DA16200MOD-AAE4WA32 [DIALOG]

Ultra Low Power Wi-Fi Module;
DA16200MOD-AAE4WA32
型号: DA16200MOD-AAE4WA32
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

Ultra Low Power Wi-Fi Module

文件: 总60页 (文件大小:2205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DA16200MOD  
Final  
Ultra Low Power Wi-Fi Module  
General Description  
The DA16200MOD is a fully integrated Wi-Fi® module with ultra-low power consumption, best RF  
performance and easy development environment. Such low power operation can extend the battery  
life as longer as a year or more depending on the application.  
This module series included DA16200-00000A32, 40 MHz crystal oscillator, 32.768 KHz RTC clock,  
RF Lumped RF filter, 4 M-byte flash memory and chip antenna or u.FL connector. The  
DA16200MOD has chip antenna type (DA16200MOD-AAC4WA32) and u.FL connector type  
(DA16200MOD-AAE4WA32) for external antenna.  
The Module is built from the ground up for the Internet of Things (IoT) and is ideal for door locks,  
thermostats, sensors, pet trackers, asset trackers, sprinkler systems, connected lighting, video  
cameras, video door bells, wearables and other IoT devices.  
The modules certified Wi-Fi alliance for IEEE802.11b/g/n, Wi-Fi Direct, WPS functionalities and it has  
been approved by many countries including the United States (FCC), Canada (IC) and China  
(SRRC). Using the Wi-Fi Alliance transfer policy, the Wi-Fi Certifications can be transferred without  
being tested again.  
For more information on DA16200MOD, please refer to DA16200-00000A32 datasheet.  
Key Features  
Module variants  
Built-in 4-channel auxiliary ADC for sensor  
interfaces  
DA16200MOD-AAC4WA32 (chip Antenna)  
DA16200MOD-AAE4WA32 (u.FL cont.)  
12-bit SAR ADC: single-ended four  
channels  
Highly integrated ultra-low power Wi-Fi®  
system module  
Provides dynamic auto switching function  
Supports various interfaces  
Sleep current: 3.5 uA, VBAT=3.3 V  
eMMC/SD expanded memory  
SDIO Host/Slave function  
QSPI for external flash control  
Three UARTs  
Best RF Performance  
Tx Power: +19 dBm, 1 Mbps DSSS  
Rx Sensitivity: -98.5 dBm, 1 Mbps DSSS  
Full offload: SoC runs full networking OS and  
TCP/IP stack  
SPI Master/Slave interface  
I2C Master/Slave interface  
I2S for digital audio streaming  
4-channel PWM  
Wi-Fi processor  
IEEE 802.11b/g/n, 1x1, 20 MHz channel  
bandwidth, 2.4 GHz  
IEEE 802.11s Wi-Fi mesh  
Individually programmable, multiplexed  
GPIO pins  
Wi-Fi security: WPA/WPA2-  
Enterprise/Personal, WPA2 SI, WPA3  
SAE, and OWE  
JTAG and SWD  
Wi-Fi Alliance certifications:  
Vendor EAP types: EAP-  
TTLS/MSCHAPv2, PEAPv0/EAP-  
MSCHAPv2, PEAPv1, EAP-FAST, and  
EAP-TLS  
Wi-Fi CERTIFIEDb, g, n  
WPA- Enterprise, Personal  
WPA2- Enterprise, Personal  
WPA3- Enterprise, Personal  
Operating modes: Station, SoftAP, and  
Wi-Fi Direct® Modes (GO, GC, GO fixed)  
RF Regulatory certifications  
FCC, IC, CE, KC, TELEC, SRRC  
WPS-PIN/PBC for easy Wi-Fi provisioning  
Connection manager for autonomous and  
fast Wi-Fi connections  
CPU core subsystem  
Bluetooth coexistence  
Arm® Cortex®-M4F core w/ clock  
frequency of 30~160 MHz  
Antenna switching diversity  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
1 of 60  
© 2021 Dialog Semiconductor  
 
 
DA16200MOD  
Final  
Ultra Low Power Wi-Fi Module  
Hardware accelerators  
ROM: 256 KB, SRAM: 512 KB, OTP: 8  
KB, Retention Memory: 48 KB  
General HW CRC engine  
SPI flash Memory  
32 M-bit / 4 M-byte  
External Clock source  
HW zeroing function for fast booting  
Pseudo random number generator  
(PRNG)  
Complete software stack  
40 MHz crystal (± 25 ppm) for master  
clock (initial + temp + aging)  
Comprehensive networking software stack  
32.768 kHz crystal (± 250 ppm) for RTC  
clock  
Provides TCP/IP stack: in the form of  
network socket APIs  
Supply  
Advanced security  
Operating voltage: 2.1 V to 3.6 V (typical:  
3.3 V)  
Secure booting  
Secure debugging using JTAG/SWD and  
UART ports  
2 Digital I/O Supply Voltage: 1.8 V / 3.3 V  
Black-out and brown-out detector  
Secure asset storage  
Module Dimensions  
13.8 mm × 22.1 mm x 3.3 mm, 37 Pins,  
Operating temperature range  
-40 °C to 85 °C  
Built-in hardware crypto engines for advanced  
security  
TLS/DTLS security protocol functions  
Crypto engine for key deliberate generic  
security functions: AES (128,192,256),  
DES/3DES, SHA1/224/256, RSA, DH,  
ECC, CHACHA, and TRNG  
Power management unit  
On-Chip RTC  
Wake-up control of fast booting or full  
booting with minimal initialization time  
Supports three ultra-low power sleep  
modes  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
2 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Final  
Ultra Low Power Wi-Fi Module  
Applications  
DA16200MOD is a full offload SoC for IoT Applications, such as:  
Security systems  
Door locks  
Thermostats  
Garage door openers  
Blinds  
Lighting control  
Sprinkler systems  
Video camera security systems  
Smart appliances  
Video door bell  
Asset tracker  
System Diagram  
Figure 1: System Diagram  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
3 of 60  
© 2021 Dialog Semiconductor  
 
 
 
DA16200MOD  
Final  
Ultra Low Power Wi-Fi Module  
Contents  
General Description ............................................................................................................................ 1  
Key Features ........................................................................................................................................ 1  
Applications ......................................................................................................................................... 3  
System Diagram .................................................................................................................................. 3  
1
2
3
4
Terms and Definitions................................................................................................................... 8  
References ..................................................................................................................................... 8  
Block Diagram ............................................................................................................................... 9  
Pinout ........................................................................................................................................... 11  
4.1 Pin-out Description (37 pins)............................................................................................... 11  
4.2 Pin Multiplexing................................................................................................................... 13  
5
Electrical Specification............................................................................................................... 15  
5.1 Absolute Maximum Ratings ................................................................................................ 15  
5.2 Recommended Operating Conditions................................................................................. 15  
5.3 Electrical Characteristics..................................................................................................... 15  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
DC Parameters, 1.8 V IO..................................................................................... 15  
DC Parameters, 3.3 V IO..................................................................................... 16  
DC Parameters for RTC Block ............................................................................ 16  
DC Parameters for Digital Wake-up .................................................................... 16  
5.4 Radio Characteristics.......................................................................................................... 17  
5.4.1  
5.4.2  
WLAN Receiver Characteristics .......................................................................... 17  
WLAN Transceiver Characteristics...................................................................... 17  
5.5 Current Consumption.......................................................................................................... 18  
5.6 Radiation Performance ....................................................................................................... 19  
5.7 ESD Ratings........................................................................................................................ 19  
5.8 Clock Electrical Characteristics........................................................................................... 19  
5.8.1  
5.8.2  
RTC Clock Source............................................................................................... 19  
Main Clock Source............................................................................................... 19  
6
7
Power Management..................................................................................................................... 20  
6.1 Power On Sequence........................................................................................................... 20  
6.2 Low Power Operation Mode ............................................................................................... 20  
6.2.1  
6.2.2  
6.2.3  
Sleep Mode 1....................................................................................................... 20  
Sleep Mode 2....................................................................................................... 21  
Sleep Mode 3....................................................................................................... 21  
Core System ................................................................................................................................ 22  
7.1 ARM Cortex-M4F Processor............................................................................................... 22  
7.2 Wi-Fi Processor................................................................................................................... 22  
7.3 RTC..................................................................................................................................... 22  
7.3.1  
7.3.2  
Wake-up Controller.............................................................................................. 23  
Retention I/O Function......................................................................................... 23  
7.4 Pulse Counter ..................................................................................................................... 24  
7.4.1  
7.4.2  
Introduction .......................................................................................................... 24  
Functional Description ......................................................................................... 24  
8
Peripherals................................................................................................................................... 25  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
4 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Final  
Ultra Low Power Wi-Fi Module  
8.1 QSPI: Master with XIP Feature........................................................................................... 25  
8.2 SPI Master .......................................................................................................................... 27  
8.3 SPI Slave ............................................................................................................................ 28  
8.4 SDIO.................................................................................................................................... 30  
8.5 I2C Interface........................................................................................................................ 32  
8.5.1  
8.5.2  
I2C Master ........................................................................................................... 32  
I2C Slave ............................................................................................................. 33  
8.6 SD/SDeMMC....................................................................................................................... 35  
8.6.1 Block Diagram ..................................................................................................... 35  
8.7 I2S....................................................................................................................................... 36  
8.7.1  
8.7.2  
8.7.3  
Block Diagram ..................................................................................................... 37  
I2S Clock Scheme ............................................................................................... 37  
I2S Transmit and Receive Timing Diagram......................................................... 38  
8.8 ADC (Aux 12-bit)................................................................................................................. 39  
8.8.1  
8.8.2  
8.8.3  
8.8.4  
8.8.5  
Overview.............................................................................................................. 39  
Timing Diagram ................................................................................................... 40  
DMA Transfer ...................................................................................................... 40  
Sensor Wake-up.................................................................................................. 41  
ADC Ports............................................................................................................ 41  
8.9 GPIO ................................................................................................................................... 41  
8.9.1  
Antenna Switching Diversity ................................................................................ 41  
............................................................................................................................. 43  
8.10 UART  
8.10.1 RS-232................................................................................................................. 44  
8.10.2 RS-485................................................................................................................. 45  
8.10.3 Baud Rate............................................................................................................ 45  
8.10.4 Hardware Flow Control........................................................................................ 46  
8.10.5 Interrupts.............................................................................................................. 46  
8.10.6 DMA Interface...................................................................................................... 47  
8.11 PWM  
............................................................................................................................. 48  
8.11.1 Timing Diagram ................................................................................................... 48  
8.12 Debug Interface................................................................................................................... 49  
8.13 Bluetooth Coexistence ........................................................................................................ 50  
8.13.1 Interface Configuration ........................................................................................ 50  
8.13.2 Operation Scenario.............................................................................................. 50  
9
Applications Schematic.............................................................................................................. 52  
10 Package Information................................................................................................................... 53  
10.1 Dimension: DA16200MOD-AAC......................................................................................... 53  
10.2 Dimension: DA16200MOD-AAE ......................................................................................... 53  
10.3 PCB Land Pattern ............................................................................................................... 54  
10.4 4-Layer PCB Example......................................................................................................... 55  
10.5 Soldering Information.......................................................................................................... 56  
10.5.1 Condition for Reflow Soldering ............................................................................ 56  
11 Ordering Information .................................................................................................................. 58  
Revision History ................................................................................................................................ 59  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
5 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Final  
Ultra Low Power Wi-Fi Module  
Figures  
Figure 1: System Diagram..................................................................................................................... 3  
Figure 2: Hardware Block Diagram ....................................................................................................... 9  
Figure 3: Software Block Diagram......................................................................................................... 9  
Figure 4: DA16200MOD 37 pins Pin-out Diagram (Top View)............................................................ 11  
Figure 5: TIS 3D  
Figure 6: TRP 3D................................................................................... 19  
Figure 7: Power on Sequence............................................................................................................. 20  
Figure 8: Pulse Counter Block Diagram.............................................................................................. 24  
Figure 9: QSPI Master Block Diagram ................................................................................................ 26  
Figure 10: QSPI Master Timing Diagram (Mode 0)............................................................................. 26  
Figure 11: SPI Master Timing Diagram (Mode 0)................................................................................ 27  
Figure 12: SPI Slave Block Diagram ................................................................................................... 28  
Figure 13: 8-byte Control Type............................................................................................................ 28  
Figure 14: 4-byte Control Type............................................................................................................ 28  
Figure 15: SPI Slave Timing Diagram ................................................................................................. 30  
Figure 16: SDIO Slave Block Diagram................................................................................................ 31  
Figure 17: SDIO Slave Timing Diagram .............................................................................................. 31  
Figure 18: I2C Master Timing Diagram ............................................................................................... 32  
Figure 19: I2C Slave Timing Diagram ................................................................................................. 34  
Figure 20: SD/eMMC Block Diagram .................................................................................................. 35  
Figure 21: SD/eMMC Master Timing Diagram .................................................................................... 35  
Figure 22: I2S Block Diagram.............................................................................................................. 37  
Figure 23: I2S Clock Scheme.............................................................................................................. 37  
Figure 24: I2S Timing Diagram ........................................................................................................... 38  
Figure 25: Left Justified Mode Timing Diagram................................................................................... 38  
Figure 26: Right Justified Mode Timing Diagram ................................................................................ 38  
Figure 27: I2S Transmit Timing Diagram ............................................................................................ 39  
Figure 28: I2S Receive Timing Diagram ............................................................................................. 39  
Figure 29: ADC Control Block Diagram............................................................................................... 40  
Figure 30: 12-bit ADC Timing Diagram ............................................................................................... 40  
Figure 31: Antenna Switching Internal Block Diagram........................................................................ 42  
Figure 32: Antenna Switching Timing Diagram................................................................................... 43  
Figure 33: DA16200 UART Block Diagram......................................................................................... 44  
Figure 34: Serial Data Format............................................................................................................. 44  
Figure 35: Receiver Serial Data Sampling Points ............................................................................... 45  
Figure 36: UARTTXDOE Output Signal for UART RS-485................................................................. 45  
Figure 37: UART Hardware Flow Control............................................................................................ 46  
Figure 38: PWM Block Diagram .......................................................................................................... 48  
Figure 39: PWM Timing Diagram ........................................................................................................ 48  
Figure 40: JTAG Timing Diagram........................................................................................................ 49  
Figure 41: Bluetooth Coexistence Interface ........................................................................................ 50  
Figure 42: Application Schematic........................................................................................................ 52  
Figure 43: AAC Module Dimension..................................................................................................... 53  
Figure 44: AAE Module Dimension ..................................................................................................... 53  
Figure 45: PCB Land Pattern (Top View)............................................................................................ 54  
Figure 46: PCB Land Pattern (Bottom View)....................................................................................... 54  
Figure 47: 4-Layer PCB Example........................................................................................................ 55  
Figure 48: Typical PCB Mounting Process Flow................................................................................. 56  
Figure 49: Reflow Condition ................................................................................................................ 57  
Tables  
Table 1: Pin Description ...................................................................................................................... 12  
Table 2: DA16200MOD Pin Multiplexing............................................................................................. 14  
Table 3: Absolute Maximum Ratings................................................................................................... 15  
Table 4: Recommended Operating Conditions ................................................................................... 15  
Table 5: DC Parameters, 1.8 V IO ...................................................................................................... 15  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
6 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Final  
Ultra Low Power Wi-Fi Module  
Table 6: DC Parameters, 3.3 V IO ...................................................................................................... 16  
Table 7: DC Parameters for RTC block, 3.3 V VBAT.......................................................................... 16  
Table 8: DC Parameters for RTC block, 2.1 V VBAT.......................................................................... 16  
Table 9: DC Parameters for Digital Wake-up, 3.3 V VBAT & 1.8/3.3 V IO ......................................... 16  
Table 10: DC Parameters for Digital Wake-up, 2.1 V VBAT & 1.8 V IO ............................................. 17  
Table 11: WLAN Receiver Characteristics.......................................................................................... 17  
Table 12: WLAN Transmitter Characteristics...................................................................................... 17  
Table 13: Current Consumption in Active State .................................................................................. 18  
Table 14: Current Consumption in Low Power Operation................................................................... 18  
Table 15: ESD Performance................................................................................................................ 19  
Table 16: Power on Sequence Timing Requirements......................................................................... 20  
Table 17: RTC Pin Description............................................................................................................ 22  
Table 18: Wake-up Sources................................................................................................................ 23  
Table 19: I/O Power Domain ............................................................................................................... 24  
Table 20: QSPI Master Timing Parameters ........................................................................................ 27  
Table 21: SPI Master Pin Configuration.............................................................................................. 27  
Table 22: SPI Master Timing Parameters ........................................................................................... 28  
Table 23: Control Field of the 8-byte Control Type ............................................................................. 29  
Table 24: Control Field of the 4-byte Control Type ............................................................................. 29  
Table 25: SPI Slave Pin Configuration................................................................................................ 29  
Table 26: SPI Slave Timing Parameters ............................................................................................. 30  
Table 27: SDIO Slave Pin Configuration............................................................................................. 31  
Table 28: SDIO Slave Timing Parameters .......................................................................................... 31  
Table 29: I2C Master Pin Configuration .............................................................................................. 32  
Table 30: I2C Master Timing Parameters ........................................................................................... 32  
Table 31: I2C Slave Pin Configuration ................................................................................................ 33  
Table 32: I2C Slave Timing Parameters ............................................................................................. 34  
Table 33: SD/eMMC Master Pin Configuration ................................................................................... 35  
Table 34: SD/eMMC Master Timing Parameters ................................................................................ 36  
Table 35: I2S Pin Configuration .......................................................................................................... 36  
Table 36: I2S Clock Selection Guide................................................................................................... 38  
Table 37: I2S Transmit Timing Parameters......................................................................................... 39  
Table 38: I2S Receive Timing Parameters.......................................................................................... 39  
Table 39: DC Specification.................................................................................................................. 40  
Table 40: ADC Pin Configuration ........................................................................................................ 41  
Table 41: Control bits to enable and disable hardware flow control ................................................... 46  
Table 42: UART Interrupt Signals ....................................................................................................... 47  
Table 43: UART Pin Configuration...................................................................................................... 47  
Table 44: PWM Pin Configuration....................................................................................................... 48  
Table 45: PWM Timing Diagram Description ...................................................................................... 49  
Table 46: JTAG Timing Parameters.................................................................................................... 49  
Table 47: JTAG Pin Configuration....................................................................................................... 50  
Table 48: Component for RTC POWER KEY ..................................................................................... 52  
Table 49: Typical Reflow Profile (Lead Free): J-STD-020C................................................................ 57  
Table 50: Ordering Information (Production)....................................................................................... 58  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
7 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Final  
Ultra Low Power Wi-Fi Module  
1
Terms and Definitions  
API  
Application Programming Interface  
CRC  
DMA  
GPIO  
HW  
Cyclic Redundancy Check  
Direct Memory Access  
General Purpose Input/Output  
Hardware  
I2C  
Inter-Integrated Circuit  
Inter-IC Sound  
I2S  
IoT  
Internet of Things  
JTAG  
LDO  
LLI  
Joint Test Action Group  
Low-dropout Regulator  
Linked-List Item  
NVIC  
NVRAM  
PLL  
Nested Vectored Interrupt Controller  
Non-Volatile RAM  
Phase-locked Loop  
PRNG  
PWM  
QSPI  
RTC  
SAR ADC  
SPI  
Pseudo Random Number Generator  
Pulse Width Modulation  
Quad-lane SPI  
Real-time Clock  
Successive Approximation Analog-to-Digital Converter  
Serial Peripheral Interface  
Software  
SW  
SWD  
UART  
XIP  
Serial Wire Debug  
Universal Asynchronous Receivers and Transmitter  
eXecutein Place  
TAP  
Test Access Port  
2
References  
[1] ARM Cortex M4 Processor Technical Reference Manual  
[2] ITU-T O.150, General Requirements for Instrumentation for Performance Measurements on  
Digital Transmission Equipment, 1996  
[3] Arm® TrustZone® CryptoCell-312, Revision r1p1, Software Integrators Manual  
[4] IEEE Standard 1149.1, Test Access Port and Boundary-Scan Architecture  
[5] DA16200_SDK_Programmer_Guide.pdf  
[6] AMBA AHB bus specification, Rev 3.0 https://developer.arm.com/documentation/ihi0033/bb  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
8 of 60  
© 2021 Dialog Semiconductor  
 
 
DA16200MOD  
Final  
Ultra Low Power Wi-Fi Module  
3
Block Diagram  
Figure 2 shows the DA16200MOD hardware (HW) block diagram.  
VBAT_3V3  
VDD_DIO1  
VDD_DIO2  
Chip Antenna type  
DA16200MOD-AAC  
PIN Mux  
Quad-SPI  
SPI  
32.768KHz  
Crystal  
2.4GHzRF filter  
& Matching  
UART  
GPIOs  
PWM  
RTC Control  
External Antenna type  
(u.FL connector)  
DA16200MOD-AAE  
I2C  
40MHz  
Crystal  
SD/eMMC  
SDIO  
UART  
For debugging  
I2S  
4ch 12bit ADC  
JTAG/  
4Mbyte  
Serial flash  
Figure 2: Hardware Block Diagram  
Figure 3 shows the DA16200 SoC software (SW) block diagram.  
User Application  
Home Appliance/Sensor Network/Door Lock/Light, IoT.  
Provisioning  
Protocol  
mDNS / xmDNS / DNS-SD / CoAP / Jason  
NetX-APP  
DHCP/ DNS/ HTTP1.0 / HTTP1.1  
CLI Handler  
upper Level  
TLS / DTLS  
Wi-Fi  
Supplicant  
TCP/UDP  
NetX-Duo  
80211 Link Layer  
IP  
802.11 Upper MAC  
802.11 Lower MAC  
ThreadX  
RTOS  
Wi-Fi PHY  
Device Driver  
Figure 3: Software Block Diagram  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
9 of 60  
© 2021 Dialog Semiconductor  
 
 
 
DA16200MOD  
Final  
Ultra Low Power Wi-Fi Module  
The following descriptions are about the SW block diagrams.  
Kernel layer  
Real Time Operating System  
The Wi-Fi layer is divided into four layers:  
Lower MAC  
SW module to control/handle HW Wi-Fi MAC/PHY and interfaces with Upper MAC layer  
Upper MAC  
SW module to control/handle Wi-Fi control/handle to interface with supplicant  
Wi-Fi Link Layer: Interface layer between Upper MAC and supplicant  
Supplicant: SW module to control/management to operate Wi-Fi operation  
Network subsystem layer  
Used to control/handle network operation  
Main protocols are IP, TCP, and UDP  
Other necessary protocols are supported  
Security Layer  
Crypto operation engine is ported to use crypto HW engine  
TLS/TCP and DTLS/UDP APIs are supported to handle security operation:  
User application layer  
Variable sample codes are supported in SDK sample codes use supported APIs  
TCP Client/Server, UDP Client/Server, TLS Client/Server  
HTTP/HTTPs download, OTA Update usage, and MQTT usage  
Customer applications can be included and implemented easily in SDK  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
10 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Final  
Ultra Low Power Wi-Fi Module  
4
Pinout  
4.1 Pin-out Description (37 pins)  
DA16200MOD series  
37  
36  
NC  
NC  
1
2
NC  
GND  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
VBAT_3V3  
VDD_DIO1  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
GPIOA4  
GPIOA5  
GPIOA6  
GPIOA7  
GPIOA8  
GPIOA9  
RTC_PWR_KEY  
RTC_WAKE_UP  
RTC_SENSOR  
NC  
3
4
GND  
5
6
JTAG_TMS  
JTAG_TCLK  
GPIOC8  
7
8
9
GPIOC7  
10  
11  
12  
13  
GPIOC6  
UART0_TXD  
UART0_RXD  
14 15 16 17 18 19 20 21 22 23  
Figure 4: DA16200MOD 37 pins Pin-out Diagram (Top View)  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
11 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Final  
Ultra Low Power Wi-Fi Module  
Table 1: Pin Description  
#Pin  
1
Pin Name  
NC  
Type  
NC  
Drive(mA)  
Reset State  
Description  
NOT CONNECT  
RF VDD  
2
GND  
GND  
DI  
3
RTC_PWR_KEY  
RTC_WAKE_UP  
RTC_SENSOR  
NC  
RTC block enable signal  
RTC block wake-up signal  
Sensor control signal  
NOT CONNECT  
JTAG I/F, SWDIO  
4
DI  
5
DO  
NC  
6
7
JTAG_TMS  
JTAG_TCLK  
GPIOC8  
DIO  
DIO  
DIO  
DIO  
DIO  
DO  
DI  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
I-PU  
I-PD  
I-PD  
I-PD  
I-PD  
O
8
JTAG I/F, SWCLK, General Purpose I/O  
General Purpose I/O  
9
10  
11  
12  
13  
14  
15  
GPIOC7  
General Purpose I/O  
GPIOC6  
General Purpose I/O  
UART_TXD  
UART_RXD  
RTC_WAKE_UP2  
VDD_DIO2  
UART transmit data  
I
UART receive data  
DI  
RTC block wake-up signal  
VDD  
Supply power for digital I/O  
GPIOC6~GPIOC8, TMS/TCLK, TXD/RXD  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
F_CSN  
F_IO1  
DIO  
External Flash Memory I/F  
External Flash Memory I/F (F_SI)  
External Flash Memory I/F (F_WP)  
External Flash Memory I/F (F_SO)  
External Flash Memory I/F (F_HOLD)  
External Flash Memory I/F  
General Purpose I/O  
DIO  
F_IO2  
DIO  
F_IO0  
DIO  
F_IO3  
DIO  
F_CLK  
DIO  
GPIOA11  
GPIOA10  
GPIOA9  
GPIOA8  
GPIOA7  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA3  
GPIOA2  
GPIOA1  
GPIOA0  
VDD_DIO1  
VBAT_3V3  
NC  
DIO  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
2/4/8/12  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
DIO  
General Purpose I/O  
DIO  
General Purpose I/O  
DIO  
General Purpose I/O  
DIO  
General Purpose I/O  
DIO  
General Purpose I/O  
DIO  
General Purpose I/O  
DIO  
General Purpose I/O  
AI/DIO  
AI/DIO  
AI/DIO  
AI/DIO  
VDD  
VDD  
NC  
Aux.ADC input/General Purpose I/O  
Aux.ADC input/General Purpose I/O  
Aux.ADC input/General Purpose I/O  
Aux.ADC input/General Purpose I/O  
Supply power for digital I/O  
Supply power for integrated power amplifier  
NOT CONNECT  
NC  
NC  
NOT CONNECT  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
12 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Final  
Ultra Low Power Wi-Fi Module  
4.2 Pin Multiplexing  
This device provides various interfaces to support many kinds of applications. It is possible to control  
each pin according to the required application in reference to the pin multiplexing illustrated in Table  
2. Pin control can be realized through register setting. This device can use a maximum of 16 GPIO  
pins and each of the GPIO pins multiplexes signals of various functions. In particular, four pins from  
GPIOA0 to GPIOA3 multiplex analog signals, which also can be realized through register setting.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
13 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD-AA series  
Ultra Low Power Wi-Fi Module  
Table 2: DA16200MOD Pin Multiplexing  
Driving  
Strength  
(Note 1)  
Module  
default  
SPI  
master  
SPI  
slave  
I2C  
master  
I2C  
slave  
SDIO  
slave  
BT  
coex  
Muxed  
w/Analog (nRESET=0)  
Pin State  
Pin  
JTAG  
Analog  
SDeMMC  
I2S  
I2S_Clock UART1  
UART2  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
GPIOA4  
GPIOA5  
GPIOA6  
GPIOA7  
GPIOA8  
GPIOA9  
GPIOA10  
GPIOA11  
TCLK/  
GPIOA15  
TMS  
UART_TXD UART0_TXD  
UART_RXD UART0_RXD  
GPIOC8  
GPIOC7  
GPIOC6  
GPIO  
GPIO  
GPIO  
CH0  
CH1  
CH2  
CH3  
SPI_MISO I2C_SDA I2C_SDA  
SPI_MOSI I2C_CLK I2C_CLK  
BCLK  
MCLK  
SDO  
LRCK  
BCLK  
MCLK  
SDO  
LRCK  
BCLK  
MCLK  
TXD  
RXD  
TXD  
RXD  
TXD/RTS  
RXD/CTS  
TXD  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
I-PD  
2/4/8/12mA  
2/4/8/12mA  
2/4/8/12mA  
2/4/8/12mA  
2/4/8/12mA  
2/4/8/12mA  
2/4/8/12mA  
2/4/8/12mA  
2/4/8/12mA  
2/4/8/12mA  
2/4/8/12mA  
2/4/8/12mA  
WRP  
SPI_CSB  
SPI_CLK  
I2C_SDA  
I2C_CLK  
GPIO  
CLK_IN  
CLK_IN  
UART1_TXD  
UART1_RXD  
WPS  
Factory_reset  
GPIO  
I2C_SDA I2C_SDA  
I2C_CLK I2C_CLK  
I2C_SDA  
CMD  
CLK  
D3  
D2  
D1  
CMD  
CLK  
D3  
D2  
D1  
SPI_CSB SPI_CSB  
SPI_CLK SPI_CLK  
I2C_CLK  
RXD  
SPI_DIO0 SPI_MISO I2C_SDA  
SPI_DIO1 SPI_MOSI I2C_CLK  
SPI_DIO2 SPI_MISO  
BT_SIG0  
BT_SIG1  
BT_SIG2  
GPIO  
GPIO  
GPIO  
D0  
D0  
WRP  
TXD  
RXD  
SPI_DIO3 SPI_MOSI  
TCLK  
TCLK  
TMS  
No  
I-PD  
2/4/8/12mA  
TMS  
No  
No  
No  
No  
No  
No  
I-PU  
O
I
I-PD  
I-PD  
I-PD  
2/4/8/12mA  
2/4/8/12mA  
2/4/8/12mA  
2/4/8/12mA  
2/4/8/12mA  
2/4/8/12mA  
GPIO  
GPIO  
GPIO  
TDI  
TDO  
NTRST  
RXD  
TXD  
Note 1 Default Value: 8 mA  
Datasheet  
Revision 2.2  
03-Feb-2021  
CFR0011-120-00  
14 of 60  
© 2021 Dialog Semiconductor  
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
5
Electrical Specification  
5.1 Absolute Maximum Ratings  
Table 3: Absolute Maximum Ratings  
Parameter  
VBAT_3V3  
VDD_DIO1  
VDD_DIO2  
Pins  
35  
Min  
VSS  
Max  
Units  
3.9  
3.9  
3.9  
V
V
V
34  
VSS  
VSS  
15  
Operating temperature range (TA)  
-40  
+85  
°C  
5.2 Recommended Operating Conditions  
Table 4: Recommended Operating Conditions  
Parameter  
VBAT_3V3  
VDD_DIO1  
VDD_DIO2  
Pins  
35  
Min  
2.1  
Typ  
Max  
3.6  
Units  
V
V
V
34  
1.62  
1.62  
3.6  
3.6  
15  
Operating temperature range (TA)  
-40  
+85  
°C  
5.3 Electrical Characteristics  
5.3.1 DC Parameters, 1.8 V IO  
Table 5: DC Parameters, 1.8 V IO  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Units  
Guaranteed logic Low  
level  
0.3 ×  
DVDD  
Input Low Voltage  
VIL  
VIH  
VSS  
V
Guaranteed logic High  
level  
Input High Voltage  
0.7 × DVDD  
DVDD  
V
0.2 ×  
DVDD  
Output Low Voltage VOL  
Output High Voltage VOH  
DVDD=Min.  
VSS  
V
V
DVDD=Min.  
0.8 × DVDD  
DVDD  
32.4  
Pull-up Resistor  
RPU  
RPD  
VPAD=VIH, DIO=Min.  
VPAD=VIL, DIO=Min.  
kΩ  
Pull-down Resistor  
32.4  
Note 1 DVDD = 1.8 V, VDD_DIO1, VDD_DIO2 Logic Level  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
15 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Ultra Low Power Wi-Fi Module  
5.3.2  
DC Parameters, 3.3 V IO  
Table 6: DC Parameters, 3.3 V IO  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Units  
Guaranteed logic Low  
level  
Input Low Voltage  
VIL  
VIH  
VSS  
0.8  
V
Guaranteed logic High  
level  
Input High Voltage  
2.0  
DVDD  
V
Output Low Voltage VOL  
Output High Voltage VOH  
DVDD=Min.  
VSS  
2.4  
0.4  
DVDD  
19.4  
V
V
DVDD=Min.  
Pull-up Resistor  
RPU  
RPD  
VPAD=VIH, DIO=Min.  
VPAD=VIL, DIO=Min.  
kΩ  
Pull-down Resistor  
16.0  
Note 1 DVDD= 3.3 V, VDD_DIO1, VDD_DIO2 Logic Level  
5.3.3  
DC Parameters for RTC Block  
There are several control pins in RTC block, see Section 7.3 RTC for detail.  
Table 7: DC Parameters for RTC block, 3.3 V VBAT  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Units  
Guaranteed logic Low  
level  
Input Low Voltage  
VIL  
VIH  
VSS  
0.6  
V
Guaranteed logic High  
level  
Input High Voltage  
2.2  
VBAT  
V
(RTC block: RTC_PWR_KEY, RTC_WAKE_UP, RTC_WAKE_UP2)  
Table 8: DC Parameters for RTC block, 2.1 V VBAT  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Units  
Guaranteed logic Low  
level  
Input Low Voltage  
VIL  
VIH  
VSS  
0.3  
V
Guaranteed logic High  
level  
Input High Voltage  
1.6  
VBAT  
V
(RTC block: RTC_PWR_KEY, RTC_WAKE_UP, RTC_WAKE_UP2)  
5.3.4  
DC Parameters for Digital Wake-up  
Several GPIOs can be used for wake-up, see Section 7.3.1 Wake-up Controller for detail.  
To use Digital Wake-up, IO voltage should not be over VBAT.  
Table 9: DC Parameters for Digital Wake-up, 3.3 V VBAT & 1.8/3.3 V IO  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Units  
Guaranteed logic Low  
level  
Input Low Voltage  
VIL  
VIH  
VSS  
0.5  
V
Guaranteed logic High  
level  
Input High Voltage  
1.4  
DVDD  
V
(DVDD= 1.8/3.3V, VDD_DIO1, VDD_DIO2 Logic Level, DVDD should not be over VBAT)  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
16 of 60  
© 2021 Dialog Semiconductor  
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Table 10: DC Parameters for Digital Wake-up, 2.1 V VBAT & 1.8 V IO  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Units  
Guaranteed logic Low  
level  
Input Low Voltage  
VIL  
VIH  
VSS  
0.3  
V
Guaranteed logic High  
level  
Input High Voltage  
1.3  
DVDD  
V
(DVDD= 1.8V, VDD_DIO1, VDD_DIO2 Logic Level, DVDD should not be over VBAT)  
5.4 Radio Characteristics  
5.4.1  
WLAN Receiver Characteristics  
TA = +25 °C, VBAT = 3.3 V, CH1(2412 MHz)  
Table 11: WLAN Receiver Characteristics  
Parameter  
Condition  
Min  
-99.5  
-95  
-90  
-91  
-91  
-89  
-82  
-76  
-91  
-73  
-4  
Typ  
-98.5  
-94  
-89  
-90  
-90  
-88  
-81  
-75  
-90  
-72  
0
Max  
-96.5  
-92  
-87  
-88  
-88  
-86  
-79  
-73  
-88  
-70  
0
Units  
1 Mbps DSSS  
2 Mbps DSSS  
11 Mbps CCK  
6 Mbps OFDM  
9 Mbps OFDM  
18 Mbps OFDM  
36 Mbps OFDM  
54 Mbps OFDM  
MCS0(GF)  
Sensitivity  
(8 % PER for 11b rates, 10 %  
PER for 11g/11n rates)  
dBm  
MCS7(GF)  
Maximum input level  
802.11b  
(8 % PER for 11b rates, 10 %  
PER for 11g/11n rates)  
802.11g  
-10  
-4  
-3  
5.4.2  
WLAN Transceiver Characteristics  
TA = +25 °C, VBAT = 3.3 V, CH1(2412 MHz)  
Table 12: WLAN Transmitter Characteristics  
Parameter  
Condition  
Min  
16.5  
16.5  
16.5  
16.5  
15.5  
15.5  
15.5  
15.5  
14.5  
Typ  
19.0  
19.0  
19.0  
19.0  
18.0  
18.0  
18.0  
18.0  
17.0  
Max  
20  
20  
20  
20  
19  
19  
19  
19  
18  
Units  
1 Mbps DSSS  
2 Mbps DSSS  
5.5 Mbps CCK  
11 Mbps CCK  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
Maximum Output Power measured  
form IEEE spectral mask and EVM  
dBm  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
17 of 60  
© 2021 Dialog Semiconductor  
 
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Parameter  
Condition  
Min  
14.5  
13  
Typ  
17.0  
15.5  
14.5  
18.0  
14.5  
Max  
18  
Units  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
MCS0 OFDM  
MCS7 OFDM  
16.5  
15.5  
19  
12  
15.5  
12  
15.5  
+25  
Transmit center frequency accuracy  
-25  
ppm  
5.5 Current Consumption  
TA = +25 °C, VBAT = 3.3 V, w/ CPU clock is 80 MHz.  
Table 13: Current Consumption in Active State  
Parameter  
Condition  
1 Mbps DSSS  
Min  
260  
240  
180  
180  
25  
Typ  
280  
260  
200  
200  
29  
Max  
320  
300  
240  
240  
51  
Units  
@ 19.0 dBm  
@ 18.0 dBm  
@ 14.5 dBm  
@ 14.5 dBm  
6 Mbps OFDM  
54 Mbps OFDM  
MCS7  
TX  
RX  
ACTIVE  
No signal (Note 1)  
mA  
1 Mbps DSSS (Note 1)  
1 Mbps DSSS  
54 Mbps OFDM  
MCS7  
26.5  
27  
30.5  
37.5  
38.5  
38.5  
53  
54  
29  
54  
29  
54  
Note 1 Low Power Mode& CPU clock 30 MHz  
TA = +25 °C, VBAT = 3.3 V  
Table 14: Current Consumption in Low Power Operation  
Parameter  
Condition  
Sleep 1  
Sleep 2  
Sleep 3  
Min  
Typ  
Max  
Units  
0.2  
1.8  
3.5  
Low Power Operation  
µA  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
18 of 60  
© 2021 Dialog Semiconductor  
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
5.6 Radiation Performance  
Figure 5: TIS 3D  
Figure 6: TRP 3D  
5.7 ESD Ratings  
Table 15: ESD Performance  
Reliability Test  
Standards  
Test Conditions  
± 2,000 V  
Result  
Pass  
Human Body Model (HBM)  
Charge Device Mode (CDM)  
ANSI/ESDA/JEDEC JS-001-2017  
ANSI/ESDA/JEDEC JS-002-2018  
± 500 V  
Pass  
5.8 Clock Electrical Characteristics  
DA16200MOD is including two clock sources. One is the 32.768 kHz clock used by the RTC block,  
and the other is the 40 MHz clock for the internal processor and Wi-Fi system. More specifically, the  
40 MHz clock is used as a source clock for the internal PLL while the PLL output is used for the  
internal processor and Wi-Fi system block.  
5.8.1  
RTC Clock Source  
The 32.768 kHz RTC clock source is necessary for the free-running counter in the RTC block. The  
RTC block of the SoC contains an internal 32.768 kHz RC oscillator as well, which is used as a clock  
for chip initialization before the external 32.768 kHz crystal reaches the stable time in the initial stage.  
It is necessary to convert it into an external clock for accurate clock counting after the initialization  
stage. This process is executed through the register setting.  
5.8.2  
Main Clock Source  
DA16200MOD contains a crystal oscillator for the main clock source which supports the external  
crystal clock. Basically, the external clock is 40 MHz.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
19 of 60  
© 2021 Dialog Semiconductor  
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
6
Power Management  
DA16200MOD has an RTC block which provides power management and function control for low  
power operation. In normal operation, the RTC block is always powered on when RTC_PWR_KEY is  
enabled.  
6.1 Power On Sequence  
The sequence after the initial switching from power-off to power-on is shown in Figure 7.  
The RTC_PWR_KEY of DA16200 is a pin that enables the RTC block. Once RTC_PWR_KEY is  
enabled after VBAT power is supplied, all the internal regulators are switched on automatically in the  
sequence pre-defined by the RTC block.  
Once RTC_PWR_KEY is switched on, LDOs for both XTAL and digital I/O are switched on shortly  
and then the DC-DC regulator is switched on according to the pre-defined interval. The enabling  
intervals can also be modified in the register settings after initial power-up.  
VBAT  
50% VBAT  
T0  
IO Voltage  
50% IO  
POWER_KEY  
CLK_32K  
50% VBAT  
T1  
T2  
T3  
Figure 7: Power on Sequence  
Table 16: Power on Sequence Timing Requirements  
Name  
T0  
Description  
Min  
Typ  
Max  
Unit  
ms  
VBAT power-on time from 10 % to 90% of VBAT  
IO voltage and VCC supply  
T1  
0
ms  
T2  
RTC_PWR_KEY switch-on time from 50 % VBAT to 50 %  
POWER_KEY * Note 1  
5*T0  
ms  
T3  
Internal RC oscillator wake-up time  
217  
µs  
Note 1 If the T0 = 10 ms to switch on VBAT, the recommended T2 is 50 ms for the safe booting operation. It  
would be externally controlled by MCU or it would be implemented using RC filter at the input of  
RTC_PWR_KEY. The recommended C is 470 nF or 1uF (not to exceed 1 uF) and R value is chosen  
to have T2 delay. For example, R and C values will be 82 kΩ and 1 uF when T0 = 10 ms.  
6.2 Low Power Operation Mode  
DA16200MOD provides three Sleep modes as low power operation modes.  
6.2.1  
Sleep Mode 1  
Sleep mode 1 is an operational mode in which the RTC_PWR_KEY is not switched to high yet. The  
RTC_PWR_KEY is in the low state and the DA16200MOD is only supplied with VBAT power. With all  
the internal blocks off in Sleep mode 1, only the leakage current from a minimal number of internal  
blocks connected to VBAT remains.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
20 of 60  
© 2021 Dialog Semiconductor  
 
 
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
6.2.2  
Sleep Mode 2  
Sleep mode 2 is an operational mode in which the RTC_PWR_KEY is set to high and the RTC block  
is running. Sleep mode 2 is activated by setting RTC registers for controlling the power management  
unit via a command from the CPU.  
To switch Sleep mode 2 back to Sleep mode 1, RTC_PWR_KEY should be set to low.  
Changing the state of the device from Sleep mode 2 to an ACTIVE state happens in one of two  
ways:  
1. The counter value that has been set by the CPU prior to entering Sleep mode 2 is reached.  
2. An external wake-up event occurs via the RTC_WAKE_UP pin.  
6.2.3  
Sleep Mode 3  
Sleep Mode 3 is a low power, but fully connected Wi-Fi mode of operation. Sleep Mode 3 checks for  
incoming Wi-Fi network data traffic at regular intervals set by the user, for example, every one  
second, three seconds, five seconds, and so on. The exact time interval is programmable.  
Sleep Mode 3 is activated by software commands. See the SDK documentation for more information.  
A device can come out of Sleep Mode 3 and into a fully ACTIVE state before the next targeted  
wakeup time interval via a GPIO wakeup.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
21 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Ultra Low Power Wi-Fi Module  
7
Core System  
7.1 ARM Cortex-M4F Processor  
The Cortex-M4F processor is a low-power processor that features low gate count, low interrupt  
latency, low-cost debug, and includes floating point arithmetic functionality. The processor is  
intended for deeply embedded applications that require fast interrupt response features.  
The features of the Cortex-M4F processor in DA16200 are summarized below:  
Operation clock frequency is up to 160 MHz  
32-bit ARM Cortex-M4F architecture optimized for embedded applications  
Thumb-2 mixed 16/32-bit instruction set  
Hardware division and fast multiplication  
Includes Nested Vectored Interrupt Controller (NVIC)  
SysTick timer provided by Cortex-M4F processor  
Supports both standard JTAG (5-wire) and the low-pin-count ARM SWD (2-wire, TCLK/TMS)  
debug interfaces  
Cortex-M4F is binary compatible with Cortex-M3  
For more information on the ARM Cortex-M4F, see the ARM Cortex-M4F r0p1 technical reference  
manual Error! Reference source not found..  
7.2 Wi-Fi Processor  
DA16200 includes an internal MCU (ARM Cortex-M4F) to completely offload the host MCU along  
with an 802.11 b/g/n radio, baseband, and MAC with a powerful crypto engine for a fast and secure  
WLAN and Internet connections with 256-bit encryption. It supports the station, SoftAP, and Wi-Fi  
Direct modes. It also supports WPA/WPA2 personal and enterprise security, WPA2 SI, WPA3 SAE,  
OWE, and WPS 2.0. It includes an embedded IPv4 and IPv6 TCP/IP stack.  
7.3 RTC  
Among the pins in DA16200MOD, four special pins are directly connected to the RTC block, which  
are RTC_PWR_KEY, RTC_GPO, RTC_WAKE_UP, and RTC_WAKE_UP2.  
Table 17: RTC Pin Description  
Pin Name  
Pin Number  
Description  
RTC_PWR_KEY represents a power key for the RTC block. When  
this pin is enabled, the RTC starts to work by following a pre-  
defined power-up sequence and eventually all the necessary  
power is supplied to all the sub-blocks including the main digital  
block in DA16200. When disabled, all blocks are powered off and  
this mode is defined as Sleep mode 1.  
RTC_PWR_KEY  
3
Minimum leakage current in Sleep mode 1.  
This pin is an output and high level is 'VBAT'.  
It has three different functions.  
GPO function: output value can be set as 1 or 0 via register  
setting. It can keep the value even in Sleep mode  
Flash control function: when in Sleep mode, it becomes 0;  
when in Active mode, it is 1  
RTC_SENSOR  
5
Sensor wakeup function: when used in sensor wake-up  
function (Section 8.8.4), it provides a programmable periodic  
signal for an external device. Inside the RTC, there are  
registers for setting count values  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
22 of 60  
© 2021 Dialog Semiconductor  
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Pin Name  
Pin Number  
Description  
This pin is an input pin for receiving an external event signal from  
an external device like a sensor. The RTC block detects an  
external event signal via this pin and wakes up DA16200 from  
Sleep mode 2 or Sleep mode 3.  
RTC_WAKE_UP  
4
RTC_WAKE_UP2  
14  
RTC block has a 36-bit real time counter. Its resolution is equal to one clock period of 32.768 kHz.  
The count value can be read via the register read command.  
7.3.1  
Wake-up Controller  
The wake-up controller is designed to wake up DA16200MOD from a Sleep mode by an external  
signal. It detects an edge trigger of the wake-up signal and selects either the rising edge or the falling  
edge. Also, the wake-up signal must be maintained for at least 200 µs upon occurrence of transition  
on one side.  
When it comes to the source of wake-up, 11 digital I/Os in addition to the two pins directly connected  
to the RTC block can be used. Although up to 11 digital I/Os are available for use, the maximum  
number of digital I/Os that are simultaneously available is eight. Table 18 describes the digital I/Os  
that are available for simultaneous use.  
Table 18: Wake-up Sources  
Input Selection = 0  
GPIOA4  
Input Selection = 1  
X
GPIOA5  
X
X
GPIOA6  
GPIOA7  
X
GPIOA8  
X
GPIOA9  
GPIOC6  
GPIOC7  
GPIOC8  
GPIOA10  
GPIOA11  
For more on wake-up source selection, refer to input selection register: 0x50091008[25:16].  
The wake-up controller is located in the RTC block. Several parameters can be set by RTC registers  
and they identify which pin is used to wake up the SoC by checking the status register after wake-up.  
DA16200MOD has another wake-up function using analog sources, which is described in Section  
8.8.4. Using the Aux-ADC, DA16200 detects whether it exceeds the pre-defined threshold value. If it  
detects the wanted condition, it will wake up from a Sleep mode. Four ports (GPIOA[3:0]) are used  
for this function.  
7.3.2  
Retention I/O Function  
DA16200MOD I/O has a retention mode. During this mode, I/O cells retain the previous state values  
at the core side inputs. When it is required to maintain the value of a specific GPIO in Sleep mode,  
this function will be used. For example, in order to maintain HIGH value on GPIOA4 in Sleep mode, it  
is required to set the value of GPIOA4 to HIGH and set the register bit of RTC block  
(0x5009_1018:BIT[27:24]) to enable retention to the proper value described in Table 19 before going  
to the Sleep mode. For GPIOA4, BIT[25] should be set to HIGH, then GPIOA4 can keep the value  
HIGH during the Sleep mode.  
The retention enable register is comprised of three bits in total, and the I/O power domains covered  
by each of the bits are described in Table 19.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
23 of 60  
© 2021 Dialog Semiconductor  
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Table 19: I/O Power Domain  
[25] DIO1  
[26] DIO2  
GPIOC[8:6]  
[27] FDIO  
F_CLK  
GPIOA[11:4]  
TCLK/TMS  
F_CSN  
UART0_RXD/UART0_TXD  
F_IO0 to F_IO3  
7.4 Pulse Counter  
7.4.1  
Introduction  
The pulse counter is a module which counts the number of rising or falling edges of input signals.  
And this counter module can run even in Sleep mode. It includes one 32-bit up-counter. The input  
channel can be chosen by register setting among the 11 digital I/Os. It also has a glitch filter which is  
designed to remove the unwanted trigger of an input signal.  
7.4.2  
Functional Description  
Pulse  
Count  
CLK_32kHz  
PCLK  
Int  
Counter  
Int  
Pulse  
Edge  
Ext.  
Pad  
Mux.  
Glitch  
Filter  
Edge  
Select  
Gli_En  
Gli_Thresh  
Count_En  
Count_Rst  
Int_Clr  
Int_Thresh  
Edge_Sel  
Mux_SEL  
Figure 8: Pulse Counter Block Diagram  
7.4.2.1  
Input  
Available input channels are described in Table 18. It uses the same input sources with the wake-up  
controller. By register setting, input channels can be selected among 11 digital I/Os.  
7.4.2.2  
Clock  
The operation clock of the pulse counter is 32 kHz.  
7.4.2.3  
Counter  
As described in Figure 8, the pulse counter is activated by several counter control signals. By register  
setting, input signals can be selected on either the rising edges or falling edges. In order to enable  
the glitch filter module, Gli_En and Gli_Thresh register values need to be set. The pulses whose  
cycles are shorter than the Gli_Thresh value are removed. The counter is a 32-bit up-counter and the  
counter value can be reset to zero by Count_Rst.  
7.4.2.4  
Interrupts  
An interrupt occurs when the counter values reaches the Interrupt Threshold value (Int_Thresh). In  
Sleep mode, this interrupt can be used as a wake-up source.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
24 of 60  
© 2021 Dialog Semiconductor  
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
8
Peripherals  
This section describes the peripherals that are supported by the DA16200MOD.  
8.1 QSPI: Master with XIP Feature  
QSPI master supports 4-line SPI communication with commercial flash memory devices and uses  
Motorola SPI-compatible interface among SPI communication modes. The highest communication  
speed is the same as the AMBA bus clock, and the speed is adjustable in integer multiples. The  
designed QSPI supports 4-/2-/1-line types depending on the purpose. These types should be  
combined. Especially when the 1-line communication mode is used, it can be used as the SPI  
master.  
QSPI master is an IP for communication between the flash memory and AMBA AHB bus and is  
designed to support XIP. The features of the QSPI master are summarized as follows:  
Serial Flash Interface:  
SPI compatible serial bus interface  
Configurable SPI I/O modes:  
Single I/O mode  
Dual I/O mode  
Quad I/O mode  
JEDEC Standard: JESD216B  
24-bit and 32-bit addressing  
Supports to access flash with XIP mode  
Read access without command  
Read access without address and command  
Programmable SPI clock phase and polarity  
Maximum number of SPI CS is four that can be operated  
AMBA Slave Interface  
Compliance to the AMBA AHB bus specification, Rev 3.0 [6]  
Direct code execution: directly addressable access without additional driver software  
Supports single and incrementing burst transfer (SINGLE, INCR, INCR4, INCR8, INCR16)  
Supports byte, half-word, and word transaction  
AMBA slave interface is optional to access configuration and status registers  
Simple timer is used to check the completion time of flash operation  
XIP path of QSPI master supports HW remapping function to execute selected boot image for  
over-the-air programming (OTA)  
AMBA Master Interface  
Compliance to the AMBA AHB bus specification, Rev 3.0 [6]  
Supports DMA operation to access serial flash devices  
Automatic copy of code image from serial flash to system RAM  
Automatic programming of code image from system RAM to serial flash  
Performs a mem-to-mem copy in units of 32 bits, regardless of the address and length  
Supports single and incrementing burst transfer (SINGLE, INCR, INCR4, INCR8, INCR16)  
Supports byte, half-word, and word transaction  
Figure 9 shows the QSPI Master Block Diagram.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
25 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Ultra Low Power Wi-Fi Module  
AHB  
BusMatrix  
XIP path  
Configuration  
DMA  
I-Cache  
Controller  
S
M
S0  
S1  
AHB  
Bus  
AHB  
Bus  
QSPI  
Master  
External  
Serial  
NOR Flash  
AHB  
Bus  
with XIP feature  
M
DMA  
AHB  
Bus  
Figure 9: QSPI Master Block Diagram  
Figure 10 shows the timing diagram for the QSPI master.  
TCSB.OF  
TCLK.ON  
TDO.DLY  
TDI.SU  
F
QSPI_CSB  
QSPI_CLK  
QSPI_D[3:0]  
Figure 10: QSPI Master Timing Diagram (Mode 0)  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
26 of 60  
© 2021 Dialog Semiconductor  
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Table 20 lists the timing parameters for the QSPI master.  
Table 20: QSPI Master Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MHz  
%
QSPI_CLK frequency  
QSPI_CLK clock duty  
FCLK  
10  
120  
50  
TCLK  
1st CLK active rising transition time  
TCLK.ON  
0.5 ×TCLK  
ns  
(Note 1)  
QSPI_CSB non-active rising transition time TCSB.OFF  
0
6
TCLK  
ns  
ns  
ns  
QSPI_D[3:0] input setup time  
QSPI_D[3:0] output delay time  
Note 1 TCLK = (FCLK× 106)-1 seconds  
TDI.SU  
TDO.DLY  
2
8.2 SPI Master  
QSPI can use the SPI master by means of single line interface. Table 21 shows the pin definition of  
the SPI master interface. SPI signal timing is the same as QSPI.  
To use DA16200MOD as an SPI master, the CSB signal can be used with any of the GPIO pins.  
CSB [3:1] can be selected from GPIO special function by setting the registers in the GPIO.  
Table 21: SPI Master Pin Configuration  
Pin Name  
GPIOx  
Pin Number  
I/O  
O
Function Name  
E_SPI_CSB[3:1]  
E_SPI_CSB[0]  
GPIOA6  
GPIOA7  
GPIOA8  
GPIOA9  
GPIOA10  
GPIOA11  
27  
26  
25  
24  
23  
22  
O
O
E_SPI_CLK  
I/O  
I/O  
I/O  
I/O  
E_SPI_MOSI or E_SPI_D[0]  
E_SPI_MISO or E_SPI_D[1]  
E_SPI_D[2]  
E_SPI_D[3]  
TCSB.OF  
TCLK.ON  
TDO.DLY  
TDI.SU  
F
E_SPI_CSB  
E_SPI_CLK  
E_SPI_D[3:0]  
Figure 11: SPI Master Timing Diagram (Mode 0)  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
27 of 60  
© 2021 Dialog Semiconductor  
 
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Table 22: SPI Master Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MHz  
%
QSPI_CLK frequency  
FCLK  
5
60  
QSPI_CLK clock duty  
50  
TCLK  
1st CLK active rising transition time  
TCLK.ON  
0.5 × TCLK  
ns  
(Note 1)  
QSPI_CSB non-active rising transition time TCSB.OFF  
0
6
TCLK  
ns  
ns  
ns  
QSPI_D[3:0] input setup time  
QSPI_D[3:0] output delay time  
Note 1 TCLK = (FCLK× 106)-1 seconds  
TDI.SU  
TDO.DLY  
2
8.3 SPI Slave  
SPI slave interface supports the control of DA16200 by an external host. The range of SPI clock  
speed is the same as that of the internal bus clock speed. The SPI slave supports both the burst  
mode and non-burst mode. In the burst mode, SPI_CSB remains active from the start to the end of  
communication. In the non-burst mode, SPI_CLK remains active at every eight bits.  
Address  
Decoder  
Command  
Decoder  
APB bus  
Controller  
SPI Signals  
Data  
Decoder  
Figure 12: SPI Slave Block Diagram  
Communication protocols of the SPI slave interface use either 4-byte or 8-byte control signals.  
Between the two available communication protocols, the CPU chooses one before initiating the  
control.  
Figure 13 and Figure 14 shows the 8-byte and 4-byte control types.  
SPI_CSB  
SPI_CLK  
C [ 7 : 0 ]  
L [ 23 : 16 ]  
L [ 15 : 8 ]  
D [ 7 : 0 ]  
D [ 15 : 8 ]  
D [ 23 : 16 ]  
D [ 31 : 24 ]  
SPI_MOSI  
A [ 31 : 24 ]  
A [ 23 : 16 ]  
A [ 15 : 8 ]  
A [ 7 : 0 ]  
L [ 7 : 0 ]  
Figure 13: 8-byte Control Type  
SPI_CSB  
SPI_CLK  
L [ 7 : 0 ]  
D [ 23 : 16 ]  
D [ 31 : 24 ]  
SPI_MOSI  
A [ 15 : 8 ]  
A [ 7 : 0 ]  
C [ 7 : 0 ]  
D [ 7 : 0 ]  
D [ 15 : 8 ]  
Figure 14: 4-byte Control Type  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
28 of 60  
© 2021 Dialog Semiconductor  
 
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
The 8-byte control type uses 4-byte address, 1-byte control, and 3-byte length. The 4-byte address  
displays the address of registers subject to internal access. The 1-byte control is for communication  
control and 3-byte length shows the length of data subject to continuous access in bytes. Hence,  
when the 8-byte control type is applied, the maximal length of data subject to continuous access is  
16 MB.  
The 4-byte control type uses 2-byte address, 1-byte control, and 1-byte length. The 2-byte address  
displays the address of registers subject to internal access. The 1-byte control is for communication  
control and 1-byte length shows the length of data subject to continuous access in bytes. Since the  
32-bit address map is used internally, the 2-byte address is not enough to express everything. Thus,  
the upper 2-byte base address is designated, and then the lower 2-byte address is used.  
Table 23 and Table 24 shows the meaning of each bit in the 1-byte control in the 8-byte control type  
and the 4-byte control type, respectively.  
Table 23: Control Field of the 8-byte Control Type  
Control Bit  
Abr.  
Description  
1 = Internal Address auto-increment  
1 = Read  
7
6
Auto Inc.  
Read/Write  
0 = Address fixed  
0 = Write  
5:0  
Not used. Set all bits to ‘0’  
Table 24: Control Field of the 4-byte Control Type  
Control Bit  
Abr.  
Description  
1 = Internal address auto-increment  
1 = Read  
7
6
Auto Inc.  
0 = Address fixed  
0 = Write  
Read/Write  
Common  
5
1 = Refer base address as common area  
1 = Refer to register value  
Length field upper  
0 = Refer base address  
0 = Refer to length field  
4
Length section  
Length[12:8]  
3:0  
Table 25 shows the pin definition of the SPI slave interface.  
Table 25: SPI Slave Pin Configuration  
Pin Name  
GPIOA2  
GPIOA6  
GPIOA3  
GPIOA7  
GPIOA1  
GPIOA9  
GPIOA11  
GPIOA0  
GPIOA8  
GPIOA10  
Pin Number  
I/O  
Function Name  
31  
27  
30  
26  
32  
24  
22  
33  
25  
23  
I
I
SPI_CSB  
I
SPI_CLK  
I
I
I
SPI_MOSI  
I
O
O
O
SPI_MISO  
Figure 15 shows the timing diagram for the SPI slave.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
29 of 60  
© 2021 Dialog Semiconductor  
 
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
SPI_CSB  
TSCLKOFF  
TCSBOFF  
TSCLKL  
TSCLKH  
TSCLKON  
SPI_CLK  
(CPOL=0)  
TSCLKL  
TSCLKH  
SPI_CLK  
(CPOL=1)  
TMSU  
TSSU  
TMHD  
SPI_MOSI  
MSB  
LSB  
SPI_MISO  
LSB  
TTR  
Figure 15: SPI Slave Timing Diagram  
Table 26 lists the timing parameters for the SPI slave.  
Table 26: SPI Slave Timing Parameters  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
MHz  
%
SCLK frequency  
FSCLK  
-
-
50  
SCLK clock duty  
40  
Non active duration  
TSCLKOFF 400  
TSCLKL(CPOL=0)  
-
-
-
-
ns  
1st CLK active rising transition time  
CSB non active rising transition time  
MOSI setup time  
TSCLKON  
TCSBOFF  
TMSU  
ns  
ns  
ns  
TSCLKH (CPOL=1)  
TSCLKH (CPOL=0)  
TSCLKL (CPOL=1)  
-
-
-
TSCLK  
8
(Note 1)  
MOSI hold time  
TMHD  
TSSU  
TTR  
8
-
-
TSCLK  
ns  
ns  
ns  
MISO delay time  
-
8
5
MISO transition time(10% to 90% transition)  
Note 1 TSCLK = 0.5 × (FSCLK x 106)-1 second  
-
4
8.4 SDIO  
SDIO is a full/high speed card suitable for memory card and I/O card applications with low power  
consumption. The full/high speed card supports SPI, 1-bit SD, and 4-bit SD transfer modes at the full  
clock range of 0 to 50 MHz. To be compatible with the serviceable SDIO clock, the internal BUS  
clock needs to be set to minimum 50 MHz. The CIS and CSA area is located inside the internal  
memory and the SDIO registers(CCCR and FBR) are programmed by the SD host.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
30 of 60  
© 2021 Dialog Semiconductor  
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Command  
Decoder  
Fn0 / Fn1  
Decoder  
DAT  
Decoder  
APB bus  
Interface  
Response  
Generator  
CRC  
Generator  
REG.  
2 port  
DMA  
Control  
Memory  
Controller  
Figure 16: SDIO Slave Block Diagram  
Table 27 shows the pin definition of the SDIO interface.  
The GPIOA4 and GPIOA5 pins are set to SDIO CMD and CLK by default. If SDIO initialization is  
performed and SDIO communication is enabled, SDIO data pin setting is performed automatically. In  
other words, when the SDIO communication is detected, the pin used as the SDIO data among the  
GPIO pins is automatically activated in the SDIO use mode. However, the auto setting function is not  
supported for the F_xxx pin used as the flash function.  
Table 27: SDIO Slave Pin Configuration  
Pin Name  
GPIOA4  
GPIOA5  
GPIOA9  
GPIOA8  
GPIOA7  
GPIOA6  
Pin Number  
I/O  
I/O  
I
Function Name  
SDIO_CMD  
SDIO_CLK  
SDIO_D0  
29  
28  
24  
25  
26  
27  
I/O  
I/O  
I/O  
I/O  
SDIO_D1  
SDIO_D2  
SDIO_D3  
Figure 17 shows the timing diagram for the SDIO slave.  
TCO.DLY  
TDO.DLY  
TCI.SU  
TDI.SU  
SDIO_CLK  
SDIO_D[3:0]  
SDIO_CMD  
Figure 17: SDIO Slave Timing Diagram  
Table 28 lists the timing parameters for the SDIO slave.  
Table 28: SDIO Slave Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
-
Max  
Unit  
MHz  
%
SDIO_CLK frequency  
SDIO_CLK clock duty  
SDIO_CMD input setup time  
FSCLK  
-
50  
50  
TCI.SU  
3
ns  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
31 of 60  
© 2021 Dialog Semiconductor  
 
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Parameter  
Symbol  
TCO.DLY  
TDI.SU  
Min  
Typ  
Max  
Unit  
ns  
SDIO_CMD output delay time  
SDIO_D[3:0] input setup time  
SDIO_D[3:0] output delay time  
11 (Note 1)  
3
ns  
TDO.DLY  
11 (Note 1)  
ns  
Note 1 SDIO signals can set previous output from half cycle.  
8.5 I2C Interface  
8.5.1  
I2C Master  
DA16200MOD includes an I2C master module. Three ranges of clock speed are supported: standard  
(100 kHz), fast (400 kHz), and high (1.0 MHz) speed mode. Table 29 shows the pin definition of the  
I2C master interface.  
Table 29: I2C Master Pin Configuration  
Pin Name  
GPIOA1  
GPIOA5  
GPIOA9  
GPIOA0  
GPIOA4  
GPIOA8  
Pin Number  
I/O  
O
Function Name  
32  
28  
24  
33  
29  
25  
O
I2C_CLK  
O
I/O  
I/O  
I/O  
I2C_SDA  
Figure 18 shows the I2C timing diagram. The timing diagram is the same as that of I2C slave timing  
diagram.  
TR  
...  
SDA  
TR  
TSU;DAT  
TVD;ACK  
cont.  
...  
TLOW  
SCL  
THD;STA  
THD;DAT  
THIGH  
S
TBUF  
...  
SDA  
SCL  
cont.  
...  
THD;STA  
TSU;STO  
TSU;STA  
Sr  
P
S
Figure 18: I2C Master Timing Diagram  
Table 30 lists the I2C master timing parameters.  
Table 30: I2C Master Timing Parameters  
Fast Mode  
High Speed Mode  
Parameter  
Symbol  
Unit  
MHz  
Min  
30  
Max  
Min  
Max  
Bus clock frequency  
Fop_clk  
160  
30  
160  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
32 of 60  
© 2021 Dialog Semiconductor  
 
 
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Fast Mode  
High Speed Mode  
Parameter  
Symbol  
Unit  
Min  
Max  
Min  
Max  
1000  
(Note 2)  
SCL clock frequency  
FSCLK  
100  
400  
100  
kHz  
Clock Duty (Note 1)  
Hold time of START  
40  
0.2  
60  
-
40  
60  
-
%
μs  
μs  
μs  
μs  
THD;STA  
TLOW  
0.2  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for START condition  
1.27  
1.23  
1.1  
-
0.55  
0.45  
0.37  
-
THIGH  
-
-
TSU;STA  
-
-
3x Top_clk  
(Note 4)  
3x Top_clk  
(Note 4)  
Data hold time  
Data setup time  
THD;DAT  
-
-
μs  
μs  
TLOW  
TLOW  
TSU;DAT  
-
-
- THD;DAT  
- THD;DAT  
Rise time of both SDAand SCL  
Setup time for STOP condition  
TR (Note 3)  
TSU;STO  
0.02  
0.36  
0.3  
-
0.05  
0.45  
0.05  
-
μs  
μs  
3x Top_clk  
(Note 4)  
3x Top_clk  
(Note 4)  
Data valid acknowledge time  
TVD;ACK  
-
-
-
-
μs  
μs  
Buffer free time between  
START and STOP condition  
TBUF  
0.5  
0.5  
Note 1 Clock duty ratio = (THIGH /TSCLK) × 100[%], TSCLK = 1/ FSCLK  
Note 2 Max. clock = 1.0 MHz (clock period = 1000 ns)  
Note 3 TR depends on a pull-up resistor value.  
Note 4 Top_clk = (1 / Fop_clk) x 10^6 usec  
8.5.2  
I2C Slave  
I2C slave interface supports the control of DA16200MOD by an external host. Pin mux condition is  
defined in Table 31. Three ranges of clock speed are supported: standard (100 kHz), fast (400 kHz),  
and high (1.0 MHz) speed mode.  
Table 31: I2C Slave Pin Configuration  
Pin Name  
GPIOA1  
GPIOA3  
GPIOA5  
GPIOA7  
GPIOA0  
GPIOA2  
GPIOA4  
GPIOA6  
Pin Number  
I/O  
I
Function Name  
32  
30  
28  
26  
33  
31  
29  
27  
I
I2C_CLK  
I
I
I/O  
I/O  
I/O  
I/O  
I2C_SDA  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
33 of 60  
© 2021 Dialog Semiconductor  
 
 
 
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Figure 19 shows the I2C slave timing diagram.  
TR  
...  
SDA  
TR  
TSU;DAT  
TVD;ACK  
cont.  
...  
TLOW  
SCL  
THD;STA  
THD;DAT  
THIGH  
S
TBUF  
...  
SDA  
SCL  
cont.  
...  
THD;STA  
TSU;STO  
TSU;STA  
Sr  
P
S
Figure 19: I2C Slave Timing Diagram  
Table 32 lists the I2C slave timing parameters.  
Table 32: I2C Slave Timing Parameters  
Fast Mode  
High Speed Mode  
Parameter  
Symbol  
Unit  
Min  
Max  
Min  
Max  
SCL clock frequency  
0
400  
0
1000  
(Note 2)  
kHz  
FSCLK  
Clock Duty (Note 1)  
Hold time of START  
40  
0.6  
1.3  
0.6  
0.6  
0
60  
40  
0.26  
0.5  
0.26  
0.26  
0
60  
%
μs  
μs  
μs  
μs  
μs  
ns  
ns  
μs  
μs  
THD;STA  
TLOW  
-
-
Low period of the SCL clock  
High period of the SCL clock  
Setup time for START condition  
Data hold time  
-
-
THIGH  
-
-
TSU;STA  
THD;DAT  
TSU;DAT  
TR  
-
-
-
-
Data setup time  
100  
20  
0.6  
-
-
50  
-
Rise time of both SDA and SCL  
Setup time for STOP condition  
Data valid acknowledge time  
300  
-
120  
TSU;STO  
TVD;ACK  
-
-
0.26  
-
-
-
Buffer free time between  
START and STOP condition  
TBUF  
1.3  
-
0.5  
-
μs  
Note 1 Clock duty ratio = (THIGH /TSCLK) × 100[%], TSCLK = 1/FSCLK  
Note 2 Max. clock = 1.0 MHz (clock period = 1000 ns)  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
34 of 60  
© 2021 Dialog Semiconductor  
 
 
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
8.6 SD/SDeMMC  
The SD/eMMC host IP provides the function for DA16200MOD to access SD or eMMC cards. This  
SD/eMMC host IP only supports a 4-bit data bus and the maximum clock rate is 50 MHz. The  
maximum data rate is 25 MB/s (200 Mbps) under the 4-bit data bus and 50 MHz clock.  
SD/eMMC pin mux condition is defined in Table 33.  
Table 33: SD/eMMC Master Pin Configuration  
Pin Name  
GPIOA4  
GPIOA5  
GPIOA9  
GPIOA8  
GPIOA7  
GPIOA6  
GPIOA10  
GPIOA1  
Pin Number  
I/O  
I/O  
O
Function Name  
SD/eMMC_CMD  
SD/eMMC_CLK  
SD/eMMC_D0  
SD/eMMC_D1  
SD/eMMC_D2  
SD/eMMC_D3  
29  
28  
24  
25  
26  
27  
23  
32  
I/O  
I/O  
I/O  
I/O  
I
SD/eMMC_WRP  
I
8.6.1  
Block Diagram  
Figure 20 shows the block diagram of SD/eMMC host IP and it includes the control register, clock  
control, command/response pipe, data pipe, and AHB master interface blocks.  
HCLK  
AHB  
Control  
Clock  
Slave  
Registers  
Control  
32  
HCMD  
CMD/RSP  
Pipe  
HDATA[3:0]  
4
AHB  
Master  
AHB  
FIFO  
Data  
Pipe  
32  
32  
Figure 20: SD/eMMC Block Diagram  
Figure 21 shows the timing diagram for the SD/eMMC master.  
TCO.DLY  
TDO.DLY  
TCI.SU  
TDI.SU  
SD/eMMC_CLK  
SD/eMMC_D[3:0]  
SD/eMMC_CMD  
Figure 21: SD/eMMC Master Timing Diagram  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
35 of 60  
© 2021 Dialog Semiconductor  
 
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Table 34 lists the timing parameters for the SD/eMMC master.  
Table 34: SD/eMMC Master Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
-
Max  
Unit  
MHz  
%
SD/eMMC_CLK frequency  
FSCLK  
-
50  
SD/eMMC_CLK clock duty  
50  
SD/eMMC_CMD input setup time  
SD/eMMC_CMD output delay time  
SD/eMMC_D[3:0] input setup time  
SD/eMMC_D[3:0] output delay time  
TCI.SU  
TCO.DLY  
TDI.SU  
8
8
ns  
3
8
ns  
ns  
TDO.DLY  
ns  
8.7 I2S  
DA16200MOD provides an I2S interface. Once an I2S block receives audio data through the DMA, it  
sends audio data to the external port according to the I2S standard. To use the external DAC, output  
through the GPIO port is possible through the register setting according to the pin configuration  
(Table 35).  
The I2S also provides a receive function. However, I2S transmission and reception functions cannot  
be used at the same time. The transmit and receive functions can be selected by register setting. If  
the I2S signal is input from outside after the reception function is set, the audio signal can be  
decoded, stored in the FIFO, and read out through the DMA. The decodable reception function  
provides 8/16/24/32-bit modes and can receive either mono or stereo.  
Using the I2S clock divider register, the internal PLL clock can be variably applied to the I2S clock  
source. The available I2S clock source is 24/48 MHz. There is also a way to apply the I2S clock  
source directly from outside using the GPIO pin. For accurate I2S audio sampling, I2S clock source  
can be input to external GPIO pins. It needs to select the GPIO pin setting as the I2S clock input and  
apply appropriate clock source. The available I2S clock pins are shown in Table 35.  
Table 35: I2S Pin Configuration  
Pin Name  
GPIOA1  
GPIOA5  
GPIOA9  
GPIOA0  
GPIOA4  
GPIOA8  
GPIOA3  
GPIOA7  
GPIOA2  
GPIOA6  
GPIOA3  
GPIOA10  
Pin Number  
I/O  
O
O
O
O
O
O
O
O
I/O  
I/O  
I
Function Name  
32  
28  
24  
33  
29  
25  
30  
26  
31  
27  
30  
23  
I2S_MCLK  
I2S_BCLK  
I2S_LRCK  
I2S_SDO  
I2S_CLK_IN  
I
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
36 of 60  
© 2021 Dialog Semiconductor  
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
8.7.1  
Block Diagram  
I2S has the following features:  
Master Clock Mode only  
I2S Data pin can work in either input mode or output mode  
Clock source can be "internal 480 MHz/N" (currently using 24 MHz) or "external clock source"  
Max Sampling Rate: 48 KHz  
Mono/Stereo Mode  
Figure 22: I2S Block Diagram  
8.7.2  
I2S Clock Scheme  
The I2S uses a 24 MHz clock as default from the RF reference clock (40 MHz), so it can support  
46.875 KHz of sampling rate. External clock sources are needed to support the standard sampling  
rate. See Table 36.  
Figure 23: I2S Clock Scheme  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
37 of 60  
© 2021 Dialog Semiconductor  
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Table 36: I2S Clock Selection Guide  
Parameter  
Units  
KHz  
LRCK  
BCLK  
MCLK  
Fs  
8
12  
16  
24  
32  
44.1  
46.875  
48  
64Fs  
512Fs  
0.512  
4.096  
0.768  
6.144  
1.024  
1.536  
2.048  
2.8224  
3
3.072  
MHz  
8.192 12.288 16.384 22.5792  
24  
24.576 MHz  
1
N
Clk Div2  
6
4
3
2
2
1
1
(=1,2,3…)  
24  
I2S_CLK  
24.576 24.576 24.576 24.576 32.768 22.5792  
(Internal  
PLL)  
24.576 MHz  
NOTE  
To confirm the exact LRCK operation, drive the Clock source at I2S_CLK.  
8.7.3  
I2S Transmit and Receive Timing Diagram  
I2S output is possible in the following three modes. The main clock (MCLK) always outputs in 512×fs.  
I2S Mode  
Right Channel  
LRCK  
Left Channel  
SCLK  
SDATA  
-1  
+1  
-1  
+1  
MSB  
-2  
-3  
+3  
+2  
LSB  
MSB  
-2  
-3  
-4  
+3  
+2  
LSB  
Figure 24: I2S Timing Diagram  
Left Justified Mode  
Left Channel  
LRCK  
Right Channel  
SCLK  
SDATA  
-1  
+1  
LSB  
-1  
+1  
LSB  
MSB  
-2  
-3  
+3  
+2  
MSB  
-2  
-3  
-4  
+3  
+2  
Figure 25: Left Justified Mode Timing Diagram  
Right Justified Mode  
Right Channel  
Left Channel  
LRCK  
SCLK  
14  
15  
14  
SDATA  
15  
13  
13  
2
1
0
2
1
0
Figure 26: Right Justified Mode Timing Diagram  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
38 of 60  
© 2021 Dialog Semiconductor  
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
T2  
fBCLK  
T3  
I2S_BCLK  
T4  
I2S_SDO  
(falling edge)  
T5  
I2S_SDO  
(rising edge)  
Figure 27: I2S Transmit Timing Diagram  
T4  
T2  
fBCLK  
T3  
I2S_BCLK  
I2S_SDO  
T5  
Figure 28: I2S Receive Timing Diagram  
Table 37: I2S Transmit Timing Parameters  
Description  
Timing  
fBCLK  
T2  
Min  
Typ  
Max  
3.072  
½ fBCLK  
½ fBCLK  
-
Unit  
MHz  
ns  
I2S_BCLK frequency  
-
-
High period of the BCLK clock  
Low period of the BCLK clock  
I2S_SDO output hold (falling edge)  
I2S_SDO output hold (rising edge)  
T3  
-
ns  
T4  
160  
160  
ns  
T5  
-
ns  
Table 38: I2S Receive Timing Parameters  
Description  
Timing  
fBCLK  
T2  
Min  
-
Typ  
Max  
3.072  
½ fBCLK  
½ fBCLK  
-
Unit  
MHz  
ns  
I2S_BCLK frequency  
High period of the BCLK clock  
Low period of the BCLK clock  
I2S_SDO input setup time  
I2S_SDO input hold time  
-
T3  
-
ns  
T4  
15  
60  
ns  
T5  
-
ns  
8.8 ADC (Aux 12-bit)  
8.8.1  
Overview  
DA16200MOD includes a high precision, ultra-low power, and wide dynamic range SAR ADC with a  
12-bit resolution. It has a 4-channel single-end ADC.  
Analog input is measured by four pins from GPIOA0 to GPIOA3, and pin selection is changed  
through the register setting.  
Figure 29 shows the control block diagram.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
39 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Ultra Low Power Wi-Fi Module  
VI_N[1]  
VI_N[2]  
VI_N[3]  
VI_N[4]  
ADC  
12b  
Max : 1Ms  
CH_SEL  
Ready  
Counter  
16-bit  
Figure 29: ADC Control Block Diagram  
8.8.2  
Timing Diagram  
The input is digitized at a maximum of 1.0 Msps throughput rate. And the maximum input clock rate  
is 15 MHz.  
Figure 30 shows the conversion timing, and Table 39 describes DC specifications.  
CLK  
15MHz  
15*CLK  
15*CLK  
15*CLK  
15*CLK  
15*CLK  
15*CLK  
AUXADC_EN  
OSC_EN  
N+1  
N+4  
N+2  
N+3  
N
SAMPLE  
1M  
D<11:0>  
N
N+1  
N+2  
N+3  
CLKOUT  
1M  
Figure 30: 12-bit ADC Timing Diagram  
Table 39: DC Specification  
Description  
Min  
Typ  
Max  
12  
15  
1
Unit  
Bits  
Resolution  
4
12  
Max clock input  
Conversion frequency  
Accuracy:  
MHz  
MHz  
SNR  
61.7  
67.2  
dB  
dB  
SNDR  
Analog input range  
0
1.4  
V
8.8.3  
DMA Transfer  
There are four ADC channel settings available. Once the input data of each channel reaches the  
FIFO level, it is possible to read the data through the DMA path.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
40 of 60  
© 2021 Dialog Semiconductor  
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
8.8.4  
Sensor Wake-up  
DA16200MOD provides an external sensor wake-up function using the analog input signal through  
this Aux ADC. Even in Sleep modes, it detects the change of external analog signal, wakes up from a  
Sleep mode, and converts DA16200MOD into a normal operation. This function can be used in up to  
four channels. Also, when multiple external sensors are used, it detects analog signals while  
changing the channel automatically. For example, if it sets all four channels as input sources which  
have their threshold register respectively, in measures the channels sequentially from 0 to 3.  
If one of the four values exceed the allowed range of values set by the threshold register,  
DA16200MOD is awaken from Sleep modes. The setting value of input change can be of two types,  
over threshold and under threshold.  
8.8.5  
ADC Ports  
Table 40 shows the pin definition of the ADC.  
Table 40: ADC Pin Configuration  
Pin Name  
GPIOA3  
GPIOA2  
GPIOA1  
GPIOA0  
Pin Number  
I/O  
A
Function Name  
Analog signal  
Analog signal  
Analog signal  
Analog signal  
30  
31  
32  
33  
A
A
A
8.9 GPIO  
All digital pads can be used as GPIO, and each GPIO port is mixed with a multi-functional interface.  
The GPIO features of DA16200MOD are listed below:  
Input or output lines in a programmable direction  
Word and half word read/write access  
Address-masked byte writes to facilitate quick bit set and clear operations  
Address-based byte reads to facilitate quick bit test operations  
Maskable interrupt generation based on input value change  
Possible to be output signal of PWM[3:0], external interrupt, QSPI_CSB[3:1], RF_SW[1:0], and  
UART_TXDOE[2:0] on the GPIO pins:  
It provides special functions for GPIO pin use. PWM [3:0], external interrupt, QSPI_CSB [3:1],  
RF_SW [1:0], and UART_TXDOE [2:0] signals can be output by selecting unused pins  
among the GPIO pins. It is possible to select the function to be output from the GPIO register  
setting and select the remaining GPIO pin without using it to output the specific function to  
the desired GPIO pins  
8.9.1  
Antenna Switching Diversity  
DA16200MOD-AAE4WA32 (u.FL connector type module) provides the antenna switching diversity  
function for performance improvement in multi-path environment. Phy block measures the RSSI of  
each antenna and selects the antenna with the largest RSSI. The selected antenna is also used for  
transmission. To use this function, an external switching element is required, and switching control is  
performed through the GPIO. Two GPIOs can be used for switching control, and any unused pins  
among the GPIO pins can be selected for this purpose. The control signal can be changed by  
register setting to suit the external switching device.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
41 of 60  
© 2021 Dialog Semiconductor  
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Antenna1  
RF Switch  
DA16200MOD-AAE  
RF Switch  
Antenna2  
ANT  
GPIO  
2
Figure 31: Antenna Switching Internal Block Diagram  
If the Antenna Switching Diversity function is enabled, the function is automatically done by PHY  
hardware block. The basic operation scheme is as follows:  
Antenna's RSSI decision is made for 11b PPDU, except for 11g/n PPDU  
When PHY hardware detects the existence of 11b PPDU, it stores RSSI  
After it switch to another antenna, the RSSI stored and decision is made which antenna has  
better RSSI  
This operation is done during 11b PPDU's preamble duration to protect corruption of 11b PPDU  
data reception  
The decided antenna is not changed until there is a new 11b PPDU  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
42 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Figure 32: Antenna Switching Timing Diagram  
For reference, this antenna switching diversity is different from MRC. (Maximum Ratio Combining)  
8.10 UART  
DA16200MOD provides 3 UARTs, features of which are described below:  
Programmable use of UART (UART1 and UART2)  
Compliance to the AMBA AHB bus specification [6] for easy integration into SoC implementation  
Supports both byte and word access for reduction of bus burden  
Supports both RS-232 and RS-485  
Separate 32×8 bit transmit and 32×12 bit receive FIFO memory buffers to reduce CPU interrupts  
Programmable FIFO disabling for 1-byte depth  
Programmable baud rate generator  
Standard asynchronous communication bits (start, stop and parity), which are added prior to  
transmission and removed on reception  
Independent masking of transmit FIFO, receive FIFO, and receive timeout  
Supports for DMA  
False start bit detection  
Programmable flow control (CTS/RTS, UART1)  
Fully programmable serial interface characteristics:  
Data can be of 5,6,7, or 8 bits  
Even, odd, stick, or no-parity bit generation and detection  
1- or 2- stop bit generation  
Baud rate generation  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
43 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Figure 33: DA16200 UART Block Diagram  
8.10.1 RS-232  
As the serial communication between the UART and the selected device is asynchronous, additional  
bits (start and stop) are inserted to the data line to indicate the beginning and end. By these bits, two  
devices can be synchronized. This structure of serial data accompanied by start and stop bits is  
referred to as a character, as shown in Figure 34.  
Bit Time  
Data  
Start  
Data bits  
5 - 8  
Parity  
Stop  
1- or 2-  
One Character  
Figure 34: Serial Data Format  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
44 of 60  
© 2021 Dialog Semiconductor  
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
An additional parity bit may be added to the serial character. This bit appears between the last data  
bit and the stop bit(s) in the character structure. It provides the UART with the ability to perform  
simple error checking on the received data.  
The UART Line Control Register is used to control the serial character characteristics. The individual  
bits of the data word are sent after the start bit, starting with the least significant bit (LSB). These are  
followed by the optional parity bit, followed by the stop bit(s), which can be 1 or 2.  
Serial Data In  
Start  
Data Bit 0 (LSB)  
Data Bit 1  
8
16  
16  
Figure 35: Receiver Serial Data Sampling Points  
All the bits in the transmission are transmitted for exactly the same time duration. This is referred to  
as a Bit Period or Bit Time. One Bit Time equals 16 baud clocks. To ensure stability on the line, the  
receiver samples the serial input data at approximately the mid-point of the Bit Time, once the start  
bit has been detected. As the exact number of baud clocks that each bit was transmitted for is  
known, calculating the mid-point for sampling is not difficult, that is every 16 baud clocks after the  
mid-point sample of the start bit. Figure 35 shows the sampling points of the first couple of bits in a  
serial character.  
8.10.2 RS-485  
DA16200MOD UART supports RS-485. UART485EN register (0x054) is required to be assigned to  
one to enable the RS-485. In order to use RS-485, additional signal (UARTTXDOE) is required to  
notice TXD intervals. This signal can be an output by selecting any unused pins among the GPIO  
pins.  
Figure 36: UARTTXDOE Output Signal for UART RS-485  
8.10.3 Baud Rate  
UART clock frequency (FUARTCLK) is fixed to 80 MHz. Baud Rate Divisor can be calculated as  
(FUARTCLK / (16 x Baud Rate)). Baud Rate Divisor is comprised of the integer part  
(UART_INTBRDIV) and fractional part (UART_FRABRDIV). The maximum baud rate of DA16200  
UART is 2.5 MBaud.  
The following example shows how to calculate the divisor value.  
Example:  
If the required baud rate is 921600 with 80 MHz FUARTCLK, the Baud Rate Divisor becomes  
(8 x 107) / (16 x 921600) = 5.425.  
This means the integer value is 5 and the fractional value is 0.425.  
Then, the fraction part becomes integer ((0.425 x 64) + 0.5) = 27.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
45 of 60  
© 2021 Dialog Semiconductor  
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Then, generated baud rate divider is 5 + 27/64 = 5.422.  
Finally, generated baud rate becomes (8 x 107) / (16 x 5.422) = 922169.  
And the error between required baud rate and generated baud rate is  
(922169 921600) / 921600 x100 = 0.062%.  
8.10.4 Hardware Flow Control  
Hardware flow control feature is fully selectable, and serial data flow is controlled by using  
nUARTRTS output and nUARTCTS input signals. Figure 37 shows how two different UART can  
communicate using hardware flow control.  
Figure 37: UART Hardware Flow Control  
When RTS flow control is enabled, nUARTRTS signal is asserted until the receive FIFO is filled up to  
programmed level. When CTS flow control is enabled, transmitter can transmit the data when  
nUARTCTS signal is asserted. CTSEn (CTS enable) and RTSEn (RTS enable) bits are determined  
by 14th (RTS) and 15th bit (CTS) of UARTCR register.  
Table 41: Control bits to enable and disable hardware flow control  
CTSEn  
RTSEn  
Description  
1
1
0
0
1
0
1
0
Both RTS and CTS flow control are enabled  
Only CTS flow control is enabled  
Only RTS flow control is enabled  
Both RTS and CTS flow control are disabled  
8.10.5 Interrupts  
DA16200MOD UART block provides five interrupt signals by separate interrupt lines. Each interrupt  
conditions are Modem Status, Receive FIFO Request, Transmit FIFO Request, Receive Timeout and  
Reception Error. These conditions are logically OR'ed to provide a single combined interrupt,  
UARTINTR. Table 42 shows the interrupt signals.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
46 of 60  
© 2021 Dialog Semiconductor  
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Table 42: UART Interrupt Signals  
Signal Name  
Description  
UARTMSINTR  
UARTRXINTR  
UARTTXINTR  
UARTRTINTR  
UARTEINTR  
UARTINTR  
UART Modem Status Interrupt  
UART Receive FIFO Interrupt  
UART Transmit FIFO Interrupt  
UART Receive Timeout Interrupt  
UART Error Interrupt  
UART Interrupt. Five Interrupt signals are combined by OR function  
8.10.6 DMA Interface  
DA16200MOD UART block can generate DMA request signals with register settings by using DMA  
interrupt generator module to connect to DA16200 DMA Controller (DMA1). DMA operation of the  
UART is controlled using DMA Control Register.  
DA16200MOD UART provides four DMA signals and receives two DMA signals, two signals to  
transmit (TXDMASREQ, TXDMABREQ) which are cleared by TX clear signal (TXDMACLR) and two  
signals to receive (RXDMASREQ, RXDMABREQ), which are cleared by RX clear signal  
(RXDMACLR).  
When the DMA interface is not used, the TXDMACLR and RXDMACLR lines should be connected to  
a logic ‘0’.  
Table 43 shows the pin definition of the UART interface.  
Table 43: UART Pin Configuration  
Pin Name  
UART0_RXD  
UART0_TXD  
GPIOA7  
Pin Number  
I/O  
I
Function Name  
UART0_RXD  
UART0_TXD  
13  
12  
26  
28  
30  
32  
27  
29  
31  
33  
28  
29  
22  
10  
23  
11  
O
I
GPIOA5  
I
UART1_RXD  
UART1_TXD  
GPIOA3  
I
GPIOA1  
I
GPIOA6  
O
O
O
O
I
GPIOA4  
GPIOA2  
GPIOA0  
GPIOA5  
UART1_CTS  
UART1_RTS  
GPIOA4  
O
I
GPIOA11  
GPIOC7  
GPIOA10  
GPIOC6  
UART2_RXD  
UART2_TXD  
I
O
O
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
47 of 60  
© 2021 Dialog Semiconductor  
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
8.11 PWM  
Pulse Width Modulation (PWM) is a modulation technique used to encode a message into a pulse  
signal. The blocks are designed to adjust output pulse duration by the CPU bus clock (HCLK).  
Figure 38 shows the structure of the PWM block.  
Counter  
PWM OUT  
PWM Block 0  
PWM OUT  
PWM OUT  
PWM OUT  
PWM Block 1  
HCLK  
PWMBlock 2  
Register  
PWMBlock 3  
AHB  
Bus  
Matrix  
Counter (Period)  
AHB Bus  
Counter (High Duty)  
Register  
Figure 38: PWM Block Diagram  
Table 44 shows the pin definition of the PWM interface. GPIOx means that PWM signals can go out  
through any GPIO pins via register setting.  
Table 44: PWM Pin Configuration  
Pin Name  
Pin Number  
I/O  
Function Name  
GPIOx  
PWM[3:0] output  
8.11.1 Timing Diagram  
Table 45 shows the relation between the internal bus clock and PWM output wave patterns. Figure  
39 show the conversion timing diagram. ‘a’ and ‘bcan be adjusted through the register setting, and  
PWM wave patterns vary depending on the ratio. acontrols the high width of pulses (nCycle High),  
while bcontrols the general cycle (nCycle Period).  
BUS CLK  
a
PWM  
b
Figure 39: PWM Timing Diagram  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
48 of 60  
© 2021 Dialog Semiconductor  
 
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Table 45: PWM Timing Diagram Description  
Time  
Description  
a
b
Bus Clock Period × (nCycle High + 1)  
Bus Clock Period × (nCycle Period + 1)  
8.12 Debug Interface  
DA16200MOD supports both IEEE Standard 1149.1 JTAG (5-wire) and the low-pin-count ARM SWD  
(2-wire, TCLK/TMS) debug interfaces. The SWD protocol can handle the same debug features as  
the JTAG.  
The JTAG port is an IEEE standard that defines a test access port (TAP) and boundary scan  
architecture for digital integrated circuits and provides a standardized serial interface to control the  
associated test logic. For detailed information on the operation of the JTAG port and TAP controller,  
see [4].  
Figure 40 shows the JTAG timing diagram.  
Figure 40: JTAG Timing Diagram  
Table 46 shows the JTAG timing parameters.  
Table 46: JTAG Timing Parameters  
Parameter Number  
Parameter  
fTCK  
Parameter Name  
Clock Frequency  
Clock Period  
Min  
Max  
15  
Unit  
MHz  
ns  
J1  
J2  
tTCK  
1/fTCK  
tTCK/2  
tTCK/2  
J3  
tCL  
Clock Low Period  
Clock High Period  
TMS Setup Time  
TMS Hold Time  
TDI Setup Time  
TDI Hold Time  
ns  
J4  
tCH  
ns  
J7  
tTMS_SU  
tTMS_HO  
tTDI_SU  
tTDI_HO  
tTDO_HO  
1
16  
1
J8  
J9  
J10  
J11  
16  
TDO Hold Time  
15  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
49 of 60  
© 2021 Dialog Semiconductor  
 
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Table 47 shows the pin definition of the JTAG interface.  
Table 47: JTAG Pin Configuration  
Pin Name  
TMS  
Pin Number  
I/O  
Function Name  
Data  
7
8
I/O  
TCLK  
I
I
Clock  
GPIOC8  
GPIOC7  
GPIOC6  
9
TDI: Data Input  
TDO: Data Output  
nTRST: Reset  
10  
11  
O
I
8.13 Bluetooth Coexistence  
DA16200MOD provides the Bluetooth coexistence function to be properly aligned with external  
devices activated at 2.4 GHz.  
8.13.1 Interface Configuration  
The following three pins can be set in pin multiplexing:  
BT_sig0 (oWlanAct)  
It indicates that Output, WLAN is currently active  
BT_sig1 (iBtAct)  
It indicates that Input, BT/BLE is currently active  
BT_sig2 (iBTPri)  
It indicates that Input (Optional), BT/BLE has a higher priority  
A variety of configurable settings are available, including active high/low, manual force mode, use  
status of the optional iBTPri function, and whether or not to switch oWlanAct to Active in the event of  
TX/RX/TRX.  
oWlanAct  
iBtAct  
iBtPri  
DA16200MOD  
BT/BLE  
Figure 41: Bluetooth Coexistence Interface  
8.13.2 Operation Scenario  
The Bluetooth coexistence can be switched on/off by the configurable register, and the activation  
scenarios based on the status of each pin are described below:  
BT_sig0 (oWlanAct)  
When asserted, external BT/BLE is expected to stop occupying RF  
BT_sig1 (iBtAct)  
When asserted, DA16200MOD stops occupying RF  
BT_sig2 (iBTPri)  
It is optional and thus may not be used  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
50 of 60  
© 2021 Dialog Semiconductor  
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
If it is used and DA16200’s iBtAct = Active while iBTPri = Non-Active, DA16200 may ignore  
iBtAct  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
51 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Ultra Low Power Wi-Fi Module  
9
Applications Schematic  
37  
36  
NC  
NC  
1
NC  
Note : Remove R1 and C1  
1uF  
10uF  
C1  
when MCU controls 'RTC_PWR_KEY'  
2
3
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
VBAT_3V3  
GND  
VBAT_3V3  
VDD_DIO1  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
GPIOA4  
GPIOA5  
GPIOA6  
GPIOA7  
GPIOA8  
GPIOA9  
R1  
External Power Control  
External Wake-up Control  
RTC Sensor Out  
RTC_PWR_KEY  
RTC_WAKE_UP  
RTC_SENSOR  
NC  
VDD_DIO1, (1.8V or 3.3V)  
4
5
GPIO Interface  
6
4.7KΩ  
7
JTAG_TMS  
JTAG_TCLK  
GPIOC8  
DA16200MOD  
JTAG interface  
GPIO Interface  
8
UART1_TXD  
UART1_RXD  
WPS  
9
10  
11  
12  
13  
GPIOC7  
GPIOC6  
Factory_reset  
UART0_TXD  
UART0_RXD  
UART interface for debugging  
GPIO Interface  
4.7KΩ  
4.7KΩ  
14  
15 16 17 18 19 20 21 22 23  
If you use it as GPIO function, you don't need full-up resistor  
If the RTC_WAKE_UP2 function is not uesd,  
it can be connected to the GND  
4.7KΩ  
1uF  
Figure 42: Application Schematic  
Table 48: Component for RTC POWER KEY  
Quantity Part Reference  
Value  
Description  
Remove when MCU control ‘RTC_PWR_KEY’.  
This value should be chosen by customer application  
to achieve the enough delay time depending on the  
power-on time of VBAT.  
1
1
R1  
C1  
470 kΩ  
For detail information, See 6.1  
Remove when MCU control ‘RTC_PWR_KEY’.  
This value should be chosen by customer application  
to achieve the enough delay time depending on the  
power-on time of VBAT. Not to exceed 1uF.  
1uF  
For detail information, See 6.1  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
52 of 60  
© 2021 Dialog Semiconductor  
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
10 Package Information  
10.1 Dimension: DA16200MOD-AAC  
Unit: mm  
Tolerance: 13.8(±0.2) x 22.1(±0.2) x 3.3(±0.1)  
Figure 43: AAC Module Dimension  
10.2 Dimension: DA16200MOD-AAE  
Unit: mm  
Tolerance: 13.8(±0.2) x 22.1(±0.2) x 3.3(±0.1)  
Figure 44: AAE Module Dimension  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
53 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Ultra Low Power Wi-Fi Module  
10.3 PCB Land Pattern  
Unit: mm  
Figure 45: PCB Land Pattern (Top View)  
Figure 46: PCB Land Pattern (Bottom View)  
Ant GND is only needed on the bottom of the PCB. GND must be removed for all layers including the  
inner layer except the bottom. See Figure 47 for detail.  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
54 of 60  
© 2021 Dialog Semiconductor  
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
10.4 4-Layer PCB Example  
Figure 47: 4-Layer PCB Example  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
55 of 60  
© 2021 Dialog Semiconductor  
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
10.5 Soldering Information  
10.5.1 Condition for Reflow Soldering  
Figure 48 shows the typical process flow for mounting surface mount packages to PCB.  
The reflow profile depends on the solder paste being used and the recommendations from the paste  
manufacture should be followed to determine the proper reflow profile. Figure 49 shows a typical  
reflow profile when a no-clean paste is used. Oven time above liquidus (260 °C for lead-free solder)  
is 20 to 40 seconds.  
The rework process involves the following steps:  
1. Component removal  
2. Site redress  
3. Solder paste application  
4. Component placement  
5. Component attachment  
Figure 48: Typical PCB Mounting Process Flow  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
56 of 60  
© 2021 Dialog Semiconductor  
 
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Table 49: Typical Reflow Profile (Lead Free): J-STD-020C  
Profile Feature  
Lead Free SMD  
3 °C/s Max.  
Average ramp up rate (Tsmax to Tp)  
Preheat  
Temperature Min (Tsmin  
Temperature Max (Tsmax  
Time (Tsmax to Tsmin  
)
150 °C  
)
200 °C  
)
60 to 180 seconds  
Time maintained above  
Temperature (TL)  
Time (tL)  
217 °C  
60 to 150 seconds  
Peak/Classification temperature (Tp)  
Time within 5 °C of peak temperature (tp)  
Ramp down rate  
260 °C  
20 to 40 seconds  
6 °C/s Max.  
8 minutes Max.  
Time from 25 °C to peak temperature  
Figure 49: Reflow Condition  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
57 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Ultra Low Power Wi-Fi Module  
11 Ordering Information  
The ordering number consists of the part number followed by a suffix indicating the packing method.  
For details and availability, please consult Dialog Semiconductor’s Website or your local sales  
representative.  
Table 50: Ordering Information (Production)  
Part Number  
Pins  
37  
Size (mm)  
Shipment Form  
Reel  
Pack Quantity  
MOQ: 500 pcs  
MOQ: 500 pcs  
DA16200MOD-AAC4WA32  
DA16200MOD-AAE4WA32  
13.8 x 22.1 x 3.3  
13.8 x 22.1 x 3.3  
37  
Reel  
Part Number Legend:  
DA16200MOD-AAC4WA32  
AA: Module revision number  
C: Select module type  
[C] Chip antenna, [E] u.FL connector  
4: Flash memory  
[4] 4Mbyte, [2] 2Mbyte  
W: Voltage range  
[W] 3.3 V, [L] 1.8 V  
A3: Package No.  
2: T&R packing  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
58 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Revision History  
Revision  
Date  
Description  
Editorial  
Removed BOR part  
Added Note for Power on Sequence in the Section 6.1, Updated Figure 7  
and Table 16  
3.1  
03-Fab-21  
Section 8.7.3 Fixed typo  
Added Section 8.7.1 and 8.7.2  
Updated Applications Schematic  
Sync with SoC datasheet v3.1  
Modified Chapter 3 description to Network subsystem layer.  
Modified DA16200MOD pin Mux (Table 2)  
Added module default pin conditions  
I2C CLK GPIOA2 -> GPIOA3  
Added chapter 5.3.3, 5.3.4  
Modified Rx max input level in chapter 5.4.1(Table 11)  
Updated Chapter Note 1 Sleep mode description  
Updated RTC_PWR_KEY description and remove one sentence which  
leads to misunderstanding. Table 17  
3.0  
23-Jul-20  
Modified I2C timing in table Table 30, Table 32  
Added description of chapter 8.9.1  
Updated Chapter 9 application schematics  
Changed Module dimension picture Error! Reference source not found.,  
Error! Reference source not found.  
Removed F_xx pins  
Changed the link from customer support portal to Dialog website  
Added PCB land pattern Figure 46, Figure 47  
Added Tolerance of dimension  
Added min/max Radio characteristics in Table 11, Table 12and Table 13  
Modified Chapter 8.10.3 Baud rate  
2.0  
08-May-20  
Updated Reach and ROHS compliance  
Updated Key Features  
Modified DA16200MOD pin Mux Table 2  
Chapter 7.4 Pulse Counter added  
Chapter 8.10.1 RS-232 added  
0.4  
0.3  
07-Apr-20  
23-Mar-20  
Added ESD performance, Table 15  
AC characteristics and current consumption of data updated in Table 11,  
Table 12 and Table 13  
Updated Key Features, about clock source & embedded memory  
Modified module size  
0.2  
0.1  
22-Oct-19  
03-Oct-19  
Preliminary datasheet  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
59 of 60  
© 2021 Dialog Semiconductor  
DA16200MOD  
Ultra Low Power Wi-Fi Module  
Status Definitions  
Revision  
Datasheet Status  
Product Status  
Definition  
This datasheet contains the design specifications for product development.  
Specifications may be changed in any manner without notice.  
1.<n>  
Target  
Development  
This datasheet contains the specifications and preliminary characterization  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
2.<n>  
3.<n>  
Preliminary  
Qualification  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Major specification changes  
are communicated via Customer Product Notifications. Datasheet changes  
are communicated via www.dialog-semiconductor.com.  
Final  
Production  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
4.<n>  
Obsolete  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not  
designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications  
where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury,  
death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog  
Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or  
warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no  
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the  
specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive  
grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without  
limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard  
automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes  
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further  
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog  
Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications  
referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor’s Standard  
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service  
names and marks are the property of their respective owners.  
© 2021 Dialog Semiconductor. All rights reserved.  
Reach and RoHS Compliance  
Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of REACH and Directive 2015/863/EU of the  
European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from  
our suppliers are available on request. Module does not have to be HF.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Hong Kong  
China (Shenzhen)  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
Revision 3.1  
03-Feb-2021  
CFR0011-120-00  
60 of 60  
© 2021 Dialog Semiconductor  

相关型号:

DA1629

Double Balanced Mixer
DYNEX

DA16600MOD

Ultra-Low Power Wi-Fi Bluetooth® LE Combo Module
DIALOG

DA16600MOD-AAC4WA32

Ultra-Low Power Wi-Fi Bluetooth® LE Combo Module
DIALOG

DA16600MOD-AAE4WA32

Ultra-Low Power Wi-Fi Bluetooth® LE Combo Module
DIALOG

DA1664

Down Converter
DYNEX

DA1753

Double Balanced Mixer
DYNEX

DA1763

Up Converter
DYNEX

DA1764

Double Balanced Mixer
DYNEX

DA17W2P500G40

D Subminiature Connector, 7 Contact(s), Male, Solder Terminal
AMPHENOL

DA18-120AU-M

DA18-M Series 18 Watts
ARTESYN

DA18-120EU-M

DA18-M Series 18 Watts
ARTESYN

DA18-120MP-M

DA18-M Series 18 Watts
ARTESYN