1
Active 133-MHz, 48-MHz  
PLL active  
Pin Configuration[1]  
Block Diagram  
2
X1  
XTAL  
OSC  
GND  
REF0  
REF1  
VDDQ3  
X1  
X2  
GND  
PCI0  
PCI1  
VDDQ3  
PCI2  
PCI3  
PCI4  
PCI5  
GND  
PCI6  
PCI7  
VDDQ3  
PCI8  
PCI9  
GND  
3V66_0  
3V66_1  
3V66_2  
VDDQ3  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
REF_[0:1]  
X2  
2
VDDQ2  
IOAPIC  
GND  
VDDQ2  
CPUdiv2  
GND  
VDDQ2  
CPU2  
GND  
VDDQ2  
CPU1  
CPU0  
GND  
VDDQ3  
GND  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
3
CPU_[0:2]  
÷2  
CPUdiv2  
SPREAD#  
SEL0  
PLL 1  
SEL1  
3
SEL133/100#  
3V66_[0:2]  
÷2/÷1.5  
PWRDWN#*  
SPREAD#*  
SEL1*  
9
SEL0*  
÷2  
PCI_[0:9]  
IOAPIC  
PWRDWN#  
VDDQ3  
48MHz  
GND  
SEL133/100#  
Power  
Down  
Logic  
÷2  
Note:  
1. Internal 250-kpull-up resistors present on inputs marked with *.  
Design should not rely solely on internal pull-up resistor to set I/O  
pins HIGH.  
Three-state  
Logic  
PLL2  
48MHz  
Pentium is a registered trademark of Intel Corporation. Direct Rambus is a trademark of Rambus, Inc.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-07162 Rev. **  
Revised September 25, 2001  
PRELIMINARY  
W161  
Pin Definitions  
Pin  
No.  
Pin  
Type  
Pin Name  
Pin Description  
CPU0:2  
36, 37, 40  
O
O
CPU Clock Outputs 0 through 2: CPU clock outputs. Their output voltage  
swing is controlled by voltage applied to VDDQ2.  
PCI0:9  
7, 8, 10, 11, 12,  
13, 15, 16, 18,  
19  
PCI Clock Outputs 0 through 9: Output voltage swing is controlled by voltage  
applied to VDDQ3.  
CPUdiv2  
43  
O
CPU-Divide-By-2 Output: This serves as a reference input signal for Direct  
Rambus Clock Generator (Cypress W134). The output voltage is determined  
by VDDQ2.  
3V66_0:2  
IOAPIC  
21, 22, 23  
46  
O
O
66-MHz Clock Outputs 0 through 2: Output voltage swing is controlled by  
voltage applied to VDDQ3.  
I/O APIC Clock Output: Provides an output synchronous to CPU clock. See  
Table 1 for their relation to other system clock outputs.  
48 MHz  
27  
31  
O
I
48-MHz Output: Fixed clock output at 48 MHz.  
SPREAD#  
Spread Spectrum Enable: This input enables spread spectrum modulation  
on the PLL1 generated frequency outputs of the W161. Modulation range is  
0.5%.  
PWRDWN#  
REF0:1  
32  
I
I
Power Down Control  
1, 2  
Fixed 14.318-MHz Output 0 and 1: Output voltage swing is controlled by  
voltage applied to VDDQ3.  
SEL0:1  
SEL133/100#  
X1  
29, 30  
25  
I
I
I
Mode Select Input 0 through 1: 3.3V LVTTL-compatible input for selecting  
clock output modes. As shown in Table 1.  
Frequency Selection Input: 3.3V LVTTL-compatible input that selects CPU  
output frequency as shown in Table 1.  
4
Crystal Connection or External Reference Frequency Input: This pin has  
dual functions. It can be used as an external 14.318-MHz crystal connection  
or as an external reference frequency input.  
X2  
5
I
Crystal Connection: An input connection for an external 14.318-MHz crystal.  
If using an external reference, this pin must be left unconnected.  
VDDQ2  
VDDQ3  
38, 41, 44, 47  
P
P
Power Connection: Connected to 2.5V power supply.  
Power Connection: Connected to 3.3V power supply.  
3, 9, 17, 24, 28,  
34  
GND  
6, 14, 20, 26,  
33, 35, 39, 42,  
45, 48  
G
Ground Connection: Connect all ground pins to the common system ground  
plane.  
Crystal Oscillator  
Overview  
The W161 requires one input reference clock to synthesize all  
The W161, a motherboard clock synthesizer, provides 2.5V  
CPU clock outputs for advanced CPU and a CPU-divide-by-2  
reference frequency for Direct Rambus Clock Generator (such  
Cypress W134) interface. Fixed output frequencies are provid-  
ed for other system functions.  
output frequencies. The reference clock can be either an ex-  
ternally generated clock signal or the clock generated by the  
internal crystal oscillator. When using an external clock signal,  
pin X1 is used as the clock input and pin X2 is left open.  
The internal crystal oscillator is used in conjunction with a  
quartz crystal connected to device pins X1 and X2. This forms  
a parallel resonant crystal oscillator circuit. The W161 incorpo-  
rates the necessary feedback resistor and crystal load capac-  
itors. Including typical stray circuit capacitance, the total load  
presented to the crystal is approximately 18 pF. For optimum  
frequency accuracy without the addition of external capacitors,  
a parallel-resonant mode crystal specifying a load of 18 pF  
should be used. This will typically yield reference frequency  
accuracies within ±100 ppm.  
CPU Frequency Selection  
CPU frequency is selected with input pins 25, 29, and 30  
(SEL133/100#, SEL0, and SEL1, respectively). Refer to Table  
1 for details.  
Output Buffer Configuration  
Clock Outputs  
All clock outputs are designed to drive serial terminated clock  
lines. The W161 outputs are CMOS-type, which provide  
rail-to-rail output swing.  
Document #: 38-07162 Rev. **  
Page 2 of 10  
PRELIMINARY  
W161  
Where P is the percentage of deviation and F is the frequency  
in MHz where the reduction is measured.  
Spread Spectrum Feature  
The device generates a clock that is frequency modulated in  
order to increase the bandwidth that it occupies. By increasing  
the bandwidth of the fundamental and its harmonics, the am-  
plitudes of the radiated electromagnetic emissions are re-  
duced. This effect is depicted in Figure 1.  
The output clock is modulated with a waveform depicted in  
Figure 2. This waveform, as discussed in Spread Spectrum  
Clock Generation for the Reduction of Radiated Emissionsby  
Bush, Fessler, and Hardin produces the maximum reduction  
in the amplitude of radiated electromagnetic emissions. The  
deviation selected for this chip is 0.5% downspread. Figure  
2 details the Cypress spreading pattern. Cypress does offer  
options with more spread and greater EMI reduction. Contact  
your local Sales representative for details on these devices.  
As shown in Figure 1, a harmonic of a modulated clock has a  
much lower amplitude than that of an unmodulated signal. The  
reduction in amplitude is dependent on the harmonic number  
and the frequency deviation or spread. The equation for the  
reduction is  
dB = 6.5 + 9*log10(P) + 9*log10(F)  
EMI Reduction  
Spread  
Spectrum  
Enabled  
Non-  
Spread  
Spectrum  
Figure 1. Typical Clock and SSFTG Comparison  
100%  
80%  
60%  
40%  
20%  
0%  
20%  
40%  
60%  
80%  
100%  
Time  
Figure 2. Typical Modulation Profile  
Document #: 38-07162 Rev. **  
Page 3 of 10  
PRELIMINARY  
W161  
Absolute Maximum Ratings  
Stresses greater than those listed in this table may cause per-  
manent damage to the device. These represent a stress rating  
above those specified in the operating sections of this specifi-  
cation is not implied. Maximum conditions for extended peri-  
ods may affect reliability.  
only. Operation of the device at these or any other conditions  
.
Parameter  
VDD, VIN  
Description  
Voltage on any pin with respect to GND  
Storage Temperature  
Rating  
0.5 to +7.0  
65 to +150  
0 to +70  
Unit  
V
TSTG  
TA  
°C  
°C  
°C  
kV  
Operating Temperature  
TB  
Ambient Temperature under Bias  
Input ESD Protection  
55 to +125  
2 (min.)  
ESDPROT  
DC Electrical Characteristics: TA = 0°C to +70°C, VDDQ3 = 3.3V±5%, VDDQ2 = 2.5V±5%  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
IDD-3.3V  
IDD-2.5  
Combined 3.3V Supply Current  
Combined 2.5V Supply Current  
CPU0:3 =133 MHz[2]  
CPU0:3 =133 MHz[2]  
160  
90  
mA  
mA  
Logic Inputs (All referenced to VDDQ3 = 3.3V)  
VIL  
Input Low Voltage  
GND –  
0.3  
0.8  
V
V
VIH  
Input High Voltage  
2.0  
VDD  
0.3  
+
IIL  
IIH  
IIL  
IIH  
Input Low Current[3]  
Input High Current[3]  
Input Low Current, SEL133/100#[3]  
Input High Current, SEL133/100#[3]  
25  
10  
5  
5
µA  
µA  
µA  
µA  
Clock Outputs  
CPU, CPUdiv2, IOAPIC (Referenced to VDDQ2  
)
Test Condition  
IOL = 1 mA  
Min.  
Typ.  
Max.  
Unit  
mV  
V
VOL  
VOH  
IOL  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
50  
IOH = 1 mA  
VOL = 1.25V  
VOH = 1.25V  
Test Condition  
IOL = 1 mA  
2.2  
45  
65  
65  
100  
100  
Max.  
50  
mA  
mA  
Unit  
mV  
V
IOH  
45  
48MHz, REF (Referenced to VDDQ3  
)
Min.  
Typ.  
VOL  
VOH  
IOL  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
IOH = 1 mA  
VOL = 1.5V  
3.1  
45  
65  
65  
100  
100  
Max.  
50  
mA  
mA  
Unit  
mV  
V
IOH  
VOH = 1.5V  
45  
PCI, 3V66 (Referenced to VDDQ3  
)
Test Condition  
IOL = 1 mA  
Min.  
Typ.  
VOL  
VOH  
IOL  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
IOH = 1 mA  
VOL = 1.5V  
3.1  
70  
65  
100  
95  
145  
135  
mA  
mA  
IOH  
VOH = 1.5V  
Notes:  
2. All clock outputs loaded with 6" 60transmission lines with 20-pF capacitors.  
3. W161 logic inputs have internal pull-up devices, except SEL133/100# (pull-ups not CMOS level).  
Document #: 38-07162 Rev. **  
Page 4 of 10  
PRELIMINARY  
W161  
DC Electrical Characteristics: TA = 0°C to +70°C, VDDQ3 = 3.3V±5%, VDDQ2 = 2.5V±5% (continued)  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Crystal Oscillator  
VTH  
X1 Input threshold Voltage[4]  
1.65  
18  
V
CLOAD  
Load Capacitance, Imposed on  
External Crystal[5]  
pF  
CIN,X1  
X1 Input Capacitance[6]  
Pin X2 unconnected  
Except X1 and X2  
28  
pF  
Pin Capacitance/Inductance  
CIN  
Input Pin Capacitance  
5
6
7
pF  
pF  
nH  
COUT  
LIN  
Output Pin Capacitance  
Input Pin Inductance  
3.3V AC Electrical Characteristics  
TA = 0°C to +70°C, VDDQ3 = 3.3V±5%,VDDQ2 = 2.5V± 5%, fXTL = 14.31818 MHz  
Spread Spectrum function turned off  
AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the  
clock output.[7]  
3V66 Clock Outputs, 3V66_0:3 (Lump Capacitance Test Load = 30 pF)  
Parameter  
Description  
Frequency  
Test Condition/Comments  
Min.  
Typ.  
Max.  
Unit  
MHz  
V/ns  
V/ns  
%
f
Note 8  
66.6  
tR  
tF  
tD  
fST  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Measured from 0.4V to 2.4V  
1
1
4
4
Measured from 2.4V to 0.4V  
Measured on rising and falling edge at 1.5V  
45  
55  
3
Frequency Stabilization  
Assumes full supply voltage reached within  
ms  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior  
to frequency stabilization.  
Zo  
AC Output Impedance  
Average value during switching transition.  
Used for determining series termination  
value.  
15  
Notes:  
4. X1 input threshold voltage (typical) is VDD/2.  
5. The W161 contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. Total load placed on crystal is 18 pF;  
this includes typical stray capacitance of short PCB traces to crystal.  
6. X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected).  
7. Period, jitter, offset, and skew measured on rising edge at 1.5V.  
8. 3V66 is CPU/2 for CPU =133 MHz and (2 x CPU)/3 for CPU = 100 MHz.  
Document #: 38-07162 Rev. **  
Page 5 of 10  
PRELIMINARY  
W161  
PCI Clock Outputs, PCI0:9 (Lump Capacitance Test Load = 30 pF  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.5V[9]  
Duration of clock cycle above 2.4V  
Duration of clock cycle below 0.4V  
Measured from 0.4V to 2.4V  
Min.  
30  
12  
12  
1
Typ.  
Max.  
Unit  
ns  
tP  
tH  
tL  
High Time  
ns  
Low Time  
ns  
tR  
tF  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
4
4
V/ns  
V/ns  
%
Measured from 2.4V to 0.4V  
1
tD  
tJC  
Measured on rising and falling edge at 1.5V  
45  
55  
500  
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Maximum  
ps  
difference of cycle time between two adjacent cycles.  
tSK  
tO  
Output Skew  
Measured on rising edge at 1.5V.  
500  
3
ps  
ns  
3V66 to PCI Clock Skew Covers all 3V66/PCI outputs. Measured on rising  
edge at 1.5V. 3V66 leads PCI output.  
1.5  
fST  
Frequency Stabilization  
from Power-up (cold  
start)  
Assumes full supply voltage reached within 1 ms  
from power-up. Short cycles exist prior to frequency  
stabilization.  
3
ms  
Zo  
AC Output Impedance  
Average value during switching transition. Used for  
determining series termination value.  
15  
REF Clock Outputs, REF0:1 (Lump Capacitance Test Load = 20 pF)  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.4V  
Min.  
Typ.  
Max. Unit  
f
14.318  
tR  
0.5  
0.5  
45  
2
2
V/ns  
V/ns  
%
tF  
Measured from 2.4V to 0.4V  
tD  
Measured on rising and falling edge at 1.5V  
55  
3
fST  
FrequencyStabilizationfrom Assumes full supply voltage reached within  
ms  
Power-up (cold start)  
1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Zo  
AC Output Impedance  
Average value duringswitching transition. Used  
for determining series termination value.  
25  
48-MHZ Clock Output (Lump Capacitance Test Load = 20 pF)  
Parameter  
Description  
Frequency, Actual  
Deviation from 48 MHz  
PLL Ratio  
Test Condition/Comments  
Determined by PLL divider ratio (see m/n below)  
(48.008 48)/48  
Min.  
Typ.  
48.008  
+167  
Max. Unit  
MHz  
f
fD  
ppm  
m/n  
tR  
(14.31818 MHz x 57/17 = 48.008 MHz)  
Measured from 0.4V to 2.4V  
57/17  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
0.5  
0.5  
45  
2
2
V/ns  
V/ns  
%
tF  
Measured from 2.4V to 0.4V  
tD  
Measured on rising and falling edge at 1.5V  
55  
3
fST  
Frequency Stabilization  
Assumes full supply voltage reached within 1 ms  
ms  
from Power-up (cold start) from power-up. Short cycles exist prior to fre-  
quency stabilization.  
Zo  
AC Output Impedance  
Average value during switching transition. Used  
for determining series termination value.  
25  
Note:  
9. PCI clock is CPU/4 for CPU = 133 MHz and CPU/3 for CPU = 100 MHz.  
Document #: 38-07162 Rev. **  
Page 6 of 10  
PRELIMINARY  
W161  
2.5V AC Electrical Characteristics  
TA = 0°C to +70°C, VDDQ3 = 3.3V±5%, VDDQ2= 2.5V±5%  
fXTL = 14.31818 MHz  
Spread Spectrum function turned off  
AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the  
clock output.[10]  
CPU Clock Outputs, CPU0:2 (Lump Capacitance Test Load = 20 pF)  
CPU = 133 MHz  
CPU = 100 MHz  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.25V  
Duration of clock cycle above 2.0V  
Duration of clock cycle below 0.4V  
Min. Typ. Max. Min. Typ. Max. Unit  
tP  
tH  
tL  
7.5  
1.87  
1.67  
1
7.65  
10  
3.0  
2.8  
1
10.2  
ns  
ns  
High Time  
Low Time  
ns  
tR  
tF  
tD  
Output Rise Edge Rate Measured from 0.4V to 2.0V  
Output Fall Edge Rate Measured from 2.0V to 0.4V  
4
4
4
4
V/ns  
V/ns  
%
1
1
Duty Cycle  
Measured on rising and falling edge at  
45  
55  
45  
55  
1.25V  
tJC  
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.25V. Max-  
imum difference of cycle time between  
two adjacent cycles.  
250  
250  
ps  
tSK  
fST  
Output Skew  
Measured on rising edge at 1.25V  
175  
3
175  
3
ps  
Frequency Stabiliza-  
tion from Power-up  
(cold start)  
Assumes full supply voltage reached  
within 1ms from power-up. Short cycles  
exist prior to frequency stabilization.  
ms  
CPUdiv2 Clock Outputs, CPUdiv2 (Lump Capacitance Test Load = 20 pF)  
CPU = 133 MHz  
CPU = 100 MHz  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.25V  
Duration of clock cycle above 2.0V  
Duration of clock cycle below 0.4V  
Min. Typ. Max. Min. Typ. Max. Unit  
tP  
tH  
tL  
15  
5.25  
5.05  
1
15.3  
20  
7.5  
7.3  
1
20.4  
ns  
ns  
High Time  
Low Time  
ns  
tR  
tF  
tD  
Output Rise Edge Rate Measured from 0.4V to 2.0V  
Output Fall Edge Rate Measured from 2.0V to 0.4V  
4
4
4
4
V/ns  
V/ns  
%
1
1
Duty Cycle  
Measured on rising and falling edge at  
45  
55  
45  
55  
1.25V  
tJC  
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.25V. Max-  
imum difference of cycle time between  
two adjacent cycles.  
250  
250  
ps  
tSK  
fST  
Output Skew  
Measured on rising edge at 1.25V  
175  
3
175  
3
ps  
Frequency Stabiliza-  
tion from Power-up  
(cold start)  
Assumes full supply voltage reached  
within1msfrompower-up.Shortcycles  
exist prior to frequency stabilization.  
ms  
Zo  
AC Output Impedance Average value during switching transi-  
tion. Used for determining series termi-  
nation value.  
20  
20  
Note:  
10. Period, Jitter, offset. and skew measured on rising edge at 1.25V.  
Document #: 38-07162 Rev. **  
Page 7 of 10  
PRELIMINARY  
W161  
IOAPIC Clock Output, IOAPIC (Lump Capacitance Test Load = 20 pF)  
Parameter  
Description  
Frequency  
Test Condition/Comments  
Min  
Typ  
Max  
Unit  
MHz  
V/ns  
V/ns  
%
f
Note 11  
16.67  
tR  
tF  
tD  
fST  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Measured from 0.4V to 2.0V  
1
1
4
4
Measured from 2.0V to 0.4V  
Measured on rising and falling edge at 1.25V  
45  
55  
3
Frequency Stabilization  
Assumes full supply voltage reached within  
ms  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Zo  
AC Output Impedance  
Averagevalueduringswitchingtransition.Used  
for determining series termination value.  
20  
Note:  
11. IOAPIC clock is CPU/8 for CPU = 133 MHz and CPU/6 for CPU = 100 MHz.  
Ordering Information  
Package  
Ordering Code  
W161  
Name  
Package Type  
H
48-pin SSOP (300 mils)  
Document #: 38-07162 Rev. **  
Page 8 of 10  
PRELIMINARY  
W161  
Package Diagram  
48-Pin Small Shrink Outline Package (SSOP, 300 mils)  
Summary of nominal dimensions in inches:  
Body Width: 0.296  
Lead Pitch: 0.025  
Body Length: 0.625  
Body Height: 0.102  
Document #: 38-07162 Rev. **  
Page 9 of 10  
© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
PRELIMINARY  
W161  
Document Title: W161 133-MHz Spread Spectrum FTG for Pentium® II Platforms  
Document Number: 38-07162  
Issue  
ECN NO. Date  
Orig. of  
Change  
REV.  
Description of Change  
**  
110272  
10/28/01  
SZV  
Change from Spec number: 38-00817 to 38-07162  
Document #: 38-07162 Rev. **  
Page 10 of 10  

相关型号:

W161HT

Processor Specific Clock Generator, 133MHz, CMOS, PDSO48, 0.300 INCH, MO-118AA, SSOP-48
CYPRESS

W161TSRSRC

Single Color LED, Super Bright Red, Water Clear, T-1 3/4, 5mm,
KINGBRIGHT

W162

Spread Aware⑩, Zero Delay Buffer
CYPRESS

W162-09G

W162 SERIES, PLL BASED CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PDSO16, 0.150 INCH, SOIC-16
ROCHESTER

W162-09GT

PLL Based Clock Driver, W162 Series, 8 True Output(s), 0 Inverted Output(s), PDSO16, 0.150 INCH, SOIC-16
CYPRESS

W162-09GT

W162 SERIES, PLL BASED CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PDSO16, 0.150 INCH, SOIC-16
ROCHESTER

W162-09H

PLL Based Clock Driver, W162 Series, 8 True Output(s), 0 Inverted Output(s), PDSO16, 0.150 INCH, SSOP-16
CYPRESS

W162-19

Clock Driver, CMOS, PDSO16,
CYPRESS

W162-19G

NINE DISTRIBUTED-OUTPUT CLOCK DRIVER|CMOS|SOP|16PIN|PLASTIC
ETC

W163

Spread Aware⑩, Zero Delay Buffer
CYPRESS

W163-05G

W163 SERIES, PLL BASED CLOCK DRIVER, 4 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PDSO8, 0.150 INCH, PLASTIC, SOIC-8
ROCHESTER

W163-05GT

PLL Based Clock Driver, W163 Series, 4 True Output(s), 0 Inverted Output(s), PDSO8, 0.150 INCH, PLASTIC, SOIC-8
CYPRESS