SLG46517M [DIALOG]

GreenPAK Programmable Mixed-Signal Matrix with ASM and Dual 44 mΩ/2 A P-FET;
SLG46517M
型号: SLG46517M
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

GreenPAK Programmable Mixed-Signal Matrix with ASM and Dual 44 mΩ/2 A P-FET

文件: 总190页 (文件大小:1862K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
General Description  
The SLG46517 provides a small, low power component for commonly used Mixed-Signal functions. The user creates their  
circuit design by programming the one time programmable (OTP) Non-Volatile Memory (NVM) to configure the interconnect  
logic, the IO Pins, and the macrocells of the SLG46517. This highly versatile device allows a wide variety of Mixed-Signal  
functions to be designed within a very small, low power single integrated circuit.  
Configurable 25 kHz/2 MHz  
25 MHz RC Oscillator  
Key Features  
Four Analog Comparators  
Voltage Reference  
Seventeen Combination Function Macrocells  
Crystal Oscillator  
Power-On Reset  
Eight Byte RAM + OTP User Memory  
Three Selectable DFF/LATCH or 2-bit LUTs  
One Selectable Continuous DFF/LATCH or 3-bit LUT  
Four Selectable DFF/LATCH or 3-bit LUTs  
One Selectable Pipe Delay or 3-bit LUT  
One Selectable Programmable Pattern Generator or  
2-bit LUT  
RAM Memory Space that is Readable and Writable via  
I2C  
User Defined Initial Values Transferred from OTP  
P-FET Power Switch  
Power Switch IDS: 2 A  
VIN: 1.71 V to 5.5 V  
Low RDSON  
44 mΩ @ 5.5 V  
58 mΩ @ 3.3 V  
110 mΩ @ 1.71 V  
Five 8-bit Delays/Counters or 3-bit LUTs  
Two 16-bit Delays/Counters or 4-bit LUTs  
Asynchronous State Machine  
Eight States  
Flexible Input Logic from State Transitions  
Read Back Protection (Read Lock)  
Power Supply  
Serial Communications  
I2C Protocol Interface  
1.8 V (±5%) to 5 V (±10%) Supply  
Pipe Delay – 16 Stage/3 Output (Part of Combination  
Function Macrocell)  
Operating Temperature Range: -40 °C to 85 °C  
RoHS Compliant/Halogen-Free  
Available Package  
Programmable Delay  
Additional Logic Functions – 2 Deglitch Filters with Edge  
Detectors  
28-pin MSTQFN: 2 mm x 3 mm x 0.55 mm, 0.4 mm pitch  
Two Oscillators  
Applications  
Personal Computers and Servers  
PC Peripherals  
Consumer Electronics  
Data Communications Equipment  
Handheld and Portable Electronics  
Power Management Switches  
Power Sequencing with Complex Analog Control  
Power Plane Component Size Reduction Project  
LED Driver  
Haptic Motor Driver  
Datasheet  
22-Jul-2021  
Revision 3.6  
1 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Contents  
General Description.................................................................................................................................................................1  
Key Features.............................................................................................................................................................................1  
Applications..............................................................................................................................................................................1  
1 Block Diagram ......................................................................................................................................................................9  
2 Pinout ..................................................................................................................................................................................10  
2.1 Pin Configuration - MSTQFN- 28L .......................................................................................................................10  
3 Characteristics ...................................................................................................................................................................15  
3.1 Absolute Maximum Ratings .................................................................................................................................15  
3.2 Electrostatic Discharge Ratings ...........................................................................................................................15  
3.3 Recommended Operating Conditions .................................................................................................................16  
3.4 Electrical Characteristics ......................................................................................................................................16  
3.5 Timing Characteristics ..........................................................................................................................................20  
3.6 OSC Characteristics .............................................................................................................................................22  
3.7 ACMP Characteristics ..........................................................................................................................................26  
3.8 Power Switch EC (Each P-FET) ..........................................................................................................................30  
4 User Programmability ........................................................................................................................................................32  
5 IO Pins .................................................................................................................................................................................33  
5.1 Input Modes .........................................................................................................................................................33  
5.2 Output Modes .......................................................................................................................................................33  
5.3 Pull-Up/Down Resistors .......................................................................................................................................34  
5.4 IO Register Settings .............................................................................................................................................34  
5.5 GPI Structure .......................................................................................................................................................41  
5.6 Matrix OE IO Structure .........................................................................................................................................42  
5.7 IO Structure ..........................................................................................................................................................45  
6 Connection Matrix ..............................................................................................................................................................47  
6.1 Matrix Input Table ...............................................................................................................................................48  
6.2 Matrix Output Table ..............................................................................................................................................50  
6.3 Connection Matrix Virtual Inputs ..........................................................................................................................53  
6.4 Connection Matrix Virtual Outputs .......................................................................................................................53  
7 Combination Function Macrocells ....................................................................................................................................54  
7.1 2-Bit LUT or D Flip-Flop Macrocells .....................................................................................................................54  
7.2 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells .............................................................................................58  
7.3 3-Bit LUT or Pipe Delay Macrocell .......................................................................................................................66  
7.4 3-Bit LUT or 8-Bit Counter/Delay Macrocells .......................................................................................................68  
7.5 4-Bit LUT or 16-Bit Counter/Delay Macrocells .....................................................................................................76  
7.6 CNT/DLY/FSM Timing Diagrams .........................................................................................................................81  
7.7 2-bit LUT or Programmable Pattern Generator ....................................................................................................88  
7.8 Wake and Sleep Controller ..................................................................................................................................89  
8 Analog Comparators ..........................................................................................................................................................93  
8.1 ACMP0 Block Diagram and Register Settings .....................................................................................................96  
8.2 ACMP1 Block Diagram and Register Settings .....................................................................................................98  
8.3 ACMP2 Block Diagram and Register Settings ...................................................................................................100  
8.4 ACMP3 Block Diagram and Register Settings ...................................................................................................102  
9 Pipe Delay .........................................................................................................................................................................104  
10 Programmable Delay/Edge Detector ............................................................................................................................104  
10.1 Programmable Delay Timing Diagram - Edge Detector Output .......................................................................104  
11 Additional Logic Function. Deglitch Filter ...................................................................................................................106  
11.1 Deglitch Filter/Edge Detector ...........................................................................................................................106  
12 Voltage Reference ..........................................................................................................................................................107  
12.1 Voltage Reference Overview ...........................................................................................................................107  
12.2 Vref Selection Table ........................................................................................................................................107  
12.3 Vref Block Diagram ........................................................................................................................................108  
12.4 Vref Load Regulation .......................................................................................................................................109  
13 Clocking ..........................................................................................................................................................................111  
13.1 OSC General Description .................................................................................................................................111  
Datasheet  
22-Jul-2021  
Revision 3.6  
2 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
13.2 25 kHz/2 MHz and 25 MHz RC Oscillators ......................................................................................................111  
13.3 Oscillators Power-On Delay .............................................................................................................................113  
13.4 Oscillators Accuracy .........................................................................................................................................115  
14 Crystal Oscillator ...........................................................................................................................................................117  
15 Power-On Reset ..............................................................................................................................................................118  
15.1 General Operation ............................................................................................................................................118  
15.2 POR Sequence ................................................................................................................................................119  
15.3 Macrocells Output States During POR Sequence ...........................................................................................119  
16 Asynchronous State Machine Macrocell .....................................................................................................................122  
16.1 ASM Macrocell Overview .................................................................................................................................122  
16.2 ASM Inputs .......................................................................................................................................................123  
16.3 ASM Outputs ....................................................................................................................................................125  
16.4 Basic ASM Timing ............................................................................................................................................127  
16.5 Asynchronous State Machines vs. Synchronous State Machines ...................................................................127  
16.6 ASM Power Considerations .............................................................................................................................127  
16.7 ASM Logical vs. Physical Design .....................................................................................................................128  
16.8 ASM Special Case Timing Considerations ......................................................................................................128  
17 I2C Serial Communications Macrocell .........................................................................................................................132  
17.1 I2C Serial Communications Macrocell Overview ..............................................................................................132  
17.2 I2C Serial Communications Device Addressing ...............................................................................................132  
17.3 I2C Serial General Timing ................................................................................................................................133  
17.4 I2C Serial Communications Commands ...........................................................................................................133  
17.5 I2C Serial Command Register Protection .........................................................................................................136  
17.6 I2C Additional options .......................................................................................................................................140  
18 External Clocking ...........................................................................................................................................................142  
18.1 Crystal Mode ....................................................................................................................................................142  
18.2 IO17 or IO15 Source for 25 kHz/2 MHz Clock .................................................................................................142  
18.3 IO14 Source for 25 MHz Clock ........................................................................................................................142  
19 Dual, 2A P-FET Power Switches ...................................................................................................................................143  
19.1 Power Switches Overview ................................................................................................................................143  
19.2 Driving the P-FET Switch .................................................................................................................................144  
19.3 Power Dissipation ............................................................................................................................................146  
19.4 Power Switch Typical Performance .................................................................................................................147  
20 Register Definitions .......................................................................................................................................................152  
20.1 Register Map ....................................................................................................................................................152  
21 Package Top Marking Definitions .................................................................................................................................183  
21.1 MSTQFN 28L 2 mm x 3 mm 0.4P Package .....................................................................................................183  
22 Package Information ......................................................................................................................................................184  
22.1 Package outlines FOR MSTQFN 28L 2 mm x 3 mm 0.4P Package ................................................................184  
22.2 MSTQFN Handling ...........................................................................................................................................185  
22.3 Soldering Information .......................................................................................................................................185  
23 Ordering Information .....................................................................................................................................................185  
23.1 Tape and Reel Specifications ..........................................................................................................................185  
23.2 Carrier Tape Drawing and Dimensions ............................................................................................................185  
24 Layout Guidelines ..........................................................................................................................................................186  
24.1 MSTQFN 28L 2 mm x 3 mm 0.4P Package .....................................................................................................186  
Glossary................................................................................................................................................................................187  
Revision History...................................................................................................................................................................189  
Datasheet  
22-Jul-2021  
Revision 3.6  
3 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Figures  
Figure 1: Block Diagram.............................................................................................................................................................9  
Figure 2: Steps to Create a Custom GreenPAK Device...........................................................................................................32  
Figure 3: IO0 GPI Structure Diagram.......................................................................................................................................41  
Figure 4: Matrix OE IO Structure Diagram...............................................................................................................................42  
Figure 5: Matrix OE IO Structure Diagram...............................................................................................................................43  
Figure 6: Matrix OE IO 4X Drive Structure Diagram ................................................................................................................44  
Figure 7: IO Structure Diagram................................................................................................................................................45  
Figure 8: IO 4X Drive Structure Diagram .................................................................................................................................46  
Figure 9: Connection Matrix.....................................................................................................................................................47  
Figure 10: Connection Matrix Example....................................................................................................................................47  
Figure 11: 2-bit LUT0 or DFF0.................................................................................................................................................54  
Figure 12: 2-bit LUT1 or DFF1.................................................................................................................................................55  
Figure 13: 2-bit LUT2 or DFF2.................................................................................................................................................55  
Figure 14: DFF Polarity Operations..........................................................................................................................................58  
Figure 15: 3-bit LUT0 or DFF3 with RST/SET..........................................................................................................................59  
Figure 16: 3-bit LUT1 or DFF4 with RST/SET..........................................................................................................................59  
Figure 17: 3-bit LUT2 or DFF5 with RST/SET..........................................................................................................................60  
Figure 18: 3-bit LUT3 or DFF6 with RST/SET..........................................................................................................................60  
Figure 19: 3-bit LUT4 or DFF7 with RST/SET..........................................................................................................................61  
Figure 20: DFF Polarity Operations with nReset......................................................................................................................65  
Figure 21: DFF Polarity Operations with nSet..........................................................................................................................66  
Figure 22: 3-bit LUT10 or Pipe Delay.......................................................................................................................................67  
Figure 23: 3-bit LUT5 or CNT/DLY2.........................................................................................................................................69  
Figure 24: 3-bit LUT6 or CNT/DLY3.........................................................................................................................................69  
Figure 25: 3-bit LUT7 or CNT/DLY4.........................................................................................................................................70  
Figure 26: 3-bit LUT8 or CNT/DLY5.........................................................................................................................................71  
Figure 27: 3-bit LUT9 or CNT/DLY6.........................................................................................................................................71  
Figure 28: 4-bit LUT0 or CNT/DLY0.........................................................................................................................................77  
Figure 29: 4-bit LUT1 or CNT/DLY1.........................................................................................................................................78  
Figure 30: Delay Mode Timing Diagram...................................................................................................................................81  
Figure 31: Counter Mode Timing Diagram...............................................................................................................................81  
Figure 32: One-Shot Function Timing Diagram........................................................................................................................82  
Figure 33: Frequency Detection Mode Timing Diagram...........................................................................................................84  
Figure 34: Edge Detection Mode Timing Diagram...................................................................................................................85  
Figure 35: Delay Mode Timing Diagram...................................................................................................................................86  
Figure 36: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3.....86  
Figure 37: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3 .........87  
Figure 38: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3.....87  
Figure 39: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3 .........88  
Figure 40: 2-bit LUT2 or PGen.................................................................................................................................................89  
Figure 41: PGen Timing Diagram.............................................................................................................................................89  
Figure 42: Wake/Sleep Controller............................................................................................................................................90  
Figure 43: Wake/Sleep Timing Diagram ..................................................................................................................................90  
Figure 44: Maximum Power-On Delay vs. VDD, BG = Auto-delay. ..........................................................................................93  
Figure 45: Max. Power-On Delay vs. VDD, BG = 550 µs.........................................................................................................94  
Figure 46: Max. Power-On Delay vs. VDD, BG = 100 µs..........................................................................................................94  
Figure 47: Typical Buffer Input Voltage Offset vs. Voltage Reference.....................................................................................95  
Figure 48: Typical Input Threshold Variation (Including Vref Variation, ACMP Offset) vs. Voltage Reference........................95  
Figure 49: ACMP0 Block Diagram ...........................................................................................................................................96  
Figure 50: ACMP1 Block Diagram ...........................................................................................................................................98  
Figure 51: ACMP2 Block Diagram .........................................................................................................................................100  
Figure 52: ACMP3 Block Diagram .........................................................................................................................................102  
Figure 53: Programmable Delay ............................................................................................................................................104  
Figure 54: Edge Detector Output ...........................................................................................................................................104  
Figure 55: Deglitch Filter/Edge Detector................................................................................................................................106  
Datasheet  
22-Jul-2021  
Revision 3.6  
4 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Figure 56: Voltage Reference Block Diagram........................................................................................................................108  
Figure 57: Typical Load Regulation, Vref = 600 mV, T = -40 °C to +85 °C, Buffer - Enable..................................................109  
Figure 58: Typical Load Regulation, Vref = 1000 mV, T = -40 °C to +85 °C, Buffer - Enable................................................109  
Figure 59: Typical Load Regulation, Vref = 1200 mV, T = -40 °C to +85 °C, Buffer - Enable................................................110  
Figure 60: 25 kHz/2 MHz RC OSC Block Diagram ................................................................................................................112  
Figure 61: 25 MHz RC OSC Block Diagram ..........................................................................................................................112  
Figure 62: Oscillator Startup Diagram....................................................................................................................................113  
Figure 63: Oscillator Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2 MHz .......................................................113  
Figure 64: Oscillator Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 25 kHz.......................................................114  
Figure 65: Oscillator Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 25 MHz .....................................................114  
Figure 66: Oscillator Frequency vs. Temperature, OSC0 = 2 MHz........................................................................................115  
Figure 67: Oscillator Frequency vs. Temperature, OSC0 = 25 kHz.......................................................................................115  
Figure 68: Oscillator Frequency vs. Temperature, OSC1 = 25 MHz.....................................................................................116  
Figure 69: Crystal OSC Block Diagram..................................................................................................................................117  
Figure 70: External Crystal Connection..................................................................................................................................117  
Figure 71: POR Sequence.....................................................................................................................................................119  
Figure 72: Internal Macrocell States during POR Sequence..................................................................................................120  
Figure 73: Power-Down..........................................................................................................................................................121  
Figure 74: Asynchronous State Machine State Transitions ...................................................................................................122  
Figure 75: Asynchronous State Machine ...............................................................................................................................123  
Figure 76: Asynchronous State Machine Inputs.....................................................................................................................124  
Figure 77: Maximum 3 State Transitions into Given State.....................................................................................................124  
Figure 78: Maximum 7 State Transitions out of a Given State...............................................................................................125  
Figure 79: Connection Matrix Output RAM ............................................................................................................................126  
Figure 80: State Transition.....................................................................................................................................................127  
Figure 81: State Transition Timing.........................................................................................................................................127  
Figure 82: State Transition.....................................................................................................................................................128  
Figure 83: State Transition Timing and Power Consumption.................................................................................................128  
Figure 84: State Transition.....................................................................................................................................................128  
Figure 85: State Transition Pulse Input Timing......................................................................................................................129  
Figure 86: State Transition - Competing Inputs......................................................................................................................129  
Figure 87: State Transition Timing - Competing Inputs Indeterminate...................................................................................129  
Figure 88: State Transition Timing - Competing Inputs Determinable ...................................................................................130  
Figure 89: State Transition - Sequential.................................................................................................................................130  
Figure 90: State Transition - Sequential Timing.....................................................................................................................130  
Figure 91: State Transition - Closed Cycling..........................................................................................................................131  
Figure 92: State Transition - Closed Cycling Timing..............................................................................................................131  
Figure 93: Basic Command Structure....................................................................................................................................132  
Figure 94: I2C General Timing Characteristics ......................................................................................................................133  
Figure 95: Byte Write Command, R/W = 0.............................................................................................................................133  
Figure 96: Sequential Write Command..................................................................................................................................134  
Figure 97: Current Address Read Command, R/W = 1..........................................................................................................134  
Figure 98: Random Read Command .....................................................................................................................................135  
Figure 99: Sequential Read Command..................................................................................................................................135  
Figure 100: Register Bank Map..............................................................................................................................................136  
Figure 101: Reset Command Timing .....................................................................................................................................140  
Figure 102: Dual P-FET Power Switch...................................................................................................................................143  
Figure 103: Typical Circuit Topology for Internal (Left) and External (Right) Drive Modes....................................................144  
Figure 104: Definitions for Rise, Fall and Switching Delay Times..........................................................................................144  
Figure 105: Test Circuit for Typical Switching Waveforms.....................................................................................................145  
Figure 106: Typical Switching Waveforms (Internal Drive, Resistive Load, RL = 100 W, VDD = VIN = 5.5 V).......................145  
Figure 107: Typical Switching Waveforms (Internal Drive, Resistive Load, RL = 100 W, VDD = VIN = 1.71 V).....................145  
Figure 108: Power Dissipation Derating Curve......................................................................................................................147  
Figure 109: Typical Output Characteristics............................................................................................................................147  
Figure 110: Drain-Source On-Resistance vs. Drain Current..................................................................................................147  
Figure 111: Typical Drain-Source On-Resistance vs. Ambient Temperature ........................................................................148  
Figure 112: Gate-Source On-Resistance Gate-Source Voltage ............................................................................................148  
Datasheet  
22-Jul-2021  
Revision 3.6  
5 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Figure 113: Drain Current vs. Gate-Source Voltage ..............................................................................................................148  
Figure 114: Typical Forward Transconductance....................................................................................................................148  
Figure 115: Typical Drain-Source Diode Forward Voltage.....................................................................................................149  
Figure 116: Gate Threshold Voltage vs Ambient Temperature..............................................................................................149  
Figure 117: Zero Gate Voltage Drain Current........................................................................................................................149  
Figure 118: Gate-Body Leakage vs. Ambient Temperature...................................................................................................149  
Figure 119: Typical Switching Time (Internal Gate Drive) at VDS = 1.71 V............................................................................150  
Figure 120: Typical Switching Time (Internal Gate Drive) at VDS = 5.5 V..............................................................................150  
Figure 121: Typical Gate Input Waveform, Internal Gate Drive Source (Switching Time Test) .............................................150  
Figure 122: Typical Gate Charge vs. Gate-Source Voltage...................................................................................................150  
Figure 123: Typical Capacitance vs. Drain-Source Voltage...................................................................................................151  
Datasheet  
22-Jul-2021  
Revision 3.6  
6 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Tables  
Table 1: Functional Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 2: Pin Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 3: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 4: Electrostatic Discharge Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 5: Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 6: EC at VDD = 1.8 V ±5%, T = -40 °C to +85 °C, Unless Otherwise Noted . . . . . . . . . . . . . . . . . . . . . . 16  
Table 7: EC at VDD = 3.3 V ±10%, T = -40 °C to +85 °C, Unless Otherwise Noted . . . . . . . . . . . . . . . . . . . . . 17  
Table 8: EC at VDD = 5 V ±10%, T = -40 °C to +85 °C, Unless Otherwise Noted . . . . . . . . . . . . . . . . . . . . . . 18  
Table 9: I2C Pins Timing Characteristics T = -40 °C to +85 °C, Unless Otherwise Noted . . . . . . . . . . . . . . . . . . 19  
Table 10: Asynchronous State Machine Specifications at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 11: Typical Current Estimated for Each Macrocell at T = -40 °C to +85 °C . . . . . . . . . . . . . . . . . . . . . . 20  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 13: Typical Propagations Delays and Pulse Widths at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 14: Typical Deglitch Filter Pulse Width Performance at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 15: Typical Counter/Delay Offset Measurements at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 16: 25 kHz RC OSC0 Frequency Limits VDD = 2.3 V to 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 17: 25 kHz RC OSC0 Frequency Error (Error Calculated Relative to Nominal Value) . . . . . . . . . . . . . . . . . 23  
Table 18: 2 MHz RC OSC0 Frequency Limits VDD = 2.3 V to 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 19: 2 MHz RC OSC0 Frequency Error (Error Calculated Relative to Nominal Value) . . . . . . . . . . . . . . . . . 23  
Table 20: 25 MHz RC OSC1 Frequency Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 21: 25 MHz RC OSC1 Frequency Error (Error Calculated Relative to Nominal Value) . . . . . . . . . . . . . . . . 24  
Table 22: OSC Power-On Delay, T = 25 °C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 23: OSC Power-On Delay, T = 25 °C, Fast Start-Up Time Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 24: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V, Unless Otherwise Noted . . . . . . . . . . 26  
Table 25: Power Switch EC, TA = -40 °C to +85 °C (Typ Values at TA = +25 °C), VDD = 5.5 V, Unless Otherwise Noted . . 30  
Table 26: IO0 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 27: IO1 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 28: IO2 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 29: IO3 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 30: IO4 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 31: IO5 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 32: IO6 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 33: IO7 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 34: IO8 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 35: IO9 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 36: IO10 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 37: IO11 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 38: IO12 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 39: IO13 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 40: IO14 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 41: IO15 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 42: Matrix Input Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 43: Matrix Output Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 44: Connection Matrix Virtual Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 45: 2-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 46: 2-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 47: 2-bit LUT2 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 48: 2-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 49: DFF0 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 50: DFF1 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 51: DFF2 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 52: 3-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 53: 3-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 54: 3-bit LUT2 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 55: 3-bit LUT3 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 56: 3-bit LUT4 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 57: 3-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 58: DFF3 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 59: DFF4 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 60: DFF5 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 61: DFF6 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Datasheet  
22-Jul-2021  
Revision 3.6  
7 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 62: DFF7 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 63: 3-bit LUT10 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 64: Pipe Delay Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 65: 3-bit LUT5 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 66: 3-bit LUT6 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 67: 3-bit LUT7 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 68: 3-bit LUT8 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 69: 3-bit LUT9 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 70: 3-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Table 71: CNT/DLY2 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Table 72: CNT/DLY3 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Table 73: CNT/DLY4 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Table 74: CNT/DLY5 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 75: CNT/DLY6 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 76: 4-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Table 77: 4-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Table 78: 4-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Table 79: CNT/DLY0 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Table 80: CNT/DLY1 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Table 81: DLY/CNTx One-Shot/Freq. Detect Output Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Table 82: WS Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Table 83: Gain Divider Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Table 84: Gain Divider Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Table 85: Built-In Hysteresis Tolerance at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Table 86: ACMP0 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Table 87: ACMP1 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Table 88: ACMP2 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Table 89: ACMP3 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Table 90: Programmable Delay Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Table 91: Deglitch Filter Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Table 92: Vref Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Table 93: External Components Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Table 94: ASM Editor - Connection Matrix Output RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Table 95: Read/Write Protection Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Table 96: RAM Array Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Table 97: Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Datasheet  
22-Jul-2021  
Revision 3.6  
8 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
1
Block Diagram  
IO9  
IO6  
IO8  
IO5  
IO12  
IO7  
Additional Logic Functions  
Combination Function Macrocells  
IO4  
IO3  
GND  
Filter_0  
with  
Filter_1  
with  
Edge  
ACMP0  
2-bit  
2-bit  
LUT2_1  
or DFF1  
2-bit  
LUT2_2  
or DFF2  
Edge  
Detect  
LUT2_0  
or DFF0  
Detect  
2bit  
LUT2_3  
or PGen  
3-bit  
LUT3_0  
or DFF3  
3-bit  
LUT3_1  
or DFF4  
IO10  
Programmable  
Delay  
POR  
ACMP1  
3-bit  
LUT3_2  
or DFF5  
3-bit  
LUT3_3  
or DFF6  
3-bit  
IO2  
IO0  
LUT3_4  
or DFF7  
Vref  
ASM  
8 States  
IO11  
3-bit  
LUT3_6 or  
CNT/DLY3  
3-bit  
LUT3_5 or  
CNT/DLY2  
3-bit  
LUT3_7 or  
CNT/DLY4  
ACMP2  
I2C Serial  
Communication  
25 MHz  
RC Oscillator  
3-bit  
LUT3_9 or  
CNT/DLY6  
3-bit  
LUT3_8 or  
CNT/DLY5  
4-bit  
LUT4_0 or  
CNT/DLY0  
IO13  
25 kHz/2 MHz  
Oscillator  
8 Byte RAM +  
OTP Memory  
V
DD  
3-bit  
LUT3_10 or  
Pipe Delay  
4-bit  
LUT4_1 or  
CNT/DLY1  
ACMP3  
IO15  
Crystal  
Oscillator  
IO1  
P-Channel  
MOSFET0  
P-Channel  
MOSFET1  
IO14  
PWR_SW  
_ON0  
PWR_SW  
_ON1  
VIN1  
AGND  
VIN0  
VOUT0  
VOUT1  
Figure 1: Block Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
9 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
2
Pinout  
2.1 PIN CONFIGURATION - MSTQFN- 28L  
Pin # Signal Name Pin Functions  
20 19 18  
1
2
3
4
5
6
7
17  
16  
15  
GND  
IO10  
IO4  
IO3  
IO2  
1
GND  
IO10  
IO11  
GND  
2
GPIO10/ACMP2+/ACMP3+  
GPIO11/ACMP2-/ACMP3-  
GPIO13/XTAL0  
21  
22  
23  
24  
28  
27  
26  
25  
3
IO11  
4
IO13  
IO15  
VIN0  
VOUT0  
NC  
14 IO0  
13 VDD  
IO13  
5
GPIO15/EXT_CLK1  
Power Switch 0 VIN  
Power Switch 0 VOUT  
Not Connected  
6
IO15  
7
VIN1  
12  
VIN0  
8
11 VOUT1  
VOUT0  
9
NC  
Not Connected  
8
9
10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
AGND  
VOUT1  
VIN1  
Power Switch Ground  
Power Switch 1 VOUT  
Power Switch 1 VIN  
MSTQFN-28  
(Top View)  
V
V
DD  
DD  
8
NC  
NC  
22  
IO12  
IO14  
PWR_SW_ON0  
PWR_SW_ON1  
IO1  
NC  
IO6  
IO0  
IO2  
IO3  
IO4  
IO5  
IO7  
IO8  
IO9  
IO12  
IO14  
GPIO0  
9
23  
GPIO2  
10  
AGND  
24  
25  
26  
27  
28  
GPIO3  
18  
IO5  
IO7  
IO8  
IO9  
GPIO4/ACMP0+  
GPIO5/ACMP0-  
GPIO7/SDA  
19  
20  
21  
GPIO8/ACMP1+  
GPIO/ACMP0-/ACMP1-/ACMP2-/ACMP3-  
GPIO12/ACMP3+  
GPIO14/XTAL1/EXT_CLK0  
PWR_SW_ON0 Power Switch ON0  
PWR_SW_ON1 Power Switch ON1  
IO1  
NC  
IO6  
GPIO1  
Not Connected  
GPIO6/SCL  
Table 1: Functional Pin Description  
MSTQFN  
28L Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
1
GND  
GND  
Ground  
--  
--  
Digital Input without Schmitt  
Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
IO10  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
2
IO10  
Low Voltage Digital Input  
--  
Analog Comparator 2  
Positive Input  
ACMP2+  
ACMP3+  
Analog  
--  
Analog Comparator 3  
Positive Input  
Analog  
--  
Datasheet  
22-Jul-2021  
Revision 3.6  
10 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 1: Functional Pin Description(Continued)  
MSTQFN  
28L Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Digital Input without Schmitt  
Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
IO11  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
3
IO11  
Low Voltage Digital Input  
--  
Analog Comparator 2  
Negative Input  
ACMP2-  
ACMP3-  
Analog  
--  
Analog Comparator 3  
Negative Input  
Analog  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
IO13  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
4
IO13  
Low Voltage Digital Input  
--  
External Crystal  
Connection 0  
XTAL0  
--  
Analog  
Digital Input without Schmitt  
Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
IO15  
Low Voltage  
Digital Input  
--  
Analog  
--  
5
IO15  
Voltage Reference 1  
Output  
Vref  
--  
Digital Input without  
Schmitt Trigger  
External Clock  
Connection 1  
EXT_CLK1  
Digital Input  
with Schmitt Trigger  
--  
--  
Low Voltage Digital Input  
--  
Input and source termi-  
nal of Power Switch 0.  
Bypass the VIN0 pin to  
GND with a 1 µF  
6
7
VIN0  
VIN0  
--  
(or larger), low-ESR ca-  
pacitor.  
Output and drain termi-  
nal of Power Switch 0.  
VOUT0  
VOUT0  
--  
8
9
NC  
NC  
NC  
NC  
No Connection  
No Connection  
--  
--  
--  
--  
Power switch ground  
connection.  
10  
11  
AGND  
AGND  
Connect this pin to sys-  
tem analog or power  
ground plane.  
--  
--  
--  
Output and drain termi-  
nal of Power Switch 1  
VOUT1  
VOUT1  
Datasheet  
22-Jul-2021  
Revision 3.6  
11 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 1: Functional Pin Description(Continued)  
MSTQFN  
28L Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Input and source termi-  
nal of Power Switch 1.  
Bypass the VIN1 pin to  
GND with a 1 µF  
12  
13  
14  
VIN1  
VDD  
IO0  
VIN1  
VDD  
IO0  
--  
(or larger), low-ESR ca-  
pacitor.  
Power Supply  
--  
--  
--  
Digital Input without  
Schmitt Trigger  
General Purpose Input  
Digital Input  
with Schmitt Trigger  
--  
Low Voltage Digital Input  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
15  
16  
IO2  
IO3  
IO2  
IO3  
IO4  
General Purpose IO  
Open-Drain PMOS  
(1x) (2x)  
Low Voltage Digital Input  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
Low Voltage Digital Input  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
General Purpose IO  
17  
18  
IO4  
Open-Drain PMOS  
(1x) (2x)  
Low Voltage Digital Input  
Analog  
Analog Comparator 0  
Positive Input  
ACMP0+  
IO5  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
IO5  
Low Voltage Digital Input  
--  
Analog Comparator 0  
Negative Input  
ACMP0-  
IO7  
Analog  
--  
Digital Input without  
Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
General Purpose IO  
I2C Serial Data  
Digital Input  
with Schmitt Trigger  
--  
Low Voltage Digital Input  
--  
19  
IO7  
Digital Input without  
Schmitt Trigger  
Open-Drain NMOS  
SDA  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
Open-Drain NMOS  
Low Voltage Digital Input  
Datasheet  
22-Jul-2021  
Revision 3.6  
12 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 1: Functional Pin Description(Continued)  
MSTQFN  
28L Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x) (4x)  
IO8  
20  
IO8  
Open-Drain PMOS  
(1x) (2x)  
Low Voltage Digital Input  
Analog  
Analog Comparator 1  
Positive Input  
ACMP1+  
IO9  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x) (4x)  
21  
IO9  
Low Voltage Digital Input  
--  
Analog Comparator  
Negative Input  
EXT_Vref  
Analog  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
IO14  
General Purpose IO  
Open-Drain PMOS  
(1x) (2x)  
Low Voltage Digital Input  
Analog  
23  
IO14  
External Crystal  
Connection 1  
XTAL1  
--  
--  
Digital Input without  
Schmitt Trigger  
External Clock  
Connection 0  
EXT_CLK0  
Digital Input  
with Schmitt Trigger  
--  
--  
--  
Low Voltage Digital Input  
ON0turnsPowerSwitch  
0 ON  
24  
25  
PWR_SW_ON0 PWR_SW_ON0  
PWR_SW_ON1 PWR_SW_ON1  
P-FET gate with 200 Ω resistor  
ON1turnsPowerSwitch  
1 ON  
P-FET gate with 200 Ω resistor  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
26  
27  
IO1  
NC  
IO1  
NC  
IO6  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
Low Voltage Digital Input  
--  
--  
--  
No connection  
Digital Input without  
Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
General Purpose IO  
Digital Input  
with Schmitt Trigger  
--  
Low Voltage Digital Input  
--  
28  
IO6  
Digital Input without  
Schmitt Trigger  
Open-Drain NMOS  
SCL  
I2C Serial Clock  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
Open-Drain NMOS  
Low Voltage Digital Input  
Datasheet  
22-Jul-2021  
Revision 3.6  
13 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 1: Functional Pin Description(Continued)  
MSTQFN  
28L Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Note 1 General Purpose IO's with OE can be used to implement bidirectional signals under user control via Connection Matrix  
to OE signal in IO structure.  
Table 2: Pin Type Definitions  
Pin Type  
GND  
Description  
Ground  
AGND  
IO  
P-FET Power Switch Ground  
Input/Output  
VIN  
P-FET Power Switch Input  
P-FET Power Switch Output  
No Connection  
VOUT  
NC  
VDD  
Power Supply  
PWR_SW_ON  
Power Switch ON  
Datasheet  
22-Jul-2021  
Revision 3.6  
14 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
3
Characteristics  
3.1 ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational  
sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect  
device reliability.  
Table 3: Absolute Maximum Ratings  
Parameter  
Supply voltage on VDD relative to GND  
DC Input voltage  
Condition  
Min  
Max  
7
Unit  
V
-0.5  
GND - 0.5  
VDD + 0.5  
45  
V
TJ = 85 °C  
TJ = 110 °C  
TJ = 85 °C  
TJ = 110 °C  
Push-Pull 1x  
Push-Pull 2x  
OD 1x  
--  
--  
mA  
mA  
mA  
mA  
Maximum Average or DC Current Through  
VDD Pin (Per chip side) (Note 1)  
22  
--  
86  
Maximum Average or DC Current Through  
GND Pin (Per chip side) (Note 1)  
--  
41  
--  
11  
--  
16  
Maximum Average or DC Current  
(Through pin)  
--  
11  
mA  
OD 2x  
--  
21  
OD 4x  
--  
43  
Current at Input Pin  
Input Leakage Current (Absolute Value)  
Storage Temperature Range  
Junction Temperature  
Moisture Sensitivity Level  
VIN  
-1.0  
--  
1.0  
mA  
nA  
°C  
1000  
150  
150  
-65  
--  
°C  
1
P-FET  
0.3  
--  
VDD  
99  
V
ΘJA  
Thermal Resistance (Note 2)  
°C/W  
Maximum Power Dissipation,  
TA = +25 °C  
PD  
--  
1.25  
W
TJ,MAX  
Maximum Junction Temperature  
Total, TJ < 150 °C  
150  
2
°C  
A
P-FET Power Switch IDSCONT  
--  
--  
For no more than 1 ms with 1% duty  
cycle  
P-FET Power Switch IDSPK  
2.5  
A
Note 1 The GreenPAK’s power rails are divided in two sides. IOs 0, 1, 2, 3, 4, 5, 6, 7, and 8 are connected to one side, IOs 9,  
10, 11, 12, 13, 14, and 15 to another.  
Note 2 Mounted on 27.4 mm x 30.1 mm PCB (1.6 mm thick, 1 oz copper, FR-4 material).  
3.2 ELECTROSTATIC DISCHARGE RATINGS  
Table 4: Electrostatic Discharge Ratings  
Parameter  
Min  
2000  
1300  
Max  
--  
Unit  
V
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model)  
--  
V
Datasheet  
22-Jul-2021  
Revision 3.6  
15 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
3.3 RECOMMENDED OPERATING CONDITIONS  
Table 5: Recommended Operating Conditions  
Parameter  
Condition  
Min  
1.8  
Max  
5
Unit  
V
Supply Voltage (VDD  
)
Operating Temperature  
Programming Voltage  
-40  
85  
°C  
V
7.25  
7.75  
Maximal Voltage Applied to any PIN in High  
Impedance State  
--  
VDD  
V
Capacitor Value at VDD  
0.1  
0
--  
μF  
Analog Input Common Mode Range  
Allowable Input Voltage atAnalog Pins  
VDD  
V
3.4 ELECTRICAL CHARACTERISTICS  
Table 6: EC at VDD = 1.8 V ±5%, T = -40 °C to +85 °C, Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
1.71  
1.06  
1.28  
0.94  
0
Typ  
1.80  
--  
Max  
1.89  
VDD  
VDD  
VDD  
0.76  
0.49  
0.52  
Unit  
VDD  
Supply Voltage  
V
V
V
V
V
V
V
Logic Input  
VIH  
HIGH-Level Input Voltage  
Logic Input with Schmitt Trigger  
Low-Level Logic Input  
Logic Input  
--  
--  
--  
VIL  
LOW-Level Input Voltage  
Logic Input with Schmitt Trigger  
Low-Level Logic Input  
0
--  
0
--  
Schmitt Trigger Hysteresis  
Voltage  
VHYS  
Logic Input with Schmitt Trigger  
0.10  
0.41  
0.66  
V
Push-Pull, IOH = 100 μA, 1x Driver  
PMOS OD, IOH = 100 μA, 1x Driver  
Push-Pull, IOH = 100 μA, 2x Driver  
PMOS OD, IOH = 100 μA, 2x Driver  
Push-Pull, IOL= 100 μA, 1x Driver  
Push-Pull, IOL = 100 μA, 2x Driver  
Open-Drain, IOL = 100 μA, 1x Driver  
Open-Drain, IOL = 100 μA, 2x Driver  
1.69  
1.69  
1.70  
1.70  
--  
1.79  
1.79  
1.79  
1.79  
--  
--  
V
V
V
V
V
V
V
V
VOH  
VOL  
IOH  
HIGH-Level Output Voltage  
--  
--  
0.009  
0.004  
0.006  
0.003  
0.013  
0.006  
0.009  
0.004  
--  
--  
LOW-Level Output Voltage  
--  
Open-Drain NMOS 4x,  
IOL = 100 μA  
--  
0.001  
0.002  
V
Push-Pull, VOH = VDD - 0.2, 1x Driver  
PMOS OD, VOH = VDD - 0.2, 1x Driver  
Push-Pull, VOH = VDD - 0.2, 2x Driver  
PMOS OD, VOH = VDD - 0.2, 2x Driver  
Push-Pull, VOL = 0.15 V, 1x Driver  
Push-Pull, VOL = 0.15 V, 2x Driver  
Open-Drain, VOL = 0.15 V, 1x Driver  
Open-Drain, VOL = 0.15 V, 2x Driver  
1.07  
1.07  
2.22  
2.22  
0.92  
1.83  
1.38  
2.75  
1.70  
1.70  
3.41  
3.41  
1.69  
3.38  
2.53  
5.07  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
HIGH-Level Output Pulse  
Current (Note 1)  
LOW-Level Output Pulse  
Current (Note 1)  
IOL  
Open-Drain NMOS 4x,  
VOL = 0.15 V  
7.21  
0.63  
9.00  
1.36  
--  
mA  
ms  
TSU  
Startup Time  
From VDD rising past PONTHR  
1.87  
Datasheet  
22-Jul-2021  
Revision 3.6  
16 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 6: EC at VDD = 1.8 V ±5%, T = -40 °C to +85 °C, Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
PONTHR Power-On Threshold  
VDD Level Required to Start Up the Chip  
1.41  
1.54  
1.66  
V
VDD Level Required to Switch Off the  
Chip  
POFFTHR Power-Off Threshold  
1.00  
1.15  
1.31  
V
1 M Pull-up  
859.8  
86.47  
10.82  
873.9  
88.89  
9.65  
1097.1 1358.9  
110.13 136.18  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
RPUP  
Pull-up Resistance  
100 k Pull-up  
10 k Pull-up  
12.86  
15.36  
1 M Pull-down  
100 k Pull-down  
10 k Pull-down  
1097.0 1359.0  
110.53 136.55  
RPDWN  
Pull-down Resistance  
12.75  
15.76  
Note 1 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
Note 2 The GreenPAK’s power rails are divided in two sides. IOs 0, 1, 2, 3, 4, 5, 6, 7 and 8 are connected to one side, IOs 9,  
10, 11, 12, 13, 14 to 15 another.  
Table 7: EC at VDD = 3.3 V ±10%, T = -40 °C to +85 °C, Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
3.0  
1.81  
2.14  
1.06  
0
Typ  
3.3  
--  
Max  
3.6  
Unit  
V
VDD  
Supply Voltage  
Logic Input  
VDD  
VDD  
VDD  
1.31  
0.97  
0.67  
V
VIH  
HIGH-Level Input Voltage  
Logic Input with Schmitt Trigger  
Low-Level Logic Input  
Logic Input  
--  
V
--  
V
--  
V
VIL  
LOW-Level Input Voltage  
Logic Input with Schmitt Trigger  
Low-Level Logic Input  
0
--  
V
0
--  
V
Schmitt Trigger Hysteresis  
Voltage  
VHYS  
Logic Input with Schmitt Trigger  
0.29  
0.62  
0.94  
V
Push-Pull, IOH = 3 mA, 1x Driver  
PMOS OD, IOH = 3 mA, 1x Driver  
Push-Pull, IOH = 3 mA, 2x Driver  
PMOS OD, IOH = 3 mA, 2x Driver  
Push-Pull, IOL= 3 mA, 1x Driver  
Push-Pull, IOL = 3 mA, 2x Driver  
Open-Drain, IOL = 3 mA, 1x Driver  
Open-Drain, IOL = 3 mA, 2x Driver  
2.70  
2.70  
2.85  
2.86  
--  
3.12  
3.12  
3.21  
3.21  
0.13  
0.06  
0.08  
0.04  
--  
--  
V
V
V
V
V
V
V
V
VOH  
VOL  
IOH  
HIGH-Level Output Voltage  
--  
--  
0.23  
0.11  
0.15  
0.08  
--  
--  
LOW-Level Output Voltage  
--  
Open-Drain NMOS 4x,  
IOL = 3 mA  
--  
0.02  
0.04  
V
Push-Pull, VOH = 2.4 V, 1x Driver  
PMOS OD, VOH = 2.4 V, 1x Driver  
Push-Pull, VOH = 2.4 V, 2x Driver  
PMOS OD, VOH = 2.4 V, 2x Driver  
6.05  
6.05  
12.08  
12.08  
24.16  
24.16  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
HIGH-Level Output Pulse  
Current (Note 1)  
11.54  
11.52  
Datasheet  
22-Jul-2021  
Revision 3.6  
17 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 7: EC at VDD = 3.3 V ±10%, T = -40 °C to +85 °C, Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
4.88  
9.75  
7.31  
14.54  
Typ  
8.24  
Max  
--  
Unit  
mA  
mA  
mA  
mA  
Push-Pull, VOL = 0.4 V, 1x Driver  
Push-Pull, VOL = 0.4 V, 2x Driver  
Open-Drain, VOL = 0.4 V, 1x Driver  
Open-Drain, VOL = 0.4 V, 2x Driver  
16.49  
12.37  
24.74  
--  
LOW-Level Output Pulse  
--  
IOL  
Current (Note 1)  
--  
Open-Drain NMOS 4x,  
VOL = 0.4 V  
31.32  
41.06  
--  
mA  
TSU  
Startup Time  
From VDD rising past PONTHR  
0.61  
1.41  
1.24  
1.54  
1.65  
1.66  
ms  
V
PONTHR Power-On Threshold  
POFFTHR Power-Off Threshold  
VDD Level Required to Start Up the Chip  
V
DD Level Required to Switch Off the  
1.00  
1.15  
1.31  
V
Chip  
1 M Pull-up  
100 k Pull-up  
10 k Pull-up  
1 M Pull-down  
100 k Pull-down  
10 k Pull-down  
873.2  
85.17  
9.61  
1094.7 1364.3  
109.30 135.52  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
RPUP  
Pull-up Resistance  
11.86  
14.73  
862.5  
87.95  
8.66  
1096.3 1357.4  
109.76 136.06  
RPDWN  
Pull-down Resistance  
11.81  
15.05  
Note 1 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
Note 2 The GreenPAK’s power rails are divided in two sides. IOs 0, 1, 2, 3, 4, 5, 6, 7 and 8 are connected to one side, IOs 9,  
10, 11, 12, 13, 14 to 15 another.  
Table 8: EC at VDD = 5 V ±10%, T = -40 °C to +85 °C, Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
4.5  
2.68  
3.34  
1.15  
0
Typ  
5.0  
--  
Max  
5.5  
Unit  
V
VDD  
Supply Voltage  
Logic Input  
VDD  
VDD  
VDD  
1.96  
1.41  
0.77  
V
VIH  
HIGH-Level Input Voltage  
Logic Input with Schmitt Trigger  
Low-Level Logic Input  
Logic Input  
--  
V
--  
V
--  
V
VIL  
LOW-Level Input Voltage  
Logic Input with Schmitt Trigger  
Low-Level Logic Input  
0
--  
V
0
--  
V
Schmitt Trigger Hysteresis  
Voltage  
VHYS  
Logic Input with Schmitt Trigger  
0.44  
0.90  
1.38  
V
Push-Pull, IOH = 5 mA, 1x Driver  
PMOS OD, IOH = 5 mA, 1x Driver  
Push-Pull, IOH = 5 mA, 2x Driver  
PMOS OD, IOH = 5 mA, 2x Driver  
Push-Pull, IOL= 5 mA, 1x Driver  
Push-Pull, IOL = 5 mA, 2x Driver  
Open-Drain, IOL = 5 mA, 1x Driver  
Open-Drain, IOL = 5 mA, 2x Driver  
4.15  
4.16  
4.32  
4.33  
--  
4.76  
4.76  
4.89  
4.89  
0.19  
0.09  
0.12  
0.07  
--  
--  
--  
--  
V
V
V
V
V
V
V
V
VOH  
HIGH-Level Output Voltage  
0.24  
--  
0.12  
0.16  
0.08  
--  
VOL  
LOW-Level Output Voltage  
--  
Open-Drain NMOS 4x,  
IOL = 5 mA  
--  
0.03  
0.05  
V
Datasheet  
22-Jul-2021  
Revision 3.6  
18 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 8: EC at VDD = 5 V ±10%, T = -40 °C to +85 °C, Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
--  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Push-Pull, VOH = 2.4 V, 1x Driver  
PMOS OD, VOH = 2.4 V, 1x Driver  
Push-Pull, VOH = 2.4 V, 2x Driver  
PMOS OD, VOH = 2.4 V, 2x Driver  
Push-Pull, VOL = 0.4 V, 1x Driver  
Push-Pull, VOL = 0.4 V, 2x Driver  
Open-Drain, VOL = 0.4 V, 1x Driver  
Open-Drain, VOL = 0.4 V, 2x Driver  
22.08  
22.08  
41.76  
41.69  
7.22  
34.04  
34.04  
68.08  
68.08  
11.58  
23.16  
17.38  
34.76  
--  
HIGH-Level Output Pulse  
Current (Note 1)  
IOH  
--  
--  
--  
13.83  
10.82  
17.34  
--  
LOW-Level Output Pulse  
Current (Note 1)  
--  
IOL  
--  
Open-Drain NMOS 4x,  
VOL = 0.4 V  
41.06  
55.18  
--  
mA  
TSU  
Startup Time  
From VDD rising past PONTHR  
0.60  
1.41  
1.23  
1.54  
1.61  
1.66  
ms  
V
PONTHR  
Power-On Threshold  
VDD Level Required to Start Up the Chip  
V
Chip  
DD Level Required to Switch Off the  
POFFTHR Power-Off Threshold  
1.00  
1.15  
1.31  
V
1 M Pull-up  
100 k Pull-up  
10 k Pull-up  
1 M Pull-down  
100 k Pull-down  
10 k Pull-down  
864.6  
84.32  
8.74  
1093.4 1348.1  
108.97 135.24  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
RPUP  
Pull-up Resistance  
11.37  
14.52  
873.3  
87.57  
7.95  
1096.1 1370.5  
109.48 135.89  
RPDWN  
Pull-down Resistance  
11.33  
14.78  
Note 1 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
Note 2 The GreenPAK’s power rails are divided in two sides. IOs 0, 1, 2, 3, 4, 5, 6, 7 and 8 are connected to one side, IOs 9,  
10, 11, 12, 13, 14 to 15 another.  
Table 9: I2C Pins Timing Characteristics T = -40 °C to +85 °C, Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
--  
Typ  
--  
Max  
400  
--  
Unit  
kHz  
ns  
FSCL  
tLOW  
tHIGH  
Clock Frequency, SCL  
VDD = 1.71 to 5.5 V  
VDD = 1.71 to 5.5 V  
VDD = 1.71 to 5.5 V  
Clock Pulse Width Low  
Clock Pulse Width High  
1300  
600  
--  
--  
--  
--  
ns  
V
DD = 1.8 V ± 5%  
--  
95  
Input Filter Spike Suppression  
(SCL, SDA)  
tI  
VDD = 3.3 V ± 10%  
VDD = 5.0 V ± 10%  
VDD = 1.71 to 5.5 V  
--  
--  
95  
ns  
--  
--  
111  
900  
tAA  
Clock Low to Data Out Valid  
--  
--  
ns  
ns  
Bus Free Time between Stop  
and Start  
tBUF  
V
DD = 1.71 to 5.5 V  
1300  
--  
--  
tHD_STA  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
Start Hold Time  
Start Set-up Time  
Data Hold Time  
Data Set-up Time  
Inputs Rise Time  
Inputs Fall Time  
Stop Set-up Time  
VDD = 1.71 to 5.5 V  
VDD = 1.71 to 5.5 V  
VDD = 1.71 to 5.5 V  
VDD = 1.71 to 5.5 V  
VDD = 1.71 to 5.5 V  
VDD = 1.71 to 5.5 V  
VDD = 1.71 to 5.5 V  
600  
600  
0
--  
--  
--  
--  
--  
--  
--  
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
--  
100  
--  
--  
300  
300  
--  
tF  
--  
tSU_STO  
600  
Datasheet  
22-Jul-2021  
Revision 3.6  
19 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 9: I2C Pins Timing Characteristics T = -40 °C to +85 °C, Unless Otherwise Noted(Continued)  
Parameter Description  
tDH Data Out Hold Time  
Condition  
Min  
Typ  
Max  
Unit  
VDD = 1.71 to 5.5 V  
50  
--  
--  
ns  
Table 10: Asynchronous State Machine Specifications at T = 25 °C  
Parameter Description Note  
Min  
225  
95  
67  
--  
Typ  
Max  
275  
118  
77  
165  
70  
46  
--  
Unit  
V
DD = 1.8 V ± 5%  
--  
Asynchronous State Machine  
Output Delay Time  
tst_out_delay  
VDD = 3.3 V ± 10%  
VDD = 5.0 V ± 10%  
ns  
--  
--  
V
DD = 1.8 V ± 5%  
Asynchronous State Machine  
Output Transition Time  
tst_out  
VDD = 3.3 V ± 10%  
VDD = 5.0 V ± 10%  
--  
ns  
ns  
ns  
--  
--  
--  
--  
--  
--  
--  
--  
V
DD = 1.8 V ± 5%  
29  
14  
9.2  
--  
Asynchronous State Machine  
Input Pulse Acceptance Time  
tst_pulse  
VDD = 3.3 V ± 10%  
VDD = 5.0 V ± 10%  
--  
--  
V
DD = 1.8 V ± 5%  
29  
14  
10  
Asynchronous State Machine  
Input Compete Time  
tst_comp  
VDD = 3.3 V ± 10%  
VDD = 5.0 V ± 10%  
--  
--  
Table 11: Typical Current Estimated for Each Macrocell at T = -40 °C to +85 °C  
Parameter  
Description Note  
Chip Quiescent  
VDD = 1.8 V VDD = 3.3 V VDD = 5.0 V  
Unit  
0.45  
41.48  
25.68  
7.16  
0.75  
64.00  
32.41  
7.94  
1.12  
94.89  
43.22  
9.25  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
OSC 2 MHz, pre-divider = 1  
OSC 2 MHz, pre-divider = 8  
OSC 25 kHz, pre-divider = 1  
OSC 25 kHz, pre-divider = 8  
OSC 25 MHz, pre-divider = 1  
OSC 25 MHz, pre-divider = 1, Force On  
OSC 25 MHz, pre-divider = 8  
ACMP (each)  
6.97  
7.60  
8.68  
87.25  
87.25  
78.01  
54.96  
75.06  
49.70  
71.93  
238.27  
238.27  
212.45  
52.64  
72.74  
47.32  
71.27  
428.66  
428.67  
390.17  
60.81  
81.25  
55.60  
79.62  
IDD  
Current  
ACMP with buffer (each)  
Vref  
Vref with buffer  
3.5 TIMING CHARACTERISTICS  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C  
VDD = 1.8 V  
VDD = 3.3V  
VDD = 5.0V  
Parameter Description Note  
Unit  
Rising Falling Rising Falling Rising Falling  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Digital Input to PP 1x  
45  
44  
46  
50  
19  
19  
19  
21  
14  
14  
14  
15  
ns  
ns  
ns  
Digital Input with Schmitt Trigger  
to PP 1x  
49  
21  
15  
Low Voltage Digital input to PP 1x  
447  
195  
134  
Datasheet  
22-Jul-2021  
Revision 3.6  
20 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C(Continued)  
VDD = 1.8 V  
VDD = 3.3V  
VDD = 5.0V  
Parameter Description Note  
Unit  
Rising Falling Rising Falling Rising Falling  
tpd  
tpd  
Delay  
Delay  
Digital input to PMOS output  
Digital input to NMOS output  
44  
-
-
19  
-
-
14  
-
-
ns  
ns  
81  
30  
20  
Output enable from pin, OE Hi-Z  
to 1  
tpd  
tpd  
Delay  
Delay  
48  
-
-
20  
-
-
15  
-
-
ns  
ns  
Output enable from pin, OE Hi-Z  
to 0  
46  
20  
14  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
LUT2bit(LATCH)  
LATCH(LUT2bit)  
LUT3bit(LATCH)  
LATCH+nRESET(LUT3bit)  
LATCH  
34  
30  
33  
34  
14  
14  
13  
13  
10  
10  
9
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
38  
37  
18  
15  
13  
10  
12  
10  
9
45  
42  
21  
17  
15  
33  
35  
14  
14  
11  
LUT4bit  
28  
33  
14  
13  
10  
LUT2bit  
31  
31  
14  
13  
10  
9
LUT3bit  
35  
33  
15  
13  
11  
10  
20  
9
CNT/DLY Logic  
DFF  
62  
68  
27  
29  
19  
32  
28  
14  
12  
11  
P_DLY1C  
367  
667  
968  
1265  
213  
1600  
356  
656  
956  
1252  
210  
1900  
165  
303  
440  
576  
84  
160  
297  
434  
570  
83  
123  
225  
327  
428  
55  
119  
221  
322  
423  
55  
1800  
P_DLY2C  
P_DLY3C  
P_DLY4C  
Filter  
ACMP (5mV overdrive)  
1500  
1800  
1600  
Pulse  
Width  
IO with 1x Push-Pull (min transmit-  
ted)  
tw  
tw  
20  
20  
20  
55  
20  
55  
20  
35  
20  
35  
ns  
ns  
Pulse  
Width  
filter (min transmitted)  
150  
150  
Table 13: Typical Propagations Delays and Pulse Widths at T = 25 °C  
Parameter Description Note  
VDD = 1.8 V VDD = 3.3V VDD = 5.0V  
Unit  
Pulse Width,  
tw  
tw  
tw  
tw  
mode: (any)edge detect, edge detect output  
mode: (any)edge detect, edge detect output  
mode: (any)edge detect, edge detect output  
mode: (any)edge detect, edge detect output  
296  
597  
135  
272  
410  
546  
101  
203  
305  
407  
ns  
ns  
ns  
ns  
1 cell  
Pulse Width,  
2 cell  
Pulse Width,  
3 cell  
898  
Pulse Width,  
4 cell  
1195  
time1  
time1  
time1  
time1  
time2  
time2  
Delay, 1 cell mode: (any)edge detect, edge detect output  
Delay, 2 cell mode: (any)edge detect, edge detect output  
Delay, 3 cell mode: (any)edge detect, edge detect output  
Delay, 4 cell mode: (any)edge detect, edge detect output  
Delay, 1 cell mode: both edge delay, edge detect output  
Delay, 2 cell mode: both edge delay, edge detect output  
55  
55  
24  
24  
18  
18  
ns  
ns  
ns  
ns  
ns  
ns  
55  
24  
18  
55  
24  
18  
367  
667  
165  
300  
106  
193  
Datasheet  
22-Jul-2021  
Revision 3.6  
21 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 13: Typical Propagations Delays and Pulse Widths at T = 25 °C(Continued)  
Parameter Description Note  
VDD = 1.8 V VDD = 3.3V VDD = 5.0V  
Unit  
ns  
time2  
time2  
Delay, 3 cell mode: both edge delay, edge detect output  
Delay, 4 cell mode: both edge delay, edge detect output  
968  
440  
575  
279  
365  
1265  
ns  
Table 14: Typical Deglitch Filter Pulse Width Performance at T = 25 °C  
Parameter  
VDD = 2.5 V VDD = 3.3V VDD = 5.0V  
Unit  
Filtered Pulse Width for Filter 0  
Filtered Pulse Width for Filter 1  
< 114  
<75  
< 47  
<30  
< 30  
<19  
ns  
ns  
Table 15: Typical Counter/Delay Offset Measurements at T = 25 °C  
RC OSC  
Description  
RC OSC Power VDD = 1.8 V VDD = 3.3V VDD = 5.0V  
Unit  
Freq  
25 kHz  
25 kHz  
2 MHz  
2 MHz  
25 MHz  
25 kHz  
2 MHz  
25 kHz  
2 MHz  
25 MHz  
Offset (start time)  
auto  
auto  
auto  
auto  
auto  
auto  
auto  
forced  
forced  
--  
1.6  
2.1  
1.6  
2.1  
1.6  
2.1  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
Offset (start time), fast start  
Offset (start time)  
0.4  
0.2  
0.2  
Offset (start time), fast start  
Offset (start time)  
0.7  
0.5  
0.4  
0.01  
19  
0.05  
14  
0.04  
12  
Frequency settling time  
Frequency settling time  
Variable (CLK period)  
Variable (CLK period)  
Variable (CLK period)  
14  
14  
14  
0-40  
0-0.5  
0-0.04  
0-40  
0-0.5  
0-0.04  
0-40  
0-0.5  
0-0.04  
25 kHz/  
2 MHz  
Tpd (non-delayed edge)  
either  
35  
14  
10  
ns  
3.6 OSC CHARACTERISTICS  
Table 16: 25 kHz RC OSC0 Frequency Limits VDD = 2.3 V to 5.5 V  
Temperature Range  
0 °C to +85 °C  
Power Supply Range  
(VDD), V  
+25 °C  
Minimum  
-40 °C to +85 °C  
Maximum  
Value, kHz  
Minimum  
Maximum  
Minimum  
Maximum  
Value, kHz  
Value, kHz  
Value, kHz  
Value, kHz  
Value, kHz  
1.8 V ±5%  
3.3 V ±10%  
5 V ±10%  
23.792  
26.288  
25.526  
25.939  
25.559  
26.670  
23.275  
27.089  
21.728  
29.173  
27.002  
27.181  
27.038  
29.545  
24.473  
23.357  
26.028  
23.357  
24.316  
23.309  
26.177  
23.309  
2.5 V to 4.5 V  
1.71 V to 5.5 V  
24.438  
23.336  
26.051  
23.336  
23.354  
22.828  
27.483  
21.301  
Datasheet  
22-Jul-2021  
Revision 3.6  
22 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 17: 25 kHz RC OSC0 Frequency Error (Error Calculated Relative to Nominal Value)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
Error (% at  
Minimum)  
-4.83%  
-2.11%  
0 °C to +85 °C  
-40 °C to +85 °C  
Error (% at  
Maximum)  
Error (% at  
Error (% at  
Maximum)  
Error (% at  
Error (% at  
Maximum)  
Minimum)  
-6.90%  
-6.57%  
-6.76%  
-6.66%  
-8.69%  
Minimum)  
-13.09%  
-6.57%  
1.8 V ±5%  
3.3 V ±10%  
5 V ±10%  
5.15%  
2.10%  
3.76%  
2.24%  
6.68%  
8.36%  
4.11%  
4.71%  
4.21%  
9.93%  
16.69%  
8.01%  
8.72%  
8.15%  
18.18%  
-2.73%  
-2.25%  
-6.58%  
-6.76%  
2.5 V to 4.5 V  
1.71 V to 5.5 V  
-6.66%  
-14.80%  
Table 18: 2 MHz RC OSC0 Frequency Limits VDD = 2.3 V to 5.5 V  
Temperature Range  
0 °C to +85 °C  
Power Supply Range  
(VDD), V  
+25 °C  
-40 °C to +85 °C  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
1.8 V ±5%  
3.3 V ±10%  
5 V ±10%  
1.915  
2.062  
2.070  
2.233  
2.124  
2.274  
1.832  
2.103  
2.132  
2.270  
2.171  
2.305  
1.810  
1.813  
1.767  
1.784  
1.629  
2.144  
2.145  
2.270  
2.171  
2.305  
1.937  
1.858  
1.894  
1.853  
2.5 V to 4.5 V  
1.71 V to 5.5 V  
1.907  
1.836  
1.760  
1.706  
Table 19: 2 MHz RC OSC0 Frequency Error (Error Calculated Relative to Nominal Value)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
Error (% at  
0 °C to +85 °C  
-40 °C to +85 °C  
Error (% at  
Maximum)  
Error (% at  
Error (% at  
Maximum)  
Error (% at  
Minimum)  
Error (% at  
Maximum)  
Minimum)  
Minimum)  
1.8 V ±5%  
3.3 V ±10%  
5 V ±10%  
-4.26%  
3.12%  
3.49%  
11.66%  
6.18%  
13.72%  
-8.38%  
5.17%  
6.58%  
13.50%  
8.57%  
15.23%  
-9.50%  
-9.33%  
7.20%  
7.24%  
13.50%  
8.57%  
15.23%  
-3.14%  
-7.10%  
-5.31%  
-7.37%  
-11.67%  
-10.81%  
-18.57%  
2.5 V to 4.5 V  
1.71 V to 5.5 V  
-4.65%  
-8.22%  
-12.01%  
-14.69%  
Table 20: 25 MHz RC OSC1 Frequency Limits  
Temperature Range  
0 °C to +85 °C  
Power Supply Range  
(VDD), V  
+25 °C  
-40 °C to +85 °C  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
2.5 V ±10%  
22.316  
27.220  
21.771  
27.572  
21.771  
27.912  
Datasheet  
22-Jul-2021  
Revision 3.6  
23 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 20: 25 MHz RC OSC1 Frequency Limits(Continued)  
Temperature Range  
0 °C to +85 °C  
Power Supply Range  
(VDD), V  
+25 °C  
-40 °C to +85 °C  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
3.3 V ±10%  
5 V ±10%  
23.430  
26.220  
26.651  
26.220  
26.220  
22.389  
26.679  
27.305  
26.679  
26.679  
22.389  
27.014  
27.486  
27.014  
27.014  
23.289  
22.500  
22.500  
2.5 V to 4.5 V  
1.71 V to 5.5 V  
23.383  
20.725  
20.725  
12.643  
12.203  
11.317  
Table 21: 25 MHz RC OSC1 Frequency Error (Error Calculated Relative to Nominal Value)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
Error (% at  
0 °C to +85 °C  
-40 °C to +85 °C  
Error (% at  
Maximum)  
Error (% at  
Error (% at  
Maximum)  
Error (% at  
Minimum)  
Error (% at  
Maximum)  
Minimum)  
Minimum)  
2.5 V ±10%  
-10.73%  
8.88%  
-12.92%  
10.29%  
-12.92%  
11.65%  
3.3 V ±10%  
5 V ±10%  
-6.28%  
-6.84%  
4.88%  
6.61%  
4.88%  
4.88%  
-10.44%  
-10.00%  
-17.10%  
-51.19%  
6.72%  
9.22%  
6.72%  
6.72%  
-10.44%  
-10.00%  
-17.10%  
-54.73%  
8.06%  
9.95%  
8.06%  
8.06%  
2.5 V to 4.5 V  
1.71 V to 5.5 V  
-14.47%  
-49.43%  
Note: 25 MHz RC OSC1 performance is not guaranteed at VDD < 2.5 V.  
Datasheet  
22-Jul-2021  
Revision 3.6  
24 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
3.6.1 OSC Power-On Delay  
Note: DLY/CNT Counter Data = 100, RC OSC Power Setting: "Auto Power-On", RC OSC Clock to Matrix Input: "Enable".  
Table 22: OSC Power-On Delay, T = 25 °C  
RC OSC0 2 MHz  
RC OSC0 25 kHz  
RC OSC1  
Power Supply  
Range  
Typical  
Maximum  
Value, ns  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, ns  
(VDD) V  
Value, ns  
372.7  
349.2  
330.3  
277.2  
262.0  
250.2  
236.6  
226.7  
219.0  
207.4  
202.8  
196.3  
190.8  
Value, µs  
0.40  
0.38  
0.35  
0.29  
0.28  
0.26  
0.25  
0.23  
0.22  
0.37  
1.63  
1.67  
1.69  
Value, ns  
71.2  
65.0  
59.7  
43.0  
39.6  
36.7  
33.2  
30.4  
28.2  
25.8  
25.0  
24.3  
23.7  
1.71  
1.80  
1.89  
2.30  
2.50  
2.70  
3.00  
3.30  
3.60  
4.20  
4.50  
5.00  
5.50  
407.3  
379.5  
358.0  
298.1  
281.9  
269.8  
256.7  
247.4  
239.9  
229.2  
224.5  
218.7  
213.3  
0.57  
0.41  
0.41  
0.31  
0.30  
0.30  
0.44  
0.47  
0.46  
0.50  
1.92  
2.05  
1.99  
87.3  
78.7  
71.3  
54.0  
48.1  
43.5  
39.8  
36.8  
34.3  
30.6  
29.2  
27.5  
26.8  
Table 23: OSC Power-On Delay, T = 25 °C, Fast Start-Up Time Mode  
RC OSC0 2 MHz  
RC OSC1 25 kHz  
Power Supply  
Range  
Typical  
Value, ns  
Maximum  
Value, ns  
Typical  
Maximum  
(VDD) V  
Value, µs  
Value, µs  
1.71  
1.80  
1.89  
2.30  
2.50  
2.70  
3.00  
3.30  
3.60  
4.20  
4.50  
5.00  
5.50  
327.9  
309.9  
295.5  
254.9  
243.1  
234.1  
223.7  
215.7  
209.4  
199.5  
195.5  
189.8  
184.9  
360.0  
338.3  
323.1  
278.1  
266.1  
257.1  
246.8  
239.1  
232.9  
223.4  
219.8  
214.6  
209.8  
0.68  
0.76  
0.64  
0.64  
0.61  
0.70  
0.53  
21.93  
21.88  
21.94  
21.90  
21.77  
21.74  
21.78  
21.69  
21.71  
21.75  
3.23  
16.68  
19.25  
19.22  
19.21  
19.17  
19.15  
19.12  
19.05  
Datasheet  
22-Jul-2021  
Revision 3.6  
25 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
3.7 ACMP CHARACTERISTICS  
Table 24: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V, Unless Otherwise Noted  
Parameter Description  
Note  
Conditions  
Min  
0
Typ  
--  
Max  
VDD  
1.2  
Unit  
V
Positive Input  
Negative Input  
Positive Input  
Negative Input  
Positive Input  
Negative Input  
VDD = 1.8 V ± 5%  
0
--  
V
0
--  
VDD  
1.2  
V
ACMP Input Voltage  
VACMP  
VDD = 3.3 V ± 10%  
Range  
0
--  
V
0
--  
VDD  
1.2  
V
VDD = 5.0 V ± 10%  
T = 25 °C  
0
--  
V
Low Bandwidth -  
Enable, Vhys = 0 mV,  
Gain = 1,  
-9.1  
--  
8.4  
mV  
Vref = 50 mV to  
1200 mV,  
VDD = 1.71 V to 5.5 V  
T = -40 °C to 85 °C  
T = 25 °C  
-10.9  
-7.5  
--  
--  
--  
10.9  
7.2  
mV  
mV  
mV  
ACMP Input Offset  
Voltage  
Voffset  
Low Bandwidth -  
Disable, Vhys = 0 mV,  
Gain =1,  
Vref = 50 mV to  
1200 mV,  
T = -40 °C to 85 °C  
-10.7  
10.5  
VDD = 1.71 V to 5.5 V  
BG = 550 μs,  
T = 25 °C  
VDD = 1.71 V to 5.5 V  
--  
--  
--  
--  
--  
--  
--  
--  
609.7  
675.0  
132.4  
149.4  
609.5  
674.6  
131.6  
149.2  
862.2  
1028.8  
176.2  
213.5  
862.0  
1027.5  
176.0  
213.3  
µS  
µS  
µS  
µS  
µS  
µS  
µS  
µS  
ACMP Power-On  
delay, Minimal  
required wake time for  
the "Wake and Sleep  
function",  
Regulator and Charge  
Pump set to automatic  
ON/OFF  
BG = 550 μs,  
T = -40 °C to 85 °C  
VDD = 1.71 V to 5.5 V  
BG = 100 μs,  
T = 25 °C  
DD = 2.7 V to 5.5 V  
V
BG = 100 μs,  
T = -40 °C to 85 °C  
DD = 2.7 V to 5.5 V  
V
tstart  
ACMP Start Time  
BG = 550 μs,  
T = 25 °C  
VDD = 3V to 5.5 V  
ACMP Power-On  
delay, Minimal  
required wake time for  
the "Wake and Sleep  
function",  
Regulator and Charge  
Pump always OFF  
BG = 550 μs,  
T = -40 °C to 85°C  
DD = 3 V to 5.5 V  
V
BG = 100 μs,  
T = 25 °C  
DD = 3 V to 5.5 V  
V
BG = 100 μs,  
T = -40 °C to 85°C  
VDD = 3 V to 5.5 V  
Datasheet  
22-Jul-2021  
Revision 3.6  
26 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 24: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
LB - Enabled,  
T = 25 °C  
7.32  
--  
35.5  
mV  
VHYS = 25 mV  
VIL = Vin - VHYS/2  
VIH = Vin + VHYS/2  
LB - Disabled,  
T = 25 °C  
10.0  
42.9  
--  
--  
--  
--  
--  
38.5  
57.8  
mV  
mV  
mV  
mV  
mV  
LB - Enabled,  
T = 25 °C  
VHYS = 50 mV  
VIL = Vin - VHYS  
VIH = VHYS  
LB - Disabled,  
T = 25 °C  
44.2  
54.3  
LB - Enabled,  
T = 25 °C  
192.7  
193.3  
208.7  
204.8  
V
HYS = 200 mV  
VIL = Vin - VHYS  
VIH = VHYS  
VHYS  
Built-in Hysteresis  
LB - Disabled,  
T = 25 °C  
VHYS = 25 mV  
VIL = Vin - VHYS/2  
VIH = Vin + VHYS/2  
LB - Enabled  
LB - Disabled  
LB - Enabled  
LB - Disabled  
LB - Enabled  
LB - Disabled  
0.0  
0.0  
--  
--  
--  
--  
--  
--  
58.0  
52.9  
mV  
mV  
mV  
mV  
mV  
mV  
VHYS = 50 mV  
VIL = Vin - VHYS  
VIH = VHYS  
22.5  
29.2  
157.1  
160.2  
86.9  
76.5  
VHYS = 200 mV  
VIL = Vin - VHYS  
VIH = VHYS  
251.6  
245.3  
Gain = 1x  
--  
--  
--  
--  
100.0  
1.0  
--  
--  
--  
--  
ΜΩ  
ΜΩ  
ΜΩ  
ΜΩ  
Gain = 0.5x  
Gain = 0.33x  
Gain = 0.25x  
Rsin  
Series Input Resistance  
0.8  
1.0  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 50 mV  
Low to High,  
T = (-40…+85)°C  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
35.99  
39.36  
1.85  
216.56  
208.81  
3.04  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 50 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
2.17  
4.10  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 50 mV  
Low to High,  
T = (-40…+85)°C  
25.22  
28.31  
1.55  
129.31  
145.47  
2.63  
Propagation Delay,  
Response Time  
PROP  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 50 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
1.93  
3.83  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 250 mV  
Low to High,  
T = (-40…+85)°C  
36.46  
39.79  
216.78  
216.05  
High to Low,  
T = (-40…+85)°C  
Datasheet  
22-Jul-2021  
Revision 3.6  
27 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 24: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 250 mV  
Low to High,  
T = (-40…+85)°C  
--  
2.04  
3.37  
µs  
High to Low,  
T = (-40…+85)°C  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
2.21  
25.81  
28.65  
1.74  
4.12  
132.94  
142.43  
2.93  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 250 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 250 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
1.97  
3.96  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 600 mV  
Low to High,  
T = (-40…+85)°C  
37.36  
40.67  
2.23  
222.82  
219.61  
4.02  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 600 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
2.23  
4.33  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 600 mV  
Low to High,  
T = (-40…+85)°C  
26.41  
29.32  
1.92  
135.47  
149.01  
3.53  
Propagation Delay,  
Response Time  
PROP  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 600 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
2.00  
4.25  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 850 mV  
Low to High,  
T = (-40…+85)°C  
38.36  
41.67  
2.26  
232.64  
232.78  
4.20  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 850 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
2.25  
4.60  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 850 mV  
Low to High,  
T = (-40…+85)°C  
27.08  
29.89  
1.91  
137.02  
146.92  
3.57  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 850 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
1.98  
4.34  
Datasheet  
22-Jul-2021  
Revision 3.6  
28 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 24: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 1200 mV  
Low to High,  
T = (-40…+85)°C  
--  
103.93 1853.68  
101.06 1656.70  
µs  
High to Low,  
T = (-40…+85)°C  
--  
--  
--  
--  
--  
--  
--  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 1200 mV  
Low to High,  
T = (-40…+85)°C  
68.29  
63.06  
30.62  
33.54  
5.00  
1753.33  
1568.55  
167.56  
181.40  
32.61  
High to Low,  
T = (-40…+85)°C  
Propagation Delay,  
Response Time  
PROP  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 1200 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 1200 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
5.24  
33.88  
G = 1, VDD = 1.71 V  
G = 1, VDD = 3.3 V  
--  
1
1
--  
--  
--  
G = 1, VDD = 5.5 V  
--  
1
--  
G = 0.5, VDD = 1.71 V  
G = 0.5, VDD = 3.3 V  
G = 0.5, VDD = 5.5 V  
G = 0.33, VDD = 1.71V  
G = 0.33, VDD = 3.3 V  
G = 0.33, VDD = 5.5 V  
G = 0.25, VDD = 1.71V  
G = 0.25, VDD = 3.3 V  
G = 0.25, VDD = 5.5 V  
-1.00%  
-0.96%  
-1.04%  
-1.75%  
-1.95%  
-2.03%  
-1.91%  
-1.98%  
-2.12%  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.93%  
0.82%  
0.90%  
2.10%  
1.69%  
1.77%  
2.13%  
1.80%  
1.90%  
Gain error (including  
threshold and internal  
Vref error),  
Vref = 50 mV to  
1200 mV  
G
T = -40 °C to +85 °C  
Datasheet  
22-Jul-2021  
Revision 3.6  
29 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 24: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Conditions  
T = 25 °C  
Min  
Typ  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Max  
Unit  
-0.58%  
-1.01%  
-0.59%  
-1.06%  
-0.64%  
-1.16%  
-0.57%  
-1.14%  
-0.59%  
-1.04%  
-0.67%  
-1.15%  
-0.64%  
-1.11%  
-0.63%  
-1.10%  
-0.72%  
-1.15%  
0.56%  
0.70%  
0.58%  
0.72%  
0.60%  
0.74%  
0.58%  
0.76%  
0.58%  
0.73%  
0.64%  
0.73%  
0.64%  
0.75%  
0.63%  
0.78%  
0.70%  
0.80%  
VDD = 1.8 V ± 5%  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
Internal Vref error,  
Vref = 1200 mV  
VDD = 3.3 V ± 10%  
VDD = 5.0 V ± 10%  
VDD = 1.8 V ± 5%  
VDD = 3.3 V ± 10%  
VDD = 5.0 V ± 10%  
VDD = 1.8 V ± 5%  
VDD = 3.3 V ± 10%  
VDD = 5.0 V ± 10%  
Internal Vref error,  
Vref = 1000 mV  
Vref  
Internal Vref error,  
Vref = 500 mV  
3.8 POWER SWITCH EC (EACH P-FET)  
Table 25: Power Switch EC, TA = -40 °C to +85 °C (Typ Values at TA = +25 °C), VDD = 5.5 V, Unless Otherwise Noted  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
TA = +25 °C, VGS = -5.5 V, ID = -100  
mA (Note 1)  
--  
44  
50  
TA = +25 °C, VGS = -3.3 V, ID = -100  
mA (Note 1)  
--  
--  
--  
--  
58  
110  
51  
65  
119  
58  
TA = +25 °C, VGS = -1.71 V, ID =  
-100 mA (Note 1)  
Static Drain-to-Source On-Resis-  
tance  
RDS(ON)  
mΩ  
TA = +85 °C, VGS = -5.5 V, ID = -100  
mA (Note 1)  
TA = +85 °C, VGS = -3.3 V, ID = -100  
mA (Note 1)  
69  
77  
TA = +85 °C, VGS = -1.71 V, ID =  
-100 mA (Note 1)  
--  
-0.48  
--  
129  
-0.61  
--  
138  
-0.72  
0.4  
VGS(th)  
Gate Threshold Voltage  
VDS = VGS, ID = -1 mA  
V
TA = +25 °C, VDS = -4.0 V, VGS = 0  
V (Note 2)  
TA = +25 °C, VDS = -5.5 V, VGS = 0  
V
IDSS  
Zero Gate Voltage Drain Current  
--  
--  
--  
--  
1.0  
3.4  
µA  
TA = +85 °C, VDS = -5.5 V, VGS = 0  
V
TA = +25 °C, VGS = ±5.5 V  
TA = +85 °C, VGS = ±5.5 V  
--  
--  
±5  
±100  
IGSS  
Gate-Body Leakage  
nA  
±400  
±2000  
Datasheet  
22-Jul-2021  
Revision 3.6  
30 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 25: Power Switch EC, TA = -40 °C to +85 °C (Typ Values at TA = +25 °C), VDD = 5.5 V, Unless Otherwise Noted  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
VDS = -5.5 V, VGS = -1.8 V, ID = -2  
A (Note 1)  
Gm  
Forward Transconductance  
4.5  
5.4  
--  
S
Dynamic  
RG  
Internal Gate Resistance  
Input Capacitance  
--  
--  
--  
--  
--  
--  
--  
200  
207  
122  
57  
--  
--  
Ω
Ciss  
TA = +25 °C  
VDS = -5.5 V  
VGS = 0 V  
ƒ = 1.0 MHz (Note 3)  
Coss  
Crss  
Qg  
Output Capacitance  
--  
pF  
Reverse Transfer Capacitance  
Total Gate Charge  
--  
TA = +25 °C  
1.45  
0.24  
0.24  
1.55  
--  
VDS = -5.5 V  
VGS = -5.5 V  
ID = -2 A (Note 1)  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain Charge  
nC  
Qgd  
--  
TA = +25 °C, VDS = -5.5 V, VGS = 0  
to -5.5 V, ID = -1 A, Internal Drive  
ton  
toff  
Turn-On Time  
--  
--  
63  
--  
--  
ns  
ns  
TA = +25 °C, VDS = -5.5 V, VGS = 0  
to -5.5 V, ID = -1 A, Internal Drive  
Turn-Off Delay Time  
287  
Drain-Source Body Diode Characteristics  
Maximum Continuous  
Drain-Source Diode Forward Cur-  
rent  
TA = +25 °C, single channel opera-  
tion  
IS  
--  
--  
-2  
A
V
VDSF  
Diode Forward Voltage  
VGS = 0 V, IS = 100 mA (Note 1)  
0.63  
0.75  
0.87  
Note 1 Pulse test: ƒ = 100 Hz, Duty cycle < 2%.  
Note 2 Measured to be less than 0.4 μA during production test.  
Note 3 RG influence has been excluded.  
Datasheet  
22-Jul-2021  
Revision 3.6  
31 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
4
User Programmability  
The SLG46517 is a user programmable device with one time programmable (OTP) memory elements that are able to configure  
the connection matrix and macrocells. A programming development kit allows the user the ability to create initial devices. Once  
the design is finalized, the programming code (.gpx file) is forwarded to Dialog Semiconductor to integrate into a production  
process.  
Product  
Definition  
E-mail Product Idea, Definition, Drawing or  
Customer creates their own design in  
Schematic to  
GreenPAK Designer  
CMBUGreenPAK@diasemi.com  
Dialog Semiconductor Applications  
Program Engineering Samples with  
Engineer will review design specifications  
GreenPAK Programmer  
with customer  
Samples, Design and Characterization  
Report send to customer  
Customer verifies GreenPAK in system  
design  
GreenPAK Design  
GreenPAK Design  
approved  
approved  
E-mail .gpx to  
CMBUGreenPAK@diasemi.com  
Customers verifies GreenPAK design  
GreenPAK Design  
Approved in system test  
Custom GreenPAK part enters production  
Figure 2: Steps to Create a Custom GreenPAK Device  
Datasheet  
22-Jul-2021  
Revision 3.6  
32 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
5
IO Pins  
The SLG46517 has a total of 18 multi-function IO pins which can function as either a user defined Input or Output, as well as  
serving as a special function (such as voltage reference output), or serving as a signal for programming of the on-chip Non Volatile  
Memory (NVM).  
Refer to Section 2 for normal and programming modepin definitions.  
Normal Mode pin definitions are as follows:  
VDD: VDD power supply  
IO0: general purpose input  
IO1: general purpose input or output with OE  
IO2: general purpose input or output  
IO3: general purpose input or output with OE  
IO4: general purpose input or output or analog comparator 0(+)  
IO5: general purpose input or output with OE or analog comparator 0(-)  
IO6: general purpose input or OD output I2C SCL  
IO7: general purpose input or OD output I2C SDA  
IO8: general purpose input or output with OE, or analog comparator 1(+)  
GND: ground  
IO9: general purpose input or output, or analog comparator 1(-)  
IO10: general purpose input or output with OE, or analog comparator 2(+)  
IO11: general purpose input or output with OE, or analog comparator 2(-)  
IO12: general purpose input or output, or analog comparator 3(+)  
IO13: general purpose input or output with OE  
IO14: general purpose input or output  
IO15: general purpose input or output with OE and Vref output (Vref)  
VIN0: Power Switch 0 VIN  
VOUT0: Power Switch 0 VOUT  
AGND: Power Switch Ground  
VOUT1: Power Switch 1 VOUT  
VIN1: Power Switch 1 VIN  
ON0: Power Switch 0 ON  
ON1: Power Switch 1 ON  
Programming Mode pin definitions are as follows:  
VDD: VDD power supply  
IO0: VPP programming voltage  
IO6: Programming SCL  
IO7: Programming SDA  
GND: ground  
IO13: programming mode control  
Of the 18 user defined IO pins on the SLG46517, all but one of the pins (IO0) can serve as both digital input and digital output.  
IO0 can only serve as a digital input pin.  
5.1 INPUT MODES  
Each IO pin can be configured as a digital input pin with/without buffered Schmitt Trigger, or can also be configured as a low  
voltage digital input. IOs 4, 5, 8, 9, 10, 11, and 12 can also be configured to serve as analog inputs to the on-chip comparators.  
IOs 15 and 16 can also be configured as analog reference voltage inputs.  
5.2 OUTPUT MODES  
IOs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 can all be configured as digital output pins.  
Datasheet  
22-Jul-2021  
Revision 3.6  
33 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
5.3 PULL-UP/DOWN RESISTORS  
All IO pins have the option for user selectable resistors connected to the input structure. The selectable values on these resistors  
are 10 kΩ, 100 kΩ, and 1 MΩ. In the case of IO0, the resistors are fixed to a Pull-down configuration. In the case of all other IO  
pins, the internal resistors can be configured as either Pull-up or Pull-downs.  
5.4 IO REGISTER SETTINGS  
Table 26: IO0 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO0 Pull-down  
Resistor Value  
Selection  
[1028:1029]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
IO0 Mode Control  
[1030:1031]  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
Table 27: IO1 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO1 Pull-up/down  
Resistor Selection  
[1033]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO1 Pull-up/down  
Resistor Value  
Selection  
[1035:1034]  
[1037:1036]  
[1039:1038]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
IO1 Mode Control  
(sig_IO1_oe = 0)  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
IO1 Mode Control  
(sig_IO1_oe = 1)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
Table 28: IO2 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO2 Driver Strength  
Selection  
[1041]  
0: 1x  
1: 2x  
IO2 Pull-up/down  
Resistor Selection  
[1042]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO2 Pull-up/down  
Resistor Value  
Selection  
[1044:1043]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
Datasheet  
22-Jul-2021  
Revision 3.6  
34 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 28: IO2 Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
IO2 Mode Control  
[1047:1045]  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Reserved  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Reserved  
Table 29: IO3 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO3 Pull-up/down  
Resistor Selection  
[1049]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO3 Pull-up/down  
Resistor Value  
Selection  
[1051:1050]  
[1053:1052]  
[1055:1054]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
IO3 Mode Control  
(sig_IO3_oe = 0)  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
IO3 Mode Control  
(sig_IO3_oe = 1)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
Table 30: IO4 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO4 Driver Strength  
Selection  
[1057]  
0: 1x  
1: 2x  
IO4 Pull-up/down  
Resistor Selection  
[1058]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO4 Pull-up/down  
Resistor Value  
Selection  
[1060:1059]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
IO4 Mode Control  
[1063:1061]  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Analog Input/Output  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Analog Input & Open-Drain  
Datasheet  
22-Jul-2021  
Revision 3.6  
35 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 31: IO5 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
IO5 Pull-up/down  
Resistor Selection  
[1065]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO5 Pull-up/down  
Resistor Value  
Selection  
[1067:1066]  
[1069:1068]  
[1071:1070]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
IO5 Mode Control  
(sig_IO5_oe = 0)  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Analog Input/Output  
IO5 Mode Control  
(sig_IO5_oe = 1)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
Table 32: IO6 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO6 Driver Strength  
Selection  
[1073]  
0: 1x  
1: 2x  
Select SCL& Virtual  
Input 0 or IO6  
[1074]  
0: SCL & Virtual Input 0  
1: IO6  
IO6 Pull-down  
Resistor Value  
Selection  
[1076:1075]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
IO6 Mode Control  
[1079:1077]  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Reserved  
100: Reserved  
101: Open-Drain NMOS  
110: Reserved  
111: Reserved  
Table 33: IO7 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO7 (or SDA) Driver  
Strength Selection  
[1081]  
0: 1x  
1: 2x  
SelectSDA&Virtual  
Input 1 or IO7  
[1082]  
0: SDA & Virtual Input 1  
1: IO7  
IO7 Pull-down  
Resistor Value  
Selection  
[1084:1083]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
Datasheet  
22-Jul-2021  
Revision 3.6  
36 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 33: IO7 Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
IO7 (or SDA) Mode  
Control  
[1087:1085]  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Reserved  
100: Reserved  
101: Open-Drain NMOS  
110: Reserved  
111: Reserved  
Table 34: IO8 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO8 4x Drive (4x,  
NMOS Open-Drain)  
Selection  
[1088]  
0: 4x Drive Off  
1: 4x Drive On (if [884:882] = ‘101’)  
(IO8 OE = 1 and PIN Mode is OD NMOS 1x)  
IO8 Pull-up/down  
Resistor Selection  
[1089]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO8 Pull-up/down  
Resistor Value  
Selection  
[1091:1090]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
IO8 Mode Control  
(sig_IO8_oe = 0)  
[1093:1092]  
[1095:1094]  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Analog Input/Output  
IO8 Mode Control  
(sig_IO8_oe = 1)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
Table 35: IO9 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO9 4x Drive (4x,  
NMOS Open-Drain)  
Selection  
[1096]  
0: 4x Drive Off  
1: 4x Drive On (if [892:890] = ‘101’)  
(IO9 OE = 1 and PIN Mode is OD NMOS 1x)  
IO9 Driver Strength  
Selection  
[1097]  
[1098]  
0: 1x  
1: 2x  
IO9 Pull-up/down  
Resistor Selection  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO9 Pull-up/down  
Resistor Value  
Selection  
[1100:1099]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
Datasheet  
22-Jul-2021  
Revision 3.6  
37 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 35: IO9 Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
IO9 Mode Control  
[1103:1101]  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Analog Input/Output  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Analog Input & Open-Drain  
Table 36: IO10 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO10 Pull-up/down  
Resistor Selection  
[1105]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO10 Pull-up/down  
Resistor Value  
Selection  
[1107:1106]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
IO10 Mode Control  
(sig_IO10_oe = 0)  
[1109:1108]  
[1111:1110]  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Analog Input/Output  
IO10 Mode Control  
(sig_IO10_oe = 1)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
Table 37: IO11 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO11 Pull-up/down  
Resistor Selection  
[1113]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO11 Pull-up/down  
Resistor Value  
Selection  
[1115:1114]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
IO11 Mode Control  
(sig_IO11_oe = 0)  
[1117:1116]  
[1119:1118]  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Analog Input/Output  
IO11 Mode Control  
(sig_IO11_oe = 1)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
Datasheet  
22-Jul-2021  
Revision 3.6  
38 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 38: IO12 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
IO12 Driver  
Strength Selection  
[1121]  
0: 1x  
1: 2x  
IO12 Pull-up/down  
Resistor Selection  
[1122]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO12 Pull-up/down  
Resistor Value  
Selection  
[1124:1123]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
IO12 Mode Control  
[1127:1125]  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Analog Input/Output  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Analog Input & Open-Drain  
Table 39: IO13 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO13 Pull-up/down  
Resistor Selection  
[1129]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO13 Pull-up/down  
Resistor Value  
Selection  
[1131:1130]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
IO13 Mode Control  
(sig_IO13_oe = 1)  
[1135:1134]  
[1133:1132]  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO13 Mode Control  
(sig_IO13_oe = 0)  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
Table 40: IO14 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO14 Driver  
Strength Selection  
[1137]  
0: 1x  
1: 2x  
IO14 Pull-up/down  
Resistor Selection  
[1138]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO14 Pull-up/down  
Resistor Value  
Selection  
[1140:1139]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
Datasheet  
22-Jul-2021  
Revision 3.6  
39 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 40: IO14 Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
IO14 Mode Control  
[1143:1141]  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Reserved  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Reserved  
Table 41: IO15 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO15 Pull-up/down  
Resistor Selection  
[1145]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO15 Pull-up/down  
Resistor Value  
Selection  
[1147:1146]  
00: Floating  
01: 10 kΩ Resistor  
10: 100 kΩ Resistor  
11: 1 MΩ Resistor  
IO15 Mode Control  
(sig_io15_oe = 0)  
[1149:1148]  
[1151:1150]  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Analog Input/Output  
IO15 Mode Control  
(sig_io15_oe = 1)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
Datasheet  
22-Jul-2021  
Revision 3.6  
40 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
5.5 GPI STRUCTURE  
5.5.1 GPI Structure (for IO0)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1, OE=0  
01: Digital In with Schmitt Trigger, smt_en = 1, OE = 0  
10: Low Voltage Digital In mode, lv_en = 1, OE = 0  
11: Reserved  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
Note 1: OE cannot be selected by user  
Note 2: OE is Matrix output, Digital In is Matrix input  
Low Voltage  
Input  
LV_EN  
OE  
Floating  
PAD  
s0  
s1  
s2  
s3  
900 kΩ  
90 kΩ  
10 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Figure 3: IO0 GPI Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
41 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
5.6 MATRIX OE IO STRUCTURE  
5.6.1 Matrix OE IO Structure (for IOs 1, 3, 5, 10, 11, 13, 15)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
WOSMT_EN  
SMT_EN  
00: Digital In without Schmitt Trigger, wosmt_en=1  
01: Digital In with Schmitt Trigger, smt_en=1  
10: Low Voltage Digital In mode, lv_en = 1  
11: Analog IO mode  
OE  
OE  
Schmitt  
Trigger Input  
Output Mode [1:0]  
Digital IN  
00: 1x push-pull mode, pp1x_en=1  
01: 2x push-pull mode, pp2x_en=1, pp1x_en=1  
10: 1x NMOS open drain mode, od1x_en=1  
11: 2x NMOS open drain mode, od2x_en=1, od1x_en=1  
Low Voltage  
Input  
Note 1: Digital Out and OE are Matrix output, Digital In is Matrix input  
Note 2: Can be varied over PVT, for reference only  
LV_EN  
OE  
Analog IO  
(For IOs 5, 10, 11, 15 only)  
Floating  
s0  
s1  
s2  
s3  
VDD  
172 Ω  
(Note 2)  
s1  
s0  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
VDD  
[1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
PP1x_EN  
VDD  
PAD  
VDD  
Digital OUT  
OE  
Digital OUT  
OE  
PP2x_EN  
OD2x_EN  
Figure 4: Matrix OE IO Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
42 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
5.6.2 Matrix OE IO Structure (for IOs 6 and 7)  
Non-Schmitt  
Trigger Input  
IO6, IO7 Mode [2:0]  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Reserved  
100: Reserved  
101: Open Drain NMOS  
110: Reserved  
111: Reserved  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
Note: Digital Out and OE are Matrix output, Digital In is Matrix input  
Low Voltage  
Input  
LV_EN  
OE  
Digital OUT  
OE  
OD1x_EN  
Floating  
PAD  
s0  
s1  
s2  
s3  
900 kΩ  
90 kΩ  
10 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Figure 5: Matrix OE IO Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
43 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
5.6.3 Matrix OE 4x Drive Structure (for IO8)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en=1  
01: Digital In with Schmitt Trigger, smt_en=1  
10: Low Voltage Digital In mode, lv_en = 1  
11: analog IO mode  
Output Mode [1:0]  
00: 1x push-pull mode, pp1x_en=1  
01: 2x push-pull mode, pp2x_en=1, pp1x_en=1  
10: 1x NMOS open drain mode, od1x_en=1, odn_en=1  
11: 2x NMOS open drain mode, od2x_en=1, od1x_en=1, odn_en=1  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
Low Voltage  
Input  
Note 1: Digital Out and OE are Matrix output, Digital In is Matrix input  
Note 2: Can be varied over PVT, for reference only  
LV_EN  
OE  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
172 Ω  
(Note 2)  
s1  
s0  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
VDD  
[1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
4x_EN  
PP1x_EN  
ODn_EN  
VDD  
Digital OUT  
OE  
OD2x_EN  
4x_EN  
PAD  
VDD  
ODn_EN  
2x  
2x  
Digital OUT  
OE  
Digital OUT  
OE  
4x_EN  
ODn_EN  
PP2x_EN  
Digital OUT  
OE  
4x_EN  
ODn_EN  
Figure 6: Matrix OE IO 4X Drive Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
44 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
5.7 IO STRUCTURE  
5.7.1 IO Structure (for IOs 2, 4, 12, 14)  
Non-Schmitt  
Trigger Input  
Mode [2:0]  
000: Digital In without Schmitt Trigger, wosmt_en=1, OE = 0  
001: Digital In with Schmitt Trigger, smt_en=1, OE = 0  
010: Low Voltage Digital In mode, lv_en = 1, OE = 0  
011: analog IO mode  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
100: push-pull mode, pp_en=1, OE = 1  
101: NMOS open drain mode, odn_en=1, OE = 1  
110: PMOS open drain mode, odp_en=1, OE = 1  
111: analog IO and NMOS open-drain mode, odn_en=1 and AIO_en=1  
Digital IN  
Note 1: OE cannot be selected by user and is controlled by register  
Note 2: Can be varied over PVT, for reference only  
Low Voltage  
Input  
LV_EN  
OE  
Analog IO  
(For IOs 4, 12 only)  
Floating  
s0  
s1  
s2  
s3  
s1  
s0  
172 Ω  
(Note 2)  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
[1:0]  
VDD  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
ODp_EN  
Digital OUT  
OE  
Digital OUT  
OE  
ODn_EN  
2x_EN  
PP_EN  
VDD  
PAD  
VDD  
ODp_EN  
Digital OUT  
OE  
Digital OUT  
OE  
2x_EN  
2x_EN  
PP_EN  
ODn_EN  
Figure 7: IO Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
45 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
5.7.2 4x Drive Structure (for IO9)  
Non-Schmitt  
Trigger Input  
Mode [2:0]  
000: Digital In without Schmitt Trigger, wosmt_en=1, OE = 0  
001: Digital In with Schmitt Trigger, smt_en=1, OE = 0  
010: Low Voltage Digital In mode, lv_en = 1, OE = 0  
011: analog IO mode  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
100: push-pull mode, pp_en=1, OE = 1  
Digital IN  
101: NMOS open drain mode, odn_en=1, OE = 1  
110: PMOS open drain mode, odp_en=1, OE = 1  
111: analog IO and NMOS open-drain mode, odn_en=1 and AIO_en=1  
Low Voltage  
Input  
Note 1: OE cannot be selected by user  
Note 2: Digital Out and OE are Matrix output, Digital In is Matrix input  
Note 3: Can be varied over PVT, for reference only  
LV_EN  
OE  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
172 Ω  
(Note 3)  
s1  
s0  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
[1:0]  
Pull-up_EN  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
VDD  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
4x_EN  
PP1x_EN  
ODn_EN  
Digital OUT  
OE  
VDD  
OD2x_EN  
4x_EN  
ODn_EN  
PAD  
VDD  
Digital OUT  
OE  
Digital OUT  
OE  
4x_EN  
PP2x_EN  
ODn_EN  
Digital OUT  
OE  
4x_EN  
ODn_EN  
Figure 8: IO 4X Drive Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
46 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
6
Connection Matrix  
The Connection Matrix in the SLG46517 is used to create the internal routing for internal functional macrocells of the device once  
it is programmed. The registers are programmed from the one-time NVM cell during Test Mode Operation. The output of each  
functional macrocell within the SLG46517 has a specific digital bit code assigned to it that is either set to active “High” or inactive  
“Low”, based on the design that is created. Once the 2048 register bits within the SLG46517 are programmed a fully custom  
circuit will be created.  
The Connection Matrix has 64 inputs and 110 outputs. Each of the 64 inputs to the Connection Matrix is hard-wired to the digital  
output of a particular source macrocell, including IO pins, LUTs, analog comparators, other digital resources, such as VDD and  
GND. The input to a digital macrocell uses a 6-bit register to select one of these 64 input lines.  
For a complete list of the SLG46517’s register table, see Section 20.  
Matrix Input Signal  
N
Functions  
Ground  
0
1
2
3
IO0 Digital In  
IO1 Digital In  
IO2 Digital In  
Resetb_core  
VDD  
62  
63  
Matrix Inputs  
0
1
2
109  
N
Registers  
[5:0]  
[13:8]  
[21:16]  
[877:872]  
Matrix OUT: PD of  
either Temp out or  
XTAL Osc  
Matrix OUT:  
ASM-state0-EN0  
Matrix OUT:  
ASM-state0-EN1  
Matrix OUT:  
ASM-state0-EN2  
Function  
Matrix Outputs  
Figure 9: Connection Matrix  
Function  
Connection Matrix  
IO10  
IO9  
LUT  
IO9  
IO11  
IO10  
LUT  
IO11  
Figure 10: Connection Matrix Example  
Datasheet  
22-Jul-2021  
Revision 3.6  
47 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
6.1 MATRIX INPUT TABLE  
Table 42: Matrix Input Table  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GND  
IO0 Digital Input  
2
IO1 Digital Input  
3
IO2 Digital Input  
4
IO3 Digital Input  
5
IO4 Digital Input  
6
IO5 Digital Input  
7
IO8 Digital Input  
8
LUT2_0/DFF0 Output  
LUT2_1/DFF1 Output  
LUT2_2/DFF2 Output  
LUT2_3/PGen Output  
LUT3_0/DFF3 Output  
LUT3_1/DFF4 Output  
LUT3_2/DFF5 Output  
LUT3_3/DFF6 Output  
LUT3_4/DFF7 Output  
LUT3_5/CNT_DLY2(8bit) Output  
LUT3_6/CNT_DLY3(8bit) Output  
LUT3_7/CNT_DLY4(8bit) Output  
LUT3_8/CNT_DLY5(8bit) Output  
LUT3_9/CNT_DLY6(8bit) Output  
LUT4_0/CNT_DLY0(16bit) Output  
LUT4_1/CNT_DLY1(16bit) Output  
LUT3_10/Pipe Delay (1st stage) Output  
Pipe Delay Output0  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
Pipe Delay Output1  
Internal OSC Pre-Divided by 1/2/4/8 Output and Post-Divided by 1/  
2/3/4/8/12/24/64 Output (25kHz/2MHz)  
27  
28  
Internal OSC Pre-Divided by 1/2/4/8 Output and Post-Divided by 1/  
2/3/4/8/12/24/64 Output (25kHz/2MHz)  
0
1
1
1
0
0
29  
30  
31  
32  
33  
34  
35  
36  
Internal OSC Pre-Divided by 1/2/4/8 Output (25MHz)  
Filter0/Edge Detect0 Output  
Filter1/Edge Detect1 Output  
IO6 Digital or I2C_virtual_0 Input  
IO7 Digital or I2C_virtual_1 Input  
I2C_virtual_2 Input  
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
0
0
1
1
1
0
0
0
0
1
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
I2C_virtual_3 Input  
I2C_virtual_4 Input  
Datasheet  
22-Jul-2021  
Revision 3.6  
48 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 42: Matrix Input Table(Continued)  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
ASM-stateX-dout0  
ASM-stateX-dout1  
ASM-stateX-dout2  
ASM-stateX-dout3  
ASM-stateX-dout4  
ASM-stateX-dout5  
ASM-stateX-dout6  
ASM-stateX-dout7  
IO9 Digital Input  
IO10 Digital Input  
IO11 Digital Input  
IO12 Digital Input  
IO13 Digital Input  
IO14 Digital Input  
IO15 Digital Input  
Power Switch ON0, Digital Input  
Power Switch ON1, Digital Input  
ACMP_0 Output  
ACMP_1 Output  
ACMP_2 Output  
ACMP_3 Output  
Programmable Delay with Edge Detector Output  
nRST_core (POR) as matrix input  
VDD  
Datasheet  
22-Jul-2021  
Revision 3.6  
49 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
6.2 MATRIX OUTPUT TABLE  
Table 43: Matrix Output Table  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
7:0  
Matrix OUT: ASM-state0-EN0  
0
15:8  
Matrix OUT: ASM-state0-EN1  
1
23:16  
Matrix OUT: ASM-state0-EN2  
2
31:24  
Matrix OUT: ASM-state1-EN0  
3
39:32  
Matrix OUT: ASM-state1-EN1  
4
47:40  
Matrix OUT: ASM-state1-EN2  
5
55:48  
Matrix OUT: ASM-state2-EN0  
6
63:56  
Matrix OUT: ASM-state2-EN1  
7
71:64  
Matrix OUT: ASM-state2-EN2  
8
79:72  
Matrix OUT: ASM-state3-EN0  
9
87:80  
Matrix OUT: ASM-state3-EN1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
95:88  
Matrix OUT: ASM-state3-EN2  
103:96  
111:104  
119:112  
127:120  
135:128  
143:136  
151:144  
159:152  
167:160  
175:168  
183:176  
191:184  
199:192  
207:200  
215:208  
223:216  
231:224  
239:232  
247:240  
255:248  
263:256  
271:264  
279:272  
287:280  
295:288  
303:296  
Matrix OUT: ASM-state4-EN0  
Matrix OUT: ASM-state4-EN1  
Matrix OUT: ASM-state4-EN2  
Matrix OUT: ASM-state5-EN0  
Matrix OUT: ASM-state5-EN1  
Matrix OUT: ASM-state5-EN2  
Matrix OUT: ASM-state6-EN0  
Matrix OUT: ASM-state6-EN1  
Matrix OUT: ASM-state6-EN2  
Matrix OUT: ASM-state7-EN0  
Matrix OUT: ASM-state7-EN1  
Matrix OUT: ASM-state7-EN2  
Matrix OUT: ASM-state-nRST  
Matrix OUT: IO1 Digital Output Source  
Matrix OUT: IO1 Output Enable  
Matrix OUT: IO2 Digital Output Source  
Matrix OUT: IO3 Digital Output Source  
Matrix OUT: IO3 Output Enable  
Matrix OUT: IO4 Digital Output Source  
Matrix OUT: IO5 Digital Output Source  
Matrix OUT: IO5 Output Enable  
Matrix OUT: IO6 Digital Output Source (SCL with VI/Input & NMOS Open-Drain)  
Matrix OUT: IO7 Digital Output Source (SDA with VI/Input & NMOS Open-Drain)  
Matrix OUT: IO8 Digital Output Source  
Matrix OUT: IO8 Output Enable  
Matrix OUT: IO9 Digital Output Source  
Datasheet  
22-Jul-2021  
Revision 3.6  
50 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 43: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
311:304  
319:312  
327:320  
335:328  
343:336  
351:344  
359:352  
367:360  
375:368  
383:376  
391:384  
399:392  
407:400  
415:408  
423:416  
431:424  
439:432  
447:440  
455:448  
463:456  
471:464  
479:472  
487:480  
495:488  
503:496  
511:504  
519:512  
527:520  
535:528  
543:536  
551:544  
559:552  
567:560  
575:568  
583:576  
591:584  
599:592  
607:600  
615:608  
Matrix OUT: IO10 Digital Output Source  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
Matrix OUT: IO10 Output Enable  
Matrix OUT: IO11 Digital Output Source  
Matrix OUT: IO11 Output Enable  
Matrix OUT: IO12 Digital Output Source  
Matrix OUT: IO13 Digital Output Source  
Matrix OUT: IO13 Output Enable  
Matrix OUT: IO14 Digital Output Source  
Matrix OUT: IO15 Digital Output Source  
Matrix OUT: IO15 Output Enable  
Matrix OUT: Power Switch ON0, Digital Output Source  
Matrix OUT: Reserved  
Matrix OUT: Power Switch ON1, Digital Output Source  
Matrix OUT: ACMP0 PWR UP  
Matrix OUT: ACMP1 PWR UP  
Matrix OUT: ACMP2 PWR UP  
Matrix OUT: ACMP3 PWR UP  
Matrix OUT: Input of Filter_0 with fixed time edge detector  
Matrix OUT: Input of Filter_1 with fixed time edge detector  
Matrix OUT: Input of Programmable Delay & Edge Detector  
Matrix OUT: OSC 25kHz/2MHz PDB (Power-Down)  
Matrix OUT: OSC 25MHz PDB (Power-Down)  
Matrix OUT: IN0 of LUT2_0 or Clock Input of DFF0  
Matrix OUT: IN1 of LUT2_0 or Data Input of DFF0  
Matrix OUT: IN0 of LUT2_1 or Clock Input of DFF1  
Matrix OUT: IN1 of LUT2_1 or Data Input of DFF1  
Matrix OUT: IN0 of LUT2_2 or Clock Input of DFF2  
Matrix OUT: IN1 of LUT2_2 or Data Input of DFF2  
Matrix OUT: IN0 of LUT2_3 or Clock Input of PGen  
Matrix OUT: IN1 of LUT2_3 or nRST of PGen  
Matrix OUT: IN0 of LUT3_0 or Clock Input of DFF3  
Matrix OUT: IN1 of LUT3_0 or Data Input of DFF3  
Matrix OUT: IN2 of LUT3_0 or nRST (nSET) of DFF3  
Matrix OUT: IN0 of LUT3_1 or Clock Input of DFF4  
Matrix OUT: IN1 of LUT3_1 or Data Input of DFF4  
Matrix OUT: IN2 of LUT3_1 or nRST (nSET) of DFF4  
Matrix OUT: IN0 of LUT3_2 or Clock Input of DFF5  
Matrix OUT: IN1 of LUT3_2 or Data Input of DFF5  
Matrix OUT: IN2 of LUT3_2 or nRST (nSET) of DFF5  
Datasheet  
22-Jul-2021  
Revision 3.6  
51 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 43: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
623:616  
631:624  
639:632  
647:640  
655:648  
663:656  
671:664  
679:672  
687:680  
695:688  
703:696  
711:704  
719:712  
727:720  
735:728  
743:736  
751:744  
759:752  
767:760  
775:768  
783:776  
791:784  
799:792  
807:800  
815:808  
823:816  
831:824  
839:832  
847:840  
855:848  
863:856  
871:864  
Matrix OUT: IN0 of LUT3_3 or Clock Input of DFF6  
77  
78  
Matrix OUT: IN1 of LUT3_3 or Data Input of DFF6  
Matrix OUT: IN2 of LUT3_3 or nRST (nSET) of DFF6  
Matrix OUT: IN0 of LUT3_4 or Clock Input of DFF7  
79  
80  
Matrix OUT: IN1 of LUT3_4 or Data Input of DFF7  
81  
Matrix OUT: IN2 of LUT3_4 or nRST (nSET) of DFF7  
Matrix OUT: IN0 of LUT3_5 or Delay2 Input (or Counter2 RST Input)  
Matrix OUT: IN1 of LUT3_5 or External Clock Input of Delay2 (or Counter2)  
Matrix OUT: IN2 of LUT3_5  
82  
83  
84  
85  
Matrix OUT: IN0 of LUT3_6 or Delay3 Input (or Counter3 RST Input)  
Matrix OUT: IN1 of LUT3_6 or External Clock Input of Delay3 (or Counter3)  
Matrix OUT: IN2 of LUT3_6  
86  
87  
88  
Matrix OUT: IN0 of LUT3_7 or Delay4 Input (or Counter4 RST Input)  
Matrix OUT: IN1 of LUT3_7 or External Clock Input of Delay4 (or Counter4)  
Matrix OUT: IN2 of LUT3_7  
89  
90  
91  
Matrix OUT: IN0 of LUT3_8 or Delay5 Input (or Counter5 RST Input)  
Matrix OUT: IN1 of LUT3_8 or External Clock Input of Delay5 (or Counter5)  
Matrix OUT: IN2 of LUT3_8  
92  
93  
94  
Matrix OUT: IN0 of LUT3_9 or Delay6 Input (or Counter6 RST Input)  
Matrix OUT: IN1 of LUT3_9 or External Clock Input of Delay6 (or Counter6)  
Matrix OUT: IN2 of LUT3_9  
95  
96  
97  
Matrix OUT: IN0 of LUT3_10 or Input of Pipe Delay  
98  
Matrix OUT: IN1 of LUT3_10 or nRST of Pipe Delay  
Matrix OUT: IN2 of LUT3_10 or Clock of Pipe Delay  
Matrix OUT: IN0 of LUT4_0 or Delay0 Input (or Counter0 RST/SET Input)  
Matrix OUT: IN1 of LUT4_0 or External Clock Input of Delay0 (or Counter0)  
Matrix OUT: IN2 of LUT4_0 or UP Input of FSM0  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
Matrix OUT: IN3 of LUT4_0 or KEEP Input of FSM0  
Matrix OUT: IN0 of LUT4_1 or Delay1 Input (or Counter1 RST/SET Input)  
Matrix OUT: IN1 of LUT4_1 or External Clock Input of Delay1 (or Counter1)  
Matrix OUT: IN2 of LUT4_1 or UP Input of FSM1  
Matrix OUT: IN3 of LUT4_1 or KEEP Input of FSM1  
Matrix OUT: crystal oscillator by  
register [1268]  
879:872  
109  
Note 1 For each Address, the two most significant bits are unused.  
Datasheet  
22-Jul-2021  
Revision 3.6  
52 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
6.3 CONNECTION MATRIX VIRTUAL INPUTS  
As mentioned previously, the Connection Matrix inputs come from the outputs of various digital macrocells on the device. Eight  
of the Connection Matrix inputs have the special characteristic that the state of these signal lines comes from a corresponding  
data bit written as a register value via I2C. This gives the user the ability to write data via the serial channel, and have this  
information translated into signals that can be driven into the Connection Matrix and from the Connection Matrix to the digital  
inputs of other macrocells on the device. The I2C address for reading and writing these register values is at byte 0244.  
Six of the eight Connection Matrix Virtual Inputs are dedicated to this virtual input function. An I2C write command to these register  
bits will set the signal values going into the Connection Matrix to the desired state. A read command to these register bits will read  
either the original data values coming from the NVM memory bits (that were loaded during the initial device startup), or the values  
from a previous write command (if that has happened).  
Two of the eight Connection Matrix Virtual Inputs are shared with Pin digital inputs,(IO6 Digital or I2C_virtual_0 Input) and (IO7  
Digital or I2C_virtual_1 Input). If the virtual input mode is selected, an I2C write command to these register bits will set the signal  
values going into the Connection Matrix to the desired state. Two register bits select whether the Connection Matrix input comes  
from the pin input or from the virtual register:  
register [1074] Select SCL & Virtual Input 0 or IO6  
register [1082] Select SDA & Virtual Input 1 or IO7  
See Table 44 for Connection Matrix Virtual Inputs.  
Table 44: Connection Matrix Virtual Inputs  
Matrix Input  
Register Bit  
Addresses (d)  
Matrix Input Signal Function  
Number  
32  
I2C_virtual_0 Input  
I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
[1952]  
[1953]  
[1954]  
[1955]  
[1956]  
[1957]  
[1958]  
[1959]  
33  
34  
35  
36  
37  
38  
39  
6.4 CONNECTION MATRIX VIRTUAL OUTPUTS  
The digital outputs of the various macrocells are routed to the Connection Matrix to enable interconnections to the inputs of other  
macrocells in the device. At the same time, it is possible to read the state of each of the macrocell outputs as a register value via  
I2C. This option, called Connection Matrix Virtual Outputs, allows the user to remotely read the values of each macrocell output.  
The I2C addresses for reading these register values are at bytes 0240 to 0247. Write commands to these same register values  
will be ignored (with the exception of the Virtual Input register bits at byte 0244).  
Datasheet  
22-Jul-2021  
Revision 3.6  
53 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
7
Combination Function Macrocells  
The SLG46517 has seventeen combination function macrocells that can serve more than one logic or timing function. In each  
case, they can serve as a Look Up Table (LUT), or as another logic or timing function. See the list below for the functions that  
can be implemented in these macrocells.  
Three macrocells that can serve as either 2-bit LUTs or as D Flip-Flops  
Five macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input  
One macrocell that can serve as either 3-bit LUT or as Pipe Delay  
One macrocell that can serve as either 2-bit LUT or as Programmable Pattern Generator (PGen)  
Five macrocells that can serve as either 3-bit LUTs or as 8-Bit Counter/Delays  
Two macrocells that can serve as either 4-bit LUTs or as 16-Bit Counter/Delays  
Inputs/Outputs for the 17 combination function macrocells are configured from the connection matrix with specific logic functions  
being defined by the state of NVM bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
7.1 2-BIT LUT OR D FLIP-FLOP MACROCELLS  
There are three macrocells that can serve as either 2-bit LUTs or as D Flip-Flops. When used to implement LUT functions, the  
2-bit LUTs each take in two input signals from the connection matrix and produce a single output, which goes back into the  
connection matrix. When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data  
(D) and clock (CLK) inputs for the Flip-Flop, with the output going back to the connection matrix.  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change  
LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK  
is High).  
register [1207] DFF or Latch Select  
IN1  
register [1206] Output Select (Q or nQ)  
S0  
From Connection Matrix Output [61]  
register [1205] DFF Initial Polarity Select  
OUT  
2-bit LUT0  
0: 2-bit LUT0 IN1  
1: DFF0 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
Input [8]  
S0  
S1  
4-bits NVM  
registers [1207:1204]  
0: 2-bit LUT0 OUT  
1: DFF0 OUT  
DFF  
Registers  
D
S0  
S1  
From Connection Matrix Output [60]  
Q/nQ  
DFF0  
0: 2-bit LUT0 IN0  
1: DFF0 CLK  
CLK  
1-bit NVM  
register [1191]  
Figure 11: 2-bit LUT0 or DFF0  
Datasheet  
22-Jul-2021  
Revision 3.6  
54 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
register [1203] DFF or Latch Select  
register [1202] Output Select (Q or nQ)  
register [1201] DFF Initial Polarity Select  
IN1  
S0  
From Connection Matrix Output [63]  
OUT  
2-bit LUT1  
0: 2-bit LUT1 IN1  
1: DFF1 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [9]  
4-bits NVM  
registers [1203:1200]  
0: 2-bit LUT1 OUT  
1: DFF1 OUT  
S1  
DFF  
Registers  
D
S0  
S1  
From Connection Matrix Output [62]  
Q/nQ  
DFF1  
0: 2-bit LUT1 IN0  
1: DFF1 CLK  
CLK  
1-bit NVM  
register [1190]  
Figure 12: 2-bit LUT1 or DFF1  
register [1215] DFF or Latch Select  
register [1214] Output Select (Q or nQ)  
register [1213] DFF Initial Polarity Select  
IN1  
S0  
S1  
From Connection Matrix Output [65]  
OUT  
2-bit LUT2  
0: 2-bit LUT2 IN1  
1: DFF2 Data  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [10]  
4-bits NVM  
registers [1215:1212]  
0: 2-bit LUT2 OUT  
1: DFF2 OUT  
S1  
DFF  
Registers  
D
S0  
S1  
From Connection Matrix Output [64]  
Q/nQ  
DFF2  
0: 2-bit LUT2 IN0  
1: DFF2 CLK  
CLK  
1-bit NVM  
register [1189]  
Figure 13: 2-bit LUT2 or DFF2  
Datasheet  
22-Jul-2021  
Revision 3.6  
55 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
7.1.1 2-Bit LUT or D Flip-Flop Macrocell Used as 2-Bit LUTs  
Table 45: 2-bit LUT0 Truth Table  
Table 47: 2-bit LUT2 Truth Table  
IN1  
0
IN0  
0
OUT  
IN1  
0
IN0  
0
OUT  
register [1204]  
register [1205]  
register [1206]  
register [1207]  
LSB  
register [1212]  
register [1213]  
register [1214]  
register [1215]  
LSB  
0
1
0
1
1
0
1
0
1
1
MSB  
1
1
MSB  
Table 46: 2-bit LUT1 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1200]  
register [1201]  
register [1202]  
register [1203]  
LSB  
0
1
1
0
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT0 is defined by registers [1207:1204]  
2-Bit LUT1 is defined by registers [1203:1200]  
2-Bit LUT2 is defined by registers [1215:1212]  
Table 48 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 48: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
Datasheet  
22-Jul-2021  
Revision 3.6  
56 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
7.1.2 2-Bit LUT or D Flip-Flop Macrocells Used as D Flip-Flop Register Settings  
Table 49: DFF0 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
LUT2_0 or DFF0  
Select  
[1191]  
0: LUT2_0  
1: DFF0  
DFF0 Initial Polarity  
Select  
[1205]  
[1206]  
[1207]  
0: Low  
1: High  
DFF0 Output Select  
0: Q output  
1: nQ output  
DFF0 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Table 50: DFF1 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT2_1 or DFF1  
Select  
[1190]  
0: LUT2_1  
1: DFF1  
DFF1 Initial Polarity  
Select  
[1201]  
[1202]  
[1203]  
0: Low  
1: High  
DFF1 Output Select  
0: Q output  
1: nQ output  
Select or LATCH  
select  
0: DFF function  
1: LATCH function  
Table 51: DFF2 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT2_2 or DFF2  
Select  
[1189]  
0: LUT2_2  
1: DFF2  
DFF2 Initial Polarity  
Select  
[1213]  
[1214]  
[1215]  
0: Low  
1: High  
DFF2 Output Select  
0: Q output  
1: nQ output  
DFF2 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Datasheet  
22-Jul-2021  
Revision 3.6  
57 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
7.1.3 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
Q
Initial Polarity: Low  
Q
Figure 14: DFF Polarity Operations  
7.2 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELLS  
There are five macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset inputs. When used to implement  
LUT functions, the 3-bit LUTs each take in three input signals from the connection matrix and produce a single output, which goes  
back into the connection matrix. When used to implement D Flip-Flop function, the three input signals from the connection matrix  
go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the  
connection matrix.  
DFF3 has a user selectable option to allow the macrocell output to either come from the Q/nQ output of one D Flip-Flop, or two  
D Flip-Flops in series, with the first D Flip-Flop triggering on the rising clock edge, and the second D Flip-Flop triggering on the  
falling clock edge.  
Datasheet  
22-Jul-2021  
Revision 3.6  
58 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
register [1223] DFF or Latch Select  
register [1222] Output Select (Q or nQ)  
register [1221] DFF nRST or nSET Select  
register [1220] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [70]  
S0  
IN1  
OUT  
3-bit LUT0  
0: 3-bit LUT0 IN2  
1: DFF3 nRST/nSET  
S1  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [69]  
To Connection Matrix  
S0  
S1  
Input [12]  
S0  
8-bits NVM  
0: 3-bit LUT0 IN1  
1: DFF3 D  
registers [1223:1216]  
register [1471]  
0: 3-bit LUT0 OUT  
1: DFF3 OUT  
S1  
DFF3  
nRST/nSET  
From Connection  
S0  
S1  
D
Q/nQ  
Matrix Output [68]  
Q
D
D
Q
0: 3-bit LUT0 IN0  
1: DFF3 CLK  
CLK  
register [1222]  
register [1471] Selects output from one or two  
1-bit NVM  
register [1187]  
Figure 15: 3-bit LUT0 or DFF3 with RST/SET  
register [1231] DFF or Latch Select  
IN2  
From Connection  
Matrix Output [73]  
S0  
S1  
register [1230] Output Select (Q or nQ)  
register [1229] DFF nRST or nSET Select  
register [1228] DFF Initial Polarity Select  
IN1  
IN0  
OUT  
3-bit LUT1  
0: 3-bit LUT1 IN2  
1: DFF4 nRST/nSET  
LUT Truth  
Table  
From Connection  
To Connection Matrix  
Matrix Output [72]  
S0  
S1  
Input [13]  
S0  
8-bits NVM  
registers [1231:1224]  
0: 3-bit LUT1 IN1  
1: DFF4 D  
0: 3-bit LUT1 OUT  
S1  
1: DFF4 OUT  
DFF  
Registers  
D
From Connection  
Matrix Output [71]  
S0  
S1  
nRST/nSET  
CLK  
DFF4  
Q/nQ  
0: 3-bit LUT1 IN0  
1: DFF4 CLK  
1-bit NVM  
register [1186]  
Figure 16: 3-bit LUT1 or DFF4 with RST/SET  
Datasheet  
22-Jul-2021  
Revision 3.6  
59 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
register [1239] DFF or Latch Select  
IN2  
From Connection  
S0  
register [1238] Output Select (Q or nQ)  
register [1237] DFF nRST or nSET Select  
register [1236] DFF Initial Polarity Select  
Matrix Output [76]  
IN1  
OUT  
3-bit LUT2  
0: 3-bit LUT2 IN2  
1: DFF5 nRST/nSET  
S1  
IN0  
LUT Truth  
Table  
From Connection  
To Connection Matrix  
S0  
S1  
Matrix Output [75]  
S0  
S1  
Input [14]  
8-bits NVM  
registers [1239:1232]  
0: 3-bit LUT2 IN1  
1: DFF5 D  
0: 3-bit LUT2 OUT  
1: DFF5 OUT  
DFF  
Registers  
D
From Connection  
Matrix Output [74]  
S0  
S1  
nRST/nSET  
CLK  
DFF5  
Q/nQ  
0: 3-bit LUT2 IN0  
1: DFF5 CLK  
1-bit NVM  
register [1185]  
Figure 17: 3-bit LUT2 or DFF5 with RST/SET  
register [1247] DFF or Latch Select  
IN2  
From Connection  
Matrix Output [79]  
S0  
S1  
register [1246] Output Select (Q or nQ)  
register [1245] DFF nRST or nSET Select  
register [1244] DFF Initial Polarity Select  
IN1  
IN0  
OUT  
3-bit LUT3  
0: 3-bit LUT3 IN2  
1: DFF6 nRST/nSET  
LUT Truth  
Table  
From Connection  
To Connection Matrix  
Matrix Output [78]  
S0  
S1  
Input [15]  
S0  
8-bits NVM  
registers [1247:1240]  
0: 3-bit LUT3 IN1  
1: DFF6 D  
0: 3-bit LUT3 OUT  
S1  
1: DFF6 OUT  
DFF  
Registers  
D
From Connection  
Matrix Output [77]  
S0  
S1  
nRST/nSET  
CLK  
DFF6  
Q/nQ  
0: 3-bit LUT3 IN0  
1: DFF6 CLK  
1-bit NVM  
register [1184]  
Figure 18: 3-bit LUT3 or DFF6 with RST/SET  
Datasheet  
22-Jul-2021  
Revision 3.6  
60 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
register [1255] DFF or Latch Select  
IN2  
From Connection  
S0  
register [1254] Output Select (Q or nQ)  
register [1253] DFF nRST or nSET Select  
register [1252] DFF Initial Polarity Select  
Matrix Output [82]  
IN1  
OUT  
3-bit LUT4  
0: 3-bit LUT4 IN2  
1: DFF7 nRST/nSET  
S1  
IN0  
LUT Truth  
Table  
From Connection  
To Connection Matrix  
S0  
S1  
Matrix Output [81]  
S0  
S1  
Input [16]  
8-bits NVM  
registers [1255:1248]  
0: 3-bit LUT4 IN1  
1: DFF7 D  
0: 3-bit LUT4 OUT  
1: DFF7 OUT  
DFF  
Registers  
D
From Connection  
Matrix Output [80]  
S0  
S1  
nRST/nSET  
CLK  
DFF7  
Q/nQ  
0: 3-bit LUT4 IN0  
1: DFF7 CLK  
1-bit NVM  
register [1199]  
Figure 19: 3-bit LUT4 or DFF7 with RST/SET  
Datasheet  
22-Jul-2021  
Revision 3.6  
61 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
7.2.1 3-Bit LUT or D Flip-Flop Macrocells Used as 3-Bit LUTs  
Table 52: 3-bit LUT0 Truth Table  
Table 55: 3-bit LUT3 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1216]  
register [1217]  
register [1218]  
register [1219]  
register [1220]  
register [1221]  
register [1222]  
register [1223]  
LSB  
register [1240]  
register [1241]  
register [1242]  
register [1243]  
register [1244]  
register [1245]  
register [1246]  
register [1247]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 53: 3-bit LUT1 Truth Table  
Table 56: 3-bit LUT4 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1224]  
register [1225]  
register [1226]  
register [1227]  
register [1228]  
register [1229]  
register [1230]  
register [1231]  
register [1248]  
register [1249]  
register [1250]  
register [1251]  
register [1252]  
register [1253]  
register [1254]  
register [1255]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
Table 54: 3-bit LUT2 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1232]  
register [1233]  
register [1234]  
register [1235]  
register [1236]  
register [1237]  
register [1238]  
register [1239]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT0 is defined by registers [1223:1216]  
3-Bit LUT1 is defined by registers [1231:1224]  
3-Bit LUT2 is defined by registers [1239:1232]  
3-Bit LUT3 is defined by registers [1247:1240]  
3-Bit LUT5 is defined by registers [1255:1248]  
Datasheet  
22-Jul-2021  
Revision 3.6  
62 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 57 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the six 3-bit LUT logic cells.  
Table 57: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-3  
OR-3  
NOR-3  
XOR-3  
XNOR-3  
7.2.2 3-Bit LUT or D Flip-Flop Macrocells Used as D Flip-Flop Register Settings  
Table 58: DFF3 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
LUT3_0 or DFF3  
Select  
[1187]  
0: LUT3_0  
1: DFF3  
DFF3 Initial Polarity  
Select  
[1220]  
[1221]  
[1222]  
[1223]  
0: Low  
1: High  
DFF3 nRST/nSET  
Select  
1: nSET from matrix out  
0: nRST from matrix out  
DFF3 Output Select  
0: Q output  
1: nQ output  
DFF3 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Table 59: DFF4 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_1 or DFF4  
Select  
[1186]  
0: LUT3_1  
1: DFF4  
DFF4 Initial Polarity  
Select  
[1128]  
[1129]  
[1130]  
[1131]  
0: Low  
1: High  
DFF4 nRST/nSET  
Select  
1: nSET from matrix out  
0: nRST from matrix out  
DFF4 Output Select  
0: Q output  
1: nQ output  
DFF4 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Table 60: DFF5 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_2 or DFF5  
Select  
[1185]  
0: LUT3_2  
1: DFF5  
DFF5 Initial Polarity  
Select  
[1236]  
0: Low  
1: High  
Datasheet  
22-Jul-2021  
Revision 3.6  
63 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 60: DFF5 Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
DFF5 nRST/nSET  
Select  
[1237]  
1: nSET from matrix out  
0: nRST from matrix out  
DFF5 Output Select  
[1238]  
[1239]  
0: Q output  
1: nQ output  
DFF5 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Table 61: DFF6 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_3 or DFF6  
Select  
[1184]  
0: LUT3_3  
1: DFF6  
DFF6 Initial Polarity  
Select  
[1244]  
[1245]  
[1246]  
[1247]  
0: Low  
1: High  
DFF6 nRST/nSET  
Select  
1: nSET from matrix out  
0: nRST from matrix out  
DFF6 Output Select  
0: Q output  
1: nQ output  
DFF6 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Table 62: DFF7 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_4 or DFF7  
Select  
[1199]  
0: LUT3_4  
1: DFF7  
DFF7 Initial Polarity  
Select  
[1252]  
[1253]  
[1254]  
[1255]  
0: Low  
1: High  
DFF7 nRST/nSET  
Select  
1: nSET from matrix out  
0: nRST from matrix out  
DFF7 Output Select  
0: Q output  
1: nQ output  
DFF7 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Datasheet  
22-Jul-2021  
Revision 3.6  
64 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
7.2.3 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Initial Polarity: Low  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Figure 20: DFF Polarity Operations with nReset  
Datasheet  
22-Jul-2021  
Revision 3.6  
65 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Initial Polarity: Low  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Figure 21: DFF Polarity Operations with nSet  
7.3 3-BIT LUT OR PIPE DELAY MACROCELL  
There is one macrocell that can serve as either a 3-bit LUT or as a Pipe Delay.  
When used to implement LUT functions, the 3-bit LUT take in three input signals from the connection matrix and produces a single  
output, which goes back into the connection matrix.  
When used as a Pipe Delay, there are three inputs signals from the matrix: Input (IN), Clock (CLK), and Reset (nRST). The Pipe  
Delay cell is built from 16 D Flip-Flop logic cells that provide the three delay options, two of which are user selectable. The DFF  
cells are tied in series where the output (Q) of each delay cell goes to the next DFF cell. The first delay option (OUT2) is fixed at  
the output of the first Flip-Flop stage. The other two outputs (OUT0 and OUT1) provide user selectable options for 1 to 16 stages  
of delay. There are delay output points for each set of the OUT0 and OUT1 outputs to a 16-input mux that is controlled by registers  
[1259:1256] for OUT0 and registers [1263:1260] for OUT1. The 16-input mux is used to select the amount of delay.  
Datasheet  
22-Jul-2021  
Revision 3.6  
66 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
The overall time of the delay is based on the clock used in the SLG46517 design. Each DFF cell has a time delay of the inverse  
of the clock time (either external clock or the RC Oscillator within the SLG46517). The sum of the number of DFF cells used will  
be the total time delay of the Pipe Delay logic cell.  
Note: CLK is rising edge triggered.  
registers [1263:1256]  
LUT Truth  
Table  
From Connection  
Matrix Output [98]  
IN0  
IN1  
From Connection  
Matrix Output [99]  
OUT  
3-bit LUT10  
From Connection  
Matrix Output [100]  
IN2  
registers [1263:1260]  
register [1271]  
S0  
S1  
OUT1  
To Connection  
Matrix Input[26]  
From Connection  
Matrix Output [98]  
IN  
nRST  
From Connection  
Matrix Output [99]  
16 Flip-Flops  
CLK  
From Connection  
Matrix Output [100]  
OUT0  
To Connection  
Matrix Input [25]  
S0  
S1  
1 Pipe OUT  
registers [1259:1256]  
To Connection  
Matrix Input [24]  
register [1270]  
Figure 22: 3-bit LUT10 or Pipe Delay  
Datasheet  
22-Jul-2021  
Revision 3.6  
67 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
7.3.1 3-Bit LUT or Pipe Delay Macrocells Used as 3-Bit LUTs  
Table 63: 3-bit LUT10 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1256]  
register [1257]  
register [1258]  
register [1259]  
register [1260]  
register [1261]  
register [1262]  
register [1263]  
LSB  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT10 is defined by registers [1263:1256]  
7.3.2 3-Bit LUT or Pipe Delay Macrocells Used as Pipe Delay Register Settings  
Table 64: Pipe Delay Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
LUT3_10 or Pipe  
Delay Output Select  
[1270]  
0: LUT3_10  
1: 1 Pipe Delay Output  
OUT0 select  
OUT1 select  
[1259:1256]  
[1263:1260]  
[1271]  
Pipe delay OUT1  
Polarity Select Bit  
0: Non-inverted  
1: Inverted  
7.4 3-BIT LUT OR 8-BIT COUNTER/DELAY MACROCELLS  
There are five macrocells that can serve as either 3-bit LUTs or as Counter/Delays. When used to implement LUT function, the  
3-bit LUT takes in three input signals from the connection matrix and produces a single output, which goes back into the  
connection matrix. When used to implement 8-Bit Counter/Delay function, two of the three input signals from the connection matrix  
go to the external clock (EXT_CLK) and reset (DLY_IN/CNT Reset) for the counter/delay, with the output going back to the  
connection matrix.  
These macrocells can also operate in a one-shot mode, which will generate an output pulse of user-defined width.  
These macrocells can also operate in a frequency detection or edge detection mode.  
For timing diagrams refer to Section 7.6  
Note Counters initialize with counter data after POR.  
Two of the five macrocells can have their active count value read via I2C (CNT4 and CNT6). See Section 17.6.1 for further details.  
Datasheet  
22-Jul-2021  
Revision 3.6  
68 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
7.4.1 3-Bit LUT or 8-Bit CNT/DLY Block Diagrams  
From Connection  
Matrix Output [85]  
IN2  
3-bit LUT5  
IN1  
IN0  
From Connection  
Matrix Output [84]  
S0  
S1  
OUT  
0: 3-bit LUT5 IN1  
1: CNT/DLY2 CLK  
LUT Truth  
Table  
To Connection  
S0  
S1  
Matrix Input [17]  
8-bits NVM  
registers [1543:1536]  
0: 3-bit LUT5 OUT  
1: CNT/DLY2 OUT  
CNT  
Data  
CLK  
From Connection  
Matrix Output [83]  
S0  
S1  
OUT  
CNT/DLY2  
0: 3-bit LUT5 IN0  
1: CNT/DLY2 RST  
DLY_IN/CNT Reset  
1-bit NVM  
register [1198]  
Figure 23: 3-bit LUT5 or CNT/DLY2  
From Connection  
Matrix Output [88]  
IN2  
3-bit LUT6  
IN1  
From Connection  
Matrix Output [87]  
S0  
S1  
OUT  
0: 3-bit LUT6 IN1  
1: CNT/DLY3 CLK  
IN0  
LUT Truth  
Table  
To Connection  
S0  
S1  
Matrix Input [18]  
8-bits NVM  
registers [1551:1544]  
0: 3-bit LUT6 OUT  
1: CNT/DLY3 OUT  
CNT  
Data  
CLK  
From Connection  
Matrix Output [86]  
S0  
S1  
OUT  
CNT/DLY3  
DLY_IN/CNT Reset  
0: 3-bit LUT6 IN0  
1: CNT/DLY3 RST  
1-bit NVM  
register [1197]  
Figure 24: 3-bit LUT6 or CNT/DLY3  
Datasheet  
22-Jul-2021  
Revision 3.6  
69 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
From Connection  
Matrix Output [91]  
IN2  
3-bit LUT7  
IN1  
IN0  
From Connection  
Matrix Output [90]  
S0  
S1  
OUT  
0: 3-bit LUT7 IN1  
1: CNT/DLY4 CLK  
LUT Truth  
Table  
To Connection  
S0  
S1  
Matrix Input [19]  
8-bits NVM  
registers [1559:1552]  
0: 3-bit LUT7 OUT  
1: CNT/DLY4 OUT  
CNT  
Data  
CLK  
From Connection  
Matrix Output [89]  
S0  
S1  
OUT  
CNT/DLY4  
DLY_IN/CNT Reset  
0: 3-bit LUT7 IN0  
1: CNT/DLY4 RST  
1-bit NVM  
register [1196]  
Figure 25: 3-bit LUT7 or CNT/DLY4  
Datasheet  
22-Jul-2021  
Revision 3.6  
70 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
From Connection  
Matrix Output [94]  
IN2  
3-bit LUT8  
IN1  
IN0  
From Connection  
Matrix Output [93]  
S0  
S1  
OUT  
0: 3-bit LUT8 IN1  
1: CNT/DLY5 CLK  
LUT Truth  
Table  
To Connection  
S0  
S1  
Matrix Input [20]  
8-bits NVM  
registers [1567:1560]  
0: 3-bit LUT8 OUT  
1: CNT/DLY5 OUT  
CNT  
Data  
CLK  
From Connection  
Matrix Output [92]  
S0  
S1  
OUT  
CNT/DLY5  
DLY_IN/CNT Reset  
0: 3-bit LUT8 IN0  
1: CNT/DLY5 RST  
1-bit NVM  
register [1195]  
Figure 26: 3-bit LUT8 or CNT/DLY5  
From Connection  
Matrix Output [97]  
IN2  
3-bit LUT9  
IN1  
From Connection  
Matrix Output [96]  
S0  
S1  
OUT  
0: 3-bit LUT9 IN1  
1: CNT/DLY6 CLK  
IN0  
LUT Truth  
Table  
To Connection  
S0  
S1  
Matrix Input [21]  
8-bits NVM  
registers [1575:1568]  
0: 3-bit LUT9 OUT  
1: CNT/DLY6 OUT  
CNT  
Data  
CLK  
From Connection  
Matrix Output [95]  
S0  
S1  
OUT  
CNT/DLY6  
DLY_IN/CNT Reset  
0: 3-bit LUT9 IN0  
1: CNT/DLY6 RST  
1-bit NVM  
register [1194]  
Figure 27: 3-bit LUT9 or CNT/DLY6  
Revision 3.6  
Datasheet  
22-Jul-2021  
71 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
7.4.2 3-Bit LUT or Counter/Delay Macrocells Used as 3-Bit LUTs  
Table 65: 3-bit LUT5 Truth Table  
Table 68: 3-bit LUT8 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1536]  
register [1537]  
register [1538]  
register [1539]  
register [1540]  
register [1541]  
register [1542]  
register [1543]  
LSB  
register [1560]  
register [1561]  
register [1562]  
register [1563]  
register [1564]  
register [1565]  
register [1566]  
register [1567]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 66: 3-bit LUT6 Truth Table  
Table 69: 3-bit LUT9 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1544]  
register [1545]  
register [1546]  
register [1547]  
register [1548]  
register [1549]  
register [1550]  
register [1551]  
register [1568]  
register [1569]  
register [1570]  
register [1571]  
register [1572]  
register [1573]  
register [1574]  
register [1575]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
Table 67: 3-bit LUT7 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1552]  
register [1553]  
register [1554]  
register [1555]  
register [1556]  
register [1557]  
register [1558]  
register [1559]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT5 is defined by registers [1543:1536]  
3-Bit LUT6 is defined by registers [1551:1544]  
3-Bit LUT7 is defined by registers [1559:1552]  
3-Bit LUT8 is defined by registers [1567:1560]  
3-Bit LUT9 is defined by registers [1575:1568]  
Datasheet  
22-Jul-2021  
Revision 3.6  
72 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 70 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the six 3-bit LUT logic cells.  
Table 70: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-3  
OR-3  
NOR-3  
XOR-3  
XNOR-3  
7.4.3 3-Bit LUT or 8-Bit Counter/Delay Macrocells Used as 8-Bit Counter/Delay Register Settings  
Table 71: CNT/DLY2 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
LUT3_5 or  
Counter2 Select  
[1198]  
0: LUT3_5  
1: Counter2  
Delay2 Mode Select  
or asynchronous  
Counter Reset  
[1273:1272]  
[1276:1274]  
00: on both falling and rising edges (for Delay & Counter Reset)  
01: on falling edge only (for Delay & Counter Reset)  
10: on rising edge only (for Delay & Counter Reset)  
11: no Delay on either falling or rising edges/counter high level reset  
Counter/Delay2  
Clock Source Select  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
101: 25MHz OSC clock  
110: External Clock  
111: Counter1 Overflow  
Counter/Delay2  
Output Selection for  
Counter mode  
[1277]  
0: Default Output  
1: Edge Detector Output  
Counter/Delay2  
Mode Selection  
[1279:1278]  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
Counter/Delay2  
Control Data  
[1543:1536]  
1 - 255  
Table 72: CNT/DLY3 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_6 or  
[1197]  
0: LUT3_6  
Counter3 Select  
1: Counter3  
Delay3 Mode Select  
or asynchronous  
Counter Reset  
[1281:1280]  
00: on both falling and rising edges (for Delay & Counter Reset)  
01: on falling edge only (for Delay & Counter Reset)  
10: on rising edge only (for Delay & Counter Reset)  
11: no Delay on either falling or rising edges/counter high level reset  
Datasheet  
22-Jul-2021  
Revision 3.6  
73 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 72: CNT/DLY3 Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
Counter/Delay3  
Clock Source Select  
[1284:1282]  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
101: 25MHz OSC clock  
110: External Clock  
111: Counter2 Overflow  
Counter/Delay3  
Output Selection for  
Counter mode  
[1285]  
0: Default Output  
1: Edge Detector Output  
Counter/Delay2  
Mode Selection  
[1287:1286]  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
Counter/Delay3  
Control Data  
[1551:1544]  
1 - 255  
Table 73: CNT/DLY4 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_7 or  
Counter4 Select  
[1196]  
0: LUT3_7  
1: Counter4  
Delay4 Mode Select  
or asynchronous  
Counter Reset  
[1289:1288]  
[1292:1290]  
00: on both falling and rising edges (for Delay & Counter Reset)  
01: on falling edge only (for Delay & Counter Reset)  
10: on rising edge only (for Delay & Counter Reset)  
11: no Delay on either falling or rising edges/counter high level reset  
Counter/Delay4  
Clock Source Select  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
101: 25MHz OSC clock  
110: External Clock  
111: Counter3 Overflow  
Counter/Delay4  
Output Selection for  
Counter mode  
[1293]  
0: Default Output  
1: Edge Detector Output  
Counter/Delay4  
Mode Selection  
[1295:1294]  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
Counter/Delay4  
Control Data  
[1559:1552]  
1 - 255  
Datasheet  
22-Jul-2021  
Revision 3.6  
74 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 74: CNT/DLY5 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_8 or  
Counter5 Select  
[1195]  
0: LUT3_8  
1: Counter5  
Delay5 Mode Select  
or asynchronous  
Counter Reset  
[1297:1296]  
[1300:1298]  
00: on both falling and rising edges (for Delay & Counter Reset)  
01: on falling edge only (for Delay & Counter Reset)  
10: on rising edge only (for Delay & Counter Reset)  
11: no Delay on either falling or rising edges/counter high level reset  
Counter/Delay5  
Clock Source Select  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
101: 25 MHz OSC clock  
110: External Clock  
111: Counter4 Overflow  
Counter/Delay5  
Output Selection for  
Counter mode  
[1301]  
0: Default Output  
1: Edge Detector Output  
Counter/Delay5  
Mode Selection  
[1303:1302]  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
Counter/Delay5  
Control Data  
[1567:1560]  
1 - 255  
Table 75: CNT/DLY6 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_9 or  
Counter5 Select  
[1194]  
0: LUT3_9  
1: Counter6  
Delay6 Mode Select  
or asynchronous  
Counter Reset  
[1305:1304]  
[1308:1306]  
00: on both falling and rising edges (for Delay & Counter Reset)  
01: on falling edge only (for Delay & Counter Reset)  
10: on rising edge only (for Delay & Counter Reset)  
11: no Delay on either falling or rising edges/counter high level reset  
Counter/Delay6  
Clock Source Select  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
101: 25 MHz OSC clock  
110: External Clock  
111: Counter5 Overflow  
Counter/Delay6  
Output Selection for  
Counter mode  
[1309]  
0: Default Output  
1: Edge Detector Output  
Counter/Delay6  
Mode Selection  
[1311:1310]  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
Datasheet  
22-Jul-2021  
Revision 3.6  
75 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 75: CNT/DLY6 Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
Counter/Delay6  
Control Data  
[1575:1568]  
1 - 255  
7.5 4-BIT LUT OR 16-BIT COUNTER/DELAY MACROCELLS  
There are two macrocells that can serve as either 4-bit LUTs or as 16-bit Counter/Delays. When used to implement LUT function,  
the 4-bit LUT takes in four input signals from the Connection Matrix and produces a single output, which goes back into the  
Connection Matrix. When used to implement 16-Bit Counter/Delay function, four input signals from the connection matrix go to  
the external clock (EXT_CLK) and Reset (DLY_IN/CNT Reset), Keep and Up for the counter/delay, with the output going back to  
the connection matrix.  
These two macrocells have an optional Finite State Machine (FSM) function. There are two matrix inputs for Up and Keep to  
support FSM functionality. Any counter within Green PAK is counting down by default. In FSM mode (CNT/DLY0 and CNT/DLY1)  
it is possible to reverse counting by applying High level to Up input. Also, there is a possibility to pause counting by applying High  
level to Keep input, after the level goes Low, the counter will proceed counting.These macrocells can also operate in a one-shot  
mode, which will generate an output pulse of user-defined width.  
These macrocells can also operate in a frequency detection.  
Delay time and Output Period can be calculated using the following formulas:  
Delay time: [(Counter data + 2)/CLK input frequency – Offset*];  
Output Period: [(Counter data + 1)/CLK input frequency – Offset*].  
One Shot pulse width can be calculated using formula:  
Pulse width = [(Counter Data + 2)/CLK input frequency – Offset*];  
*Offset is the asynchronous time offset between the input signal and the first clock pulse.  
Note Counters initialize with counter data after POR  
For timing diagrams refer to Section 7.6.  
Both of these macrocells can have their active count value read via I2C. See Section 17.6.1 for further details.  
Datasheet  
22-Jul-2021  
Revision 3.6  
76 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
7.5.1 4-Bit LUT or 16-Bit CNT/DLY Block Diagram  
From Connection  
Matrix Output [104]  
S0  
0: 4-bit LUT0 IN3  
1: FSM KEEP  
S1  
IN3  
From Connection  
S0  
S1  
Matrix Output [103]  
0: 4-bit LUT0 IN2  
1: FSM UP  
IN2  
IN1  
4-bit LUT0  
From Connection  
Matrix Output [102]  
S0  
S1  
OUT  
0: 4-bit LUT0 IN1  
1: CNT/DLY0 CLK  
IN0  
LUT Truth  
Table  
To Connection  
Matrix Input [22]  
16-bits NVM  
registers [1591:1576]  
0: 4-bit LUT0 OUT  
1: CNT/DLY0 OUT  
CNT  
Data  
CLK  
From Connection  
S0  
S1  
Matrix Output [101]  
OUT  
CNT/DLY0  
0: 4-bit LUT0 IN0  
1: CNT/DLY0 RST  
DLY_IN/CNT Reset  
KEEP  
FSM  
UP  
1-bit NVM  
register [1193]  
Figure 28: 4-bit LUT0 or CNT/DLY0  
Datasheet  
22-Jul-2021  
Revision 3.6  
77 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
From Connection  
Matrix Output [108]  
S0  
0: 4-bit LUT1 IN3  
1: FSM KEEP  
S1  
IN3  
From Connection  
S0  
S1  
Matrix Output [107]  
0: 4-bit LUT1 IN2  
1: FSM UP  
IN2  
IN1  
4-bit LUT1  
From Connection  
Matrix Output [106]  
S0  
S1  
OUT  
0: 4-bit LUT1 IN1  
1: CNT/DLY1 CLK  
IN0  
LUT Truth  
Table  
To Connection  
S0  
S1  
Matrix Input [23]  
16-bits NVM  
registers [1607:1592]  
0: 4-bit LUT1 OUT  
1: CNT/DLY1 OUT  
CNT  
Data  
CLK  
From Connection  
S0  
S1  
Matrix Output [105]  
OUT  
CNT/DLY1  
0: 4-bit LUT1 IN0  
1: CNT/DLY1 RST  
DLY_IN/CNT Reset  
KEEP  
FSM  
UP  
1-bit NVM  
register [1192]  
Figure 29: 4-bit LUT1 or CNT/DLY1  
Datasheet  
22-Jul-2021  
Revision 3.6  
78 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
7.5.2 4-Bit LUT or 16-Bit Counter/Delay Macrocells Used as 4-Bit LUTs  
Table 76: 4-bit LUT0 Truth Table  
Table 77: 4-bit LUT1 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1576] LSB  
register [1577]  
register [1578]  
register [1579]  
register [1580]  
register [1581]  
register [1582]  
register [1583]  
register [1584]  
register [1585]  
register [1586]  
register [1587]  
register [1588]  
register [1589]  
register [1590]  
register [1591] MSB  
register [1592] LSB  
register [1593]  
register [1594]  
register [1595]  
register [1596]  
register [1597]  
register [1598]  
register [1599]  
register [1600]  
register [1601]  
register [1602]  
register [1603]  
register [1604]  
register [1605]  
register [1606]  
register [1607] MSB  
0
0
0
1
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
1
0
0
1
1
0
1
0
0
0
1
0
0
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
1
0
1
1
1
1
0
0
0
1
0
0
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1
Each macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:  
4-Bit LUT0 is defined by registers [1591:1576]  
4-Bit LUT1 is defined by registers [1607:1592]  
Table 78: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
Datasheet  
22-Jul-2021  
Revision 3.6  
79 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
7.5.3 4-Bit LUT or 16-Bit Counter/Delay Macrocells Used as 16-Bit Counter/Delay Register Setting  
Table 79: CNT/DLY0 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
LUT4_0 or  
Counter0 Select  
[1193]  
0: LUT4_0  
1: Counter0  
Delay0 Mode Select  
or asynchronous  
Counter Reset  
[1313:1312]  
[1316:1314]  
00: on both falling and rising edges (for delay & Counter Reset)  
01: on falling edge only (for delay & Counter Reset)  
10: on rising edge only (for delay & Counter Reset)  
11: no delay on either falling or rising edges/counter high level reset  
Counter/delay0  
Clock Source Select  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
101: 25 MHz OSC clock  
110: External Clock  
111: Counter6 Overflow  
CNT0/FSM0's Q are  
Set to data or Reset  
to 0s Selection  
[1317]  
0: Reset to 0s  
1: Set to control data (Registers [1583:1576, 1591:1584])  
Counter/delay0  
Mode Selection  
[1319:1318]  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
Counter/delay0  
Control Data  
[1591:1576]  
1 - 65535 (Delay Time = [Counter Control Data + 1]/Freq)  
Table 80: CNT/DLY1 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT4_1 or  
Counter1 Select  
[1192]  
0: LUT4_1  
1: Counter1  
Delay1 Mode Select  
or asynchronous  
Counter Reset  
[1321:1320]  
[1324:1322]  
00: on both falling and rising edges (for delay & Counter Reset)  
01: on falling edge only (for delay & Counter Reset)  
10: on rising edge only (for delay & Counter Reset)  
11: no delay on either falling or rising edges/counter high level reset  
Counter/delay1  
Clock Source Select  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
101: 25MHz OSC clock  
110: External Clock  
111: Counter0 Overflow  
CNT0/FSM0's Q are  
Set to data or Reset  
to 0s Selection  
[1325]  
0: Reset to 0s  
1: Set to counter data (Registers [1599:1592, 1607:1600])  
Counter/delay1  
Mode Selection  
[1327:1326]  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
Counter/delay1  
Control Data  
[1607:1592]  
1 - 65535 (Delay Time = [Counter Control Data + 1]/Freq)  
Datasheet  
22-Jul-2021  
Revision 3.6  
80 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
7.6 CNT/DLY/FSM TIMING DIAGRAMS  
7.6.1 Delay Mode (Edge Select: Both, Counter Data: 3) CNT/DLY2 to CNT/DLY6  
Delay In  
Asynchronous delay variable  
Asynchronous delay variable  
RC osc: force Power-On  
(always running)  
Delay Output  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
Delay In  
offset  
offset  
RC osc: auto Power-On  
(powers up from delay in)  
Delay Output  
delay = offset + period x (counter data + 1)  
See offset in table 3  
delay = offset + period x (counter data + 1)  
See offset in table 3  
Figure 30: Delay Mode Timing Diagram  
7.6.2 Count Mode (Count Data: 3), Counter Reset (Rising Edge Detect) CNT/DLY2 to CNT/DLY6  
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in 0 CLK after reset  
Figure 31: Counter Mode Timing Diagram  
7.6.3 One-Shot Mode CNT/DLY0 to CNT/DLY6  
This macrocell will generate a pulse whenever a selected edge is detected on its input. Register bits set the edge selection. The  
pulse width determines by counter data and clock selection properties. The output pulse polarity (non-inverted or inverted) is  
Datasheet  
22-Jul-2021  
Revision 3.6  
81 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
selected by register bit. See Figure 81. Any incoming edges will be ignored during the pulse width generation. The following  
diagram shows one-shot function for non-inverted output.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
One-Shot Function  
Rising Edge Detection  
t
One-Shot Function  
Falling Edge Detection  
t
One-Shot Function  
Both Edge Detection  
t
Figure 32: One-Shot Function Timing Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
82 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 81: DLY/CNTx One-Shot/Freq. Detect Output Polarity  
I2C Interface  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
Select the Polarity of DLY/CNT6's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
[1329]  
Valid  
Valid  
Select the Polarity of DLY/CNT5's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
[1330]  
[1331]  
[1332]  
[1333]  
[1334]  
[1335]  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Select the Polarity of DLY/CNT4's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT3's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
A6  
Select the Polarity of DLY/CNT2's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT1's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT0's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
This macrocell generates a high level pulse with a set width (defined by counter data) when detecting the respective edge. It does  
not restart while pulse is high.  
7.6.4 Frequency Detection Mode CNT/DLY0 to CNT/DLY6  
Rising Edge: The output goes high if the time between two successive edges is less than the delay. The output goes low if the  
second rising edge has not come after the last rising edge in specified time.  
Falling Edge: The output goes high if the time between two falling edges is less than the set time. The output goes low if the  
second falling edge has not come after the last falling edge in specified time.  
Both Edge: The output goes high if the time between the rising and falling edges is less than the set time, which is equivalent to  
the length of the pulse. The output goes low if after the last rising/falling edge and specified time, the second edge has not come.  
Datasheet  
22-Jul-2021  
Revision 3.6  
83 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Frequency Detector Function  
Rising Edge Detection  
Frequency Detector Function  
Falling Edge Detection  
t
t
Frequency Detector Function  
Both Edge Detection  
Figure 33: Frequency Detection Mode Timing Diagram  
7.6.5 Edge Detection Mode CNT/DLY2 to CNT/DLY6  
The macrocell generates high level short pulse when detecting the respective edge. See Table 13.  
Datasheet  
22-Jul-2021  
Revision 3.6  
84 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Edge Detector Function  
Rising Edge Detection  
Edge Detector Function  
Falling Edge Detection  
t
t
Edge Detector Function  
Both Edge Detection  
Figure 34: Edge Detection Mode Timing Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
85 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
7.6.6 Delay Mode CNT/DLY0 to CNT/DLY6  
The macrocell shifts the respective edge to a set time and restarts by appropriate edge. It works as a filter if the input signal is  
shorter than the delay time.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
Delay Function  
Rising Edge Detection  
t
Delay Function  
Falling Edge Detection  
t
Delay Function  
Both Edge Detection  
t
Figure 35: Delay Mode Timing Diagram  
7.6.7 CNT/FSM Mode CNT/DLY0, CNT/DLY1  
RESET IN  
KEEP  
COUNT END  
CLK  
3
2
1
0
3
2
1
0
3
2
1
3
2
1
0
0
Q
Note: Q = current counter value  
Figure 36: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3  
Datasheet  
22-Jul-2021  
Revision 3.6  
86 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
SET IN  
KEEP  
COUNT END  
CLK  
2
1
0
3
2
1
0
3
3
2
1
2
1
0
3
3
Q
Note: Q = current counter value  
Figure 37: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3  
RESETI N  
KEEP  
COUNT END  
CLK  
65535  
65533 65534  
4
5
5
6
7
8
9
3
3
4
5
1
2
3
4
0
Q
Note: Q = current counter value  
Figure 38: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3  
Datasheet  
22-Jul-2021  
Revision 3.6  
87 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
SET IN  
KEEP  
COUNT END  
CLK  
65533 65534 65535  
8
9
10 11 12  
3
4
5
3
4
5
4
5
6
7
3
Q
Note: Q = current counter value  
Figure 39: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3  
7.7 2-BIT LUT OR PROGRAMMABLE PATTERN GENERATOR  
The SLG46517 has one combination function macrocell that can serve as a logic or timing function. This macrocell can serve as  
a Look Up Table (LUT), or Programmable Pattern Generator (PGen).  
When used to implement LUT functions, the 2-bit LUT takes in four input signals from the connection matrix and produce a single  
output, which goes back into the connection matrix. When used as a LUT to implement combinatorial logic functions, the outputs  
of the LUTs can be configured to any user defined function, including the following standard digital logic devices (AND, NAND,  
OR, NOR, XOR, XNOR). The user can also define the combinatorial relationship between inputs and outputs to be any selectable  
function.  
When operating as a Programmable Pattern Generator, the output of the macrocell with clock out a sequence of two to sixteen  
bits that are user selectable in their bit values, and user selectable in the number of bits (up to sixteen) that are output before the  
pattern repeats. See Figure 40.  
Datasheet  
22-Jul-2021  
Revision 3.6  
88 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
From Connection Matrix Output [66]  
From Connection Matrix Output [67]  
In0  
In1  
OUT  
2-bit LUT3  
LUT Truth  
Table  
To Connection Matrix Input [11]  
S0  
S1  
registers [1623:1608]  
0: 2-bit LUT3 OUT  
1: PGen OUT  
Pattern  
Data  
nRST  
CLK  
PGen  
OUT  
PGen  
size  
register [1188]  
registers [1211:1208]  
Figure 40: 2-bit LUT2 or PGen  
V
DD  
t
t
nRST  
CLK  
OUT  
1
2
6
8
16 17  
0
3
4
5
7
9
11  
10  
14 15  
12 13  
t
t
D7  
D6  
D5  
D10  
D8  
D4  
D3  
D2  
D1  
D15  
D9  
D0  
D0  
D15  
D14  
D13  
D12  
D11  
D0  
Figure 41: PGen Timing Diagram  
7.8 WAKE AND SLEEP CONTROLLER  
The SLG46517 has a Wake and Sleep (WS) function for all ACMPs. The macrocell CNT/DLY0 can be reconfigured for this  
purpose registers [1319:1318] = 11 and registers [1495] = 1. The WS serves for power saving, it allows to switch on and off  
selected ACMPs on selected bit of 16-bit counter.  
Datasheet  
22-Jul-2021  
Revision 3.6  
89 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
WS Controller  
OSC  
CNT0 out  
CNT  
CNT_end  
WS out  
000:/1  
001:/4  
010:/12  
011:/24  
100:/64  
To Connection Matrix Input [22]  
Power Control  
CK  
register [1489]  
CK_OSC  
WS_PD  
From Connection  
Matrix Output[58]  
WS time selection  
From Connection  
Matrix Output [54:51]  
WS_PD  
4
4
ACMPs_pdb  
Analog  
Control  
Block  
bg/regulator pdb  
registers [1316:1314]  
WS out  
WS clock freq.  
selection  
registers [1591:1576]  
WS ratio control data  
registers [1493:1490]  
ACMP WS enable  
register [1494]  
WS out state for OSC off  
WS_PD to W&S out state selection block  
4
ACMPs_pdb  
ACMP0..3 OUT  
4
4
Latches  
+
-
WS out  
Note: WS_PD is High at WS OSC (25 kHz/2 MHz OSC) power-down  
To Connection  
Matrix Input  
[60:57]  
Figure 42: Wake/Sleep Controller  
ACMP_PD is High  
through the Connection  
Matrix  
CNT_out (to CM)  
1 us  
ACMP output is latched,  
and BG/Analog is powered off  
WS_out  
(internal signal)  
BG/Analog_Good  
(internal signal)  
BG/Analog ON Start  
Sleep Mode  
Normal ACMP  
Operation  
Sleep Mode (maintains latched ACMP output  
BG/Analog  
stabilization time*  
Note: * Refer to Electrical Spec (ACMP Start Time)  
Figure 43: Wake/Sleep Timing Diagram  
To use any ACMP under WS controller the following settings must be done:  
ACMP Power Up Input from matrix = 1 (for each ACMP separately);  
CNT/DLY0 must be set to Wake and Sleep Controller function (for all ACMPs);  
Datasheet  
22-Jul-2021  
Revision 3.6  
90 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Register WS => enable (for each ACMP separately);  
CNT/DLY0 set/reset input = 0 (for all ACMPs);  
In case of using OSC1 (25 MHz), OSC0 must be set to Force Power-On.  
As the OSC any oscillator with any pre-divider can be used. The user can select a period of time while the ACMPs are sleeping  
in a range of 1 - 65535 clock cycles. Before they are sent to sleep their outputs are latched, so the ACMPs remain their state  
(High or Low) while sleeping.  
WS controller has the following settings:  
Wake and Sleep Output State (High/Low)  
If OSC is powered off (Power-Down option is selected; power-down input = 1) and Wake and Sleep Output State = High, the  
ACMP is continuously on.  
If OSC is powered off (Power-Down option is selected; power-down input = 1) and Wake and Sleep Output State = Low, the  
ACMP is continuously off.  
Both cases WS function is turned off.  
Counter Data (Range: 1 - 65535)  
User can select wake and sleep ratio of the ACMP; counter data = sleep time, one clock = wake time.  
Q mode - defines the state of WS counter data when Set/Reset signal appears  
Reset - when active signal appears, the WS counter will reset to zero and High level signal on its output will turn the ACMPs  
on. When Reset signal goes out, the WS counter will go Low and turn the ACMPs off until the counter counts up to the end  
Set - when active signal appears, the WS counter will stop and Low level signal on its output will turn the ACMPs off. When  
Set signal goes out, the WS counter will go on counting and High level signal will turn the ACMPs on while counter is counting  
up to the end.  
Edge Select defines the edge for Q mode  
High level Set/Reset - switches mode Set/Reset when level is High  
Note: Q mode operates only in case of "High Level Set/Reset”.  
Wake time selection - time required for wake signal to turn the ACMPs on  
Normal Wake Time - when WS signal is High, it takes a BG time (100/550 µs) to turn the ACMPs on. They will stay on until  
WS signal is Low again. Wake time is one clock period. It should be longer than BG turn on time and minimal required  
comparing time of the ACMP.  
Short Wake Time - when WS signal is High, it takes a BG time (100/550 µs) to turn the ACMPs on. They will stay on for 1 µs  
and turn off regardless of WS signal. The WS signal width does not matter.  
Keep - pauses counting while Keep = 1  
Up - reverses counting  
If Up = 1, CNT is counting up from user selected value to 65535.  
If Up = 0, CNT is counting down from user selected value to 1.  
Table 82: WS Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
Counter/delay0  
Clock Source Select  
[1316:1314]  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
101: 25 MHz OSC clock  
110: External Clock  
111: Counter6 Overflow  
Datasheet  
22-Jul-2021  
Revision 3.6  
91 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 82: WS Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
WS time selection  
[1489]  
0: Short Wake Time  
1: Normal Wake Time  
ACMP0 Wake & Sleep  
function Enable  
[1490]  
[1491]  
[1492]  
[1493]  
[1494]  
0: Disable  
1: Enable  
ACMP1 Wake & Sleep  
function Enable  
0: Disable  
1: Enable  
ACMP2 Wake & Sleep  
function Enable  
0: Disable  
1: Enable  
ACMP3 Wake & Sleep  
function Enable  
0: Disable  
1: Enable  
Wake Sleep Output State  
When WS Oscillator  
is Power-down own if DLY/  
CNT0 Mode Selection  
is "11"  
0: Low  
1: High  
Wake Sleep Ratio Control  
Mode Selection if  
[1495]  
0: Default Mode  
1: Wake Sleep Ratio Control Mode  
DLY/CNT0 Mode Selection  
is "11"  
DLY/CNT0  
[1591:1576]  
1 - 65535  
(16bits, [15:0] =  
[1591:1576]) Control Data  
Datasheet  
22-Jul-2021  
Revision 3.6  
92 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
8
Analog Comparators  
There are four Analog Comparator (ACMP) macrocells in the SLG46517. In order for the ACMP cells to be used in a GreenPAK  
design, the power up signals (ACMPx PWR UP) need to be active. By connecting to signals coming from the Connection Matrix,  
it is possible to have each ACMP be always on, always off, or power cycled based on a digital signal coming from the Connection  
Matrix. Also, all ACMPs have Wake and Sleep function (WS), see Section 7.8. When ACMP is powered down, output is low.  
PWR UP = 1 => ACMP is powered up.  
PWR UP = 0 => ACMP is powered down.  
During ACMP power up, its output will remain low, and then becomes valid 1.03 ms (max) after ACMP power up signal goes high,  
see Figure 45. If VDD is greater or equal to 2.7 V, it is possible to decrease turn-on time by setting the BG ok delay to 100 µs, see  
Figure 46. The ACMP cells have an input "Low bandwidth" signal selection, which can be used to save power and reduce noise  
impact when lower bandwidth signals are being compared. To ensure proper chip startup operation, it is recommended to enable  
the ACMPs with the POR signal, and not the VDD signal.  
Note: Regulator and Charge Pump set to automatic ON/OFF.  
240  
220  
200  
180  
160  
-40⁰C  
+25⁰C  
140  
+85⁰C  
120  
VDD (V)  
Figure 44: Maximum Power-On Delay vs. VDD, BG = Auto-delay.  
Datasheet  
22-Jul-2021  
Revision 3.6  
93 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
220  
210  
200  
190  
180  
170  
160  
150  
140  
130  
120  
1100  
1050  
1000  
950  
900  
850  
800  
750  
-40⁰C  
+25⁰C  
+85⁰C  
-40⁰C  
+25⁰C  
+85⁰C  
700  
650  
600  
VDD (V)  
VDD (V)  
Figure 45: Max. Power-On Delay vs. VDD, BG = 550 µs  
Figure 46: Max. Power-On Delay vs. VDD, BG = 100 µs  
Each of the ACMP cells has a positive input signal that can be provided by a variety of external sources. There is also a selectable  
gain stage (1x, 0.5x, 0.33x, 0.25x) before connection to the analog comparator. The Gain divider is unbuffered and consists of  
250 KΩ (typ) resistors, see Table 83. For gain divider accuracy refer to Table 84. IN- voltage range: 0 - 1.2 V. Can use Vref selection  
VDD/4 and VDD/3 to maintain this input range.  
Input bias current < 1 nA (typ).  
Table 83: Gain Divider Input Resistance  
Gain  
x1  
x0.5  
x0.33  
x0.25  
1 MΩ  
Input Resistance  
100 MΩ  
1 MΩ  
0.75 MΩ  
Table 84: Gain Divider Accuracy  
Gain  
x0.5  
±0.51%  
x0.33  
x0.25  
±0.25%  
Accuracy  
±0.34%  
Each cell also has a hysteresis selection, to offer hysteresis of (0, 25, 50, 200) mV. The 50 mV and 200 mV hysteresis options  
can be used with internal voltage reference only, while 25 mV hysteresis option can be used with both internal and external voltage  
reference. The 50 mV and 200 mV hysteresis options are one way hysteresis. It means that the actual thresholds will be Vref  
(high threshold) and Vref - hysteresis (low threshold). The ACMP output will retain its previous value, if the input voltage is within  
threshold window (between Vref and Vref - hysteresis). Please note: for the 25 mV hysteresis option threshold levels will be Vref +  
hysteresis/2 (high threshold) and Vref – hysteresis/2 (low threshold).  
Note: Any ACMP powered on enables the BandGap internal circuit as well. An analog voltage will appear on Vref even when the  
Force BandGap option is set as Disabled.  
For high input impedance when using the gain divider (x0.25, x0.33, x0.5), it is possible to use the input buffer. However, this will  
add some offset, see Figure 47 to Figure 48. It is not recommended to use ACMP buffer when VDD < 2.5 V.  
Datasheet  
22-Jul-2021  
Revision 3.6  
94 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
40  
30  
20  
10  
Upper Limit @ VDD≥2.7V  
Lower Limit @ VDD≥2.7V  
VOLTAGE REFERENCE (mV)  
600  
0
-10  
-20  
-30  
-40  
50  
250  
850  
1200  
Note: Buffer Bandwidth = 1 kHz, Vhys = 0 mV, Gain = 1, T = -40 °C to +85 °C  
Figure 47: Typical Buffer Input Voltage Offset vs. Voltage Reference  
20%  
15%  
10%  
5%  
Upper Limit  
Lower Limit  
0%  
50  
150  
250  
350  
450  
550  
650  
750  
850  
950  
1050  
1150  
-5%  
-10%  
-15%  
-20%  
-25%  
VOLTAGE REFERENCE (mV)  
Note: LMB Mode - Disable, Vhys = 0 mV, T = -40 °C to +85 °C  
Figure 48: Typical Input Threshold Variation (Including Vref Variation, ACMP Offset) vs. Voltage Reference  
Note: When VDD < 1.8 V voltage reference should not exceed 1100 mV.  
Datasheet  
22-Jul-2021  
Revision 3.6  
95 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 85: Built-In Hysteresis Tolerance at T = 25 °C  
VDD= 1.7 V to 1.8 V  
Vref =  
VDD = 1.89 V to 5.5 V  
Vhys (mV)  
50 mV to  
500)mV  
Vref = 550 V to Vref = 1050 V to  
1000 mV 1200 mV  
Vref =  
Vref = 550 V to Vref = 1050 V to  
50 V to 500 mV  
1000 mV  
1200 mV  
min  
max  
32.2  
min  
max  
32.3  
min  
max  
32.5  
min  
8.5  
max  
32.3  
min  
max  
32.3  
min  
max  
34.0  
25  
50  
8.6  
44.8  
192.8  
8.6  
43.9  
194.0  
7.0  
42.7  
192.7  
8.5  
43.6  
193.0  
7.8  
43.1  
190.8  
56.5  
56.7  
56.4  
44.2  
192.0  
56.8  
57.3  
56.0  
200  
207.9  
208.0  
205.4  
208.6  
209.5  
207.7  
8.1 ACMP0 BLOCK DIAGRAM AND REGISTER SETTINGS  
to ACMP1, ACMP2, AC-  
register [1631]  
MP3’s MUX input  
registers [1175:1174]  
LBW  
Selection  
Hysteresis  
Selection  
External V  
DD  
2.7 V ~ 5.5 V  
registers [1630:1629]  
110  
100  
0X1  
BG_ok  
L/S  
IO4: ACMP0(+)  
External V 1.71 V ~ 5.5 V  
Selectable  
Gain  
+
To Connection  
Matrix Input[57]  
0
1
DD  
Vref  
-
PWR UP  
Latch  
*IO4_aio_en; register [1173]; register [1172]  
*IO4_aio_en:  
if registers [1062:1061]=’11’ then 1,  
otherwise: 0  
register [1490]  
ACMP0 Wake & Sleep function Enable  
IO9: Ext_Vref  
IO5: ACMP0(-)  
IO9: Ext_Vref/2  
IO5: ACMP0(-)/2  
11010  
11011  
11100  
11101  
From Connection  
Matrix Output [51]  
11001-  
00000  
Internal  
Vref  
registers [1628:1624]  
Figure 49: ACMP0 Block Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
96 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 86: ACMP0 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
ACMP0 Positive  
Input Source Select  
[1172]  
0: IO4  
1: VDD  
ACMP0 Analog  
Buffer Enable  
[1173]  
0: Disable analog buffer  
1: Enable analog buffer  
ACMP0 Hysteresis  
Enable  
[1175:1174]  
00: Disabled (0 mV)  
01: Enabled (25 mV)  
10: Enabled (50 mV)  
11: Enabled (200 mV)  
(01: for both external & internal Vref; 10 & 11: for only internal Vref; External Vref will  
not have 50 mV & 200 mV hysteresis.)  
ACMP0 Wake &  
Sleep function  
Enable  
[1490]  
0: Disable  
1: Enable  
ACMP0 In Voltage  
Select  
[1628:1624]  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
11010: IO9: EXT_Vref  
11011: IO5: ACMP0-  
11100: IO9: EXT_Vref/2  
11101: IO5: ACMP0-/2  
11110: Reserved  
11111: Reserved  
ACMP0 Positive  
Input Divider  
[1630:1629]  
[1631]  
00: 1.00x  
01: 0.50x  
10: 0.33x  
11: 0.25x  
ACMP0 Low  
Bandwidth (Max: 1  
MHz) Enable  
0: Off  
1: On  
Datasheet  
22-Jul-2021  
Revision 3.6  
97 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
8.2 ACMP1 BLOCK DIAGRAM AND REGISTER SETTINGS  
register [1639]  
V
= 1.8 V  
DD  
registers [1171:1170]  
100 µA  
Current  
Source  
register [1183]  
LBW  
Selection  
en  
Hysteresis  
Selection  
External V  
DD  
2.7 V ~ 5.5 V  
registers [1638:1637]  
11X  
10X  
0X1  
BG_ok  
L/S  
IO8: ACMP1(+)  
Selectable  
Gain  
+
To Connection  
Matrix Input[58]  
0
1
From ACMP0's MUX output  
Vref  
-
PWR UP  
Latch  
*IO8_aio_en; register [1169]; register [1168]  
*IO8_aio_en:  
if registers [1093:1092]=’11’ then 1, otherwise: 0  
register [1491]  
ACMP1 Wake & Sleep function Enable  
IO9: EXT_Vref  
11010  
11011  
11100  
11101  
IO9: EXT_Vref  
IO9: EXT_Vref/2  
IO9: EXT_Vref/2  
From Connection  
Matrix Output [52]  
11101-  
00000  
Internal  
Vref  
registers [1636:1632]  
Note: when 100 µA Current Source is enabled input voltage on IO8 should not exceed 1.8 V.  
Figure 50: ACMP1 Block Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
98 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 87: ACMP1 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
ACMP1 100 µA  
Current Source  
Enable  
[1183]  
0: Disable  
1: Enable  
ACMP1 Positive  
Input Source Select  
[1168]  
[1169]  
0: IO8  
1: ACMP0 IN+ source  
ACMP1 Analog  
Buffer Enable (max.  
band width 1 MHz)  
0: Disable analog buffer  
1: Enable analog buffer  
ACMP1 Hysteresis  
Enable  
[1171:1170]  
00: Disabled (0 mV)  
01: Enabled (25 mV)  
10: Enabled (50 mV)  
11: Enabled (200 mV)  
(01: for both external & internal Vref; 10 & 11: for only internal Vref; External Vref will  
not have 50 mV & 200 mV hysteresis.)  
ACMP1 Wake &  
Sleep function  
Enable  
[1491]  
0: Disable  
1: Enable  
ACMP1 In Voltage  
Select  
[1636:1632]  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
11010: IO9: EXT_Vref  
11011: Reserved  
11100: IO9: EXT_Vref/2  
11101: Reserved  
11110: Reserved  
11111: Reserved  
ACMP1 Positive  
Input Divider  
[1638:1637]  
[1639]  
00: 1.00x  
01: 0.50x  
10: 0.33x  
11: 0.25x  
ACMP1 Low  
Bandwidth (Max: 1  
0: Off  
1: On  
MHz) Enable  
Datasheet  
22-Jul-2021  
Revision 3.6  
99 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
8.3 ACMP2 BLOCK DIAGRAM AND REGISTER SETTINGS  
register [1647]  
registers [1182:1181]  
LBW  
Selection  
Hysteresis  
Selection  
registers [1646:1645]  
IO10: ACMP2(+)  
10  
01  
BG_ok  
L/S  
Selectable  
Gain  
+
To Connection  
Matrix Input[59]  
0
1
from ACMP0’s MUX output  
Vref  
PWR UP  
-
Latch  
*IO10_aio_en; register [1180]  
*IO10_aio_en:  
if registers [1109:1108]=’11’ then 1,  
otherwise: 0  
register [1492]  
ACMP2 Wake & Sleep function Enable  
IO9: EXT_Vref  
11010  
11011  
11100  
11101  
IO11: ACMP2(-)  
IO9: EXT_Vref/2  
IO11: ACMP2(-)/2  
From Connection  
Matrix Output [53]  
11001-  
00000  
Internal  
Vref  
registers [1644:1640]  
Figure 51: ACMP2 Block Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
100 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 88: ACMP2 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
ACMP2 Positive  
Input Source Select  
[1180]  
0: IO10  
1: ACMP0 IN+ source  
ACMP2 Hysteresis  
Enable  
[1182:1181]  
00: Disabled (0 mV)  
01: Enabled (25 mV)  
10: Enabled (50 mV)  
11: Enabled (200 mV)  
(01: for both external & internal Vref; 10 & 11: for only internal Vref; External Vref will  
not have 50mV & 200mV hysteresis.)  
ACMP2 Wake &  
Sleep function  
Enable  
[1492]  
0: Disable  
1: Enable  
ACMP2 In Voltage  
Select  
[1644:1640]  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
11010: IO9: EXT_Vref  
11011: IO11: ACMP2-  
11100: IO9: EXT_Vref /2  
11101: IO11: ACMP2-/2  
11110: Reserved  
11111: Reserved  
ACMP2 Positive  
Input Divider  
[1646:1645]  
[1647]  
00: 1.00x  
01: 0.50x  
10: 0.33x  
11: 0.25x  
ACMP2 Low  
Bandwidth (Max: 1  
MHz) Enable  
0: Off  
1: On  
Datasheet  
22-Jul-2021  
Revision 3.6  
101 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
8.4 ACMP3 BLOCK DIAGRAM AND REGISTER SETTINGS  
register [1655]  
registers [1179:1178]  
LBW  
Selection  
Hysteresis  
Selection  
registers [1654:1653]  
IO12: ACMP3(+)  
From ACMP0’s MUX output  
IO10: ACMP2(+)  
00  
10  
01  
BG_ok  
L/S  
Selectable  
Gain  
+
To Connection  
Matrix Input[60]  
0
1
Vref  
PWR UP  
-
Latch  
*IO12_aio_en; register [1177]; register [1176]  
*IO12_aio_en:  
if registers [1126:1125]=’11then 1, otherwise:  
0
register [1493]  
ACMP3 Wake & Sleep function Enable  
IO9: EXT_Vref  
11011  
11010  
11100  
11101  
IO11: ACMP3(-)  
IO9: EXT_Vref/2  
IO11: ACMP3(-)/2  
From Connection  
Matrix Output [54]  
11001-  
00000  
Internal  
Vref  
registers [1652:1648]  
Figure 52: ACMP3 Block Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
102 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 89: ACMP3 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
ACMP3 Positive  
Input Source Select  
[1177:1176]  
00: IO12  
01: ACMP2 IN+ source  
10: ACMP0 IN+ source  
11: Reserved  
ACMP3 Hysteresis  
Enable  
[1179:1178]  
00: Disabled (0 mV)  
01: Enabled (25 mV)  
10: Enabled (50 mV)  
11: Enabled (200 mV)  
(01: for both external & internal Vref; 10 & 11: for only internal Vref; External Vref will  
not have 50 mV & 200 mV hysteresis.)  
ACMP3 Wake &  
Sleep function  
Enable  
[1493]  
0: Disable  
1: Enable  
ACMP3 In Voltage  
Select  
[1652:1648]  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
11010: IO9: EXT_Vref  
11011: IO11: ACMP3-  
11100: IO9: EXT_Vref/2  
11101: IO11: ACMP3-/2  
11110: Reserved  
11111: Reserved  
ACMP3 Positive  
Input Divider  
[1654:1653]  
[1655]  
00: 1.00x  
01: 0.50x  
10: 0.33x  
11: 0.25x  
ACMP3 Low  
Bandwidth (Max: 1  
MHz) Enable  
0: Off  
1: On  
Datasheet  
22-Jul-2021  
Revision 3.6  
103 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
9
Pipe Delay  
The SLG46517 has a pipe delay logic cell that is shared with the LUT3_10 in one of the Combination Function macrocells. The  
user can select one of these functions to use in a design, but not both. Please see Section 7.3 for the description of this  
Combination Function macrocell.  
10 Programmable Delay/Edge Detector  
The SLG46517 has a programmable time delay logic cell available that can generate a delay that is selectable from one of four  
timings configured in the GreenPAK Designer. The programmable time delay cell can generate one of four different delay patterns,  
rising edge detection, falling edge detection, both edge detection, and both edge delay. See the timing diagrams below for further  
information.  
Note: The input signal must be longer than the delay, otherwise it will be filtered out.  
registers [1267:1266]  
Delay Value Selection  
registers [1265:1264]  
Edge Mode Selection  
To Connection  
Matrix Input [61]  
Programmable  
From Connection Matrix Output [57]  
IN  
OUT  
Delay  
Figure 53: Programmable Delay  
10.1 PROGRAMMABLE DELAY TIMING DIAGRAM - EDGE DETECTOR OUTPUT  
width  
width  
IN  
time1  
Rising Edge Detector  
time1  
Falling Edge Detector  
Edge Detector  
Output  
Both Edge Detector  
Both Edge Delay  
time2  
time2  
time1 is a fixed value  
time2 delay value is selected via register  
Figure 54: Edge Detector Output  
Please refer to Table 13.  
Datasheet  
22-Jul-2021  
Revision 3.6  
104 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 90: Programmable Delay Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
Select the edge  
mode of  
programmable  
delay & edge  
detector  
[1265:1264]  
00: Rising Edge Detector  
01: Falling Edge Detector  
10: Both Edge Detector  
11: Both Edge Delay  
Delay value select  
for programmable  
delay & edge  
detector  
[1267:1266]  
00: 165 ns  
01: 300 ns  
10: 440 ns  
11: 575 ns  
(VDD = 3.3V, typical  
condition)  
Datasheet  
22-Jul-2021  
Revision 3.6  
105 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
11 Additional Logic Function. Deglitch Filter  
The SLG46517 has two additional logic functions that are connected directly to the Connection Matrix inputs and outputs. There  
are two deglitch filters, each with edge detector functions. See Section 3.5.  
11.1 DEGLITCH FILTER/EDGE DETECTOR  
Filter_0  
R
From Connection Matrix Output [55]  
C
To Connection Matrix  
Input [30]  
Edge  
Detect  
register [1462]  
register [1463]  
Edge Select  
registers [1461:1460]  
Filter_1  
R
From Connection Matrix Output [56]  
C
Edge  
Detect  
To Connection Matrix  
Input [31]  
register [1458]  
Edge Select  
register [1459]  
registers [1457:1456]  
Figure 55: Deglitch Filter/Edge Detector  
Table 91: Deglitch Filter Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
Filter_1/Edge  
[1458]  
0: Filter_1 output  
Detector_1 output  
1: Filter_1 output inverted  
Polarity Select  
Filter_1 or Edge  
Detector_1 Select  
(Typ. 30 nS  
[1459]  
0: Filter_1  
1: Edge Detector_1  
@VDD=3.3 V)  
Filter_0/Edge  
Detector_0 output  
Polarity Select  
[1462]  
[1463]  
0: Filter_0 output  
1: Filter_0 output inverted  
Filter_0 or Edge  
Detector_0 Select  
(Typ. 47 nS  
0: Filter_0  
1: Edge Detector_0  
@VDD=3.3 V)  
Datasheet  
22-Jul-2021  
Revision 3.6  
106 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
12 Voltage Reference  
12.1 VOLTAGE REFERENCE OVERVIEW  
The SLG46517 has a Voltage Reference (Vref) Macrocell to provide references to the four analog comparators. This macrocell  
can supply a user selection of fixed voltage references, /3 and /4 reference off of the VDD power supply to the device, and externally  
supplied voltage references from IOs 5, 9, and 11. The macrocell also has the option to output reference voltages on IO 15. See  
Table 92 for the available selections for each analog comparator. Also, see Figure 56, which shows the reference output structure.  
12.2 VREF SELECTION TABLE  
Table 92: Vref Selection Table  
SEL[4:0]  
11101  
11100  
11011  
11010  
11001  
11000  
10111  
10110  
10101  
10100  
10011  
10010  
10001  
10000  
01111  
01110  
01101  
01100  
01011  
01010  
01001  
01000  
00111  
00110  
00101  
00100  
00011  
00010  
00001  
00000  
ACMP0_VREF  
ACMP1_VREF  
ACMP2_VREF  
ACMP3_VREF  
vref_ext_acmp0/2  
vref_ext_acmp1/2  
vref_ext_acmp2/2  
vref_ext_acmp2/2  
vref_ext_acmp1/2  
vref_ext_acmp0  
vref_ext_acmp1  
VDD/4  
VDD/3  
1.20  
vref_ext_acmp1/2  
vref_ext_acmp1  
vref_ext_acmp1  
VDD/4  
VDD/3  
1.20  
vref_ext_acmp1/2  
vref_ext_acmp2  
vref_ext_acmp1  
VDD/4  
VDD/3  
1.20  
vref_ext_acmp1/2  
vref_ext_acmp2  
vref_ext_acmp1  
VDD/4  
VDD/3  
1.20  
1.15  
1.15  
1.15  
1.15  
1.10  
1.10  
1.10  
1.10  
1.05  
1.05  
1.05  
1.05  
1.00  
1.00  
1.00  
1.00  
0.95  
0.95  
0.95  
0.95  
0.90  
0.90  
0.90  
0.90  
0.85  
0.85  
0.85  
0.85  
0.80  
0.80  
0.80  
0.80  
0.75  
0.75  
0.75  
0.75  
0.70  
0.70  
0.70  
0.70  
0.65  
0.65  
0.65  
0.65  
0.60  
0.60  
0.60  
0.60  
0.55  
0.55  
0.55  
0.55  
0.50  
0.50  
0.50  
0.50  
0.45  
0.45  
0.45  
0.45  
0.40  
0.40  
0.40  
0.40  
0.35  
0.35  
0.35  
0.35  
0.30  
0.30  
0.30  
0.30  
0.25  
0.25  
0.25  
0.25  
0.20  
0.20  
0.20  
0.20  
0.15  
0.15  
0.15  
0.15  
0.10  
0.10  
0.10  
0.10  
0.05  
0.05  
0.05  
0.05  
VDD  
Practical Vref Range Note  
2.0 V - 5.5 V  
1.7 V - 2.0V  
50 mV ~ 1.2 V  
50 mV ~ 1.0 V  
Do not operate above 1.0 V  
Datasheet  
22-Jul-2021  
Revision 3.6  
107 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
12.3 VREF BLOCK DIAGRAM  
reg <1628:1624>  
reg <1476>  
ACMP0_VREF  
ext_vref_acmp0  
(IO5)  
reg <1636:1632>  
ext_vref_acmp1  
ACMP1_VREF  
(IO9)  
ext_vref_acmp2  
(IO11)  
reg <1644:1640>  
IO15_aio_en  
reg<1149:1148>=11  
ACMP2_VREF  
000  
001  
100  
101  
110  
Vref Out_1 (IO15)  
VDD / 3  
VDD / 4  
reg <1652:1648>  
ACMP3_VREF  
reg <1482:1480>  
VDD / 2  
reg <1474>  
VDD / 3  
VDD / 4  
Figure 56: Voltage Reference Block Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
108 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
12.4 VREF LOAD REGULATION  
Note 1: Vref buffer performance is not guaranteed at VDD < 2.7 V.  
650  
600  
550  
500  
450  
400  
350  
VDD=5.5V  
VDD=3.3V  
VDD=2.7V  
I (UA)  
Figure 57: Typical Load Regulation, Vref = 600 mV, T = -40 °C to +85 °C, Buffer - Enable  
1050  
VDD=5.5V  
VDD=3.3V  
VDD=2.7V  
1000  
950  
900  
850  
800  
750  
700  
I (UA)  
Figure 58: Typical Load Regulation, Vref = 1000 mV, T = -40 °C to +85 °C, Buffer - Enable  
Datasheet  
22-Jul-2021  
Revision 3.6  
109 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
1250  
1200  
1150  
1100  
1050  
1000  
950  
VDD=5.5V  
VDD=3.3V  
VDD=2.7V  
900  
850  
I (UA)  
Figure 59: Typical Load Regulation, Vref = 1200 mV, T = -40 °C to +85 °C, Buffer - Enable  
Datasheet  
22-Jul-2021  
Revision 3.6  
110 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
13 Clocking  
13.1 OSC GENERAL DESCRIPTION  
The SLG46517 has three internal oscillators. RC Oscillator that runs at 25 kHz/2 MHz (OSC0), Oscillator that runs at 25 MHz  
(OSC1) and Crystal Oscillator. It is possible to use all three oscillators simultaneously. The fundamental frequency can also come  
from clock input (IO15 or IO17 for 25 kHz/2 MHz and IO14 for 25 MHz or Crystal OSC), see Section 18.  
13.2 25 KHZ/2 MHZ AND 25 MHZ RC OSCILLATORS  
There are two divider stages that allow the user flexibility for introducing clock signals on various Connection Matrix Input lines.  
The pre-divider allows the selection of /1, /2, /4 or /8 divide down frequency from the fundamental. The second stage divider (only  
for 25 kHz/2 MHz Oscillator) has an input of frequency from the pre-divider, and outputs one of seven different frequencies on  
Connection Matrix Input lines [27] (OUT0) and [28] (OUT1). See Figure 60 and Figure 61 for details.  
There are two modes of the POWER CONTROL pin, (register [1658] for 25 kHz/2 MHz OSC and register [1657] for 25 MHz OSC):  
POWER-DOWN [0]. If PWR CONTROL input of oscillator is LOW, the oscillator will be turned on. If PWR CONTROL input of  
oscillator is HIGH the oscillator will be turned off and OSC divider will reset.  
FORCE ON [1]. If PWR CONTROL input of oscillator is HIGH, the oscillator will be turned on. If PWR CONTROL input of  
oscillator is LOW the oscillator will be turned off.  
The PWR CONTROL signal has the highest priority.  
The SLG46517 has a 25 kHz/2 MHz OSC FAST START-UP function register [1338] (1 – on, 0 – off). It allows the OSC to run  
immediately after power-up this decreases the settling time. Note that when OSC FAST START-UP is on, the current consumption  
will rise.  
The user can select two OSC POWER MODEs (register [1343] for 25 kHz/2 MHz OSC and register [1341] for 25 MHz OSC):  
If AUTO POWER-ON [0] is selected, the OSC will run when any macrocell that uses OSC is powered on.  
If FORCE POWER-ON [1] is selected, the OSC will run when the SLG46517 is powered on.  
OSC can be turned on by:  
Register control (force Power-On)  
Delay mode, when delay requires OSC  
CNT/FSM  
Datasheet  
22-Jul-2021  
Revision 3.6  
111 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
OSC Power Mode register [1343]  
Auto Power-On  
0
Force Power-On  
1
From Connection Matrix Output [58]  
PWR DOWN  
registers [1340:1339]  
Internal RCO  
0
1
register [1342]  
0: 25 kHz  
1: 2 MHz  
DIV /1 /2 /4 /8  
0
1
Reserved  
Pre-divider  
0
/ 2  
/ 3  
IO15 Ext. Clock  
1
EXT. CLK Sel  
register [1355]  
2
3
4
5
6
7
EXT. CLK Sel register [1358]  
/ 4  
OUT0  
OUT1  
To Connection Matrix Input [27]  
To Connection Matrix Input [28]  
/ 8  
/ 12  
/ 24  
/ 64  
registers [1349:1347]  
registers [1346:1344]  
Second Stage  
Divider  
Figure 60: 25 kHz/2 MHz RC OSC Block Diagram  
OSC Power Mode register [1341]  
Auto Power-On  
Force Power-On  
0
1
From Connection Matrix Output [59]  
PWR DOWN  
registers [1337:1336]  
Internal RCO  
0
25 MHz Osc  
OUT  
To Connection Matrix Input [29]  
DIV /1 /2 /4 /8  
IO14 Ext. Clock  
Divider  
1
Ext. Clk Sel register [1357]  
Figure 61: 25 MHz RC OSC Block Diagram  
Datasheet  
22-Jul-2021  
Revision 3.6  
112 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
13.3 OSCILLATORS POWER-ON DELAY  
OSC enable  
Power-On  
Delay  
CLK  
Figure 62: Oscillator Startup Diagram  
Note 1: OSC power mode: “Auto Power-On”.  
Note 2: “OSC enable” signal appears when any macrocell that uses OSC is powered on.  
450  
NormalStartͲUpMode  
FastStartͲUpMode  
400  
350  
300  
250  
200  
150  
VDD(V)  
Figure 63: Oscillator Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2 MHz  
Datasheet  
22-Jul-2021  
Revision 3.6  
113 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
25  
20  
15  
10  
5
NormalStartͲUpMode  
FastStartͲUpMode  
0
VDD(V)  
Figure 64: Oscillator Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 25 kHz  
90  
80  
70  
60  
50  
40  
30  
20  
VDD(V)  
Figure 65: Oscillator Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 25 MHz  
Datasheet  
22-Jul-2021  
Revision 3.6  
114 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
13.4 OSCILLATORS ACCURACY  
Note: OSC power setting: Force Power-On; Clock to matrix input - enable; Bandgap: turn on by register - enable.  
Note: For more information see Section 3.6.  
2.2  
2.15  
2.1  
2.05  
2
1.95  
Fmax @ VDD=1.8 V  
1.9  
Fmin @ VDD=1.8 V  
Fmax @ VDD=3.3 V  
1.85  
Fmin @ VDD=3.3 V  
Fmax @ VDD=5.0 V  
Fmin @ VDD=5.0 V  
1.8  
1.75  
T (°C)  
Figure 66: Oscillator Frequency vs. Temperature, OSC0 = 2 MHz  
27  
Fmax @ VDD=1.8 V  
Fmin @ VDD=1.8 V  
Fmax @ VDD=3.3 V  
26.5  
Fmin @ VDD=3.3 V  
26  
25.5  
25  
Fmax @ VDD=5.0 V  
Fmin @ VDD=5.0 V  
24.5  
24  
23.5  
T (°C)  
Figure 67: Oscillator Frequency vs. Temperature, OSC0 = 25 kHz  
Datasheet  
22-Jul-2021  
Revision 3.6  
115 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
31  
29  
27  
25  
23  
21  
19  
17  
Fmax @ VDD=1.8 V  
Fmin @ VDD=1.8 V  
Fmax @ VDD=3.3 V  
Fmin @ VDD=3.3 V  
Fmax @ VDD=5.0 V  
Fmin @ VDD=5.0 V  
T (°C)  
Figure 68: Oscillator Frequency vs. Temperature, OSC1 = 25 MHz  
Note: 25 MHz RC OSC1 performance is not guaranteed at VDD < 2.5 V.  
Datasheet  
22-Jul-2021  
Revision 3.6  
116 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
14 Crystal Oscillator  
The Crystal OSC provides high precision and stability of the output frequency. IO14 and IO13 are input and output, respectively,  
of an inverting amplifier which is configured for use as an On-chip Oscillator, as shown in Figure 70. Either a quartz crystal or a  
ceramic resonator may be used. The optimal value of the capacitors depends on the crystal or resonator in use, the amount of  
stray capacitance, and the electromagnetic noise of the environment. Refer to Table 93. For ceramic resonators, the capacitor  
values given by the manufacturer should be used. It is possible to use an external clock source, it must be connected to IO14. In  
this case no external components are required.  
OSC Power Mode register [1136]  
Disable  
0
Enable  
1
From Connection Matrix Output [109]  
PWR DOWN  
IO14  
OUT  
Crystal OSC  
To Connection Matrix Input [53]  
IO13  
Figure 69: Crystal OSC Block Diagram  
C1  
SLG46517  
IO14  
R1  
Crystal  
IO13  
R2  
C2  
Figure 70: External Crystal Connection  
Table 93: External Components Selection  
f
C1  
C2  
R1  
R2  
20 kΩ  
0 Ω  
32.768 kHz  
4 - 40 MHz  
10 pF  
12 pF  
330 pF  
12 pF  
20 MΩ  
1 MΩ  
Datasheet  
22-Jul-2021  
Revision 3.6  
117 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
15 Power-On Reset  
The SLG46517 has a Power-On Reset (POR) macrocell to ensure correct device initialization and operation of all macrocells in  
the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the VDD power is first  
ramping to the device, and also while the VDD is falling during power-down. To accomplish this goal, the POR drives a defined  
sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of  
the IO pins.  
15.1 GENERAL OPERATION  
To start the POR sequence in the SLG46517, the voltage applied on the VDD should be higher than the Power-On threshold  
(Note). The full operational VDD range for the SLG46517 is 1.71 V to 5.5 V (1.8 V ±5% to 5 V±10%). This means that the VDD  
voltage must ramp up to the operational voltage value, but the POR sequence will start earlier, as soon as the VDD voltage rises  
to the Power-On threshold. After the POR sequence has started, the SLG46517 will have a typical period of time to go through  
all the steps in the sequence (noted in the datasheet for that device), and will be ready and completely operational after the POR  
sequence is complete.  
Note: The Power-On threshold can vary by PVT, but typically it is 1.6 V.  
The SLG46517 is guaranteed to be powered down and nonoperational when the VDD voltage (voltage on VDD) is less than 0.6V,  
but not less than -0.6 V. Another essential condition for the chip to be powered down is that no voltage higher (Note) than the VDD  
voltage is applied to any other PIN. For example, if VDD voltage is 0.3 V, applying a voltage higher than 0.3 V to any other PIN is  
incorrect, and can lead to incorrect or unexpected device behavior.  
Note: There is a 0.6V margin due to forward drop voltage of the ESD protection diodes.  
To power-down the chip the VDD voltage should be lower than the operational and to guarantee that chip is powered down it  
should be less than 0.6 V.  
All PINs are in high impedance state when the chip is powered down and while the POR sequence is taking place. The last step  
in the POR sequence releases the IO structures from the high impedance state, at which time the device is operational. The pin  
configuration at this point in time is defined by the design programmed into the chip. Also, as it was mentioned before the voltage  
on PINs can’t be bigger than the VDD, this rule also applies to the case when the chip is powered on.  
Datasheet  
22-Jul-2021  
Revision 3.6  
118 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
15.2 POR SEQUENCE  
The POR system generates a sequence of signals that enable certain macrocells. The sequence is shown in Figure 71.  
VDD  
t
t
t
t
t
t
t
t
POR_NVM  
(reset for NVM)  
NVM_ready_out,  
I2C enable  
POR_GPI  
(reset for input enable)  
POR_LUT  
(reset for LUT output)  
POR_CORE  
(reset for DLY/RCO/DFF  
/LATCH/Pipe DLY)  
POR_OUT  
(generate low to high to matrix)  
POR_GPO  
ASM enable  
(reset for output enable)  
Input: Ignore transition  
Output: Initial state (determined by  
registers [1354:1352])  
Figure 71: POR Sequence  
As can be seen from Figure 71 after the VDD has start ramping up and crosses the Power-On threshold, first, the on-chip NVM  
memory is reset. Next, the chip reads the data from NVM, and transfers this information to a CMOS LATCH that serves to configure  
each macrocell, and the Connection Matrix which routes signals between macrocells. The third stage causes the reset of the input  
pins, and then to enable them. After that, the LUTs are reset and become active. After LUTs the Delay cells, RC OSC, DFFs,  
LATCHES, and Pipe Delay are initialized. Only after all macrocells are initialized internal POR signal (POR macrocell output) goes  
from LOW to HIGH. The last portion of the device to be initialized are the output pins, which transition from high impedance to  
active at this point.  
The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many  
environmental factors, such as: slew rate, VDD value, temperature, and even will vary from chip to chip (process influence).  
15.3 MACROCELLS OUTPUT STATES DURING POR SEQUENCE  
To have a full picture of SLG46517 operation during powering and POR sequence, review the overview the macrocell output  
states during the POR sequence (Figure 72 describes the output signals states).  
First, before the NVM has been reset, all macrocells have their output set to logic LOW (except the output PINs which are in high  
impedance state). Before the NVM is ready, all macrocell outputs are unpredictable (except the output PINs). On the next step,  
some of the macrocells start initialization: input pins output state becomes LOW; LUTs also output LOW. Only P_DLY macrocell  
configured as edge detector becomes active at this time. After that input PINs are enabled. Next, only LUTs are configured. Next,  
Datasheet  
22-Jul-2021  
Revision 3.6  
119 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
all other macrocells are initialized. After macrocells are initialized, internal POR matrix signal switches from LOW to HIGH. The  
last are output PINs that become active and determined by the input signals.  
VDD  
Guaranteed HIGH before POR_GPI  
Unpredictable  
t
VDD_out  
to matrix  
t
t
Input PIN_out  
to matrix  
Unpredictable  
Unpredictable  
Unpredictable  
Determined by External Signal  
Determined by Input signals  
LUT_out  
to matrix  
Determined by input signals  
OUT = IN without Delay  
t
t
t
t
t
t
t
Programmable Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
Prog. Edge_Detector_out  
to matrix  
Unpredictable  
Unpredictable  
Unpredictable  
Determined by Input signals  
Determined by initial state  
DFF/LATCH_out  
to matrix  
Determined by Input signals  
Determined by input signals  
OUT = IN without Delay  
Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
POR_out  
to matrix  
Unpredictable  
Ext. GPO  
Tri-state  
Determined by Input signals  
Output State Unpredictable  
Figure 72: Internal Macrocell States during POR Sequence  
Datasheet  
22-Jul-2021  
Revision 3.6  
120 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
15.3.1 Initialization  
All internal macrocells by default have initial LOW level. Starting from indicated power-up time of 1.15 V to1.6 V, macrocells in  
GPAK are powered on while forced to the reset state. All outputs are in Hi-Z and chip starts loading data from NVM. Then the  
reset signal is released for internal macrocells and they start to initialize according to the following sequence:  
1. I2C.  
2. Input PINs, ACMP, Pull-up/down.  
3. LUTs.  
4. DFFs, Delays/Counters, Pipe Delay.  
5. POR output to matrix.  
6. Output PIN corresponds to the internal logic.  
The Vref output pin driving signal can precede POR output signal going high by 3 μs - 5 μs. The POR signal going high indicates  
the mentioned power-up sequence is complete.  
Note: The maximum voltage applied to any PIN should not be higher than the VDD level. There are ESD Diodes between  
PIN → VDD and PIN → GND on each PIN. So, if the input signal applied to PIN is higher than VDD, then current will sink through  
the diode to VDD. Exceeding VDD results in leakage current on the input PIN, and VDD will be pulled up, following the voltage on  
the input PIN.There is no effect from input pin when input voltage is applied at the same time as VDD  
.
15.3.2 Power-Down  
V
(V)  
DD  
2 V  
1.6 V  
1.15 V  
1 V Vref Out Signal  
1 V  
Time  
Outputs can possibly switch state during this time  
Figure 73: Power-Down  
During power-down, macrocells in SLG46517 are powered off and logic macrocells may switch states after falling below 1.4 V.  
The IO buffers are disabled when POR goes low at VDD ~1 V. Please note that during a slow rampdown, outputs can possibly  
switch state during this time.  
Datasheet  
22-Jul-2021  
Revision 3.6  
121 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
16 Asynchronous State Machine Macrocell  
16.1 ASM MACROCELL OVERVIEW  
The Asynchronous State Machine (ASM) macrocell is designed to allow the user to create state machines with between 2 to 8  
states. The user has flexibility to define the available states, the available state transitions, and the input signals (a, b, c …) that  
will cause transitions from one state to another state, as shown in Figure 74.  
This macrocell has a total of 25 inputs, as shown in Figure 75, which come from the Connection Matrix outputs. Of these 25 inputs,  
24 are user selectable for driving general state transitions, and 1 is for driving a state transition to an Initial/Reset state. Each of  
the 24 inputs is level sensitive and active high, meaning that a high level input will drive the user selected transition from one state  
to another. The fact that there are 24 inputs puts the upper bound of 24 possible state transitions total in the user defined state  
machine design. There is on nReset input which will drive an immediate state transition to the user-defined Initial/Reset state  
when active, shown in red, in the Figure 74. For more details refer to Section 16.2.  
There are a total of 8 outputs, which go to the Connections Matrix inputs, and from there can be routed to other internal macrocells  
or pins. The 8 outputs are user defined for each of the possible 8 states. This information is held in the Connection Matrix Output  
RAM. For more details refer to Section 16.3.  
In using this macrocell, the user must take into consideration the critical timing required on all input and output signals. The timing  
waveforms and timing specifications for this macrocell are all measured relative to the input signals (which come into the macrocell  
on the Connection Matrix outputs) and on the outputs from the macrocell (which are direct connections to Connection Matrix  
inputs). The user must consider any delays from other logic and internal chip connections, including IO delays, to ensure that  
signals are properly processed, and state transitions are deterministic.  
The GPAK Designer development tools support user designs for the ASM macrocell at both the physical level and logic level.  
Figure 74 is a representation of the user design at the logical level, and Figure 75 shows the physical resources inside the  
macrocell. To best utilize this macrocell, the user must develop a logical representation of their desired state machine, as well as  
a physical mapping of the input and outputs required for the desired functionality.  
Off  
a
d
c
Normal  
Speed  
Standby  
Fault  
b
e
f
g
h
High  
Speed  
Figure 74: Asynchronous State Machine State Transitions  
Datasheet  
22-Jul-2021  
Revision 3.6  
122 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Connection Matrix  
Output RAM  
(8x8)  
State Holding  
LATCHES  
State 0  
State 0 In  
State 1 In  
State 2 In  
State 3 In  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
Output Bits (8)  
State 1  
Output Bits (8)  
State 2  
Output Bits (8)  
State 3  
Output Bits (8)  
from  
Connection  
Matrix  
State  
Transition  
Signal  
State 4  
Output Bits (8)  
State 4 In  
State 5 In  
State 6 In  
Routing  
State 5  
Output Bits (8)  
State 6  
Output Bits (8)  
State 7  
Output Bits (8)  
State 7 In  
nReset  
to Connection Matrix  
Figure 75: Asynchronous State Machine  
16.2 ASM INPUTS  
The ASM macrocell has a total of 25 inputs which come from the Connection Matrix outputs. Of these 25 inputs, 24 are user  
selectable for driving general state transitions, and 1 is for driving a state transition to an Initial/Reset state.  
There are a total of 24 inputs to the ASM macrocell for general state transitions, highlighted in red in Figure 76. Each of these  
inputs is level sensitive, and active high. A high level input will trigger a state transition.  
These inputs are grouped so that each set of 3 inputs can drive a state transition going into a particular state. As an example,  
there are three inputs that can drive a state transition to State 1. This sets an upper bound on the number of transitions that the  
user can select going into a particular state to be 3, shown in Figure 77.  
There is no limitation on the number of transitions that can be supported coming out of a particular state, the user can select to  
have transitions going from a state to all other states, shown in Figure 78.  
The ASM macrocell also has a nReset input highlighted in blue in Figure 76. This input is level sensitive and active low. An  
active signal on this input will drive an immediate state transition to the user-defined Initial/Reset state. The user can choose  
which state within the ASM Editor inside GPAK Designer is the initial state.  
Datasheet  
22-Jul-2021  
Revision 3.6  
123 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Connection Matrix  
Output RAM  
(8x8)  
State Holding  
LATCHES  
State 0  
State 0 In  
State 1 In  
State 2 In  
State 3 In  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
Output Bits (8)  
State 1  
Output Bits (8)  
State 2  
Output Bits (8)  
State 3  
Output Bits (8)  
from  
Connection  
Matrix  
State  
Transition  
Signal  
State 4  
Output Bits (8)  
State 4 In  
State 5 In  
State 6 In  
Routing  
State 5  
Output Bits (8)  
State 6  
Output Bits (8)  
State 7  
Output Bits (8)  
State 7 In  
nReset  
to Connection Matrix  
Figure 76: Asynchronous State Machine Inputs  
State 1  
State 0  
State 3  
State 2  
Figure 77: Maximum 3 State Transitions into Given State  
Datasheet  
22-Jul-2021  
Revision 3.6  
124 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
State 1  
State 7  
State 2  
State 0  
State 6  
State 3  
State5  
State 4  
Figure 78: Maximum 7 State Transitions out of a Given State  
16.3 ASM OUTPUTS  
There are a total of 8 outputs from the ASM macrocell, which go to the Connections Matrix inputs, and from there can be routed  
to other internal macrocells or pins. The 8 outputs are user defined for each of the possible 8 states, this information is held in  
the Connection Matrix Output RAM, shown in Figure 79. The Connection Matrix Output RAM has a total of 64 bits, arranged as  
8 bits per state. The values loaded in each of the 8 bits define the signal level on each of the 8 ASM macrocell outputs.  
The ASM Editor inside the GPAK Designer software allows the user to make their selections for the value of each bit in the  
Connection Matrix Output RAM, which selects the level of the macrocell outputs based on the current state of the ASM  
macrocell, as shown in Figure 78.  
Datasheet  
22-Jul-2021  
Revision 3.6  
125 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Connection Matrix  
Output RAM  
(8x8)  
State Holding  
LATCHES  
State 0  
State 0 In  
State 1 In  
State 2 In  
State 3 In  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
Output Bits (8)  
State 1  
Output Bits (8)  
State 2  
Output Bits (8)  
State 3  
Output Bits (8)  
from  
Connection  
Matrix  
State  
Transition  
Signal  
State 4  
Output Bits (8)  
State 4 In  
State 5 In  
State 6 In  
Routing  
State 5  
Output Bits (8)  
State 6  
Output Bits (8)  
State 7  
Output Bits (8)  
State 7 In  
nReset  
to Connection Matrix  
Figure 79: Connection Matrix Output RAM  
Table 94: ASM Editor - Connection Matrix Output RAM  
RAM  
Connection Matrix Output RAM  
State name  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
Datasheet  
22-Jul-2021  
Revision 3.6  
126 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
There is a possibility to configure ASM (it's settings and transitions) via I2C. Registers (registers [197:0]) correspond for ASM  
inputs, registers (registers [1727:1664]) correspond for ASM outputs configuration. Using I2C commands (see Section 17.4) it is  
possible to read ASM settings and connections, as well as change them. Additionally, user can change Connection Matrix Output  
RAM bit configuration (bytes 0xD0 to 0xD7).  
Note: After Connection Matrix Output RAM was updated via I2C, ASM outputs to Connection Matrix can be changed only after  
ASM changes its state or after reset event. To change ASM outputs to Connection Matrix instantly after I2C write command, ASM  
must be in reset all the time.  
16.4 BASIC ASM TIMING  
The basic state transition timing from input on Matrix Connection output to output on Matrix Connection input is shown  
in Figure 80 and Figure 81. The time from a valid input signal to the time that there is a valid change of state and valid signals  
being available on the state outputs is State Machine Output Delay Time (Tst_out_delay). The minimum and maximum values of  
Tst_out_delay define the differential timing between the shortest state transition (input on matrix output and output on matrix input)  
and the longest state transition (input on matrix output and output on matrix input).  
a
State 0  
State 1  
Figure 80: State Transition  
Input  
Signal (a)  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
Figure 81: State Transition Timing  
16.5 ASYNCHRONOUS STATE MACHINES VS. SYNCHRONOUS STATE MACHINES  
It is important to note that this macrocell is designed for asynchronous operation, which means the following:  
1. No clock source is needed, it reacts only to input signals.  
2. The input signals do not have to be synchronized to each other, the macrocell will react to the earliest valid signal for state  
transition.  
3. This macrocell does not have traditional set-up and hold time specifications which are related to incoming clock, as this  
macrocell has no clock source.  
4. The macrocell only consumes power while in state transition.  
16.6 ASM POWER CONSIDERATIONS  
A benefit of the asynchronous nature of this macrocell is that it will consume power only during state transitions. Shown in  
Figure 80 and Figure 82 below, the current consumption of the macrocell will be a fraction of a µA between state transitions, and  
will rise only during state transitions. See Section 3.4 to find average current during state transitions.  
Datasheet  
22-Jul-2021  
Revision 3.6  
127 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
a
State 0  
State 1  
Figure 82: State Transition  
Input  
Signal (a)  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
Average Active ASM Power  
ASM  
Power  
Consumption  
Sub μA Inactive ASM Power Consumption  
Figure 83: State Transition Timing and Power Consumption  
16.7 ASM LOGICAL VS. PHYSICAL DESIGN  
A successful design with the ASM macrocell must include both the logic level design, as well as the physical level design. The  
GPAK Designer development software support user designs for the ASM macrocell at both the logic level and physical level.  
The logic level design of the user defined state machine takes place inside the ASM Editor. In the ASM Editor, the user can  
select and name states, define and name allowed state transitions, define the Initial/Reset state, and define the output values for  
the 8 outputs in the Output RAM Matrix. The physical level design takes place in the general GPAK Designer window, and here  
the user makes connections for the sources for ASM input signals, as well as making connections for destinations for ASM  
output signals.  
16.8 ASM SPECIAL CASE TIMING CONSIDERATIONS  
16.8.1 State Transition Pulse Input Timing  
All inputs to the ASM macrocell are level sensitive. If the input to the state machine macrocell for a state transition is a pulse,  
there is a minimum pulse width on the input to the state machine macrocell (as measured at the matrix input to the macrocell)  
which is guaranteed to result in a state transition shown in Figure 84 and Figure 85. This pulse width is defined by the State  
Machine Input Pulse Acceptance Time (Tst_pulse). If a pulse width that is shorter than Tst_pulse is input to the state machine  
macrocell, it is indeterminate whether the state transition will happen or not. If a pulse that is rejected (invalid due to the pulse  
width being narrower than the guaranteed minimum of Tst_pulse), this will not stop a valid pulse on another state transition input  
that does meet minimum pulse width.  
a
State 0  
State 1  
Figure 84: State Transition  
Datasheet  
22-Jul-2021  
Revision 3.6  
128 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Input  
Signal (a)  
Tst_pulse  
Tst_pulse  
State  
Outputs  
State 0  
State 1  
Tst_out_delay  
Figure 85: State Transition Pulse Input Timing  
16.8.2 State Transition Competing Input Timing  
There will be situations where two input signals can be valid inputs that will drive two different state transitions from a given state.  
In that sense, the two signals are “competing” (signals a and b in Figure 86), and the signal that arrives sooner should drive the  
state transition that will “win”, or drive the state transition. If one signal arrives Tst_comp before the other one, it is guaranteed to  
win, and the state transition that it codes for will be taken, as shown in Figure 87. If the two signals arrive within Tst_comp of each  
other, it will be indeterminate which state transition will win, but one of the transitions will take place as long as the winning signal  
satisfies the pulse width criteria described in the paragraph above, as shown in Figure 88.  
a
b
State 0  
State 1  
State 2  
Figure 86: State Transition - Competing Inputs  
Input  
Signal (a)  
Tst_comp  
Input  
Signal (b)  
Tst_out_delay  
State  
Outputs  
State 0  
State 1 or State 2  
Figure 87: State Transition Timing - Competing Inputs Indeterminate  
Datasheet  
22-Jul-2021  
Revision 3.6  
129 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Input  
Signal (a)  
Tst_comp  
Input  
Signal (b)  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
Figure 88: State Transition Timing - Competing Inputs Determinable  
16.8.3 ASM State Transition Sequential Timing  
It is possible to have a valid input signal for a transition out from a particular state be active before the state is active. If this is the  
case, the macrocell will only stay in that particular state for Tst_out_delay time before making the transition to the next state. An  
example of this sequential behavior is shown in Figure 89 and the associated timing is shown in Figure 90.  
a
b
State 0  
State 1  
State 2  
Figure 89: State Transition - Sequential  
Input  
Signal (a)  
Input  
Signal (b)  
Tst_out_delay  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
State 2  
Figure 90: State Transition - Sequential Timing  
16.8.4 State Transition Closed Cycling  
It is possible to have a closed cycle of state transitions that will run continuously if there are valid inputs that are active at the  
same time. The rate at which the state transitions will take place is determined by Tst_out_delay. The example shown here in  
Figure 91 involves cycling between two states, but any number of two – eight states can be included in state transition closed  
cycling of this nature. Figure 92 shows the associated timing for closed cycling.  
Datasheet  
22-Jul-2021  
Revision 3.6  
130 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
a
State 0  
State 1  
b
Figure 91: State Transition - Closed Cycling  
Input  
Signal (a)  
Input  
Signal (b)  
Tst_out_delay  
Tst_out_delay  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
State 0  
State 1  
Figure 92: State Transition - Closed Cycling Timing  
Datasheet  
22-Jul-2021  
Revision 3.6  
131 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
2
17 I C Serial Communications Macrocell  
17.1 I2C SERIAL COMMUNICATIONS MACROCELL OVERVIEW  
In the standard use case for the GreenPAK devices, the configuration choices made by the user are stored as bit settings in the  
Non-Volatile Memory (NVM), and this information is transferred at startup time to volatile RAM registers that enable the  
configuration of the macrocells. Other RAM registers in the device are responsible for setting the connections in the Connection  
Matrix to route signals in the manner most appropriate for the user’s application.  
The I2C Serial Communications Macrocell in this device allows an I2C bus Master to read and write this information via a serial  
channel directly to the RAM registers, allowing the remote re-configuration of macrocells, and remote changes to signal chains  
within the device.  
An I2C bus Master is also able read and write other register bits that are not associated with NVM memory. As an example, the  
input lines to the Connection Matrix can be read as digital register bits. These are the signal outputs of each of the macrocells in  
the device, giving an I2C bus Master the capability to remotely read the current value of any macrocell.  
The user has the flexibility to control read access and write access via registers bits register [1832], register [1870], and  
register [1871]. See Section 17.5 for more details on I2C read/write memory protection.  
Note: GreenPAK I2C is fully compatible with standard I2C protocol.  
17.2 I2C SERIAL COMMUNICATIONS DEVICE ADDRESSING  
Each command to the I2C Serial Communications macrocell begins with a Control Byte. The bits inside this Control Byte are  
shown in Figure 93. After the Start bit, the first four bits are a control code, which can be set by the user in registers [1867:1864].  
This gives the user flexibility on the chip level addressing of this device and other devices on the same I2C bus. The Block Address  
is the next three bits (A10,A9, A8), which will define the most significant bits in the addressing of the data to be read or written by  
the command. The last bit in the Control Byte is the R/W bit, which selects whether a read command or write command is  
requested, with a “1” selecting for a Read command, and a “0” selecting for a Write command. This Control Byte will be followed  
by an Acknowledge bit (ACK), which is sent by this device to indicate successful communication of the Control Byte data.  
In the I2C-bus specification and user manual, there are two groups of eight addresses (0000 xxx and 1111 xxx) that are reserved  
for the special functions, such as a system General Call address. If the user of this device choses to set the Control Code to either  
“1111” or “0000” in a system with other slave device, please consult the I2C-bus specification and user manual to understand the  
addressing and implementation of these special functions, to ensure reliable operation.  
In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of  
information, resulting in a total address space of 2K bytes. Of this 2K byte address space, the valid addresses accessible to the  
I2C Macrocell on the SLG46517 are in the range from 0 (0x00) to 255 (0xFF). The MSB address bits (A10, A9, and A8) will be  
“0” for all commands to the SLG46517.  
With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word  
Address. Figure 93 shows this basic command structure.  
Start  
bit  
Acknowledge  
bit  
Control Byte  
Word Address  
A
10  
A
9
A
8
A
7
A
0
S
X
X
X
X
R/W ACK  
Control  
Code  
Block  
Address  
Not used, set to 0  
Read/Write bit  
(1 = Read, 0 = Write)  
Figure 93: Basic Command Structure  
Datasheet  
22-Jul-2021  
Revision 3.6  
132 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
17.3 I2C SERIAL GENERAL TIMING  
General timing characteristics for the I2C Serial Communications macrocell are shown in Figure 94. Timing specifications can be  
found in the Section 3.4.  
tHIGH  
tF  
tR  
tLOW  
SCL  
tSU STA  
tHD DAT  
tHD STA  
tSU DAT  
tSU STO  
SDA IN  
tBUF  
tAA  
tDH  
SDA OUT  
Figure 94: I2C General Timing Characteristics  
17.4 I2C SERIAL COMMUNICATIONS COMMANDS  
17.4.1 Byte Write Command  
Following the Start condition from the Master, the Control Code [4 bits], the Block Address [3 bits], and the R/W bit (set to “0”),  
are placed onto the I2C bus by the Master. After the SLG46517 sends an Acknowledge bit (ACK), the next byte transmitted by  
the Master is the Word Address. The Block Address (A10, A9, A8), combined with the Word Address (A7 through A0), together  
set the internal address pointer in the SLG46517, where the data byte is to be written. After the SLG46517 sends another  
Acknowledge bit, the Master will transmit the data byte to be written into the addressed memory location. The SLG46517 again  
provides an Acknowledge bit and then the Master generates a Stop condition. The internal write cycle for the data will take place  
at the time that the SLG46517 generates the Acknowledge bit.  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set  
to 0  
R/W bit = 0  
Figure 95: Byte Write Command, R/W = 0  
17.4.2 Sequential Write Command  
The write Control Byte, Word Address, and the first data byte are transmitted to the SLG46517 in the same way as in a Byte Write  
command. However, instead of generating a Stop condition, the Bus Master continues to transmit data bytes to the SLG46517.  
Each subsequent data byte will increment the internal address counter, and will be written into the next higher byte in the command  
addressing. As in the case of the Byte Write command, the internal write cycle will take place at the time that the SLG46517  
generates the Acknowledge bit.  
Datasheet  
22-Jul-2021  
Revision 3.6  
133 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Acknowledge  
bit  
Data (n + x)  
Acknowledge  
Start  
bit  
bit  
Bus Activity  
SDA LINE  
Not used, s  
Data (n + 1)  
Control Byte  
Word Address (n)  
Data (n)  
A
10  
A
8
A
9
ACK  
ACK  
P
S
X
X
X
X
W
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
et to 0  
Write bit  
Figure 96: Sequential Write Command  
17.4.3 Current Address Read Command  
The Current Address Read Command reads from the current pointer address location. The address pointer is incremented at the  
first STOP bit following any write control byte. For example, if a Sequential Read command (which contains a write control byte)  
reads data up to address n, the address pointer would get incremented to n + 1 upon the STOP of that command. Subsequently,  
a Current Address Read that follows would start reading data at n + 1. The Current Address Read Command contains the Control  
Byte sent by the Master, with the R/W bit = “1”. The SLG46517 will issue an Acknowledge bit, and then transmit eight data bits  
for the requested byte. The Master will not issue an Acknowledge bit, and follow immediately with a Stop condition.  
Start  
bit  
Acknowledge  
bit  
Stop  
bit  
Bus Activity  
Control Byte  
Data (n)  
A
10  
A
9
A
8
S
X
X
X
X
R
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
No Ack  
bit  
Not used, se  
t to 0  
R/W bit = 1  
Figure 97: Current Address Read Command, R/W = 1  
17.4.4 Random Read Command  
The Random Read command starts with a Control Byte (with R/W bit set to “0”, indicating a write command) and Word Address  
to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the same as the Byte Write  
command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address  
counter in preparation for the second half of the command. After the Start bit, the Bus Master issues a second control byte with  
the R/W bit set to “1”, after which the SLG46517 issues an Acknowledge bit, followed by the requested eight data bits.  
Datasheet  
22-Jul-2021  
Revision 3.6  
134 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Acknowledge  
Stop  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n)  
Control Byte  
Word Address (n)  
Control Byte  
A
10  
A
9
A
8
A
10  
A
9
A
8
S
ACK  
X
X
X
X
R ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
Control  
Code  
Block  
Address  
Control  
Code  
Block  
Address  
No Ack  
bit  
Not used, set to 0  
Write bit  
Read bit  
Figure 98: Random Read Command  
17.4.5 Sequential Read Command  
The Sequential Read command is initiated in the same way as a Random Read command, except that once the SLG46517  
transmits the first data byte, the Bus Master issues an Acknowledge bit as opposed to a Stop condition in a random read. The  
Bus Master can continue reading sequential bytes of data, and will terminate the command with a Stop condition.  
Acknowledge  
Start  
bit  
bit  
Bus Activity  
Data (n + 2)  
Data (n + x)  
Control Byte  
Data (n)  
Data (n + 1)  
A
8
A
10  
A
9
ACK  
P
SDA LINE  
S
X
X
X
X
R
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
No Ack  
bit  
Read bit  
Figure 99: Sequential Read Command  
17.4.6 I2C Serial Command Address Space  
In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of  
information, resulting in a total address space of 2K bytes. Of this 2K byte address space, the valid addresses accessible to the  
I2C Macrocell on the SLG46517 are in the range from 0 (0x00) to 255 (0xFF). The MSB address bits (A10, A9, and A8) will be  
“0” for all commands to the SLG46517.  
17.4.7 I2C Serial Command Register Map  
These register addresses are broken down into four Banks to give the user greater control on access to reading and writing  
information in each bank. Each of the four banks is 512 bits (64 bytes) in length. Writing information to register bits in these Banks  
will change the configuration of the device, resulting in either a change in the interconnection options provided by the Connection  
Matrix, or by changing the configuration of individual macrocells. During device use, all register bits can be read or written via I2C,  
unless protection bits are set to prevent this.  
See Section 20 for detailed information on all register bits.  
Datasheet  
22-Jul-2021  
Revision 3.6  
135 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Byte 255  
Bank 3  
Bank 2  
Bank 1  
Bank 0  
Byte 192  
Byte 191  
Byte 128  
Byte 127  
Byte 64  
Byte 63  
Byte 0  
Figure 100: Register Bank Map  
17.5 I2C SERIAL COMMAND REGISTER PROTECTION  
The memory space is divided into four banks, each of which has 512bits (64bytes). There are three bits that allow the user to  
define rules for reading and writing bits in each of these banks via I2C:  
register [1832] I2C lock for read bits [1535:0] (Bank 0/1/2). If the system provides any read commands to the addresses in  
these three banks, the device will respond with ‘FFH’ in data field.  
register [1871] I2C lock for write bits [1535:0] (Bank 0/1/2). If the system provides any write commands to the addresses in  
these three banks, the device will acknowledge these commands, but will not do internal writes to the register space.  
register [1870] I2C lock for write all bits (Bank 0/1/2/3). If the system provides any write commands to the addresses in these  
four banks, the device will acknowledge these commands, but will not do internal writes to the register space.  
Note: register [1870] is higher priority than register [1871], and if register [1870] is set, than register [1871] does not have any  
effect.  
Note: If the user sets IOs 6 and 7 function to a selection other than SDA and SCL, all access via I2C will be disabled.  
If register [1870] is not set, register bits in Bank 3 are open to read and write commands via I2C with the following exceptions:  
register [1871] Bank 0/1/2 I2C-write protection bit is always protected from I2C write  
registers [1867:1864] I2C Control Code Bit [3:0] is always protected from I2C write  
Note: Any write commands that come to the device via I2C that are not blocked, based on the protection bits, will change the  
contents of the RAM register bits that mirror the NVM bits. These write commands will not change the NVM bits themselves, and  
a POR event will restore the register bits to original programmed contents of the NVM.  
See Section 20 for detailed information on all registers.  
17.5.1 Register Read/Write Protection  
There are six read/write protect modes for the design sequence from being corrupted or copied. See Table 95 for details.  
Datasheet  
22-Jul-2021  
Revision 3.6  
136 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
.
Table 95: Read/Write Protection Options  
Lock Status  
Locked  
for read  
bits  
<1535:0>  
andwrite  
all bits  
Locked  
Locked for read  
forwrite andwrite  
Locked  
for read for write  
bits bits  
<1535:0> <1535:0>  
Locked  
Unlocked  
Bank  
Byte  
Bits  
Description  
all bits  
bits  
<1535:0>  
reg  
reg  
reg  
reg  
reg  
reg  
<1832>=0,  
<1871>=0,  
<1870>=0  
<1832>=1,  
<1871>=0,  
<1870>=0  
<1832>=0,  
<1871>=1,  
<1870>=0  
<1832>=0,  
<1871>=x,  
<1870>=1  
<1832>=1,  
<1871>=1,  
<1870>=0  
<1832>=1,  
<1871>=x,  
<1870>=1  
0
1
0-63  
511-0  
Connection Matrix  
Outputs  
Configuration  
R/W  
R/W  
-
W
W
-
R
R
-
R
R
-
-
-
-
-
-
-
64-109  
879-512  
110-127 880-1023  
128-186 1495-1024  
Reserved  
Function  
Configuration for  
PINs, LUTs/DFFs,  
OSC,ASMandsome  
configuration for  
DLYs, ACMP  
R/W  
W
R
R
-
-
2
187-191 1535-1496  
192-206 1655-1536  
Reserved  
-
-
-
-
-
-
CNT/DLY counter  
data and some LUTs  
truth table, ACMP  
Vref  
R/W  
R/W  
R/W  
R
R/W  
R
I2C reset bit with  
reloading NVM into  
Data register  
1662  
R/W  
R/W  
R/W  
R
R/W  
R
3
207  
1661-1659,  
Reserved  
R
R
R
R
R
R
R
R
1663  
1658-1656 OSC Power Control  
R/W  
R/W  
R/W  
R/W  
Datasheet  
22-Jul-2021  
Revision 3.6  
137 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 95: Read/Write Protection Options (Continued)  
Lock Status  
Locked  
for read  
bits  
<1535:0>  
andwrite  
all bits  
Locked  
Locked for read  
forwrite andwrite  
Locked  
for read for write  
bits bits  
<1535:0> <1535:0>  
Locked  
Unlocked  
Bank  
Byte  
Bits  
Description  
all bits  
bits  
<1535:0>  
reg  
reg  
reg  
reg  
reg  
reg  
<1832>=0,  
<1871>=0,  
<1870>=0  
<1832>=1,  
<1871>=0,  
<1870>=0  
<1832>=0,  
<1871>=1,  
<1870>=0  
<1832>=0,  
<1871>=x,  
<1870>=1  
<1832>=1,  
<1871>=1,  
<1870>=0  
<1832>=1,  
<1871>=x,  
<1870>=1  
ASM output RAM  
and User  
configurable RAM /  
OTP  
208-223 1791-1664  
224-227 1823-1792  
R/W  
R/W  
R/W  
R
R/W  
R
Reserved  
Reserved  
-
-
-
-
-
-
228  
1831-1824  
R/W  
R/W  
R/W  
R
R/W  
R
1839-1836  
1835-1834  
Product Family ID  
Reserved  
R
-
R
-
R
-
R
-
R
-
R
-
Reserved  
229  
1833  
R
R
R
R
R
R
I2C Lock for read  
bits<1535:0>  
1832  
R
R/W  
R
R
R/W  
R
R
R/W  
R
R
R
R
R
R/W  
R
R
R
R
230  
231  
1847-1840  
1855-1848  
Pattern ID  
Reserved  
Reserved  
232  
1863-1856  
1871  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
3
I2C Lock for write  
bits<1535:0>  
I2C Lock for write all  
bits  
1870  
233  
1869-1868  
1867-1864  
Reserved  
I2C Control Code  
-
-
-
-
-
-
R
R
R
R
R
R
Counter Current  
Value  
234-239 1919-1872  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Macrocells Output  
240-243 1951-1920 Values (Connection  
Matrix Inputs)  
R
R
R
R
Connection Matrix  
244  
1959-1952  
R/W  
R
R/W  
R
R/W  
R
R/W  
R
Virtual Inputs  
Macrocells Output  
245-247 1983-1960 Values (Connection  
Matrix Inputs)  
Reserved  
248-250 2007-1984  
R
R
R
R
Datasheet  
22-Jul-2021  
Revision 3.6  
138 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 95: Read/Write Protection Options (Continued)  
Lock Status  
Locked  
for read  
bits  
<1535:0>  
andwrite  
all bits  
Locked  
Locked for read  
forwrite andwrite  
Locked  
for read for write  
bits bits  
<1535:0> <1535:0>  
Locked  
Unlocked  
Bank  
Byte  
Bits  
Description  
all bits  
bits  
<1535:0>  
reg  
reg  
reg  
reg  
reg  
reg  
<1832>=0,  
<1871>=0,  
<1870>=0  
<1832>=1,  
<1871>=0,  
<1870>=0  
<1832>=0,  
<1871>=1,  
<1870>=0  
<1832>=0,  
<1871>=x,  
<1870>=1  
<1832>=1,  
<1871>=1,  
<1870>=0  
<1832>=1,  
<1871>=x,  
<1870>=1  
Reserved  
Reserved  
Reserved  
Reserved  
251  
2015-2008  
R/W  
R
R/W  
R
R/W  
R
R
R
R
R
R/W  
R
R
R
R
R
252-253 2031-2016  
3
254  
255  
2039-2032  
2047-2040  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Allow Read and Write Data  
Allow Write Data Only  
Allow Read Data Only  
W
R
-
The Data is protected for Read and Write  
17.5.2 I2C Serial Reset Command  
If I2C serial communication is established with the device, it is possible to reset the device to initial power up conditions, including  
configuration of all macrocells, and all connections provided by the Connection Matrix. This is implemented by setting  
register [1662] I2C reset bit to “1”, which causes the device to re-enable the Power-On Reset (POR) sequence, including the  
reload of all register data from NVM. During the POR sequence, the outputs of the device will be in tri-state. After the reset has  
taken place, the contents of register [1662] will be set to “0” automatically. The timing diagram shown below illustrates the  
sequence of events for this reset function.  
Datasheet  
22-Jul-2021  
Revision 3.6  
139 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Internal Reset bit  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set to  
0
Write bit  
by I2C Stop Signal  
Reset-bit register output  
Internal POR  
reloading NVM into Data register  
Reset-bit register (register [1662]) is cleared by reloading NVM into Data register  
1) I2C write with register [1662] = 1 (I2C reset bit with reloading NVM into Data register)  
2) POR go to LOW and reloading NVM into Data register start after “STOP” of I2C  
3) POR go to HIGH after reloading NVM into Data register  
Figure 101: Reset Command Timing  
17.6 I2C ADDITIONAL OPTIONS  
17.6.1 Reading Counter Data via I2C  
The current count value in three counters in the device can be read via I2C. The counters that have this additional functionality  
are 16-bit CNT0, and 8-bit counters CNT2 and CNT4.  
17.6.2 User RAM and OTP Memory Array  
There are eight bytes of RAM memory that can be read and written remotely by I2C commands. The initial contents of this memory  
space can be selected by the user, and this information will be transferred from OTP memory to the RAM memory space during  
the power-up sequence. The lowest order byte in this array (User Configurable RAM/OTP Byte 0) is located at I2C address 0xD8,  
and the highest order byte in this array is located at I2C address 0xDF.  
Table 96: RAM Array Table  
I2C Address  
(hex)  
Highest Bit  
Address  
Lowest Bit  
Address  
Memory Byte  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
1735  
1743  
1751  
1759  
1767  
1775  
1783  
1728  
1736  
1744  
1752  
1760  
1768  
1776  
User Configurable RAM/OTP Byte 0  
User Configurable RAM/OTP Byte 1  
User Configurable RAM/OTP Byte 2  
User Configurable RAM/OTP Byte 3  
User Configurable RAM/OTP Byte 4  
User Configurable RAM/OTP Byte 5  
User Configurable RAM/OTP Byte 6  
Datasheet  
22-Jul-2021  
Revision 3.6  
140 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 96: RAM Array Table(Continued)  
I2C Address  
(hex)  
Highest Bit  
Address  
Lowest Bit  
Address  
Memory Byte  
DF  
1791  
1784  
User Configurable RAM/OTP Byte 7  
Datasheet  
22-Jul-2021  
Revision 3.6  
141 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
18 External Clocking  
The SLG46517 supports several ways to use an external, higher accuracy clock as a reference source for internal operations.  
18.1 CRYSTAL MODE  
When register [1136] is set to 1, an external crystal can be connected to IOs 13 and 14 for supplying an accurate clock source.  
See Section 14. An external clocking signal on IO14 can be used in place of the crystal. The high and low limits for crystal  
frequency that can be selected are 32.768 kHz and 40 MHz.  
18.2 IO17 OR IO15 SOURCE FOR 25 KHZ/2 MHZ CLOCK  
When register [1358] is set to 1, an external clocking signal on IO15 will be routed in place of the internal RC oscillator derived  
25 kHz/2 MHz clock source. See Figure 60.  
The high and low limits for external frequency that can be selected are 0 MHz and 77 MHz.  
18.3 IO14 SOURCE FOR 25 MHZ CLOCK  
When register [1357] is set to 1, an external clocking signal on IO14 will be routed in place of the internal RC oscillator derived  
25 MHz clock source. See Figure 61. The high and low limits for external frequency that can be selected are 0 MHz and 84 MHz.  
Datasheet  
22-Jul-2021  
Revision 3.6  
142 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
19 Dual, 2A P-FET Power Switches  
19.1 POWER SWITCHES OVERVIEW  
The SLG46517 has a dual-channel, 44 mΩ PMOS power switch designed to switch 1.71 to 5.5 V power rails up to 2Aper channel.  
Each P-FET Power Switch can be controlled internally via the ONx digital input of the P-FET Power Switch component in  
GreenPAK Designer, allowing the user to generate integrated Mixed-Signal control circuits, or externally via PWR_SW_ONx.  
Whether controlled externally or internally, a low signal on either ONx or PWR_SW_ONx will close the P-FET Power Switch.  
Each P-FET Power Switch need not be used in the same voltage domain as VDD. However, when VIN is not tied to VDD, using a  
large pull-up resistor on PWR_SW_ON0 and PWR_SW_ON1 is recommended to prevent current from flowing through the P-FET  
Power Switch while the device is not powered.  
ILOAD1  
ILOAD0  
VOUT1  
VOUT0  
VIN1  
VIN0  
200 Ω  
200 Ω  
PWR_SW_ON0  
ON0  
PWR_SW_ON1  
ON1  
Control  
Selection  
Logic  
Control  
Selection  
Logic  
SW Open  
SW Open  
AGND  
SW Closed  
SW Closed  
Figure 102: Dual P-FET Power Switch  
Datasheet  
22-Jul-2021  
Revision 3.6  
143 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
19.2 DRIVING THE P-FET SWITCH  
Gate of P-FET power switch can be driven by either internally generated signal or directly by external source connected to  
corresponding PWR_SW_ONx pin. Simplified circuit topologies are illustrated on Figure 103.  
PWR  
PWR  
VINx  
VOUTx  
D
VINx  
VOUTx  
D
S
S
Cin  
Cin  
G
G
PWR_SW_ONx  
VDD  
PWR_SW_ONx  
NC  
LOW  
HIGH  
VDD  
VDD  
VDD  
ON  
GND AGND  
GND AGND  
Figure 103: Typical Circuit Topology for Internal (Left) and External (Right) Drive Modes  
Datasheet values for switching times are given for driving the resistive loads. The definitions of rise (tr), fall (tf), and delay times  
(td(on) and td(off)) are given on Figure 104. To achieve highest switching performance circuit should be laid off using high speed  
PCB layout techniques.  
VG  
VS  
90%  
10%  
0 V  
t
VD  
VD(ON)  
90%  
10%  
0 V  
td(off)  
toff  
tf  
td(on)  
ton  
tr  
t
Figure 104: Definitions for Rise, Fall and Switching Delay Times  
Datasheet  
22-Jul-2021  
Revision 3.6  
144 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Typical resistive switching waveforms are given on Figure 106 and Figure 107. Note that fall time is dependent on load current  
(see Section 19.4). At low loads turn off process can be delayed, therefore discharge circuit should be provided to reduce load  
turn off time in that case.  
VD  
VINx  
VDD  
VOUTx  
PWR  
Cin  
VG  
RL  
PWR_SW_ONx  
GPIOx  
ON  
GND AGND  
Figure 105: Test Circuit for Typical Switching Waveforms  
ON  
V
V
G
D
Time (0.2 ȝs/div)  
Figure 106: Typical Switching Waveforms (Internal Drive, Resistive Load, RL = 100 Ω, VDD = VIN = 5.5 V)  
ON  
V
V
G
D
Time (0.2 ȝs/div)  
Figure 107: Typical Switching Waveforms (Internal Drive, Resistive Load, RL = 100 Ω, VDD = VIN = 1.71 V)  
Datasheet  
22-Jul-2021  
Revision 3.6  
145 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
19.3 POWER DISSIPATION  
The junction temperature of the Power Switch depends on factors such as board layout, ambient temperature, external air flow  
over the package, load current, and the RDSON-generated voltage drop across each power MOSFET. While the primary  
contributor to the increase in the junction temperature of the Power Switch is the power dissipation of its power MOSFETs, its  
power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:  
2
PDTOTAL = (RDSON0 x IOUT02) + (RDSON1 x IOUT1  
)
where:  
PDTOTAL = Total package power dissipation, in Watts (W)  
RDSON = Channel 0 and Channel 1 Power MOSFET ON resistance, in Ohms (Ω), respectively  
IOUT = Channel 0 and Channel 1 Output current, in Amps (A), respectively  
and  
TJ = PDTOTAL x ΘJA + TA  
where:  
TJ = Die junction temperature, in Celsius degrees (°C)  
ΘJA = Package thermal resistance, in Celsius degrees per Watt (°C/W) – highly dependent on pcb layout  
TA = Ambient temperature, in Celsius degrees (°C)  
In nominal operating mode, the Power Switch power dissipation can also be calculated by taking into account the voltage drop  
across each switch (VINx-VOUTx) and the magnitude of that channel’s output current (IOUTx):  
PDTOTAL = [(VIN0-VOUT0) x IOUT0] + [(VIN1-VOUT1) x IOUT1] or  
PDTOTAL = [(VIN0 – (RLOAD0 x IOUT0)) x IOUT0] + [(VIN1 – (RLOAD1 x IOU1)) x IOUT1  
]
where:  
PDTOTAL = Total package power dissipation, in Watts (W)  
VIN = Channel 0 and Channel 1 Input Voltage, in Volts (V), respectively  
RLOAD = Channel 0 and Channel 1 Output Load Resistance, in Ohms (Ω), respectively  
IOUT = Channel 0 and Channel 1 output current, in Amps (A), respectively  
VOUT = Channel 0 and Channel 1 output voltage, or RLOAD x IOUT, respectively  
Datasheet  
22-Jul-2021  
Revision 3.6  
146 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
1.5  
1.25  
1
0.75  
Mounted on 27.4mm x 30.1 mm PCB  
(1.6 mm thick, 1 oz copper, FR-4 material)  
0.5  
-40  
-20  
0
20  
TA, Ambient temperature (°C)  
Figure 108: Power Dissipation Derating Curve  
40  
60  
80  
100  
19.4 POWER SWITCH TYPICAL PERFORMANCE  
TA = 25 °C, VDD = 5.5 V, unless otherwise noted.  
-5.00  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
VGS = -5.5 V  
Pulse Test  
Common Source  
VDS = -5.5 V  
-4.50  
-4.00  
-3.50  
VGS= -1.8 V  
VGS = -1.71V  
-3.00  
-2.50  
Pulse Test  
Common Source  
-2.00  
From left to right:  
-1.50  
-1.00  
-0.50  
0.00  
VGS = -5.5 V  
VGS = -3.3 V  
VGS = -2.5 V  
VGS = -2.0 V  
VGS= -2.5 V  
VGS= -3.3 V  
V
GS = -1.8 V  
VGS = -1.71 V  
VGS= -5.5 V  
0
-1  
-2  
-3  
-4  
-5  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
ID, Drain current (A)  
VDS, Drain-source voltage (V)  
Figure 110: Drain-Source On-Resistance vs. Drain  
Current  
Figure 109: Typical Output Characteristics  
Datasheet  
22-Jul-2021  
Revision 3.6  
147 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
0.15  
0.13  
0.11  
0.09  
0.07  
0.05  
0.03  
0.15  
Pulse Test  
Pulse Test  
Common Source  
ID = -1 A  
Common Source  
0.13  
0.11  
0.09  
0.07  
0.05  
0.03  
VDS = 5.5 V  
-0,5A / -1.8V  
-1A / -2.5V  
VDS = -5.5 V  
-1,5A / -3.3V  
-2A / -5.5V  
TA = +85°C  
TA = +25°C  
TA = -40°C  
-1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 -5.5 -6.0 -6.5  
VGS, Gate-Source voltage (V)  
-40 -20  
0
20  
40  
60  
80 100 120 140  
TA, Ambient temperature (°C)  
Figure 112: Gate-Source On-Resistance Gate-Source  
Voltage  
Figure 111: Typical Drain-Source On-Resistance vs.  
Ambient Temperature  
10.00  
-5  
Pulse Test  
Pulse Test  
Common Source  
-4.5  
Common Source  
VDS = - 5.5 V  
VDS = -5.5 V  
-4  
-3.5  
1.00  
0.10  
0.01  
TA  
= +125°C  
-3  
-2.5  
-2  
TA = +85°C  
TA = +25°C  
TA = -40°C  
-1.5  
-1  
-0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
0.001  
0.01  
0.1  
1
10  
VGS, Gate-source voltage (V)  
-ID, Drain current (A)  
Figure 113: Drain Current vs. Gate-Source Voltage  
Figure 114: Typical Forward Transconductance  
Datasheet  
22-Jul-2021  
Revision 3.6  
148 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
-0.75  
-0.7  
10.00  
VGS = VDS  
ID = -1 mA  
Pulse Test  
Common Source  
VGS = 0V  
-0.65  
-0.6  
1.00  
0.10  
-0.55  
-0.5  
-0.45  
-0.4  
TA = +125°C +85°C  
+25°C  
-40°C  
-40 -20  
0
20  
40  
60  
80 100 120 140  
0.01  
0.4  
0.6  
0.8  
1.0  
TA, Ambient temperature (°C)  
VDSF, Body diode forward voltage (V)  
Figure 115: Typical Drain-Source Diode Forward Voltage  
Figure 116: Gate Threshold Voltage vs Ambient  
Temperature  
10000  
10  
VGS = 5.5 V  
TA  
= +125°C  
V
DS = 0 V  
1000  
100  
10  
1
0.1  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0.01  
1
0.001  
0.0001  
VGS = 0 V  
0.1  
-40 -20  
0
20  
40  
60  
80 100 120 140  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-6.0  
TA, Ambient temperature (°C)  
VDS, Drain-source voltage (V)  
Figure 117: Zero Gate Voltage Drain Current  
Figure 118: Gate-Body Leakage vs. Ambient  
Temperature  
Datasheet  
22-Jul-2021  
Revision 3.6  
149 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
10000  
10000  
1000  
100  
Common Source  
tf  
Common Source  
VDD = 5.5V  
VDD = 1.71V  
tf  
V
DS = -1.71V  
VDS = -5.5V  
Internal Drive  
Internal Drive  
1000  
100  
10  
td(off)  
td(on)  
td(off)  
td(on)  
tr  
tr  
10  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
-ID, Drain current (A)  
-ID, Drain current (A)  
Figure 120: Typical Switching Time (Internal Gate Drive)  
at VDS = 5.5 V  
Figure 119: Typical Switching Time (Internal Gate Drive)  
at VDS = 1.71 V  
-5.5  
Common Source  
Pulse Test  
VDS = -5.5 V  
-4.5  
ID =2 A  
ID =0.1 A  
-3.5  
-2.5  
-1.5  
-0.5  
0.0  
0.5  
1.0  
1.5  
Time (0.1μs/div)  
QG, Gate charge (nC)  
Figure 122: Typical Gate Charge vs. Gate-Source  
Voltage  
Figure 121: Typical Gate Input Waveform, Internal Gate  
Drive Source (Switching Time Test)  
Datasheet  
22-Jul-2021  
Revision 3.6  
150 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
250  
Ciss  
200  
Coss  
150  
100  
Crss  
50  
VGS = 0 V  
f = 1 MHz  
excluding RG  
0
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-6.0  
VDS, Drain-source voltage (V)  
Figure 123: Typical Capacitance vs. Drain-Source  
Voltage  
Datasheet  
22-Jul-2021  
Revision 3.6  
151 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
20 Register Definitions  
20.1 REGISTER MAP  
Table 97: Register Map  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
Note: For register [0] to register [1495], I2C Read is valid (assuming register [1832] = 0), I2C Write is valid (assuming  
register [1871] = 0)  
Matrix 64-to-1 MUX's 6 selection bits  
5:0  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
ASM-state0-EN0  
ASM-state0-EN1  
ASM-state0-EN2  
ASM-state1-EN0  
ASM-state1-EN1  
ASM-state1-EN2  
ASM-state2-EN0  
ASM-state2-EN1  
ASM-state2-EN2  
ASM-state3-EN0  
ASM-state3-EN1  
ASM-state3-EN2  
ASM-state4-EN0  
ASM-state4-EN1  
ASM-state4-EN2  
ASM-state5-EN0  
ASM-state5-EN1  
ASM-state5-EN2  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
7:6  
13:8  
15:14  
21:16  
23:22  
29:24  
31:30  
37:32  
39:38  
45:40  
47:46  
53:48  
55:54  
61:56  
63:62  
69:64  
71:70  
77:72  
79:78  
85:80  
87:86  
93:88  
95:94  
101:96  
103:102  
109:104  
111:110  
117:112  
119:118  
125:120  
127:126  
133:128  
135:134  
141:136  
143:142  
Datasheet  
22-Jul-2021  
Revision 3.6  
152 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Signal Function  
Byte Register Bit  
Register Bit Definition  
Read Write  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
149:144  
151:150  
157:152  
159:158  
165:160  
167:166  
173:168  
175:174  
181:176  
183:182  
189:184  
191:190  
197:192  
199:198  
205:200  
207:206  
213:208  
215:214  
221:216  
223:222  
229:224  
231:230  
237:232  
239:238  
245:240  
247:246  
253:248  
255:254  
261:256  
263:262  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
ASM-state6-EN0  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
ASM-state6-EN1  
ASM-state6-EN2  
ASM-state7-EN0  
ASM-state7-EN1  
ASM-state7-EN2  
ASM-state-nRST  
IO1 Digital Output Source  
IO1 Output Enable  
IO2 Digital Output Source  
IO3 Digital Output Source  
IO3 Output Enable  
IO4 Digital Output Source  
IO5 Digital Output Source  
IO5 Output Enable  
IO6 Digital Output Source (SCL with VI/In-  
put & NMOS Open-Drain)  
269:264  
271:270  
277:272  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
21  
22  
IO7 Digital Output Source (SDA with VI/In-  
put & NMOS Open-Drain)  
Matrix OUT  
279:278  
285:280  
287:286  
293:288  
295:294  
301:296  
303:302  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
IO8 Digital Output Source  
IO8 Output Enable  
23  
24  
25  
IO9 Digital Output Source  
Datasheet  
22-Jul-2021  
Revision 3.6  
153 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Signal Function  
Byte Register Bit  
Register Bit Definition  
Read Write  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
309:304  
311:310  
317:312  
319:318  
325:320  
327:326  
333:328  
335:334  
341:336  
343:342  
349:344  
351:350  
357:352  
359:358  
365:360  
367:366  
373:368  
375:374  
381:376  
383:382  
389:384  
391:390  
397:392  
399:398  
405:400  
407:406  
413:408  
415:414  
421:416  
423:422  
429:424  
431:430  
437:432  
439:438  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
IO10 Digital Output Source  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
IO10 Output Enable  
IO11 Digital Output Source  
IO11 Output Enable  
IO12 Digital Output Source  
IO13 Digital Output Source  
IO13 Output Enable  
IO14 Digital Output Source  
IO15 Digital Output Source  
IO15 Output Enable  
Power Switch ON0, Digital Output Source Valid Valid  
Valid Valid  
Reserved  
Valid Valid  
Valid Valid  
Power Switch ON1, Digital Output Source Valid Valid  
Valid Valid  
ACMP0 PWR UP  
ACMP1 PWR UP  
ACMP2 PWR UP  
ACMP3 PWR UP  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Input of Filter_0 with fixed time edge  
detector  
445:440  
447:446  
453:448  
455:454  
461:456  
463:462  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
37  
38  
39  
Input of Filter_1 with fixed time edge  
detector  
Valid Valid  
Valid Valid  
Input of Programmable Delay & Edge  
Detector  
Valid Valid  
Valid Valid  
Datasheet  
22-Jul-2021  
Revision 3.6  
154 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Signal Function  
Byte Register Bit  
Register Bit Definition  
Read Write  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
469:464  
471:470  
477:472  
479:478  
485:480  
487:486  
493:488  
495:494  
501:496  
503:502  
509:504  
511:510  
517:512  
519:518  
525:520  
527:526  
533:528  
535:534  
541:536  
543:542  
549:544  
551:550  
557:552  
559:558  
565:560  
567:566  
573:568  
575:574  
581:576  
583:582  
589:584  
591:590  
597:592  
599:598  
605:600  
607:606  
613:608  
615:614  
621:616  
623:622  
629:624  
631:630  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
OSC 25 kHz/2MHz PDB (Power-Down)  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
OSC 25 MHz PDB (Power-Down)  
IN0 of LUT2_0 or Clock Input of DFF0  
IN1 of LUT2_0 or Data Input of DFF0  
IN0 of LUT2_1 or Clock Input of DFF1  
IN1 of LUT2_1 or Data Input of DFF1  
IN0 of LUT2_2 or Clock Input of DFF2  
IN1 of LUT2_2 or Data Input of DFF2  
IN0 of LUT2_3 or Clock Input of PGen  
IN1 of LUT2_3 or nRST of PGen  
IN0 of LUT3_0 or Clock Input of DFF3  
IN1 of LUT3_0 or Data Input of DFF3  
IN2 of LUT3_0 or nRST (nSET) of DFF3  
IN0 of LUT3_1 or Clock Input of DFF4  
IN1 of LUT3_1 or Data Input of DFF4  
IN2 of LUT3_1 or nRST (nSET) of DFF4  
IN0 of LUT3_2 or Clock Input of DFF5  
IN1 of LUT3_2 or Data Input of DFF5  
IN2 of LUT3_2 or nRST (nSET) of DFF5  
IN0 of LUT3_3 or Clock Input of DFF6  
IN1 of LUT3_3 or Data Input of DFF6  
Datasheet  
22-Jul-2021  
Revision 3.6  
155 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Signal Function  
Byte Register Bit  
Register Bit Definition  
Read Write  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
637:632  
639:638  
645:640  
647:646  
653:648  
655:654  
661:656  
663:662  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
IN2 of LUT3_3 or nRST (nSET) of DFF6  
4F  
50  
51  
52  
IN0 of LUT3_4 or Clock Input of DFF7  
IN1 of LUT3_4 or Data Input of DFF7  
IN2 of LUT3_4 or nRST (nSET) of DFF7  
IN0ofLUT3_5orDelay2Input(orCounter2  
RST Input)  
669:664  
671:670  
677:672  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
53  
IN1 of LUT3_5 or External Clock Input of  
Delay2 (or Counter2)  
Matrix OUT  
54  
55  
56  
679:678  
685:680  
687:686  
Reserved  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
IN2 of LUT3_5  
IN0ofLUT3_6orDelay3Input(orCounter3  
RST Input)  
693:688  
695:694  
701:696  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
IN1 of LUT3_6 or External Clock Input of  
Delay3 (or Counter3)  
Matrix OUT  
57  
58  
59  
703:702  
709:704  
711:710  
Reserved  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
IN2 of LUT3_6  
IN0ofLUT3_7orDelay4Input(orCounter4  
RST Input)  
717:712  
719:718  
725:720  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
IN1 of LUT3_7 or External Clock Input of  
Delay4 (or Counter4)  
Matrix OUT  
5A  
5B  
5C  
727:726  
733:728  
735:734  
Reserved  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
IN2 of LUT3_7  
IN0ofLUT3_8orDelay5Input(orCounter5  
RST Input)  
741:736  
743:742  
749:744  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
IN1 of LUT3_8 or External Clock Input of  
Delay5 (or Counter5)  
Matrix OUT  
5D  
5E  
5F  
751:750  
757:752  
759:758  
Reserved  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
IN2 of LUT3_8  
IN0ofLUT3_9orDelay6Input(orCounter6  
RST Input)  
765:760  
767:766  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Datasheet  
22-Jul-2021  
Revision 3.6  
156 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
IN1 of LUT3_9 or External Clock Input of  
Delay6 (or Counter6)  
773:768  
Matrix OUT  
Valid Valid  
60  
775:774  
781:776  
783:782  
789:784  
791:790  
797:792  
799:798  
805:800  
807:806  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
IN2 of LUT3_9  
61  
62  
63  
64  
IN0 of LUT3_10 or Input of Pipe Delay  
IN1 of LUT3_10 or nRST of Pipe Delay  
IN2 of LUT3_10 or Clock of Pipe Delay  
IN0ofLUT4_0orDelay0Input(orCounter0  
RST/SET Input)  
813:808  
815:814  
821:816  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
65  
66  
IN1 of LUT4_0 or External Clock Input of  
Delay0 (or Counter0)  
Matrix OUT  
823:822  
829:824  
831:830  
837:832  
839:838  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
IN2 of LUT4_0 or UP Input of FSM0  
IN3 of LUT4_0 or KEEP Input of FSM0  
67  
68  
IN0ofLUT4_1orDelay1Input(orCounter1  
RST/SET Input)  
845:840  
847:846  
853:848  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
69  
6A  
IN1 of LUT4_1 or External Clock Input of  
Delay1 (or Counter1)  
Matrix OUT  
855:854  
861:856  
863:862  
869:864  
871:870  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
IN2 of LUT4_1 or UP Input of FSM1  
IN3 of LUT4_1 or KEEP Input of FSM1  
6B  
6C  
PD of either Temp-output with BGAND/OR  
crystal oscillator by register [1268]  
877:872  
Matrix OUT  
Valid Valid  
6D  
879:878  
887:880  
895:888  
903:896  
911:904  
919:912  
927:920  
935:928  
943:936  
951:944  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
Datasheet  
22-Jul-2021  
Revision 3.6  
157 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Signal Function  
Byte Register Bit  
Register Bit Definition  
Read Write  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
959:952  
967:960  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
975:968  
983:976  
991:984  
999:992  
1007:1000  
1015:1008  
1023:1016  
IO0  
1024  
1025  
Reserved  
Reserved  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
1027:1026  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
1029:1028  
1031:1030  
IO0 Pull-down Resistor Value Selection  
IO0 Mode Control  
Valid Valid  
Valid Valid  
80  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
IO1  
80  
1032  
1033  
Reserved  
Valid Valid  
Valid Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO1 Pull-up/down Resistor Selection  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
1035:1034  
1037:1036  
1039:1038  
IO1 Pull-up/down Resistor Value Selection  
IO1 Mode Control (sig_io1_oe = 0)  
IO1 Mode Control (sig_io1_oe = 1)  
Valid Valid  
Valid Valid  
Valid Valid  
00: Digital Input without Schmitt Trigger,  
01: Digital Input with Schmitt Trigger,  
10: Low Voltage Digital Input  
11: Reserved  
81  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
Datasheet  
22-Jul-2021  
Revision 3.6  
158 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
IO2  
1040  
1041  
Reserved  
Valid Valid  
Valid Valid  
0: 1x  
1: 2x  
IO2 Driver Strength Selection  
0: Pull-down Resistor  
1: Pull-up Resistor  
1042  
IO2 Pull-up/down Resistor Selection  
Valid Valid  
Valid Valid  
00: Floating  
01: 10 K  
10: 100 K  
1044:1043  
IO2 Pull-up/down Resistor Value Selection  
82  
11: 1 M  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Reserved 100: Push-Pull  
101: Open-Drain NMOS  
1047:1045  
IO2 Mode Control  
Valid Valid  
110: Open-Drain PMOS  
111: Reserved  
IO3  
1048  
1049  
Reserved  
Valid Valid  
Valid Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO3 Pull-up/down Resistor Selection  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
1051:1050  
1053:1052  
1055:1054  
IO3 Pull-up/down Resistor Value Selection  
IO3 Mode Control (sig_io3_oe = 0)  
IO3 Mode Control (sig_io3_oe = 1)  
Valid Valid  
Valid Valid  
Valid Valid  
83  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO4  
1056  
1057  
Reserved  
Valid Valid  
Valid Valid  
0: 1x  
1: 2x  
IO4 Driver Strength Selection  
0: Pull-down Resistor  
1: Pull-up Resistor  
1058  
IO4 Pull-up/down Resistor Selection  
Valid Valid  
Valid Valid  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
1060:1059  
IO4 Pull-up/down Resistor Value Selection  
84  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Analog Input/Output  
1063:1061  
IO4 Mode Control  
Valid Valid  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Analog Input & Open-Drain  
Datasheet  
22-Jul-2021  
Revision 3.6  
159 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
IO5  
1064  
1065  
Reserved  
Valid Valid  
Valid Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO5 Pull-up/down Resistor Selection  
00: Floating  
01: 10 K  
10: 100 K  
1067:1066  
1069:1068  
1071:1070  
IO5 Pull-up/down Resistor Value Selection  
IO5 Mode Control (sig_io5_oe = 0)  
IO5 Mode Control (sig_io5_oe = 1)  
Valid Valid  
Valid Valid  
Valid Valid  
11: 1 M  
85  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Analog Input/Output  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO6  
1072  
1073  
Reserved  
Valid Valid  
Valid Valid  
0: 1x  
1: 2x  
IO6 Driver Strength Selection  
0: SCL & Virtual Input 0  
1: IO6  
1074  
Select SCL & Virtual Input 0 or IO6  
Valid Valid  
Valid Valid  
00: Floating  
01: 10 K  
10: 100 K  
1076:1075  
IO6 Pull-down Resistor Value Selection  
86  
11: 1 M  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Reserved  
IO6 (or SCL) Mode Control  
1079:1077  
Valid Valid  
(input mode is selected by register at SCL) 100: Reserved  
101: Open-Drain NMOS  
110: Reserved  
111: Reserved  
IO7  
1080  
1081  
Reserved  
Valid Valid  
Valid Valid  
0: 1x (I2C up to 400 kHz)  
1: 2x (I2C up to 1 MHz)  
IO7 (or SDA) Driver Strength Selection  
0: SDA & Virtual Input 1  
1: IO7  
1082  
Select SDA & Virtual Input 1 or IO7  
Valid Valid  
Valid Valid  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
1084:1083  
IO7 Pull-down Resistor Value Selection  
87  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
IO7 (or SDA) Mode Control  
1087:1085  
(input mode is selected by register at SDA, 011: Re served 100: Reserved  
Valid Valid  
output mode is fixed as OD at SDA)  
101: Open-Drain NMOS  
110: Reserved  
111: Reserved  
Datasheet  
22-Jul-2021  
Revision 3.6  
160 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
IO8  
0: Super Drive OFF  
1: SuperDrive ON (if sig_IO8_oe ='1' &IO8 Valid Valid  
Mode Control = '1x')  
IO8 Super Drive (4x, NMOS Open-Drain)  
Selection  
1088  
0: Pull-down Resistor  
Valid Valid  
1089  
IO8 Pull-up/down Resistor Selection  
1: Pull-up Resistor  
00: Floating  
01: 10K  
1091:1090  
IO8 Pull-up/down Resistor Value Selection  
Valid Valid  
10: 100K  
88  
11: 1M  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Analog Input/Output  
1093:1092  
1095:1094  
IO8 Mode Control (sig_io8_oe = 0)  
IO8 Mode Control (sig_io8_oe = 1)  
Valid Valid  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
Valid Valid  
11: Open-Drain NMOS 2x  
IO9  
0: Super Drive OFF  
1: Super Drive ON (if IO9 Mode Control = Valid Valid  
'101')  
IO9 Super Drive (4x, NMOS Open-Drain)  
Selection  
1096  
0: 1x  
1: 2x  
1097  
1098  
IO9 Driver Strength Selection  
Valid Valid  
0: Pull-down Resistor  
Valid Valid  
IO9 Pull-up/down Resistor Selection  
1: Pull-up Resistor  
00: Floating  
01: 10K  
10: 100K  
1100:1099  
IO9 Pull-up/down Resistor Value Selection  
Valid Valid  
89  
11: 1M  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Analog Input/Output  
100: Push-Pull  
1103:1101  
IO9 Mode Control  
Valid Valid  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Analog Input & Open-Drain  
Datasheet  
22-Jul-2021  
Revision 3.6  
161 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
IO10  
1104  
1105  
Reserved  
Valid Valid  
Valid Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO10 Pull-up/down Resistor Selection  
00: Floating  
01: 10K  
10: 100K  
1107:1106  
1109:1108  
1111:1110  
IO10 Pull-up/down Resistor Value Selection  
IO10 Mode Control (sig_io10_oe = 0)  
IO10 Mode Control (sig_io10_oe = 1)  
Valid Valid  
Valid Valid  
Valid Valid  
11: 1M  
8A  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Analog Input/Output  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO11  
1112  
1113  
Reserved  
Valid Valid  
Valid Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO11 Pull-up/down Resistor Selection  
00: Floating  
01: 10K  
10: 100K  
1115:1114  
1117:1116  
1119:1118  
IO11 Pull-up/down Resistor Value Selection  
IO11 Mode Control (sig_IO11_oe = 0)  
IO11 Mode Control (sig_IO11_oe = 1)  
Valid Valid  
Valid Valid  
Valid Valid  
11: 1M  
8B  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Analog Input/Output  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO12  
1120  
1121  
Reserved  
Valid Valid  
Valid Valid  
0: 1x  
1: 2x  
IO12 Driver Strength Selection  
0: Pull-down Resistor  
1: Pull-up Resistor  
1122  
IO12 Pull-up/down Resistor Selection  
Valid Valid  
Valid Valid  
00: Floating  
01: 10K  
10: 100K  
1124:1123  
IO12 Pull-up/down Resistor Value Selection  
8C  
11: 1M  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Analog Input/Output  
1127:1125  
IO12 Mode Control  
Valid Valid  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Analog Input & Open-Drain  
Datasheet  
22-Jul-2021  
Revision 3.6  
162 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
IO13  
1128  
1129  
Reserved  
Valid Valid  
Valid Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO13 Pull-up/down Resistor Selection  
00: Floating  
01: 10K  
10: 100K  
1131:1130  
1133:1132  
1135:1134  
IO13 Pull-up/down Resistor Value Selection  
IO13 Mode Control (sig_io13_oe = 0)  
IO13 Mode Control (sig_io13_oe = 1)  
Valid Valid  
Valid Valid  
Valid Valid  
11: 1M  
8D  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Sel for XOSC (X2)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO14  
0: Disable  
1: Enable  
1136  
1137  
1138  
X1 & X2 for crystal OSC enable  
IO14 Driver Strength Selection  
IO14 Pull-up/down Resistor Selection  
Valid Valid  
Valid Valid  
Valid Valid  
0: 1x  
1: 2x  
0: Pull-down Resistor  
1: Pull-up Resistor  
00: Floating  
01: 10K  
10: 100K  
11: 1M  
1140:1139  
IO14 Pull-up/down Resistor Value Selection  
Valid Valid  
8E  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Sel for XOSC (X1)  
1143:1141  
IO14 Mode Control  
Valid Valid  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Reserved  
IO15  
1144  
1145  
Reserved  
Valid Valid  
Valid Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO15 Pull-up/down Resistor Selection  
00: Floating  
01: 10K  
10: 100K  
1147:1146  
1149:1148  
1151:1150  
IO15 Pull-up/down Resistor Value Selection  
IO15 Mode Control (sig_io15_oe = 0)  
IO15 Mode Control (sig_io15_oe = 1)  
Valid Valid  
Valid Valid  
11: 1M  
8F  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Analog Input/Output  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
Valid Valid  
Datasheet  
22-Jul-2021  
Revision 3.6  
163 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
PWR_SW_ON0  
1152  
Reserved  
Valid Valid  
Valid Valid  
PWR_SW_ON0  
Pull-up/down Resistor Selection  
0: Reserved  
1: Reserved  
1153  
00: Reserved  
01: Reserved  
10: Reserved  
11: Reserved  
PWR_SW_ON0  
Pull-up/down Resistor Value Selection  
1155:1154  
1157:1156  
1159:1158  
Valid Valid  
Valid Valid  
Valid Valid  
90  
00: Digital Input without Schmitt Trigger  
01: Reserved  
10: Reserved  
PWR_SW_ON0  
Mode Control (sig_io16_oe = 0)  
11: Reserved  
00: Reserved  
01: 2x  
10: Reserved  
11: Reserved  
PWR_SW_ON0  
Mode Control (sig_io16_oe = 1)  
PWR_SW_ON1  
1160  
Reserved  
Valid Valid  
Valid Valid  
PWR_SW_ON1  
Driver Strength Selection  
0: Reserved  
1: 2x  
1161  
1162  
PWR_SW_ON1  
Pull-up/down Resistor Selection  
0: Reserved  
1: Reserved  
Valid Valid  
Valid Valid  
00: Reserved  
01: Reserved  
10: Reserved  
11: Reserved  
PWR_SW_ON1  
Pull-up/down Resistor Value Selection  
1164:1163  
91  
000: Digital Input without Schmitt Trigger  
001: Reserved  
010: Reserved  
PWR_SW_ON1  
Mode Control  
011: Reserved  
100: Push-Pull  
101: Reserved  
1167:1165  
Valid Valid  
110: Reserved  
111: Reserved  
ACMP1  
ACMP1 Positive Input Source Select  
0: IO8  
1: ACMP0 IN+ source  
1168  
1169  
Valid Valid  
Valid Valid  
ACMP1 Analog Buffer Enable (Max. BW  
1MHz)  
0: Disable analog buffer  
1: Enable analog buffer  
00: 0mV  
01: 25mV  
92  
10: 50mV  
11: 200mV  
1171:1170  
ACMP1 Hysteresis Enable  
Valid Valid  
(01: for both external & internal Vref; 10 &  
11: for only internal Vref; External Vref will  
not have 50mV & 200mV hysteresis.)  
Datasheet  
22-Jul-2021  
Revision 3.6  
164 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
ACMP0  
ACMP0 Positive Input Source Select  
1172  
0: IO4  
1: VDD  
Valid Valid  
Valid Valid  
ACMP0 Analog Buffer Enable (Max. BW  
0: Disable analog buffer  
1: Enable analog buffer  
1173  
1MHz)  
00: 0mV  
01: 25mV  
92  
10: 50mV  
11: 200mV  
(01: for both external & internal Vref; 10 &  
11: for only internal Vref; External Vref will  
not have 50mV & 200mV hysteresis.)  
1175:1174  
1177:1176  
ACMP0 Hysteresis Enable  
Valid Valid  
ACMP3  
ACMP3 Positive Input Source Select  
00: IO12  
01: ACMP2 IN+ source  
10: ACMP0 IN+ source  
11: Reserved  
Valid Valid  
Valid Valid  
00: 0mV  
01: 25mV  
10: 50mV  
11: 200mV  
93  
1179:1178  
ACMP3 Hysteresis Enable  
(01: for both external & internal Vref; 10 &  
11: for only internal Vref; External Vref will  
not have 50mV & 200mV hysteresis.)  
ACMP2  
ACMP2 Positive Input Source Select  
ACMP2 Hysteresis Enable  
0: IO10  
1: ACMP0 IN+ source  
1180  
Valid Valid  
Valid Valid  
00: 0mV  
01: 25mV  
10: 50mV  
11: 200mV  
(01: for both external & internal Vref; 10 &  
11: for only internal Vref; External Vref will  
not have 50mV & 200mV hysteresis.)  
93  
1182:1181  
ACMP1 100 uA Current Source Enable  
93 1183 ACMP1 100 uA Current Source Enable  
LUT3_x Function Select  
0: Disable  
1: Enable  
Valid Valid  
0: LUT3_3  
1: DFF6 with nRST/nSET  
1184  
1185  
1186  
LUT3_3 or DFF6 with nRST/nSET Select  
Valid Valid  
Valid Valid  
Valid Valid  
0: LUT3_2  
1: DFF5 with nRST/nSET  
LUT3_2 or DFF5 with nRST/nSET Select  
LUT3_1 or DFF4 with nRST/nSET Select  
94  
0: LUT3_1  
1: DFF4 with nRST/nSET  
LUT3_0 or DFF3 with nRST/nSET Select  
(Two consecutive DFFs if register [1471] = 1  
for SM)  
0: LUT3_0  
1: DFF3 with nRST/nSET  
1187  
Valid Valid  
Datasheet  
22-Jul-2021  
Revision 3.6  
165 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
LUT2_x Function Select  
0: LUT2_3  
1: PGen  
1188  
1189  
1190  
1191  
LUT2_3 or PGen Select  
LUT2_2 or DFF2 Select  
LUT2_1 or DFF1 Select  
LUT2_0 or DFF0 Select  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
0: LUT2_2  
1: DFF2  
94  
0: LUT2_1  
1: DFF1  
0: LUT2_0  
1: DFF0  
LUT4_x Function Select  
0: LUT4_1  
1: DLY/CNT1(16bits)  
1192  
1193  
LUT4_1 or DLY/CNT1(16bits) Select  
LUT4_0 or DLY/CNT0(16bits) Select  
Valid Valid  
Valid Valid  
95  
0: LUT4_0  
1: DLY/CNT0(16bits)  
LUT3_x Function Select  
0: LUT3_9  
1: DLY/CNT6(8bits)  
1194  
1195  
1196  
1197  
1198  
1199  
LUT3_9 or DLY/CNT6(8bits) Select  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
0: LUT3_8  
1: DLY/CNT5(8bits)  
LUT3_8 or DLY/CNT5(8bits) Select  
LUT3_7 or DLY/CNT4(8bits) Select  
LUT3_6 or DLY/CNT3(8bits) Select  
LUT3_5 or DLY/CNT2(8bits) Select  
LUT3_4 or DFF7 with nRST/nSET Select  
0: LUT3_7  
1: DLY/CNT4(8bits)  
95  
0: LUT3_6  
1: DLY/CNT3(8bits)  
0: LUT3_5  
1: DLY/CNT2(8bits)  
0: LUT3_4  
1: DFF7 with nRST/nSET  
LUT2_1/DFF1  
1200  
LUT2_1 [0]  
Valid Valid  
Valid Valid  
0: Low  
1: High  
1201  
1202  
1203  
LUT2_1 [1]/DFF1 Initial Polarity Select  
96  
0: Q output  
1: QB output  
LUT2_1 [2]/DFF1 Output Select  
LUT2_1 [3]/DFF1 or LATCH Select  
Valid Valid  
Valid Valid  
0: DFF function  
1: LATCH function  
LUT2_0/DFF0  
1204  
LUT2_0 [0]  
Valid Valid  
Valid Valid  
0: Low  
1: High  
1205  
1206  
1207  
LUT2_0 [1]/DFF0 Initial Polarity Select  
96  
0: Q output  
1: QB output  
LUT2_0 [2]/DFF0 Output Select  
LUT2_0 [3]/DFF0 or LATCH Select  
Valid Valid  
Valid Valid  
0: DFF function  
1: LATCH function  
LUT2_3/PGen  
97  
1211:1208  
LUT2_3 [3:0] or PGen 4bit counter data[3:0]  
Valid Valid  
Datasheet  
22-Jul-2021  
Revision 3.6  
166 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
LUT2_2/DFF2  
1212  
LUT2_2 [0]  
Valid Valid  
Valid Valid  
0: Low  
1: High  
1213  
LUT2_2 [1]/DFF2 Initial Polarity Select  
97  
0: Q output  
1: QB output  
1214  
1215  
LUT2_2 [2]/DFF2 Output Select  
LUT2_2 [3]/DFF2 or LATCH Select  
Valid Valid  
Valid Valid  
0: DFF function  
1: LATCH function  
LUT3_0/DFF3  
1219:1216  
LUT3_0 [3:0]  
Valid Valid  
Valid Valid  
0: Low  
1: High  
1220  
1221  
1222  
1223  
LUT3_0 [4]/DFF3 Initial Polarity Select  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
LUT3_0 [5]/DFF3 nRST or nSET Select  
LUT3_0 [6]/DFF3 Output Select  
Valid Valid  
Valid Valid  
Valid Valid  
98  
0: Q output  
1: QB output  
0: DFF function  
1: LATCH function  
LUT3_0 [7]/DFF3 or LATCH Select  
LUT3_1/DFF4  
1227:1224  
LUT3_1 [3:0]  
Valid Valid  
Valid Valid  
0: Low  
1: High  
1228  
1229  
1230  
1231  
LUT3_1 [4]/DFF4 Initial Polarity Select  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
LUT3_1 [5]/DFF4 nRST or nSET Select  
LUT3_1 [6]/DFF4 Output Select  
Valid Valid  
Valid Valid  
Valid Valid  
99  
0: Q output  
1: QB output  
0: DFF function  
1: LATCH function  
LUT3_1 [7]/DFF4 or LATCH Select  
LUT3_2/DFF5  
1235:1232  
LUT3_2 [3:0]  
Valid Valid  
Valid Valid  
0: Low  
1: High  
1236  
1237  
1238  
1239  
LUT3_2 [4]/DFF5 Initial Polarity Select  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
LUT3_2 [5]/DFF5 nRST or nSET Select  
LUT3_2 [6]/DFF5 Output Select  
Valid Valid  
Valid Valid  
Valid Valid  
9A  
0: Q output  
1: QB output  
0: DFF function  
1: LATCH function  
LUT3_2 [7]/DFF5 or LATCH Select  
Datasheet  
22-Jul-2021  
Revision 3.6  
167 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
LUT3_3/DFF6  
1243:1240  
LUT3_3 [3:0]  
Valid Valid  
Valid Valid  
0: Low  
1: High  
1244  
LUT3_3 [4]/DFF6 Initial Polarity Select  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
1245  
1246  
1247  
LUT3_3 [5]/DFF6 nRST or nSET Select  
LUT3_3 [6]/DFF6 Output Select  
Valid Valid  
Valid Valid  
Valid Valid  
9B  
0: Q output  
1: QB output  
0: DFF function  
1: LATCH function  
LUT3_3 [7]/DFF6 or LATCH Select  
LUT3_4/DFF7  
1251:1248  
LUT3_4 [3:0]  
Valid Valid  
Valid Valid  
0: Low  
1: High  
1252  
1253  
1254  
1255  
LUT3_4 [4]/DFF7 Initial Polarity Select  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
LUT3_4 [5]/DFF7 nRST or nSET Select  
LUT3_4 [6]/DFF7 Output Select  
Valid Valid  
Valid Valid  
Valid Valid  
9C  
0: Q output  
1: QB output  
0: DFF function  
1: LATCH function  
LUT3_4 [7]/DFF7 or LATCH Select  
LUT3_10/Pipe Delay  
1259:1256  
9D  
LUT3_10 [3:0]/Pipe Delay OUT0 Select  
LUT3_10 [7:4]/Pipe Delay OUT1 Select  
Valid Valid  
Valid Valid  
1263:1260  
00: Rising Edge Detector  
Select the Edge Mode of Programmable De- 01: Falling Edge Detector  
1265:1264  
1267:1266  
Valid Valid  
Valid Valid  
Valid Valid  
lay & Edge Detector  
10: Both Edge Detector  
11: Both Edge Delay  
00: 125ns  
Delay Value Select for Programmable Delay 01: 250ns  
& Edge Detector (VDD = 3.3V, typical)  
10: 375ns  
11: 500ns  
9E  
00: No matrix PD  
01: matrix PD for crystal oscillator  
10: Reserved  
1269:1268  
Crystal oscillator Power-down enable  
11: Reserved  
0: LUT3_10  
1: Pipe Delay  
1270  
1271  
LUT3_10 or Pipe Delay Select  
Pipe Delay OUT1 Polarity Select  
Valid Valid  
Valid Valid  
0: Non-inverted  
1: Inverted  
Datasheet  
22-Jul-2021  
Revision 3.6  
168 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
DLY/CNT2  
00: On both Falling and Rising Edges (for  
Delay & Counter Reset)  
01: on Falling Edge only (for Delay & Count-  
DLY2 Mode Select or Asynchronous CNT2 er Reset)  
1273:1272  
1276:1274  
Valid Valid  
Reset  
10: on Rising Edge only (for Delay & Count-  
er Reset)  
11: No Delay on either Falling or Rising  
Edges/High Level Reset  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
9F  
011: OSC/24  
100: OSC/64  
DLY/CNT2 Clock Source Select  
Valid Valid  
101: 25MHz OSC clock  
110: External Clock  
111: Counter1 Overflow  
DLY/CNT2 Output Selection if DLY/CNT2 0: Default Output  
1277  
Valid Valid  
Valid Valid  
Mode Selection is "11".  
1: Edge Detector Output  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
1279:1278  
DLY/CNT2 Mode Selection  
DLY/CNT3  
00: On both Falling and Rising Edges (for  
Delay & Counter Reset)  
01: on Falling Edge only (for Delay & Count-  
DLY3 Mode Select or Asynchronous CNT3 er Reset)  
1281:1280  
Valid Valid  
Reset  
10: on Rising Edge only (for Delay & Count-  
er Reset)  
11: No Delay on either Falling or Rising  
Edges/High Level Reset  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
A0  
1284:1282  
DLY/CNT3 Clock Source Select  
Valid Valid  
101: 25MHz OSC clock  
110: External Clock  
111: Counter2 Overflow  
DLY/CNT3 Output Selection if DLY/CNT3 0: Default Output  
1285  
Valid Valid  
Valid Valid  
Mode Selection is "11".  
1: Edge Detector Output  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
1287:1286  
DLY/CNT3 Mode Selection  
Datasheet  
22-Jul-2021  
Revision 3.6  
169 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
DLY/CNT4  
00: On both Falling and Rising Edges (for  
Delay & Counter Reset)  
01: on Falling Edge only (for Delay & Count-  
DLY4 Mode Select or Asynchronous CNT4 er Reset)  
1289:1288  
1292:1290  
Valid Valid  
Reset  
10: on Rising Edge only (for Delay & Count-  
er Reset)  
11: No Delay on either Falling or Rising  
Edges/High Level Reset  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
A1  
011: OSC/24  
100: OSC/64  
DLY/CNT4 Clock Source Select  
Valid Valid  
101: 25MHz OSC clock  
110: External Clock  
111: Counter3 Overflow  
DLY/CNT4 Output Selection if DLY/CNT4 0: Default Output  
1293  
Valid Valid  
Valid Valid  
Mode Selection is "11".  
1: Edge Detector Output  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
1295:1294  
DLY/CNT4 Mode Selection  
DLY/CNT5  
00: On both Falling and Rising Edges (for  
Delay & Counter Reset)  
01: on Falling Edge only (for Delay & Count-  
DLY5 Mode Select or Asynchronous CNT5 er Reset)  
1297:1296  
Valid Valid  
Reset  
10: on Rising Edge only (for Delay & Count-  
er Reset)  
11: No Delay on either Falling or Rising  
Edges/High Level Reset  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
A2  
1300:1298  
DLY/CNT5 Clock Source Select  
Valid Valid  
101: 25MHz OSC clock  
110: External Clock  
111: Counter4 Overflow  
DLY/CNT5 Output Selection if DLY/CNT5 0: Default Output  
1301  
Valid Valid  
Valid Valid  
Mode Selection is "11".  
1: Edge Detector Output  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
1303:1302  
DLY/CNT5 Mode Selection  
Datasheet  
22-Jul-2021  
Revision 3.6  
170 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
DLY/CNT6  
00: On both Falling and Rising Edges (for  
Delay & Counter Reset)  
01: on Falling Edge only (for Delay & Count-  
DLY6 Mode Select or Asynchronous CNT6 er Reset)  
1305:1304  
1308:1306  
Valid Valid  
Reset  
10: on Rising Edge only (for Delay & Count-  
er Reset)  
11: No Delay on either Falling or Rising  
Edges/High Level Reset  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12, 011: OSC/24  
100: OSC/64  
A3  
DLY/CNT6 Clock Source Select  
Valid Valid  
101: 25MHz OSC clock  
110: External Clock  
111: Counter5 Overflow  
DLY/CNT6 Output Selection if DLY/CNT6 0: Default Output  
1309  
Valid Valid  
Valid Valid  
Mode Selection is "11".  
1: Edge Detector Output  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
1311:1310  
DLY/CNT6 Mode Selection  
11: Counter mode  
DLY/CNT0  
00: On both Falling and Rising Edges (for  
Delay & Counter Reset)  
01: on Falling Edge only (for Delay & Count-  
DLY0 Mode Select or Asynchronous CNT0 er Reset)  
1313:1312  
Valid Valid  
Reset (16bits)  
10: on Rising Edge only (for Delay & Count-  
er Reset)  
11: No Delay on either Falling or Rising  
Edges/High Level Reset  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
A4  
1316:1314  
DLY/CNT0 Clock Source Select (16bits)  
Valid Valid  
101: 25MHz OSC clock  
110: External Clock  
111: Counter6 Overflow  
0: Reset to 0s  
1: Set to data (registers [1583:1576,  
1591:1584])  
CNT0/FSM0's Q are Set to data or Reset to  
0s Selection (16bits)  
1317  
Valid Valid  
Valid Valid  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
1319:1318  
DLY/CNT0 Mode Selection (16bits)  
Datasheet  
22-Jul-2021  
Revision 3.6  
171 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
DLY/CNT1  
00: On both Falling and Rising Edges (for  
Delay & Counter Reset)  
01: on Falling Edge only (for Delay & Count-  
DLY1 Mode Select or Asynchronous CNT1 er Reset)  
1321:1320  
1324:1322  
Valid Valid  
Reset (16bits)  
10: on Rising Edge only (for Delay & Count-  
er Reset)  
11: No Delay on either Falling or Rising  
Edges/High Level Reset  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
A5  
DLY/CNT1 Clock Source Select (16bits)  
Valid Valid  
101: 25MHz OSC clock  
110: External Clock  
111: Counter0 Overflow  
0: Reset to 0s  
1: Set to data (registers [1599:1592,  
1607:1600])  
CNT1/FSM1's Q are Set to data or Reset to  
0s Selection (16bits)  
1325  
Valid Valid  
Valid Valid  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
1327:1326  
DLY/CNT1 Mode Selection (16bits)  
DLY/CNTx One-Shot/Freq. Detect Output Polarity  
DLY/CNT0 stop & restarting enable in CNT 0: Disable  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
mode when new data is loaded  
1: Enable  
Select the Polarity of DLY/CNT6's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT5's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT4's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
A6  
Select the Polarity of DLY/CNT3's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT2's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT1's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT0's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
Datasheet  
22-Jul-2021  
Revision 3.6  
172 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
Oscillator  
00: Div1  
01: Div2  
10: Div4  
11: Div8  
1337:1336  
1338  
OSC Clock Pre-divider for 25MHz  
Valid Valid  
Valid Valid  
Valid Valid  
0: Disable  
1: Enable  
A7  
OSC Fast Start-Up Enable for 25kHz/2MHz  
OSC Clock Pre-divider for 25kHz/2MHz  
00: Div1  
01: Div2  
10: Div4  
11: Div8  
1340:1339  
0: Auto Power-On (If any CNT/DLY use  
25MHz source)  
1: Force Power-On  
1341  
1342  
1343  
Force 25MHz Oscillator ON  
Valid Valid  
Valid Valid  
Valid Valid  
Oscillator (25kHz: Ring OSC, 2M: RC-OSC) 0: 25kHz Ring OSC  
A7  
Select  
1: 2MHz RC-OSC  
0: Auto Power-On (if any CNT/DLY use  
25K/2MHz source)  
Force 25kHz/2MHz Oscillator ON  
1: Force Power-On  
000: OSC/1  
001: OSC/2  
010: OSC/3  
Internal OSC 25kHz/2MHz Frequency Divid- 011: OSC/4  
1346:1344  
1349:1347  
Valid Valid  
er Control for matrix input [28]  
100: OSC/8  
101: OSC/12  
110: OSC/24  
111: OSC/64  
000: OSC/1  
001: OSC/2  
010: OSC/3  
A8  
Internal OSC 25kHz/2MHz Frequency Divid- 011: OSC/4  
Valid Valid  
er Control for matrix input [27]  
100: OSC/8  
101: OSC/12  
110: OSC/24  
111: OSC/64  
OSC Clock 25kHz/2MHz to matrix input [28] 0: Disable  
enable 1: Enable  
1350  
1351  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
OSC Clock 25kHz/2MHz to matrix input [27] 0: Disable  
enable  
1: Enable  
ASM_reg_init[2:0] for ASM state default set-  
up bits  
1354:1352  
1355  
External oscillator pin selection for 25kHz/ 0: IO17  
2MHz 1: IO15  
OSC Clock 25 MHz to matrix input [29] en- 0: Disable  
1356  
able  
1: Enable  
A9  
External Clock Source Select instead of  
25MHz  
0: Internal Oscillator  
1: External Clock from IO14  
1357  
External Clock Source Select instead of  
25kHz/2MHz  
0: Internal Oscillator  
1: External Clock from IO15 or IO17  
1358  
DLY/CNT1 stop & restarting enable in CNT 0: Disable  
mode when new data is loaded 1: Enable  
1359  
Datasheet  
22-Jul-2021  
Revision 3.6  
173 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
ASM 8-to-1 MUX’s 3 selection bits  
1362:1360  
1363  
ASM_state0_dec8x1_EN1  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
AA  
AB  
1366:1364  
1367  
ASM_state0_dec8x1_EN0  
Reserved  
1370:1368  
1371  
ASM_state1_dec8x1_EN0  
Reserved  
1374:1372  
1375  
ASM_state0_dec8x1_EN2  
Reserved  
1378:1376  
1379  
ASM_state1_dec8x1_EN2  
Reserved  
AC  
AC  
1382:1380  
1383  
ASM_state1_dec8x1_EN1  
Reserved  
1386:1384  
1387  
ASM_state2_dec8x1_EN1  
Reserved  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
1390:1388  
1391  
ASM_state2_dec8x1_EN0  
Reserved  
1394:1392  
1395  
ASM_state3_dec8x1_EN0  
Reserved  
1398:1396  
1399  
ASM_state2_dec8x1_EN2  
Reserved  
1402:1400  
1403  
ASM_state3_dec8x1_EN2  
Reserved  
1406:1404  
1407  
ASM_state3_dec8x1_EN1  
Reserved  
1410:1408  
1411  
ASM_state4_dec8x1_EN1  
Reserved  
1414:1412  
1415  
ASM_state4_dec8x1_EN0  
Reserved  
1418:1416  
1419  
ASM_state5_dec8x1_EN0  
Reserved  
1422:1420  
1423  
ASM_state4_dec8x1_EN2  
Reserved  
1426:1424  
1427  
ASM_state5_dec8x1_EN2  
Reserved  
1430:1428  
1431  
ASM_state5_dec8x1_EN1  
Reserved  
1434:1432  
1435  
ASM_state6_dec8x1_EN1  
Reserved  
1438:1436  
1439  
ASM_state6_dec8x1_EN0  
Reserved  
Datasheet  
22-Jul-2021  
Revision 3.6  
174 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Signal Function  
Byte Register Bit  
Register Bit Definition  
Read Write  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
1442:1440  
1443  
ASM_state7_dec8x1_EN0  
Reserved  
B4  
B5  
1446:1444  
1447  
ASM_state6_dec8x1_EN2  
Reserved  
1450:1448  
1451  
ASM_state7_dec8x1_EN2  
Reserved  
1454:1452  
1455  
ASM_state7_dec8x1_EN1  
Reserved  
Filter/Edge Detector  
00: Rising Edge  
01: Falling Edge  
10: Both Edge  
11: Delay  
1457:1456  
Select the edge mode of Edge Detector_1  
Valid Valid  
Filter_1/Edge Detector_1 output Polarity Se- 0: Filter_1 output  
1458  
Valid Valid  
Valid Valid  
lect  
1: Filter_1 output inverted  
Filter_1or Edge Detector_1 Select  
(Typ. 30 ns @VDD = 3.3 V)  
0: Filter_1  
1: Edge Detector_1  
1459  
B6  
00: Rising Edge  
01: Falling Edge  
10: Both Edge  
11: Delay  
1461:1460  
Select the edge mode of Edge Detector_0  
Valid Valid  
Filter_0/Edge Detector_0 output Polarity Se- 0: Filter_0 output  
1462  
1463  
Valid Valid  
Valid Valid  
lect  
1: Filter_0 output inverted  
Filter_0 or Edge Detector_0 Select  
(Typ. 47 ns @VDD = 3.3 V)  
0: Filter_0  
1: Edge Detector_0  
Vref/Bandgap  
1464  
Reserved  
Valid Valid  
00 or 10 with registers [1474:1472] = 100  
(WideVDD r a n g e , 1 . 7 V ~ 5 . 5 V ) :  
Auto-delay mode, 550 uS for VDD < 2.7V &  
100 uS for 2.7 V < VDD  
00 or 10 with registers [1474:1472] = X10:  
Always 100 uS delay for 2.7 V < VDD  
00 or 10 with registers [1474:1472] = XX1:  
Always 550uS delay for VDD < 2.7 V,  
01: Always 550us delay regardless of  
Bandgap OK for ACMP Output Delay Time  
Select, the start Time is "nRST_core go to  
High"  
1466:1465  
Valid Valid  
registers [1474:1472] & VDD  
,
11: Always 100 us delay with 2.7V < VDD  
regardless of registers [1474:1472]  
B7  
Reserved  
Reserved  
Reserved  
Reserved  
1467  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
1468  
1469  
1470  
1471  
0: Disable  
1: Enable  
Two consecutive DFFs enable for SM  
Datasheet  
22-Jul-2021  
Revision 3.6  
175 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
0XX: Power divider off (if there is no use of  
VDD//3, VDD//4 @ ACMP negative in)  
100: Reserved  
1474:1472  
Valid Valid  
Power divider (VDD/3, VDD/4) ON/OFF  
X10: Reserved  
XX1:Reserved  
VDD Bypass Enable when device power is 0: Regulator Auto ON  
1475  
1476  
Valid Valid  
Valid Valid  
1.8 V  
1: Regulator OFF (VDD Bypass)  
0: Auto-Mode  
1: Enable (if chip is Power-down, the  
Bandgap will Power-down even if it is Set  
to 1).  
B8  
B9  
BA  
Force Bandgap ON  
0: None (Or Programming Enable)  
1: Power-down (Or Programming Disable)  
1477  
1478  
1479  
NVM Power-down  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
0: Disable  
1: Enable  
GPIO Quick Charge Enable  
Vref Output Source Select  
000: ACMP2 Vref  
001: ACMP3 Vref  
100: VDD/2  
101: VDD/3  
110: VDD/4  
1482:1480  
Valid Valid  
111: Hi-Z  
Reserved  
Reserved  
Reserved  
1483  
Valid Valid  
Valid Valid  
1486:1484  
1487  
1488  
1489  
Valid Valid  
Valid Valid  
Valid Valid  
Reserved  
0: short wake time  
1: normal wake time  
Wake time Selection in Wake Sleep Mode  
0: Disable  
1: Enable  
1490  
1491  
1492  
1493  
ACMP0 Wake & Sleep function Enable  
ACMP1 Wake & Sleep function Enable  
ACMP2 Wake & Sleep function Enable  
ACMP3 Wake & Sleep function Enable  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
0: Disable  
1: Enable  
0: Disable  
1: Enable  
0: Disable  
1: Enable  
Wake Sleep Output State When WS Oscilla-  
tor is Power-down if DLY/CNT0 Mode Selec-  
tion is "11"  
0: Low  
1: High  
1494  
1495  
Valid Valid  
Wake Sleep Ratio Control Mode Selection if 0: Default Mode  
DLY/CNT0 Mode Selection is "11"  
Valid Valid  
1: Wake Sleep Ratio Control Mode  
BB  
BC  
BD  
BE  
1503:1496  
1511:1504  
1519:1512  
1527:1520  
Reserved  
Reserved  
Reserved  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Datasheet  
22-Jul-2021  
Revision 3.6  
176 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Signal Function  
Byte Register Bit  
Register Bit Definition  
Read Write  
BF  
1535:1528  
Reserved  
Valid Valid  
LUT/DLY/CNT Control Data  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
C0  
C1  
C2  
C3  
C4  
1543:1536  
1551:1544  
1559:1552  
1567:1560  
1575:1568  
LUT3_5 [7:0] or DLY/CNT2 Control Data  
LUT3_6 [7:0] or DLY/CNT3 Control Data  
LUT3_7 [7:0] or DLY/CNT4 Control Data  
LUT3_8 [7:0] or DLY/CNT5 Control Data  
LUT3_9 [7:0] or DLY/CNT6 Control Data  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
C5  
C6  
C7  
C8  
C9  
CA  
1583:1576  
1591:1584  
1599:1592  
1607:1600  
1615:1608  
1623:1616  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
LUT4_0 [15:0] or DLY/CNT0 (16bits, [15:0] 1 - 65535 (Delay Time = [Counter Control  
= [1591:1576]) Control Data Data + 2]/Freq)  
LUT4_1 [15:0] or DLY/CNT1 (16bits, [15:0] 1 - 65535 (Delay Time = [Counter Control  
= [1607:1592]) Control Data  
Data + 2]/Freq)  
PGen pattern data [15:0] = [1623:1608]  
ACMP0  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
1628:1624  
ACMP0-IN Voltage Select  
Valid Valid  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
CB  
11010: IO9: EXT_Vref  
11011: IO5: ACMP0-  
11100: IO9: EXT_Vref/2  
11101: IO5: ACMP0-/2  
11110: Reserved  
11111: Reserved  
00: 1.0x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
1630:1629  
1631  
ACMP0 Positive Input Divider  
Valid Valid  
Valid Valid  
ACMP0 Low Bandwidth (MAX: 1MHz) En- 0: OFF  
able 1:ON  
Datasheet  
22-Jul-2021  
Revision 3.6  
177 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
ACMP1  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
1636:1632  
ACMP1-IN Voltage Select  
Valid Valid  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
CC  
11010: IO9: EXT_Vref  
11011: Reserved  
11100: IO9: EXT_Vref/2  
11101: Reserved  
11110: Reserved  
11111: Reserved  
00: 1.0x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
1638:1637  
1639  
ACMP1 Positive Input Divider  
Valid Valid  
Valid Valid  
ACMP1 Low Bandwidth (MAX: 1MHz) En- 0: OFF  
able  
1: ON  
ACMP2  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
1644:1640  
ACMP2-IN Voltage Select  
Valid Valid  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
CD  
11010: IO9: EXT_Vref  
11011: IO11: ACMP2-  
11100: IO9: EXT_Vref /2  
11101: IO11: ACMP2-/2  
11110: Reserved  
11111: Reserved  
00: 1.0x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
1646:1645  
1647  
ACMP2 Positive Input Divider  
Valid Valid  
Valid Valid  
ACMP2 Low Bandwidth (MAX: 1MHz) En- 0: OFF  
able 1: ON  
Datasheet  
22-Jul-2021  
Revision 3.6  
178 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
ACMP3  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
1652:1648  
ACMP3-IN Voltage Select  
Valid Valid  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
CE  
11010: IO9: EXT_Vref  
11011: IO11: ACMP3-  
11100: IO9: EXT_Vref/2  
11101: IO11: ACMP3-/2  
11110: Reserved  
11111: Reserved  
00: 1.0x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
1654:1653  
1655  
ACMP3 Positive Input Divider  
Valid Valid  
Valid Valid  
ACMP3 Low Bandwidth (MAX: 1MHz) En- 0: OFF  
able  
1: ON  
Misc.  
1656  
1657  
Reserved  
Valid Valid  
Valid Valid  
Switch from “Matrix OUT: OSC 25MHz PD” 0: OSC PD  
to “Matrix OUT: OSC 25MHz Force On”  
1: OSC Force On (Matrix Output [59])  
CF  
Switch from “Matrix OUT: OSC 25kHz/2MHz  
PD” to “Matrix OUT: OSC 25kHz/2MHz  
Force On”  
0: OSC PD  
1: OSC Force On (Matrix Output [58])  
1658  
Valid Valid  
1659  
1660  
1661  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
I2C reset bit with reloading NVM into Data 0: Keep existing condition  
CF  
1662  
Valid Valid  
register (TBD)  
1: R e se t e xe cu t io n  
1663  
Reserved  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
1671:1664  
1679:1672  
1687:1680  
1695:1688  
1703:1696  
1711:1704  
1719:1712  
1727:1720  
1735:1728  
1743:1736  
RAM 8 outputs for ASM-state0  
RAM 8 outputs for ASM-state1  
RAM 8 outputs for ASM-state2  
RAM 8 outputs for ASM-state3  
RAM 8 outputs for ASM-state4  
RAM 8 outputs for ASM-state5  
RAM 8 outputs for ASM-state6  
RAM 8 outputs for ASM-state7  
User configurable RAM/OTP Byte 0  
User configurable RAM/OTP Byte 1  
Datasheet  
22-Jul-2021  
Revision 3.6  
179 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Signal Function  
Byte Register Bit  
Register Bit Definition  
Read Write  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Invalid Invalid  
Invalid Invalid  
Invalid Invalid  
Invalid Invalid  
Valid Valid  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
1751:1744  
1759:1752  
1767:1760  
1775:1768  
1783:1776  
1791:1784  
1799:1792  
1807:1800  
1815:1808  
1823:1816  
1831:1824  
User configurable RAM/OTP Byte 2  
User configurable RAM/OTP Byte 3  
User configurable RAM/OTP Byte 4  
User configurable RAM/OTP Byte 5  
User configurable RAM/OTP Byte 6  
User configurable RAM/OTP Byte 7  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0: Disable (Programmed data can be  
read.),  
1832  
I2C lock for read bits [1535:0] (Bank 0/1/2)  
Valid Invalid  
1: Enable (Programmed data can't be  
read.)  
E5  
1833  
Valid Invalid  
Reserved  
Reserved  
Reserved  
1835:1834  
1839:1836  
Valid Invalid  
Valid Invalid  
8-bit Pattern ID Byte 0 (From NVM):  
ID[23:16]  
E6  
1847:1840  
Valid Valid  
E7  
E8  
1855:1848  
1863:1856  
1867:1864  
1868  
Reserved  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Valid  
Valid Valid  
Reserved  
I2C Control Code Bit [3:0]  
Value for slave address  
Reserved  
1869  
Reserved  
E9  
0: writable  
1: Non-writable  
1870  
1871  
I2C lock for write all bits (Bank 0/1/2/3)  
Valid Valid  
Valid Invalid  
0: writable  
1: Non-writable  
I2C lock for write bits [1535:0] (Bank 0/1/2)  
CNT4 Counted Value  
EA  
EB  
EC  
ED  
EE  
EF  
1879:1872  
1887:1880  
1895:1888  
1903:1896  
1911:1904  
1919:1912  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
CNT0 (16bits) = [1895:1880] Counted Value  
CNT6 Counted Value  
CNT1 (16bits) = [1919:1904] Counted Value  
Datasheet  
22-Jul-2021  
Revision 3.6  
180 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Read Write  
Signal Function  
Byte Register Bit  
Register Bit Definition  
Matrix Input  
1920  
1921  
1922  
1923  
1924  
1925  
1926  
1927  
1928  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1940  
1941  
1942  
1943  
1944  
1945  
1946  
1947  
1948  
1949  
1950  
1951  
1952  
1953  
1954  
1955  
1956  
1957  
1958  
1959  
Matrix Input 0  
Matrix Input 1  
Matrix Input 2  
Matrix Input 3  
Matrix Input 4  
Matrix Input 5  
Matrix Input 6  
Matrix Input 7  
Matrix Input 8  
Matrix Input 9  
Matrix Input 10  
Matrix Input 11  
Matrix Input 12  
Matrix Input 13  
Matrix Input 14  
Matrix Input 15  
Matrix Input 16  
Matrix Input 17  
Matrix Input 18  
Matrix Input 19  
Matrix Input 20  
Matrix Input 21  
Matrix Input 22  
Matrix Input 23  
Matrix Input 24  
Matrix Input 25  
Matrix Input 26  
Matrix Input 27  
Matrix Input 28  
Matrix Input 29  
Matrix Input 30  
Matrix Input 31  
Matrix Input 32  
Matrix Input 33  
Matrix Input 34  
Matrix Input 35  
Matrix Input 36  
Matrix Input 37  
Matrix Input 38  
Matrix Input 39  
GND  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
IO0 Digital Input  
IO1 Digital Input  
IO2 Digital Input  
F0  
F1  
F2  
F3  
IO3 Digital Input  
IO4 Digital Input  
IO5 Digital Input  
IO8 Digital Input  
LUT2_0/DFF0 Output  
LUT2_1/DFF1 Output  
LUT2_2/DFF2 Output  
LUT2_3/PGen Output  
LUT3_0/DFF3 Output  
LUT3_1/DFF4 Output  
LUT3_2/DFF5 Output  
LUT3_3/DFF6 Output  
LUT3_4/DFF7 Output  
LUT3_5/CNT_DLY2(8bit) Output  
LUT3_6/CNT_DLY3(8bit) Output  
LUT3_7/CNT_DLY4(8bit) Output  
LUT3_8/CNT_DLY5(8bit) Output  
LUT3_9/CNT_DLY6(8bit) Output  
LUT4_0/CNT_DLY0(16bit) Output  
LUT4_1/CNT_DLY1(16bit) Output  
LUT3_10/Pipe Delay (1st stage) Output  
Pipe Delay Output0  
Pipe Delay Output1  
Fixed "L" output because it is OSC clock. Valid Invalid  
Fixed "L" output because it is OSC clock. Valid Invalid  
Fixed "L" output because it is OSC clock. Valid Invalid  
Filter0/Edge Detect0 Output  
Filter1/Edge Detect1 Output  
Virtual Input [0]  
Valid Invalid  
Valid Invalid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
Valid Valid  
F4  
F4  
Virtual Input [1]  
Virtual Input [2]  
Virtual Input [3]  
Virtual Input [4]  
Virtual Input [5]  
Virtual Input [6]  
Virtual Input [7]  
Datasheet  
22-Jul-2021  
Revision 3.6  
181 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Table 97: Register Map (Continued)  
Address  
I2C Interface  
Signal Function  
Byte Register Bit  
Register Bit Definition  
Read Write  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Invalid  
1960  
1961  
1962  
1963  
1964  
1965  
1966  
1967  
1968]  
1969]  
1970]  
1971]  
1972]  
1973]  
1974]  
1975]  
1976]  
1977]  
1978]  
1979]  
1980]  
Matrix Input 40  
Matrix Input 41  
Matrix Input 42  
Matrix Input 43  
Matrix Input 44  
Matrix Input 45  
Matrix Input 46  
Matrix Input 47  
Matrix Input 48  
Matrix Input 49  
Matrix Input 50  
Matrix Input 51  
Matrix Input 52  
Matrix Input 53  
Matrix Input 54  
Matrix Input 55  
Matrix Input 56  
Matrix Input 57  
Matrix Input 58  
Matrix Input 59  
Matrix Input 60  
RAM_0 Output for ASM-state  
RAM_1 Output for ASM-state  
RAM_2 Output for ASM-state  
RAM_3 Output for ASM-state  
RAM_4 Output for ASM-state  
RAM_5 Output for ASM-state  
RAM_6 Output for ASM-state  
RAM_7 Output for ASM-state  
IO9 Digital Input  
F5  
IO10 Digital Input  
IO11 Digital Input  
IO12 Digital Input  
F6  
IO13 Digital Input  
IO14 Digital Input  
IO15 Digital Input  
IO16 Digital Input  
IO17 Digital Input  
ACMP_0 Output  
ACMP_1 Output  
ACMP_2 Output  
F7  
ACMP_3 Output  
Programmable Delay with Edge Detector  
Output  
1981]  
Matrix Input 61  
Valid Invalid  
1982]  
1983]  
Matrix Input 62  
Matrix Input 63  
Resetb_core  
VDD  
Valid Invalid  
Valid Invalid  
Reserved  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
1991:1984]  
1999:1992]  
2007:2000]  
2015:2008]  
2023:2016]  
2031:2024]  
2039:2032]  
2047:2040]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Valid Invalid  
Valid Invalid  
Valid Invalid  
Valid Valid  
Valid Invalid  
Valid Invalid  
Valid Valid  
Valid Valid  
Datasheet  
22-Jul-2021  
Revision 3.6  
182 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
21 Package Top Marking Definitions  
21.1 MSTQFN 28L 2 MM X 3 MM 0.4P PACKAGE  
Part Code  
Datecode  
COO  
Lot  
Revision  
XXXXX – Part ID Field: identifies the specific device configuration  
DD  
LLL  
C
– Date Code Field: Coded date of manufacture  
– Lot Code: Designates Lot #  
– Assembly Site/COO: Specifies Assembly Site/Country of Origin  
– Revision Code: Device Revision  
RR  
Datasheet  
22-Jul-2021  
Revision 3.6  
183 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
22 Package Information  
22.1 PACKAGE OUTLINES FOR MSTQFN 28L 2 MM X 3 MM 0.4P PACKAGE  
JEDEC MO-220  
IC Net Weight: TBD g  
Marking View  
BTM View  
Side View  
Datasheet  
22-Jul-2021  
Revision 3.6  
184 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
22.2 MSTQFN HANDLING  
Be sure to handle MSTQFN package only in a clean, ESD-safe environment. Tweezers or vacuum pick-up tools are suitable for  
handling. Do not handle MSTQFN package with fingers as this can contaminate the package pins and interface with solder  
reflow.  
22.3 SOLDERING INFORMATION  
Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 3.30 mm3 (nominal) for  
MSTQFN 28L Package. More information can be found at www.jedec.org.  
23 Ordering Information  
Part Number  
SLG46517M  
Type  
28-pin MSTQFN  
SLG46517MTR  
28-pin MSTQFN - Tape and Reel (3k units)  
23.1 TAPE AND REEL SPECIFICATIONS  
Max Units  
Leader (min)  
Length  
Trailer (min)  
Length  
Nominal  
# of  
Pins  
Reel &  
Hub Size  
(mm)  
Tape Part  
Width Pitch  
(mm) (mm)  
Package Type  
Package Size  
(mm)  
per Reel per Box  
Pockets  
Pockets  
(mm)  
(mm)  
MSTQFN 28L  
2 mm x3 mm  
0.4P Green  
28  
2 x 3 x 0.55  
3,000  
3,000  
178/60  
100  
400  
100  
400  
8
4
23.2 CARRIER TAPE DRAWING AND DIMENSIONS  
Index Hole Index Hole  
PocketBTMPocketBTM Pocket Index Hole Pocket Index Hole  
to Tape  
Edge  
to Pocket Tape Width  
Center  
(mm)  
Length  
(mm)  
Width  
(mm)  
Depth  
(mm)  
Pitch  
(mm)  
Pitch Diameter  
(mm)  
Package Type  
(mm)  
(mm)  
(mm)  
A0  
B0  
K0  
P0  
P1  
D0  
E
F
W
MSTQFN 28L  
2 mm x 3 mm  
0.4P Green  
2.2  
3.15  
0.76  
4
4
1.5  
1.75  
3.5  
8
Refer to EIA-481 specification  
Datasheet  
22-Jul-2021  
Revision 3.6  
185 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
24 Layout Guidelines  
24.1 MSTQFN 28L 2 MM X 3 MM 0.4P PACKAGE  
Marking View  
Unit: μm  
Datasheet  
22-Jul-2021  
Revision 3.6  
186 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Glossary  
A
ACK  
Acknowledge bit  
ACMP  
ASM  
Analog Comparator  
Asynchronous State Machine  
B
BG  
Bandgap  
C
CLK  
CNT  
Clock  
Counter  
D
DFF  
DLY  
D Flip-Flop  
Delay  
E
EC  
ESD  
Electrical Characteristics  
Electrostatic discharge  
F
FSM  
Finite State Machine  
G
GPI  
GPIO  
GPO  
General Purpose Input  
General Purpose Input/Output  
General Purpose Output  
I
IN  
IO  
Input  
Input/Output  
L
LSB  
LB  
Least Significant Bit  
Low Bandwidth  
Look Up Table  
LUT  
M
MSB  
MUX  
Most Significant Bit  
Multiplexer  
Datasheet  
22-Jul-2021  
Revision 3.6  
187 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
N
nRST  
NVM  
Reset  
Non-Volatile Memory  
O
OD  
Open-Drain  
OE  
Output Enable  
Oscillator  
OSC  
OTP  
OUT  
One Time Programmable  
Output  
P
PD  
Power-Down  
PGen  
POR  
PP  
Pattern Generator  
Power-On Reset  
Push-Pull  
PVT  
PWR  
P DLY  
Process Voltage Temperature  
Power  
Programmable Delay  
R
R/W  
Read/Write  
S
SCL  
SDA  
SLA  
I2C Clock Input  
I2C Data Input/Output  
Slave Address  
V
Vref  
Voltage Reference  
W
WS  
Wake and Sleep Controller  
Datasheet  
22-Jul-2021  
Revision 3.6  
188 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Revision History  
Revision  
Date  
Description  
Removed note from section Vref Load Regulation  
Corrected registers [1076:1075], [1084:1083], [1087:1085]  
3.6  
22-Jul-2021  
Updated ACMP Spec  
Added note for CNTs  
Updated Pins Structure Diagrams  
Corrected Reset Command Timing figure  
3.5  
3.4  
17-Aug-2020  
29-Aug-2019  
Updated register <1328> and register <1359>  
Figure Wake/Sleep Timing Diagram added to section Wake and Sleep Controller  
Updated section 3-Bit LUT or 8-Bit Counter/Delay Macrocells  
Updated section 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells  
Fixed typo in Package Outline Drawing  
Updated according to new template  
Updated IDSS and IGSS  
Fixed typos  
Corrected registers <1466:1464>  
Fixed statement regarding C1 and C2 in OSC section  
3.3  
3.2  
2-Jul-2019  
Corrected Dual P-FET Power Switch Block Diagram  
Fixed typos  
Updated according to Dialog’s Writing Guideline  
Corrected 2-bit LUT2 or PGen figure  
Added new subsection Electrostatic Discharge Ratings  
Updated registers [1047:1045], [1143:1141], [1177:1176], [1636:1632]  
Corrected Table Read/Write Protection Options  
Updated Oscillator Startup Diagram  
22-May-2018  
3.1  
3.0  
13-Aug-2018  
12-Jul-2018  
Updated registers [1079:1077], registers [1087:1085] in Appendix A  
Final version  
Datasheet  
22-Jul-2021  
Revision 3.6  
189 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46517  
GreenPAK Programmable Mixed-Signal Matrix  
with ASM and Dual 44 mΩ/2 A P-FET  
Status Definitions  
Revision Datasheet Status  
Product Status  
Definition  
1.<n>  
Target  
Development  
This datasheet contains the design specifications for product development.  
Specifications may change in any manner without notice.  
2.<n>  
Preliminary  
Qualification  
Production  
This datasheet contains the specifications and preliminary characterization  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
3.<n>  
4.<n>  
Final  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Major specification  
changes are communicated via Customer Product Notifications. Datasheet  
changes are communicated via www.dialog-semiconductor.com.  
Obsolete  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted  
to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or  
associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers  
accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion  
and/or use is at the customer's own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as  
to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any  
information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of  
the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor  
reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products,  
software and applications, in accordance with its standard automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty  
that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing,  
such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such  
license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions  
of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are  
the property of their respective owners.  
© 2021 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction  
of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Hong Kong  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
China (Shenzhen)  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
190  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
22-Jul-2021  
Revision 3.6  
190 of 190  
© 2021 Dialog Semiconductor  
CFR0011-120-00  

相关型号:

SLG46517MTR

GreenPAK Programmable Mixed-Signal Matrix with ASM and Dual 44 mΩ/2 A P-FET
DIALOG

SLG46538-A

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply
DIALOG

SLG46538-AP

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply
DIALOG

SLG46538-APTR

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply
DIALOG

SLG46585

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine, LDOs, and DC/DC Converter
DIALOG

SLG46585M

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine, LDOs, and DC/DC Converter
DIALOG

SLG46585MTR

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine, LDOs, and DC/DC Converter
DIALOG

SLG46620-A

Auto Grade GreenPAK Programmable Mixed-signal Matrix
DIALOG

SLG46620-AG

Auto Grade GreenPAK Programmable Mixed-signal Matrix
DIALOG

SLG46620-AGTR

Auto Grade GreenPAK Programmable Mixed-signal Matrix
DIALOG

SLG46722

Personal Computers and Servers
DIALOG

SLG46722V

Personal Computers and Servers
DIALOG