IPM12C0A0R04FA [DELTA]

Delphi Series IPM, Non-Isolated, Integrated Point-of-Load Power Modules: 8V~14V input, 0.9~5V and 4A Output Current; 德尔福系列IPM ,非隔离式负载点的集成功率模块: 8V 〜 14V输入, 0.9 〜5V和4A输出电流
IPM12C0A0R04FA
型号: IPM12C0A0R04FA
厂家: DELTA ELECTRONICS, INC.    DELTA ELECTRONICS, INC.
描述:

Delphi Series IPM, Non-Isolated, Integrated Point-of-Load Power Modules: 8V~14V input, 0.9~5V and 4A Output Current
德尔福系列IPM ,非隔离式负载点的集成功率模块: 8V 〜 14V输入, 0.9 〜5V和4A输出电流

文件: 总15页 (文件大小:875K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEATURES  
High efficiency: 91% @ 12Vin, 5V/4A out  
Small size and low profile:  
17.8 x 15.0 x 7.8mm (0.70”x 0.59” x 0.31”)  
Output voltage adjustment: 0.9V~5V  
Monotonic startup into normal and  
pre-biased loads  
Input UVLO, output OCP  
Remote ON/OFF(Positive)  
Output short circuit protection  
Fixed frequency operation  
Copper pad to provide excellent thermal  
performance  
ISO 9001, TL 9000, ISO 14001, QS9000,  
OHSAS18001 certified manufacturing  
UL/cUL 60950 (US & Canada) Recognized,  
and TUV (EN60950) Certified  
CE mark meets 73/23/EEC and 93/68/EEC  
directives  
Delphi Series IPM, Non-Isolated, Integrated  
Point-of-Load Power Modules: 8V~14V input,  
0.9~5V and 4A Output Current  
OPTION  
SMD or SIP package  
The Delphi Series IPM12C non-isolated, fully integrated  
Point-of-Load (POL) power modules, are the latest offerings from a  
world leader in power systems technology and manufacturing --  
Delta Electronics, Inc. This product family provides up to 4A of  
output current or 20W of output power in an industry standard,  
compact, IC-like, molded package. It is highly integrated and does  
not require external components to provide the point-of-load  
function. A copper pad on the back of the module, in close contact  
with the internal heat dissipation components, provides excellent  
thermal performance. The assembly process of the modules is fully  
automated with no manual assembly involved. These converters  
possess outstanding electrical and thermal performance, as well as  
extremely high reliability under highly stressful operating conditions.  
IPM12C operates from an 8V~14V source and provides a  
programmable output voltage of 0.9V to 5V. The IPM product family  
is available in both a SMD or SIP package.  
APPLICATIONS  
Telecom/ DataCom  
Wireless Networks  
Optical Network Equipment  
Server and Data Storage  
Industrial/Test Equipment  
DATASHEET  
IPM12C0A0R/S04_08242006  
Delta Electronics, Inc.  
TECHICAL SPECIFICATIONS  
TA = 25°C, airflow rate = 300 LFM, Vin = 12Vdc, nominal Vout unless otherwise noted.  
PARAMETER  
NOTES and CONDITIONS  
IPM12C0A0R/S04FA  
Min.  
Typ.  
Max.  
Units  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage (Continuous)  
Operating Temperature  
0
-40  
-55  
15  
113  
+125  
Vdc  
°C  
°C  
Refer to figure 35 for measuring point  
Storage Temperature  
INPUT CHARACTERISTICS  
Operating Input Voltage  
8
12  
14  
V
Input Under-Voltage Lockout  
Turn-On Voltage Threshold  
Turn-Off Voltage Threshold  
Maximum Input Current  
7.9  
7.6  
V
V
A
Vin=Vin,min to Vin,max, Io=Io,max  
4.5  
85  
10  
40  
No-Load Input Current  
mA  
mA  
mAp-p  
dB  
Off Converter Input Current  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
OUTPUT CHARACTERISTICS  
Output Voltage Set Point  
Output Voltage Adjustable Range  
Output Voltage Regulation  
Over Line  
Over Load  
Over Temperature  
Total Output Voltage Range  
Output Voltage Ripple and Noise  
Peak-to-Peak  
3
20  
TBD  
P-P 1µH inductor, 5Hz to 20MHz  
120 Hz  
Vin=12V, Io=Io,max, Ta=25℃  
0.889  
0.8  
0.900  
0.911  
5
Vdc  
V
Vin=Vin,min to Vin,max  
Io=Io,min to Io,max  
Ta=Ta,min to Ta,max  
Over sample load, line and temperature  
5Hz to 20MHz bandwidth  
0.1  
0.3  
0.01  
% Vo,set  
% Vo,set  
%Vo,set/℃  
% Vo,set  
0.025  
+3.0  
-3.0  
0
Full Load, 1µF ceramic, 10µF tantalum  
Full Load, 1µF ceramic, 10µF tantalum  
40  
15  
60  
30  
4
mVp-p  
mV  
A
RMS  
Output Current Range  
Output Voltage Over-shoot at Start-up  
Output DC Current-Limit Inception  
DYNAMIC CHARACTERISTICS  
Dynamic Load Response  
Positive Step Change in Output Current  
Negative Step Change in Output Current  
Setting Time to 10% of Peak Devitation  
Turn-On Transient  
Vin=10V to 14V, Io=0A to 4A, Ta=25℃  
0
200  
1
% Vo,set  
% Io  
10µF Tan & 1µF Ceramic load cap, 2.5A/µs  
50% Io, max to 100% Io, max  
100% Io, max to 50% Io, max  
100  
100  
40  
150  
150  
mVpk  
mVpk  
µs  
Io=Io.max  
Start-Up Time, From On/Off Control  
Start-Up Time, From Input  
Output Voltage Rise Time  
Maximum Output Startup Capacitive Load  
17  
17  
9
25  
25  
15  
1500  
5000  
ms  
ms  
ms  
µF  
µF  
Time for Vo to rise from 10% to 90% of Vo,set,  
Full load; ESR 1m  
Full load; ESR 10mΩ  
5
EFFICIENCY  
Vo=0.9V  
Vo=1.2V  
Vo=1.5V  
Vo=1.8V  
Vo=2.5V  
Vo=3.3V  
Vo=5.0V  
Vin=12V, Io=Io,max, Ta=25℃  
Vin=12V, Io=Io,max, Ta=25℃  
Vin=12V, Io=Io,max, Ta=25℃  
Vin=12V, Io=Io,max, Ta=25℃  
Vin=12V, Io=Io,max, Ta=25℃  
Vin=12V, Io=Io,max, Ta=25℃  
Vin=12V, Io=Io,max, Ta=25℃  
73.0  
77.0  
80.0  
82.5  
85.5  
87.5  
90.0  
75.0  
79.5  
82.0  
84.0  
86.5  
88.5  
91.0  
%
%
%
%
%
%
%
FEATURE CHARACTERISTICS  
Switching Frequency  
ON/OFF Control, (Logic High-Module ON)  
Logic High  
485  
kHz  
Module On  
2.4  
Vin,max  
V
Logic Low  
Module Off  
Ion/off at Von/off=0  
Logic High, Von/off=5V  
-0.2  
0.8  
1
50  
V
mA  
µA  
ON/OFF Current  
Leakage Current  
GENERAL SPECIFICATIONS  
MTBF  
0.25  
Io=80% Io,max, Ta=25℃  
15.4  
6
M hours  
grams  
Weight  
DS_IPM12C0A0R04_08242006  
2
ELECTRICAL CHARACTERISTICS CURVES  
85  
90  
80  
70  
60  
75  
8V  
8V  
65  
10V  
10V  
12V  
14V  
12V  
14V  
55  
1
2
3
4
5
1
2
3
4
5
LOAD(A)  
LOAD(A)  
Figure 1: Converter efficiency vs. output current  
Figure 2: Converter efficiency vs. output current  
(0.90V output voltage)  
(1.2V output voltage)  
85  
85  
8V  
8V  
75  
75  
10V  
12V  
10V  
12V  
14V  
14V  
65  
65  
1
2
3
4
5
1
2
3
4
5
LOAD(A)  
LOAD(A)  
Figure 3: Converter efficiency vs. output current  
Figure 4: Converter efficiency vs. output current  
(1.5V output voltage)  
(1.8V output voltage)  
90  
90  
8V  
8V  
80  
80  
10V  
12V  
10V  
12V  
14V  
14V  
70  
70  
1
2
3
4
5
1
2
3
4
5
LOAD(A)  
LOAD(A)  
Figure 5: Converter efficiency vs. output current  
Figure 6: Converter efficiency vs. output current  
(2.5V 0utput voltage)  
(3.3V output voltage)  
DS_IPM12C0A0R04_08242006  
3
ELECTRICAL CHARACTERISTICS CURVES  
100  
90  
8V  
80  
10V  
12V  
14V  
70  
1
2
3
4
5
LOAD(A)  
Figure 7: Converter efficiency vs. output current  
Figure 8: Output ripple & noise at 12Vin, 0.9V/4A out  
(5.0V output voltage)  
Figure 9: Output ripple & noise at 12Vin, 1.2V/4A out  
Figure 10: Output ripple & noise at 12Vin,1.5V/4A out  
Figure 11: Output ripple & noise at 12Vin, 1.8V/4A out  
Figure 12: Output ripple & noise at 12Vin, 2.5V/4A out  
DS_IPM12C0A0R04_08242006  
4
ELECTRICAL CHARACTERISTICS CURVES  
Figure 13: Output ripple & noise at 12Vin, 3.3V/4A out  
Figure 14: Output ripple & noise at 12Vin, 5.0V/4A out  
Figure 15: Power on waveform at 12vin, 0.9V/4A out with  
Figure 16: Power on waveform at 12vin, 5V/4A out with  
application of Vin  
application of Vin  
Figure 17: Power off waveform at 12vin, 0.9V/4A out with  
Figure 18: Power off waveform at 12vin, 5.0V/4A out with  
application of Vin  
application of Vin  
DS_IPM12C0A0R04_08242006  
5
ELECTRICAL CHARACTERISTICS CURVES  
Figure 19: Remote turn on delay time at 12vin, 0.9V/4A  
Figure 20: Remote turn on delay time at 12vin, 5.0V/4A  
out  
out  
Figure 21: Turn on delay at 12vin, 0.9V/4A out with  
Figure 22: Turn on delay at 12vin, 5.0V/4A out with  
application of Vin  
application of Vin  
Figure 23: Typical transient response to step load change at  
2.5A/µS from 100% to 50% of Io, max at 12Vin, 5.0V out  
(measurement with a 1uF ceramic and a 10µF tantalum)  
Figure 24: Typical transient response to step load change at  
2.5A/µS from 50% to 100% of Io, max at 12Vin, 5.0V out  
(measurement with a 1uF ceramic and a 10µF tantalu)  
DS_IPM12C0A0R04_08242006  
6
TEST CONFIGURATIONS  
DESIGN CONSIDERATIONS  
TO OSCILLOSCOPE  
Input Source Impedance  
L
To maintain low-noise and ripple at the input voltage, it is  
critical to use low ESR capacitors at the input to the  
module. Figure 28 shows the input ripple voltage  
(mVp-p) for various output models using 2x47 uF low  
ESR tantalum capacitors (SANYO P/N:16TPB470M,  
47uF/16V or equivalent) or 2x22 uF very low ESR  
ceramic capacitors (TDK P/N:C3225X7S1C226MT,  
22uF/16V or equivalent).  
VI(+)  
47uF  
2
Tantalum  
BATTERY  
VI(-)  
Note: Input reflected-ripple current is measured with a  
simulated source inductance. Current is  
measured at the input of the module.  
The input capacitance should be able to handle an AC  
ripple current of at least:  
Figure 25: Input reflected-ripple current test setup  
Vout  
Vin  
Vout  
Vin  
Irms = Iout  
1 −  
Arms  
COPPER STRIP  
400  
350  
300  
250  
200  
150  
100  
50  
Vo  
Resistive  
Load  
1uF  
10uF  
tantalum ceramic  
SCOPE  
GND  
Note: Use a 10µF tantalum and 1µF capacitor. Scope  
measurement should be made using a BNC  
connector.  
Tantalum  
Ceramic  
0
0
Figure 26: Peak-peak output noise and startup transient  
1
2
3
4
5
6
measurement test setup  
Output Voltage (Vdc)  
CONTACT AND  
DISTRIBUTION LOSSES  
VI  
Vo  
I
I
Io  
Figure 28: Input ripple voltage for various output models,  
Io = 4A (Cin = 2x47uF tantalum capacitors or  
2x22uF ceramic capacitors at the input)  
LOAD  
SUPPLY  
GND  
The power module should be connected to a low  
ac-impedance input source. Highly inductive source  
impedances can affect the stability of the module. An  
input capacitance must be placed close to the modules  
input pins to filter ripple current and ensure module  
stability in the presence of inductive traces that supply  
the input voltage to the module.  
CONTACT RESISTANCE  
Figure 27: Output voltage and efficiency measurement test  
setup  
Note: All measurements are taken at the module  
terminals. When the module is not soldered (via  
socket), place Kelvin connections at module  
terminals to avoid measurement errors due to  
contact resistance.  
Vo× Io  
Vi × Ii  
η = (  
)×100 %  
DS_IPM12C0A0R04_08242006  
7
DESIGN CONSIDERATIONS  
FEATURES DESCRIPTIONS  
Safety Considerations  
Over-Current Protection  
For safety-agency approval the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standards.  
To provide protection in an output over load fault  
condition, the unit is equipped with internal over-current  
protection. When the over-current protection is  
triggered, the unit enters hiccup mode. The units  
operate normally once the fault condition is removed.  
For the converter output to be considered meeting the  
requirements of safety extra-low voltage (SELV), the  
input must meet SELV requirements. The power module  
has extra-low voltage (ELV) outputs when all inputs are  
ELV.  
Pre-Bias Startup Capability  
The IPM would perform the monotonic startup into the  
pre-bias loads; so as to avoid a system voltage drop  
occur upon application. In complex digital systems an  
external voltage can sometimes be presented at the  
output of the module during power on. This voltage may  
be feedback through a multi-supply logic component,  
such as FPGA or ASIC. Another way might be via a  
clamp diode as part of a power up sequencing  
implementation.  
The input to these units is to be provided with a  
maximum 10A time-delay fuse in the ungrounded lead.  
Remote On/Off  
The IPM series power modules have an On/Off control  
pin for output voltage remote On/Off operation. The  
On/Off pin is an open collector/drain logic input signal  
that is referenced to ground. When On/Off control pin is  
not used, leave the pin unconnected.  
Output Voltage Programming  
The remote on/off pin is internally connected to +Vin  
through an internal pull-up resistor. Figure 29 shows the  
circuit configuration for applying the remote on/off pin.  
The module will execute a soft start ON when the  
transistor Q1 is in the off state.  
The output voltage of IPM can be programmed to any  
voltage between 0.8Vdc and 5Vdc by connecting one  
resistor (shown as Rtrim in Figure 30, 31) between the  
TRIM and GND pins of the module to trim up (0.9V ~ 5V)  
and between the Trim and +Output to trim down (0.8V ~  
0.9V). Without this external resistor, the output voltage of  
the module is 0.9 Vdc. To calculate the value of the  
resistor Rtrim for a particular output voltage Vo, please  
use the following equation:  
The typical rise for this remote on/off pin at the output  
voltage of 2.5V and 5.0V are shown in Figure 17 and 18.  
Trim up  
3.752  
Vout –0.9  
Rtrim =  
Trim Down  
Rtrim =  
- 0.261 (KΩ)  
Vo  
Vin  
IPM  
On/Off  
RL  
1.072  
0.9 - Vout  
- 5.621 (KΩ)  
Q1  
GND  
Rtrim is the external resistor in K  
Vout is the desired output voltage  
Figure 29: Remote on/off implementation  
DS_IPM12C0A0R04_08242006  
8
FEATURES DESCRIPTIONS (CON.)  
For example: to program the output voltage of the IPM  
module to 3.3Vdc, Rtrim is calculated as follows:  
Vout  
Rtrim  
Load  
3.752  
3.3 –0.9  
Rtrim =  
- 0.261 (KΩ)  
Trim  
GND  
Rtrim = 1.302 K  
Figure 31: Trim down Circuit configuration for programming  
output voltage using an external resistor  
IPM can also be programmed by applying a voltage  
between the TRIM and GND pins (Figure 32). The  
following equation can be used to determine the value of  
Vtrim needed for a desired output voltage Vo:  
Vtrim = 0.7439 – 0.0488Vo  
Vtrim is the external voltage in V  
Vo is the desired output voltage  
For example, to program the output voltage of a IPM  
module to 3.3 Vdc, Vtrim is calculated as follows  
Figure 32: Circuit configuration for programming output voltage  
using external voltage source  
Vtrim = 0.7439 – 0.0488 x 3.3  
Vtrim = 0.5829V  
Figure 30: Trim up Circuit configuration for programming  
output voltage using an external resistor  
DS_IPM12C0A0R04_08242006  
9
FEATURE DESCRIPTIONS (CON.)  
Table 1 provides Rtrim values required for some common  
output voltages, while Table 2 provides value of external  
voltage source, Vtrim, for the same common output  
voltages. By using a 0.5% tolerance resistor, set point  
tolerance of ±2% can be achieved as specified in the  
electrical specification.  
The amount of power delivered by the module is the  
voltage at the output terminals multiplied by the output  
current. When using the trim feature, the output voltage  
of the module can be increased, which at the same  
output current would increase the power output of the  
module. Care should be taken to ensure that the  
maximum output power of the module must not exceed  
the maximum rated power (Vo.set x Io.max P max).  
Table 1  
VO (V)  
0.800  
0.900  
1.0  
Rtrim ()  
5.09K  
Open  
37.2K  
12.2K  
5.99K  
3.90K  
2.08K  
1.30K  
654  
Voltage Margining  
Output voltage margining can be implemented in the IPM  
modules by connecting a resistor, Rmargin-up, from the Trim  
pin to the ground pin for margining-up the output voltage  
and by connecting a resistor, Rmargin-down, from the Trim pin  
to the output pin for margining-down. Figure 33 shows  
the circuit configuration for output voltage margining. If  
unused, leave the trim pin unconnected.  
1.2  
1.5  
1.8  
2.5  
3.3  
5.0  
Table 2  
Vo  
Vin  
VO (V)  
0.80  
0.90  
1.2  
1.5  
1.8  
2.5  
3.3  
5.0  
Vtrim (V)  
0.705  
0.700  
0.685  
0.671  
0.656  
0.622  
0.583  
0.500  
Rmargin-down  
Q1  
IPM  
Trim  
On/Off  
Rmargin-up  
Q2  
Rtrim  
GND  
Figure 33: Circuit configuration for output voltage margining  
DS_IPM12C0A0R04_08242006  
10  
THERMAL CONSIDERATIONS  
THERMAL CURVES  
Thermal management is an important part of the system  
design. To ensure proper, reliable operation, sufficient  
cooling of the power module is needed over the entire  
temperature range of the module. Convection cooling is  
usually the dominant mode of heat transfer.  
Hence, the choice of equipment to characterize the  
thermal performance of the power module is a wind  
tunnel.  
Thermal Testing Setup  
Delta’s DC/DC power modules are characterized in  
heated vertical wind tunnels that simulate the thermal  
environments encountered in most electronics  
equipment. This type of equipment commonly uses  
vertically mounted circuit cards in cabinet racks in which  
the power modules are mounted.  
Figure 35: Temperature measurement location  
* The allowed maximum hot spot temperature is defined at 113.  
IPM12C (Standard) Output Current vs. Ambient Temperature and Air Velocity  
@ Vin=12V, Vout = 5V (Either Orientation)  
Output Current(A)  
5
4
3
2
1
0
The following figure shows the wind tunnel  
characterization setup. The power module is mounted on  
a test PWB and is vertically positioned within the wind  
tunnel. The height of this fan duct is constantly kept at  
25.4mm (1’’).  
Natural  
Convection  
Thermal Derating  
100LFM  
200LFM  
Heat can be removed by increasing airflow over the  
module. To enhance system reliability, the power  
module should always be operated below the maximum  
operating temperature. If the temperature exceeds the  
maximum module temperature, reliability of the unit may  
be affected.  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature ()  
Figure 36: Output current vs. ambient temperature and air velocity  
@ Vin=12V, Vo=5V  
PWB  
FACING PWB  
IPM12C (Standard) Output Current vs. Ambient Temperature and Air Velocity  
@ Vin=12V, Vout = 3.3V (Either Orientation)  
Output Current(A)  
5
4
3
2
1
0
MODULE  
AIR VELOCITY  
Natural  
Convection  
AND AMBIENT  
TEMPERATURE  
MEASURED BELOW  
THE MODULE  
100LFM  
50.8 (2.0”)  
AIR FLOW  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature ()  
12.7 (0.5”)  
25.4 (1.0”)  
Figure 37: Output current vs. ambient temperature and air velocity  
@ Vin=12V, Vo=3.3V  
Figure 34: Wind tunnel test setup  
DS_IPM12C0A0R04_08242006  
11  
THERMAL CURVES (CON.)  
IPM12C (Standard) Output Current vs. Ambient Temperature and Air Velocity  
@ Vin=12V, Vout = 1.8V (Either Orientation)  
Output Current(A)  
5
4
3
2
1
0
Natural  
Convection  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature ()  
Figure 38: Output current vs. ambient temperature and air velocity  
@ Vin=12V, Vo=1.8V(Either Orientation)  
IPM12C (Standard) Output Current vs. Ambient Temperature and Air Velocity  
@ Vin=12V, Vout = 0.9V (Either Orientation)  
Output Current(A)  
5
4
3
2
1
0
Natural  
Convection  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature ()  
Figure 39: Output current vs. ambient temperature and air velocity  
@ Vin=12V, Vo=0.9V(Either Orientation)  
DS_IPM12C0A0R04_08242006  
12  
PICK AND PLACE LOCATION  
SURFACE- MOUNT TAPE & REEL  
All dimensions are in millimeters (inches)  
All dimensions are in millimeters (inches)  
LEADED (Sn/Pb) PROCESS RECOMMEND TEMP. PROFILE  
.
Temp  
Peak Temp. ~ 225  
Ramp down  
max. 4 /sec  
183℃  
150℃  
100℃  
Preheat time  
60~150 sec  
60 ~ 120 sec  
Ramp up  
max. 3 /sec  
25℃  
Time  
Note: All temperature refers to assembly application board, measured on the land of assembly application board.  
LEAD FREE PROCESS RECOMMEND TEMP. PROFILE  
.
Temp  
Peak Temp. ~ 220  
210℃  
200℃  
Ramp down  
max. 4 /sec  
150℃  
Preheat time  
90~150 sec  
Time Limited 60 sec  
above 210  
Ramp up  
max. 3 /sec  
25℃  
Time  
Note: All temperature refers to topside of the package, measured on the package body surface.  
DS_IPM12C0A0R04_08242006  
13  
MECHANICAL DRAWING  
SMD PACKAGE  
SIP PACKAGE  
1
2 3 4 5  
RECOMMEND PWB HOLE LAYOUT  
RECOMMEND PWB PAD LAYOUT  
Note: The copper pad is recommended to connect to the ground.  
7
6
1
2 3 4 5  
1
2 3 4 5  
Note: All dimension are in millimeters(inches) standard dimension tolerance is± 0.10(0.004”)  
DS_IPM12C0A0R04_08242006  
14  
PART NUMBERING SYSTEM  
IPM  
12  
C
0A0  
R
04  
F
A
Product  
Family  
Input  
Voltage  
Number of  
Outputs  
Output  
Current  
04 - 4A  
Output Voltage  
Package  
Option Code  
F- RoHS 6/6  
(Lead Free)  
Integrated POL 12 - 8V ~ 14V  
Module  
C – Low current  
0A0 - programmable  
output  
R - SIP  
A - Standard Function  
S - SMD  
MODEL LIST  
Model Name  
Packaging  
Input Voltage  
Output Voltage Output Current Efficiency (Typical @ full load)  
IPM12C0A0R04FA  
IPM12C0A0S04FA  
IPM04C0A0R06FA  
IPM04C0A0S06FA  
SIP  
SMD  
SIP  
8V ~14V  
8V ~14V  
3V ~ 5.5V  
3V ~ 5.5V  
0.8V ~ 5V  
0.8V ~ 5V  
4A  
4A  
6A  
6A  
91%  
91%  
93%  
93%  
0.8V ~ 3.3V  
0.8V ~ 3.3V  
SMD  
CONTACT: www.delta.com.tw/dcdc  
USA:  
Telephone:  
East Coast: (888) 335 8201  
West Coast: (888) 335 8208  
Fax: (978) 656 3964  
Email: DCDC@delta-corp.com  
Asia & the rest of world:  
Telephone: +886 3 4526107 ext 6220  
Fax: +886 3 4513485  
Europe:  
Phone: +41 31 998 53 11  
Fax: +41 31 998 53 53  
Email: DCDC@delta.com.tw  
Email: DCDC@delta-es.com  
WARRANTY  
Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available upon  
request from Delta.  
Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta  
for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license  
is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these  
specifications at any time, without notice.  
DS_IPM12C0A0R04_08242006  
15  

相关型号:

IPM12C0A0R06FA

Delphi Series IPM, Non-Isolated, Integrated Point-of-Load Power Modules: 3V~5.5V input, 0.8~3.3V and 6A Output Current
DELTA

IPM12C0A0S04FA

Delphi Series IPM, Non-Isolated, Integrated Point-of-Load Power Modules: 8V~14V input, 0.9~5V and 4A Output Current
DELTA

IPM12C0A0S06FA

Delphi Series IPM, Non-Isolated, Integrated Point-of-Load Power Modules: 3V~5.5V input, 0.8~3.3V and 6A Output Current
DELTA

IPM12S0A0R08FA

Delphi Series IPM, Non-Isolated, Integrated Point-of-Load Power Modules: 3V~5.5V input, 0.8~3.3V and 10A Output Current
DELTA

IPM12S0A0R10FA

Delphi Series IPM, Non-Isolated, Integrated Point-of-Load Power Modules: 3V~5.5V input, 0.8~3.3V and 10A Output Current
DELTA

IPM12S0A0S08FA

Delphi Series IPM, Non-Isolated, Integrated Point-of-Load Power Modules: 3V~5.5V input, 0.8~3.3V and 10A Output Current
DELTA

IPM12S0A0S10FA

Delphi Series IPM, Non-Isolated, Integrated Point-of-Load Power Modules: 3V~5.5V input, 0.8~3.3V and 10A Output Current
DELTA

IPM1560

TRANSISTOR | IGBT POWER MODULE | 3-PH BRIDGE | 600V V(BR)CES | 15A I(C)
ETC

IPM2060

TRANSISTOR | IGBT POWER MODULE | 3-PH BRIDGE | 600V V(BR)CES | 20A I(C)
ETC

IPM24S0A0R03FA

Delphi Series IPM24S0A0, Non-Isolated, Integrated Point-of-Load Power Modules: 8V~36V input, 1.2~2.5V and 3A Output
DELTA

IPM24S0A0S

Output short circuit protection
DELTA

IPM24S0A0S03FA

Delphi Series IPM24S0A0, Non-Isolated, Integrated Point-of-Load Power Modules: 8V~36V input, 1.2~2.5V and 3A Output
DELTA