DEI1184-SMS [DEIAZ]

8CH PROGRAMMABLE DISCRETE INTERFACE W/ EXT HV PROTECTION;
DEI1184-SMS
型号: DEI1184-SMS
厂家: Device Engineering Incorporated    Device Engineering Incorporated
描述:

8CH PROGRAMMABLE DISCRETE INTERFACE W/ EXT HV PROTECTION

光电二极管 接口集成电路
文件: 总14页 (文件大小:786K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Device  
Engineering  
Incorporated  
DEI1184  
8CH PROGRAMMABLE DISCRETE  
INTERFACE W/ EXT HV  
PROTECTION  
385 East Alamo Drive  
Chandler, AZ 85225  
Phone: (480) 303-0822  
Fax: (480) 303-0824  
E-mail: admin@deiaz.com  
FEATURES  
·
Eight discrete inputs  
o
o
Individually configurable as either GND/OPEN or 28V/OPEN (or 28V/GND) format input.  
Input threshold and hysteresis per Airbus ABD0100H specification.  
§
§
GND/OPEN mode: 4.5 V / 10.5 V input levels, 3 V hysteresis  
28V/OPEN mode: 6 V / 12 V input levels, 3V hysteresis  
o
o
o
1mA input current to prevent dry relay contacts.  
Internal isolation diode in GND/OPEN mode.  
Uses external series 3 kresistors on inputs to implement lightning transient immunity of DO160, Section 22  
Level 3, and higher levels with the addition of small TVS devices.  
·
Serial I/O interface to read data register and write configuration register  
o
o
o
o
Direct interface to Serial Peripheral Interface (SPI) port.  
TTL/CMOS compatible inputs and Tristate output  
10 MHZ Max Data Rate  
Serial input to expand Shift Register  
·
·
·
Logic Supply Voltage (VCC):  
Analog Supply Voltage (VDD):  
16L SOIC EP package  
3.3 V +/-5%  
15 V +/-10%  
PIN ASSIGNMENTS  
1
16  
VDD  
GND  
VCC  
SEL  
DIN1  
DIN2  
DIN3  
DIN4  
DIN5  
DIN6  
DIN7  
DIN8  
DEI1184  
SDI  
/CS  
SCLK  
SDO  
Figure 1 DEI1184 Pin Assignment (16 Lead SOIC)  
©2018 Device Engineering Inc.  
1 of 14  
DS-MW-01184-01 Rev. E  
06/25/2018  
FUNCTIONAL DESCRIPTION  
DEI1184 is an eight-channel discrete-to digital interface IC implemented in an HV DIMOS technology. It senses eight discrete  
signals of the type commonly found in avionic systems and converts them to serial logic data. Each input can be individually  
configured as either GND/OPEN or 28V/OPEN format input via a serial data input. The discrete data is read from the device via  
an eight-bit serial shift register with 3-state output. This serial interface is compatible with the industry standard Serial Peripheral  
Interface (SPI) bus.  
The discrete input circuits are designed to achieve a high level of lightning transient immunity. The application design provides  
a series 3 kresistor on each discrete input to achieve DO160E Level 3 and WF5A 500 V immunity. Higher immunity levels  
can be achieved (i.e. Level 5) with the addition of a TVS between the resistor and the input pin.  
Table 1 Pin Descriptions  
PINS  
NAME  
DESCRIPTION  
1-8  
DIN[1:8]  
Discrete Inputs. Eight discrete signals which can be individually  
configured as either GND/OPEN or 28V/OPEN format inputs. Inputs are  
connected to the external series 3 kresistor as part of front end  
Lightning Transients protection circuit.  
9
SDO  
Logic Output. Serial Data Output. This pin is the output from MSB (Bit  
8) of the selected shift register (Data/Configuration). It is clocked by the  
rising edge of SCLK. This is a 3-state output enabled by /CS.  
Logic Input. Serial Shift Clock. A low-to-high transition on this input  
shifts data on the serial data input into Bit 1 of the selected shift register.  
The selected shift register is shifted from Bit 1 to Bit 8. Bit 8 of the  
selected shift register is driven on DOUT.  
10  
SCLK  
11  
12  
/CS  
SDI  
Logic Input. Chip Select. A low level on this input enables the SDO 3-  
state output and the selected shift register. A high level on this input  
forces DOUT to the high impedance state and disables the shift registers  
so SCLK transitions have no effect. When the Data Register is selected,  
a high-to-low transition causes the Discrete Input data to be loaded into  
the Data Register. When the Configuration Register is selected, a low-to-  
high transition causes the Serial Configuration Register data to be loaded  
into the parallel configuration outputs.  
Logic Input. Serial Data Input. Data on this input is shifted into the LSB  
(Bit 1) of the selected shift register on the rising edge of the SCLK when  
/CS input is low.  
13  
14  
SEL  
Logic Input with weak pull-up. Selects between the Data Register and  
Configuration Register. H = DATA, L = CONF.  
Logic Supply Voltage. 3.3 V +/-5%  
VCC  
15  
16  
GND  
VDD  
Logic/Signal Ground  
Analog Supply Voltage. 15 V +/-10%  
©2018 Device Engineering Inc.  
2 of 14  
DS-MW-01184-01 Rev. E  
06/25/2018  
Figure 2 Function Diagram  
Figure 3 Discrete AFE Function Diagram  
©2018 Device Engineering Inc.  
3 of 14  
DS-MW-01184-01 Rev. E  
06/25/2018  
Table 2 Truth Table  
Serial Interface Operation  
SEL  
X
H
/CS SCLK  
SDI  
X
X
DIN[1:8]  
SDO  
HI Z  
DIN[8]  
DR[8]  
Description  
Not Selected  
DR[1:8]DIN[1:8]  
H
X
L
X
Valid  
X
H
L
DR[1]  
DR[n+1] DR[n], DR[1] SDI  
L
L
L
L
CR[1]  
X
X
X
CR[8]  
HI Z  
CR[n+1] CR[n], CR[1] SDI  
CL[1:8]CR[1:8]  
Legend:  
DR = Data Register  
CR = Configuration Register  
CL = Configuration Latch  
X = Don’t Care  
DIN[1:8] Discrete AFE  
The Discrete Input Analog Front End circuit function is represented in Figure 3. Each DINn signal is conditioned by the resistor  
/ diode network and presented to a comparator with hysteresis. The external 3 kresistor is part of the front-end circuitry for  
achieving threshold and hysteresis requirements while protecting the chip from Lightning Induced Transients. When the input is  
configured for GND/OPEN operation (By programming the channel’s configuration register bit to 1), the pull-up resistor and  
diode is enabled by turning PMOS switch on and BJT switch off. The comparator reference voltage corresponding to DINn  
input threshold (shown below) is generated from resistive network. When configured for 28V/OPEN operation, the pull-down  
resistor is enabled by turning BJT on and PMOS off. The comparator reference voltages for 28V/OPEN operation are configured  
corresponding to DINn input threshold voltages described below.  
Some notable features are:  
·
·
The input current is ~1 mA. This current will prevent a “dry” relay contact.  
The input threshold voltage and hysteresis:  
o
o
28V/OPEN  
·
·
·
Low- level input voltage:  
High level input voltage:  
Hysteresis:  
-3.0 V to 6.0 V  
12 V to 49 V  
Vhys > 3V  
GND/OPEN  
·
·
·
Low- level input voltage:  
High level input voltage:  
Hysteresis:  
-3.0 V to 4.5 V  
10.5 V to 49 V  
Vhys > 3 V  
·
·
Input noise immunity is maximized with a combination of voltage hysteresis and use of a slow input voltage comparator.  
The inputs can withstand continuous input voltages of 49 V. The isolation diode breakdown voltage is greater than  
42V. The 10 kinput resistance, which consists of a 7 kon-chip resistor and a 3 koff-chip resistor, is designed to  
limit diode breakdown current to safe levels during transient events.  
Data Register  
The 8-bit Data Register is a “parallel-input, serial-output” register that samples the input channels and reads-out the data to the  
Serial Data Output. The register is read via the SDO output as described in Figure 4 and Figure 5. A low DIN input level  
results in a Logic 0, and a high input level results in a Logic 1.  
Configuration Register  
The 8-bit Configuration Register is a “serial-input, parallel-output with data latch” register that individually configures each  
AFE input as either GND/OPEN or 28V/OPEN format. The register is programmed via the serial data input as described in  
Figure 6 and Figure 7. Logic 0 sets the respective input to 28V/OPEN mode (pull-down); Logic 1 sets the respective input to  
GND/OPEN mode (pull-up). The register is reset to 0’s when the VCC Logic Supply voltage transitions from low to high.  
©2018 Device Engineering Inc.  
4 of 14  
DS-MW-01184-01 Rev. E  
06/25/2018  
Serial Interface  
The DEI1184 incorporates a serial IO interface for programming the Discrete Input configuration and for reading the Discrete  
Input status. Refer to Figure 2. The interface is SPI compatible and consists of /CS, SEL, SCLK, SDO, and SDI signals.  
Waveform Figures 4 – 7 depict the Data Read sequence and Configuration Write sequence for both 8-Bit cycles and also 16 bit  
“daisy chain” applications.  
Power Up Initialization  
The DEI1184 incorporates an on-chip power-on reset (POR) circuit and power sequencing provisions to force the DIN inputs to  
a high impedance state at power up; the AFE pull-up (PMOS switch in Figure 3) and pull-down (BJT switch in Figure 3) circuits  
are disabled. The reset circuit monitors the VCC logic supply and forces the AFE to the high impedance state while VCC is  
stabilizing. It will remain in this state until the Configuration Register is programmed by the first Write Configuration Register  
cycle, when the pull-up or pull-down state is determined.  
SEL  
/CS  
X
SCLK  
X
VALID  
X
X
DIN[1:8]  
X
X
SDI  
SDO  
DIN8  
DIN7  
DIN6  
DIN5  
DIN4  
DIN3  
DIN2  
DIN1  
DIN inputs latched into DATA S-Reg  
Figure 4 Read Data Register  
SEL  
/CS  
X
SCLK  
X
VALID  
X
X
DIN[1:8]  
SI8  
SI7  
SI6  
SI5  
SI4  
SI3  
SI2  
SI1  
X
X
SDI  
DIN8  
DIN7  
DIN6  
DIN5  
DIN4  
DIN3  
DIN2  
DIN1  
SI8  
Si7  
SI6  
SI5  
SI4  
SI3  
SI2  
SI1  
SDO  
DIN inputs latched into DATA S-Reg  
SDI data shifted to SDO after 8 bit delay  
Figure 5 Read Data Register, 16 Bit Daisy Chain  
©2018 Device Engineering Inc.  
5 of 14  
DS-MW-01184-01 Rev. E  
06/25/2018  
SEL  
/CS  
X
SCLK  
X
X
DIN[1:8]  
NCD  
8
NCD  
7
NCD  
6
NCD  
5
NCD  
4
NCD  
3
NCD  
2
NCD  
1
X
X
SDI  
PCD  
8
PCD  
7
PCD  
6
PCD  
5
PCD  
4
PCD  
3
PCD  
2
PCD  
1
NCD  
8
SDO  
PDO[1:8]  
Internal Config Latch  
New  
Configuration  
Present Configuration  
NCDn = New Configuration Data Bits  
PCDn = Present Configuration Bits  
Figure 6 Write Configuration Register  
SEL  
/CS  
X
SCLK  
X
X
DIN[1:8]  
DCD  
8
DCD  
7
DCD  
6
DCD  
5
DCD  
4
DCD  
3
DCD  
2
DCD  
1
NCD  
8
NCD  
7
NCD  
6
NCD  
5
NCD  
4
NCD  
3
NCD  
2
NCD  
1
X
X
SDI  
PCD  
8
PCD  
7
PCD  
6
PCD  
5
PCD  
4
PCD  
3
PCD  
2
PCD  
1
DCD  
8
DCD  
7
DCD  
6
DCD  
5
DCD  
4
DCD  
3
DCD  
2
DCD  
1
NCD  
8
SDO  
New  
Configuration  
PDO[1:8]  
Internal  
Config  
Latch  
Present Configuration  
DCDn = Daisy Chain Data Bits  
NCDn = New Configuration Data Bits  
PCDn = Present Configuration Bits  
Figure 7 Write Configuration Register, 16 bit Daisy Chain  
©2018 Device Engineering Inc.  
6 of 14  
DS-MW-01184-01 Rev. E  
06/25/2018  
LIGHTNING PROTECTION  
DINn inputs are designed to survive lightning induced transients as defined by RTCA DO160E, Section 22 Cat A3 and B3,  
Waveforms 3, 4, and 5A. They can withstand Level 3 stress (see waveforms below) with only the external 3 kseries resistor  
for current limiting. Protection for higher stress levels can be achieved with the addition of transient voltage suppressor (TVS)  
devices at the DINn pins. Select TVS clamp voltage <450 V. The 3 kseries resistors limit the TVS surge current.  
V
V/I  
Peak  
25% to 75%  
of Largest Peak  
T1 = 6.4 us  
T2 = 70 us  
50%  
0
t
50%  
F = 1 MHZ and 10 MHZ  
0
t
T1  
T2  
Figure 8 Voltage / Current Waveform 3  
Figure 9 Voltage Waveform 4  
V/I  
Peak  
T1 = 40 us  
T2 = 120 us  
Level 3 Waveform Source Impedance characteristics:  
·
·
·
·
Waveform 3 Voc/Isc = 600 V / 24A => 25 Ω  
Waveform 4 Voc/Isc = 300 V / 60 A => 5 Ω  
Waveform 5A Voc / Isc = 300 V / 300 A => 1 Ω  
Waveform 5A Voc / Isc = 500 V / 500 A => 1 Ω  
50%  
0
t
T1  
T2  
Figure 10 Current/Voltage Waveform 5A  
©2018 Device Engineering Inc.  
7 of 14  
DS-MW-01184-01 Rev. E  
06/25/2018  
ELECTRICAL DESCRIPTION  
Table 3 Absolute Maximum Ratings  
PARAMETER  
MIN  
-0.3  
-0.3  
MAX  
+5.0  
18  
UNITS  
VCC Supply Voltage  
VDD Supply Voltage  
V
V
Operating Temperature  
Storage Temperature  
-55  
-55  
+125  
+150  
°C  
°C  
Input Voltage (3)  
DIN[1:8]  
Continuous  
DO160E, Waveform 3, Level 3  
DO160E, Waveform 4 and 5, Level 3  
DO160E, Waveform 4 and 5  
DO160E, Abnormal Surge Voltage, 100 ms  
-10  
+49  
+600  
+300  
+500  
80  
V
V
V
V
V
V
V
-600  
-300  
-500  
Logic Inputs  
DOUT  
-1.5  
-0.5  
VCC + 1.5  
VCC + 0.5  
Power Dissipation @ 125 °C, steady state  
Junction Temperature, Tjmax  
0.5  
W
145  
°C  
ESD per JEDEC A114-A Human Body Model  
Logic and Supply pins  
2000  
1000  
V
DIN pins  
Peak Body Temperature (10 sec duration)  
235  
°C  
Notes:  
1. Stresses above absolute maximum ratings may cause permanent damage to the device.  
2. Voltages referenced to Ground  
3. Stress applied to external 3 kseries resistor in series with DINn pin.  
Table 4 Recommended Operating Conditions  
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
VCC  
VDD  
3.3 V ±5%  
15 V ±10%  
Logic Inputs and Outputs  
Discrete Inputs  
0 to VCC  
-3 to 49 V  
DIN[1:8]  
Ta  
Operating Temperature  
-55 to +125 ºC  
-55 to +85 ºC  
-SMS  
-SES  
©2018 Device Engineering Inc.  
8 of 14  
DS-MW-01184-01 Rev. E  
06/25/2018  
Table 5 DC Electrical Characteristics  
CONDITIONS (1)  
SYMBOL  
PARAMETER  
LIMITS  
NOM  
UNIT  
MIN  
MAX  
Logic Inputs/Outputs  
VCC = 3.3 V  
VIH  
VIL  
HI level input voltage  
LO level input voltage  
2.0  
50  
V
V
0.8  
VIhst  
Input hysteresis voltage,  
SCLK input  
(3)  
mV  
VOH  
VOL  
HI level output voltage  
IOUT = -20 uA  
VCC – 0.1  
2.4  
V
V
IOUT = -4 mA, VCC = 3 V  
IOUT = 20 uA  
LO level output voltage  
0.1  
0.4  
10  
V
IOUT = 4 mA, VCC = 3 V  
VIN = VCC or GND  
V
IIN  
Input leakage, except SEL  
Input leakage, SEL  
-10  
uA  
uA  
IIN-SEL  
VIN = VCC  
VIN = GND  
-10  
-50  
10  
10  
IOZ  
3-state leakage current  
Output in Hi Impedance state.  
VOUT = VIHmin, VILmax  
-10  
10  
49.0  
1
uA  
Discrete Inputs, Configured as Ground/Open (internal pull-up) (4)  
VIH  
RIH  
HI level input voltage  
10.5  
50  
V
HI level Din-to-GND  
resistance  
Resistor from Din to GND to  
guarantee HI input condition.  
kΩ  
IIH  
HI level input current  
VIN = 28 V, VDD = 15 V  
VIN = 49 V, VDD = 15 V  
0.66  
0.8  
mA  
mA  
VIL  
RIL  
LO level input voltage  
-3.0  
4.5  
V
LO level Din-to-GND  
resistance  
Resistor from Din to GND to  
guarantee LO input condition.  
500  
IIL  
LO level input current  
Input hysteresis voltage  
VIN = 0V, VDD = 15 V  
-0.8  
3
-1.3  
-1.8  
mA  
V
VIhst  
Discrete Inputs, Configured as 28V/Open (internal pull-down) (4)  
VIH  
IIH  
HI level input voltage  
12.0  
0.8  
49.0  
1.8  
6.0  
50  
V
mA  
V
HI level input current  
LO level input voltage  
LO level input current  
Input hysteresis voltage  
VIN = 28 V, VDD = 15 V  
VIN = 1 V, VDD = 15 V  
Power Supply  
1.3  
25  
VIL  
IIL  
-3.0  
uA  
V
VIhst  
3
ICC  
IDD  
Max quiescent logic supply  
current  
VIN(logic) = VCC or GND  
VIN[1:8]= open  
1.8  
3
mA  
mA  
Max quiescent analog supply VIN(logic) = VCC or GND  
current  
VIN[1:8]= Open  
VIN[1:8]= GND, All  
configured as Ground/Open  
15  
22  
24  
33  
Notes:  
1. Ta = -55 to +125 ºC. VDD = 15 V ±10%, VCC = 3.3 V +/-5% unless otherwise noted.  
2. Current flowing into device is ‘+’. Current flowing out of device is ‘- ‘. Voltages are referenced to Ground.  
3. Guaranteed by design. Not production tested.  
4. With 3 k, 2% resistor in series with DIN input pin.  
©2018 Device Engineering Inc.  
9 of 14  
DS-MW-01184-01 Rev. E  
06/25/2018  
Table 6 AC Electrical Characteristics (4)  
PARAMETER CONDITIONS (6,7)  
LIMITS  
SYMBOL  
UNIT  
MIN  
0.1  
MAX  
10  
fMAX  
tW  
SCLK frequency. (50% duty cycle) (5)  
SCLK pulse width. (5)  
MHZ  
ns  
50  
tsu1  
th1  
tsu2  
th2  
tsu3  
th3  
tsu4  
th4  
tp1  
tp2  
tp3  
Setup time, SCLK low to /CS.  
Hold time, /CSto SCLK.  
30  
25  
500  
15  
25  
25  
30  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time, DIN valid to /CS.  
Hold time, /CSto DIN not valid.  
Setup time, SDIN valid to SCLK.  
Hold time, SCLKto SDIN not valid.  
Setup time, SEL valid to /CS.  
Hold time, SEL valid to /CS.  
Propagation delay, /CSto DOUT valid. (1)  
Propagation delay, SCLKto DOUT valid. (1)  
Propagation delay, /CSto DOUT HI-Z. (1)  
(2) (3)  
105  
90  
80  
tp4  
Cin  
Cout  
Delay time between /CS active. (5)  
Maximum logic input pin Capacitance. (5)  
Maximum DOUT pin capacitance, output in  
HI-Z state. (5)  
20  
ns  
pf  
pf  
10  
15  
Notes:  
1. DOUT loaded with 50 pF to GND.  
2. DOUT loaded with 1 kto GND for Hi output, 1 kto VCC for Low output.  
3. Timing measured at 25% VCC for “0” to Hi-Z, 75% VCC for “1” to Hi-Z.  
4. Sample tested on lot basis.  
5. Not tested  
6. Ta = -55 to +125 ºC. VCC = 3 V, VDD = 15 V, VIL = 0 V, VIH = VCC unless otherwise noted.  
7. Measurements made at 50% VCC.  
th4  
tsu4  
SEL  
/CS  
tp4  
th1  
tW  
tsu1  
SCLK  
1/fmax  
tsu2  
th2  
valid  
X
X
DIN[1:8]  
tsu3  
th3  
X
valid  
X
SDI  
tp2  
tp1  
tp3  
D/C0  
D/C1  
SDO  
Figure 11 Switching Waveforms  
©2018 Device Engineering Inc.  
10 of 14  
DS-MW-01184-01 Rev. E  
06/25/2018  
APPLICATION INFORMATION  
Discrete Input Filtering  
The DEI1184 Analog Front End provides a moderate level of noise immunity via a combination hysteresis and limited bandwidth.  
The Hysteresis is 3 V minimum and the comparator bandwidth is approximately 10 MHZ.  
Many applications provide additional noise immunity by means of debounce/filtering in software or in digital circuitry (i.e.:  
FPGA). Common input debounce techniques are readily found with a web search of the term “software debounce” and range  
from simple detectors of two or more sequential stable readings to FIR filters emulating RC time constants.  
Input Current Characteristics  
The DIN Input Current vs. Voltage characteristics for the 28V/OPEN Mode and GND/OPEN Mode are shown in Figure 12 and  
Figure 13.  
Discrete Input Characteristics (28V/OPEN)  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
-0.50  
-1.00  
-10.00  
0.00  
10.00  
20.00  
30.00  
40.00  
50.00  
Discrete Input Voltage (V)  
Figure 12 28V/Open Mode Input IV Characteristics (VDD=15 V)  
Discrete Input Characteristics (GND/OPEN)  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-10.0  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
Discrete Input Voltage (V)  
Figure 13 GND/OPEN Mode Input IV Characteristics (VDD=15 V)  
©2018 Device Engineering Inc.  
11 of 14  
DS-MW-01184-01 Rev. E  
06/25/2018  
Package Power Dissipation  
The DEI1184 package power dissipation varies with channel configuration and operating conditions. Figure 14 shows the  
device package power dissipation for various conditions. This includes the contributions from Supply currents and Input  
currents. The four curves are as follows:  
Table 7 Legend for Power Dissipation Curves  
CURVE ID  
+28V/OPEN-Nom  
+28V/OPEN-Wst  
GND/OPEN-Nom  
GND/OPEN-Wst  
SUPPLY VOLTAGE, TEMPERATURE,  
IC VARIATION  
3.3 V, 12 V / 27 ºC / typical IC parameters  
3.3 V, 16.5 V / 125 ºC /  
Worst case IC parameters  
3.3 V, 12 V / 27 ºC / typical IC parameters  
3.3 V, 16.5 V / 125 ºC /  
Worst case IC parameters  
Notes: The active channels are forced to Ground for GND/OPN type and forced to 28 V for 28V/OPN  
type.  
Figure 14 Power Dissipation for Various Conditions  
©2018 Device Engineering Inc.  
12 of 14  
DS-MW-01184-01 Rev. E  
06/25/2018  
PACKAGE DESCRIPTION - 16L Narrow Body EP SOIC  
Moisture Sensitivity:  
Θja:  
Level 1 / 260 ˚C per JEDEC J-STD-020  
~40 ˚C/W (Mounted on 4 layer PCB with exposed pad soldered to PCB land with  
thermal vias to internal GND plane)  
~10 ˚C/W  
Θjc:  
Lead Finish:  
Exposed Pad:  
SnPb plated  
Electrically Isolated from IC terminals.  
The PCB design and layout is a significant factor in determining thermal resistance (Θja) of the IC package. Use maximum trace  
width on all power and signal connections at the IC. These traces serve as heat spreaders which improve heat flow from the IC  
leads. The exposed heat sink pad of the SOIC package should be soldered to a heat-spreader land pattern on the PCB. The IC  
exposed pad is electrically isolated, so the PCB land may be at any potential, typically GND, for the best heat sink. Maximize  
the PCB land size by extending it beyond the IC outline if possible. A grid of thermal VIAs, which drop down and connect to  
the buried copper plane(s), should be placed under the heat-spreader land. A typical VIA grid is 12 mil holes on a 50 mil pitch.  
The barrel is plated to about 1.0-ounce copper. Use as many VIAs as space allows. VIAs should be plugged to prevent voids  
being formed between the exposed pad and PCB heat-spreader land due to solder escaping by the capillary effect. This can be  
avoided by tenting the VIAs with solder mask.  
Figure 15 16 Lead Narrow Body EP SOIC Outline Drawing  
©2018 Device Engineering Inc.  
13 of 14  
DS-MW-01184-01 Rev. E  
06/25/2018  
ORDERING INFORMATION  
Table 8 Ordering Information  
Part Number  
DEI1184-SMS  
DEI1184-SES  
Marking  
Package  
Temperature  
-55 / +125 ºC  
-55 / +85 ºC  
DEI1184-SMS  
DEI1184-SES  
16 EP SOIC  
16 EP SOIC  
©2018 Device Engineering Inc.  
14 of 14  
DS-MW-01184-01 Rev. E  
06/25/2018  

相关型号:

DEI1188

8CH GND/OPEN DISCRETE INTERFACE IC W/ EXT HV PROTECTION
DEIAZ

DEI1188-SES

8CH GND/OPEN DISCRETE INTERFACE IC W/ EXT HV PROTECTION
DEIAZ

DEI1188-SMS

8CH GND/OPEN DISCRETE INTERFACE IC W/ EXT HV PROTECTION
DEIAZ

DEI1198

8CH GND/OPEN PARALLEL OUTPUT DISCRETE INTERFACE IC
DEIAZ

DEI1198-TES-G

8CH GND/OPEN PARALLEL OUTPUT DISCRETE INTERFACE IC
DEIAZ

DEI1198-TMS-G

8CH GND/OPEN PARALLEL OUTPUT DISCRETE INTERFACE IC
DEIAZ

DEI1282

8CH BIT PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INTERFACE IC
DEIAZ

DEI1282-SES

Interface Circuit, PDSO16, PLASTIC, MS-012AC, SOIC-16
DIOTEC

DEI1282-SES

8CH BIT PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INTERFACE IC
DEIAZ

DEI1282-SES-G

Interface Circuit, PDSO16, ROHS COMPLIANT, PLASTIC, MS-012AC, SOIC-16
DIOTEC

DEI1282-SES-G

8CH BIT PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INTERFACE IC
DEIAZ

DEI1282-SMS

Interface Circuit, PDSO16, PLASTIC, MS-012AC, SOIC-16
DIOTEC