DEI1160-SMS [DEIAZ]

PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INPUT INTERFACE IC;
DEI1160-SMS
型号: DEI1160-SMS
厂家: Device Engineering Incorporated    Device Engineering Incorporated
描述:

PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INPUT INTERFACE IC

输入元件 光电二极管 接口集成电路
文件: 总13页 (文件大小:517K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Device  
Engineering  
Incorporated  
DEI1160  
385 East Alamo Drive  
Chandler, AZ 85225  
Phone: (480) 303-0822  
Fax: (480) 303-0824  
E-mail: admin@deiaz.com  
PROGRAMMABLE GND/OPN &  
28V/OPN DISCRETE INPUT  
INTERFACE IC  
FEATURES  
x
Eight discrete inputs  
o
o
o
o
o
o
Individually configurable to sense either GND/OPEN or 28V/OPEN(or 28V/GND) discrete signals  
Hysteresis provides noise immunity  
1mA input current to prevent dry relay contacts.  
Internal isolation diode  
Inputs protected from Lightning Induced Transients per DO160E, Section 22, Cat A3 and B3.  
Inputs protected from Power Input Abnormal Surge per DO160E, Section 16, Cat Z.  
x
Serial I/O interface to read data register and write configuration register  
o
o
o
o
Direct interface to Serial Peripheral Interface (SPI) port.  
TTL/CMOS compatible inputs and Tristate output  
10MHz Data Rate  
Serial input to expand Shift Register  
x
x
x
Logic Supply Voltage (VCC):  
Analog Supply Voltage (VDD):  
16L SOIC EP package  
3.3V or 5V  
15V +/-10%  
PIN ASSIGNMENTS  
1
16  
VDD  
GND  
VCC  
SEL  
DIN1  
DIN2  
DIN3  
DIN4  
DIN5  
DIN6  
DIN7  
DIN8  
DEI1160  
SDI  
/CS  
SCLK  
SDO  
Figure 1 DEI1160 Pin Assignment (16 Lead SOIC)  
©2013 Device Engineering Inc.  
1 of 13  
DS-MW-01160-01 Rev D  
03/17/2014  
FUNCTIONAL DESCRIPTION  
The DEI1160 is an eight-channel discrete-to-digital interface IC implemented in an HV DMOS technology. It senses eight  
discrete signals of the type commonly found in avionic systems and converts them to serial logic data. Each input can be  
individually configured as either GND/OPEN or 28V/OPEN format input via a serial data input command. The discrete data  
is read from the device via an eight-bit serial shift register with 3-state output. This serial interface is compatible with the  
industry standard Serial Peripheral Interface (SPI) bus.  
Table 1 Pin Descriptions  
PINS  
NAME  
DESCRIPTION  
1-8  
DIN[1:8]  
Discrete Inputs. Eight discrete signals which can be individually  
configured as either GND/OPEN or 28V/OPEN format inputs.  
Logic Output. Serial Data Output. This pin is the output from MSB (Bit  
8) of the selected shift register (Data/Configuration). It is clocked by the  
rising edge of SCLK. This is a 3-state output enabled by /CS.  
Logic Input. Serial Shift Clock. A low-to-high transition on this input  
shifts data on the serial data input into Bit 0 of the selected shift register.  
The selected shift register is shifted from Bit 0 to Bit 7. Bit 7 of the  
selected shift register is driven on DOUT.  
9
SDO  
10  
SCLK  
11  
/CS  
Logic Input. Chip Select. A low level on this input enables the SDO 3-  
state output and the selected shift register. A high level on this input  
forces DOUT to the high impedance state and disables the shift registers  
so SCLK transitions have no effect. When the Data register is selected, a  
high-to-low transition causes the Discrete Input data to be loaded into the  
Data register. When the Configuration Register is selected, a low-to-high  
transition causes the Serial Configuration register data to be loaded into  
the parallel configuration outputs.  
12  
13  
SDI  
Logic Input. Serial Data Input. Data on this input is shifted into the LSB  
(Bit 1) of the selected shift register on the rising edge of the SCLK when  
/CS input is low.  
Logic Input. Selects between the Serial DATA and CONFIGURATION  
registers. H = DATA, L = CONF.  
SEL  
14  
15  
16  
VCC  
GND  
VDD  
Logic Supply Voltage. 3.3V or 5V  
Logic/Signal Ground  
Analog Supply Voltage. +15V+/-10%  
©2013 Device Engineering Inc.  
2 of 13  
DS-MW-01160-01 Rev D  
03/17/2014  
SCLK  
Control  
Logic  
/CS  
SEL  
ENB  
SDO  
MUX  
SFT/LD  
SDI  
CONFIGURATION REG  
8 bit Shift Register  
SDO  
(D0)  
w/ latched parallel output  
SCK  
PDO[1:8]  
VDD  
VCC  
CFG_SEL[1:8]  
DISCRETE AFE  
Channels 1 to 8  
DIN[1:8]  
DIN[1:8]  
DOUT[1:8]  
GND  
PDI[1:8]  
SFT/LD  
SDI  
DATA REG  
8 bit Shift Register  
w/ Parallel Input  
SDO  
(D0)  
SDI  
SCK  
Figure 2 FUNCTION DIAGRAM  
Vdd  
100K  
2K  
Vdd  
dpda  
50V  
Vcc  
DINN  
+
10K  
AMP  
+
400khz  
DOUTN  
dpd  
20V  
Comparator  
Vos  
10K  
-
dp  
20V  
qna  
80v  
Vthreshold  
REFERENCE  
SELECT  
CFG_SELN  
Figure 3 DISCRETE AFE FUNCTION DIAGRAM  
©2013 Device Engineering Inc.  
3 of 13  
DS-MW-01160-01 Rev D  
03/17/2014  
Table 2 Truth Table  
SEL  
X
H
/CS  
H
Ļ
SCLK  
SDI  
X
X
DIN[1:8]  
SDO  
HI Z  
DIN[8]  
DR[8]  
DESCRIPTION  
Not Selected  
DR[1:8]ĸ DIN[1:8]  
X
L
Ĺ
X
Valid  
X
H
L
DR[1]  
DR[n+1] ĸ DR[n], DR[1] ĸ SDI  
L
L
L
Ĺ
Ĺ
L
CR[1]  
X
X
X
CR[8]  
HI Z  
CR[n+1] ĸ CR[n], CR[1] ĸ SDI  
CL[1:8]ĸ CR[1:8]  
Legend:  
DR = Data Register  
CR = Configuration Register  
CL = Configuration Latch  
DIN[1:8] Discrete AFE  
The Discrete Input Analog Front End circuit function is represented in Figure 3. Each DINn signal is conditioned by the  
resistor / diode network and presented to an amplifier followed by a comparator with hysteresis. When the input is configured  
for GND/OPEN operation, the pull-up resistor & diode is enabled and the appropriate amplifier offset voltage and comparator  
threshold voltage are selected. When configured for 28V/OPEN, the pull-down resistor is enabled and the amp/comparator is  
appropriately configured.  
Some notable features are:  
x
x
The input current is ~1mA. This current will prevent a “dry” relay contact.  
The input threshold voltage and hysteresis:  
o
o
o
The falling Vth > 3.5V.  
The rising Vth < 14V.  
Hysteresis is maximum practical to meet the threshold requirements.  
x
x
Input noise immunity is maximized with a combination of voltage hysteresis and use of a slow input voltage  
comparator  
The inputs can withstand continuous input voltages of 40V minimum. The isolation diode breakdown voltage is  
greater than 45V. The 10K Ohm input resistor is designed to limit diode breakdown current to safe levels during  
transient events.  
Data Register  
The 8-bit Data Register is a “parallel-input, serial-output” register that samples the input channels and reads-out the data to the  
Serial Data Output. The register is read via the SDO output as described in Figure 4 and Figure 5. A low input level results in  
a Logic 0, and a high input level results in a Logic 1.  
Configuration Register  
The 8-bit Configuration Register is a “serial-input, parallel-output with data latch” register that individually configures each  
AFE input as either GND/OPEN or 28V/OPEN format. The register is programmed via the serial data input as described in  
Figure 6 and Figure 7. Logic 0 sets the respective input to 28V/OPEN mode (pull-down); Logic 1 sets the respective input to  
GND/OPEN mode (pull-up).  
The register is Reset to 0’s when the Vcc Logic Supply voltage transitions from low to hi, thus initializing the AFE inputs to a  
pull-down state.  
©2013 Device Engineering Inc.  
4 of 13  
DS-MW-01160-01 Rev D  
03/17/2014  
Serial Interface  
The DEI1160 incorporates a serial IO interface for programming the Discrete Input configuration and for reading the Discrete  
Input status. Refer to Figure 2. The interface is SPI compatible and consists of /CS, SEL, SCLK, SDO, and SDI signals.  
Waveform Figures 4 – 7 depict the Data Read sequence and Configuration Write sequence for both 8-Bit cycles and also 16  
bit “daisy chain” applications.  
Power Up Initialization  
The DEI1160 incorporates an on-chip power-up reset circuit and power sequencing provisions to force the DIN inputs to the  
28V/Open (internal pull down) state upon power. The reset circuit monitors the VCC logic supply and forces the  
Configuration Register to the Logic 0 (28V/Open) while VCC is stabilizing. The AFE circuit is designed to present the  
28V/Open (internal pull down) condition when VDD supply is present and VCC is below operational voltage.  
SEL  
/CS  
X
SCLK  
X
VALID  
X
X
DIN[1:8]  
X
X
SDI  
SDO  
DIN8  
DIN7  
DIN6  
DIN5  
DIN4  
DIN3  
DIN2  
DIN1  
DIN inputs latched into DATA S-Reg  
Figure 4 Read Data Register  
SEL  
/CS  
X
SCLK  
X
VALID  
X
X
DIN[1:8]  
SI8  
SI7  
SI6  
SI5  
SI4  
SI3  
SI2  
SI1  
X
X
SDI  
DIN8  
DIN7  
DIN6  
DIN5  
DIN4  
DIN3  
DIN2  
DIN1  
SI8  
SI7  
SI6  
SI5  
SI4  
SI3  
SI2  
SI1  
SDO  
DIN inputs latched into DATA S-Reg  
SDI data shifted to SDO after 8 bit delay  
Figure 5 Read Data Register, 16 Bit Daisy Chain  
©2013 Device Engineering Inc.  
5 of 13  
DS-MW-01160-01 Rev D  
03/17/2014  
SEL  
/CS  
X
SCLK  
X
X
DIN[1:8]  
NCD  
8
NCD  
7
NCD  
6
NCD  
5
NCD  
4
NCD  
3
NCD  
2
NCD  
1
X
X
SDI  
PCD  
8
PCD  
7
PCD  
6
PCD  
5
PCD  
4
PCD  
3
PCD  
2
PCD  
1
NCD  
8
SDO  
PDO[1:8]  
Internal Config Latch  
New  
Configuration  
Present Configuration  
NCDn = New Configuration Data Bits  
PCDn = Present Configuration Bits  
Figure 6 Write Configuration Register  
SEL  
/CS  
SCLK  
X
X
X
DIN[1:8]  
DCD  
8
DCD  
7
DCD  
6
DCD  
5
DCD  
4
DCD  
3
DCD  
2
DCD  
1
NCD  
8
NCD  
7
NCD  
6
NCD  
5
NCD  
4
NCD  
3
NCD  
2
NCD  
1
X
X
SDI  
PCD  
8
PCD  
7
PCD  
6
PCD  
5
PCD  
4
PCD  
3
PCD  
2
PCD  
1
DCD  
8
DCD  
7
DCD  
6
DCD  
5
DCD  
4
DCD  
3
DCD  
2
DCD  
1
NCD  
8
SDO  
New  
Configuration  
PDO[1:8]  
Internal  
Config  
Present Configuration  
DCDn = Daisy Chain Data Bits  
NCDn = New Configuration Data Bits  
PCDn = Present Configuration Bits  
Latch  
Figure 7 Write Configuration Register, 16 bit Daisy Chain  
©2013 Device Engineering Inc.  
6 of 13  
DS-MW-01160-01 Rev D  
03/17/2014  
LIGHTNING PROTECTION  
DINn inputs are designed to survive lightning induced transients as defined by RTCA DO160E, Section 22, Cat A3 and B3,  
Waveforms 3, 4, and 5A, Level 3. See waveforms below.  
V
V/I  
Peak  
25% to 75%  
of Largest Peak  
T1 = 6.4us  
T2 = 70us  
50%  
0
t
50%  
F = 1MHZ and 10MHZ  
0
t
T1  
T2  
Figure 8 Voltage / Current Waveform 3  
Figure 9 Voltage Waveform 4  
V/I  
Peak  
T1=40us  
T2=120us  
Waveform Source Impedance characteristics:  
x
x
x
Waveform 3 Voc/Isc = 600V / 24A => 25 Ohms  
Waveform 4 Voc/Isc = 500 V / 100A => 5 Ohms*  
Waveform 5A Voc / Isc = 500V / 500A => 1 Ohm*  
*Amplitude tolerances are +20%, -0%.  
50%  
0
t
T1  
T2  
Figure 10 Current/Voltage Waveform 5A  
©2013 Device Engineering Inc.  
7 of 13  
DS-MW-01160-01 Rev D  
03/17/2014  
ELECTRICAL DESCRIPTION  
Table 3 Absolute Maximum Ratings  
PARAMETER  
MIN  
-0.3  
-0.3  
MAX  
+7.0  
18  
UNITS  
Vcc Supply Voltage  
Vdd Supply Voltage  
V
V
Operating Temperature  
Plastic Package  
Storage Temperature  
Plastic Package  
-55  
-55  
+125  
+150  
°C  
°C  
Input Voltage  
DIN[1:8]  
Continuous  
DO160E, Waveform 3, Level 3  
DO160E, Waveform 4 and 5, Level 3+  
-10  
-600  
-600  
+49  
+600  
+600  
V
V
V
V
V
V
DO160E, Abnormal Surge Voltage, 100ms  
80  
Logic Inputs  
DOUT  
-1.5  
-0.5  
VCC + 1.5  
VCC + 0.5  
Power Dissipation @ 125 °C: (> 10 Sec)  
16L SOIC  
Junction Temperature:  
Tjmax, Plastic Packages  
ESD per JEDEC A114-A Human Body Model  
Logic and Supply pins  
0.3  
W
°C  
V
145  
2000  
1000  
235  
DIN pins  
Peak Body Temperature (10 sec duration)  
°C  
Notes:  
1. Stresses above absolute maximum ratings may cause permanent damage to the device.  
2. Voltages referenced to Ground  
Table 4 Recommended Operating Conditions  
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
VCC  
VDD  
5.0V±10%, 3.3V±10%  
15V±10%  
Logic Inputs and Outputs  
Discrete Inputs  
0 to VCC  
DIN[1:8]  
Ta  
0 to 40V  
Operating Temperature  
Plastic  
-55 to +125 ºC  
©2013 Device Engineering Inc.  
8 of 13  
DS-MW-01160-01 Rev D  
03/17/2014  
Table 5 DC Electrical Characteristics  
SYMBOL  
PARAMETER  
CONDITIONS (1)  
MIN  
LIMITS  
NOM  
UNIT  
MAX  
Logic Inputs/Outputs  
VIH  
HI level input voltage  
VCC = 5V  
VCC = 3.3V  
3.1  
2.0  
V
VIL  
VIhst  
LO level input voltage  
Input hysteresis voltage,  
SCLK input  
0.8  
V
mV  
(3)  
50  
VOH  
HI level output voltage  
IOUT = -20uA  
VCC  
VCC – 0.1  
2.4  
V
IOUT = -4mA, Vcc = 3V  
IOUT = 20uA  
IOUT = 4mA, Vcc = 3V  
Vin = Vcc or GND  
3
V
V
V
VOL  
LO level output voltage  
0.1  
0.4  
10  
IIN  
Input leakage  
-10  
-10  
uA  
IOZ  
3-state leakage current  
Output in Hi Impedance  
state.  
10  
uA  
VOUT = VIHmin, VILmax  
Discrete Inputs, Configured as Ground/Open (internal pull-up)  
VIH  
RIH  
HI level input voltage  
HI level Din-to-GND  
resistance  
14  
50K  
49  
V
Ohm  
Resistor from Din to GND to  
guarantee HI input condition.  
Vin = 28V, VDD = 15V  
IIH  
HI level input current  
0
1.7  
240  
uA  
mA  
V
Vin = 49V, VDD = 15V  
VIL  
RIL  
LO level input voltage  
LO level Din-to-GND  
resistance  
-3  
3.5  
500  
Resistor from Din to GND to  
guarantee LO input  
condition.  
Ohm  
IIL  
VIhst  
LO level input current  
Input hysteresis voltage  
Vin = 0V, VDD = 15V  
-0.9  
1
-1.1  
-1.25  
mA  
V
Discrete Inputs, Configured as 28V/Open (internal pull-down)  
VIH  
IIH  
VIL  
IIL  
HI level input voltage  
14  
1.1  
-3  
49  
1.75  
3.5  
V
mA  
V
uA  
V
HI level input current  
LO level input voltage  
LO level input current  
Input hysteresis voltage  
Vin = 28V, VDD = 15V  
Vin = 1V, VDD = 15V  
1.3  
48  
100  
VIhst  
1
Power Supply  
Vin(logic) = Vcc or GND  
VIN[1:8]= open  
Vin(logic) = Vcc or GND  
VIN[1:8]= Open  
ICC  
IDD  
Max quiescent logic supply  
current  
Max quiescent analog  
supply current  
1
2
6
13.5  
25  
mA  
mA  
VIN[1:8]= GND, All  
configured as Ground/Open  
34  
Notes:  
1. Ta = -55 to +125 ºC. VDD = +15V±10%, VCC = 3.0 to 5.5V unless otherwise noted.  
2. Current flowing into device is positive. Current flowing out of device is negative. Voltages are referenced to  
Ground.  
3. Guaranteed by design. Not production tested.  
©2013 Device Engineering Inc.  
9 of 13  
DS-MW-01160-01 Rev D  
03/17/2014  
Table 6 AC Electrical Characteristics (4)  
SYMBOL  
PARAMETER  
CONDITIONS  
(6, 7)  
LIMITS  
UNIT  
Min  
Max  
fMAX  
tW  
tsu1  
th1  
SCLK frequency. (50% duty cycle) (5) VCC = 3.0V  
VCC = 4.5V  
8.6  
14  
MHz  
ns  
SCLK pulse width. (5)  
VCC = 3.0V  
VCC = 4.5V  
VCC = 3.0V  
VCC = 4.5V  
VCC = 3.0V  
VCC = 4.5V  
50  
30  
25  
25  
30  
20  
2
15  
25  
20  
25  
20  
30  
25  
25  
20  
Setup time, SCLK low to /CSĻ.  
Hold time, /CSĻ to SCLKĹ.  
ns  
ns  
tsu2  
th2  
tsu3  
Setup time, DIN valid to /CSĻ.  
Hold time, /CSĻ to DIN not valid.  
Setup time, SDIN valid to SCLKĹ.  
us  
ns  
ns  
VCC = 3.0V  
VCC = 4.5V  
VCC = 3.0V  
VCC = 4.5V  
VCC = 3.0V  
VCC = 4.5V  
VCC = 3.0V  
VCC = 4.5V  
VCC = 3.0V  
VCC = 4.5V  
VCC = 3.0V  
VCC = 4.5V  
VCC = 3.0V  
VCC = 4.5V  
VCC = 3.0V  
VCC = 4.5V  
th3  
tsu4  
th4  
Hold time, SCLKĹ to SDIN not valid.  
Setup time, SEL valid to /CSĻ.  
Hold time, SEL valid to /CSĹ.  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pf  
pf  
tp1  
Propagation delay, /CSĻ to DOUT  
valid. (1)  
Propagation delay, SCLKĹ to DOUT  
valid. (1)  
Propagation delay, /CSĹ to DOUT HI-  
Z. (1) (2) (3)  
Delay time between /CS active. (5)  
105  
60  
90  
50  
80  
60  
tp2  
tp3  
tp4  
20  
20  
Cin  
Cout  
Notes:  
Maximum logic input pin Capacitance.  
(5)  
Maximum DOUT pin capacitance,  
output in HI-Z state. (5)  
10  
15  
1. DOUT loaded with 50pF to GND.  
2. DOUT loaded with 1K Ohms to GND for Hi output, 1K Ohms to VCC for Low output.  
3. Timing measured at 25%VCC for “0” to Hi-Z, 75%VCC for “1” to Hi-Z.  
4. Sample tested on lot basis.  
5. Not tested  
6. Ta = -55 to +125ºC. VDD = +15V, VIL = 0V, VIH = VCC unless otherwise noted.  
7. Measurements made at 50%VCC.  
©2013 Device Engineering Inc.  
10 of 13  
DS-MW-01160-01 Rev D  
03/17/2014  
th4  
tsu4  
SEL  
/CS  
tp4  
th1  
tsu1  
tW  
SCLK  
DIN[1:8]  
1/fmax  
tsu2  
th2  
X
valid  
X
tsu3  
th3  
X
X
valid  
SDI  
tp2  
tp1  
tp3  
D/C0  
D/C1  
SDO  
Figure 11 Switching Waveforms  
ORDERING INFORMATION  
Part Number  
DEI1160-SES  
DEI1160-SMS  
Marking  
DEI1160 SES  
DEI1160 SMS  
Package  
16 EP SOIC  
16 EP SOIC  
Burn In  
No  
Temperature  
-55 / +85 ºC  
-55 / +125 ºC  
No  
DEI reserves the right to make changes to any products or specifications herein. DEI makes no warranty, representation, or  
guarantee regarding suitability of its products for any particular purpose.  
©2013 Device Engineering Inc.  
11 of 13  
DS-MW-01160-01 Rev D  
03/17/2014  
APPLICATION INFORMATION  
The 1160 power dissipation varies with channel configuration and operating conditions. Figure 12 shows the device package  
power dissipation for various conditions. This includes the contributions from Supply currents and Input currents. The four  
curves are as follows:  
Table 7 Legend for Power Dissipation Curves  
CURVE ID  
+28V/OPN-Nom  
+28V/OPN-Wst  
CONFIGURATION SUPPLY VOLTAGE  
/ TEMPERATURE  
PROCESS  
CONDITION  
Typical  
ACTIVE CHANNEL  
All channels =  
28V/OPN  
3.3V, 15V / 27ºC  
28V  
28V  
All channels =  
28V/OPN  
5.5V, 16.5V/ 125ºC  
Worst case  
(Low resistance and  
fast transistors)  
Typical  
All channels =  
GND/OPN  
3.3V, 15V / 27ºC  
GND  
GND  
GND/OPN-Nom  
GND/OPN-Wst  
All channels =  
GND/OPN  
5.5V, 16.5V / 125ºC  
Worst case  
(Low resistance and  
fast transistors)  
DEI1160 Pwr Dissipation Graph  
800  
700  
600  
500  
400  
300  
200  
100  
0
+28V/OPN-Nom  
+28V/OPN-Wst  
GND/OPN-Nom  
GND/OPN-Wst  
0
1
2
3
4
5
6
7
8
Number CH Active  
Figure 12 Power Dissipation for Various Conditions  
©2013 Device Engineering Inc.  
12 of 13  
DS-MW-01160-01 Rev D  
03/17/2014  
PACKAGE DESCRIPTION - 16L Narrow Body EP SOIC  
Moisture Sensitivity:  
MSL 1 / 260ÛC  
Ĭja:  
~40ÛC/W (Mounted on 4 layer PCB with exposed pad soldered to PCB land with  
thermal vias to internal GND plane)  
~10ÛC/W  
Ĭjc:  
Lead Finish:  
SnPb plated  
Exposed Pad:  
Electrically Isolated from IC terminals.  
The PCB design and layout is a significant factor in determining thermal resistance (Ĭja) of the IC package. Use maximum  
trace width on all power and signal connections at the IC. These traces serve as heat spreaders which improve heat flow from  
the IC leads. The exposed heat sink pad of the SOIC package should be soldered to a heat-spreader land pattern on the PCB.  
The IC exposed pad is electrically isolated, so the PCB land may be at any potential, typically GND, for the best heat sink.  
Maximize the PCB land size by extending it beyond the IC outline if possible. A grid of thermal VIAs, which drop down and  
connect to the buried copper plane(s), should be placed under the heat-spreader land. A typical VIA grid is 12mil holes on a  
50mil pitch. The barrel is plated to about 1.0 ounce copper. Use as many VIAs as space allows. VIAs should be plugged to  
prevent voids being formed between the exposed pad and PCB heat-spreader land due to solder escaping by the capillary  
effect. This can be avoided by tenting the VIAs with solder mask.  
Figure 13 16 Lead Narrow Body EP SOIC Outline  
©2013 Device Engineering Inc.  
13 of 13  
DS-MW-01160-01 Rev D  
03/17/2014  

相关型号:

DEI1160A

PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INPUT INTERFACE IC
DEIAZ

DEI1160A-SES

PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INPUT INTERFACE IC
DEIAZ

DEI1160A-SMS

PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INPUT INTERFACE IC
DEIAZ

DEI1166

OCTAL GND/OPEN INPUT PARALLEL OUTPUT INTERFACE IC
DEIAZ

DEI1166-TES-G

OCTAL GND/OPEN INPUT PARALLEL OUTPUT INTERFACE IC
DEIAZ

DEI1166-TMS-G

OCTAL GND/OPEN INPUT PARALLEL OUTPUT INTERFACE IC
DEIAZ

DEI1167

OCTAL GND/OPEN INPUT PARALLEL OUTPUT INTERFACE IC
DEIAZ

DEI1167-TES-G

OCTAL GND/OPEN INPUT PARALLEL OUTPUT INTERFACE IC
DEIAZ

DEI1167-TMS-G

OCTAL GND/OPEN INPUT PARALLEL OUTPUT INTERFACE IC
DEIAZ

DEI1184

8CH PROGRAMMABLE DISCRETE INTERFACE W/ EXT HV PROTECTION
DEIAZ

DEI1184-SES

8CH PROGRAMMABLE DISCRETE INTERFACE W/ EXT HV PROTECTION
DEIAZ

DEI1184-SMS

8CH PROGRAMMABLE DISCRETE INTERFACE W/ EXT HV PROTECTION
DEIAZ