W48S87-04 [CYPRESS]

Spread Spectrum 3 DIMM Desktop Clock; 扩频3 DIMM桌面时钟
W48S87-04
型号: W48S87-04
厂家: CYPRESS    CYPRESS
描述:

Spread Spectrum 3 DIMM Desktop Clock
扩频3 DIMM桌面时钟

外围集成电路 光电二极管 时钟
文件: 总21页 (文件大小:203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
W48S87-04  
Spread Spectrum 3 DIMM Desktop Clock  
Features  
Key Specifications  
• Outputs  
±0.5% Spread Spectrum Modulation: ......................... ±0.5%  
— 4 CPU Clock (2.5V or 3.3V, 50 to 83.3 MHz)  
— 7 PCI (3.3V)  
— 1 48-MHz for USB (3.3V)  
— 1 24-MHz for Super I/O (3.3V)  
— 2 REF (3.3V)  
Jitter (Cycle-to-Cycle):.................................................250 ps  
Duty Cycle: ................................................................ 45-55%  
CPU-PCI Skew:........................................................1 to 4 ns  
PCI-PCI or CPU-CPU Skew:.......................................250 ps  
[1]  
— 1 IOAPIC (2.5V or 3.3V)  
— 12 SDRAM  
Table 1. Pin Selectable Frequency  
Input Address  
CPU, SDRAM  
Clocks (MHz)  
PCI Clocks  
(MHz)  
• Serial data interface provides additional frequency  
selection, individual clock output disable, and other  
functions  
• Smooth transition supports dynamic frequency  
assignment  
• Frequency selection not affected during power  
down/up cycle  
• Supports a variety of power-saving options  
• 3.3V operation  
FS2  
0
FS1  
0
FS0  
0
50.0  
75.0  
83.3  
68.5  
55.0  
75.0  
60.0  
66.8  
25.0  
32.0  
41.65  
34.25  
27.5  
37.5  
30.0  
33.4  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
• Available in 48-pin SSOP (300 mils)  
1
1
0
1
1
1
Pin Configuration[2]  
Block Diagram  
Device  
Control  
SDATA  
SCLOCK  
Serial Port  
XTAL OSC  
VDDL1  
IOAPIC  
REF1(CPU_STOP#)  
GND  
CPU0  
CPU1  
VDDL2  
CPU2  
CPU3  
VDD1  
REF0/CPU3.3#_2.5  
GND  
1
2
3
4
5
6
7
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PLL Ref  
Freq  
X1  
X2  
VDD2  
X1  
X2  
VDD1  
REF0/CPU3.3#_2.5  
REF1(CPU_STOP#)  
CPU Clock  
PCI_F/FS1  
PCI0/FS2  
GND  
I/O  
CPU3.3#_2.5  
Mode Control  
8
9
FS0  
FS1  
FS2  
MODE  
Freq  
Select  
PCI1  
PCI2  
PCI3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
GND  
VDDL1  
IOAPIC  
SDRAM0  
SDRAM1  
VDD3  
SDRAM2  
SDRAM3  
GND  
SDRAM4  
SDRAM5  
VDD3  
SDRAM6  
SDRAM7  
GND  
PCI4  
VDD2  
PCI5(PWR_DWN#)  
PLL1  
VDDL2  
CPU0:3  
GND  
Stop  
Clock  
Cntrl  
4
SDRAM11  
SDRAM10  
VDD3  
SDRAM9  
SDRAM8  
GND  
VDD3  
CPU_STOP#  
12  
SDRAM0:11  
48MHZ/FS0  
24MHZ/MODE  
SDATA  
SCLOCK  
÷2  
VDD2  
PCI_F/FS1  
PCI0/FS2  
PCI1:4  
I/O  
I/O  
4
PCI5(PWR_DWN#)  
MODE  
Power Down  
Control  
PWR_DWN#  
VDD1  
÷2  
PLL2  
48MHZ/FS0  
I/O  
I/O  
24MHZ/MODE  
÷4  
Notes:  
1. Additional frequency selections provided by serial data interface; refer to Table 5 on page 10.  
2. Signal names in parenthesis denotes function is selectable through mode pin register strapping.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
October 19, 1999, rev. **  
PRELIMINARY  
W48S87-04  
Pin Definitions  
Pin  
No.  
Pin  
Type  
Pin Name  
Pin Description  
CPU0:3  
44, 43, 41,  
40  
O
CPU Clock Outputs 0 through 3: These four CPU clock outputs are controlled  
by the CPU_STOP# control pin. Output voltage swing is controlled by voltage  
applied to VDDL2 and output characteristics are adjusted by input  
CPU3.3#_2.5.  
PCI_F/FS1  
PCI0/FS2  
7
8
I/O  
Fixed PCI Clock Output and Frequency Selection Bit 1: As an output, this  
pin works in conjunction with PCI0:5. Output voltage swing is controlled by  
voltage applied to VDD2.  
When an input, this pin functions as part of the frequency selection address.  
The value of FS0:2 determines the power-up default frequency of device output  
clocks as per the Table 1, Pin Selectable Frequencyon page 1.  
I/O  
PCI Bus Clock Output 0 and Frequency Selection Bit 2: As an output, this  
pin works in conjunction with PCI1:5 and PCI_F. Output voltage swing is con-  
trolled by voltage applied to VDD2.  
When an input, this pin functions as part of the frequency selection address.  
The value of FS0:2 determines the power-up default frequency of device output  
clocks as per the Table 1, Pin Selectable Frequencyon page 1.  
PCI1:4  
10, 11, 12,  
13  
O
PCI Bus Clock Outputs 1 through 4: Output voltage swing is controlled by  
voltage applied to VDD2.  
PCI5(PWR_DWN#)  
15  
I/O  
PCI Bus Clock Output5 or Power-Down Control: As an output, this pin works  
in conjunction with PCI0:4 and PCI_F. Output voltage swing is controlled by  
voltage applied to VDD2.  
If programmed as an input (refer to MODE pin description), this pin is used for  
power-down control. When LOW, the device goes into a low-power standby  
condition. All outputs are actively held LOW while in power-down. CPU,  
SDRAM, and PCI clock outputs are stopped LOW after completing a full clock  
cycle (24 CPU clock cycle latency). When brought HIGH, CPU, SDRAM, and  
PCI outputs start with a full clock cycle at full operating frequency (3 ms max-  
imum latency).  
SDRAM0:11  
38, 37, 35,  
34, 32, 31,  
29, 28, 21,  
20, 18, 17  
O
SDRAM Clock Outputs 0 through 11: These twelve SDRAM clock outputs  
run synchronous to the CPU clock outputs. Output voltage swing is controlled  
by voltage applied to VDD3.  
IOAPIC  
47  
O
I/O APIC Clock Output: Provides 14.318-MHz fixed frequency. The output  
voltage swing is controlled by VDDL1.  
48MHZ/FS0  
26  
I/O  
48-MHz Output and Frequency Selection Bit 0: Fixed clock output that de-  
faults to 48 MHz following device power-up. Output voltage swing is controlled  
by voltage applied to VDD1.  
When an input, this pin functions as part of the frequency selection address.  
The value of FS0:2 determines the power-up default frequency of device output  
clocks as per the Table 1, Pin Selectable Frequencyon page 1.  
24MHZ/MODE  
25  
I/O  
24-MHz Output and Mode Control Input: Fixed clock output that defaults to  
24 MHz following device power-up. Output voltage swing is controlled by volt-  
age applied to VDD1.  
When an input, this pin is used for pin programming selection. It determines  
the functions for pins 15 and 46:  
MODE  
Pin 15  
Pin 46  
0
1
PWR_DWN# (input)  
PCI5 (output)  
CPU_STOP# (input)  
REF1 (output)  
2
PRELIMINARY  
W48S87-04  
Pin Definitions (continued)  
Pin  
No.  
Pin  
Type  
Pin Name  
Pin Description  
REF0/CPU3.3#_2.5  
2
I/O  
Fixed 14.318-MHz Output 0 and CPU Output Voltage Swing Selection  
Input: As an output, this pin is used for various system applications. Output  
voltage swing is controlled by voltage applied to VDD1. REF0 is stronger than  
REF1 and should be used for driving ISA slots.  
When an input, this pin selects the CPU clock output buffer characteristics that  
are optimized for either 3.3V or 2.5V operation.  
CPU3.3#_2.5  
VDDQ2 Voltage (CPU0:3 Swing)  
0
1
3.3V  
2.5V  
This input adjusts CPU clock output impedance so that a nominal 20output  
impedance is maintained. This eliminates or reduces the need to adjust exter-  
nal clock tuning components when changing VDDL2 voltage. CPU clock phase  
is also adjusted so that both CPU and SDRAM and CPU-to-PCI clock skew is  
maintained over the two VDDL2 voltage options. This input does not adjust  
IOAPIC clock output characteristics.  
REF1(CPU_Stop#)  
46  
I/O  
Fixed 14.318-MHz Output 0 or CPU Clock Output Stop Control: Used for  
various system applications. Output voltage swing is controlled by voltage ap-  
plied to VDD1. REF0 is stronger than REF1 and should be used for driving ISA  
slots.  
If programmed as an input (refer to MODE pin description), this pin is used for  
stopping the CPU clock outputs. When brought LOW, clock outputs CPU0:3  
are stopped LOW after completing a full clock cycle (23 CPU clock latency).  
When brought HIGH, clock outputs CPU0:3 are starting beginning with a full  
clock cycle (23 CPU clock latency).  
X1  
4
I
Crystal Connection or External Reference Frequency Input: This pin has  
dual functions. It can be used as an external 14.318-MHz crystal connection  
or as an external reference frequency input.  
X2  
5
I
Crystal Connection: An input connection for an external 14.318-MHz crystal.  
If using an external reference, this pin must be left unconnected.  
SDATA  
SCLOCK  
VDD1  
VDD2  
VDDL1  
VDDL2  
VDD3  
GND  
23  
I
Serial Data Input: Data input for Serial Data Interface. Refer to Serial Data  
Interface section that follows.  
24  
I
Serial Clock Input: Clock input for Serial Data Interface. Refer to Serial Data  
Interface section that follows.  
1
6,14  
P
P
P
P
P
G
Power Connection: Power supply for crystal oscillator and REF0:1 output  
buffers. Connected to 3.3V supply.  
Power Connection: Power supply for PCI clock output buffers. Connected to  
3.3V supply.  
48  
Power Connection: Power supply for IOAPIC output buffer. Connected to 2.5V  
or 3.3V supply.  
42  
Power Connection: Power supply for CPU clock output buffers. Connected to  
2.5V or 3.3V supply.  
19, 30, 36  
Power Connection: Power supply for SDRAM clock output buffers. Connected  
to 3.3V supply.  
3, 9, 16, 22,  
27, 33, 39,  
45  
Ground Connection: Connect all ground pins to the common system ground  
plane.  
3
PRELIMINARY  
W48S87-04  
I/O pins are three-stated, allowing the output strapping resistor  
on each l/O pin to pull the pin and its associated capacitive  
clock load to either a logic HIGH or LOW state. At the end of  
the 2-ms period, the established logic 0 or 1 condition of each  
l/O is pin is then latched. Next the output buffers are enabled,  
which converts the l/O pins into operating clock outputs. The  
Overview  
The W48S87-04, a motherboard clock synthesizer, can pro-  
vide either a 2.5V or 3.3V CPU clock swing, making it suitable  
for a variety of CPU options. Twelve SDRAM clocks are pro-  
vided in phase with the CPU clock outputs. This provides clock  
support for up to three SDRAM DlMMs. Fixed output frequency  
clocks are provided for other system functions.  
2-ms timer is started when V  
reaches 2.0V. The input bits  
DD  
can only be reset by turning V off and then back on again.  
DD  
It should be noted that the strapping resistors have no signifi-  
cant effect on clock output signal integrity. The drive imped-  
ance of both clock outputs is <40(nominal) which is minimal-  
Functional Description  
I/O Pin Operation  
ly affected by the 10-kstrap to ground or V . As with the  
DD  
Pins 2, 7, 8, 25, and 26 are dual-purpose l/O pins. Upon power-  
up these pins act as logic inputs, allowing the determination of  
assigned device functions. A short time after power-up, the  
logic state of these pins is latched and the pins then become  
clock outputs. This feature reduces device pin count by com-  
bining clock outputs with input select pins.  
series termination resistor, the output strapping resistor should  
be placed as close to the l/O pin as possible in order to keep  
the interconnecting trace short. The trace from the resistor to  
ground or VDD should be kept less than two inches in length  
to prevent system noise coupling during input logic sampling.  
When the clock outputs are enabled following the 2-ms input  
period, target (normal) output frequency is delivered assuming  
An external 10-kstrappingresistor is connected between  
each l/O pin and ground or V  
. Connection to ground sets a  
sets a latch to 1. Figure 1 and  
DD3  
that V has stabilized. If V  
has not yet reached full value,  
DD  
DD  
latch to 0, connection to V  
DD3  
output frequency initially may be below target but will increase  
Figure 2 show two suggested methods for strapping resistor  
connection.  
to target once V voltage has stabilized. In either case, a  
DD  
short output clock cycle may be produced from the CPU clock  
outputs when the outputs are enabled.  
Upon W48S87-04 power-up, the first 2 ms of operation is used  
for input logic selection. During this period, these dual-purpose  
VDD  
Output Strapping Resistor  
Series Termination Resistor  
10 k  
(Load Option 1)  
Clock Load  
W48S87-04  
Output  
22  
Buffer  
Power-on  
Reset  
Timer  
Hold  
Output  
Low  
Output Three-state  
10 k  
(Load Option 0)  
Q
D
Data  
Latch  
Figure 1. Input Logic Selection Through Resistor Load Option  
Jumper Options  
Output Strapping Resistor  
Series Termination Resistor  
VDD  
10 k  
Clock Load  
W48S87-04  
R
Output  
Buffer  
Power-on  
Reset  
Timer  
Resistor Value R  
Output  
IOAPIC, SDRAM  
All other clock outputs  
Hold  
Output  
Low  
Output Three-state  
39  
33  
Q
D
Data  
Latch  
Figure 2. Input Logic Selection Through Jumper Option  
4
PRELIMINARY  
W48S87-04  
CPU/PCI Frequency Selection  
the internal crystal oscillator. When using an external clock  
signal, pin X1 is used as the clock input and pin X2 is left open.  
CPU frequency is selected with I/O pins 26, 7, and 8  
(48MHz/FS0, PCI_F/FS1, and PCI0/FS2, respectively). Refer  
to Table 1 for CPU/PCI frequency programming information.  
Additional frequency selections are available through the seri-  
al data interface. Refer to Table 5 on page 10.  
The input threshold voltage of pin X1 is V /2.  
DD  
The internal crystal oscillator is used in conjunction with a  
quartz crystal connected to device pins X1 and X2. This forms  
a parallel resonant crystal oscillator circuit. The W48S87-04  
incorporates the necessary feedback resistor and crystal load  
capacitors. Including typical stray circuit capacitance, the total  
load presented to the crystal is approximately 20 pF. For opti-  
mum frequency accuracy without the addition of external ca-  
pacitors, a parallel-resonant mode crystal specifying a load of  
20 pF should be used. This will typically yield reference fre-  
quency accuracies within ±100 ppm.  
Output Buffer Configuration  
Clock Outputs  
All clock outputs are designed to drive serial terminated clock  
lines. The W48S87-04 outputs are CMOS-type, which provide  
rail-to-rail output swing. To accommodate the limited voltage  
swing required by some processors, the output buffers of  
CPU0:3 use a special VDDL2 power supply pin that can be  
tied to 2.5V nominal.  
Dual Supply Voltage Operation  
The W48S87-04 is designed for dual power supply operation.  
Supply pins VDD1, VDD2, and VDD3 are connected to a 3.3V  
supply and supply power to the internal core circuit and to the  
clock output buffers, except for outputs CPU0:3 and IOAPIC.  
Supply pins VDDL1 and VDDL2 may be connected to either a  
2.5V or 3.3V supply.  
Crystal Oscillator  
The W48S87-04 requires one input reference clock to synthe-  
size all output frequencies. The reference clock can be either  
an externally generated clock signal or the clock generated by  
5
PRELIMINARY  
W48S87-04  
The output clock is modulated with a waveform depicted in  
Figure 4. This waveform, as discussed in Spread Spectrum  
Clock Generation for the Reduction of Radiated Emissionsby  
Bush, Fessler, and Hardin produces the maximum reduction  
in the amplitude of radiated electromagnetic emissions. The  
deviation selected for this chip is ±0.5% of the center frequen-  
cy. Figure 4 details the Cypress spreading pattern. Cypress  
does offer options with more spread and greater EMI reduc-  
tion. Contact your local Sales representative for details on  
these devices.  
Spread Spectrum Generator  
The device generates a clock that is frequency modulated in  
order to increase the bandwidth that it occupies. By increasing  
the bandwidth of the fundamental and its harmonics, the am-  
plitudes of the radiated electromagnetic emissions are re-  
duced. This effect is depicted in Figure 3.  
As depicted in Figure 3, a harmonic of a modulated clock has  
a much lower amplitude than that of an unmodulated signal.  
The reduction in amplitude is dependent on the harmonic num-  
ber and the frequency deviation or spread. The equation for  
the reduction is  
Spread Spectrum clocking is activated or deactivated by se-  
lecting the appropriate values for bits 10 in data byte 0 of the  
2
I C data stream. Refer to Table 4 for more details.  
dB = 6.5 + 9*log (P) + 9*log (F)  
10  
10  
Where P is the percentage of deviation and F is the frequency  
in MHz where the reduction is measured.  
5dB/div  
SSFTG  
Typical Clock  
Frequency Span (MHz)  
+1.0  
-SS%  
+SS%  
Figure 3. Clock Harmonic with and without SSCG Modulation Frequency Domain Representation  
MAX (+.0.5%)  
MIN. (0.5%)  
Figure 4. Typical Modulation Profile  
6
PRELIMINARY  
W48S87-04  
of the chipset. Clock device register changes are normally  
made upon system initialization, if any are required. The inter-  
face can also be used during system operation for power man-  
agement functions. Table 2 summarizes the control functions  
of the serial data interface.  
Serial Data Interface  
The W48S87-04 features a two-pin, serial data interface that  
can be used to configure internal register settings that control  
particular device functions. Upon power-up, the W48S87-04  
initializes with default register settings, therefore the use of this  
serial data interface is optional. The serial interface is write-  
only (to the clock chip) and is the dedicated function of device  
pins SDATA and SCLOCK. In motherboard applications,  
SDATA and SCLOCK are typically driven by two logic outputs  
Operation  
Data is written to the W48S87-04 in ten bytes of eight bits  
each. Bytes are written in the order shown in Table 3.  
Table 2. Serial Data Interface Control Functions Summary  
Control Function  
Description  
Common Application  
Clock Output Disable  
Any individual clock output(s) can be disabled. Dis- Unused outputs are disabled to reduce EMI  
abled outputs are actively held LOW.  
and system power. Examples are clock out-  
puts to unused SDRAM DIMM socket or PCI  
slot.  
CPU Clock Frequency  
Selection  
ProvidesCPU/PCIfrequency selections beyond the For alternate CPU devices, and power man-  
50- and 66.8-MHz selections that are provided by agement options. Smooth frequency transi-  
the FS0:2 power-on default selection. Frequency is tion allows CPU frequency change under nor-  
changed in a smooth and controlled fashion.  
mal system operation.  
Output Three-state  
Test Mode  
Puts all clock outputs into a high-impedance state. Production PCB testing.  
All clock outputs toggle in relation with X1 input,  
Production PCB testing.  
internal PLL is bypassed. Refer to Table 4.  
(Reserved)  
Reserved function for future device revision or pro- No user application. Register bit must be writ-  
duction device testing.  
ten as 0.  
Table 3. Byte Writing Sequence  
Byte Sequence  
Byte Name  
Bit Sequence  
Byte Description  
1
Slave Address 11010010  
Commands the W48S87-04 to accept the bits in Data Bytes 06 for  
internal register configuration. Since other devices may exist on the  
same common serial data bus, it is necessary to have a specific slave  
address for each potential receiver. The slave receiver address for the  
W48S87-04 is 11010010. Register setting will not be made if the Slave  
Address is not correct (or is for an alternate slave receiver).  
2
3
Command  
Code  
Dont Care  
Dont Care  
Unused by the W48S87-04, therefore bit values are ignored (dont  
care). This byte must be included in the data write sequence to maintain  
proper byte allocation. The Command Code Byte is part of the standard  
serial communication protocol and may be used when writing to another  
addressed slave receiver on the serial data bus.  
Byte Count  
Unused by the W48S87-04, therefore bit values are ignored (dont  
care). This byte must be included in the data write sequence to maintain  
proper byte allocation. The Byte Count Byte is part of the standard serial  
communication protocol and may be used when writing to another ad-  
dressed slave receiver on the serial data bus.  
4
5
Data Byte 0  
Data Byte 1  
Data Byte 2  
Data Byte 3  
Data Byte 4  
Data Byte 5  
Data Byte 6  
Refer to Table 4 The data bits in these bytes set internal W48S87-04 registers that con-  
trol device operation. The data bits are only accepted when the Address  
Byte bit sequence is 11010010, as noted above. For description of bit  
control functions, refer to Table 4, Data Byte Serial Configuration Map.  
6
7
8
9
10  
7
PRELIMINARY  
W48S87-04  
Writing Data Bytes  
7. Table 4 gives the bit formats for registers located in Data  
Bytes 06. Table 5 details additional frequency selections that  
are available through the serial data interface. Table 6 details  
the select functions for Byte 0, bits 1 and 0.  
Each bit in the data bytes control a particular device function  
except for the reservedbits which must be written as a logic  
0. Bits are written MSB (most significant bit) first, which is bit  
Table 4. Data Bytes 06 Serial Configuration Map  
Affected Pin  
Bit Control  
Bit(s)  
Pin No.  
Pin Name  
Control Function  
0
1
Default  
Data Byte 0  
7
6
5
4
3
--  
--  
--  
--  
--  
--  
--  
--  
(Reserved)  
--  
--  
0
0
0
0
0
BYT0_SEL2  
BYT0_SEL1  
BYT0_SEL0  
BYT0 _FS#  
Refer to Table 5  
Refer to Table 5  
Refer to Table 5  
Frequency  
Frequency  
Controlled by  
FS (2:0)  
Controlled by  
BYT0_SEL (2:0)  
2
22  
--  
(Reserved)  
Bit 1 Bit 0  
0
10  
--  
Function (See Table 6 for function details)  
Normal Operation  
Test Mode  
Spread Spectrum On  
All Outputs Three-stated  
00  
0
0
1
1
0
1
0
1
Data Byte 1  
7
26  
25  
--  
48MHZ  
24MHZ  
--  
Clock Output Disable  
Clock Output Disable  
(Reserved)  
Low  
Low  
--  
Active  
Active  
--  
1
1
0
0
1
1
1
1
6
5
4
--  
--  
(Reserved)  
--  
--  
3
40  
41  
43  
44  
CPU3  
CPU2  
CPU1  
CPU0  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
2
1
0
Data Byte 2  
7
6
5
4
3
2
1
0
--  
7
--  
(Reserved)  
--  
--  
0
1
1
1
1
1
1
1
PCI_F  
PCI5  
PCI4  
PCI3  
PCI2  
PCI1  
PCI0  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
15  
13  
12  
11  
10  
8
8
PRELIMINARY  
W48S87-04  
Table 4. Data Bytes 06 Serial Configuration Map (continued)  
Affected Pin  
Bit Control  
Bit(s)  
Pin No.  
Pin Name  
Control Function  
0
1
Default  
Data Byte 3  
7
28  
29  
31  
32  
34  
35  
37  
38  
SDRAM7  
SDRAM6  
SDRAM5  
SDRAM4  
SDRAM3  
SDRAM2  
SDRAM1  
SDRAM0  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
1
1
1
1
1
1
1
1
6
5
4
3
2
1
0
Data Byte 4  
7
--  
--  
--  
--  
--  
--  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
--  
--  
--  
--  
0
0
0
0
1
1
1
1
6
5
--  
--  
--  
4
--  
--  
--  
3
17  
18  
20  
21  
SDRAM11 Clock Output Disable  
SDRAM10 Clock Output Disable  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
2
1
SDRAM9  
SDRAM8  
Clock Output Disable  
Clock Output Disable  
0
Data Byte 5  
7
--  
--  
--  
--  
(Reserved)  
--  
--  
--  
--  
0
0
0
1
0
0
1
1
5
(Reserved)  
5
--  
--  
(Reserved)  
--  
--  
4
47  
--  
IOAPIC  
--  
Clock Output Disable  
(Reserved)  
Low  
--  
Active  
--  
3
2
--  
--  
(Reserved)  
--  
--  
1
46  
2
REF1  
REF0  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Active  
Active  
0
Data Byte 6  
7
6
5
4
3
2
1
0
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0
0
0
0
0
0
0
0
9
PRELIMINARY  
W48S87-04  
Table 5. Additional Frequency Selections through Serial Data Interface Data Bytes  
Input Conditions  
Output Frequency  
Data Byte 0, Bit 3 = 1  
Bit 6  
BYT0_SEL2  
Bit 5  
BYT0_SEL1  
Bit 4  
BYT0_SEL0  
CPU, SDRAM Clocks  
(MHz)  
PCI Clocks  
(MHz)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
50  
25  
32  
75.0  
83.3  
68.5  
55.0  
75.0  
60.0  
66.8  
41.65  
34.25  
27.5  
37.5  
30.0  
33.4  
Table 6. Select Function for Data Byte 0, Bits 0:1  
Input Conditions  
Output Conditions  
PCI_F,  
Data Byte 0  
CPU0:3,  
Function  
Normal Operation  
Test Mode  
Bit 1  
Bit 0  
SRAM0:11  
PCI0:5  
Note 3  
X1/4  
REF0:1, IOAPIC  
48/24MHZ  
0
0
1
0
1
0
Note 3  
X1/2  
14.318 MHz  
X1  
48/24 MHz  
Note 4  
Spread Spectrum  
Note 3  
Note 3  
14.318 MHz  
48/24 MHz  
SS±0.5%  
SS±0.5%  
Three-state  
1
1
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Note:  
3. CPU, SDRAM, and PCI frequency selections are listed in Table 1 and Table 5.  
4. In Test Mode, the 48/24MHz clock outputs are:  
- X1/2 for 48-MHz output.  
- X1/4 for 24-MHz output.  
10  
PRELIMINARY  
W48S87-04  
Although the W48S87-04 is a receive-only device (no data  
write-back capability), it does transmit an acknowledgedata  
pulse after each byte is received. Thus, the SDATA line can  
both transmit and receive data.  
How To Use the Serial Data Interface  
Electrical Requirements  
Figure 5 illustrates electrical characteristics for the serial inter-  
face bus used with the W48S87-04. Devices send data over  
the bus with an open drain logic output that can (a) pull the bus  
line LOW, or (b) let the bus default to logic 1. The pull-up resis-  
tors on the bus (both clock and data lines) establish a default  
logic 1. All bus devices generally have logic inputs to receive  
data.  
The pull-up resistor should be sized to meet the rise and fall  
times specified in AC parameters, taking into consideration to-  
tal bus line capacitance.  
VDD  
VDD  
~ 2k  
~ 2k  
SERIAL BUS DATA LINE  
SERIAL BUS CLOCK LINE  
SDCLK  
SDATA  
SCLOCK  
SDATA  
CLOCK IN  
DATA IN  
CLOCK IN  
DATA IN  
N
N
N
CLOCK OUT  
DATA OUT  
DATA OUT  
CHIP SET  
(SERIAL BUS MASTER TRANSMITTER)  
CLOCK DEVICE  
(SERIAL BUS SLAVE RECEIVER)  
Figure 5. Serial Interface Bus Electrical Characteristics  
11  
PRELIMINARY  
W48S87-04  
Signaling Requirements  
Sending Data to the W48S87-04  
As shown in Figure 6, valid data bits are defined as stable logic  
0 or 1 condition on the data line during a clock HIGH (logic 1)  
pulse. A transitioning data line during a clock HIGH pulse may  
be interpreted as a start or stop pulse (it will be interpreted as  
a start or stop pulse if the start/stop timing parameters are  
met).  
The device accepts data once it has detected a valid start bit  
and address byte sequence. Device functionality is changed  
upon the receipt of each data bit (registers are not double buff-  
ered). Partial transmission is allowed meaning that a transmis-  
sion can be truncated as soon as the desired data bits are  
transmitted (remaining registers will be unmodified). Transmis-  
sion is truncated with either a stop bit or new start bit (restart  
condition).  
A write sequence is initiated by a start bitas shown in Figure  
7. A stop bitsignifies that a transmission has ended.  
As stated previously, the W48S87-04 sends an acknowledge”  
pulse after receiving eight data bits in each byte as shown in  
Figure 8.  
SDATA  
SCLOCK  
Valid  
Data  
Bit  
Change  
of Data Allowed  
Figure 6. Serial Data Bus Valid Data Bit  
SDATA  
SCLOCK  
Start  
Bit  
Stop  
Bit  
Figure 7. Serial Data Bus Start and Stop Bit  
12  
Signaling from System Core Logic  
Start Condition  
Stop Condition  
Slave Address  
(First Byte)  
Command Code  
(Second Byte)  
Byte Count  
(Third Byte)  
Last Data Byte  
(Last Byte)  
MSB  
1
LSB  
1
SDATA  
SCLOCK  
SDATA  
1
2
0
1
0
0
6
0
8
MSB  
1
LSB  
8
MSB  
MSB  
1
LSB  
1
3
4
5
7
A
2
3
4
5
6
7
A
1
2
3
4
2
3
4
5
6
7
8
A
Acknowledgment Bit  
from Clock Device  
Signaling by Clock Device  
SDATA  
tSPF  
tLOW  
tDSU  
tDHD  
tSP  
tSTHD  
tHIGH  
tF  
tSPSU  
tSTHD  
SCLOCK  
tSPSU  
tR  
PRELIMINARY  
W48S87-04  
Absolute Maximum Ratings  
Stresses greater than those listed in this table may cause per-  
manent damage to the device. These represent a stress rating  
above those specified in the operating sections of this specifi-  
cation is not implied. Maximum conditions for extended peri-  
ods may affect reliability.  
only. Operation of the device at these or any other conditions  
.
Parameter  
Description  
Voltage on any pin with respect to GND  
Storage Temperature  
Rating  
0.5 to +7.0  
65 to +150  
0 to +70  
Unit  
V
V
, V  
DD IN  
T
°C  
°C  
°C  
kV  
STG  
T
Operating Temperature  
A
T
Ambient Temperature under Bias  
Input ESD Protection  
55 to +125  
2 (min.)  
B
ESD  
PROT  
Crystal Oscillator  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
1.65  
20  
Max.  
Unit  
V
[5]  
V
X1 Input Threshold Voltage  
TH  
C
Load Capacitance, Imposed on  
pF  
LOAD  
[6]  
External Crystal  
[7]  
C
X1 Input Capacitance  
Pin X2 unconnected  
40  
pF  
IN,X1  
(CPU3.3#_2.5 Input = 0)  
3.3V DC Electrical Characteristics  
T = 0°C to +70°C, VDD1:3 = VDDL1:2 = 3.3V±5% (3.1353.465V)  
A
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
I
Combined 3.3V Supply Current  
CPU0:3 =66.8 MHz  
Outputs Loaded  
160  
mA  
DD  
[8]  
Logic Inputs (All referenced to V  
= 3.3V)  
DDQ3  
V
V
Input Low Voltage  
Input High Voltage  
0.8  
V
V
IL  
2.0  
IH  
[9]  
I
I
Input Low Current  
Input High Current  
10  
10  
µA  
µA  
IL  
IH  
[9]  
Clock Outputs  
Output Low Voltage  
V
I
I
= 1 mA  
50  
mV  
V
OL  
OL  
V
Output High Voltage  
Output Low Current  
= 1 mA  
3.1  
55  
OH  
OH  
[10]  
I
CPU0:3  
V
= 1.5V  
75  
110  
75  
105  
155  
105  
190  
90  
mA  
OL  
OL  
SDRAM0:11  
PCI_F, PCI0:5  
IOAPIC  
80  
55  
100  
60  
135  
75  
REF0  
REF1  
45  
60  
75  
48/24MHZ  
55  
75  
105  
Notes:  
5. X1 input threshold voltage (typical) is VDD/2.  
6. The W48S87-04 contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. Total load placed on crystal  
is 20 pF; this includes typical stray capacitance of short PCB traces to crystal.  
7. X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected).  
8. All clock outputs loaded with maximum lump capacitance test load specified in AC Electrical Characteristics section.  
9. W48S87-04 logic inputs have internal pull-up devices.  
10. CPU0:3 loaded by 60, 6-inch long transmission lines ending with 20-pF capacitors.  
14  
PRELIMINARY  
W48S87-04  
(CPU3.3#_2.5 Input = 0) (continued)  
3.3V DC Electrical Characteristics  
T = 0°C to +70°C, VDD1:3 = VDDL1:2 = 3.3V±5% (3.1353.465V)  
A
Parameter  
Description  
Output High Current CPU0:3  
Test Condition  
Min.  
55  
Typ.  
85  
Max.  
125  
175  
125  
220  
110  
90  
Unit  
[10]  
I
V
= 1.5V  
mA  
OH  
OH  
SDRAM0:11  
PCI_F, PCI0:5  
IOAPIC  
80  
120  
85  
55  
100  
60  
150  
85  
REF0  
REF1  
45  
65  
48/24MHZ  
55  
85  
125  
Pin Capacitance/Inductance  
C
C
Input Pin Capacitance  
Output Pin Capacitance  
Input Pin Inductance  
Except X1 and X2  
5
6
7
pF  
pF  
nH  
IN  
OUT  
IN  
L
Serial Input Port  
V
V
Input Low Voltage  
Input High Voltage  
Input Low Current  
V
V
= 3.3V  
= 3.3V  
0.3V  
DD  
V
V
IL  
DD  
DD  
0.7V  
IH  
DD  
I
I
I
No internal pull-up/down  
on SCLOCK  
10  
10  
µA  
IL  
Input High Current  
No internal pull-up/down  
on SCLOCK  
µA  
mA  
pF  
IH  
Sink Current into SDATA,  
Open Drain N-Channel Device On  
I
= 0.3V  
DD  
6
OL  
OL  
C
Input Capacitance of SDATA and  
SCLOCK  
10  
IN  
C
C
Total Capacitance of SDATA Bus  
Total Capacitance of SCLOCK Bus  
400  
400  
pF  
pF  
SDATA  
SCLOCK  
(CPU3.3#_2.5 Input = 1)  
2.5V DC Electrical Characteristics  
T = 0°C to +70°C, VDD1:3 = 3.3V±5% (3.1353.456V), VDDL1:2 = 2.5V±5% (2.3752.625V)  
A
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
I
3.3V Supply Current  
CPU0:3 = 66.4 MHz  
Outputs Loaded  
300  
50  
mA  
mA  
DD-3.3V  
[8]  
I
2.5V Supply Current  
CPU0:3= 66.4 MHz  
DD-2.5  
[8]  
Outputs Loaded  
Logic Inputs  
V
V
Input Low Voltage  
Input High Voltage  
0.8  
V
V
IL  
2.0  
IH  
[9]  
I
Input Low Current  
10  
10  
µA  
µA  
IL  
IH  
[9]  
I
Input High Current  
15  
PRELIMINARY  
W48S87-04  
(CPU3.3#_2.5 Input = 1) (continued)  
2.5V DC Electrical Characteristics  
T = 0°C to +70°C, VDD1:3 = 3.3V±5% (3.1353.456V), VDDL1:2 = 2.5V±5% (2.3752.625V)  
A
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Clock Outputs  
V
Output Low Voltage  
I
I
= 1 mA  
50  
mV  
V
OL  
OL  
V
Output High Voltage  
Output Low Current  
= 1 mA  
2.2  
45  
55  
40  
50  
OH  
OH  
[10]  
[10]  
I
CPU0:3  
IOAPIC  
CPU0:3  
IOAPIC  
V
= 1.25V  
= 1.25V  
= 1.25V  
= 1.25V  
70  
85  
65  
80  
105  
130  
95  
mA  
OL  
OL  
V
OL  
I
Output High Current  
V
mA  
OH  
OH  
V
120  
OH  
Pin Capacitance/Inductance  
C
C
Input Pin Capacitance  
Output Pin Capacitance  
Input Pin Inductance  
Except X1 and X2  
5
6
7
pF  
pF  
nH  
IN  
OUT  
IN  
L
Serial Input Port  
V
V
Input Low Voltage  
Input High Voltage  
V
V
= 2.5V  
= 2.5V  
0.3V  
DD  
V
V
IL  
DD  
DD  
0.7V  
IH  
DD  
(CPU3.3#_2.5 Input = 0)  
3.3V AC Electrical Characteristics  
T = 0°C to +70°C, VDD1:3 = VDD1:3 = 3.3V±5% (3.1353.465V), f  
= 14.31818 MHz  
A
XTL  
Spread Spectrum function turned off  
AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the  
clock output.  
CPU Clock Outputs, CPU0:3 (Lump Capacitance Test Load = 20 pF)  
CPU = 66.8 MHz  
CPU = 60 MHz  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Determined by PLL divider ratio  
Duration of clock cycle above 2.4V  
Duration of clock cycle below 0.4V  
Min. Typ. Max. Min. Typ. Max. Unit  
t
f
t
t
t
t
t
15  
16.7  
ns  
MHz  
ns  
P
Frequency, Actual  
High Time  
66.8  
59.876  
5.2  
5
6
5.8  
1
H
L
Low Time  
ns  
Output Rise Edge Rate Measured from 0.4V to 2.4V  
Output Fall Edge Rate Measured from 2.4V to 0.4V  
1
4
4
4
4
V/ns  
V/ns  
%
R
F
D
1
1
Duty Cycle  
Measured on rising and falling edge at 45  
1.5V  
55  
45  
55  
t
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Max-  
imum difference of cycle time between  
two adjacent cycles.  
250  
250  
ps  
JC  
t
f
Output Skew  
Measured on rising edge at 1.5V  
250  
3
250  
3
ps  
SK  
ST  
Frequency Stabilization Assumes full supply voltage reached  
ms  
from Power-up (cold  
start)  
within 1 ms from power-up. Short cy-  
cles exist prior to frequency stabiliza-  
tion.  
Z
AC Output Impedance Average value during switching transi- 15  
tion. Used for determining series termi-  
nation value.  
20  
30  
15  
20  
30  
o
16  
PRELIMINARY  
W48S87-04  
(CPU3.3#_2.5 Input = 0) (continued)  
3.3V AC Electrical Characteristics  
SDRAM Clock Outputs, SDRAM0:11 (Lump Capacitance Test Load = 30 pF)  
CPU = 66.8 MHz  
CPU = 60 MHz  
Parameter  
Description  
Period  
Frequency, Actual  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Determined by PLL divider ratio  
Min. Typ. Max. Min. Typ. Max. Unit  
t
15  
16.7  
ns  
MHz  
V/ns  
V/ns  
%
P
f
t
t
t
66.8  
59.876  
Output Rise Edge Rate Measured from 0.4V to 2.4V  
Output Fall Edge Rate Measured from 2.4V to 0.4V  
1
1
4
4
1
1
4
4
R
F
Duty Cycle  
Measured on rising and falling edge at  
1.5V  
45  
55  
45  
55  
D
t
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Max-  
imum difference of cycle time between  
two adjacent cycles.  
250  
250  
ps  
JC  
t
t
Output Skew  
Measured on rising edge at 1.5V  
100  
100  
ps  
ps  
SK  
CPU to SDRAM Clock Covers all CPU/SDRAM outputs. Mea-  
Skew sured on rising edge at 1.5V.  
500  
3
500  
3
SK  
f
FrequencyStabilization Assumes full supply voltage reached  
ms  
ST  
from Power-up (cold  
start)  
within 1 ms from power-up. Short cy-  
cles exist prior to frequency stabiliza-  
tion.  
Z
AC Output Impedance Average value during switching transi- 10  
tion. Used for determining series ter-  
mination value.  
15  
20  
10  
15  
20  
o
PCI Clock Outputs, PCI_F and PCI0:5 (Lump Capacitance Test Load = 30 pF)  
CPU = 66.8 MHz  
Min. Typ. Max. Min. Typ. Max. Unit  
CPU = 60 MHz  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Determined by PLL divider ratio  
Duration of clock cycle above 2.4V  
Duration of clock cycle below 0.4V  
t
f
t
t
t
t
t
30  
33.3  
ns  
MHz  
ns  
P
Frequency, Actual  
High Time  
33.4  
29.938  
12  
12  
1
13.3  
13.3  
1
H
L
Low Time  
ns  
Output Rise Edge Rate Measured from 0.4V to 2.4V  
Output Fall Edge Rate Measured from 2.4V to 0.4V  
4
4
4
4
V/ns  
V/ns  
%
R
F
D
1
1
Duty Cycle  
Measured on rising and falling edge at  
1.5V  
45  
55  
45  
55  
t
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Max-  
imum difference of cycle time between  
two adjacent cycles.  
250  
250  
ps  
JC  
t
t
Output Skew  
Measured on rising edge at 1.5V  
250  
4
250  
4
ps  
ns  
SK  
CPU to PCI Clock Skew Covers all CPU/PCI outputs. Mea-  
sured on rising edge at 1.5V. CPU  
leads PCI output.  
1
1
O
f
FrequencyStabilization Assumes full supply voltage reached  
3
3
ms  
ST  
from Power-up (cold  
start)  
within 1 ms from power-up. Short cy-  
cles exist prior to frequency stabiliza-  
tion.  
Z
AC Output Impedance Average value during switching transi- 15  
tion. Used for determining series termi-  
nation value.  
20  
30  
15  
20  
30  
o
17  
PRELIMINARY  
W48S87-04  
(CPU3.3#_2.5 Input = 0) (continued)  
3.3V AC Electrical Characteristics  
IOAPIC Clock Output (Lump Capacitance Test Load = 20 pF)  
CPU = 60/66.8 MHz  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.4V  
Min.  
Typ.  
Max.  
Unit  
MHz  
V/ns  
V/ns  
%
f
14.31818  
t
t
t
f
1
1
4
4
R
Measured from 2.4V to 0.4V  
F
Measured on rising and falling edge at 1.5V  
Assumes full supply voltage reached within  
45  
55  
1.5  
D
Frequency Stabilization  
ms  
ST  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Z
AC Output Impedance  
Average value during switching transition.  
8
12  
15  
o
Used for determining series termination value.  
REF0 Clock Output (Lump Capacitance Test Load = 45 pF)  
CPU = 60/66.8 MHz  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.4V  
Min.  
Typ.  
Max.  
Unit  
MHz  
V/ns  
V/ns  
%
f
14.31818  
t
t
t
f
1
1
4
4
R
Measured from 2.4V to 0.4V  
F
Measured on rising and falling edge at 1.5V  
Assumes full supply voltage reached within  
40  
60  
1.5  
D
Frequency Stabilization  
ms  
ST  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Z
AC Output Impedance  
Average value during switching transition.  
17  
20  
25  
o
Used for determining series termination value.  
REF1 Clock Output (Lump Capacitance Test Load = 20 pF)  
CPU = 60/66.8 MHz  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.4V  
Min.  
Typ.  
Max.  
Unit  
MHz  
V/ns  
V/ns  
%
f
14.31818  
t
t
t
f
1
1
4
4
R
Measured from 2.4V to 0.4V  
F
Measured on rising and falling edge at 1.5V  
40  
55  
1.5  
D
Frequency Stabilization  
Assumes full supply voltage reached within  
ms  
ST  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Z
AC Output Impedance  
Average value during switching transition.  
Used for determining series termination value.  
20  
25  
35  
o
18  
PRELIMINARY  
W48S87-04  
(CPU3.3#_2.5 Input = 0) (continued)  
3.3V AC Electrical Characteristics  
48-/24-MHZ Clock Outputs (Lump Capacitance Test Load = 20 pF)  
CPU = 60/66.8 MHz  
Parameter  
Description  
Test Condition/Comments  
Min.  
Typ.  
Max.  
Unit  
f
Frequency, Actual  
Determined by PLL divider ratio  
(see n/m below)  
48.008/24.004  
MHz  
f
Deviation from 48 MHz  
PLL Ratio  
(48.008 48)/48  
+167  
ppm  
D
m/n  
(14.31818 MHz x 57/17 = 48.008 MHz)  
Measured from 0.4V to 2.4V  
57/17  
t
t
t
t
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
1
1
4
4
V/ns  
V/ns  
%
R
Measured from 2.4V to 0.4V  
F
Measured on rising and falling edge at 1.5V  
40  
55  
500  
D
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Maximum  
difference of cycle time between two adjacent  
cycles.  
ps  
JC  
f
Frequency Stabilization  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Assumes full supply voltage reached within  
3
ms  
ST  
Z
AC Output Impedance  
Average value during switching transition.  
Used for determining series termination value.  
15  
20  
30  
o
Serial Input Port  
Parameter  
Description  
Test Condition  
Min.  
0
Typ.  
Max.  
Unit  
kHz  
µs  
f
t
t
t
t
t
SCLOCK Frequency  
Start Hold Time  
Normal Mode  
100  
SCLOCK  
STHD  
LOW  
4.0  
4.7  
4.0  
250  
0
µs  
SCLOCK Low Time  
SCLOCK High Time  
Data Setup Time  
Data Hold Time  
µs  
HIGH  
DSU  
ns  
(Transmitter should provide a 300-ns hold  
time to ensure proper timing at the receiver.)  
ns  
DHD  
t
t
Rise Time, SDATA and  
SCLOCK  
From 0.3V to 0.7V  
1000  
300  
ns  
ns  
R
F
DD  
DD  
Fall Time, SDATA and  
SCLOCK  
From 0.7V to 0.3V  
DD  
DD  
µs  
µs  
t
t
Stop Setup Time  
4.0  
4.7  
STSU  
Bus Free Time between  
Stop and Start Condition  
SPF  
ns  
t
Allowable Noise Spike  
Pulse Width  
50  
SP  
19  
PRELIMINARY  
W48S87-04  
(CPU3.3#_2.5 Input = 1)  
2.5V AC Electrical Characteristics  
T = 0°C to +70°C, VDD1:3 = 3.3V±5% (3.1353.465V), VDDL1:2 = 2.5V±5% (2.3752.625V),  
A
XTL  
f
= 14.31818 MHz  
Spread Spectrum function turned off  
AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the  
clock output.  
CPU Clock Outputs, CPU0:3 (Lump Capacitance Test Load = 20 pF)  
CPU = 66.8 MHz  
CPU = 60 MHz  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.25V  
Determined by PLL divider ratio  
Duration of clock cycle above 2.0V  
Duration of clock cycle below 0.4V  
Min. Typ. Max. Min. Typ. Max. Unit  
t
f
t
t
t
t
t
15  
16.7  
ns  
MHz  
ns  
P
Frequency, Actual  
High Time  
66.8  
59.876  
5.2  
5
6
H
L
Low Time  
5.8  
0.8  
0.8  
45  
ns  
Output Rise Edge Rate Measured from 0.4V to 2.0V  
Output Fall Edge Rate Measured from 2.0V to 0.4V  
0.8  
0.8  
45  
3
3
3
3
V/ns  
V/ns  
%
R
F
D
Duty Cycle  
Measured on rising and falling edge at  
55  
55  
1.25V  
t
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.25V. Max-  
imum difference of cycle time between  
two adjacent cycles.  
250  
250  
ps  
JC  
t
f
Output Skew  
Measured on rising edge at 1.25V  
250  
3
250  
3
ps  
SK  
Frequency Stabiliza-  
tion from Power-up  
(cold start)  
Assumes full supply voltage reached  
within 1 ms from power-up. Short cycles  
exist prior to frequency stabilization.  
ms  
ST  
Z
AC Output Impedance Average value during switching transi-  
tion. Used for determining series termi-  
nation value.  
12  
20  
30  
12  
20  
30  
o
IOAPIC Clock Output (Lump Capacitance Test Load = 20 pF)  
CPU = 60/66.8 MHz  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Min.  
Typ.  
Max.  
Unit  
f
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.0V  
14.31818  
MHz  
V/ns  
V/ns  
%
t
t
t
f
1
1
4
4
R
Measured from 2.0V to 0.4V  
F
Measured on rising and falling edge at 1.25V  
45  
55  
1.5  
D
Frequency Stabilization  
Assumes full supply voltage reached within  
ms  
ST  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Z
AC Output Impedance  
Average value during switching transition. Used  
for determining series termination value.  
10  
15  
25  
o
Ordering Information  
Freq. Mask  
Code  
Package  
Name  
Ordering Code  
Package Type  
W48S87  
04  
H
48-pin SSOP (300 mils)  
Document #: 38-00859  
20  
PRELIMINARY  
W48S87-04  
Package Diagram  
48-Pin Small Shrink Outline Package (SSOP, 300 mils)  
Summary of nominal dimensions in inches:  
Body Width: 0.296  
Lead Pitch: 0.025  
Body Length: 0.625  
Body Height: 0.102  
© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

W48S87-04H

Clock Generator, PDSO48,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

W48S87-04HT

Processor Specific Clock Generator, 83.3MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

W48S87-72

Desktop/Notebook Frequency Generator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

W48S87-72H

CPU System Clock Generator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

W48S87-72XT

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

W49

3-Phase Motor Driver for CD-ROMs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CERAMATE

W49180

Super high flux output and high luminance

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SEOUL

W49180-08

Single Color LED,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SEOUL

W49C65-01H

Processor Specific Clock Generator, 75MHz, CMOS, PDSO48, 0.300 INCH, MO-118AA, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

W49C65-01H

75 MHz, PROC SPECIFIC CLOCK GENERATOR, PDSO48, 0.300 INCH, MO-118AA, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

W49F002

256K X 8 CMOS FLASH MEMORY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W49F002A-12

Flash, 256KX8, 120ns, PDIP32, PLASTIC, DIP-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND