W218H [CYPRESS]

Processor Specific Clock Generator, 133MHz, CMOS, PDSO56, 0.300 INCH, SSOP-56;
W218H
型号: W218H
厂家: CYPRESS    CYPRESS
描述:

Processor Specific Clock Generator, 133MHz, CMOS, PDSO56, 0.300 INCH, SSOP-56

时钟 光电二极管 外围集成电路 晶体
文件: 总17页 (文件大小:173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W218  
FTG for Integrated Core Logic with 133-MHz FSB  
CPU, 3V66 Output Skew:............................................175 ps  
Features  
PCI Output Skew:........................................................500 ps  
• Maximized EMI suppression using Cypress’s Spread  
Spectrum technology  
• Three copies of CPU clock at 66/100/133 MHz  
• Nine copies of 100-MHz SDRAM clocks  
• Seven copies of PCI clock  
CPU to SDRAM Skew (@ 133 MHz):.........................±0.5 ns  
CPU to SDRAM Skew (@ 100 MHz):.................4.5 to 5.5 ns  
CPU to 3V66 Skew (@ 66 MHz): .......................7.0 to 8.0 ns  
3V66 to PCI Skew (3V66 lead):..........................1.5 to 3.5 ns  
PCI to APIC Skew: .....................................................±0.5 ns  
• Two copies of APIC clock at 33 MHz, synchronous to  
CPU clock  
• Two copies of 48-MHz clock (non-spread spectrum) op-  
timized for USB reference input and video dot clock  
Table 1. Pin Selectable Functions  
• Three copies of 3V 66-MHz fixed clock  
• One copy of 14.31818-MHz reference clock  
• Power down control  
Tristate# FSEL0 FSEL1  
CPU  
SDRAM  
0
0
1
1
1
1
0
1
0
1
0
1
x
x
0
0
1
1
Three-state Three-state  
Test  
Test  
• SMBus interface for turning off unused clocks  
66 MHz  
100 MHz  
133 MHz  
133 MHz  
100 MHz  
100 MHz  
133 MHz  
100 MHz  
Key Specifications  
CPU, SDRAM Outputs Cycle-to-Cycle Jitter:.............. 250 ps  
APIC, 48-MHz, 3V66, PCI Outputs  
Cycle-to-Cycle Jitter:................................................... 500 ps  
APIC, SDRAM Output Skew:...................................... 250 ps  
Pin Configuration[1]  
Block Diagram  
VDDQ3  
*REF0/FSEL1  
VDDQ3  
X1  
1
56  
GND  
2
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
APIC0  
APIC1  
VDDQ2  
CPU0  
VDDQ2  
CPU1  
3
REF0/FSEL1  
X1  
X2  
XTAL  
OSC  
X2  
4
GND  
GND  
5
PLL REF FREQ  
6
7
8
9
VDDQ2  
CPU0:1  
3V66_0  
3V66_1  
3V66_AGP  
VDDQ3  
VDDQ3  
PCI0_ICH  
PCI1  
CPU2_ITP  
Divider,  
Delay,  
and  
Phase  
Control  
Logic  
GND  
I2C  
Logic  
2
SDATA  
SCLK  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
GND  
CPU2_ITP  
APIC0:1  
SDRAM0  
SDRAM1  
VDDQ3  
SDRAM2  
SDRAM3  
GND  
2
2
GND  
PCI2  
VDDQ3  
FSEL0:1  
VDDA  
PCI3  
PLL 1  
3V66_0:1  
3V66_AGP  
PCI0_ICH  
GND  
SDRAM4  
SDRAM5  
VDDQ3  
SDRAM6  
SDRAM7  
GND  
PCI4  
PCI5  
PCI6  
VDDQ3  
VDDA  
GNDA  
GND  
USB  
DOT  
VDDQ3  
FSEL0  
PCI1:6  
Tristate#  
7
8
DCLK  
VDDQ3  
PWR_DWN#  
SCLK  
DCLK  
25  
26  
27  
28  
PWR_DWN#  
SDRAM0:7  
SDATA  
Tristate#  
Note:  
VDDQ3  
VDDA  
1. Internal pull-down resistors present on input marked with *.  
Design should not solely rely on internal pull-down resister to  
set I/O pin LOW.  
USB  
PLL2  
DOT  
Intel is a registered trademark of Intel Corporation.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-07221 Rev. *A  
Revised December 21, 2002  
W218  
Pin Definitions  
Pin  
Type  
Pin Name  
Pin No.  
Pin Description  
REF0/FSEL1  
1
I/O  
I
Reference Clock: 3.3V 14.318-MHz clock output. This pin also serves as a strap  
option for CPU frequency selection. See Table 1 for detailed descriptions.  
X1  
X2  
3
4
Crystal Input: This pin has dual functions. It can be used as an external  
14.318-MHz crystal connection or as an external reference frequency input.  
O
O
O
Crystal Output: A connection for an external 14.318-MHz crystal. If using an ex-  
ternal reference, this pin must be left unconnected.  
PCI0_ICH,  
PCI1:6  
12, 13, 15, 16,  
18, 19, 20  
PCI Clock 0 through 6: 3.3V 33-MHz PCI clock outputs. PCI1:7 can be individually  
turned off via SMBus interface.  
3V66_0:1/  
3V66_AGP  
7, 8, 9  
66-MHz Clock Output: 3.3V fixed 66-MHz clock.  
USB  
DOT  
25  
26  
O
O
I
USB Clock Output: 3.3V fixed 48-MHz, non-spread spectrum USB clock output.  
Dot Clock Output: 3.3V 48-MHz, non-spread spectrum signal.  
FSEL0,  
Tristate#  
28, 29  
Clock Function Selection pins: LVTTL-compatible input to select device func-  
tions. See Table 1 for detailed descriptions.  
PWR_DWN#  
32  
I
Power-Down Control: LVTTL-compatible asynchronous input that places the de-  
vice in power-down mode when held LOW. This input can be used as the  
VTT_PWRGD input to support Intel VRM 8.5 implementation.  
CPU2_ITP,  
CPU0:1  
49,52,50  
O
O
O
CPU Clock Outputs: Clock outputs for the host bus interface and integrated test  
port. Output frequencies run at 66 MHz, 100 MHz, or 133 MHz depending on the  
configuration of SEL0:1 and SEL133. Voltage swing set by VDDQ2  
.
SDRAM0:7,  
DCLK  
46, 45, 43, 42,  
40, 39, 37, 36,  
34  
SDRAM Clock Outputs: 3.3V outputs running at 100 MHz. SDRAM0:7 can be  
individually turned off via SMBus interface.  
APIC0:1  
55, 54  
Synchronous APIC Clock Outputs: Clock outputs running synchronous with the  
PCI clock outputs (33 MHz). Voltage swing set by VDDQ2  
.
SDATA  
SCLK  
30  
31  
I/O  
I
Data pin for SMBus circuitry.  
Clock pin for SMBus circuitry.  
VDDQ3  
2, 10, 11, 21, 27,  
33, 38, 44  
P
3.3V Power Connection: Power supply for SDRAM output buffers, PCI output  
buffers, 3V66 output buffers, reference output buffers, and 48-MHz output buffers.  
Connect to 3.3V.  
VDDA  
VDDQ2  
GND  
22  
P
P
G
3.3V Power Connection: Power supply for core logic, PLL circuitry. Connect to  
3.3V.  
51, 53  
2.5V Power Connection: Power supply for IOAPIC and CPU output buffers. Con-  
nect to 2.5V or 3.3V.  
5, 6, 14, 17, 24,  
35, 41, 47, 48,  
56  
Ground Connections: Connect all ground pins to the common system ground  
plane.  
GNDA  
23  
G
Ground Connections: Ground for core logic, PLL circuitry.  
Document #: 38-07221 Rev. *A  
Page 2 of 17  
W218  
V
DD  
Output Strapping Resistor  
Series Termination Resistor  
10 k  
(Load Option 1)  
Clock Load  
W218  
Output  
Buffer  
Power-on  
Reset  
Timer  
Hold  
Output  
Low  
Output Three-state  
10 k  
(Load Option 0)  
Q
D
Data  
Latch  
Figure 1. Input Logic Selection Through Resistor Load Option  
After 2 ms, the pin becomes an output. Assuming the power  
supply has stabilized by then, the specified output frequency  
is delivered on the pins. If the power supply has not yet  
reached full value, output frequency initially may be below tar-  
get but will increase to target once supply voltage has stabi-  
lized. In either case, a short output clock cycle may be pro-  
duced from the CPU clock outputs when the outputs are  
enabled.  
Overview  
The W218 is a highly integrated frequency timing generator,  
supplying all the required clock sources for an Intel® architec-  
ture platform using graphics integrated core logic.  
Functional Description  
I/O Pin Operation  
Pin Selectable Functions  
REF0/FSEL1is a dual-purpose l/O pin. Upon power-up the pin  
acts as a logic input. If the pin is strapped to a HIGH state  
externally, CPU clock outputs will run at 133 MHz. If it is  
strapped LOW, CPU clock outputs will be determined by the  
status of FSEL input pin. An external 10-kstrapping resistor  
should be used. Figure 1 shows a suggested method for strap-  
ping resistor connections.  
Table 1 outlines the device functions selectable through  
Threestate#, FSEL0 and FSEL1. Specific outputs available at  
each pin are detailed in Table 2 below. The SEL0 pin requires  
a 220pull-up resistor to 3.3V for the W218 to sense the max-  
imum host bus frequency of the processor and configure itself  
accordingly. Also note that FSEL0, Threestate# input levels  
should be stable within 500 µs of the later of VDDQ3, VDDQ2  
,
PWR_DWN# rising edge.  
Table 2. CK Whitney Truth Table  
Notes  
2
Tristate#  
FSEL0  
FSEL1  
CPU  
Hi-Z  
SDRAM  
Hi-Z  
3V66  
PCI  
48 MHz  
Hi-Z  
REF  
Hi-Z  
APIC  
Hi-Z  
0
0
1
1
1
1
0
1
0
1
0
1
X
X
0
0
1
1
Hi-Z  
Hi-Z  
TCLK/4  
66 MHz  
TCLK/4  
TCLK/6 TCLK/12  
TCLK/2  
TCLK  
TCLK/12  
4, 5  
100 MHz 66 MHz  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
48 MHz 14.318 MHz 33 MHz  
48 MHz 14.318 MHz 33 MHz  
48 MHz 14.318 MHz 33 MHz  
48 MHz 14.318 MHz 33 MHz  
3, 6, 7  
3, 6, 7  
3, 6, 7  
3, 6, 7  
100 MHz 100 MHz 66 MHz  
133 MHz 133 MHz 66 MHz  
133 MHz 100 MHz 66 MHz  
Notes:  
2. Provided for board-level bed of nailstesting.  
3. Normalmode of operation.  
4. TCLK is a test clock overdriven on the XTAL_IN input during test mode.  
5. Required for DC output impedance verification.  
6. Range of reference frequency allowed is min. = 14.316 MHz, nominal = 14.31818 MHz, max. = 14.32 MHz.  
7. Frequency accuracy of 48 MHz must be +167 PPM to match USB default.  
Document #: 38-07221 Rev. *A  
Page 3 of 17  
W218  
How to use PD# input to support VTT_PWRGD  
the start of the PLL, keep all the multiplexed I/O pins as input  
and keep all the output inactive. The functionality of PD# will  
allow system designer to use this input to support the  
VTT_PWRGD output from the VRM 8.5 module. Please refer  
to the Figure 2 for power up sequence details.  
The PD# input can be used to support the VTT_PWRGD sig-  
nal specified in the Intel  
VRM 8.5 specification. The  
VTT_PWRGD is used to indicated that the frequency select  
output pins (BSEL[0:1]) from the CPU are valid and the clock  
generator can use them to determine the CPU FSB frequency.  
The assertion of PD# input pin during initial power up will delay  
3.3V & 2.5V  
PD# (connected to  
VTT_PWRGD)  
PLL & Output  
Synchronization  
Outputs  
Input Latch  
(pin 4 & pin21)  
1 ms  
Figure 2. Power up sequence with PD# (VTT_PWRGD) hold LOW  
Document #: 38-07221 Rev. *A  
Page 4 of 17  
W218  
Offsets Among Clock Signal Groups  
spectively. It should be noted that when CPU clock is operating  
at 100 MHz, CPU clock output is 180 degrees out of phase  
with SDRAM clock outputs.  
Figure 3 and Figure 4 represent the phase relationship among  
the different groups of clock outputs from W218 when it is pro-  
viding a 66-MHz CPU clock and a 100-MHz CPU clock, re-  
10 ns  
20 ns  
30 ns  
40 ns  
0 ns  
Cycle Repeat  
CPU 66-MHz  
SDRAM 100-MHz  
3V66 66-MHz  
PCI 33-MHz  
APIC33-MHz  
REF 14.318-MHz  
USB 48-MHz  
DOT 48-MHz  
Figure 3. Group Offset Waveforms (66-MHz CPU/100-MHZ SDRAM Clock)  
0 ns  
10 ns  
20 ns  
30 ns  
40 ns  
Cycle Repeat  
CPU 100-MHz  
SDRAM 100-MHz  
3V66 66-MHz  
PCI 33-MHz  
APIC 33-MHz  
REF 14.318-MHz  
USB 48-MHz  
DOT 48-MHz  
Figure 4. Group Offset Waveforms (100-MHz CPU/100-MHZ SDRAM Clock)  
Document #: 38-07221 Rev. *A  
Page 5 of 17  
W218  
0 ns  
10 ns  
20 ns  
30 ns  
40 ns  
Cycle Repeats  
CPU 133-MHz  
SDRAM 100-MHz  
3V66 66-MHz  
PCI 33-MHz  
APIC 33-MHz  
REF 14.318-MHz  
USB 48-MHz  
DOT 48-MHz  
Figure 5. Group Offset Waveforms (133-MHz CPU/100-MHz SDRAM Clock)  
0 ns  
10 ns  
20 ns  
30 ns  
40 ns  
Cycle Repeat  
CPU 100-MHz  
SDRAM 100-MHz  
3V66 66-MHz  
PCI 33-MHz  
APIC 33-MHz  
REF 14.318-MHz  
USB 48-MHz  
DOT 48-MHz  
Figure 6. Group Offset Waveforms (133-MHz CPU/133-MHz SDRAM Clock)  
Document #: 38-07221 Rev. *A  
Page 6 of 17  
W218  
Power Down Control  
W218 provides one PWRDWN# signal to place the device in  
low-power mode. In low-power mode, the PLLs are turned off  
and all clock outputs are driven LOW.  
0 ns  
25 ns  
50 ns  
2
75 ns  
Center  
1
VCO Internal  
CPU 100-MHz  
3V66 66-MHz  
PCI 33-MHz  
APIC 33-MHz  
PwrDwn  
SDRAM 100-MHz  
REF 14.318-MHz  
USB 48-MHz  
Figure 7. W218 PWRDWN# Timing Diagram[8, 9, 10, 11]  
Table 3. W218 Maximum Allowed Current  
Max. 2.5V supply consumption  
Max. discrete cap loads,  
VDDQ2 = 2.625V  
Max. 3.3V supply consumption  
Max. discrete cap loads  
VDDQ3 = 3.465V  
W218  
Condition  
All static inputs = VDDQ3 or VSS  
All static inputs = VDDQ3 or VSS  
Powerdown Mode  
(PWRDWN# = 0)  
10 µA  
70 mA  
100 mA  
TBD  
10 µA  
280 mA  
280 mA  
TBD  
Full Active 66 MHz  
FSEL1:0 = 00 (PWRDWN# =1)  
Full Active 100 MHz  
FSEL1:0 = 01 (PWRDWN# =1)  
Full Active 133 MHz  
FSEL1:0 = 11 (PWRDWN# =1)  
Notes:  
8. Once the PWRDWN# signal is sampled LOW for two consecutive rising edges of CPU, clocks of interest will be held LOW on the next HIGH-to-LOW transition.  
9. PWRDWN# is an asynchronous input and metastable conditions could exist. This signal is synchronized inside W218.  
10. The shaded sections on the SDRAM, REF, and USB clocks indicate Dont Carestates.  
11. Diagrams shown with respect to 100 MHz. Similar operation when CPU is 66 MHz.  
Document #: 38-07221 Rev. *A  
Page 7 of 17  
W218  
Where P is the percentage of deviation and F is the frequency  
in MHz where the reduction is measured.  
Spread Spectrum Frequency Timing  
Generation  
The output clock is modulated with a waveform depicted in  
Figure 9. This waveform, as discussed in Spread Spectrum  
Clock Generation for the Reduction of Radiated Emissionsby  
Bush, Fessler, and Hardin, produces the maximum reduction  
in the amplitude of radiated electromagnetic emissions. The  
deviation selected for this chip is 0.5% of the selected fre-  
quency. Figure 9 details the Cypress spreading pattern.  
Cypress does offer options with more spread and greater EMI  
reduction. Contact your local Sales representative for details  
on these devices.  
The device generates a clock that is frequency modulated in  
order to increase the bandwidth that it occupies. By increasing  
the bandwidth of the fundamental and its harmonics, the am-  
plitudes of the radiated electromagnetic emissions are re-  
duced. This effect is depicted in Figure 8.  
As shown in Figure 8, a harmonic of a modulated clock has a  
much lower amplitude than that of an unmodulated signal. The  
reduction in amplitude is dependent on the harmonic number  
and the frequency deviation or spread. The equation for the  
reduction is:  
Spread Spectrum clocking is activated or deactivated by se-  
lecting the appropriate value for bit 3 in data byte 0 of the I2C  
data stream. Refer to page 10 for more details.  
dB = 6.5 + 9*log10(P) + 9*log10(F)  
EMI Reduction  
Spread  
Non-  
Spread  
Spectrum  
Spectrum  
Enabled  
Figure 8. Clock Harmonic with and without SSCG Modulation Frequency Domain Representation  
MAX.  
MIN.  
Figure 9. Typical Modulation Profile  
Document #: 38-07221 Rev. *A  
Page 8 of 17  
W218  
1 bit  
7 bits  
1
1
8 bits  
1
Start bit  
Slave Address  
R/W  
Ack  
Command Code  
Ack  
Byte Count = N  
Ack  
1 bit  
Data Byte 1  
8 bits  
Ack  
Data Byte 2  
8 bits  
Ack  
1
...  
Data Byte N  
8 bits  
Ack  
1
Stop  
1
1
Figure 10. An Example of a Block Write[12]  
Serial Data Interface  
transfer a maximum of 32 data bytes. The slave receiver ad-  
dress for W218 is 11010010. Figure 10 shows an example of  
a block write.  
The W218 features a two-pin, serial data interface that can be  
used to configure internal register settings that control partic-  
ular device functions.  
The command code and the byte count bytes are required as  
the first two bytes of any transfer. W218 expects a command  
code of 0000 0000. The byte count byte is the number of ad-  
ditional bytes required for the transfer, not counting the com-  
mand code and byte count bytes. Additionally, the byte count  
byte is required to be a minimum of 1 byte and a maximum of  
32 bytes to satisfy the above requirement. Table 4 shows an  
example of a possible byte count value.  
Data Protocol  
The clock driver serial protocol accepts only block writes from  
the controller. The bytes must be accessed in sequential order  
from lowest to highest byte with the ability to stop after any  
complete byte has been transferred. Indexed bytes are not  
allowed.  
A transfer is considered valid after the acknowledge bit corre-  
sponding to the byte count is read by the controller. The com-  
mand code and byte count bytes are ignored by the W218.  
However, these bytes must be included in the data write se-  
quence to maintain proper byte allocation.  
A block write begins with a slave address and a write condition.  
After the command code the core logic issues a byte count  
which describes how many more bytes will follow in the mes-  
sage. If the host had 20 bytes to send, the first byte would be  
the number 20 (14h), followed by the 20 bytes of data. The  
byte count may not be 0. A block write command is allowed to  
Table 4. Example of Possible Byte Count Value  
Byte Count Byte  
Notes  
MSB  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0010  
LSB  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
0000  
Not allowed. Must have at least one byte  
Data for functional and frequency select register (currently byte 0 in spec)  
Reads first two bytes of data (byte 0 then byte 1)  
Reads first three bytes (byte 0, 1, 2 in order)  
Reads first four bytes (byte 0, 1, 2, 3 in order)  
Reads first five bytes (byte 0, 1, 2, 3, 4 in order)[13]  
Reads first six bytes (byte 0, 1, 2, 3, 4, 5 in order)[13]  
Reads first seven bytes (byte 0, 1, 2, 3, 4, 5, 6 in order)  
Max. byte count supported = 32  
Table 5. Serial Data Interface Control Functions Summary  
Control Function  
Description  
Common Application  
Output Disable  
Any individual clock output(s) can be disabled.  
Disabled outputs are actively held LOW.  
Unused outputs are disabled to reduce EMI and sys-  
tem power. Examples are clock outputs to unused  
PCI slots.  
Spread Spectrum  
Enabling  
Enables or disables spread spectrum clocking.  
For EMI reduction.  
(Reserved)  
Reservedfunction for future device revision or pro- No user application. Register bit must be written as 0.  
duction device testing.  
Notes:  
12. The acknowledgment bit is returned by the slave/receiver (W218).  
13. Data Bytes 3 to 7 are reserved.  
Document #: 38-07221 Rev. *A  
Page 9 of 17  
W218  
2. All unused register bits (reserved and N/A) should be writ-  
ten to a 0level.  
W218 Serial Configuration Map  
1. The serial bits willbereadby theclock driver inthe following  
order:  
3. All register bits labeled Initialize to 0" must be written to  
zero during initialization. Failure to do so may result in high-  
er than normal operating current.  
Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0  
Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0  
Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0  
4. Only Byte 0, 1 and 2 are defined in W218. Byte 3 to Byte 7  
are reserved and must be written to zero.”  
Byte 0: Control Register (1 = Enable, 0 = Disable) [14]  
Bit  
Pin#  
Name  
Pin Description  
(Active/Inactive)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
Reserved  
Reserved  
Reserved  
Reserved  
(Active/Inactive)  
-
(Active/Inactive)  
-
(Active/Inactive)  
-
Spread Spectrum (1 = On/0 = Off) (Disabled/Enabled)  
26  
25  
49  
DOT  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
USB  
CPU2_ITP  
Byte 1: Control Register (1 = Enable, 0 = Disable) [14]  
Bit  
Pin#  
36  
37  
39  
40  
42  
43  
45  
46  
Name  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SDRAM7  
SDRAM6  
SDRAM5  
SDRAM4  
SDRAM3  
SDRAM2  
SDRAM1  
SDRAM0  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
Byte 2: Control Register (1 = Enable, 0 = Disable) [14]  
Bit  
Pin#  
9
Name  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
3V66_AGP  
PCI6  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
Reserved  
20  
19  
18  
16  
15  
13  
--  
PCI5  
PCI4  
PCI3  
PCI2  
PCI1  
Bit 0  
Note:  
Reserved  
14. Inactive means outputs are held LOW and are disabled from switching. These outputs are designed to be configured at power-on and are not expected to be  
configured during the normal modes of operation.  
Document #: 38-07221 Rev. *A  
Page 10 of 17  
W218  
Byte 3: Reserved Register (1 = Enable, 0 = Disable)  
Bit  
Pin#  
Name  
Reserved Drive to 0’  
Pin Description  
(Active/Inactive)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
-
-
Reserved Drive to 0’  
Reserved Drive to 0’  
Reserved Drive to 0’  
Reserved Drive to 0’  
Reserved Drive to 0’  
Reserved Drive to 0’  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Disabled/Enabled)  
-
SDRAM 133-MHz Mode Enable  
Default is Disabled = 0, Enabled = 1’  
Byte 4: Reserved Register (1 = Enable, 0 = Disable)  
Bit  
Pin#  
Name  
Reserved Drive to 0’  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
-
-
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
Reserved Drive to 0’  
Reserved Drive to 0’  
Reserved Drive to 0’  
Reserved Drive to 0’  
Reserved Drive to 0’  
Reserved Drive to 0’  
Reserved Drive to 0’  
-
Document #: 38-07221 Rev. *A  
Page 11 of 17  
W218  
DC Electrical Characteristics[15]  
Absolute Maximum DC Power Supply  
Parameter  
Description  
Min.  
0.5  
0.5  
0.5  
65  
Max.  
4.6  
Unit  
V
VDD3  
VDDQ2  
VDDQ3  
TS  
3.3V Core Supply Voltage  
2.5V I/O Supply Voltage  
3.6  
V
3.3V Supply Voltage  
Storage Temperature  
4.6  
V
150  
°C  
Absolute Maximum DC I/O  
Parameter  
Description  
Min.  
0.5  
0.5  
2000  
Max.  
Unit  
V
Vih3  
3.3V Input High Voltage  
3.3V Input Low Voltage  
Input ESD Protection  
4.6  
Vil3  
V
ESD prot.  
V
DC Operating Requirements  
Parameter  
Description  
Condition  
3.3V±5%  
3.3V±5%  
2.5V±5%  
Min.  
Max.  
Unit  
V
VDD3  
3.3V Core Supply Voltage  
3.3V I/O Supply Voltage  
2.5V I/O Supply Voltage  
3.135  
3.135  
2.375  
3.465  
3.465  
2.625  
VDDQ3  
V
VDDQ2  
V
VDD3 = 3.3V±5%  
Vih3  
3.3V Input High Voltage  
3.3V Input Low Voltage  
Input Leakage Current[16]  
VDD3  
2.0  
VSS 0.3  
5  
VDD + 0.3  
0.8  
V
V
Vil3  
Iil  
0<Vin<VDD3  
+5  
µA  
VDDQ2 = 2.5V±5%  
Voh2  
2.5V Output High Voltage  
2.5V Output Low Voltage  
Ioh=(1 mA)  
2.0  
2.4  
2.4  
V
V
Vol2  
Iol=(1 mA)  
0.4  
0.4  
VDDQ3 = 3.3V±5%  
Voh3  
3.3V Output High Voltage  
3.3V Output Low Voltage  
Ioh=(1 mA)  
V
V
Vol3  
Iol=(1 mA)  
VDDQ3 = 3.3V±5%  
Vpoh3  
PCI Bus Output High Voltage  
PCI Bus Output Low Voltage  
Ioh=(1 mA)  
V
V
Vpol3  
Iol=(1 mA)  
0.55  
Cin  
Input Pin Capacitance  
Xtal Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
5
22.5  
6
pF  
pF  
pF  
nH  
°C  
Cxtal  
Cout  
Lpin  
13.5  
0
0
7
Ta  
Ambient Temperature  
No Airflow  
70  
Note:  
15. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
16. Input Leakage Current does not include inputs with pull-up or pull-down resistors.  
Document #: 38-07221 Rev. *A  
Page 12 of 17  
W218  
AC Electrical Characteristics[15]  
TA = 0°C to +70°C, VDDQ3 = 3.3V±5%, VDDQ2= 2.5V±5%  
fXTL = 14.31818 MHz  
Spread Spectrum function turned off  
AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the  
clock output.[17]  
AC Electrical Characteristics  
66.6-MHz Host  
100-MHz Host  
133-MHz Host  
Parameter  
TPeriod  
THIGH  
Description  
Host/CPUCLK Period  
Min.  
15.0  
5.2  
Max.  
15.5  
N/A  
N/A  
1.6  
Min.  
10.0  
3.0  
Max.  
10.5  
N/A  
N/A  
1.6  
Min.  
7.5  
Max.  
8.0  
Unit Notes  
ns  
ns  
ns  
ns  
ns  
17  
20  
Host/CPUCLK High Time  
Host/CPUCLK Low Time  
Host/CPUCLK Rise Time  
Host/CPUCLK Fall Time  
1.87  
1.67  
0.4  
N/A  
N/A  
1.6  
TLOW  
5.0  
2.8  
TRISE  
0.4  
0.4  
21  
21  
TFALL  
0.4  
1.6  
0.4  
1.6  
0.4  
1.6  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
SDRAM CLK Period (100-MHz)  
SDRAM CLK High Time (100-MHz)  
SDRAM CLK Low Time (100-MHz)  
SDRAM CLK Rise Time (100-MHz)  
SDRAM CLK Fall Time (100-MHz)  
10.0  
3.0  
2.8  
0.4  
0.4  
10.5  
N/A  
N/A  
1.6  
10.0  
3.0  
2.8  
0.4  
0.4  
10.5  
N/A  
N/A  
1.6  
10.0  
3.0  
2.8  
0.4  
0.4  
10.5  
N/A  
N/A  
1.6  
ns  
ns  
ns  
ns  
ns  
17  
20  
21  
21  
1.6  
1.6  
1.6  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
SDRAM CLK Period (133-MHz)  
SDRAM CLK High Time (133-MHz)  
SDRAM CLK Low Time (133-MHz)  
SDRAM CLK Rise Time (133-MHz)  
SDRAM CLK Fall Time (133-MHz)  
7.5  
1.87  
1.67  
0.4  
8.0  
N/A  
N/A  
1.6  
1.6  
7.5  
1.87  
1.67  
0.4  
8.0  
N/A  
N/A  
1.6  
7.5  
1.87  
1.67  
0.4  
8.0  
N/A  
N/A  
1.6  
1.6  
ns  
ns  
ns  
ns  
ns  
17  
20  
21  
21  
0.4  
0.4  
1.6  
0.4  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
APIC 33-MHz CLK Period  
APIC 33-MHz CLK High Time  
APIC 33-MHz CLK Low Time  
APIC CLK Rise Time  
30.0  
12.0  
12.0  
0.4  
N/A  
N/A  
N/A  
1.6  
30.0  
12.0  
12.0  
0.4  
N/A  
N/A  
N/A  
1.6  
30.0  
12.0  
12.0  
0.4  
N/A  
N/A  
N/A  
1.6  
ns  
ns  
ns  
ns  
ns  
17  
20  
21  
21  
APIC CLK Fall Time  
0.4  
1.6  
0.4  
1.6  
.04  
1.6  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
3V66 CLK Period  
15.0  
5.25  
5.05  
0.5  
16.0  
N/A  
N/A  
2.0  
15.0  
5.25  
5.05  
0.5  
16.0  
N/A  
N/A  
2.0  
15.0  
5.25  
5.05  
0.5  
16.0  
N/A  
N/A  
2.0  
ns  
ns  
ns  
ns  
ns  
17, 19  
20  
3V66 CLK High Time  
3V66 CLK Low Time  
3V66 CLK Rise Time  
3V66 CLK Fall Time  
21  
21  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
TPeriod  
THIGH  
TLOW  
TRISE  
PCI CLK Period  
30.0  
12.0  
12.0  
0.5  
N/A  
N/A  
N/A  
2.0  
30.0  
12.0  
12.0  
0.5  
N/A  
N/A  
N/A  
2.0  
30.0  
12.0  
12.0  
0.5  
N/A  
N/A  
N/A  
2.0  
ns  
ns  
ns  
ns  
ns  
17, 18  
20  
PCI CLK High Time  
PCI CLK Low Time  
PCI CLK Rise Time  
PCI CLK Fall Time  
21  
21  
TFALL  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
Notes:  
17. Period, jitter, offset, and skew measured on rising edge at 1.25 for 2.5V clocks and at 1.5V for 3.3V clocks.  
18.  
19.  
T
T
HIGH is measured at 2.0V for 2.5V outputs, 2.4V for 3.3V outputs.  
LOW is measured at 0.4V for all outputs.  
20. The time specified is measured from when VDDQ3 achieves its nominal operating level (typical condition VDDQ3 = 3.3V) until the frequency output is stable  
and operating within specification.  
21.  
TRISE and TFALL are measured as a transition through the threshold region Vol = 0.4V and Voh = 2.0V (1 mA) JEDEC specification for 2.5V outputs, and Vol  
=
0.4V and Voh = 2.4V for 3.3V.  
Document #: 38-07221 Rev. *A  
Page 13 of 17  
W218  
AC Electrical Characteristics (continued)  
66.6-MHz Host  
100-MHz Host  
133-MHz Host  
Parameter  
tpZL, tpZH  
tpLZ, tpZH  
tstable  
Description  
Min.  
1.0  
Max.  
10.0  
10.0  
3
Min.  
1.0  
Max.  
10.0  
10.0  
3
Min.  
1.0  
Max.  
10.0  
10.0  
3
Unit Notes  
Output Enable Delay (All outputs)  
Output Disable Delay (All outputs)  
All Clock Stabilization from Power-Up  
ns  
1.0  
1.0  
1.0  
ns  
ms 20  
Group Skew and Jitter Limits  
Skew, Jitter  
Output Group  
CPU  
Pin-Pin Skew Max.  
Cycle-Cycle Jitter  
250 ps  
Duty Cycle  
45/55  
Nom VDD  
2.5V  
Measure Point  
1.25V  
1.5V  
175 ps  
250 ps  
250 ps  
250 ps  
175 ps  
500 ps  
N/A  
SDRAM  
APIC  
250 ps  
45/55  
3.3V  
500 ps  
45/55  
2.5V  
1.25V  
1.5V  
48MHz  
3V66  
500 ps  
45/55  
3.3V  
500 ps  
45/55  
3.3V  
1.5V  
PCI  
500 ps  
45/55  
3.3V  
1.5V  
REF  
1000 ps  
45/55  
3.3V  
1.5V  
Test Point  
Output  
Buffer  
Test Load  
Clock Output Wave  
TPERIOD  
Duty Cycle  
THIGH  
2.0  
1.25  
2.5V Clocking  
Interface  
0.4  
TLOW  
TRISE  
TFALL  
TPERIOD  
Duty Cycle  
THIGH  
2.4  
1.5  
0.4  
3.3V Clocking  
Interface  
TLOW  
TRISE  
TFALL  
Figure 11. Output Buffer  
Ordering Information  
Ordering Code  
Package Name  
Package Type  
W218  
H
56-pin SSOP (300 mils)  
Document #: 38-07221 Rev. *A  
Page 14 of 17  
W218  
Layout Diagram  
+2.5V Supply  
FB  
+3.3V Supply  
FB  
VDDQ2  
VDDQ3  
10 µF  
0.005 µF C2  
G
10 µF  
C4 0.005  
µ
F
C1  
C3  
G
G
G
G
1
G 56  
G
V
2
3
4
55  
G
G
G
54  
53  
V
G
5
52  
V
G
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
51  
G
50  
49  
48  
G
G
V
G
G
47  
V
46  
G
G
V
G
45  
G
44  
43  
42  
41  
40  
39  
38  
37  
G
G
G
G
V
G
G
G
V
G
G
21  
22  
23  
24  
25  
26  
27  
28  
36  
35  
34  
33  
32  
31  
30  
29  
Core  
V
G
V
G
G
VDDQ3  
10  
PLL2  
G
G
C5  
C6  
G
G
FB = Dale ILB1206 - 300 (300@ 100 MHz)  
µF  
C5 = 47 µF  
C6 = 0.1 µF  
Ceramic Caps  
µF C2 & C4 = 0.005  
C1 & C3 = 1022  
G = VIA to GND plane layer  
V =VIA to respective supply plane layer  
Note: Each supply plane or strip should have a ferrite bead and capacitors  
Document #: 38-07221 Rev. *A  
Page 15 of 17  
W218  
Package Diagram  
56-Pin Shrink Small Outline Package (SSOP, 300 mils)  
Summary of nominal dimensions in inches:  
Body Width: 0.296  
Lead Pitch: 0.025  
Body Length: 0.625  
Body Height: 0.102  
Document #: 38-07221 Rev. *A  
Page 16 of 17  
© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
W218  
Document Title: W218 FTG for Integrated Core Logic with 133-MHz FSB  
Document Number: 38-07221  
Issue  
Orig. of  
Change  
REV.  
**  
*A  
ECN NO. Date  
Description of Change  
110486  
122838  
10/21/01  
12/21/02  
SZV  
RBI  
Change from Spec number: 38-00885 to 38-07221  
Add Power up Requirements to Electrical Characteristics Information  
Document #: 38-07221 Rev. *A  
Page 17 of 17  

相关型号:

W219

Clocks and Buffers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

W219B

Frequency Generator for Integrated Core Logic with 133MHz FSB

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SPECTRALINEAR

W219B

Frequency Generator for Integrated Core Logic with 133-MHz FSB

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

W219BH

Processor Specific Clock Generator, 166MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

W219BHT

Processor Specific Clock Generator, 166MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

W219BHT

Processor Specific Clock Generator, 166MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SILICON

W219K1FA

Vitreous Enamelled Wirewound Resistors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TTELEC

W219K1GA

Vitreous Enamelled Wirewound Resistors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TTELEC

W219K1JA

Vitreous Enamelled Wirewound Resistors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TTELEC

W22

Vitreous Enamelled Wirewound Resistors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TTELEC

W22-100RJI

WIDERSTAND DRAHT EMAILL 100R 200V 6W

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

W22-10KJI

WIDERSTAND DRAHT EMAILL 10K 200V 6W

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC