SLG46538-AP [DIALOG]

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply;
SLG46538-AP
型号: SLG46538-AP
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply

文件: 总172页 (文件大小:1518K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
General Description  
The SLG46538-A provides a small, low power component for commonly used Mixed-Signal functions. The user creates their  
circuit design by programming the one time Non-Volatile Memory (NVM) to configure the interconnect logic, the IO Pins, and the  
macrocells of the SLG46538-A. This highly versatile device allows a wide variety of Mixed-Signal functions to be designed within  
a very small, low power single integrated circuit.  
The additional power supply (VDD2) on the SLG46538-A provides the ability to interface two independent voltage domains within  
the same design. Users can configure pins, dedicated to each power supply, as inputs, outputs, or both (controlled dynamically  
by internal logic) to both VDD and VDD2 voltage domains. Using the available macrocells designers can implement Mixed-Signal  
functions bridging both domains or simply pass through level-translation in both High to Low and Low to High directions.  
Two Oscillators  
Key Features  
Configurable 25 kHz or 2 MHz  
25 MHz RC Oscillator  
Four Analog Comparators (ACMP)  
Two Voltage References (Vref)  
Nineteen Combination Function Macrocells  
Crystal Oscillator  
Power-On Reset  
Eight Byte RAM + OTP User Memory  
Three Selectable DFF/LATCH or 2-bit LUTs  
One Selectable Continuous DFF/LATCH or 3-bit LUT  
Four Selectable DFF/LATCH or 3-bit LUTs  
One Selectable Pipe Delay or 3-bit LUT  
One Selectable Programmable Function Generator or  
2-bit LUT  
RAM Memory Space that is Readable and Writable via  
I2C  
User Defined Initial Values Transferred from OTP  
Logic & Mixed-Signal Circuits  
Highly Versatile Macrocells  
Read Back Protection (Read Lock)  
Power Supply  
Five 8-bit Delays/Counters or 3-bit LUTs  
Two 16-bit Delays/Counters or 4-bit LUTs  
Two Deglitch Filters with Edge Detectors  
1.8 V (±5 %) to 5.0 V (±10 %) VDD  
State Machine  
1.8 V (±5 %) to 5.0 V (±10 %) VDD2 (VDD2 ≤ VDD  
)
Eight States  
Operating Temperature Range: -40 °C to 125 °C  
RoHS Compliant/Halogen-Free  
Available Package  
Flexible Input Logic from State Transitions  
Serial Communications  
I2C Protocol Compliant  
20-pin TQFN: 3.5 mm x 3.5 mm x 0.75 mm, 0.5 mm  
pitch  
Pipe Delay – 16 Stage/3 Output (Part of Combination  
Function Macrocell)  
AEC-Q100 Grade 1 Qualified  
Programmable Delay  
Additional Logic Functions  
One Inverter  
Applications  
Infotainment  
Navigation  
Advanced Driver Assistance Systems (ADAS)  
Automotive Display Clusters  
Body Electronics  
Datasheet  
22-Jul-2021  
Revision 2.3  
1 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Contents  
General Description.................................................................................................................................................................1  
Key Features.............................................................................................................................................................................1  
Applications..............................................................................................................................................................................1  
1 Block Diagram ......................................................................................................................................................................9  
2 Pinout ..................................................................................................................................................................................10  
2.1 Pin Configuration - TQFN- 20L ............................................................................................................................10  
3 Characteristics ...................................................................................................................................................................15  
3.1 Absolute Maximum Ratings .................................................................................................................................15  
3.2 Electrostatic Discharge Ratings ...........................................................................................................................15  
3.3 Recommended Operating Conditions .................................................................................................................15  
3.4 Electrical Characteristics ......................................................................................................................................16  
3.5 I2C Pins Electrical Characteristics ........................................................................................................................22  
3.6 Asynchronous State Machine Specification .........................................................................................................22  
3.7 Macrocells Current Consumption .........................................................................................................................23  
3.8 Timing Characteristics ..........................................................................................................................................23  
3.9 OSC Characteristics .............................................................................................................................................25  
3.10 ACMP Characteristics ........................................................................................................................................29  
3.11 Analog Temperature Sensor Characteristics .....................................................................................................33  
4 User Programmability ........................................................................................................................................................36  
5 IO Pins .................................................................................................................................................................................37  
5.1 Input Modes .........................................................................................................................................................37  
5.2 Output Modes .......................................................................................................................................................38  
5.3 Pull-Up/Down Resistors .......................................................................................................................................38  
5.4 GPI Structure .......................................................................................................................................................38  
5.5 Matrix OE IO Structure .........................................................................................................................................39  
5.6 Register OE IO Structure .....................................................................................................................................43  
6 Connection Matrix ..............................................................................................................................................................46  
6.1 Matrix Input Table ...............................................................................................................................................47  
6.2 Matrix Output Table ..............................................................................................................................................48  
6.3 Connection Matrix Virtual Inputs ..........................................................................................................................52  
6.4 Connection Matrix Virtual Outputs .......................................................................................................................52  
7 Combination Function Macrocells ....................................................................................................................................53  
7.1 2-Bit LUT or D Flip-Flop Macrocells .....................................................................................................................53  
7.2 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells .............................................................................................56  
7.3 3-Bit LUT or Pipe Delay Macrocell .......................................................................................................................65  
7.4 3-Bit LUT or 8-Bit Counter/Delay Macrocells .......................................................................................................67  
7.5 4-Bit LUT or 16-Bit Counter/Delay Macrocells .....................................................................................................72  
7.6 CNT/DLY/FSM Timing Diagrams .........................................................................................................................76  
7.7 2-bit LUT or Programmable Pattern Generator ....................................................................................................84  
7.8 Wake and Sleep Controller ..................................................................................................................................85  
8 Analog Comparators ..........................................................................................................................................................88  
8.1 ACMP0 Block Diagram and Register Settings .....................................................................................................91  
8.2 ACMP1 Block Diagram and Register Settings .....................................................................................................92  
8.3 ACMP2 Block Diagram and Register Settings .....................................................................................................93  
8.4 ACMP3 Block Diagram and Register Settings .....................................................................................................94  
9 Pipe Delay ...........................................................................................................................................................................95  
10 Programmable Delay/Edge Detector ..............................................................................................................................95  
10.1 Programmable Delay Timing Diagram - Edge Detector Output .........................................................................95  
11 Additional Logic Function. Deglitch Filter .....................................................................................................................96  
11.1 Deglitch Filter/Edge Detector .............................................................................................................................96  
11.2 INV Gate ............................................................................................................................................................96  
12 Voltage Reference ............................................................................................................................................................97  
12.1 Voltage Reference Overview .............................................................................................................................97  
12.2 Vref Selection Table ..........................................................................................................................................97  
12.3 Vref Block Diagram ..........................................................................................................................................98  
Datasheet  
22-Jul-2021  
Revision 2.3  
2 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
12.4 Vref Load Regulation .........................................................................................................................................99  
13 Clocking ..........................................................................................................................................................................101  
13.1 OSC General Description .................................................................................................................................101  
13.2 25 kHz/2 MHz and 25 MHz RC Oscillators ......................................................................................................101  
13.3 Oscillators Power-On Delay .............................................................................................................................103  
13.4 Oscillators Accuracy .........................................................................................................................................105  
14 Crystal Oscillator ...........................................................................................................................................................107  
15 Power-On Reset ..............................................................................................................................................................108  
15.1 General Operation ............................................................................................................................................108  
15.2 POR Sequence ................................................................................................................................................109  
15.3 Macrocells Output States During POR Sequence ...........................................................................................109  
16 Asynchronous State Machine Macrocell .....................................................................................................................112  
16.1 ASM Macrocell Overview .................................................................................................................................112  
16.2 ASM Inputs .......................................................................................................................................................113  
16.3 ASM Outputs ....................................................................................................................................................115  
16.4 Basic ASM Timing ............................................................................................................................................117  
16.5 Asynchronous State Machines vs. Synchronous State Machines ...................................................................117  
16.6 ASM Power Considerations .............................................................................................................................117  
16.7 ASM Logical vs. Physical Design .....................................................................................................................118  
16.8 ASM Special Case Timing Considerations ......................................................................................................118  
17 I2C Serial Communications Macrocell .........................................................................................................................122  
17.1 I2C Serial Communications Macrocell Overview .............................................................................................122  
17.2 I2C Serial Communications Device Addressing ...............................................................................................122  
17.3 I2C Serial General Timing ................................................................................................................................123  
17.4 I2C Serial Communications Commands ..........................................................................................................123  
17.5 I2C Serial Command Register Protection .........................................................................................................126  
17.6 I2C Additional options ......................................................................................................................................129  
18 Analog Temperature Sensor .........................................................................................................................................131  
19 External Clocking ...........................................................................................................................................................133  
19.1 Crystal Mode ....................................................................................................................................................133  
19.2 IO17 or IO15 Source for 25 kHz/2 MHz Clock .................................................................................................133  
19.3 IO14 Source for 25 MHz Clock ........................................................................................................................133  
20 Register Definitions .......................................................................................................................................................134  
20.1 Register Map ....................................................................................................................................................134  
21 Package Top Marking Definitions .................................................................................................................................165  
21.1 TQFN 20L 3.5 mm x 3.5 mm 0.5P Package ....................................................................................................165  
22 Package Information ......................................................................................................................................................166  
22.1 Package outlines FOR TQFN 20L 3.5 mm x 3.5 mm 0.5P Package ...............................................................166  
22.2 TQFN Handling ................................................................................................................................................167  
22.3 Soldering Information .......................................................................................................................................167  
23 Ordering Information .....................................................................................................................................................167  
23.1 Tape and Reel Specifications ..........................................................................................................................167  
23.2 Carrier Tape Drawing and Dimensions ............................................................................................................167  
24 Layout Guidelines ..........................................................................................................................................................168  
24.1 TQFN 20L 3.5 mm x 3.5 mm 0.5P Package ....................................................................................................168  
Glossary................................................................................................................................................................................169  
Revision History...................................................................................................................................................................171  
Datasheet  
22-Jul-2021  
Revision 2.3  
3 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Figures  
Figure 1: Block Diagram.............................................................................................................................................................9  
Figure 2: Steps to Create a Custom GreenPAK Device...........................................................................................................36  
Figure 3: IO0 GPI Structure Diagram.......................................................................................................................................38  
Figure 4: Matrix OE IO Structure Diagram...............................................................................................................................39  
Figure 5: Matrix OE IO Structure Diagram...............................................................................................................................40  
Figure 6: Matrix OE IO Structure Diagram...............................................................................................................................41  
Figure 7: Matrix OE IO 4x Drive Structure Diagram.................................................................................................................42  
Figure 8: IO Structure Diagram................................................................................................................................................43  
Figure 9: IO Structure Diagram................................................................................................................................................44  
Figure 10: IO 4x Drive Structure Diagram................................................................................................................................45  
Figure 11: Connection Matrix...................................................................................................................................................46  
Figure 12: Connection Matrix Example....................................................................................................................................46  
Figure 13: 2-bit LUT0 or DFF0.................................................................................................................................................53  
Figure 14: 2-bit LUT1 or DFF1.................................................................................................................................................54  
Figure 15: 2-bit LUT2 or DFF2.................................................................................................................................................54  
Figure 16: DFF Polarity Operations..........................................................................................................................................56  
Figure 17: 3-bit LUT0 or DFF3 with RST/SET..........................................................................................................................57  
Figure 18: 3-bit LUT1 or DFF4 with RST/SET..........................................................................................................................57  
Figure 19: 3-bit LUT2 or DFF5 with RST/SET..........................................................................................................................58  
Figure 20: 3-bit LUT3 or DFF6 with RST/SET..........................................................................................................................58  
Figure 21: 3-bit LUT4 or DFF7 with RST/SET..........................................................................................................................59  
Figure 22: 3-bit LUT11 or DFF8 with RST/SET........................................................................................................................59  
Figure 23: 3-bit LUT12 or DFF9 with RST/SET........................................................................................................................60  
Figure 24: 3-bit LUT13 or DFF10 with RST/SET......................................................................................................................60  
Figure 25: 3-bit LUT14 or DFF11 with RST/SET......................................................................................................................61  
Figure 26: 3-bit LUT15 or DFF12 with RST/SET......................................................................................................................61  
Figure 27: 3-bit LUT16 or DFF13 with RST/SET......................................................................................................................62  
Figure 28: 3-bit LUT17 or DFF14 with RST/SET......................................................................................................................62  
Figure 29: DFF Polarity Operations..........................................................................................................................................65  
Figure 30: 3-bit LUT10 or Pipe Delay.......................................................................................................................................66  
Figure 31: 3-bit LUT5 or CNT/DLY2.........................................................................................................................................68  
Figure 32: 3-bit LUT6 or CNT/DLY3.........................................................................................................................................68  
Figure 33: 3-bit LUT7 or CNT/DLY4.........................................................................................................................................69  
Figure 34: 3-bit LUT8 or CNT/DLY5.........................................................................................................................................70  
Figure 35: 3-bit LUT9 or CNT/DLY6.........................................................................................................................................70  
Figure 36: 4-bit LUT0 or CNT/DLY0.........................................................................................................................................73  
Figure 37: 4-bit LUT1 or CNT/DLY1.........................................................................................................................................74  
Figure 38: Delay Mode Timing Diagram...................................................................................................................................76  
Figure 39: Counter Mode Timing Diagram...............................................................................................................................76  
Figure 40: One-Shot Function Timing Diagram........................................................................................................................77  
Figure 41: Frequency Detection Mode Timing Diagram...........................................................................................................79  
Figure 42: Edge Detection Mode Timing Diagram...................................................................................................................80  
Figure 43: Delay Mode Timing Diagram...................................................................................................................................81  
Figure 44: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3.....81  
Figure 45: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3 .........82  
Figure 46: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3.....82  
Figure 47: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3 .........83  
Figure 48: Counter Value, Counter Data = 3............................................................................................................................83  
Figure 49: 2-bit LUT3 or PGen.................................................................................................................................................84  
Figure 50: PGen Timing Diagram.............................................................................................................................................85  
Figure 51: Wake/Sleep Controller............................................................................................................................................86  
Datasheet  
22-Jul-2021  
Revision 2.3  
4 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Figure 52: Maximum Power-On Delay vs. VDD, BG = Auto-delay ...........................................................................................88  
Figure 53: Max Power-On Delay vs. VDD, BG = 550 µs..........................................................................................................89  
Figure 54: Max Power-On Delay vs. VDD, BG = 100 µs...........................................................................................................89  
Figure 55: Typical Buffer Input Voltage Offset vs. Voltage Reference.....................................................................................90  
Figure 56: Typical Input Threshold Variation (Including Vref Variation, ACMP Offset) vs. Voltage Reference........................90  
Figure 57: ACMP0 Block Diagram ...........................................................................................................................................91  
Figure 58: ACMP1 Block Diagram ...........................................................................................................................................92  
Figure 59: ACMP2 Block Diagram ...........................................................................................................................................93  
Figure 60: ACMP3 Block Diagram ...........................................................................................................................................94  
Figure 61: Programmable Delay ..............................................................................................................................................95  
Figure 62: Edge Detector Output .............................................................................................................................................95  
Figure 63: Deglitch Filter/Edge Detector..................................................................................................................................96  
Figure 64: INV Gate .................................................................................................................................................................96  
Figure 65: Voltage Reference Block Diagram..........................................................................................................................98  
Figure 66: Typical Load Regulation, Vref = 600 mV, T = -40 °C to +125 °C, Buffer - Enable..................................................99  
Figure 67: Typical Load Regulation, Vref = 1000 mV, T = -40 °C to +125 °C, Buffer - Enable................................................99  
Figure 68: Typical Load Regulation, Vref = 1200 mV, T = -40 °C to +125 °C, Buffer - Enable..............................................100  
Figure 69: 25 kHz/2 MHz RC OSC Block Diagram ................................................................................................................102  
Figure 70: 25 MHz RC OSC Block Diagram ..........................................................................................................................102  
Figure 71: Oscillator Startup Diagram....................................................................................................................................103  
Figure 72: RC Oscillator Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2 MHz .................................................103  
Figure 73: RC Oscillator Maximum Power-On Delay vs. VDD at T = 125 °C, OSC0 = 25 kHz ..............................................104  
Figure 74: OSC1 (25 MHz) Maximum Power-On Delay vs. VDD at T = 125 °C.....................................................................104  
Figure 75: RC Oscillator Frequency vs. Temperature, RC OSC0 = 2 MHz ...........................................................................105  
Figure 76: RC Oscillator Frequency vs. Temperature, RC OSC0 = 25 kHz ..........................................................................105  
Figure 77: OSC1 (25 MHz) Frequency vs. Temperature .......................................................................................................106  
Figure 78: Crystal OSC Block Diagram..................................................................................................................................107  
Figure 79: External Crystal Connection..................................................................................................................................107  
Figure 80: POR Sequence.....................................................................................................................................................109  
Figure 81: Internal Macrocell States during POR Sequence..................................................................................................110  
Figure 82: Power-Down..........................................................................................................................................................111  
Figure 83: Asynchronous State Machine State Transitions ...................................................................................................112  
Figure 84: Asynchronous State Machine ...............................................................................................................................113  
Figure 85: Asynchronous State Machine Inputs.....................................................................................................................114  
Figure 86: Maximum 3 State Transitions into Given State.....................................................................................................114  
Figure 87: Maximum 7 State Transitions out of a Given State...............................................................................................115  
Figure 88: Connection Matrix Output RAM ............................................................................................................................116  
Figure 89: State Transition.....................................................................................................................................................117  
Figure 90: State Transition Timing.........................................................................................................................................117  
Figure 91: State Transition.....................................................................................................................................................118  
Figure 92: State Transition Timing and Power Consumption.................................................................................................118  
Figure 93: State Transition.....................................................................................................................................................118  
Figure 94: State Transition Pulse Input Timing......................................................................................................................119  
Figure 95: State Transition - Competing Inputs......................................................................................................................119  
Figure 96: State Transition Timing - Competing Inputs Indeterminate...................................................................................119  
Figure 97: State Transition Timing - Competing Inputs Determinable ...................................................................................120  
Figure 98: State Transition - Sequential.................................................................................................................................120  
Figure 99: State Transition - Sequential Timing.....................................................................................................................120  
Figure 100: State Transition - Closed Cycling........................................................................................................................121  
Figure 101: State Transition - Closed Cycling Timing............................................................................................................121  
Figure 102: Basic Command Structure..................................................................................................................................122  
Figure 103: I2C General Timing Characteristics ....................................................................................................................123  
Figure 104: Byte Write Command, R/W = 0...........................................................................................................................123  
Datasheet  
22-Jul-2021  
Revision 2.3  
5 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Figure 105: Sequential Write Command................................................................................................................................124  
Figure 106: Current Address Read Command, R/W = 1........................................................................................................124  
Figure 107: Random Read Command ...................................................................................................................................125  
Figure 108: Sequential Read Command................................................................................................................................125  
Figure 109: Register Bank Map..............................................................................................................................................126  
Figure 110: Reset Command Timing .....................................................................................................................................129  
Figure 111: Analog Temperature Sensor Structure Diagram.................................................................................................131  
Figure 112: TS Output vs. Temperature, VDD = 1.71 V to 5.5 V............................................................................................132  
Datasheet  
22-Jul-2021  
Revision 2.3  
6 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Tables  
Table 1: Functional Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 2: Pin Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 3: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 4: Electrostatic Discharge Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 5: Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 6: EC at T = -40 °C to 125 °C, VDD = 1.71 V to 5.5 V Unless Otherwise Noted . . . . . . . . . . . . . . . . . . . . 16  
Table 7: EC at T = -40 °C to 125 °C, VDD = 1.71 V to 5.5 V Unless Otherwise Noted . . . . . . . . . . . . . . . . . . . . 19  
Table 8: I2C Pins Timing Characteristics at T = -40 °C to 125 °C Unless Otherwise Noted . . . . . . . . . . . . . . . . . 22  
Table 9: Asynchronous State Machine Specifications at T = -40 °C to 125 °C Unless Otherwise Noted. . . . . . . . . . . 22  
Table 10: Typical Current Estimated for Each Macrocell at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 11: Typical Delay Estimated for Each Macrocell at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 12: Typical Propagations Delays and Pulse Widths at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 13: Typical Pulse Width Performance at T = 25 °C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 14: Typical Counter/Delay Offset Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 15: 25 kHz RC OSC0 Frequency Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 16: 25 kHz RC OSC0 Frequency Error (Error Calculated Relative to Nominal Value) . . . . . . . . . . . . . . . . . 25  
Table 17: 2 MHz RC OSC0 Frequency Limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 18: 2 MHz RC OSC0 Frequency Error (Error Calculated Relative to Nominal Value) . . . . . . . . . . . . . . . . . 26  
Table 19: 25 MHz RC OSC1 Frequency Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 20: 25 MHz RC OSC1 Frequency Error (Error Calculated Relative to Nominal Value) . . . . . . . . . . . . . . . . 26  
Table 21: OSC Power-On Delay, T = 25 °C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 22: OSC Power-On Delay, T = 25 °C, Fast Start-Up Time Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 23: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V, Unless Otherwise Noted . . . . . . . . . . 29  
Table 24: TS Output vs Temperature (Output Range 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 25: TS Output vs Temperature (Output Range 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 26: TS Output Error (Output Range 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 27: TS Output Error (Output Range 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 28: Matrix Input Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 29: Matrix Output Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 30: Connection Matrix Virtual Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 31: 2-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 32: 2-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 33: 2-bit LUT2 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 34: 2-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 35: 3-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 36: 3-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 37: 3-bit LUT2 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 38: 3-bit LUT3 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 39: 3-bit LUT4 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 40: 3-bit LUT11 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 41: 3-bit LUT12 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 42: 3-bit LUT13 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 43: 3-bit LUT14 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 44: 3-bit LUT15 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 45: 3-bit LUT16 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 46: 3-bit LUT17 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 47: 3-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 48: 3-bit LUT10 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 49: Pipe Delay Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 50: 3-bit LUT5 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 51: 3-bit LUT6 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 52: 3-bit LUT7 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 53: 3-bit LUT8 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 54: 3-bit LUT9 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 55: 3-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 56: 4-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 57: 4-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 58: 4-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 59: DLY/CNTx One-Shot/Freq. Detect Output Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Table 60: Gain Divider Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Table 61: Gain Divider Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Datasheet  
22-Jul-2021  
Revision 2.3  
7 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 62: Built-In Hysteresis Tolerance at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Table 63: Vref Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Table 64: External Components Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Table 65: ASM Editor - Connection Matrix Output RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Table 66: Read/Write Protection Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Table 67: RAM Array Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Table 68: Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Datasheet  
22-Jul-2021  
Revision 2.3  
8 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
1
Block Diagram  
IO17  
IO15  
IO16  
IO14  
IO13  
IO12  
V
DD  
Combination Function Macrocells  
ACMP0  
IO0  
Additional Logic  
Functions  
2-bit  
LUT2_0  
or DFF0  
2-bit  
LUT2_1  
or DFF1  
2-bit  
LUT2_2  
or DFF2  
FILTER_1  
with  
Edge  
FILTER_0  
with  
INV  
Edge  
Detect  
Detect  
2-bit  
LUT2_3  
or PGen  
3bit  
LUT3_0  
or DFF3  
3-bit  
LUT3_1  
or DFF4  
ACMP1  
IO1  
3-bit  
LUT3_2  
or DFF5  
3-bit  
LUT3_3  
or DFF6  
3-bit  
LUT3_4  
or DFF7  
Programmable  
Delay  
POR  
Vref  
V
DD2  
IO2  
ACMP2  
3-bit  
LUT3_5 or  
CNT/DLY2  
3-bit  
LUT3_6 or  
CNT/DLY3  
3-bit  
LUT3_7 or  
CNT/DLY4  
State Machine  
8 states  
IO10  
IO9  
IO3  
3-bit  
3-bit  
4-bit  
LUT4_0 or  
CNT/DLY0  
LUT3_8 or  
CNT/DLY5  
LUT3_9 or  
CNT/DLY6  
RC Oscillator  
25M Oscillator  
ACMP3  
I2C Serial  
Communication  
4-bit  
LUT4_1 or  
CNT/DLY1  
3-bit  
LUT3_10 or  
Pipe Delay  
IO4  
8 Byte RAM +  
OTP Memory  
Crystal  
Oscillator  
Crystal  
Oscillator  
GND  
IO5  
IO6  
IO8  
IO7  
Figure 1: Block Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
9 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
2
Pinout  
2.1 PIN CONFIGURATION - TQFN- 20L  
Pin # Signal Name Pin Functions  
1
2
V
Power Supply  
GPI  
DD  
IO0  
IO1  
IO2  
IO3  
IO4  
IO5  
IO6  
IO7  
IO8  
GND  
IO9  
IO10  
3
GPIO with OE  
GPIO  
20 19  
18  
17  
16  
4
5
GPIO with OE  
GPIO/ACMP0+  
GPIO with OE/ACMP0-  
GPIO/SCL  
15  
14  
IO12  
VDD2  
1
2
3
4
5
VDD  
IO0  
IO1  
IO2  
IO3  
6
7
8
13 IO10  
TP  
9
GPIO/SDA  
12  
IO9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
TP  
GPIO with OE/ACMP1+  
GND  
11  
GND  
GPIO/ACMP0-/ACMP1-/ACMP2-/ACMP3-  
GPIO with OE/ACMP2+/ACMP3+  
Power Supply  
6
7
8
9
10  
V
DD2  
IO12  
GPIO/ACMP3+  
IO13  
IO14  
IO15  
IO16  
IO17  
--  
GPIO with OE/XTAL0  
TQFN-20  
(Top View)  
GPIO/XTAL1/EXT_CLK0  
GPIO with OE/Vref0/EXT_CLK1  
GPIO with OE/Vref0  
GPIO/EXT_CLK2  
Leave unconnected or connect to GND  
Legend:  
OE: Output Enable  
ACMPx+: ACMPx Positive Input  
ACMPx-: ACMPx Negative Input  
SCL: I2C Clock Input  
SDA: I2C Data Input/Output  
Vrefx: Voltage Reference Output  
EXT_CLKx: External Clock Input  
XTALx: Crystal  
TP: Thermal Pad. Thermal Pad is not connected to any pin, but it can  
be connected to GND for better thermal performance.  
Table 1: Functional Pin Description  
TQFN  
20L Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
1
VDD  
VDD  
Power Supply  
--  
--  
Digital Input without  
Schmitt Trigger  
--  
IO0  
General Purpose Input  
Digital Input  
with Schmitt Trigger  
--  
2
IO0  
Low Voltage Digital Input  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
3
IO1  
IO1  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
Low Voltage Digital Input  
--  
Datasheet  
22-Jul-2021  
Revision 2.3  
10 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 1: Functional Pin Description (Continued)  
TQFN  
20L Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
4
5
IO2  
IO3  
IO2  
IO3  
IO4  
General Purpose IO  
Open-Drain PMOS  
(1x) (2x)  
Low Voltage Digital Input  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
Low Voltage Digital Input  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
General Purpose IO  
6
IO4  
Open-Drain PMOS  
(1x) (2x)  
Low Voltage Digital Input  
Analog  
Analog Comparator 0  
Positive Input  
ACMP0+  
IO5  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
7
IO5  
Low Voltage Digital Input  
--  
Analog Comparator 0  
Negative Input  
ACMP0-  
IO6  
Analog  
--  
Digital Input without  
Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
General Purpose IO  
I2C Serial Clock  
Digital Input  
with Schmitt Trigger  
--  
Low Voltage Digital Input  
--  
Digital Input without  
Schmitt Trigger  
8
IO6  
Open-Drain NMOS  
SCL  
IO7  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
Open-Drain NMOS  
Low Voltage Digital Input  
Digital Input without  
Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
General Purpose IO  
I2C Serial Data  
Digital Input  
with Schmitt Trigger  
--  
Low Voltage Digital Input  
--  
Digital Input without  
Schmitt Trigger  
9
IO7  
Open-Drain NMOS  
SDA  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
Open-Drain NMOS  
Low Voltage Digital Input  
Datasheet  
22-Jul-2021  
Revision 2.3  
11 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 1: Functional Pin Description (Continued)  
TQFN  
20L Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x) (4x)  
IO8  
10  
11  
IO8  
Open-Drain PMOS  
(1x) (2x)  
Low Voltage Digital Input  
Analog Comparator 1  
Positive Input  
ACMP1+  
GND  
Analog  
--  
--  
GND  
Ground  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
IO9  
General Purpose IO  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x) (4x)  
12  
IO9  
Low Voltage Digital Input  
--  
Analog Comparator  
Negative Input  
EXT_Vref  
IO10  
Analog  
--  
Digital Input without Schmitt Trigger Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
Low Voltage Digital Input  
--  
Analog Comparator 2  
Positive Input  
13  
14  
IO10  
VDD2  
ACMP2+  
Analog  
--  
Analog Comparator 3  
Positive Input  
ACMP3+  
VDD2  
Analog  
--  
--  
Power Supply  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
IO12  
General Purpose IO  
15  
IO12  
Open-Drain PMOS  
(1x) (2x)  
Low Voltage Digital Input  
Analog  
Analog Comparator 3  
Positive Input  
ACMP3+  
IO13  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
16  
IO13  
Low Voltage Digital Input  
--  
External Crystal  
Connection 0  
XTAL0  
--  
Analog  
Datasheet  
22-Jul-2021  
Revision 2.3  
12 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 1: Functional Pin Description (Continued)  
TQFN  
20L Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
IO14  
General Purpose IO  
Open-Drain PMOS  
(1x) (2x)  
Low Voltage Digital Input  
Analog  
17  
IO14  
External Crystal  
Connection 1  
XTAL1  
--  
--  
Digital Input without  
Schmitt Trigger  
External Clock  
Connection 0  
EXT_CLK0  
Digital Input  
with Schmitt Trigger  
--  
--  
Low Voltage Digital Input  
Digital Input without Schmitt Trigger Push-Pull (1x) (2x)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
General Purpose IO  
with OE (Note 1)  
IO15  
Vref0  
Low Voltage  
Digital Input  
--  
Analog  
--  
Voltage Reference 0  
Output  
18  
IO15  
--  
Digital Input without  
Schmitt Trigger  
External Clock  
Connection 1  
EXT_CLK1  
Digital Input  
with Schmitt Trigger  
--  
Low Voltage Digital Input  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
IO16  
Vref0  
IO17  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
19  
IO16  
Low Voltage Digital Input  
--  
--  
Voltage Reference 0 Output  
General Purpose IO  
Analog  
Digital Input without Schmitt Trigger Push-Pull (1x) (2x)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
Low Voltage  
Digital Input  
Open-Drain PMOS  
(1x) (2x)  
20  
IO17  
Digital Input without Schmitt Trigger  
--  
Digital Input  
with Schmitt Trigger  
External Clock Connection  
2
--  
EXT_CLK2  
Low Voltage  
Digital Input  
--  
--  
Thermal Pad. Leave un-  
connected or connect to  
GND.  
TP  
TP  
--  
--  
Note 1 General Purpose IO's with OE can be used to implement bidirectional signals under user control via Connection Matrix  
to OE signal in IO structure.  
Datasheet  
22-Jul-2021  
Revision 2.3  
13 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 2: Pin Type Definitions  
Pin Type  
VDD  
Description  
Power Supply  
Input/Output  
Ground  
IO  
GND  
VDD2  
NC  
Power Supply 2  
No Connection  
Datasheet  
22-Jul-2021  
Revision 2.3  
14 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
3
Characteristics  
3.1 ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational  
sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect  
device reliability.  
Table 3: Absolute Maximum Ratings  
Parameter  
Min  
-0.5  
-0.5  
Max  
7
Unit  
V
Supply voltage on VDD relative to GND  
Supply voltage on VDD2 relative to GND  
VDD + 0.5  
V
IOs 0, 1, 2, 3, 4, 5, 6, 7, 8  
VDD + 0.5  
DC Input voltage  
GND - 0.5  
V
IOs 9, 10, 12, 13, 14, 15, 16, 17  
TJ = 85 °C  
VDD2 + 0.5  
45  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
Maximum Average or DC Current Through  
VDD Pin (per chip side)  
TJ = 110 °C  
TJ = 85 °C  
22  
--  
45  
Maximum Average or DC Current Through  
VDD2 Pin (per chip side)  
TJ = 110 °C  
TJ = 85 °C  
--  
22  
--  
86  
Maximum Average or DC Current Through  
GND Pin (per chip side)  
TJ = 110 °C  
Push-Pull 1x  
Push-Pull 2x  
OD 1x  
--  
41  
--  
11  
--  
16  
Maximum Average or DC Current  
(Through pin)  
--  
11  
mA  
OD 2x  
--  
21  
OD 4x  
--  
43  
Current at Input Pin  
-1.0  
--  
1.0  
1000  
150  
150  
mA  
nA  
°C  
Input leakage (Absolute Value)  
Storage Temperature Range  
Junction Temperature  
-65  
--  
°C  
Moisture Sensitivity Level  
1
Supply voltage on VDD relative to GND  
-0.5  
7
V
3.2 ELECTROSTATIC DISCHARGE RATINGS  
Table 4: Electrostatic Discharge Ratings  
Parameter  
Min  
2000  
500  
Max  
--  
Unit  
V
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model)  
--  
V
3.3 RECOMMENDED OPERATING CONDITIONS  
Table 5: Recommended Operating Conditions  
Parameter  
Condition  
Min  
1.71  
1.71  
-40  
Max  
5.5  
Unit  
V
Supply Voltage (VDD  
)
Supply Voltage 2 (VDD2  
Operating Temperature  
Programming Voltage  
)
VDD2 ≤ VDD  
VDD  
125  
7.75  
V
°C  
V
7.25  
Datasheet  
22-Jul-2021  
Revision 2.3  
15 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 5: Recommended Operating Conditions(Continued)  
Parameter  
Condition  
Min  
Max  
Unit  
Maximal Voltage Applied to any PIN in High  
Impedance State  
--  
VDD  
V
Capacitor Value at VDD  
0.1  
0
--  
μF  
V
Analog Input Common Mode Range  
Allowable Input Voltage atAnalog Pins  
VDD  
3.4 ELECTRICAL CHARACTERISTICS  
Table 6: EC at T = -40 °C to 125 °C, VDD = 1.71 V to 5.5 V Unless Otherwise Noted  
Parameter Description  
VACMP ACMP Input Voltage Range  
Condition  
Min  
Typ  
--  
Max  
VDD  
1.2  
Unit  
Positive Input  
Negative Input  
0
0
V
V
--  
0.7x  
VDD  
(Note 2)  
VDD  
0.3  
(Note 2)  
+
Logic Input (Note 1)  
--  
--  
--  
--  
--  
V
V
V
V
V
0.8x  
VDD  
(Note 2)  
VDD+  
0.3  
(Note 2)  
HIGH-Level Input Voltage  
IOs 0, 1, 2, 3, 4, 5, 6, 7, 8  
VIH  
Logic Input with Schmitt Trigger  
Low-Level Logic Input (Note 1)  
Logic Input (Note 1)  
VDD+  
1.25  
0.3  
(Note 2)  
0.3x  
VDD  
(Note 2)  
GND-  
0.3  
LOW-Level Input Voltage  
IOs 0, 1, 2, 3, 4, 5, 6, 7, 8  
0.2x  
VDD  
(Note 2)  
GND-  
0.3  
VIL  
Logic Input with Schmitt Trigger  
GND-  
0.3  
Low-Level Logic Input (Note 1)  
--  
0.5  
0.66  
0.94  
1.38  
--  
V
V
Logic Input with Schmitt Trigger,  
VDD = 1.8 V ± 5 %  
0.10  
0.29  
0.44  
1.69  
2.74  
4.15  
1.69  
2.74  
4.16  
0.41  
0.62  
0.90  
1.79  
3.12  
4.76  
1.79  
3.12  
4.76  
Schmitt Trigger Hysteresis  
Voltage  
Logic Input with Schmitt Trigger,  
VDD = 3.3 V ± 10 %  
VHYS  
IOs 0, 1, 2, 3, 4, 5, 6, 7, 8  
Logic Input with Schmitt Trigger,  
V
DD = 5.0 V ± 10 %  
Push-Pull, IOH = 100 μA, 1x Drive,  
VDD = 1.8 V ± 5 %  
V
V
V
V
V
V
Push-Pull, IOH = 3 mA, 1x Drive,  
VDD = 3.3 V ± 10 %  
--  
Push-Pull, IOH = 5 mA, 1x Drive,  
VDD = 5.0 V ± 10 %  
--  
HIGH-Level Output Voltage  
IOs 0, 1, 2, 3, 4, 5, 6, 7, 8  
VOH  
PMOS OD, IOH = 100 μA, 1x Drive,  
VDD = 1.8 V ± 5 %  
--  
PMOS OD, IOH = 3 mA, 1x Drive,  
VDD = 3.3 V ± 10 %  
--  
PMOS OD, IOH = 5 mA, 1x Drive,  
VDD = 5.0 V ± 10 %  
--  
Datasheet  
22-Jul-2021  
Revision 2.3  
16 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 6: EC at T = -40 °C to 125 °C, VDD = 1.71 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, IOH = 100 μA, 2x Drive,  
1.70  
1.79  
--  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDD = 1.8 V ± 5 %  
Push-Pull, IOH = 3 mA, 2x Drive,  
VDD = 3.3 V ± 10 %  
2.87  
4.32  
1.70  
2.87  
4.33  
--  
3.21  
4.89  
1.79  
3.21  
4.89  
0.01  
0.13  
0.19  
0.01  
0.06  
0.09  
0.01  
0.08  
0.12  
0.01  
0.04  
0.07  
0.001  
0.02  
0.03  
--  
--  
Push-Pull, IOH = 5 mA, 2x Drive,  
VDD = 5.0 V ± 10 %  
HIGH-Level Output Voltage  
IOs 0, 1, 2, 3, 4, 5, 6, 7, 8  
VOH  
PMOS OD, IOH = 100 μA, 2x Drive,  
VDD = 1.8 V ± 5 %  
--  
PMOS OD, IOH = 3 mA, 2x Drive,  
VDD = 3.3 V ± 10 %  
--  
PMOS OD, IOH = 5 mA, 2x Drive,  
VDD = 5.0 V ± 10 %  
--  
Push-Pull, IOL= 100 μA, 1x Drive,  
VDD = 1.8 V ± 5 %  
0.03  
0.23  
Push-Pull, IOL= 3 mA, 1x Drive,  
VDD = 3.3 V ± 10 %  
--  
Push-Pull, IOL= 5 mA, 1x Drive,  
VDD = 5.0 V ± 10 %  
--  
0.24  
Push-Pull, IOL = 100 μA, 2x Drive,  
VDD = 1.8 V ± 5 %  
--  
0.01  
0.11  
Push-Pull, IOL = 3 mA, 2x Drive,  
VDD = 3.3 V ± 10 %  
--  
Push-Pull, IOL =5 mA, 2x Drive,  
VDD = 5.0 V ± 10 %  
--  
0.12  
Open-Drain, IOL = 100 μA, 1x Drive,  
VDD = 1.8 V ± 5 %  
--  
0.02  
0.15  
LOW-Level Output Voltage  
IOs 0, 1, 2, 3, 4, 5, 6, 7, 8  
Open-Drain, IOL = 3 mA, 1x Drive,  
VDD = 3.3 V ± 10 %  
VOL  
--  
Open-Drain, IOL = 5 mA, 1x Drive,  
VDD = 5.0 V ± 10 %  
--  
0.16  
Open-Drain, IOL = 100 μA, 2x Drive,  
VDD = 1.8 V ± 5 %  
--  
0.02  
0.08  
Open-Drain, IOL = 3 mA, 2x Drive,  
VDD = 3.3 V ± 10 %  
--  
Open-Drain, IOL = 5 mA, 2x Drive,  
VDD = 5.0 V ± 10 %  
--  
0.08  
Open-Drain NMOS 4x, IO8,  
--  
0.002  
0.04  
0.05  
IOL = 100 μA, VDD = 1.8 V ± 5 %  
Open-Drain NMOS 4x, IO8,  
IOL = 3 mA, VDD = 3.3 V ± 10 %  
--  
Open-Drain NMOS 4x, IO8,  
IOL = 5 mA, VDD = 5.0 V ± 10 %  
--  
Datasheet  
22-Jul-2021  
Revision 2.3  
17 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 6: EC at T = -40 °C to 125 °C, VDD = 1.71 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, VOH = VDD - 0.2, 1x Drive,  
VDD = 1.8 V ± 5 %  
1.07  
1.70  
--  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Push-Pull, VOH = 2.4 V, 1x Drive,  
VDD = 3.3 V ± 10 %  
6.05  
22.08  
1.07  
12.08  
34.04  
1.70  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Push-Pull, VOH = 2.4 V, 1x Drive,  
VDD = 5.0 V ± 10 %  
PMOS OD, VOH = VDD - 0.2, 1x Drive,  
VDD = 1.8 V ± 5 %  
PMOS OD, VOH = 2.4 V, 1x Drive,  
VDD = 3.3 V ± 10 %  
6.05  
12.08  
34.04  
3.41  
PMOS OD, VOH = 2.4 V, 1x Drive,  
VDD = 5.0 V ± 10 %  
22.08  
2.22  
HIGH-Level Output Pulse  
Current (Note 3)  
IOH  
Push-Pull, VOH = VDD - 0.2, 2x Drive,  
VDD = 1.8 V ± 5 %  
IOs 0, 1, 2, 3, 4, 5, 6, 7, 8  
Push-Pull, VOH = 2.4 V, 2x Drive,  
VDD = 3.3 V ± 10 %  
11.54  
41.76  
2.22  
24.16  
68.08  
3.41  
Push-Pull, VOH = 2.4 V, 2X Drive,  
VDD = 5.0 V ± 10 %  
PMOS OD, VOH = VDD - 0.2, 2x Drive,  
VDD = 1.8 V ± 5 %  
PMOS OD, VOH = 2.4 V, 2x Drive,  
VDD = 3.3 V ± 10 %  
11.52  
41.69  
0.92  
24.16  
68.08  
1.69  
PMOS OD, VOH = 2.4 V, 2x Drive,  
VDD = 5.0 V ± 10 %  
Push-Pull, VOL = 0.15 V, 1x Drive,  
VDD = 1.8 V ± 5 %  
Push-Pull, VOL = 0.4 V, 1x Drive,  
VDD = 3.3 V ± 10 %  
4.88  
8.24  
Push-Pull, VOL = 0.4 V, 1X Drive,  
VDD = 5.0 V ± 10 %  
7.22  
11.58  
3.38  
Push-Pull, VOL = 0.15 V, 2x Drive,  
VDD = 1.8 V ± 5 %  
1.83  
Push-Pull, VOL = 0.4 V, 2x Drive,  
VDD = 3.3 V ± 10 %  
9.75  
16.49  
23.16  
2.53  
Push-Pull, VOL = 0.4 V, 2X Drive,  
VDD = 5.0 V ± 10 %  
13.83  
1.38  
LOW-Level Output Pulse  
Current (Note 3)  
IOL  
Open-Drain, VOL = 0.15 V, 1x Drive,  
VDD = 1.8 V ± 5 %  
IOs 0, 1, 2, 3, 4, 5, 6, 7, 8  
Open-Drain, VOL = 0.4 V, 1x Drive,  
VDD = 3.3 V ± 10 %  
7.31  
12.37  
17.38  
5.07  
Open-Drain, VOL = 0.4 V, 1X Drive,  
VDD = 5.0 V ± 10 %  
10.82  
2.75  
Open-Drain, VOL = 0.15 V, 2x Drive,  
VDD = 1.8 V ± 5 %  
Open-Drain, VOL = 0.4 V, 2x Drive,  
VDD = 3.3 V ± 10 %  
14.54  
17.34  
24.74  
34.76  
Open-Drain, VOL = 0.4 V, 2X Drive,  
VDD = 5.0 V ± 10 %  
Datasheet  
22-Jul-2021  
Revision 2.3  
18 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 6: EC at T = -40 °C to 125 °C, VDD = 1.71 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Open-Drain NMOS 4x, IO8,  
VOL = 0.15 V, VDD = 1.8 V ± 5 %  
7.21  
9.00  
--  
mA  
mA  
mA  
LOW-Level Output Pulse  
Current (Note 3)  
Open-Drain NMOS 4x, IO8,  
VOL = 0.4 V, VDD = 3.3 V ± 10 %  
IOL  
31.32  
41.06  
41.06  
55.18  
--  
--  
IOs 0, 1, 2, 3, 4, 5, 6, 7, 8  
Open-Drain NMOS 4X, IO8,  
VOL = 0.4 V, VDD = 5.0 V ± 10 %  
TSU  
Startup Time  
From VDD rising past PONTHR  
0.61  
1.41  
1.24  
1.54  
1.65  
1.66  
ms  
V
PONTHR Power-On Threshold  
VDD Level Required to Start Up the Chip  
VDD Level Required to Switch Off the  
Chip  
POFFTHR Power-Off Threshold  
1.00  
1.15  
1.31  
V
1 M Pull-up  
873.2  
85.17  
9.61  
1094.7 1364.3  
109.30 135.52  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
RPUP  
Pull-up Resistance  
100 k Pull-up  
10 k Pull-up  
11.86  
14.73  
1 M Pull-down  
100 k Pull-down  
10 k Pull-down  
862.5  
87.95  
8.66  
1096.3 1357.4  
109.76 136.06  
RPDWN  
Pull-down Resistance  
11.81  
15.05  
Note 1 No hysteresis.  
Note 2 The GreenPAK’s power rails are divided in two sides. IOs 0, 1, 2, 3, 4, 5, 6, 7, and 8 are connected to one side, IOs 9,  
10, 12, 13, 14, 15, 16, and 17 to another.  
Note 3 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
Table 7: EC at T = -40 °C to 125 °C, VDD = 1.71 V to 5.5 V Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
0.7x  
VDD  
(Note 2)  
VDD+  
0.3  
(Note 2)  
Logic Input (Note 1)  
--  
V
HIGH-Level Input Voltage  
IOs 9, 10, 12, 13, 14, 15, 16, Logic Input with Schmitt Trigger  
17  
0.8x  
VDD  
(Note 2)  
VDD+  
0.3  
(Note 2)  
VIH2  
--  
--  
--  
--  
V
V
V
V
VDD+  
Low-Level Logic Input (Note 1)  
1.25  
0.3  
(Note 2)  
0.3x  
VDD  
(Note 2)  
GND-  
0.3  
Logic Input (Note 1)  
LOW-Level Input Voltage  
IOs 9, 10, 12, 13, 14, 15, 16,  
17  
0.2x  
VDD  
(Note 2)  
GND-  
0.3  
VIL2  
Logic Input with Schmitt Trigger  
GND-  
0.3  
Low-Level Logic Input (Note 1)  
--  
0.5  
V
V
V
V
Logic Input with Schmitt Trigger,  
VDD2 = 1.8 V ± 5 %  
0.10  
0.29  
0.29  
0.41  
0.62  
0.62  
0.66  
0.94  
0.94  
Schmitt Trigger Hysteresis  
Voltage  
Logic Input with Schmitt Trigger,  
IOs 9, 10, 12, 13, 14, 15, 16, VDD2 = 3.3 V ± 10 %  
VHYS  
17  
Logic Input with Schmitt Trigger,  
V
DD2 = 5.0 V ± 10 %  
Datasheet  
22-Jul-2021  
Revision 2.3  
19 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 7: EC at T = -40 °C to 125 °C, VDD = 1.71 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull 1x, Open-Drain PMOS 1x,  
IOH = 100 μA, VDD2 = 1.8 V ± 5 %  
1.68  
1.79  
--  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Push-Pull, IOH = 3 mA, 1x Drive,  
VDD2 = 3.3 V ± 10 %  
2.70  
2.70  
4.15  
1.70  
2.85  
2.86  
4.32  
--  
3.12  
3.12  
4.76  
1.79  
3.21  
3.21  
4.89  
0.010  
0.13  
0.19  
0.007  
0.06  
0.09  
0.007  
0.08  
0.12  
0.003  
0.04  
0.07  
0.001  
0.02  
0.03  
--  
--  
PMOS OD, IOH = 3 mA, 1x Drive,  
VDD2 = 3.3 V ± 10 %  
Push-Pull, PMOS OD, IOH = 3 mA,  
1x Drive, VDD2 = 5.0 V ± 10 %  
--  
HIGH-Level Output Voltage  
IOs 9, 10, 12, 13, 14, 15, 16,  
17  
VOH2  
Push-Pull 2x, Open-Drain PMOS 2x,  
IOH = 100 μA, VDD2 = 1.8 V ± 5 %  
--  
Push-Pull, IOH = 3 mA, 2x Drive,  
VDD2 = 3.3 V ± 10 %  
--  
PMOS OD, IOH = 3 mA, 2x Drive,  
VDD2 = 3.3 V ± 10 %  
--  
Push-Pull, PMOS OD, IOH = 3 mA,  
2x Drive, VDD2 = 5.0 V ± 10 %  
--  
Push-Pull 1x,  
IOL= 100 μA, VDD2 = 1.8 V ± 5 %  
0.015  
0.23  
0.24  
0.010  
0.11  
0.12  
0.010  
0.15  
0.16  
0.010  
0.08  
0.08  
0.004  
0.04  
0.05  
Push-Pull, IOL= 3 mA, 1x Drive,  
VDD2 = 3.3 V ± 10 %  
--  
Push-Pull, IOL= 3 mA, 1x Drive,  
VDD2 = 5.0 V ± 10 %  
--  
Push-Pull 2x,  
IOL = 100 μA, VDD2 = 1.8 V ± 5 %  
--  
Push-Pull, IOL = 3 mA, 2x Drive,  
VDD2 = 3.3 V ± 10 %  
--  
Push-Pull, IOL = 3 mA, 2x Drive,  
VDD2 = 5.0 V ± 10 %  
--  
Open-Drain NMOS 1x,  
IOL = 100 μA, VDD2 = 1.8 V ± 5 %  
--  
LOW-Level Output Voltage  
IOs 9, 10, 12, 13, 14, 15, 16,  
17  
Open-Drain, IOL = 3 mA, 1x Drive,  
VDD2 = 3.3 V ± 10 %  
VOL2  
--  
Open-Drain NMOS, IOL= 3 mA, 1x Drive,  
VDD2 = 5.0 V ± 10 %  
--  
Open-Drain NMOS 2x,  
IOL = 100 μA, VDD2 = 1.8 V ± 5 %  
--  
Open-Drain, IOL = 3 mA, 2x Drive,  
VDD2 = 3.3 V ± 10 %  
--  
Open-Drain NMOS, IOL= 3 mA, 2x Drive,  
VDD2 = 5.0 V ± 10 %  
--  
Open-Drain NMOS 4x, IO9,  
IOL = 100 μA, VDD2 = 1.8 V ± 5 %  
--  
Open-Drain NMOS 4x, IO9,  
IOL = 3 mA, VDD2 = 3.3 V ± 10 %  
--  
Open-Drain NMOS 4x, IO9,  
IOL = 3 mA, VDD2 = 5.0 V ± 10 %  
--  
Datasheet  
22-Jul-2021  
Revision 2.3  
20 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 7: EC at T = -40 °C to 125 °C, VDD = 1.71 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull 1x,Open-Drain PMOS 1x,  
VOH = VDD - 0.2, VDD2 = 1.8 V ± 5 %  
1.03  
1.70  
--  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Push-Pull, VOH = 2.4 V, 1x Drive,  
VDD2 = 3.3 V ± 10 %  
6.05  
22.08  
6.05  
12.08  
34.04  
12.08  
34.04  
3.41  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Push-Pull, VOH = 2.4 V, 1x Drive,  
VDD2 = 5.0 V ± 10 %  
PMOS OD, VOH = 2.4 V, 1x Drive,  
VDD2 = 3.3 V ± 10 %  
PMOS OD, VOH = 2.4 V, 1x Drive,  
VDD2 = 5.0 V ± 10 %  
HIGH-Level Output Pulse  
22.08  
2.03  
Current (Note 3)  
IOs 9, 10, 12, 13, 14, 15, 16,  
17  
IOH2  
Push-Pull 2x, Open-Drain PMOS 2x,  
VOH = VDD - 0.2, VDD2 = 1.8 V ± 5 %  
Push-Pull, VOH = 2.4 V, 2x Drive,  
VDD2 = 3.3 V ± 10 %  
11.54  
41.76  
11.52  
41.69  
0.92  
24.16  
68.08  
24.16  
68.08  
1.66  
Push-Pull, VOH = 2.4 V, 2x Drive,  
VDD2 = 5.0 V ± 10 %  
PMOS OD, VOH = 2.4 V, 2x Drive,  
VDD2 = 3.3 V ± 10 %  
PMOS OD, VOH = 2.4 V, 2x Drive,  
VDD2 = 5.0 V ± 10 %  
Push-Pull 1x,  
VOL = 0.15 V, VDD2 = 1.8 V ± 5 %  
Push-Pull, VOL = 0.4 V, 1x Drive,  
VDD2 = 3.3 V ± 10 %  
4.88  
8.24  
Push-Pull, VOL = 0.4 V, 1x Drive,  
VDD2 = 5.0 V ± 10 %  
7.22  
11.58  
3.30  
Push-Pull 2x,  
VOL = 0.15 V, VDD2 = 1.8 V ± 5 %  
1.83  
Push-Pull, VOL = 0.4 V, 2x Drive,  
VDD2 = 3.3 V ± 10 %  
9.75  
16.49  
23.16  
2.53  
Push-Pull, VOL = 0.4 V, 2x Drive,  
VDD2 = 5.0 V ± 10 %  
13.83  
1.38  
Open-Drain NMOS 1x,  
VOL = 0.15 V, VDD2 = 1.8 V ± 5 %  
LOW-Level Output Pulse  
Current (Note 3)  
IOs 9, 10, 12, 13, 14, 15, 16,  
17  
IOL2  
Open-Drain, VOL = 0.4 V, 1x Drive,  
VDD2 = 3.3 V ± 10 %  
7.31  
12.37  
17.38  
5.07  
Open-Drain NMOS, VOL = 0.4 V, 1x  
Drive, VDD2 = 5.0 V ± 10 %  
10.82  
2.75  
Open-Drain NMOS 2x,  
VOL = 0.15 V, VDD2 = 1.8 V ± 5 %  
Open-Drain, VOL = 0.4 V, 2x Drive,  
VDD2 = 3.3 V ± 10 %  
14.54  
17.34  
5.50  
24.74  
34.76  
10.14  
41.06  
Open-Drain NMOS, VOL = 0.4 V, 2x  
Drive, VDD2 = 5.0 V ± 10 %  
Open-Drain NMOS 4x, IO9,  
VOL = 0.15 V, VDD2 = 1.8 V ± 5 %  
Open-Drain NMOS 4x, IO9,  
31.32  
V
DD2 = 3.3 V ± 10 %  
Datasheet  
22-Jul-2021  
Revision 2.3  
21 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 7: EC at T = -40 °C to 125 °C, VDD = 1.71 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
LOW-Level Output Pulse  
Current (Note 3)  
Condition  
Min  
Typ  
Max  
Unit  
Open-Drain NMOS 4x, IO9,  
IOL2  
41.06  
55.18  
--  
mA  
IOs 9, 10, 12, 13, 14, 15, 16, VDD2 = 5.0 V ± 10 %  
17  
Note 1 No hysteresis.  
Note 2 The GreenPAK’s power rails are divided in two sides. IOs 0, 1, 2, 3, 4, 5, 6, 7, and 8 are connected to one side, IOs 9,  
10, 12, 13, 14, 15, 16, and 17 to another.  
Note 3 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
3.5 I2C PINS ELECTRICAL CHARACTERISTICS  
Table 8: I2C Pins Timing Characteristics at T = -40 °C to 125 °C Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
--  
Typ  
--  
Max  
400  
--  
Unit  
kHz  
ns  
FSCL  
tLOW  
tHIGH  
Clock Frequency, SCL  
VDD = 1.71 V to 5.5 V  
VDD = 1.71 V to 5.5 V  
VDD = 1.71 V to 5.5 V  
VDD = 1.8 V ± 5 %  
VDD = 3.3 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 1.71 V to 5.5 V  
Clock Pulse Width Low  
Clock Pulse Width High  
1300  
600  
--  
--  
--  
--  
ns  
--  
95  
Input Filter Spike Suppression  
(SCL, SDA)  
tI  
--  
--  
95  
ns  
--  
--  
111  
900  
tAA  
Clock Low to Data Out Valid  
--  
--  
ns  
ns  
Bus Free Time between Stop  
and Start  
tBUF  
VDD = 1.71 V to 5.5 V  
1300  
--  
--  
tHD_STA  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
Start Hold Time  
Start Set-up Time  
Data Hold Time  
Data Set-up Time  
Inputs Rise Time  
Inputs Fall Time  
Stop Set-up Time  
Data Out Hold Time  
VDD = 1.71 V to 5.5 V  
VDD = 1.71 V to 5.5 V  
VDD = 1.71 V to 5.5 V  
VDD = 1.71 V to 5.5 V  
VDD = 1.71 V to 5.5 V  
VDD = 1.71 V to 5.5 V  
VDD = 1.71 V to 5.5 V  
VDD = 1.71 V to 5.5 V  
600  
600  
0
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
--  
100  
--  
--  
300  
300  
--  
tF  
--  
tSU_STO  
tDH  
600  
50  
--  
3.6 ASYNCHRONOUS STATE MACHINE SPECIFICATION  
Table 9: Asynchronous State Machine Specifications at T = -40 °C to 125 °C Unless Otherwise Noted  
Parameter Description  
Condition  
DD = 1.8 V ± 5 %  
Min  
104  
44  
32  
--  
Typ  
--  
Max  
213  
89  
58  
165  
70  
45  
--  
Unit  
V
Asynchronous State Machine  
Output Delay Time  
tst_out_delay  
VDD = 3.3 V ± 10 %  
VDD = 5.0 V ± 10 %  
--  
ns  
--  
V
DD = 1.8 V ± 5 %  
--  
Asynchronous State Machine  
Output Transition Time  
tst_out  
VDD = 3.3 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 1.8 V ± 5 %  
VDD = 3.3 V ± 10 %  
VDD = 5.0 V ± 10 %  
--  
--  
ns  
ns  
--  
--  
14  
6
--  
Asynchronous State Machine  
Input Pulse Acceptance Time  
tst_pulse  
--  
--  
5
--  
--  
Datasheet  
22-Jul-2021  
Revision 2.3  
22 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 9: Asynchronous State Machine Specifications at T = -40 °C to 125 °C Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
--  
Typ  
--  
Max  
20  
8
Unit  
VDD = 1.8 V ± 5 %  
VDD = 3.3 V ± 10 %  
VDD = 5.0 V ± 10 %  
Asynchronous State Machine  
Input Compete Time  
tst_comp  
--  
--  
ns  
--  
--  
5
3.7 MACROCELLS CURRENT CONSUMPTION  
Table 10: Typical Current Estimated for Each Macrocell at T = 25 °C  
Parameter Description Note  
Chip Quiescent, IDD1  
VDD/VDD2 = 1.8 V VDD/VDD2 = 3.3 V VDD/VDD2 = 5.0 V Unit  
0.45  
0.015  
41.48  
25.68  
7.16  
0.75  
0.021  
64.00  
32.41  
7.94  
1.12  
0.029  
94.89  
43.22  
9.25  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
Chip Quiescent, IDD2  
OSC 2 MHz, pre-divide = 1  
OSC 2 MHz, pre-divide = 8  
OSC 25 kHz, pre-divide = 1  
OSC 25 kHz, pre-divide = 8  
OSC 25 MHz, pre-divide = 1  
6.97  
7.60  
8.68  
87.25  
238.27  
428.66  
IDD  
Current  
OSC 25 MHz, pre-divide = 1,  
Force On  
87.25  
238.27  
428.67  
μA  
OSC 25 MHz, pre-divide = 8  
ACMP (each)  
78.01  
54.96  
75.06  
49.70  
71.93  
212.45  
52.64  
72.74  
47.32  
71.27  
390.17  
60.81  
81.25  
55.60  
79.62  
μA  
μA  
μA  
μA  
μA  
ACMP with buffer (each)  
Vref (each)  
Vref with buffer (each)  
3.8 TIMING CHARACTERISTICS  
Table 11: Typical Delay Estimated for Each Macrocell at T = 25 °C  
VDD/VDD2 = 1.8 V VDD/VDD2 = 3.3 V VDD/VDD2 = 5.0 V  
Rising Falling Rising Falling Rising Falling  
Parameter Description Note  
Unit  
tpd  
tpd  
Delay  
Delay  
Digital Input to PP 1x  
42  
45  
17  
19  
12  
13  
ns  
ns  
Digital Input with Schmitt Trig-  
ger to PP 1x  
42  
43  
16  
17  
18  
12  
Low Voltage Digital input to PP  
1x  
tpd  
Delay  
45  
428  
17  
177  
12  
120  
ns  
tpd  
tpd  
Delay  
Delay  
Digital input to PMOS output  
Digital input to NMOS output  
42  
-
-
17  
-
-
12  
-
-
ns  
ns  
80  
27  
18  
Output enable from pin,  
OE Hi-Z to 1  
tpd  
tpd  
Delay  
Delay  
53  
50  
-
-
21  
20  
-
-
15  
14  
-
-
ns  
ns  
Output enable from pin,  
OE Hi-Z to 0  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
LUT2bit (LATCH)  
LATCH (LUT2bit)  
LUT3bit (LATCH)  
LATCH+nRESET(LUT3bit)  
LUT4bit  
34  
30  
38  
45  
28  
19  
28  
33  
34  
37  
42  
33  
26  
34  
14  
14  
18  
21  
14  
10  
14  
13  
13  
15  
17  
13  
10  
13  
10  
10  
13  
15  
10  
7
9
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
12  
9
LUT2bt  
7
LUT3bit  
10  
9
Datasheet  
22-Jul-2021  
Revision 2.3  
23 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 11: Typical Delay Estimated for Each Macrocell at T = 25 °C (Continued)  
VDD/VDD2 = 1.8 V VDD/VDD2 = 3.3 V VDD/VDD2 = 5.0 V  
Parameter Description Note  
Unit  
Rising Falling Rising Falling Rising Falling  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
CNT/DLY Logic  
P_DLY1C  
P_DLY2C  
P_DLY3C  
P_DLY4C  
Filter  
40  
38  
18  
15  
13  
11  
ns  
ns  
ns  
ns  
ns  
ns  
367  
356  
165  
314  
462  
609  
78  
160  
312  
460  
609  
78  
123  
233  
343  
451  
53  
119  
231  
341  
451  
53  
720  
718  
1061  
1396  
200  
1060  
1400  
200  
ACMP (5 mV overdrive,  
IN- = 600 mV)  
tpd  
tw  
Delay  
3000  
20  
3000  
20  
2000  
20  
2000  
20  
2000  
20  
2000  
20  
ns  
ns  
ns  
Pulse  
Width  
IO with 1x Push-Pull  
(min transmitted)  
Pulse  
Width  
tw  
Filter (min transmitted)  
150  
150  
55  
55  
35  
35  
Table 12: Typical Propagations Delays and Pulse Widths at T = 25 °C  
Parameter Description Note  
VDD = 1.8 V VDD = 3.3 V VDD = 5.0 V  
Unit  
Pulse Width,  
tw  
tw  
tw  
tw  
mode: (any)edge detect, edge detect output  
mode: (any)edge detect, edge detect output  
mode: (any)edge detect, edge detect output  
mode: (any)edge detect, edge detect output  
296  
597  
135  
272  
410  
546  
101  
203  
305  
407  
ns  
ns  
ns  
ns  
1 cell  
Pulse Width,  
2 cell  
Pulse Width,  
3 cell  
898  
Pulse Width,  
4 cell  
1195  
time1  
time1  
time1  
time1  
time2  
time2  
time2  
time2  
Delay, 1 cell mode: (any)edge detect, edge detect output  
Delay, 2 cell mode: (any)edge detect, edge detect output  
Delay, 3 cell mode: (any)edge detect, edge detect output  
Delay, 4 cell mode: (any)edge detect, edge detect output  
Delay, 1 cell mode: both edge delay, edge detect output  
Delay, 2 cell mode: both edge delay, edge detect output  
Delay, 3 cell mode: both edge delay, edge detect output  
Delay, 4 cell mode: both edge delay, edge detect output  
55  
55  
24  
24  
18  
18  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
55  
24  
18  
55  
24  
18  
367  
667  
968  
1265  
165  
300  
440  
575  
106  
193  
279  
365  
Table 13: Typical Pulse Width Performance at T = 25 °C  
Parameter  
VDD = 1.8 V VDD = 3.3 V VDD = 5.0 V  
Unit  
ns  
Filtered Pulse Width for Filter 0  
Filtered Pulse Width for Filter 1  
< 114  
<75  
< 47  
<30  
< 30  
<19  
ns  
Datasheet  
22-Jul-2021  
Revision 2.3  
24 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 14: Typical Counter/Delay Offset Measurements  
RC OSC  
Parameter  
RC OSC Power VDD = 1.8 V VDD = 3.3 V VDD = 5.0 V  
Unit  
Freq  
25 kHz  
25 kHz  
2 MHz  
2 MHz  
25 MHz  
25 kHz  
2 MHz  
25 kHz  
2 MHz  
25 MHz  
Offset (Power-On Delay)  
Offset (Power-On Delay), fast start  
Offset (Power-On Delay)  
Offset (Power-On Delay), fast start  
Offset (Power-On Delay)  
Frequency settling time  
Frequency settling time  
Variable (CLK period)  
auto  
auto  
1.6  
2.1  
1.6  
2.1  
1.6  
2.1  
0.2  
0.4  
0.04  
12  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
auto  
0.4  
0.2  
auto  
0.7  
0.5  
auto  
0.01  
19  
0.05  
14  
auto  
auto  
14  
14  
14  
forced  
forced  
0-40  
0-0.5  
0-0.04  
0-40  
0-0.5  
0-0.04  
0-40  
Variable (CLK period)  
0-0.5  
μs  
μs  
Variable (CLK period)  
0-0.04  
25 kHz/  
2 MHz  
Tpd (non-delayed edge)  
either  
35  
14  
10  
ns  
3.9 OSC CHARACTERISTICS  
Table 15: 25 kHz RC OSC0 Frequency Limits  
Temperature Range  
0 °C to +125 °C  
Power Supply Range  
(VDD), V  
+25 °C  
-40 °C to +125 °C  
Minimum  
Maximum  
Value, kHz  
Minimum  
Maximum  
Minimum  
Maximum  
Value, kHz  
Value, kHz  
Value, kHz  
Value, kHz  
Value, kHz  
1.8 V ±5 %  
3.3 V ±10 %  
5.0 V ±10 %  
2.5 V to 4.5 V  
1.71 V to 5.5 V  
23.792  
24.473  
24.316  
24.438  
23.354  
26.288  
25.526  
25.939  
25.559  
26.670  
23.275  
27.089  
21.728  
29.173  
27.002  
27.181  
27.038  
29.545  
23.357  
26.028  
23.357  
23.309  
26.177  
23.309  
23.336  
26.051  
23.336  
22.828  
27.483  
21.301  
Table 16: 25 kHz RC OSC0 Frequency Error (Error Calculated Relative to Nominal Value)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
Error (% at  
0 °C to +125 °C  
-40 °C to +125 °C  
Error (% at  
Maximum)  
Error (% at  
Error (% at  
Maximum)  
Error (% at  
Minimum)  
Error (% at  
Maximum)  
Minimum)  
-4.83 %  
-2.11 %  
-2.73 %  
-2.25 %  
-6.58 %  
Minimum)  
-6.90 %  
-6.57 %  
-6.76 %  
-6.66 %  
-8.69 %  
1.8 V ±5 %  
3.3 V ±10 %  
5.0 V ±10 %  
2.5 V to 4.5 V  
1.71 V to 5.5 V  
5.15 %  
2.10 %  
3.76 %  
2.24 %  
6.68 %  
8.36 %  
4.11 %  
4.71 %  
4.21 %  
9.93 %  
-13.09 %  
-6.57 %  
-6.76 %  
-6.66 %  
-14.80 %  
16.69 %  
8.01 %  
8.72 %  
8.15 %  
18.18 %  
Datasheet  
22-Jul-2021  
Revision 2.3  
25 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 17: 2 MHz RC OSC0 Frequency Limits  
Temperature Range  
0 °C to +125 °C  
Power Supply Range  
(VDD), V  
+25 °C  
-40 °C to +125 °C  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
1.8 V ±5 %  
3.3 V ±10 %  
5.0 V ±10 %  
2.5 V to 4.5 V  
1.71 V to 5.5 V  
1.915  
2.062  
2.070  
2.233  
2.124  
2.274  
1.832  
2.103  
2.132  
2.270  
2.171  
2.305  
1.810  
2.144  
2.145  
2.270  
2.171  
2.305  
1.937  
1.858  
1.813  
1.894  
1.853  
1.767  
1.907  
1.836  
1.784  
1.760  
1.706  
1.629  
Table 18: 2 MHz RC OSC0 Frequency Error (Error Calculated Relative to Nominal Value)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
Error (% at  
0 °C to +125 °C  
-40 °C to +125 °C  
Error (% at  
Maximum)  
Error (% at  
Error (% at  
Maximum)  
Error (% at  
Minimum)  
Error (% at  
Maximum)  
Minimum)  
-4.26 %  
-3.14 %  
-5.31 %  
-4.65 %  
-12.01 %  
Minimum)  
-8.38 %  
-7.10 %  
-7.37 %  
-8.22 %  
-14.69 %  
1.8 V ±5 %  
3.3 V ±10 %  
5.0 V ±10 %  
2.5 V to 4.5 V  
1.71 V to 5.5 V  
3.12 %  
3.49 %  
11.66 %  
6.18 %  
13.72 %  
5.17 %  
6.58 %  
13.50 %  
8.57 %  
15.23 %  
-9.50 %  
-9.33 %  
7.20 %  
7.24 %  
13.50 %  
8.57 %  
15.23 %  
-11.67 %  
-10.81 %  
-18.57 %  
Table 19: 25 MHz RC OSC1 Frequency Limits  
Temperature Range  
0 °C to +125 °C  
Power Supply Range  
(VDD), V  
+25 °C  
-40 °C to +125 °C  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
2.5 V ±10 %  
3.3 V ±10 %  
5.0 V ±10 %  
2.5 V to 4.5 V  
1.71 V to 5.5 V  
22.316  
23.430  
23.289  
23.383  
12.643  
27.220  
26.220  
26.651  
26.220  
26.220  
21.771  
27.572  
26.679  
27.305  
26.679  
26.679  
21.771  
22.389  
22.500  
20.725  
11.317  
27.912  
27.014  
27.486  
27.014  
27.014  
22.389  
22.500  
20.725  
12.203  
Table 20: 25 MHz RC OSC1 Frequency Error (Error Calculated Relative to Nominal Value)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
0 °C to +125 °C  
-40 °C to +125 °C  
Error (% at  
Error (% at  
Maximum)  
Error (% at  
Error (% at  
Maximum)  
Error (% at  
Minimum)  
Error (% at  
Maximum)  
Minimum)  
-10.73 %  
-6.28 %  
Minimum)  
-12.92 %  
-10.44 %  
2.5 V ±10 %  
3.3 V ±10 %  
8.88 %  
4.88 %  
10.29 %  
6.72 %  
-12.92 %  
-10.44 %  
11.65 %  
8.06 %  
Datasheet  
22-Jul-2021  
Revision 2.3  
26 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 20: 25 MHz RC OSC1 Frequency Error (Error Calculated Relative to Nominal Value)(Continued)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
Error (% at  
0 °C to +125 °C  
-40 °C to +125 °C  
Error (% at  
Maximum)  
Error (% at  
Error (% at  
Maximum)  
Error (% at  
Error (% at  
Maximum)  
Minimum)  
Minimum)  
-10.00 %  
-17.10 %  
-51.19 %  
Minimum)  
-10.00 %  
-17.10 %  
-54.73 %  
5.0 V ±10 %  
2.5 V to 4.5 V  
1.71 V to 5.5 V  
-6.84 %  
6.61 %  
4.88 %  
4.88 %  
9.22 %  
6.72 %  
6.72 %  
9.95 %  
8.06 %  
8.06 %  
-14.47 %  
-49.43 %  
Note: 25 MHz RC OSC1 performance is not guaranteed at VDD < 2.5 V.  
Datasheet  
22-Jul-2021  
Revision 2.3  
27 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
3.9.1 OSC Power-On Delay  
Note: DLY/CNT Counter Data = 100, RC OSC Power Setting: "Auto Power-On", RC OSC Clock to Matrix Input: "Enable".  
Table 21: OSC Power-On Delay, T = 25 °C  
RC OSC0 2 MHz  
RC OSC0 25 kHz  
RC OSC1  
Power Supply  
Range  
Typical  
Maximum  
Value, ns  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, ns  
(VDD) V  
Value, ns  
372.7  
349.2  
330.3  
277.2  
262.0  
250.2  
236.6  
226.7  
219.0  
207.4  
202.8  
196.3  
190.8  
Value, µs  
0.40  
0.38  
0.35  
0.29  
0.28  
0.26  
0.25  
0.23  
0.22  
0.37  
1.63  
1.67  
1.69  
Value, ns  
71.2  
65.0  
59.7  
43.0  
39.6  
36.7  
33.2  
30.4  
28.2  
25.8  
25.0  
24.3  
23.7  
1.71  
1.80  
1.89  
2.30  
2.50  
2.70  
3.00  
3.30  
3.60  
4.20  
4.50  
5.00  
5.50  
407.3  
379.5  
358.0  
298.1  
281.9  
269.8  
256.7  
247.4  
239.9  
229.2  
224.5  
218.7  
213.3  
0.57  
0.41  
0.41  
0.31  
0.30  
0.30  
0.44  
0.47  
0.46  
0.50  
1.92  
2.05  
1.99  
87.3  
78.7  
71.3  
54.0  
48.1  
43.5  
39.8  
36.8  
34.3  
30.6  
29.2  
27.5  
26.8  
Table 22: OSC Power-On Delay, T = 25 °C, Fast Start-Up Time Mode  
RC OSC0 2 MHz  
RC OSC1 25 kHz  
Power Supply  
Range  
Typical  
Value, ns  
Maximum  
Value, ns  
Typical  
Maximum  
(VDD) V  
Value, µs  
Value, µs  
1.71  
1.80  
1.89  
2.30  
2.50  
2.70  
3.00  
3.30  
3.60  
4.20  
4.50  
5.00  
5.50  
327.9  
309.9  
295.5  
254.9  
243.1  
234.1  
223.7  
215.7  
209.4  
199.5  
195.5  
189.8  
184.9  
360.0  
338.3  
323.1  
278.1  
266.1  
257.1  
246.8  
239.1  
232.9  
223.4  
219.8  
214.6  
209.8  
0.68  
0.76  
0.64  
0.64  
0.61  
0.70  
0.53  
21.93  
21.88  
21.94  
21.90  
21.77  
21.74  
21.78  
21.69  
21.71  
21.75  
3.23  
16.68  
19.25  
19.22  
19.21  
19.17  
19.15  
19.12  
19.05  
Datasheet  
22-Jul-2021  
Revision 2.3  
28 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
3.10 ACMP CHARACTERISTICS  
Table 23: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V, Unless Otherwise Noted  
Parameter Description  
Note  
Conditions  
Min  
0
Typ  
--  
Max  
VDD  
1.2  
Unit  
Positive Input  
Negative Input  
Positive Input  
Negative Input  
Positive Input  
Negative Input  
V
V
VDD = 1.8 V ± 5%  
0
--  
0
--  
VDD  
1.2  
V
ACMP Input Voltage  
VACMP  
VDD = 3.3 V ± 10%  
Range  
0
--  
V
0
--  
VDD  
1.2  
V
VDD = 5.0 V ± 10%  
T = 25 °C  
0
--  
V
Low Bandwidth -  
Enable, Vhys = 0 mV,  
Gain = 1,  
-9.1  
--  
8.4  
mV  
Vref = 50 mV to  
1200 mV,  
VDD = 1.71 V to 5.5 V  
T = -40 °C to 85 °C  
T = 25 °C  
-10.9  
-7.5  
--  
--  
--  
10.9  
7.2  
mV  
mV  
mV  
ACMP Input Offset  
Voltage  
Voffset  
Low Bandwidth -  
Disable, Vhys = 0 mV,  
Gain =1,  
Vref = 50 mV to  
1200 mV,  
T = -40 °C to 85 °C  
-10.7  
10.5  
VDD = 1.71 V to 5.5 V  
BG = 550 μs,  
T = 25 °C  
VDD = 1.71 V to 5.5 V  
--  
--  
--  
--  
--  
--  
--  
--  
609.7  
675.0  
132.4  
149.4  
609.5  
674.6  
131.6  
149.2  
862.2  
1028.8  
176.2  
213.5  
862.0  
1027.5  
176.0  
213.3  
µS  
µS  
µS  
µS  
µS  
µS  
µS  
µS  
ACMP Power-On  
delay, Minimal  
required wake time for  
the "Wake and Sleep  
function",  
Regulator and Charge  
Pump set to automatic  
ON/OFF  
BG = 550 μs,  
T = -40 °C to 85 °C  
VDD = 1.71 V to 5.5 V  
BG = 100 μs,  
T = 25 °C  
DD = 2.7 V to 5.5 V  
V
BG = 100 μs,  
T = -40 °C to 85 °C  
DD = 2.7 V to 5.5 V  
V
tstart  
ACMP Start Time  
BG = 550 μs,  
T = 25 °C  
VDD = 3V to 5.5 V  
ACMP Power-On  
delay, Minimal  
required wake time for  
the "Wake and Sleep  
function",  
Regulator and Charge  
Pump always OFF  
BG = 550 μs,  
T = -40 °C to 85°C  
DD = 3 V to 5.5 V  
V
BG = 100 μs,  
T = 25 °C  
DD = 3 V to 5.5 V  
V
BG = 100 μs,  
T = -40 °C to 85°C  
VDD = 3 V to 5.5 V  
Datasheet  
22-Jul-2021  
Revision 2.3  
29 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 23: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
LB - Enabled,  
T = 25 °C  
7.32  
--  
35.5  
mV  
VHYS = 25 mV  
VIL = Vin - VHYS/2  
VIH = Vin + VHYS/2  
LB - Disabled,  
T = 25 °C  
10.0  
42.9  
--  
--  
--  
--  
--  
38.5  
57.8  
mV  
mV  
mV  
mV  
mV  
LB - Enabled,  
T = 25 °C  
VHYS = 50 mV  
VIL = Vin - VHYS  
VIH = VHYS  
LB - Disabled,  
T = 25 °C  
44.2  
54.3  
LB - Enabled,  
T = 25 °C  
192.7  
193.3  
208.7  
204.8  
V
HYS = 200 mV  
VIL = Vin - VHYS  
VIH = VHYS  
VHYS  
Built-in Hysteresis  
LB - Disabled,  
T = 25 °C  
VHYS = 25 mV  
VIL = Vin - VHYS/2  
VIH = Vin + VHYS/2  
LB - Enabled  
LB - Disabled  
LB - Enabled  
LB - Disabled  
LB - Enabled  
LB - Disabled  
0.0  
0.0  
--  
--  
--  
--  
--  
--  
58.0  
52.9  
mV  
mV  
mV  
mV  
mV  
mV  
VHYS = 50 mV  
VIL = Vin - VHYS  
VIH = VHYS  
22.5  
29.2  
157.1  
160.2  
86.9  
76.5  
VHYS = 200 mV  
VIL = Vin - VHYS  
VIH = VHYS  
251.6  
245.3  
Gain = 1x  
--  
--  
--  
--  
100.0  
1.0  
--  
--  
--  
--  
ΜΩ  
ΜΩ  
ΜΩ  
ΜΩ  
Gain = 0.5x  
Gain = 0.33x  
Gain = 0.25x  
Rsin  
Series Input Resistance  
0.8  
1.0  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 50 mV  
Low to High,  
T = (-40…+85)°C  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
35.99  
39.36  
1.85  
216.56  
208.81  
3.04  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 50 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
2.17  
4.10  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 50 mV  
Low to High,  
T = (-40…+85)°C  
25.22  
28.31  
1.55  
129.31  
145.47  
2.63  
Propagation Delay,  
Response Time  
PROP  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 50 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
1.93  
3.83  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 250 mV  
Low to High,  
T = (-40…+85)°C  
36.46  
39.79  
216.78  
216.05  
High to Low,  
T = (-40…+85)°C  
Datasheet  
22-Jul-2021  
Revision 2.3  
30 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 23: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 250 mV  
Low to High,  
T = (-40…+85)°C  
--  
2.04  
3.37  
µs  
High to Low,  
T = (-40…+85)°C  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
2.21  
25.81  
28.65  
1.74  
4.12  
132.94  
142.43  
2.93  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 250 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 250 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
1.97  
3.96  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 600 mV  
Low to High,  
T = (-40…+85)°C  
37.36  
40.67  
2.23  
222.82  
219.61  
4.02  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 600 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
2.23  
4.33  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 600 mV  
Low to High,  
T = (-40…+85)°C  
26.41  
29.32  
1.92  
135.47  
149.01  
3.53  
Propagation Delay,  
Response Time  
PROP  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 600 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
2.00  
4.25  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 850 mV  
Low to High,  
T = (-40…+85)°C  
38.36  
41.67  
2.26  
232.64  
232.78  
4.20  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 850 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
2.25  
4.60  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 850 mV  
Low to High,  
T = (-40…+85)°C  
27.08  
29.89  
1.91  
137.02  
146.92  
3.57  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 850 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
1.98  
4.34  
Datasheet  
22-Jul-2021  
Revision 2.3  
31 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 23: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 1200 mV  
Low to High,  
T = (-40…+85)°C  
--  
103.93 1853.68  
101.06 1656.70  
µs  
High to Low,  
T = (-40…+85)°C  
--  
--  
--  
--  
--  
--  
--  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(1.71..3.3)V,  
Overdrive=5 mV,  
Vref = 1200 mV  
Low to High,  
T = (-40…+85)°C  
68.29  
63.06  
30.62  
33.54  
5.00  
1753.33  
1568.55  
167.56  
181.40  
32.61  
High to Low,  
T = (-40…+85)°C  
Propagation Delay,  
Response Time  
PROP  
Low Bandwidth -  
Enable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 1200 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
Low Bandwidth -  
Disable, Gain = 1,  
VDD=(3.3..5.5)V,  
Overdrive=5 mV,  
Vref = 1200 mV  
Low to High,  
T = (-40…+85)°C  
High to Low,  
T = (-40…+85)°C  
5.24  
33.88  
G = 1, VDD = 1.71 V  
G = 1, VDD = 3.3 V  
--  
1
1
--  
--  
--  
G = 1, VDD = 5.5 V  
--  
1
--  
G = 0.5, VDD = 1.71 V  
G = 0.5, VDD = 3.3 V  
G = 0.5, VDD = 5.5 V  
G = 0.33, VDD = 1.71V  
G = 0.33, VDD = 3.3 V  
G = 0.33, VDD = 5.5 V  
G = 0.25, VDD = 1.71V  
G = 0.25, VDD = 3.3 V  
G = 0.25, VDD = 5.5 V  
-1.00%  
-0.96%  
-1.04%  
-1.75%  
-1.95%  
-2.03%  
-1.91%  
-1.98%  
-2.12%  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.93%  
0.82%  
0.90%  
2.10%  
1.69%  
1.77%  
2.13%  
1.80%  
1.90%  
Gain error (including  
threshold and internal  
Vref error),  
Vref = 50 mV to  
1200 mV  
G
T = -40 °C to +85 °C  
Datasheet  
22-Jul-2021  
Revision 2.3  
32 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 23: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Conditions  
T = 25 °C  
Min  
Typ  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Max  
Unit  
-0.58%  
-1.01%  
-0.59%  
-1.06%  
-0.64%  
-1.16%  
-0.57%  
-1.14%  
-0.59%  
-1.04%  
-0.67%  
-1.15%  
-0.64%  
-1.11%  
-0.63%  
-1.10%  
-0.72%  
-1.15%  
0.56%  
0.70%  
0.58%  
0.72%  
0.60%  
0.74%  
0.58%  
0.76%  
0.58%  
0.73%  
0.64%  
0.73%  
0.64%  
0.75%  
0.63%  
0.78%  
0.70%  
0.80%  
VDD = 1.8 V ± 5%  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
Internal Vref error,  
Vref = 1200 mV  
VDD = 3.3 V ± 10%  
VDD = 5.0 V ± 10%  
VDD = 1.8 V ± 5%  
VDD = 3.3 V ± 10%  
VDD = 5.0 V ± 10%  
VDD = 1.8 V ± 5%  
VDD = 3.3 V ± 10%  
VDD = 5.0 V ± 10%  
Internal Vref error,  
Vref = 1000 mV  
Vref  
Internal Vref error,  
Vref = 500 mV  
3.11 ANALOG TEMPERATURE SENSOR CHARACTERISTICS  
Table 24: TS Output vs Temperature (Output Range 1)  
VDD = 1.8 V  
Typical, V  
VDD = 3.3 V  
Typical, V  
VDD = 5.0 V  
Typical, V Accuracy, %  
T, °C  
Accuracy, %  
±3.33  
±3.35  
±3.49  
±3.42  
±3.51  
±3.63  
±3.72  
±4.00  
±3.73  
±4.01  
±4.11  
Accuracy, %  
±3.29  
±3.32  
±3.42  
±3.33  
±3.46  
±3.60  
±3.61  
±3.92  
±3.64  
±3.90  
±4.03  
±4.12  
±4.36  
±4.89  
-40  
-30  
-20  
-10  
0
1.20  
1.16  
1.13  
1.10  
1.06  
1.03  
0.99  
0.96  
0.92  
0.88  
0.85  
0.81  
0.78  
0.75  
1.20  
1.16  
1.13  
1.10  
1.06  
1.03  
0.99  
0.96  
0.92  
0.88  
0.85  
0.81  
0.78  
0.75  
1.20  
1.16  
1.13  
1.10  
1.06  
1.03  
0.99  
0.96  
0.92  
0.88  
0.85  
0.81  
0.78  
0.75  
±3.29  
±3.29  
±3.42  
±3.38  
±3.45  
±3.60  
±3.58  
±3.87  
±3.64  
±3.92  
±3.97  
±4.06  
±4.26  
±4.81  
10  
20  
30  
40  
50  
60  
70  
80  
90  
±4.18  
±4.43  
±4.98  
Datasheet  
22-Jul-2021  
Revision 2.3  
33 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 25: TS Output vs Temperature (Output Range 2)  
VDD = 1.8 V  
Typical, V  
VDD = 3.3 V  
Typical, V  
VDD = 5.0 V  
T, °C  
Accuracy, %  
±3.29  
±3.33  
±3.37  
±3.46  
±3.45  
±3.62  
±3.66  
±3.93  
±3.71  
±3.97  
±4.02  
±4.22  
±4.38  
±4.89  
Accuracy, %  
±3.28  
±3.24  
±3.30  
±3.39  
±3.39  
±3.51  
±3.58  
±3.81  
±3.65  
±3.90  
±3.97  
±4.13  
±4.29  
±4.88  
Typical, V  
0.99  
0.96  
0.93  
0.90  
0.87  
0.85  
0.82  
0.79  
0.76  
0.73  
0.70  
0.67  
0.64  
0.61  
Accuracy, %  
±3.28  
±3.31  
±3.34  
±3.40  
±3.40  
±3.53  
±3.53  
±3.80  
±3.62  
±3.91  
±4.00  
±4.08  
±4.26  
±4.77  
-40  
-30  
-20  
-10  
0
0.99  
0.96  
0.93  
0.90  
0.87  
0.85  
0.82  
0.79  
0.76  
0.73  
0.70  
0.67  
0.64  
0.61  
0.99  
0.96  
0.93  
0.90  
0.87  
0.85  
0.82  
0.79  
0.76  
0.73  
0.70  
0.67  
0.64  
0.61  
10  
20  
30  
40  
50  
60  
70  
80  
90  
Table 26: TS Output Error (Output Range 1)  
Error at T  
VDD, V  
-40 °C,  
%
-20 °C,  
%
0 °C,  
%
20 °C,  
%
40 °C,  
%
60 °C,  
%
80 °C,  
%
1.71  
1.80  
1.89  
2.30  
2.50  
2.70  
3.00  
3.30  
3.60  
4.20  
4.50  
5.00  
5.50  
±3.34  
±3.33  
±3.33  
±3.31  
±3.31  
±3.30  
±3.31  
±3.29  
±3.25  
±3.28  
±3.32  
±3.29  
±3.30  
±3.50  
±3.49  
±3.47  
±3.46  
±3.44  
±3.46  
±3.46  
±3.42  
±3.42  
±3.42  
±3.41  
±3.42  
±3.47  
±3.56  
±3.51  
±3.55  
±3.50  
±3.51  
±3.46  
±3.46  
±3.46  
±3.46  
±3.45  
±3.46  
±3.45  
±3.50  
±3.69  
±3.72  
±3.70  
±3.69  
±3.62  
±3.64  
±3.62  
±3.61  
±3.59  
±3.62  
±3.63  
±3.58  
±3.61  
±3.73  
±3.73  
±3.72  
±3.66  
±3.66  
±3.65  
±3.64  
±3.64  
±3.62  
±3.62  
±3.62  
±3.64  
±3.64  
±4.09  
±4.11  
±4.11  
±4.05  
±4.03  
±3.97  
±4.07  
±4.03  
±3.98  
±4.01  
±4.01  
±3.97  
±4.02  
±4.43  
±4.43  
±4.40  
±4.38  
±4.36  
±4.31  
±4.34  
±4.36  
±4.34  
±4.30  
±4.29  
±4.26  
±4.31  
Table 27: TS Output Error (Output Range 2)  
Error at T  
VDD, V  
-40 °C,  
%
-20 °C,  
%
0 °C,  
%
20 °C,  
%
40 °C,  
%
60 °C,  
%
80 °C,  
%
1.71  
1.80  
1.89  
2.30  
2.50  
±3.28  
±3.29  
±3.21  
±3.23  
±3.27  
±3.38  
±3.37  
±3.38  
±3.34  
±3.37  
±3.43  
±3.45  
±3.44  
±3.46  
±3.44  
±3.67  
±3.66  
±3.63  
±3.56  
±3.59  
±3.72  
±3.71  
±3.72  
±3.66  
±3.68  
±4.13  
±4.02  
±4.06  
±4.03  
±4.03  
±4.42  
±4.38  
±4.39  
±4.32  
±4.26  
Datasheet  
22-Jul-2021  
Revision 2.3  
34 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 27: TS Output Error (Output Range 2)(Continued)  
Error at T  
VDD, V  
-40 °C,  
%
-20 °C,  
%
0 °C,  
%
20 °C,  
%
40 °C,  
%
60 °C,  
%
80 °C,  
%
2.70  
3.00  
3.30  
3.60  
4.20  
4.50  
5.00  
5.50  
±3.24  
±3.27  
±3.28  
±3.28  
±3.23  
±3.27  
±3.28  
±3.26  
±3.31  
±3.33  
±3.30  
±3.28  
±3.36  
±3.31  
±3.34  
±3.37  
±3.39  
±3.39  
±3.39  
±3.34  
±3.34  
±3.38  
±3.40  
±3.44  
±3.59  
±3.57  
±3.58  
±3.58  
±3.58  
±3.56  
±3.53  
±3.57  
±3.65  
±3.65  
±3.65  
±3.64  
±3.62  
±3.61  
±3.62  
±3.61  
±4.04  
±4.02  
±3.97  
±3.96  
±4.04  
±4.03  
±4.00  
±4.01  
±4.29  
±4.26  
±4.29  
±4.30  
±4.28  
±4.26  
±4.26  
±4.22  
Datasheet  
22-Jul-2021  
Revision 2.3  
35 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
4
User Programmability  
Non-volatile memory (NVM) is used to configure the SLG46538-A’s connection matrix routing and macrocells. The NVM is One  
Time Programmable (OTP). However, Dialog’s GreenPAK development tools can be used to configure the connection matrix and  
macrocells, without programming the NVM, to allow on-chip emulation. This configuration will remain active on the device as long  
as it remains powered and can be re-written as needed to facilitate rapid design changes.  
When a design is ready for in-circuit testing, the same GreenPAK development tools can be used to program the NVM and create  
samples for small quantity builds. Once the NVM is programmed, the device will retain this configuration for the duration of its  
lifetime.  
Once the design is finalized, the design file can be forwarded to Dialog to integrate into the production process.  
Product  
Definition  
Customer creates their own design in  
GreenPAK Designer  
E-mail Product Idea, Definition, Drawing or  
Schematic to  
CMBUGreenPAK@diasemi.com  
Emulate design to verify behavior  
Dialog Semiconductor Applications  
Engineers will review design specifications  
with customer  
Program Engineering Samples with  
GreenPAK Development Tools  
Samples, Design and Characterization  
Report send to customer  
Customer verifies GreenPAK in system  
design  
GreenPAK Design  
approved  
GreenPAK Design  
approved  
Customers verifies GreenPAK design  
E-mail .gpx to  
CMBUGreenPAK@diasemi.com  
GreenPAK Design  
Approved in system test  
Custom GreenPAK part enters production  
Figure 2: Steps to Create a Custom GreenPAK Device  
Datasheet  
22-Jul-2021  
Revision 2.3  
36 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
5
IO Pins  
The SLG46538-A has a total of 17 multi-function IO pins which can function as either a user defined Input or Output, as well as  
serving as a special function (such as voltage reference output), or serving as a signal for programming of the on-chip Non Volatile  
Memory (NVM).  
Refer to Section 2 for normal and programming mode pin definitions.  
Normal Mode pin definitions are as follows:  
VDD: VDD power supply  
IO0: general purpose input  
IO1: general purpose input or output with OE  
IO2: general purpose input or output  
IO3: general purpose input or output with OE  
IO4: general purpose input or output or analog comparator 0(+)  
IO5: general purpose input or output with OE or analog comparator 0(-)  
IO6: general purpose input or OD output I2C SCL  
IO7: general purpose input or OD output I2C SDA  
IO8: general purpose input or output with OE or analog comparator 1(+)  
GND: ground  
IO9: general purpose input or output or analog comparator 1(-)  
IO10: general purpose input or output with OE or analog comparator 2(+)  
VDD2: VDD2 power supply  
IO12: general purpose input or output or analog comparator 3(+)  
IO13: general purpose input or output with OE  
IO14: general purpose input or output  
IO15: general purpose input or output with OE and Vref output (Vref1)  
IO16: general purpose input or output with OE and Vref output (Vref0)  
IO17: general purpose input or output or external clock input  
Programming Mode pin definitions are as follows:  
VDD: VDD power supply  
IO0: VPP programming voltage  
IO6: Programming SCL  
IO7: Programming SDA  
GND: ground  
Of the 17 user defined IO pins on the SLG46538-A, all but one of the pins (IO0) can serve as both digital input and digital output.  
IO0 can only serve as a digital input pin.  
IOs 0, 1, 2, 3, 4, 5, 6, 7, and 8 are powered from VDD and IOs 9, 10, 12, 13, 14, 15, 16, and 17 are powered from VDD2. All internal  
macrocells are powered from VDD. Voltage on VDD2 Pin must be less or equal voltage on VDD Pin.  
In case VDD2 floating and any Pin powered from VDD2 is configured as input, ESD pin protection diodes must be considered when  
applying an input signal to the pin. This will cause a significant current leakage.  
In case VDD2 floating and any Pin powered from VDD2 is configured as Output, the pin will behave as NMOS Open-Drain.  
It is not recommended to connect VDD2 to the GND.  
5.1 INPUT MODES  
Each IO pin can be configured as a digital input pin with/without buffered Schmitt Trigger, or can also be configured as a low  
voltage digital input. IOs 4, 5, 8, 9, 10, and 12 can also be configured to serve as analog inputs to the on-chip comparators. IOs  
15 and 16 can also be configured as analog reference voltage inputs.  
Datasheet  
22-Jul-2021  
Revision 2.3  
37 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
5.2 OUTPUT MODES  
IOs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, and 17 can all be configured as digital output pins.  
5.3 PULL-UP/DOWN RESISTORS  
All IO pins have the option for user selectable resistors connected to the input structure. The selectable values on these resistors  
are 10 kΩ, 100 kΩ, and 1 MΩ. In the case of IO0, the resistors are fixed to a pull-down configuration. In the case of all other IO  
pins, the internal resistors can be configured as either Pull-up or Pull-downs.  
5.4 GPI STRUCTURE  
5.4.1 GPI Structure (for IO0)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
WOSMT_EN  
SMT_EN  
00: Digital In without Schmitt Trigger, wosmt_en = 1, OE = 0  
01: Digital In with Schmitt Trigger, smt_en = 1, OE = 0  
10: Low Voltage Digital In mode, lv_en = 1, OE = 0  
11: Reserved  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
Note 1: OE cannot be selected by user  
Note 2: OE is Matrix output, Digital In is Matrix input  
Low Voltage  
Input  
LV_EN  
OE  
Floating  
PAD  
s0  
s1  
s2  
s3  
900 kΩ  
90 kΩ  
10 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Figure 3: IO0 GPI Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
38 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
5.5 MATRIX OE IO STRUCTURE  
5.5.1 Matrix OE IO Structure (for IOs 1, 3, 5)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
WOSMT_EN  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: Analog IO mode  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS 1x Open-Drain mode, od1x_en = 1  
11: NMOS 2x Open-Drain mode, od2x_en = 1, od1x_en = 1  
SMT_EN  
LV_EN  
Low Voltage  
Input  
Note 1: Digital Out and OE are Matrix output, Digital In is Matrix input  
Note 2: Can be varied over PVT, for reference only  
OE  
Analog IO  
(For IO5 only)  
Floating  
s0  
s1  
s2  
s3  
VDD  
172 Ω  
(Note 2)  
s1  
s0  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
VDD  
[1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
PP1x_EN  
VDD  
PAD  
VDD  
Digital OUT  
OE  
Digital OUT  
OE  
PP2x_EN  
OD2x_EN  
Figure 4: Matrix OE IO Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
39 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
5.5.2 Matrix OE IO Structure (for IOs 10, 13, 15, 16)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
WOSMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS 1x Open-Drain mode, od1x_en = 1  
11: NMOS 2x Open-Drain mode, od2x_en = 1, od1x_en = 1  
SMT_EN  
LV_EN  
Low Voltage  
Input  
Note 1: Digital Out and OE are Matrix output, Digital In is Matrix input  
Note 2: Can be varied over PVT, for reference only  
OE  
Analog IO  
(For IOs 10, 15, 16 only)  
Floating  
s0  
s1  
s2  
s3  
VDD2  
172 Ω  
(Note 2)  
s1  
s0  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
VDD2  
[1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
PP1x_EN  
VDD2  
PAD  
VDD2  
Digital OUT  
OE  
Digital OUT  
OE  
PP2x_EN  
OD2x_EN  
Figure 5: Matrix OE IO Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
40 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
5.5.3 Matrix OE IO Structure (for IOs 6 and 7)  
Non-Schmitt  
Trigger Input  
IO6, IO7 Mode [2:0]  
000: Digital Input without Schmitt Trigger  
WOSMT_EN  
SMT_EN  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Reserved  
100: Reserved  
101: Open-Drain NMOS  
110: Reserved  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
111: Reserved  
Note: Digital Out and OE are Matrix output, Digital In is Matrix input  
Low Voltage  
Input  
LV_EN  
OE  
Digital OUT  
OE  
OD1x_EN  
Floating  
PAD  
s0  
s1  
s2  
s3  
900 kΩ  
90 kΩ  
10 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Figure 6: Matrix OE IO Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
41 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
5.5.4 Matrix OE 4x Drive Structure (for IO8)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
WOSMT_EN  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: analog IO mode  
OE  
OE  
Schmitt  
Trigger Input  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS Open-Drain 1x mode, od1x_en = 1, odn_en = 1  
11: NMOS Open-Drain 2x mode, od2x_en = 1, od1x_en = 1, odn_en = 1  
Digital IN  
SMT_EN  
LV_EN  
Low Voltage  
Input  
Note 1: Digital Out and OE are Matrix output, Digital In is Matrix input  
Note 2: Can be varied over PVT, for reference only  
OE  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
172 Ω  
(Note 2)  
s1  
s0  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
VDD  
[1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
4x_EN  
PP1x_EN  
ODn_EN  
VDD  
Digital OUT  
OE  
OD2x_EN  
4x_EN  
PAD  
VDD  
ODn_EN  
2x  
2x  
Digital OUT  
OE  
Digital OUT  
OE  
4x_EN  
ODn_EN  
PP2x_EN  
Digital OUT  
OE  
4x_EN  
ODn_EN  
Figure 7: Matrix OE IO 4x Drive Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
42 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
5.6 REGISTER OE IO STRUCTURE  
5.6.1 IO Structure (for IOs 2 and 4)  
Non-Schmitt  
Trigger Input  
Mode [2:0]  
000: Digital In without Schmitt Trigger, wosmt_en = 1, OE = 0  
WOSMT_EN  
001: Digital In with Schmitt Trigger, smt_en = 1, OE = 0  
010: Low Voltage Digital In mode, lv_en = 1, OE = 0  
011: Analog IO mode  
OE  
OE  
Schmitt  
100: Push-Pull mode, pp_en = 1, OE = 1  
Trigger Input  
101: NMOS Open-Drain mode, odn_en = 1, OE = 1  
110: PMOS Open-Drain mode, odp_en = 1, OE = 1  
111: Analog IO and NMOS Open-Drain mode, odn_en = 1 and AIO_en = 1  
Digital IN  
SMT_EN  
LV_EN  
Note 1: OE cannot be selected by user and is controlled by register  
Note 2: Can be varied over PVT, for reference only  
Low Voltage  
Input  
OE  
Analog IO  
(For IO4 only)  
Floating  
s0  
s1  
s2  
s3  
s1  
s0  
172 Ω  
(Note 2)  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
[1:0]  
VDD  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
ODp_EN  
Digital OUT  
OE  
Digital OUT  
OE  
ODn_EN  
2x_EN  
PP_EN  
VDD  
PAD  
VDD  
ODp_EN  
Digital OUT  
OE  
Digital OUT  
OE  
2x_EN  
PP_EN  
2x_EN  
ODn_EN  
Figure 8: IO Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
43 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
5.6.2 IO Structure (for IOs 12, 14, 17)  
Non-Schmitt  
Trigger Input  
Mode [2:0]  
000: Digital In without Schmitt Trigger, wosmt_en = 1, OE = 0  
WOSMT_EN  
001: Digital In with Schmitt Trigger, smt_en = 1, OE = 0  
010: Low Voltage Digital In mode, lv_en = 1, OE = 0  
011: Analog IO mode  
OE  
OE  
Schmitt  
100: Push-Pull mode, pp_en = 1, OE = 1  
Trigger Input  
101: NMOS Open-Drain mode, odn_en = 1, OE = 1  
110: PMOS Open-Drain mode, odp_en = 1, OE = 1  
111: Analog IO and NMOS Open-Drain mode, odn_en = 1 and AIO_en = 1  
Digital IN  
SMT_EN  
LV_EN  
Note 1: OE cannot be selected by user and is controlled by register  
Note 2: Can be varied over PVT, for reference only  
Low Voltage  
Input  
OE  
Analog IO  
(For IO12 only)  
Floating  
s0  
s1  
s2  
s3  
VDD2  
s1  
s0  
172 Ω  
(Note 2)  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
[1:0]  
VDD2  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
ODp_EN  
Digital OUT  
OE  
Digital OUT  
OE  
ODn_EN  
2x_EN  
PP_EN  
VDD2  
PAD  
VDD2  
ODp_EN  
Digital OUT  
OE  
Digital OUT  
OE  
2x_EN  
PP_EN  
2x_EN  
ODn_EN  
Figure 9: IO Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
44 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
5.6.3 4x Drive Structure (for IO9)  
Non-Schmitt  
Trigger Input  
Mode [2:0]  
000: Digital In without Schmitt Trigger, wosmt_en = 1, OE = 0  
001: Digital In with Schmitt Trigger, smt_en = 1, OE = 0  
010: Low Voltage Digital In mode, lv_en = 1, OE = 0  
011: Analog IO mode  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
100: Push-Pull mode, pp_en = 1, OE = 1  
Digital IN  
101: NMOS Open-Drain mode, odn_en = 1, OE = 1  
110: PMOS Open-Drain mode, odp_en = 1, OE = 1  
111: Analog IO and NMOS Open-Drain mode, odn_en = 1 and AIO_en = 1  
Low Voltage  
Input  
Note 1: OE cannot be selected by user  
Note 2: Digital Out and OE are Matrix output, Digital In is Matrix input  
Note 3: Can be varied over PVT, for reference only  
LV_EN  
OE  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
172 Ω  
(Note 3)  
s1  
s0  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
[1:0]  
Pull-up_EN  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
VDD  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
4x_EN  
PP1x_EN  
ODn_EN  
Digital OUT  
OE  
VDD  
OD2x_EN  
4x_EN  
ODn_EN  
PAD  
VDD  
Digital OUT  
OE  
Digital OUT  
OE  
4x_EN  
PP2x_EN  
ODn_EN  
Digital OUT  
OE  
4x_EN  
ODn_EN  
Figure 10: IO 4x Drive Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
45 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
6
Connection Matrix  
The Connection Matrix in the SLG46538-A is used to create the internal routing for internal functional macrocells of the device  
once it is programmed. The registers are programmed from the one-time NVM cell during Test Mode Operation. The output of  
each functional macrocell within the SLG46538-A has a specific digital bit code assigned to it that is either set to active “High” or  
inactive “Low” based on the design that is created. Once the 2048 register bits within the SLG46538-A are programmed a fully  
custom circuit will be created.  
The Connection Matrix has 64 inputs and 110 outputs. Each of the 64 inputs to the Connection Matrix is hard-wired to the digital  
output of a particular source macrocell, including IO pins, LUTs, analog comparators, other digital resources, such as VDD and  
GND. The input to a digital macrocell uses a 6-bit register to select one of these 64 input lines.  
For a complete list of the SLG46538-A’s register table, see Section 20.  
Matrix Input Signal  
N
Functions  
Ground  
0
1
2
3
IO0 Digital In  
IO1 Digital In  
IO2 Digital In  
Resetb_core  
VDD  
62  
63  
Matrix Inputs  
0
1
2
109  
N
Registers  
Registers [5:0]  
Registers [13:8]  
Registers [21:16]  
Registers [877:872]  
Matrix OUT: PD of  
either Temp out or  
XTAL Osc  
Matrix OUT:  
ASM-state0-EN0  
Matrix OUT:  
ASM-state0-EN1  
Matrix OUT:  
ASM-state0-EN2  
Function  
Matrix Outputs  
Figure 11: Connection Matrix  
Function  
Connection Matrix  
IO10  
IO9  
LUT  
IO9  
IO12  
IO10  
LUT  
IO12  
Figure 12: Connection Matrix Example  
Datasheet  
22-Jul-2021  
Revision 2.3  
46 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
6.1 MATRIX INPUT TABLE  
Table 28: Matrix Input Table  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GND  
IO0 Digital Input  
2
IO1 Digital Input  
3
IO2 Digital Input  
4
IO3 Digital Input  
5
IO4 Digital Input  
6
IO5 Digital Input  
7
IO8 Digital Input  
8
LUT2_0/DFF0 Output  
LUT2_1/DFF1 Output  
LUT2_2/DFF2 Output  
LUT2_3/PGen Output  
LUT3_0/DFF3 Output  
LUT3_1/DFF4 Output  
LUT3_2/DFF5 Output  
LUT3_3/DFF6 Output  
LUT3_4/DFF7 Output  
LUT3_5/CNT_DLY2(8bit) Output  
LUT3_6/CNT_DLY3(8bit) Output  
LUT3_7/CNT_DLY4(8bit) Output  
LUT3_8/CNT_DLY5(8bit) Output  
LUT3_9/CNT_DLY6(8bit) Output  
LUT4_0/CNT_DLY0(16bit) Output  
LUT4_1/CNT_DLY1(16bit) Output  
LUT3_10/Pipe Delay (1st stage) Output  
Pipe Delay Output0  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
Pipe Delay Output1  
Internal OSC Pre-Divided by 1/2/4/8 Output and Post-Divided by 1/  
2/3/4/8/12/24/64 Output (25 kHz/2 MHz)  
27  
28  
Internal OSC Pre-Divided by 1/2/4/8 Output and Post-Divided by 1/  
2/3/4/8/12/24/64 Output (25 kHz/2 MHz)  
0
1
1
1
0
0
29  
30  
31  
32  
33  
34  
35  
36  
Internal OSC Pre-Divided by 1/2/4/8 Output (25 MHz)  
Filter0/Edge Detect0 Output  
Filter1/Edge Detect1 Output  
IO6 Digital or I2C_virtual_0 Input  
IO7 Digital or I2C_virtual_1 Input  
I2C_virtual_2 Input  
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
0
0
1
1
1
0
0
0
0
1
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
I2C_virtual_3 Input  
I2C_virtual_4 Input  
Datasheet  
22-Jul-2021  
Revision 2.3  
47 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 28: Matrix Input Table(Continued)  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
ASM-stateX-dout0  
ASM-stateX-dout1  
ASM-stateX-dout2  
ASM-stateX-dout3  
ASM-stateX-dout4  
ASM-stateX-dout5  
ASM-stateX-dout6  
ASM-stateX-dout7  
IO9 Digital Input  
IO10 Digital Input  
Inverter Output  
IO12 Digital Input  
IO13 Digital Input  
IO14 Digital Input  
IO15 Digital Input  
IO16 Digital Input  
IO17 Digital Input  
ACMP_0 Output  
ACMP_1 Output  
ACMP_2 Output  
ACMP_3 Output  
Programmable Delay with Edge Detector Output  
nRST_core (POR) as matrix input  
VDD  
6.2 MATRIX OUTPUT TABLE  
Table 29: Matrix Output Table  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[7:0]  
Matrix OUT: ASM-state0-EN0  
Matrix OUT: ASM-state0-EN1  
Matrix OUT: ASM-state0-EN2  
Matrix OUT: ASM-state1-EN0  
Matrix OUT: ASM-state1-EN1  
Matrix OUT: ASM-state1-EN2  
0
1
2
3
4
5
[15:8]  
[23:16]  
[31:24]  
[39:32]  
[47:40]  
Datasheet  
22-Jul-2021  
Revision 2.3  
48 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 29: Matrix Output Table (Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[55:48]  
Matrix OUT: ASM-state2-EN0  
6
[63:56]  
Matrix OUT: ASM-state2-EN1  
7
[71:64]  
Matrix OUT: ASM-state2-EN2  
8
[79:72]  
Matrix OUT: ASM-state3-EN0  
9
[87:80]  
Matrix OUT: ASM-state3-EN1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
[95:88]  
Matrix OUT: ASM-state3-EN2  
[103:96]  
Matrix OUT: ASM-state4-EN0  
[111:104]  
[119:112]  
[127:120]  
[135:128]  
[143:136]  
[151:144]  
[159:152]  
[167:160]  
[175:168]  
[183:176]  
[191:184]  
[199:192]  
[207:200]  
[215:208]  
[223:216]  
[231:224]  
[239:232]  
[247:240]  
[255:248]  
[263:256]  
[271:264]  
[279:272]  
[287:280]  
[295:288]  
[303:296]  
[311:304]  
[319:312]  
[327:320]  
[335:328]  
[343:336]  
[351:344]  
[359:352]  
Matrix OUT: ASM-state4-EN1  
Matrix OUT: ASM-state4-EN2  
Matrix OUT: ASM-state5-EN0  
Matrix OUT: ASM-state5-EN1  
Matrix OUT: ASM-state5-EN2  
Matrix OUT: ASM-state6-EN0  
Matrix OUT: ASM-state6-EN1  
Matrix OUT: ASM-state6-EN2  
Matrix OUT: ASM-state7-EN0  
Matrix OUT: ASM-state7-EN1  
Matrix OUT: ASM-state7-EN2  
Matrix OUT: ASM-state-nRST  
Matrix OUT: IO1 Digital Output Source  
Matrix OUT: IO1 Output Enable  
Matrix OUT: IO2 Digital Output Source  
Matrix OUT: IO3 Digital Output Source  
Matrix OUT: IO3 Output Enable  
Matrix OUT: IO4 Digital Output Source  
Matrix OUT: IO5 Digital Output Source  
Matrix OUT: IO5 Output Enable  
Matrix OUT: IO6 Digital Output Source (SCL with VI/Input & NMOS Open-Drain)  
Matrix OUT: IO7 Digital Output Source (SDA with VI/Input & NMOS Open-Drain)  
Matrix OUT: IO8 Digital Output Source  
Matrix OUT: IO8 Output Enable  
Matrix OUT: IO9 Digital Output Source  
Matrix OUT: IO10 Digital Output Source  
Matrix OUT: IO10 Output Enable  
Matrix OUT: Inverter Input  
Reserved  
Matrix OUT: IO12 Digital Output Source  
Matrix OUT: IO13 Digital Output Source  
Matrix OUT: IO13 Output Enable  
Datasheet  
22-Jul-2021  
Revision 2.3  
49 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 29: Matrix Output Table (Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[367:360]  
[375:368]  
[383:376]  
[391:384]  
[399:392]  
[407:400]  
[415:408]  
[423:416]  
[431:424]  
[439:432]  
[447:440]  
[455:448]  
[463:456]  
[471:464]  
[479:472]  
[487:480]  
[495:488]  
[503:496]  
[511:504]  
[519:512]  
[527:520]  
[535:528]  
[543:536]  
[551:544]  
[559:552]  
[567:560]  
[575:568]  
[583:576]  
[591:584]  
[599:592]  
[607:600]  
[615:608]  
[623:616]  
[631:624]  
[639:632]  
[647:640]  
[655:648]  
[663:656]  
[671:664]  
Matrix OUT: IO14 Digital Output Source  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
Matrix OUT: IO15 Digital Output Source  
Matrix OUT: IO15 Output Enable  
Matrix OUT: IO16 Digital Output Source  
Matrix OUT: IO16 Output Enable  
Matrix OUT: IO17 Digital Output Source  
Matrix OUT: ACMP0 PDB (Power-Down)  
Matrix OUT: ACMP1 PDB (Power-Down)  
Matrix OUT: ACMP2 PDB (Power-Down)  
Matrix OUT: ACMP3 PDB (Power-Down)  
Matrix OUT: Input of Filter_0 with fixed time edge detector  
Matrix OUT: Input of Filter_1 with fixed time edge detector  
Matrix OUT: Input of Programmable Delay & Edge Detector  
Matrix OUT: OSC 25 kHz/2 MHz PDB (Power-Down)  
Matrix OUT: OSC 25 MHz PDB (Power-Down)  
Matrix OUT: IN0 of LUT2_0 or Clock Input of DFF0  
Matrix OUT: IN1 of LUT2_0 or Data Input of DFF0  
Matrix OUT: IN0 of LUT2_1 or Clock Input of DFF1  
Matrix OUT: IN1 of LUT2_1 or Data Input of DFF1  
Matrix OUT: IN0 of LUT2_2 or Clock Input of DFF2  
Matrix OUT: IN1 of LUT2_2 or Data Input of DFF2  
Matrix OUT: IN0 of LUT2_3 or Clock Input of PGen  
Matrix OUT: IN1 of LUT2_3 or nRST of PGen  
Matrix OUT: IN0 of LUT3_0 or Clock Input of DFF3  
Matrix OUT: IN1 of LUT3_0 or Data Input of DFF3  
Matrix OUT: IN2 of LUT3_0 or nRST (nSET) of DFF3  
Matrix OUT: IN0 of LUT3_1 or Clock Input of DFF4  
Matrix OUT: IN1 of LUT3_1 or Data Input of DFF4  
Matrix OUT: IN2 of LUT3_1 or nRST (nSET) of DFF4  
Matrix OUT: IN0 of LUT3_2 or Clock Input of DFF5  
Matrix OUT: IN1 of LUT3_2 or Data Input of DFF5  
Matrix OUT: IN2 of LUT3_2 or nRST (nSET) of DFF5  
Matrix OUT: IN0 of LUT3_3 or Clock Input of DFF6  
Matrix OUT: IN1 of LUT3_3 or Data Input of DFF6  
Matrix OUT: IN2 of LUT3_3 or nRST (nSET) of DFF6  
Matrix OUT: IN0 of LUT3_4 or Clock Input of DFF7  
Matrix OUT: IN1 of LUT3_4 or Data Input of DFF7  
Matrix OUT: IN2 of LUT3_4 or nRST (nSET) of DFF7  
Matrix OUT: IN0 of LUT3_5 or Delay2 Input (or Counter2 RST Input)  
Datasheet  
22-Jul-2021  
Revision 2.3  
50 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 29: Matrix Output Table (Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[679:672]  
[687:680]  
[695:688]  
[703:696]  
[711:704]  
[719:712]  
[727:720]  
[735:728]  
[743:736]  
[751:744]  
[759:752]  
[767:760]  
[775:768]  
[783:776]  
[791:784]  
[799:792]  
[807:800]  
[815:808]  
[823:816]  
[831:824]  
[839:832]  
[847:840]  
[855:848]  
[863:856]  
[871:864]  
Matrix OUT: IN1 of LUT3_5 or External Clock Input of Delay2 (or Counter2)  
84  
85  
Matrix OUT: IN2 of LUT3_5  
Matrix OUT: IN0 of LUT3_6 or Delay3 Input (or Counter3 RST Input)  
Matrix OUT: IN1 of LUT3_6 or External Clock Input of Delay3 (or Counter3)  
Matrix OUT: IN2 of LUT3_6  
86  
87  
88  
Matrix OUT: IN0 of LUT3_7 or Delay4 Input (or Counter4 RST Input)  
Matrix OUT: IN1 of LUT3_7 or External Clock Input of Delay4 (or Counter4)  
Matrix OUT: IN2 of LUT3_7  
89  
90  
91  
Matrix OUT: IN0 of LUT3_8 or Delay5 Input (or Counter5 RST Input)  
Matrix OUT: IN1 of LUT3_8 or External Clock Input of Delay5 (or Counter5)  
Matrix OUT: IN2 of LUT3_8  
92  
93  
94  
Matrix OUT: IN0 of LUT3_9 or Delay6 Input (or Counter6 RST Input)  
Matrix OUT: IN1 of LUT3_9 or External Clock Input of Delay6 (or Counter6)  
Matrix OUT: IN2 of LUT3_9  
95  
96  
97  
Matrix OUT: IN0 of LUT3_10 or Input of Pipe Delay  
98  
Matrix OUT: IN1 of LUT3_10 or nRST of Pipe Delay  
Matrix OUT: IN2 of LUT3_10 or Clock of Pipe Delay  
Matrix OUT: IN0 of LUT4_0 or Delay0 Input (or Counter0 RST/SET Input)  
Matrix OUT: IN1 of LUT4_0 or External Clock Input of Delay0 (or Counter0)  
Matrix OUT: IN2 of LUT4_0 or UP Input of FSM0  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
Matrix OUT: IN3 of LUT4_0 or KEEP Input of FSM0  
Matrix OUT: IN0 of LUT4_1 or Delay1 Input (or Counter1 RST/SET Input)  
Matrix OUT: IN1 of LUT4_1 or External Clock Input of Delay1 (or Counter1)  
Matrix OUT: IN2 of LUT4_1 or UP Input of FSM1  
Matrix OUT: IN3 of LUT4_1 or KEEP Input of FSM1  
Matrix OUT: PD ofeither Temp-output with BG AND/OR crystal oscillator by register  
[1268]  
[879:872]  
109  
Note 1 For each Address, the two most significant bits are unused.  
Datasheet  
22-Jul-2021  
Revision 2.3  
51 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
6.3 CONNECTION MATRIX VIRTUAL INPUTS  
As mentioned previously, the Connection Matrix inputs come from the outputs of various digital macrocells on the device. Eight  
of the Connection Matrix inputs have the special characteristic that the state of these signal lines comes from a corresponding  
data bit written as a register value via I2C. This gives the user the ability to write data via the serial channel, and have this  
information translated into signals that can be driven into the Connection Matrix and from the Connection Matrix to the digital  
inputs of other macrocells on the device. The I2C address for reading and writing these register values is at byte 0244.  
Six of the eight Connection Matrix Virtual Inputs are dedicated to this virtual input function. An I2C write command to these register  
bits will set the signal values going into the Connection Matrix to the desired state. A read command to these register bits will read  
either the original data values coming from the NVM memory bits (that were loaded during the initial device startup), or the values  
from a previous write command (if that has happened).  
Two of the eight Connection Matrix Virtual Inputs are shared with Pin digital inputs,(IO6 Digital or I2C_virtual_0 Input) and (IO7  
Digital or I2C_virtual_1 Input). If the virtual input mode is selected, an I2C write command to these register bits will set the signal  
values going into the Connection Matrix to the desired state. Two register bits select whether the Connection Matrix input comes  
from the pin input or from the virtual register:  
register [1074] Select SCL & Virtual Input 0 or IO6  
register [1082] Select SDA & Virtual Input 1 or IO7  
See Table 30 for Connection Matrix Virtual Inputs.  
Table 30: Connection Matrix Virtual Inputs  
Matrix Input  
Register Bit  
Addresses (d)  
Matrix Input Signal Function  
Number  
32  
I2C_virtual_0 Input  
I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
[1952]  
[1953]  
[1954]  
[1955]  
[1956]  
[1957]  
[1958]  
[1959]  
33  
34  
35  
36  
37  
38  
39  
6.4 CONNECTION MATRIX VIRTUAL OUTPUTS  
The digital outputs of the various macrocells are routed to the Connection Matrix to enable interconnections to the inputs of other  
macrocells in the device. At the same time, it is possible to read the state of each of the macrocell outputs as a register value via  
I2C. This option, called Connection Matrix Virtual Outputs, allows the user to remotely read the values of each macrocell output.  
The I2C addresses for reading these register values are at bytes 0240 to 0247. Write commands to these same register values  
will be ignored (with the exception of the Virtual Input register bits at byte 0244).  
Datasheet  
22-Jul-2021  
Revision 2.3  
52 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
7
Combination Function Macrocells  
The SLG46538-A has seventeen combination function macrocells that can serve more than one logic or timing function. In each  
case, they can serve as a Look Up Table (LUT), or as another logic or timing function. See the list below for the functions that  
can be implemented in these macrocells.  
Three macrocells that can serve as either 2-bit LUTs or as D Flip-Flops;  
Five macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input;  
One macrocell that can serve as either 3-bit LUT or as Pipe Delay;  
One macrocell that can serve as either 2-bit LUT or as Programmable Pattern Generator (PGen);  
Five macrocells that can serve as either 3-bit LUTs or as 8-Bit Counter/Delays;  
Two macrocells that can serve as either 4-bit LUTs or as 16-Bit Counter/Delays.  
Inputs/Outputs for the 17 combination function macrocells are configured from the connection matrix with specific logic functions  
being defined by the state of NVM bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
7.1 2-BIT LUT OR D FLIP-FLOP MACROCELLS  
There are three macrocells that can serve as either 2-bit LUTs or as D Flip-Flops. When used to implement LUT functions, the  
2-bit LUTs each take in two input signals from the connection matrix and produce a single output, which goes back into the  
connection matrix. When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data  
(D) and clock (CLK) inputs for the Flip-Flop, with the output going back to the connection matrix.  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change  
LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK  
is High).  
Register [1207] DFF or LATCH Select  
Register [1206] Output Select (Q or nQ)  
Register [1205] DFF Initial Polarity Select  
IN1  
IN0  
S0  
S1  
From Connection Matrix Output [61]  
OUT  
2-bit LUT0  
0: 2-bit LUT0 IN1  
1: DFF0 Data  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [8]  
4-bits NVM  
Registers [1207:1204]  
0: 2-bit LUT0 OUT  
1: DFF0 OUT  
S1  
DFF  
Registers  
D
S0  
S1  
From Connection Matrix Output [60]  
Q/nQ  
DFF0  
0: 2-bit LUT0 IN0  
1: DFF0 clk  
clk  
1-bit NVM  
Register [1191]  
Figure 13: 2-bit LUT0 or DFF0  
Datasheet  
22-Jul-2021  
Revision 2.3  
53 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Register [1203] DFF or LATCH Select  
Register [1202] Output Select (Q or nQ)  
Register [1201] DFF Initial Polarity Select  
IN1  
S0  
From Connection Matrix Output [63]  
OUT  
2-bit LUT1  
0: 2-bit LUT1 IN1  
1: DFF1 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [9]  
4-bits NVM  
Registers [1203:1200]  
0: 2-bit LUT1 OUT  
1: DFF1 OUT  
S1  
DFF  
Registers  
D
S0  
S1  
From Connection Matrix Output [62]  
Q/nQ  
DFF1  
0: 2-bit LUT1 IN0  
1: DFF1 clk  
clk  
1-bit NVM  
Register [1190]  
Figure 14: 2-bit LUT1 or DFF1  
Register [1215] DFF or LATCH Select  
Register [1214] Output Select (Q or nQ)  
Register [1213] DFF Initial Polarity Select  
IN1  
S0  
S1  
From Connection Matrix Output [65]  
OUT  
2-bit LUT2  
0: 2-bit LUT2 IN1  
1: DFF2 Data  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [10]  
4-bits NVM  
Registers [1215:1212]  
0: 2-bit LUT2 OUT  
1: DFF2 OUT  
S1  
DFF  
Registers  
D
S0  
S1  
From Connection Matrix Output [64]  
Q/nQ  
DFF2  
0: 2-bit LUT2 IN0  
1: DFF2 clk  
clk  
1-bit NVM  
Register [1189]  
Figure 15: 2-bit LUT2 or DFF2  
Datasheet  
22-Jul-2021  
Revision 2.3  
54 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
7.1.1 2-Bit LUT or D Flip-Flop Macrocells Used as 2-Bit LUTs  
Table 31: 2-bit LUT0 Truth Table  
Table 33: 2-bit LUT2 Truth Table  
IN1  
0
IN0  
0
OUT  
IN1  
0
IN0  
0
OUT  
register [1204]  
register [1205]  
register [1206]  
register [1207]  
LSB  
register [1212]  
register [1213]  
register [1214]  
register [1215]  
LSB  
0
1
0
1
1
0
1
0
1
1
MSB  
1
1
MSB  
Table 32: 2-bit LUT1 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1200]  
register [1201]  
register [1202]  
register [1203]  
LSB  
0
1
1
0
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT0 is defined by registers [1207:1204]  
2-Bit LUT1 is defined by registers [1203:1200]  
2-Bit LUT2 is defined by registers [1215:1212]  
Table 34 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 34: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
Datasheet  
22-Jul-2021  
Revision 2.3  
55 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
7.1.2 Initial Polarity Operations  
Figure 16: DFF Polarity Operations  
7.2 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELLS  
There are five macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset inputs. When used to implement  
LUT functions, the 3-bit LUTs each take in three input signals from the connection matrix and produce a single output, which goes  
back into the connection matrix. When used to implement D Flip-Flop function, the three input signals from the connection matrix  
go to the data (D) and clock (CLK), and Reset/Set (rRST/nSET) inputs for the Flip-Flop, with the output going back to the  
connection matrix.  
DFF3 has a user selectable option to allow the macrocell output to either come from the Q/nQ output of one D Flip-Flop, or two  
D Flip-Flops in series, with the first D Flip-Flop triggering on the rising clock edge, and the second D Flip-Flop triggering on the  
falling clock edge.  
Datasheet  
22-Jul-2021  
Revision 2.3  
56 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Register [1223] DFF or LATCH Select  
Register [1222] Output Select (Q or nQ)  
Register [1221] DFF nRST or nSET Select  
Register [1220] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [70]  
S0  
IN1  
OUT  
3-bit LUT0  
0: 3-bit LUT0 IN2  
1: DFF3 nRST/nSET  
S1  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [69]  
To Connection Matrix  
S0  
S1  
Input [12]  
S0  
8-bits NVM  
0: 3-bit LUT0 IN1  
1: DFF3 D  
Registers [1223:1216]  
Register [1471]  
0: 3-bit LUT0 OUT  
1: DFF3 OUT  
S1  
DFF3  
nRST/nSET  
From Connection  
S0  
S1  
D
Q/nQ  
Matrix Output [68]  
Q
D
D
Q
0: 3-bit LUT0 IN0  
1: DFF3 clk  
clk  
Register [1222]  
Register [1471] Selects output from one or two DFF  
1-bit NVM  
Register [1187]  
Figure 17: 3-bit LUT0 or DFF3 with RST/SET  
Register [1231] DFF or LATCH Select  
Register [1230] Output Select (Q or nQ)  
Register [1229] DFF nRST or nSET Select  
Register [1228] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [73]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT1  
0: 3-bit LUT1 IN2  
1: DFF4 nRST/nSET  
LUT Truth  
Table  
From Connection  
To Connection Matrix  
Matrix Output [72]  
S0  
S1  
Input [13]  
S0  
8-bits NVM  
Registers [1231:1224]  
0: 3-bit LUT1 IN1  
1: DFF4 D  
0: 3-bit LUT1 OUT  
S1  
1: DFF4 OUT  
DFF  
Registers  
D
From Connection  
Matrix Output [71]  
S0  
S1  
nRST/nSET  
clk  
DFF4  
Q/nQ  
0: 3-bit LUT1 IN0  
1: DFF4 clk  
1-bit NVM  
Register [1186]  
Figure 18: 3-bit LUT1 or DFF4 with RST/SET  
Datasheet  
22-Jul-2021  
Revision 2.3  
57 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Register [1239] DFF or LATCH Select  
Register [1238] Output Select (Q or nQ)  
Register [1237] DFF nRST or nSET Select  
Register [1236] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [76]  
S0  
IN1  
IN0  
OUT  
3-bit LUT2  
0: 3-bit LUT2 IN2  
S1  
1: DFF5 nRST/nSET  
LUT Truth  
Table  
From Connection  
Matrix Output [75]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [14]  
8-bits NVM  
Registers [1239:1232]  
0: 3-bit LUT2 IN1  
1: DFF5 D  
0: 3-bit LUT2 OUT  
1: DFF5 OUT  
DFF  
Registers  
D
From Connection  
Matrix Output [74]  
S0  
S1  
nRST/nSET  
clk  
DFF5  
Q/nQ  
0: 3-bit LUT2 IN0  
1: DFF5 clk  
1-bit NVM  
Register [1185]  
Figure 19: 3-bit LUT2 or DFF5 with RST/SET  
Register [1247] DFF or LATCH Select  
Register [1246] Output Select (Q or nQ)  
Register [1245] DFF nRST or nSET Select  
Register [1244] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [79]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT3  
0: 3-bit LUT3 IN2  
1: DFF6 nRST/nSET  
LUT Truth  
Table  
From Connection  
To Connection Matrix  
Matrix Output [78]  
S0  
S1  
Input [15]  
S0  
8-bits NVM  
Registers [1247:1240]  
0: 3-bit LUT3 IN1  
1: DFF6 D  
0: 3-bit LUT3 OUT  
S1  
1: DFF6 OUT  
DFF  
Registers  
D
From Connection  
Matrix Output [77]  
S0  
S1  
nRST/nSET  
clk  
DFF6  
Q/nQ  
0: 3-bit LUT3 IN0  
1: DFF6 clk  
1-bit NVM  
Register [1184]  
Figure 20: 3-bit LUT3 or DFF6 with RST/SET  
Datasheet  
22-Jul-2021  
Revision 2.3  
58 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Register [1255] DFF or LATCH Select  
Register [1254] Output Select (Q or nQ)  
Register [1253] DFF nRST or nSET Select  
Register [1252] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [82]  
S0  
IN1  
OUT  
3-bit LUT4  
0: 3-bit LUT4 IN2  
S1  
1: DFF7 nRST/nSET  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [81]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [16]  
8-bits NVM  
Registers [1255:1248]  
0: 3-bit LUT4 IN1  
1: DFF7 D  
0: 3-bit LUT4 OUT  
1: DFF7 OUT  
DFF  
Registers  
D
From Connection  
Matrix Output [80]  
S0  
S1  
nRST/nSET  
clk  
DFF7  
Q/nQ  
0: 3-bit LUT4 IN0  
1: DFF7 clk  
1-bit NVM  
Register [1199]  
Figure 21: 3-bit LUT4 or DFF7 with RST/SET  
Register [1375] DFF or LATCH Select  
Register [1374] Output Select (Q or nQ)  
Register [1373] DFF nRST or nSET Select  
Register [1372] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [2]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT11  
0: 3-bit LUT11 IN2  
1: DFF8 nRST/nSET  
LUT Truth  
Table  
From Connection  
To Connection Matrix  
S0  
S1  
Matrix Output [1]  
S0  
S1  
Input [40]  
8-bits NVM  
Registers [1375:1368]  
0: 3-bit LUT11 IN1  
1: DFF8 D  
0: 3-bit LUT11 OUT  
1: DFF8 OUT  
DFF  
Registers  
D
From Connection  
Matrix Output [0]  
S0  
S1  
nRST/nSET  
clk  
DFF8  
Q/nQ  
0: 3-bit LUT11 IN0  
1: DFF8 clk  
1-bit NVM  
Register [1367]  
Figure 22: 3-bit LUT11 or DFF8 with RST/SET  
Datasheet  
22-Jul-2021  
Revision 2.3  
59 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Register [1383] DFF or LATCH Select  
Register [1382] Output Select (Q or nQ)  
Register [1381] DFF nRST or nSET Select  
Register [1380] DFF Initial Polarity Select  
IN2  
IN1  
From Connection  
Matrix Output [5]  
S0  
S1  
OUT  
3-bit LUT12  
0: 3-bit LUT12 IN2  
1: DFF9 nRST/nSET  
IN0  
LUT Truth  
Table  
From Connection  
To Connection Matrix  
Matrix Output [4]  
S0  
S1  
Input [41]  
S0  
8-bits NVM  
Registers [1383:1376]  
0: 3-bit LUT12 IN1  
1: DFF9 D  
0: 3-bit LUT12 OUT  
1: DFF9 OUT  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [3]  
S0  
S1  
nRST/nSET  
clk  
DFF9  
Q/nQ  
0: 3-bit LUT12 IN0  
1: DFF9 clk  
1-bit NVM  
Register [1366]  
Figure 23: 3-bit LUT12 or DFF9 with RST/SET  
Register [1391] DFF or LATCH Select  
Register [1390] Output Select (Q or nQ)  
Register [1389] DFF nRST or nSET Select  
Register [1388] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [8]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT13  
0: 3-bit LUT13 IN2  
1: DFF10 nRST/nSET  
LUT Truth  
Table  
From Connection  
To Connection Matrix  
S0  
S1  
Matrix Output [7]  
S0  
S1  
Input [42]  
8-bits NVM  
Registers [1391:1384]  
0: 3-bit LUT13 IN1  
1: DFF10 D  
0: 3-bit LUT13 OUT  
1: DFF10 OUT  
DFF  
Registers  
D
From Connection  
Matrix Output [6]  
S0  
S1  
nRST/nSET  
clk  
DFF10  
Q/nQ  
0: 3-bit LUT13 IN0  
1: DFF10 clk  
1-bit NVM  
Register [1365]  
Figure 24: 3-bit LUT13 or DFF10 with RST/SET  
Datasheet  
22-Jul-2021  
Revision 2.3  
60 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Register [1399] DFF or LATCH Select  
Register [1398] Output Select (Q or nQ)  
Register [1397] DFF nRST or nSET Select  
Register [1396] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [11]  
S0  
IN1  
OUT  
3-bit LUT14  
0: 3-bit LUT14 IN2  
S1  
1: DFF11 nRST/nSET  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [10]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [43]  
8-bits NVM  
Registers [1399:1392]  
0: 3-bit LUT14 IN1  
1: DFF11 D  
0: 3-bit LUT14 OUT  
1: DFF11 OUT  
DFF  
Registers  
D
From Connection  
Matrix Output [9]  
S0  
S1  
nRST/nSET  
clk  
DFF11  
Q/nQ  
0: 3-bit LUT14 IN0  
1: DFF11 clk  
1-bit NVM  
Register [1364]  
Figure 25: 3-bit LUT14 or DFF11 with RST/SET  
Register [1407] DFF or LATCH Select  
Register [1406] Output Select (Q or nQ)  
Register [1405] DFF nRST or nSET Select  
Register [1404] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [14]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT15  
0: 3-bit LUT15 IN2  
1: DFF12 nRST/nSET  
LUT Truth  
Table  
From Connection  
To Connection Matrix  
S0  
S1  
Matrix Output [13]  
S0  
S1  
Input [44]  
8-bits NVM  
Registers [1407:1400]  
0: 3-bit LUT15 IN1  
1: DFF12 D  
0: 3-bit LUT15 OUT  
1: DFF12 OUT  
DFF  
Registers  
D
From Connection  
Matrix Output [12]  
S0  
S1  
nRST/nSET  
clk  
DFF12  
Q/nQ  
0: 3-bit LUT15 IN0  
1: DFF12 clk  
1-bit NVM  
Register [1363]  
Figure 26: 3-bit LUT15 or DFF12 with RST/SET  
Datasheet  
22-Jul-2021  
Revision 2.3  
61 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Register [1415] DFF or LATCH Select  
Register [1414] Output Select (Q or nQ)  
Register [1413] DFF nRST or nSET Select  
Register [1412] DFF Initial Polarity Select  
IN2  
IN1  
From Connection  
Matrix Output [17]  
S0  
S1  
OUT  
3-bit LUT16  
0: 3-bit LUT16 IN2  
1: DFF13 nRST/nSET  
IN0  
LUT Truth  
Table  
From Connection  
To Connection Matrix  
S0  
S1  
Matrix Output [16]  
S0  
S1  
Input [45]  
8-bits NVM  
Registers [1415:1408]  
0: 3-bit LUT16 IN1  
1: DFF13 D  
0: 3-bit LUT16 OUT  
1: DFF13 OUT  
DFF  
Registers  
D
From Connection  
Matrix Output [15]  
S0  
S1  
nRST/nSET  
clk  
DFF13  
Q/nQ  
0: 3-bit LUT16 IN0  
1: DFF13 clk  
1-bit NVM  
Register [1362]  
Figure 27: 3-bit LUT16 or DFF13 with RST/SET  
Register [1423] DFF or LATCH Select  
Register [1422] Output Select (Q or nQ)  
Register [1421] DFF nRST or nSET Select  
Register [1420] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [20]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT17  
0: 3-bit LUT17 IN2  
1: DFF14 nRST/nSET  
LUT Truth  
Table  
From Connection  
To Connection Matrix  
S0  
S1  
Matrix Output [19]  
S0  
S1  
Input [4]  
8-bits NVM  
Registers [1423:1416]  
0: 3-bit LUT17 IN1  
1: DFF14 D  
0: 3-bit LUT17 OUT  
1: DFF14 OUT  
DFF  
Registers  
D
From Connection  
Matrix Output [18]  
S0  
S1  
nRST/nSET  
clk  
DFF14  
Q/nQ  
0: 3-bit LUT17 IN0  
1: DFF14 clk  
1-bit NVM  
Register [1361]  
Figure 28: 3-bit LUT17 or DFF14 with RST/SET  
Datasheet  
22-Jul-2021  
Revision 2.3  
62 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
7.2.1 3-Bit LUT or D Flip-Flop Macrocells Used as 3-Bit LUTs  
Table 35: 3-bit LUT0 Truth Table  
Table 39: 3-bit LUT4 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1216]  
register [1217]  
register [1218]  
register [1219]  
register [1220]  
register [1221]  
register [1222]  
register [1223]  
LSB  
register [1248]  
register [1249]  
register [1250]  
register [1251]  
register [1252]  
register [1253]  
register [1254]  
register [1255]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 36: 3-bit LUT1 Truth Table  
Table 40: 3-bit LUT11 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1224]  
register [1225]  
register [1226]  
register [1227]  
register [1228]  
register [1229]  
register [1230]  
register [1231]  
register [1368]  
register [1369]  
register [1370]  
register [1371]  
register [1372]  
register [1373]  
register [1374]  
register [1375]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 37: 3-bit LUT2 Truth Table  
Table 41: 3-bit LUT12 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1232]  
register [1233]  
register [1234]  
register [1235]  
register [1236]  
register [1237]  
register [1238]  
register [1239]  
register [1376]  
register [1377]  
register [1378]  
register [1379]  
register [1380]  
register [1381]  
register [1382]  
register [1383]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 38: 3-bit LUT3 Truth Table  
Table 42: 3-bit LUT13 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1240]  
register [1241]  
register [1242]  
register [1243]  
register [1244]  
register [1245]  
register [1246]  
register [1247]  
register [1384]  
register [1385]  
register [1386]  
register [1387]  
register [1388]  
register [1389]  
register [1390]  
register [1391]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
1
1
1
MSB  
Datasheet  
22-Jul-2021  
Revision 2.3  
63 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 43: 3-bit LUT14 Truth Table  
Table 45: 3-bit LUT16 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1392]  
register [1393]  
register [1394]  
register [1395]  
register [1396]  
register [1397]  
register [1398]  
register [1399]  
LSB  
register [1408]  
register [1409]  
register [1410]  
register [1411]  
register [1412]  
register [1413]  
register [1414]  
register [1415]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 44: 3-bit LUT15 Truth Table  
Table 46: 3-bit LUT17 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1400]  
register [1401]  
register [1402]  
register [1403]  
register [1404]  
register [1405]  
register [1406]  
register [1407]  
register [1416]  
register [1417]  
register [1418]  
register [1419]  
register [1420]  
register [1421]  
register [1422]  
register [1423]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
1
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT0 is defined by registers [1223:1216]  
3-Bit LUT1 is defined by registers [1231:1224]  
3-Bit LUT2 is defined by registers [1239:1232]  
3-Bit LUT3 is defined by registers [1247:1240]  
3-Bit LUT4 is defined by registers [1255:1248]  
3-Bit LUT11 is defined by registers [1375:1368]  
3-Bit LUT12 is defined by registers [1383:1376]  
3-Bit LUT13 is defined by registers [1391:1384]  
3-Bit LUT14 is defined by registers [1399:1392]  
3-Bit LUT15 is defined by registers [1407:1400]  
3-Bit LUT16 is defined by registers [1415:1408]  
3-Bit LUT17 is defined by registers [1423:1416]  
Datasheet  
22-Jul-2021  
Revision 2.3  
64 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 47 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the six 3-bit LUT logic cells.  
Table 47: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-3  
OR-3  
NOR-3  
XOR-3  
XNOR-3  
7.2.2 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Figure 29: DFF Polarity Operations  
7.3 3-BIT LUT OR PIPE DELAY MACROCELL  
There is one macrocell that can serve as either a 3-bit LUT or as a Pipe Delay.  
When used to implement LUT functions, the 3-bit LUT takes in three input signals from the connection matrix and produces a  
single output, which goes back into the connection matrix.  
When used as a Pipe Delay, there are three inputs signals from the matrix: Input (IN), Clock (CLK), and Reset (nRST). The Pipe  
Delay cell is built from 16 D Flip-Flop logic cells that provide the three delay options, two of which are user selectable. The DFF  
Datasheet  
22-Jul-2021  
Revision 2.3  
65 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
cells are tied in series where the output (Q) of each delay cell goes to the next DFF cell. The first delay option (OUT2) is fixed at  
the output of the first Flip-Flop stage. The other two outputs (OUT0 and OUT1) provide user selectable options for 1 to 16 stages  
of delay.There are delay output points for each set of the OUT0 and OUT1 outputs to a 16-input mux that is controlled by registers  
[1259:1256] for OUT0 and registers [1263:1260] for OUT1. The 16-input mux is used to select the amount of delay.  
The overall time of the delay is based on the clock used in the SLG46538-A design. Each DFF cell has a time delay of the inverse  
of the clock time (either external clock or the RC Oscillator within the SLG46538-A). The sum of the number of DFF cells used  
will be the total time delay of the Pipe Delay logic cell.  
Note: CLK is rising edge triggered.  
Registers [1263:1256]  
LUT Truth  
Table  
From Connection  
Matrix Output [98]  
IN0  
IN1  
From Connection  
Matrix Output [99]  
OUT  
3-bit LUT10  
From Connection  
Matrix Output [100]  
IN2  
Registers [1263:1260]  
Register [1271]  
S0  
S1  
OUT1  
To Connection  
Matrix Input [26]  
From Connection  
Matrix Output [98]  
IN  
nRST  
From Connection  
Matrix Output [99]  
16 Flip-Flops  
CLK  
From Connection  
Matrix Output [100]  
OUT0  
To Connection  
Matrix Input [25]  
S0  
S1  
1 Pipe OUT  
Registers [1259:1256]  
To Connection  
Matrix Input [24]  
Register [1270]  
Figure 30: 3-bit LUT10 or Pipe Delay  
7.3.1 3-Bit LUT or Pipe Delay Macrocells Used as 3-Bit LUTs  
Table 48: 3-bit LUT10 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1256]  
register [1257]  
LSB  
0
0
1
Datasheet  
22-Jul-2021  
Revision 2.3  
66 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 48: 3-bit LUT10 Truth Table (Continued)  
IN2  
0
IN1  
1
IN0  
0
OUT  
register [1258]  
register [1259]  
register [1260]  
register [1261]  
register [1262]  
register [1263]  
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT10 is defined by registers [1263:1256]  
7.3.2 3-Bit LUT or Pipe Delay Macrocells Used as Pipe Delay Register Settings  
Table 49: Pipe Delay Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
LUT3_10 or Pipe  
[1270]  
0: LUT3_10  
Delay Output Select  
1: 1 Pipe Delay Output  
OUT0 select  
OUT1 select  
[1259:1256]  
[1263:1260]  
[1271]  
Pipe Delay OUT1  
Polarity Select Bit  
0: Non-inverted  
1: Inverted  
7.4 3-BIT LUT OR 8-BIT COUNTER/DELAY MACROCELLS  
There are five macrocells that can serve as either 3-bit LUTs or as Counter/Delays. When used to implement LUT function, the  
3-bit LUT takes in three input signals from the connection matrix and produces a single output, which goes back into the  
connection matrix. When used to implement 8-Bit Counter/Delay function, two of the three input signals from the connection matrix  
go to the external clock (EXT_CLK) and reset (DLY_IN/CNT Reset) for the Counter/Delay, with the output going back to the  
connection matrix.  
These macrocells can also operate in a one-shot mode, which will generate an output pulse of user-defined width.  
These macrocells can also operate in a frequency detection or edge detection mode.  
For timing diagrams refer to Section 7.6  
Note Counters initialize with counter data after POR.  
Two of the five macrocells can have their active count value read via I2C (CNT4 and CNT6). See Section 17.6.1 for further details.  
Datasheet  
22-Jul-2021  
Revision 2.3  
67 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
7.4.1 3-Bit LUT or 8-Bit CNT/DLY Block Diagrams  
From Connection  
Matrix Output [85]  
IN2  
3-bit LUT5  
From Connection  
Matrix Output [84]  
IN1  
IN0  
S0  
S1  
OUT  
0: 3-bit LUT5 IN1  
1: CNT/DLY2 clk  
LUT Truth  
Table  
To Connection  
S0  
S1  
Matrix Input [17]  
8-bits NVM  
Registers [1543:1536]  
0: 3-bit LUT5 OUT  
1: CNT/DLY2 OUT  
CNT  
Data  
clk  
From Connection  
Matrix Output [83]  
S0  
S1  
OUT  
CNT/DLY2  
0: 3-bit LUT5 IN0  
1: CNT/DLY2 RST  
DLY_IN/CNT_Reset  
1-bit NVM  
Register [1198]  
Figure 31: 3-bit LUT5 or CNT/DLY2  
From Connection  
Matrix Output [88]  
IN2  
3-bit LUT6  
From Connection  
Matrix Output [87]  
IN1  
S0  
S1  
OUT  
0: 3-bit LUT6 IN1  
1: CNT/DLY3 clk  
IN0  
LUT Truth  
Table  
To Connection  
S0  
S1  
Matrix Input [18]  
8-bits NVM  
Registers [1551:1544]  
0: 3-bit LUT6 OUT  
1: CNT/DLY3 OUT  
CNT  
Data  
clk  
From Connection  
Matrix Output [86]  
S0  
S1  
OUT  
CNT/DLY3  
DLY_IN/CNT_Reset  
0: 3-bit LUT6 IN0  
1: CNT/DLY3 RST  
1-bit NVM  
Register [1197]  
Figure 32: 3-bit LUT6 or CNT/DLY3  
Datasheet  
22-Jul-2021  
Revision 2.3  
68 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
From Connection  
Matrix Output [91]  
IN2  
3-bit LUT7  
From Connection  
Matrix Output [90]  
IN1  
IN0  
S0  
S1  
OUT  
0: 3-bit LUT7 IN1  
1: CNT/DLY4 clk  
LUT Truth  
Table  
To Connection  
S0  
S1  
Matrix Input [19]  
8-bits NVM  
Registers [1559:1552]  
0: 3-bit LUT7 OUT  
1: CNT/DLY4 OUT  
CNT  
Data  
clk  
From Connection  
Matrix Output [89]  
S0  
S1  
OUT  
CNT/DLY4  
DLY_IN/CNT_Reset  
0: 3-bit LUT7 IN0  
1: CNT/DLY4 RST  
1-bit NVM  
Register [1196]  
Figure 33: 3-bit LUT7 or CNT/DLY4  
Datasheet  
22-Jul-2021  
Revision 2.3  
69 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
From Connection  
Matrix Output [94]  
IN2  
3-bit LUT8  
From Connection  
Matrix Output [93]  
IN1  
IN0  
S0  
S1  
OUT  
0: 3-bit LUT8 IN1  
1: CNT/DLY5 clk  
LUT Truth  
Table  
To Connection  
S0  
S1  
Matrix Input [20]  
8-bits NVM  
Registers [1567:1560]  
0: 3-bit LUT8 OUT  
1: CNT/DLY5 OUT  
CNT  
Data  
clk  
From Connection  
Matrix Output [92]  
S0  
S1  
OUT  
CNT/DLY5  
DLY_IN/CNT_Reset  
0: 3-bit LUT8 IN0  
1: CNT/DLY5 RST  
1-bit NVM  
Register [1195]  
Figure 34: 3-bit LUT8 or CNT/DLY5  
From Connection  
Matrix Output [97]  
IN2  
3-bit LUT9  
From Connection  
Matrix Output [96]  
IN1  
S0  
S1  
OUT  
0: 3-bit LUT9 IN1  
1: CNT/DLY6 clk  
IN0  
LUT Truth  
Table  
To Connection  
S0  
S1  
Matrix Input [21]  
8-bits NVM  
Registers [1575:1568]  
0: 3-bit LUT9 OUT  
1: CNT/DLY6 OUT  
CNT  
Data  
clk  
From Connection  
Matrix Output [95]  
S0  
S1  
OUT  
CNT/DLY6  
DLY_IN/CNT_Reset  
0: 3-bit LUT9 IN0  
1: CNT/DLY6 RST  
1-bit NVM  
Register [1194]  
Figure 35: 3-bit LUT9 or CNT/DLY6  
Revision 2.3  
Datasheet  
22-Jul-2021  
70 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
7.4.2 3-Bit LUT or Counter/Delay Macrocells Used as 3-Bit LUTs  
Table 50: 3-bit LUT5 Truth Table  
Table 53: 3-bit LUT8 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1536]  
register [1537]  
register [1538]  
register [1539]  
register [1540]  
register [1541]  
register [1542]  
register [1543]  
LSB  
register [1560]  
register [1561]  
register [1562]  
register [1563]  
register [1564]  
register [1565]  
register [1566]  
register [1567]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 51: 3-bit LUT6 Truth Table  
Table 54: 3-bit LUT9 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1544]  
register [1545]  
register [1546]  
register [1547]  
register [1548]  
register [1549]  
register [1550]  
register [1551]  
register [1568]  
register [1569]  
register [1570]  
register [1571]  
register [1572]  
register [1573]  
register [1574]  
register [1575]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
Table 52: 3-bit LUT7 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1552]  
register [1553]  
register [1554]  
register [1555]  
register [1556]  
register [1557]  
register [1558]  
register [1559]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT5 is defined by registers [1543:1536]  
3-Bit LUT6 is defined by registers [1551:1544]  
3-Bit LUT7 is defined by registers [1559:1552]  
3-Bit LUT8 is defined by registers [1567:1560]  
3-Bit LUT9 is defined by registers [1575:1568]  
Datasheet  
22-Jul-2021  
Revision 2.3  
71 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 55 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the six 3-bit LUT logic cells.  
Table 55: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-3  
OR-3  
NOR-3  
XOR-3  
XNOR-3  
7.5 4-BIT LUT OR 16-BIT COUNTER/DELAY MACROCELLS  
There are two macrocells that can serve as either 4-bit LUTs or as 16-bit Counter/Delays. When used to implement LUT function,  
the 4-bit LUT takes in four input signals from the Connection Matrix and produces a single output, which goes back into the  
Connection Matrix. When used to implement 16-Bit Counter/Delay function, four input signals from the connection matrix go to  
the external clock (EXT_CLK) and reset (DLY_IN/CNT_Reset), Keep and Up for the Counter/Delay, with the output going back  
to the connection matrix.  
These two macrocells have an optional Finite State Machine (FSM) function. There are two matrix inputs for Up and Keep to  
support FSM functionality. Any counter within GreenPAK is counting down by default. In FSM mode (CNT/DLY0 and CNT/DLY1)  
it is possible to reverse counting by applying High level to Up input. Also, there is a possibility to pause counting by applying High  
level to Keep input, after the level goes Low, the counter will proceed counting.These macrocells can also operate in a one-shot  
mode, which will generate an output pulse of user-defined width.  
These macrocells can also operate in a frequency detection.  
Delay time and Output Period can be calculated using the following formulas:  
Delay time: [(Counter data + 2)/CLK input frequency – Offset*];  
Output Period: [(Counter data + 1)/CLK input frequency – Offset*].  
One Shot pulse width can be calculated using formula:  
Pulse width = [(Counter Data + 2)/CLK input frequency – Offset*];  
*Offset is the asynchronous time offset between the input signal and the first clock pulse.  
Note Counters initialize with counter data after POR  
For timing diagrams refer to Section 7.6.  
Both of these macrocells can have their active count value read via I2C. See Section 17.6.1 for further details.  
Datasheet  
22-Jul-2021  
Revision 2.3  
72 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
7.5.1 4-Bit LUT or 16-Bit CNT/DLY Block Diagram  
From Connection  
Matrix Output [104]  
S0  
0: 4-bit LUT0 IN3  
1: FSM KEEP  
S1  
IN3  
From Connection  
S0  
S1  
Matrix Output [103]  
0: 4-bit LUT0 IN2  
1: FSM UP  
IN2  
IN1  
4-bit LUT0  
From Connection  
Matrix Output [102]  
S0  
S1  
OUT  
0: 4-bit LUT0 IN1  
1: CNT/DLY0 clk  
IN0  
LUT Truth  
Table  
To Connection  
S0  
S1  
Matrix Input [22]  
16-bits NVM  
Registers [1591:1576]  
0: 4-bit LUT0 OUT  
1: CNT/DLY0 OUT  
CNT  
Data  
clk  
From Connection  
S0  
S1  
Matrix Output [101]  
OUT  
CNT/DLY0  
0: 4-bit LUT0 IN0  
1: CNT/DLY0 RST  
DLY_IN/CNT_Reset  
KEEP  
FSM  
UP  
1-bit NVM  
Register [1193]  
Figure 36: 4-bit LUT0 or CNT/DLY0  
Datasheet  
22-Jul-2021  
Revision 2.3  
73 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
From Connection  
Matrix Output [108]  
S0  
0: 4-bit LUT1 IN3  
1: FSM KEEP  
S1  
IN3  
From Connection  
S0  
S1  
Matrix Output [107]  
0: 4-bit LUT1 IN2  
1: FSM UP  
IN2  
IN1  
4-bit LUT1  
From Connection  
Matrix Output [106]  
S0  
S1  
OUT  
0: 4-bit LUT1 IN1  
1: CNT/DLY1 clk  
IN0  
LUT Truth  
Table  
To Connection  
Matrix Input [23]  
S0  
S1  
16-bits NVM  
Registers [1607:1592]  
CNT  
Data  
clk  
From Connection  
S0  
S1  
Matrix Output [105]  
OUT  
CNT/DLY1  
0: 4-bit LUT1 IN0  
1: CNT/DLY1 RST  
DLY_IN/CNT_Reset  
KEEP  
FSM  
UP  
1-bit NVM  
Register [1192]  
Figure 37: 4-bit LUT1 or CNT/DLY1  
Datasheet  
22-Jul-2021  
Revision 2.3  
74 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
7.5.2 4-Bit LUT or 16-Bit Counter/Delay Macrocells Used as 4-Bit LUTs  
Table 56: 4-bit LUT0 Truth Table  
Table 57: 4-bit LUT1 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1576] LSB  
register [1577]  
register [1578]  
register [1579]  
register [1580]  
register [1581]  
register [1582]  
register [1583]  
register [1584]  
register [1585]  
register [1586]  
register [1587]  
register [1588]  
register [1589]  
register [1590]  
register [1591] MSB  
register [1592] LSB  
register [1593]  
register [1594]  
register [1595]  
register [1596]  
register [1597]  
register [1598]  
register [1599]  
register [1600]  
register [1601]  
register [1602]  
register [1603]  
register [1604]  
register [1605]  
register [1606]  
register [1607] MSB  
0
0
0
1
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
1
0
0
1
1
0
1
0
0
0
1
0
0
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
1
0
1
1
1
1
0
0
0
1
0
0
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1
Each macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:  
4-Bit LUT0 is defined by registers [1591:1576]  
4-Bit LUT1 is defined by registers [1607:1592]  
Table 58: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
Datasheet  
22-Jul-2021  
Revision 2.3  
75 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
7.6 CNT/DLY/FSM TIMING DIAGRAMS  
7.6.1 Delay Mode (Edge Select: Both, Counter Data: 3) CNT/DLY2 to CNT/DLY6  
Delay In  
Asynchronous delay variable  
Asynchronous delay variable  
RC OSC: force Power-On  
(always running)  
Delay Output  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
Delay In  
offset  
offset  
RC OSC: auto Power-On  
(powers up from delay in)  
Delay Output  
delay = offset + period x (counter data + 1)  
See offset in table 3  
delay = offset + period x (counter data + 1)  
See offset in table 3  
Figure 38: Delay Mode Timing Diagram  
7.6.2 Count Mode (Count Data: 3), Counter Reset (Rising Edge Detect) CNT/DLY2 to CNT/DLY6  
RESET_IN  
CLK  
Counter OUT  
4 clk period pulse  
Count start in 0 clk after reset  
Figure 39: Counter Mode Timing Diagram  
7.6.3 One-Shot Mode CNT/DLY0 to CNT/DLY6  
This macrocell will generate a pulse whenever a selected edge is detected on its input. Register bits set the edge selection. The  
pulse width determines by counter data and clock selection properties. The output pulse polarity (non-inverted or inverted) is  
Datasheet  
22-Jul-2021  
Revision 2.3  
76 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
selected by register bit. See Table 59. Any incoming edges will be ignored during the pulse width generation. The following  
diagram shows one-shot function for non-inverted output.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
One-Shot Function  
Rising Edge Detection  
t
One-Shot Function  
Falling Edge Detection  
t
One-Shot Function  
Both Edge Detection  
t
Figure 40: One-Shot Function Timing Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
77 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 59: DLY/CNTx One-Shot/Freq. Detect Output Polarity  
Address  
I2C Interface  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
Select the Polarity of DLY/CNT6's One Shot/ 0: Default Output  
[1329]  
Valid  
Valid  
Freq. Detect Output  
Select the Polarity of DLY/CNT5's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT4's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT3's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT2's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT1's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT0's One Shot/ 0: Default Output  
Freq. Detect Output 1: Inverted Output  
1: Inverted Output  
[1330]  
[1331]  
[1332]  
[1333]  
[1334]  
[1335]  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
A6  
This macrocell generates a high level pulse with a set width (defined by counter data) when detecting the respective edge. It does  
not restart while pulse is high.  
7.6.4 Frequency Detection Mode CNT/DLY0 to CNT/DLY6  
Rising Edge: The output goes high if the time between two successive edges is less than the delay. The output goes low if the  
second rising edge has not come after the last rising edge in specified time.  
Falling Edge: The output goes high if the time between two falling edges is less than the set time. The output goes low if the  
second falling edge has not come after the last falling edge in specified time.  
Both Edge: The output goes high if the time between the rising and falling edges is less than the set time, which is equivalent to  
the length of the pulse. The output goes low if after the last rising/falling edge and specified time, the second edge has not come.  
Datasheet  
22-Jul-2021  
Revision 2.3  
78 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Frequency Detector Function  
Rising Edge Detection  
Frequency Detector Function  
Falling Edge Detection  
t
t
Frequency Detector Function  
Both Edge Detection  
Figure 41: Frequency Detection Mode Timing Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
79 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
7.6.5 Edge Detection Mode CNT/DLY2 to CNT/DLY6  
The macrocell generates high level short pulse when detecting the respective edge. See Table 12.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Edge Detector Function  
Rising Edge Detection  
Edge Detector Function  
Falling Edge Detection  
t
t
Edge Detector Function  
Both Edge Detection  
Figure 42: Edge Detection Mode Timing Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
80 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
7.6.6 Delay Mode CNT/DLY0 to CNT/DLY6  
The macrocell shifts the respective edge to a set time and restarts by appropriate edge. It works as a filter if the input signal is  
shorter than the delay time.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
Delay Function  
Rising Edge Detection  
t
Delay Function  
Falling Edge Detection  
t
Delay Function  
Both Edge Detection  
t
Figure 43: Delay Mode Timing Diagram  
7.6.7 CNT/FSM Mode CNT/DLY0, CNT/DLY1  
RESET IN  
KEEP  
COUNT END  
CLK  
3
2
1
0
3
2
1
0
3
2
1
3
2
1
0
0
Q
Note: Q = current counter value  
Figure 44: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3  
Datasheet  
22-Jul-2021  
Revision 2.3  
81 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
SET IN  
KEEP  
COUNT END  
CLK  
2
1
0
3
2
1
0
3
3
2
1
2
1
0
3
3
Q
Note: Q = current counter value  
Figure 45: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3  
RESETI N  
KEEP  
COUNT END  
CLK  
65535  
4
5
5
6
7
8
9
65533 65534  
3
3
4
5
1
2
3
4
0
Q
Note: Q = current counter value  
Figure 46: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3  
Datasheet  
22-Jul-2021  
Revision 2.3  
82 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
SET IN  
KEEP  
COUNT END  
CLK  
8
9
10 11 12  
65533 65534 65535  
3
4
5
3
4
5
4
5
6
7
3
Q
Note: Q = current counter value  
Figure 47: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3  
7.6.8 Difference in Counter Value for Counter, Delay, One-Shot, and Frequency Detect Modes  
There is a difference in counter value for Counter and Delay/One-Shot/Frequency Detect modes. The counter value is shifted  
for two rising edges of the clock signal in Delay/One-Shot/Frequency Detect modes compared to Counter mode. See Figure 48.  
One-Shot/Freq.SET/Delay IN  
CLK  
CNT Out  
3
2
1
0
0
CNT Data  
3
2
DLY Out  
Delay Data  
3
3
2
1
3
3
3
One-Shot Out  
One-Shot Data  
3
3
3
2
1
3
3
Figure 48: Counter Value, Counter Data = 3  
Datasheet  
22-Jul-2021  
Revision 2.3  
83 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
7.7 2-BIT LUT OR PROGRAMMABLE PATTERN GENERATOR  
The SLG46538-A has one combination function macrocell that can serve as a logic or timing function. This macrocell can serve  
as a Look Up Table (LUT), or Programmable Pattern Generator (PGen).  
When used to implement LUT functions, the 2-bit LUT takes in four input signals from the connection matrix and produces a single  
output, which goes back into the connection matrix. When used as a LUT to implement combinatorial logic functions, the outputs  
of the LUTs can be configured to any user defined function, including the following standard digital logic devices (AND, NAND,  
OR, NOR, XOR, XNOR). The user can also define the combinatorial relationship between inputs and outputs to be any selectable  
function.  
When operating as a Programmable Pattern Generator, the output of the macrocell with clock out a sequence of two to sixteen  
bits that are user selectable in their bit values, and user selectable in the number of bits (up to sixteen) that are output before the  
pattern repeats. See Figure 50.  
From Connection Matrix Output [66]  
From Connection Matrix Output [67]  
In0  
In1  
OUT  
2-bit LUT3  
LUT Truth  
Table  
To Connection Matrix Input [11]  
S0  
S1  
Registers [1623:1608]  
0: 2-bit LUT3 OUT  
1: PGen OUT  
Pattern  
Size  
nRST  
clk  
PGen  
OUT  
PGen  
Data  
Register [1188]  
Register [1211:1208]  
Figure 49: 2-bit LUT3 or PGen  
Datasheet  
22-Jul-2021  
Revision 2.3  
84 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
VDD  
t
t
nRST  
CLK  
1
2
6
8
16 17  
0
3
4
5
7
9
11  
10  
14 15  
12 13  
t
t
OUT  
D7  
D6  
D5  
D10  
D8  
D4  
D3  
D2  
D1  
D15  
D11  
D9  
D0  
D0  
D15  
D14  
D13  
D12  
D0  
Figure 50: PGen Timing Diagram  
7.8 WAKE AND SLEEP CONTROLLER  
The SLG46538-A has a Wake and Sleep (WS) function for all ACMPs. The macrocell CNT/DLY0 can be reconfigured for this  
purpose registers [1319:1318] = 11 and registers [1495] = 1. The WS serves for power saving, it allows to switch on and off  
selected ACMPs on selected bit of 16-bit counter.  
Datasheet  
22-Jul-2021  
Revision 2.3  
85 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
WS Controller  
OSC  
000:/1  
001:/4  
010:/12  
011:/24  
100:/64  
CNT0 out  
CNT  
ck  
cnt_end  
WS out  
WS_PD  
To Connection Matrix Input [22]  
Power Control  
Register [1489]  
WS time selection  
CK_OSC  
WS_PD  
From Connection  
Matrix Output[58]  
From Connection  
Matrix Output [54:51]  
4
ACMPs_pdb  
Analog  
Registers  
[1316:1314]  
Control  
Block  
bg/regulator pdb  
WS out  
WS clock freq.  
selection  
Registers [1591:1576]  
WS ratio control data  
Registers [1493:1490]  
ACMP WS enable  
Register [1494]  
WS out state for OSC off  
WS_PD to W&S out state selection block  
4
ACMPs_pdb  
ACMP0..3 OUT  
4
Latches  
+
-
WS out  
Note: WS_PD is High at WS OSC (25 kHz/2 MHz OSC) Power-down  
WS  
To Connection  
Matrix Input  
[60:57]  
Figure 51: Wake/Sleep Controller  
To use any ACMP under WS controller the following settings must be done:  
ACMP Power Up Input from matrix = 1 (for each ACMP separately);  
CNT/DLY0 must be set to Wake and Sleep Controller function (for all ACMPs);  
Register WS => enable (for each ACMP separately);  
CNT/DLY0 set/reset input = 0 (for all ACMPs);  
In case of using OSC1 (25 MHz), OSC0 must be set to Force Power-On.  
As the OSC any oscillator with any pre-divider can be used. The user can select a period of time while the ACMPs are sleeping  
in a range of 1 - 65535 clock cycles. Before they are sent to sleep their outputs are latched, so the ACMPs remain their state  
(High or Low) while sleeping.  
WS controller has the following settings:  
Wake and Sleep Output State (High/Low)  
If OSC is powered off (Power-Down option is selected; power-down input = 1) and Wake and Sleep Output State = High, the  
ACMP is continuously on.  
If OSC is powered off (Power-Down option is selected; power-down input = 1) and Wake and Sleep Output State = Low, the  
ACMP is continuously off.  
Both cases WS function is turned off.  
Counter Data (Range: 1 - 65535)  
User can select wake and sleep ratio of the ACMP; counter data = sleep time, one clock = wake time.  
Datasheet  
22-Jul-2021  
Revision 2.3  
86 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Q mode - defines the state of WS counter data when Set/Reset signal appears  
Reset - when active signal appears, the WS counter will reset to zero and High level signal on its output will turn the ACMPs  
on. When Reset signal goes out, the WS counter will go Low and turn the ACMPs off until the counter counts up to the end  
Set - when active signal appears, the WS counter will stop and Low level signal on its output will turn the ACMPs off. When  
Set signal goes out, the WS counter will go on counting and High level signal will turn the ACMPs on while counter is counting  
up to the end.  
Edge Select defines the edge for Q mode  
High level Set/Reset - switches mode Set/Reset when level is High  
Note: Q mode operates only in case of “High Level Set/Reset”.  
Wake time selection - time required for wake signal to turn the ACMPs on  
Normal Wake Time - when WS signal is High, it takes a BG time (100/550 µs) to turn the ACMPs on. They will stay on until  
WS signal is Low again. Wake time is one clock period. It should be longer than BG turn on time and minimal required  
comparing time of the ACMP.  
Short Wake Time - when WS signal is High, it takes a BG time (100/550 µs) to turn the ACMPs on. They will stay on for 1 µs  
and turn off regardless of WS signal. The WS signal width does not matter.  
Keep - pauses counting while Keep = 1  
Up - reverses counting  
If Up = 1, CNT is counting up from user selected value to 65535.  
If Up = 0, CNT is counting down from user selected value to 1.  
Datasheet  
22-Jul-2021  
Revision 2.3  
87 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
8
Analog Comparators  
There are four Analog Comparator (ACMP) macrocells in the SLG46538-A. In order for the ACMP cells to be used in a GreenPAK  
design, the power up signals (ACMPx_pdb) need to be active. By connecting to signals coming from the Connection Matrix, it is  
possible to have each ACMP be always on, always off, or power cycled based on a digital signal coming from the Connection  
Matrix. Also, all ACMPs have Wake and Sleep function (WS), see Section 7.8. When ACMP is powered down, output is low.  
PWR UP = 1 => ACMP is powered up.  
PWR UP = 0 => ACMP is powered down.  
During ACMP power up, its output will remain low, and then becomes valid 1.03 ms (max) after ACMP power up signal goes high,  
see Figure 53. If VDD is greater or equal to 2.7 V, it is possible to decrease turn-on time by setting the BG ok delay to 100 µs, see  
Figure 54. The ACMP cells have an input "Low bandwidth" signal selection, which can be used to save power and reduce noise  
impact when lower bandwidth signals are being compared. To ensure proper chip startup operation, it is recommended to enable  
the ACMPs with the POR signal, and not the VDD signal.  
Note: Regulator and Charge Pump set to automatic ON/OFF.  
240  
220  
200  
180  
160  
-40⁰C  
+25⁰C  
140  
+125⁰C  
120  
VDD (V)  
Figure 52: Maximum Power-On Delay vs. VDD, BG = Auto-delay  
Datasheet  
22-Jul-2021  
Revision 2.3  
88 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
1100  
1050  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
220  
210  
200  
190  
180  
170  
160  
150  
140  
130  
120  
-40⁰C  
+25⁰C  
+125⁰C  
-40⁰C  
+25⁰C  
+125⁰C  
VDD (V)  
Figure 53: Max Power-On Delay vs. VDD, BG = 550 µs  
VDD (V)  
Figure 54: Max Power-On Delay vs. VDD, BG = 100 µs  
Each of the ACMP cells has a positive input signal that can be provided by a variety of external sources. There is also a selectable  
gain stage (1x, 0.5x, 0.33x, 0.25x) before connection to the analog comparator. The Gain divider is unbuffered and consists of  
250 KΩ (typ) resistors, see Table 60. For gain divider accuracy refer to Table 61. IN- voltage range: 0 - 1.2 V. Can use Vref selection  
VDD/4 and VDD/3 to maintain this input range.  
Input bias current < 1 nA (typ).  
Table 60: Gain Divider Input Resistance  
Gain  
x1  
x0.5  
x0.33  
x0.25  
1 MΩ  
Input Resistance  
100 MΩ  
1 MΩ  
0.75 MΩ  
Table 61: Gain Divider Accuracy  
Gain  
x0.5  
±0.51 %  
x0.33  
x0.25  
±0.25 %  
Accuracy  
±0.34 %  
Each cell also has a hysteresis selection, to offer hysteresis of (0, 25, 50, 200) mV. The 50 mV and 200 mV hysteresis options  
can be used with internal voltage reference only, while 25 mV hysteresis option can be used with both internal and external voltage  
reference. The 50 mV and 200 mV hysteresis options are one way hysteresis. It means that the actual thresholds will be Vref  
(high threshold) and Vref - hysteresis (low threshold). The ACMP output will retain its previous value, if the input voltage is within  
threshold window (between Vref and Vref - hysteresis). Please note: for the 25 mV hysteresis option threshold levels will be Vref +  
hysteresis/2 (high threshold) and Vref – hysteresis/2 (low threshold).  
Note: Any ACMP powered on enables the BandGap internal circuit as well. An analog voltage will appear on Vref even when the  
Force BandGap option is set as Disabled.  
For high input impedance when using the gain divider (x0.25, x0.33, x0.5), it is possible to use the input buffer. However, this will  
add some offset, see Figure 55 to Figure 56. It is not recommended to use ACMP buffer when VDD < 2.5 V.  
Datasheet  
22-Jul-2021  
Revision 2.3  
89 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
40  
30  
20  
10  
Upper Limit @ VDD≥2.7V  
Lower Limit @ VDD≥2.7V  
VOLTAGE REFERENCE (mV)  
0
50  
250  
600  
850  
1200  
-10  
-20  
-30  
-40  
Note: Buffer Bandwidth = 1 kHz, Vhys = 0 mV, Gain = 1, T = -40 °C to +125 °C  
Figure 55: Typical Buffer Input Voltage Offset vs. Voltage Reference  
20%  
15%  
10%  
5%  
Upper Limit  
Lower Limit  
0%  
50  
150  
250  
350  
450  
550  
650  
750  
850  
950  
1050  
1150  
-5%  
-10%  
-15%  
-20%  
-25%  
VOLTAGE REFERENCE (mV)  
Note: LMB Mode - Disable, Vhys = 0 mV, T = -40 °C to +125 °C  
Figure 56: Typical Input Threshold Variation (Including Vref Variation, ACMP Offset) vs. Voltage Reference  
Note: When VDD < 1.8 V voltage reference should not exceed 1100 mV.  
Datasheet  
22-Jul-2021  
Revision 2.3  
90 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 62: Built-In Hysteresis Tolerance at T = 25 °C  
VDD= 1.7 V to 1.8 V  
VDD = 1.89 V to 5.5 V  
Vref = 50 mV to Vref = 550 V to Vref = 1050 V to  
Vhys (mV)  
Vref =  
50 V to 500 mV  
Vref = 550 V to Vref = 1050 V to  
500)mV  
1000 mV  
1200 mV  
1000 mV 1200 mV  
min  
max  
32.2  
min  
max  
32.3  
min  
max  
32.5  
min  
8.5  
max  
32.3  
min  
max  
32.3  
min  
max  
34.0  
25  
50  
8.6  
44.8  
192.8  
8.6  
43.9  
194.0  
7.0  
42.7  
192.7  
8.5  
43.6  
193.0  
7.8  
43.1  
190.8  
56.5  
56.7  
56.4  
44.2  
192.0  
56.8  
57.3  
56.0  
200  
207.9  
208.0  
205.4  
208.6  
209.5  
207.7  
8.1 ACMP0 BLOCK DIAGRAM AND REGISTER SETTINGS  
to ACMP1, ACMP2, AC-  
Register [1631]  
MP3’s MUX input  
Registers [1175:1174]  
LBW  
Selection  
Hysteresis  
Selection  
External VDD  
2.7 V ~ 5.5 V  
Registers [1630:1629]  
110  
100  
0X1  
BG_ok  
IO4: ACMP0(+)  
Selectable  
Gain  
+
-
To Connection  
Matrix Input [57]  
L/S  
0
1
External VDD 1.71 V ~ 5.5 V  
pdb  
Vref  
Latch  
*IO4_aio_en; register [1173]; register [1172]  
*IO4_aio_en:  
if registers [1062:1061] = ’11’ then 1,  
otherwise: 0  
Register [1490]  
ACMP0 Wake & Sleep function Enable  
IO9: EXT_Vref  
IO5: ACMP0(-)  
IO9: EXT_Vref/2  
IO5: ACMP0(-)/2  
11010  
11011  
11100  
11101  
From Connection  
Matrix Output [51]  
11001-  
00000  
Internal  
Vref  
Registers [1628:1624]  
Figure 57: ACMP0 Block Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
91 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
8.2 ACMP1 BLOCK DIAGRAM AND REGISTER SETTINGS  
Register [1639]  
AVD = 1.8 V  
Registers [1171:1170]  
100 µA  
Current  
Source  
Register [1183]  
LBW  
Selection  
en  
Hysteresis  
Selection  
External VDD  
2.7 V ~ 5.5 V  
Registers [1638:1637]  
11X  
10X  
0X1  
BG_ok  
IO8: ACMP1(+)  
Selectable  
Gain  
+
To Connection  
Matrix Input [58]  
L/S  
0
1
From ACMP0's MUX output  
pdb  
Vref  
-
Latch  
*IO8_aio_en; register [1169]; register [1168]  
*IO8_aio_en:  
if registers [1093:1092] = ’11’ then 1,  
otherwise: 0  
Register [1491]  
ACMP1 Wake & Sleep function Enable  
IO9: EXT_Vref  
11010  
11011  
11100  
11101  
IO9: EXT_Vref  
IO9: EXT_Vref/2  
IO9: EXT_Vref/2  
From Connection  
Matrix Output [52]  
11101-  
00000  
Internal  
Vref  
Registers [1636:1632]  
Note: when 100 µA Current Source is enabled input voltage on IO8 should not exceed 1.8 V  
Figure 58: ACMP1 Block Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
92 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
8.3 ACMP2 BLOCK DIAGRAM AND REGISTER SETTINGS  
Register [1647]  
Registers [1182:1181]  
LBW  
Selection  
Hysteresis  
Selection  
Registers [1646:1645]  
IO10: ACMP2(+)  
10  
01  
BG_ok  
Selectable  
Gain  
+
To Connection  
Matrix Input [59]  
L/S  
0
1
from ACMP0’s MUX output  
pdb  
Vref  
-
Latch  
*IO10_aio_en; register [1180]  
*IO10_aio_en:  
if registers [1109:1108] = ’11’ then 1,  
otherwise: 0  
Register [1492]  
ACMP2 Wake & Sleep function Enable  
IO9: EXT_Vref  
11010  
11011  
11100  
11101  
Reserved  
IO9: EXT_Vref/2  
Reserved  
From Connection  
Matrix Output [53]  
11001-  
00000  
Internal  
Vref  
Registers [1644:1640]  
Figure 59: ACMP2 Block Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
93 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
8.4 ACMP3 BLOCK DIAGRAM AND REGISTER SETTINGS  
Register [1655]  
Registers [1179:1178]  
LBW  
Selection  
Hysteresis  
Selection  
Registers [1654:1653]  
IO12: ACMP3(+)  
From ACMP0’s MUX output  
IO10 : ACMP2(+)  
00  
10  
01  
BG_ok  
L/S  
Selectable  
Gain  
+
To Connection  
Matrix Input [60]  
0
1
pdb  
Vref  
-
Latch  
*IO12_aio_en; register [1177]; register [1176]  
*IO12_aio_en:  
if registers [1126:1125] = ’11’ then 1,  
otherwise: 0  
Register [1493]  
ACMP3 Wake & Sleep function Enable  
IO9: ACMP3(-)  
Reserved  
11010  
11011  
11100  
11101  
IO9: ACMP3(-)/2  
Reserved  
From Connection  
Matrix Output [54]  
11001-  
00000  
Internal  
Vref  
Registers [1652:1648]  
Figure 60: ACMP3 Block Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
94 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
9
Pipe Delay  
The SLG46538-A has a pipe delay logic cell that is shared with the LUT3_10 in one of the Combination Function macrocells. The  
user can select one of these functions to use in a design, but not both. Please see Section 7.3 for the description of this  
Combination Function macrocell.  
10 Programmable Delay/Edge Detector  
The SLG46538-A has a programmable time delay logic cell available, that can generate a delay, that is selectable from one of  
four timings configured in the GreenPAK Designer. The programmable time delay cell can generate one of four different delay  
patterns, rising edge detection, falling edge detection, both edge detection, and both edge delay. See Figure 61 and Figure 62  
for further information.  
Note: The input signal must be longer than the delay, otherwise it will be filtered out.  
Registers [1267:1266]  
Delay Value Selection  
Registers [1265:1264]  
Edge Mode Selection  
To Connection  
Matrix Input [61]  
Programmable  
From Connection Matrix Output [57]  
IN  
OUT  
Delay  
Figure 61: Programmable Delay  
10.1 PROGRAMMABLE DELAY TIMING DIAGRAM - EDGE DETECTOR OUTPUT  
width  
width  
IN  
time1  
Rising Edge Detector  
time1  
Falling Edge Detector  
Edge Detector  
Output  
Both Edge Detector  
Both Edge Delay  
time2  
time2  
time1 is a fixed value  
time2 delay value is selected via register  
Figure 62: Edge Detector Output  
Please refer to Table 12.  
Datasheet  
22-Jul-2021  
Revision 2.3  
95 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
11 Additional Logic Function. Deglitch Filter  
The SLG46538-A has three additional logic functions that are connected directly to the Connection Matrix inputs and outputs.  
There are two deglitch filters, each with edge detector functions. See Section 3.8.  
11.1 DEGLITCH FILTER/EDGE DETECTOR  
Filter_0  
R
From Connection Matrix Output [55]  
C
To Connection Matrix  
Input [30]  
Edge  
Detect  
Register [1462]  
Register [1463]  
Edge Select  
Registers [1461:1460]  
Filter_1  
R
From Connection Matrix Output [56]  
C
Edge  
Detect  
To Connection Matrix  
Input [31]  
Register [1458]  
Edge Select  
Register [1459]  
Registers [1457:1456]  
Figure 63: Deglitch Filter/Edge Detector  
11.2 INV GATE  
INV Gate  
From Connection Matrix Output [40]  
To Connection Matrix Input [50]  
Figure 64: INV Gate  
Datasheet  
22-Jul-2021  
Revision 2.3  
96 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
12 Voltage Reference  
12.1 VOLTAGE REFERENCE OVERVIEW  
The SLG46538-A has a Voltage Reference (Vref) Macrocell to provide references to the four analog comparators. This macrocell  
can supply a user selection of fixed voltage references, /3 and /4 reference off of the VDD power supply to the device, and externally  
supplied voltage references from IOs 5 and 9. The macrocell also has an option to output reference voltages on IOs 15 and 16.  
See Table 63 for the available selections for each analog comparator. Also, see Figure 65, which shows the reference output  
structure.  
12.2 VREF SELECTION TABLE  
Table 63: Vref Selection Table  
SEL[4:0]  
11101  
11100  
11011  
11010  
11001  
11000  
10111  
10110  
10101  
10100  
10011  
10010  
10001  
10000  
01111  
01110  
01101  
01100  
01011  
01010  
01001  
01000  
00111  
00110  
00101  
00100  
00011  
00010  
00001  
00000  
ACMP0_Vref  
ACMP1_Vref  
ACMP2_Vref  
ACMP3_Vref  
vref_ext_acmp0/2  
vref_ext_acmp1/2  
vref_ext_acmp2/2  
vref_ext_acmp2/2  
vref_ext_acmp1/2  
vref_ext_acmp0  
vref_ext_acmp1  
VDD /4  
VDD/3  
1.20  
vref_ext_acmp1/2  
vref_ext_acmp1  
vref_ext_acmp1  
VDD/4  
VDD/3  
1.20  
vref_ext_acmp1/2  
vref_ext_acmp2  
vref_ext_acmp1  
VDD/4  
VDD/3  
1.20  
vref_ext_acmp1/2  
vref_ext_acmp2  
vref_ext_acmp1  
VDD/4  
VDD/3  
1.20  
1.15  
1.15  
1.15  
1.15  
1.10  
1.10  
1.10  
1.10  
1.05  
1.05  
1.05  
1.05  
1.00  
1.00  
1.00  
1.00  
0.95  
0.95  
0.95  
0.95  
0.90  
0.90  
0.90  
0.90  
0.85  
0.85  
0.85  
0.85  
0.80  
0.80  
0.80  
0.80  
0.75  
0.75  
0.75  
0.75  
0.70  
0.70  
0.70  
0.70  
0.65  
0.65  
0.65  
0.65  
0.60  
0.60  
0.60  
0.60  
0.55  
0.55  
0.55  
0.55  
0.50  
0.50  
0.50  
0.50  
0.45  
0.45  
0.45  
0.45  
0.40  
0.40  
0.40  
0.40  
0.35  
0.35  
0.35  
0.35  
0.30  
0.30  
0.30  
0.30  
0.25  
0.25  
0.25  
0.25  
0.20  
0.20  
0.20  
0.20  
0.15  
0.15  
0.15  
0.15  
0.10  
0.10  
0.10  
0.10  
0.05  
0.05  
0.05  
0.05  
VDD  
Practical Vref Range Note  
2.0 V - 5.5 V  
1.7 V - 2.0 V  
50 mV ~ 1.2 V  
50 mV ~ 1.0 V  
Do not operate above 1.0 V  
Datasheet  
22-Jul-2021  
Revision 2.3  
97 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
12.3 VREF BLOCK DIAGRAM  
Registers [1628:1624]  
Register [1476]  
IO16_aio_en  
Registers [1157:1156]=11  
CMP0_VREF  
000  
001  
100  
101  
110  
ext_vref_acmp0  
(IO5)  
Vref Out_0 (IO16)  
Registers [1636:1632]  
ext_vref_acmp1  
(IO9)  
CMP1_VREF  
Registers [1644:1640]  
ext_vref_acmp2  
(IO11)  
Registers [1486:1484]  
IO15_aio_en  
Registers [1149:1148]=11  
CMP2_VREF  
000  
001  
100  
101  
110  
Vref Out_1 (IO15)  
V
DD/3  
Registers [1652:1648]  
CMP3_VREF  
VDD/4  
Registers [1482:1480]  
VDD/2  
Register [1474]  
VDD/3  
VDD/4  
Figure 65: Voltage Reference Block Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
98 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
12.4 VREF LOAD REGULATION  
Note 1: Vref buffer performance is not guaranteed at VDD < 2.7 V.  
650  
600  
550  
500  
450  
400  
350  
VDD=5.5V  
VDD=3.3V  
VDD=2.7V  
I (UA)  
Figure 66: Typical Load Regulation, Vref = 600 mV, T = -40 °C to +125 °C, Buffer - Enable  
1050  
VDD=5.5V  
VDD=3.3V  
VDD=2.7V  
1000  
950  
900  
850  
800  
750  
700  
I (UA)  
Figure 67: Typical Load Regulation, Vref = 1000 mV, T = -40 °C to +125 °C, Buffer - Enable  
Datasheet  
22-Jul-2021  
Revision 2.3  
99 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
1250  
1200  
1150  
1100  
1050  
1000  
950  
VDD=5.5V  
VDD=3.3V  
VDD=2.7V  
900  
850  
I (UA)  
Figure 68: Typical Load Regulation, Vref = 1200 mV, T = -40 °C to +125 °C, Buffer - Enable  
Datasheet  
22-Jul-2021  
Revision 2.3  
100 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
13 Clocking  
13.1 OSC GENERAL DESCRIPTION  
The SLG46538-A has three internal oscillators. RC Oscillator that runs at 25 kHz/2 MHz (OSC0), Oscillator that runs at 25 MHz  
(OSC1) and Crystal Oscillator. It is possible to use all three oscillators simultaneously. The fundamental frequency can also come  
from clock input (IO15 or IO17 for 25 kHz/2 MHz and IO14 for 25 MHz or Crystal OSC), see Section 19.  
13.2 25 KHZ/2 MHZ AND 25 MHZ RC OSCILLATORS  
There are two divider stages that allow the user flexibility for introducing clock signals on various Connection Matrix Input lines.  
The pre-divider allows the selection of /1, /2, /4, or /8 divide down frequency from the fundamental. The second stage divider (only  
for 25 kHz/2 MHz Oscillator) has an input of frequency from the pre-divider, and outputs one of seven different frequencies on  
Connection Matrix Input lines [27] (OUT0) and [28] (OUT1). See Figure 69 and Figure 70 for details.  
There are two modes of the POWER CONTROL pin, (register [1658] for 25 kHz/2 MHz OSC and register [1657] for 25 MHz OSC):  
POWER-DOWN [0]. If PWR CONTROL input of oscillator is LOW, the oscillator will be turned on. If PWR CONTROL input of  
oscillator is HIGH the oscillator will be turned off and OSC divider will reset.  
FORCE ON [1]. If PWR CONTROL input of oscillator is HIGH, the oscillator will be turned on. If PWR CONTROL input of  
oscillator is LOW the oscillator will be turned off.  
The PWR CONTROL signal has the highest priority.  
The SLG46538-A has a 25 kHz/2 MHz OSC FAST START-UP function register [1338] (1 – on, 0 – off). It allows the OSC to run  
immediately after power-up this decreases the settling time. Note that when OSC FAST START-UP is on, the current consumption  
will rise.  
The user can select two OSC POWER MODEs (register [1343] for 25 kHz/2 MHz OSC and register [1341] for 25 MHz OSC):  
If AUTO POWER-ON [0] is selected, the OSC will run when any macrocell that uses OSC is powered on.  
If FORCE POWER-ON [1] is selected, the OSC will run when the SLG46538-A is powered on.  
OSC can be turned on by:  
Register control (force Power-On)  
Delay mode, when delay requires OSC  
CNT/FSM  
The Power-Down Mode is paired with temperature sensor, Section 18. If it is enabled for Crystal OSC, it is not available for Temp  
Sensor and vice versa. However, it is possible to enable Power-Down Mode for Crystal OSC and Temp Sensor simultaneously.  
Datasheet  
22-Jul-2021  
Revision 2.3  
101 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
OSC Power Mode register [1343]  
Auto Power-On  
0
Force Power-On  
1
From Connection Matrix Output [58]  
PWR DOWN  
Registers [1340:1339]  
Internal RCO  
0
1
Register [1342]  
0: 25 kHz  
1: 2 MHz  
DIV /1 /2 /4 /8  
0
1
IO17 EXT_CLK  
Pre-divider  
0
1
/ 2  
/ 3  
IO15 EXT_CLK  
EXT_CLK Sel  
register [1355]  
2
3
4
5
6
7
EXT_CLK Sel register [1358]  
/ 4  
OUT0  
OUT1  
To Connection Matrix Input [27]  
To Connection Matrix Input [28]  
/ 8  
/ 12  
/ 24  
/ 64  
Registers [1349:1347]  
Registers [1346:1344]  
Second Stage  
Divider  
Figure 69: 25 kHz/2 MHz RC OSC Block Diagram  
OSC Power Mode register [1341]  
Auto Power-On  
Force Power-On  
0
1
From Connection Matrix Output [59]  
Registers [1337:1336]  
PWR DOWN  
Internal RCO  
0
25 MHz Osc  
OUT  
To Connection Matrix Input [29]  
DIV /1 /2 /4 /8  
IO14 EXT_CLK  
Divider  
1
EXT_CLK Sel register [1357]  
Figure 70: 25 MHz RC OSC Block Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
102 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
13.3 OSCILLATORS POWER-ON DELAY  
OSC enable  
Power-On  
Delay  
CLK  
Figure 71: Oscillator Startup Diagram  
Note 1: OSC power mode: “Auto Power-On”.  
Note 2: “OSC enable” signal appears when any macrocell that uses OSC is powered on.  
450  
NormalStartͲUpMode  
FastStartͲUpMode  
400  
350  
300  
250  
200  
150  
VDD(V)  
Figure 72: RC Oscillator Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2 MHz  
Datasheet  
22-Jul-2021  
Revision 2.3  
103 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
25  
20  
15  
10  
5
NormalStartͲUpMode  
FastStartͲUpMode  
0
VDD(V)  
Figure 73: RC Oscillator Maximum Power-On Delay vs. VDD at T = 125 °C, OSC0 = 25 kHz  
90  
80  
70  
60  
50  
40  
30  
20  
VDD(V)  
Figure 74: OSC1 (25 MHz) Maximum Power-On Delay vs. VDD at T = 125 °C  
Datasheet  
22-Jul-2021  
Revision 2.3  
104 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
13.4 OSCILLATORS ACCURACY  
Note: OSC power setting: Force Power-On; Clock to matrix input - enable; Bandgap: turn on by register - enable.  
Note: For more information see Section 3.9.  
2.2  
2.15  
2.1  
2.05  
2
1.95  
Fmax @ VDD=1.8 V  
1.9  
Fmin @ VDD=1.8 V  
Fmax @ VDD=3.3 V  
1.85  
Fmin @ VDD=3.3 V  
Fmax @ VDD=5.0 V  
Fmin @ VDD=5.0 V  
1.8  
1.75  
T (°C)  
Figure 75: RC Oscillator Frequency vs. Temperature, RC OSC0 = 2 MHz  
27  
Fmax @ VDD=1.8 V  
Fmin @ VDD=1.8 V  
26.5  
Fmax @ VDD=3.3 V  
Fmin @ VDD=3.3 V  
Fmax @ VDD=5.0 V  
Fmin @ VDD=5.0 V  
26  
25.5  
25  
24.5  
24  
23.5  
T (°C)  
Figure 76: RC Oscillator Frequency vs. Temperature, RC OSC0 = 25 kHz  
Datasheet  
22-Jul-2021  
Revision 2.3  
105 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
31  
29  
27  
25  
23  
Fmax @ VDD=1.8 V  
21  
19  
17  
Fmin @ VDD=1.8 V  
Fmax @ VDD=3.3 V  
Fmin @ VDD=3.3 V  
Fmax @ VDD=5.0 V  
Fmin @ VDD=5.0 V  
T (°C)  
Figure 77: OSC1 (25 MHz) Frequency vs. Temperature  
Note: 25 MHz RC OSC1 performance is not guaranteed at VDD < 2.5 V.  
Datasheet  
22-Jul-2021  
Revision 2.3  
106 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
14 Crystal Oscillator  
The Crystal OSC provides high precision and stability of the output frequency. IO14 and IO13 are input and output, respectively,  
of an inverting amplifier which is configured for use as an On-chip Oscillator, as shown in Figure 79. Either a quartz crystal or a  
ceramic resonator may be used. The optimal value of the capacitors depends on the crystal or resonator in use, the amount of  
stray capacitance, and the electromagnetic noise of the environment. Refer to Table 64. For ceramic resonators, the capacitor  
values given by the manufacturer should be used. It is possible to use an external clock source, it must be connected to IO14. In  
this case no external components are required.  
The Power-Down Mode is paired with temperature sensor. If it is enabled for Crystal OSC, it is not available for Temp Sensor and  
vice versa. However, it is possible to enable Power-Down Mode for Crystal OSC and Temp Sensor simultaneously.  
OSC Power Mode register [1136]  
Disable  
0
Enable  
1
From Connection Matrix Output [109]  
PWR DOWN  
IO14  
OUT  
Crystal OSC  
To Connection Matrix Input [53]  
IO13  
Figure 78: Crystal OSC Block Diagram  
C1  
SLG46538-A  
IO14  
R1  
Crystal  
IO13  
R2  
C2  
Figure 79: External Crystal Connection  
Table 64: External Components Selection  
f
C1  
C2  
R1  
R2  
20 kΩ  
0 Ω  
32.768 kHz  
4 - 40 MHz  
10 pF  
12 pF  
330 pF  
12 pF  
20 MΩ  
1 MΩ  
Datasheet  
22-Jul-2021  
Revision 2.3  
107 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
15 Power-On Reset  
The SLG46538-A has a Power-On Reset (POR) macrocell to ensure correct device initialization and operation of all macrocells  
in the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the VDD power is first  
ramping to the device, and also while the VDD is falling during power-down. To accomplish this goal, the POR drives a defined  
sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of  
the IO pins.  
15.1 GENERAL OPERATION  
To start the POR sequence in the SLG46538-A, the voltage applied on the VDD should be higher than the Power-On threshold,  
see (Note 1). The full operational VDD range for the SLG46538-A is 1.71 V to 5.5 V (1.8 V ±5 % to 5.0 V±10 %). This means that  
the VDD voltage must ramp up to the operational voltage value, but the POR sequence will start earlier, as soon as the VDD voltage  
rises to the Power-On threshold. After the POR sequence has started, the SLG46538-A will have a typical period of time to go  
through all the steps in the sequence (noted in the datasheet for that device), and will be ready and completely operational after  
the POR sequence is complete.  
The SLG46538-A is guaranteed to be powered down and nonoperational when the VDD voltage (voltage on VDD) is less than  
Power-Off Threshold (see in Electrical Characteristics table), but not less than -0.6 V. Another essential condition for the chip to  
be powered down is that no voltage higher (see (Note 2)) than the VDD voltage is applied to any other PIN. For example, if VDD  
voltage is 0.3 V, applying a voltage higher than 0.3 V to any other PIN is incorrect, and can lead to incorrect or unexpected device  
behavior.  
Note 1 The Power-On threshold is defined in Electrical Characteristics table.  
Note 2 There is a 0.6V margin due to forward drop voltage of the ESD protection diodes.  
To power down the chip the VDD voltage should be lower than the operational and to guarantee that chip is powered down it  
should be less than Power-Off Threshold.  
All PINs are in high impedance state when the chip is powered down and while the POR sequence is taking place. The last step  
in the POR sequence releases the IO structures from the high impedance state, at which time the device is operational. The pin  
configuration at this point in time is defined by the design programmed into the chip. Also, as it was mentioned before the voltage  
on PINs can’t be bigger than the VDD, this rule also applies to the case when the chip is powered on.  
Note that VDD2 has no influence on POR sequence, all internal macrocells are powered from VDD. It means, VDD2 can be switched  
on/off while VDD is on. If voltage on VDD2 appears after the POR sequence, IOs 9, 10, 12, 13, 14, 15, 16, 17 become available  
when VDD2 reaches 0.6 V.  
For proper power up sequence, make sure VDD2 will not exceed VDD at any point during startup.  
For normal operation VDD should not be switched off while VDD2 is on, due to VDD2 ≤ VDD, see Section 3.  
Datasheet  
22-Jul-2021  
Revision 2.3  
108 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
15.2 POR SEQUENCE  
The POR system generates a sequence of signals that enable certain macrocells. The sequence is shown in Figure 80.  
VDD  
t
t
t
t
t
t
t
t
POR_NVM  
(reset for NVM)  
NVM_ready_out  
POR_GPI  
(reset for input enable)  
POR_LUT  
(reset for LUT output)  
POR_CORE  
(reset for DLY/RCO/DFF  
/LATCH/Pipe DLY  
POR_OUT  
(generate low to high to matrix)  
POR_GPO  
(reset for output enable)  
Figure 80: POR Sequence  
As can be seen from Figure 80 after the VDD has start ramping up and crosses the Power-On threshold, first, the on-chip NVM  
memory is reset. Next, the chip reads the data from NVM, and transfers this information to SRAM registers that serve to configure  
each macrocell, and the Connection Matrix which routes signals between macrocells. The third stage causes the reset of the input  
pins, and then to enable them. After that, the LUTs are reset and become active. After LUTs, the Delay cells, RC OSC, DFFs,  
LATCHES, and Pipe Delay are initialized. Only after all macrocells are initialized internal POR signal (POR macrocell output) goes  
from LOW to HIGH. The last portion of the device to be initialized are the output PINs, which transition from high impedance to  
active at this point.  
The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many  
environmental factors, such as: slew rate, VDD value, temperature, and even will vary from chip to chip (process influence).  
15.3 MACROCELLS OUTPUT STATES DURING POR SEQUENCE  
To have a full picture of SLG46538-A operation during powering and POR sequence, review the overview the macrocell output  
states during the POR sequence (Figure 81 describes the output signals states).  
First, before the NVM has been reset, all macrocells have their output set to logic LOW (except the output PINs which are in high  
impedance state). Before the NVM is ready, all macrocell outputs are unpredictable (except the output PINs). On the next step,  
some of the macrocells start initialization: input pins output state becomes LOW; LUTs also output LOW. Only P DLY macrocell  
configured as edge detector becomes active at this time. After that input PINs are enabled. Next, only LUTs are configured. Next,  
Datasheet  
22-Jul-2021  
Revision 2.3  
109 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
all other macrocells are initialized. After macrocells are initialized, internal POR matrix signal switches from LOW to HIGH. The  
last are output PINs that become active and determined by the input signals.  
VDD  
Guaranteed HIGH before POR_GPI  
Unpredictable  
t
VDD_out  
to matrix  
t
t
Input PIN_out  
to matrix  
Unpredictable  
Unpredictable  
Unpredictable  
Determined by External Signal  
Determined by Input signals  
LUT_out  
to matrix  
Determined by input signals  
OUT = IN without Delay  
t
t
t
t
t
t
t
Programmable Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
Prog. Edge_Detector_out  
to matrix  
Unpredictable  
Unpredictable  
Unpredictable  
Determined by Input signals  
Determined by initial state  
DFF/LATCH_out  
to matrix  
Determined by Input signals  
Determined by input signals  
OUT = IN without Delay  
Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
POR_out  
to matrix  
Unpredictable  
Ext. GPO  
Tri-state  
Determined by Input signals  
Output State Unpredictable  
Figure 81: Internal Macrocell States during POR Sequence  
Datasheet  
22-Jul-2021  
Revision 2.3  
110 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
15.3.1 Initialization  
All internal macrocells by default have initial LOW level. Starting from indicated power-up time of 1.15 V to 1.6 V, macrocells in  
GPAK are powered on while forced to the reset state. All outputs are in Hi-Z and chip starts loading data from NVM. Then the  
reset signal is released for internal macrocells and they start to initialize according to the following sequence:  
1. I2C.  
2. Input PINs, ACMP, Pull-up/down.  
3. LUTs.  
4. DFFs, Delays/Counters, Pipe Delay.  
5. POR output to matrix.  
6. Output PIN corresponds to the internal logic.  
The Vref output pin driving signal can precede POR output signal going high by 3 μs - 5 μs. The POR signal going high indicates  
the mentioned power-up sequence is complete.  
Note: The maximum voltage applied to any PIN should not be higher than the VDD level. There are ESD Diodes between  
PIN → VDD and PIN → GND on each PIN. So, if the input signal applied to PIN is higher than VDD, then current will sink through  
the diode to VDD. Exceeding VDD results in leakage current on the input PIN, and VDD will be pulled up, following the voltage on  
the input PIN.There is no effect from input pin when input voltage is applied at the same time as VDD  
.
15.3.2 Power-Down  
VDD (V)  
2 V  
1.6 V  
1.15 V  
1 V Vref Out Signal  
1 V  
Time  
Not guaranteed output state  
Figure 82: Power-Down  
During power-down, macrocells in SLG46538-A are powered off after VDD falling down below Power-Off Threshold. Please note  
that during a slow rampdown, outputs can possibly switch state during this time.  
Datasheet  
22-Jul-2021  
Revision 2.3  
111 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
16 Asynchronous State Machine Macrocell  
16.1 ASM MACROCELL OVERVIEW  
The Asynchronous State Machine (ASM) macrocell is designed to allow the user to create state machines with between 2 to 8  
states. The user has flexibility to define the available states, the available state transitions, and the input signals (a, b, c …) that  
will cause transitions from one state to another state, as shown in Figure 83.  
This macrocell has a total of 25 inputs, as shown in Figure 84, which come from the Connection Matrix outputs. Of these 25 inputs,  
24 are user selectable for driving general state transitions, and 1 is for driving a state transition to an Initial/Reset state. Each of  
the 24 inputs is level sensitive and active high, meaning that a high level input will drive the user selected transition from one state  
to another. The fact that there are 24 inputs puts the upper bound of 24 possible state transitions total in the user defined state  
machine design. There is on nReset input which will drive an immediate state transition to the user-defined Initial/Reset state  
when active, shown in red, in the Figure 83. For more details refer to Section 16.2.  
There are a total of 8 outputs, which go to the Connections Matrix inputs, and from there can be routed to other internal macrocells  
or pins. The 8 outputs are user defined for each of the possible 8 states. This information is held in the Connection Matrix Output  
RAM. For more details refer to Section 16.3.  
In using this macrocell, the user must take into consideration the critical timing required on all input and output signals. The timing  
waveforms and timing specifications for this macrocell are all measured relative to the input signals (which come into the macrocell  
on the Connection Matrix outputs) and on the outputs from the macrocell (which are direct connections to Connection Matrix  
inputs). The user must consider any delays from other logic and internal chip connections, including IO delays, to ensure that  
signals are properly processed, and state transitions are deterministic.  
The GPAK Designer development tools support user designs for the ASM macrocell at both the physical level and logic level.  
Figure 83 is a representation of the user design at the logical level, and Figure 84 shows the physical resources inside the  
macrocell. To best utilize this macrocell, the user must develop a logical representation of their desired state machine, as well as  
a physical mapping of the input and outputs required for the desired functionality.  
Off  
a
d
c
Normal  
Speed  
Standby  
Fault  
b
e
f
g
h
High  
Speed  
Figure 83: Asynchronous State Machine State Transitions  
Datasheet  
22-Jul-2021  
Revision 2.3  
112 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Connection Matrix  
State Holding  
Output RAM  
(8x8)  
Latches  
State 0  
State 0 In  
State 1 In  
State 2 In  
State 3 In  
State 4 In  
State 5 In  
State 6 In  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
Output Bits (8)  
State 1  
Output Bits (8)  
State 2  
Output Bits (8)  
State 3  
Output Bits (8)  
from  
Connection  
Matrix  
State  
Transition  
Signal  
State 4  
Output Bits (8)  
Routing  
State 5  
Output Bits (8)  
State 6  
Output Bits (8)  
State 7  
Output Bits (8)  
State 7 In  
nReset  
to Connection Matrix  
Figure 84: Asynchronous State Machine  
16.2 ASM INPUTS  
The ASM macrocell has a total of 25 inputs which come from the Connection Matrix outputs. Of these 25 inputs, 24 are user  
selectable for driving general state transitions, and 1 is for driving a state transition to an Initial/Reset state.  
There are a total of 24 inputs to the ASM macrocell for general state transitions, highlighted in red in Figure 85. Each of these  
inputs is level sensitive, and active high. A high level input will trigger a state transition.  
These inputs are grouped so that each set of 3 inputs can drive a state transition going into a particular state. As an example,  
there are three inputs that can drive a state transition to State 1. This sets an upper bound on the number of transitions that the  
user can select going into a particular state to be 3, shown in Figure 86.  
There is no limitation on the number of transitions that can be supported coming out of a particular state, the user can select to  
have transitions going from a state to all other states, shown in Figure 87.  
The ASM macrocell also has a nReset input highlighted in blue in Figure 85. This input is level sensitive and active low. An  
active signal on this input will drive an immediate state transition to the user-defined Initial/Reset state. The user can choose  
which state within the ASM Editor inside GPAK Designer is the initial state.  
Datasheet  
22-Jul-2021  
Revision 2.3  
113 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Connection Matrix  
Output RAM  
(8x8)  
State Holding  
Latches  
State 0  
State 0 In  
State 1 In  
State 2 In  
State 3 In  
State 4 In  
State 5 In  
State 6 In  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
Output Bits (8)  
State 1  
Output Bits (8)  
State 2  
Output Bits (8)  
State 3  
Output Bits (8)  
from  
Connection  
Matrix  
State  
Transition  
Signal  
State 4  
Output Bits (8)  
Routing  
State 5  
Output Bits (8)  
State 6  
Output Bits (8)  
State 7  
Output Bits (8)  
State 7 In  
nReset  
to Connection Matrix  
Figure 85: Asynchronous State Machine Inputs  
State 1  
State 0  
State 3  
State 2  
Figure 86: Maximum 3 State Transitions into Given State  
Datasheet  
22-Jul-2021  
Revision 2.3  
114 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
State 1  
State 7  
State 2  
State 0  
State 6  
State 3  
State5  
State 4  
Figure 87: Maximum 7 State Transitions out of a Given State  
16.3 ASM OUTPUTS  
There are a total of 8 outputs from the ASM macrocell, which go to the Connections Matrix inputs, and from there can be routed  
to other internal macrocells or pins. The 8 outputs are user defined for each of the possible 8 states, this information is held in  
the Connection Matrix Output RAM, shown in Figure 88. The Connection Matrix Output RAM has a total of 64 bits, arranged as  
8 bits per state. The values loaded in each of the 8 bits define the signal level on each of the 8 ASM macrocell outputs.  
The ASM Editor inside the GPAK Designer software allows the user to make their selections for the value of each bit in the  
Connection Matrix Output RAM, which selects the level of the macrocell outputs based on the current state of the ASM  
macrocell, as shown in Figure 88.  
Datasheet  
22-Jul-2021  
Revision 2.3  
115 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Connection Matrix  
Output RAM  
(8x8)  
State Holding  
Latches  
State 0  
State 0 In  
State 1 In  
State 2 In  
State 3 In  
State 4 In  
State 5 In  
State 6 In  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
Output Bits (8)  
State 1  
Output Bits (8)  
State 2  
Output Bits (8)  
State 3  
Output Bits (8)  
from  
Connection  
Matrix  
State  
Transition  
Signal  
State 4  
Output Bits (8)  
Routing  
State 5  
Output Bits (8)  
State 6  
Output Bits (8)  
State 7  
Output Bits (8)  
State 7 In  
nReset  
to Connection Matrix  
Figure 88: Connection Matrix Output RAM  
Table 65: ASM Editor - Connection Matrix Output RAM  
RAM  
Connection Matrix Output RAM  
State name  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
Datasheet  
22-Jul-2021  
Revision 2.3  
116 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
There is a possibility to configure ASM (it's settings and transitions) via I2C. Registers (registers [197:0]) correspond for ASM  
inputs, registers (registers [1727:1664]) correspond for ASM outputs configuration. Using I2C commands (see Section 17.4) it is  
possible to read ASM settings and connections, as well as change them. Additionally, user can change Connection Matrix Output  
RAM bit configuration (bytes 0xD0 to 0xD7).  
Note: After Connection Matrix Output RAM was updated via I2C, ASM outputs to Connection Matrix can be changed only after  
ASM changes its state or after reset event. To change ASM outputs to Connection Matrix instantly after I2C write command, ASM  
must be in reset all the time.  
16.4 BASIC ASM TIMING  
The basic state transition timing from input on Matrix Connection output to output on Matrix Connection input is shown in Figure  
89 and Figure 90. The time from a valid input signal to the time that there is a valid change of state and valid signals being  
available on the state outputs is State Machine Output Delay Time (Tst_out_delay). The minimum and maximum values of  
Tst_out_delay define the differential timing between the shortest state transition (input on matrix output and output on matrix input)  
and the longest state transition (input on matrix output and output on matrix input).  
a
State 0  
State 1  
Figure 89: State Transition  
Input  
Signal (a)  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
Figure 90: State Transition Timing  
16.5 ASYNCHRONOUS STATE MACHINES VS. SYNCHRONOUS STATE MACHINES  
It is important to note that this macrocell is designed for asynchronous operation, which means the following:  
1. No clock source is needed, it reacts only to input signals.  
2. The input signals do not have to be synchronized to each other, the macrocell will react to the earliest valid signal for state  
transition.  
3. This macrocell does not have traditional set-up and hold time specifications which are related to incoming clock, as this  
macrocell has no clock source.  
4. The macrocell only consumes power while in state transition.  
16.6 ASM POWER CONSIDERATIONS  
A benefit of the asynchronous nature of this macrocell is that it will consume power only during state transitions. Shown in  
Figure 89 and Figure 91, the current consumption of the macrocell will be a fraction of a µA between state transitions, and will  
rise only during state transitions. See Section 3.4 to find average current during state transitions.  
Datasheet  
22-Jul-2021  
Revision 2.3  
117 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
a
State 0  
State 1  
Figure 91: State Transition  
Input  
Signal (a)  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
Average Active ASM Power  
ASM  
Power  
Consumption  
Sub μA Inactive ASM Power Consumption  
Figure 92: State Transition Timing and Power Consumption  
16.7 ASM LOGICAL VS. PHYSICAL DESIGN  
A successful design with the ASM macrocell must include both the logic level design, as well as the physical level design. The  
GPAK Designer development software support user designs for the ASM macrocell at both the logic level and physical level.  
The logic level design of the user defined state machine takes place inside the ASM Editor. In the ASM Editor, the user can  
select and name states, define and name allowed state transitions, define the Initial/Reset state, and define the output values for  
the 8 outputs in the Output RAM Matrix. The physical level design takes place in the general GPAK Designer window, and here  
the user makes connections for the sources for ASM input signals, as well as making connections for destinations for ASM  
output signals.  
16.8 ASM SPECIAL CASE TIMING CONSIDERATIONS  
16.8.1 State Transition Pulse Input Timing  
All inputs to the ASM macrocell are level sensitive. If the input to the state machine macrocell for a state transition is a pulse,  
there is a minimum pulse width on the input to the state machine macrocell (as measured at the matrix input to the macrocell)  
which is guaranteed to result in a state transition shown in Figure 93 and Figure 94. This pulse width is defined by the State  
Machine Input Pulse Acceptance Time (Tst_pulse). If a pulse width that is shorter than Tst_pulse is input to the state machine  
macrocell, it is indeterminate whether the state transition will happen or not. If a pulse that is rejected (invalid due to the pulse  
width being narrower than the guaranteed minimum of Tst_pulse), this will not stop a valid pulse on another state transition input  
that does meet minimum pulse width.  
a
State 0  
State 1  
Figure 93: State Transition  
Datasheet  
22-Jul-2021  
Revision 2.3  
118 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Input  
Signal (a)  
Tst_pulse  
Tst_pulse  
State  
Outputs  
State 0  
State 1  
Tst_out_delay  
Figure 94: State Transition Pulse Input Timing  
16.8.2 State Transition Competing Input Timing  
There will be situations where two input signals can be valid inputs that will drive two different state transitions from a given state.  
In that sense, the two signals are “competing” (signals a and b in Figure 95), and the signal that arrives sooner should drive the  
state transition that will “win”, or drive the state transition. If one signal arrives Tst_comp before the other one, it is guaranteed to  
win, and the state transition that it codes for will be taken, as shown in Figure 96. If the two signals arrive within Tst_comp of each  
other, it will be indeterminate which state transition will win, but one of the transitions will take place as long as the winning signal  
satisfies the pulse width criteria described in the paragraph above, as shown in Figure 97.  
a
b
State 0  
State 1  
State 2  
Figure 95: State Transition - Competing Inputs  
Input  
Signal (a)  
Tst_comp  
Input  
Signal (b)  
Tst_out_delay  
State  
Outputs  
State 0  
State 1 or State 2  
Figure 96: State Transition Timing - Competing Inputs Indeterminate  
Datasheet  
22-Jul-2021  
Revision 2.3  
119 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Input  
Signal (a)  
Tst_comp  
Input  
Signal (b)  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
Figure 97: State Transition Timing - Competing Inputs Determinable  
16.8.3 ASM State Transition Sequential Timing  
It is possible to have a valid input signal for a transition out from a particular state be active before the state is active. If this is the  
case, the macrocell will only stay in that particular state for Tst_out_delay time before making the transition to the next state. An  
example of this sequential behavior is shown in Figure 98 and the associated timing is shown in Figure 99.  
a
b
State 0  
State 1  
State 2  
Figure 98: State Transition - Sequential  
Input  
Signal (a)  
Input  
Signal (b)  
Tst_out_delay  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
State 2  
Figure 99: State Transition - Sequential Timing  
16.8.4 State Transition Closed Cycling  
It is possible to have a closed cycle of state transitions that will run continuously if there are valid inputs that are active at the  
same time. The rate at which the state transitions will take place is determined by Tst_out_delay. The example shown here in  
Figure 100 involves cycling between two states, but any number of two – eight states can be included in state transition closed  
cycling of this nature. Figure 101 shows the associated timing for closed cycling.  
Datasheet  
22-Jul-2021  
Revision 2.3  
120 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
a
State 0  
State 1  
b
Figure 100: State Transition - Closed Cycling  
Input  
Signal (a)  
Input  
Signal (b)  
Tst_out_delay  
Tst_out_delay  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
State 0  
State 1  
Figure 101: State Transition - Closed Cycling Timing  
Datasheet  
22-Jul-2021  
Revision 2.3  
121 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
2
17 I C Serial Communications Macrocell  
17.1 I2C SERIAL COMMUNICATIONS MACROCELL OVERVIEW  
In the standard use case for the GreenPAK devices, the configuration choices made by the user are stored as bit settings in the  
Non-Volatile Memory (NVM), and this information is transferred at startup time to volatile RAM registers that enable the  
configuration of the macrocells. Other RAM registers in the device are responsible for setting the connections in the Connection  
Matrix to route signals in the manner most appropriate for the user’s application.  
The I2C Serial Communications Macrocell in this device allows an I2C bus Master to read and write this information via a serial  
channel directly to the RAM registers, allowing the remote re-configuration of macrocells, and remote changes to signal chains  
within the device.  
An I2C bus Master is also able read and write other register bits that are not associated with NVM memory. As an example, the  
input lines to the Connection Matrix can be read as digital register bits. These are the signal outputs of each of the macrocells in  
the device, giving an I2C bus Master the capability to remotely read the current value of any macrocell.  
The user has the flexibility to control read access and write access via registers bits register [1832], register [1870], and  
register [1871]. See Section 17.5 for more details on I2C read/write memory protection.  
Note: GreenPAK I2C is fully compatible with standard I2C protocol.  
17.2 I2C SERIAL COMMUNICATIONS DEVICE ADDRESSING  
Each command to the I2C Serial Communications macrocell begins with a Control Byte. The bits inside this Control Byte are  
shown in Figure 102. After the Start bit, the first four bits are a control code, which can be set by the user in registers [1867:1864].  
This gives the user flexibility on the chip level addressing of this device and other devices on the same I2C bus. The Block Address  
is the next three bits (A10, A9, A8), which will define the most significant bits in the addressing of the data to be read or written  
by the command. The last bit in the Control Byte is the R/W bit, which selects whether a read command or write command is  
requested, with a “1” selecting for a Read command, and a “0” selecting for a Write command. This Control Byte will be followed  
by an Acknowledge bit (ACK), which is sent by this device to indicate successful communication of the Control Byte data.  
In the I2C-bus specification and user manual, there are two groups of eight addresses (0000 xxx and 1111 xxx) that are reserved  
for the special functions, such as a system General Call address. If the user of this device choses to set the Control Code to either  
“1111” or “0000” in a system with other slave device, please consult the I2C-bus specification and user manual to understand the  
addressing and implementation of these special functions, to ensure reliable operation.  
In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of  
information, resulting in a total address space of 2K bytes. Of this 2K byte address space, the valid addresses accessible to the  
I2C Macrocell on the SLG46538-A are in the range from 0 (0x00) to 255 (0xFF). The MSB address bits (A10, A9, and A8) will be  
“0” for all commands to the SLG46538-A.  
With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word  
Address. Figure 102 shows this basic command structure.  
Start  
bit  
Acknowledge  
bit  
Control Byte  
Word Address  
A
10  
A
9
A
8
A
7
A
0
S
X
X
X
X
R/W ACK  
Control  
Code  
Block  
Address  
Not used, set to 0  
Read/Write bit  
(1 = Read, 0 = Write)  
Figure 102: Basic Command Structure  
Datasheet  
22-Jul-2021  
Revision 2.3  
122 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
17.3 I2C SERIAL GENERAL TIMING  
General timing characteristics for the I2C Serial Communications macrocell are shown in Figure 103. Timing specifications can  
be found in the Section 3.4.  
tHIGH  
tF  
tR  
tLOW  
SCL  
tSU STA  
tHD DAT  
tHD STA  
tSU DAT  
tSU STO  
SDA IN  
tBUF  
tAA  
tDH  
SDA OUT  
Figure 103: I2C General Timing Characteristics  
17.4 I2C SERIAL COMMUNICATIONS COMMANDS  
17.4.1 Byte Write Command  
Following the Start condition from the Master, the Control Code [4 bits], the Block Address [3 bits], and the R/W bit (set to “0”),  
are placed onto the I2C bus by the Master. After the SLG46538-A sends an Acknowledge bit (ACK), the next byte transmitted by  
the Master is the Word Address. The Block Address (A10, A9, A8), combined with the Word Address (A7 through A0), together  
set the internal address pointer in the SLG46538-A, where the data byte is to be written. After the SLG46538-A sends another  
Acknowledge bit, the Master will transmit the data byte to be written into the addressed memory location. The SLG46538-A again  
provides an Acknowledge bit and then the Master generates a Stop condition. The internal write cycle for the data will take place  
at the time that the SLG46538-A generates the Acknowledge bit.  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set to 0  
R/W bit = 0  
Figure 104: Byte Write Command, R/W = 0  
17.4.2 Sequential Write Command  
The write Control Byte, Word Address, and the first data byte are transmitted to the SLG46538-A in the same way as in a Byte  
Write command. However, instead of generating a Stop condition, the Bus Master continues to transmit data bytes to the  
SLG46538-A. Each subsequent data byte will increment the internal address counter, and will be written into the next higher byte  
in the command addressing. As in the case of the Byte Write command, the internal write cycle will take place at the time that the  
SLG46538-A generates the Acknowledge bit.  
Datasheet  
22-Jul-2021  
Revision 2.3  
123 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Acknowledge  
bit  
Data (n + x)  
Acknowledge  
Start  
bit  
bit  
Bus Activity  
Data (n + 1)  
Control Byte  
Word Address (n)  
Data (n)  
A
10  
A
8
A
9
ACK  
ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set t  
o 0  
R/W bit = 0  
Figure 105: Sequential Write Command  
17.4.3 Current Address Read Command  
The Current Address Read Command reads from the current pointer address location. The address pointer is incremented at the  
first STOP bit following any write control byte. For example, if a Sequential Read command (which contains a write control byte)  
reads data up to address n, the address pointer would get incremented to n + 1 upon the STOP of that command. Subsequently,  
a Current Address Read that follows would start reading data at n + 1. The Current Address Read Command contains the Control  
Byte sent by the Master, with the R/W bit = “1”. The SLG46538-A will issue an Acknowledge bit, and then transmit eight data bits  
for the requested byte. The Master will not issue an Acknowledge bit, and follow immediately with a Stop condition.  
Start  
bit  
Acknowledge  
bit  
Stop  
bit  
Bus Activity  
Control Byte  
Data (n)  
A
10  
A
9
A
8
S
X
X
X
X
R
ACK  
NACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
No Ack  
bit  
Not used, set  
to 0  
R/W bit = 1  
Figure 106: Current Address Read Command, R/W = 1  
17.4.4 Random Read Command  
The Random Read command starts with a Control Byte (with R/W bit set to “0”, indicating a write command) and Word Address  
to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the same as the Byte Write  
command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address  
counter in preparation for the second half of the command. After the Start bit, the Bus Master issues a second control byte with  
the R/W bit set to “1”, after which the SLG46538-A issues an Acknowledge bit, followed by the requested eight data bits.  
Datasheet  
22-Jul-2021  
Revision 2.3  
124 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Acknowledge  
Stop  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n)  
Control Byte  
Word Address (n)  
Control Byte  
A
10  
A
9
A
8
A
10  
A
9
A
8
S
ACK  
X
X
X
X
R ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
Control  
Code  
Block  
Address  
Control  
Code  
R/W bit = 1  
No Ack  
bit  
Not used, set to 0  
R/W bit = 0  
Figure 107: Random Read Command  
17.4.5 Sequential Read Command  
The Sequential Read command is initiated in the same way as a Current Address Read or Random Read command, except that  
once the SLG46538-A transmits the first data byte, the Master issues an Acknowledge bit as opposed to a Stop condition in a  
random read. The Master can continue reading sequential bytes of data, and will terminate the command with a Stop condition.  
Acknowledge  
Start  
bit  
bit  
Bus Activity  
Data (n + 2)  
Data (n + x)  
Control Byte  
Data (n)  
Data (n+1)  
A
8
A
10  
A
9
ACK  
P
SDA LINE  
S
X
X
X
X
R
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set  
to 0  
No Ack  
bit  
R/W bit = 1  
Figure 108: Sequential Read Command  
17.4.6 I2C Serial Command Address Space  
In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of  
information, resulting in a total address space of 2K bytes. Of this 2K byte address space, the valid addresses accessible to the  
I2C Macrocell on the SLG46538-A are in the range from 0 (0x00) to 255 (0xFF). The MSB address bits (A10, A9, and A8) will be  
“0” for all commands to the SLG46538-A.  
17.4.7 I2C Serial Command Register Map  
These register addresses are broken down into four Banks to give the user greater control on access to reading and writing  
information in each bank. Each of the four banks is 512 bits (64 bytes) in length. Writing information to register bits in these Banks  
will change the configuration of the device, resulting in either a change in the interconnection options provided by the Connection  
Matrix, or by changing the configuration of individual macrocells. During device use, all register bits can be read or written via I2C,  
unless protection bits are set to prevent this.  
See Section 20 for detailed information on all register bits.  
Datasheet  
22-Jul-2021  
Revision 2.3  
125 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Byte 255  
Bank 3  
Byte 192  
Byte 191  
Bank 2  
Byte 128  
Byte 127  
Bank 1  
Byte 64  
Byte 63  
Bank 0  
Byte 0  
Figure 109: Register Bank Map  
17.5 I2C SERIAL COMMAND REGISTER PROTECTION  
The memory space is divided into four banks, each of which has 512bits (64bytes). There are three bits that allow the user to  
define rules for reading and writing bits in each of these banks via I2C:  
register [1832] I2C lock for read bits [1535:0] (Bank 0/1/2). If the system provides any read commands to the addresses in  
these three banks, the device will respond with ‘FFH’ in data field.  
register [1871] I2C lock for write bits [1535:0] (Bank 0/1/2). If the system provides any write commands to the addresses in  
these three banks, the device will acknowledge these commands, but will not do internal writes to the register space.  
register [1870] I2C lock for write all bits (Bank 0/1/2/3). If the system provides any write commands to the addresses in these  
four banks, the device will acknowledge these commands, but will not do internal writes to the register space.  
Note: register [1870] is higher priority than register [1871], and if register [1870] is set, than register [1871] does not have any  
effect.  
Note: If the user sets IOs 6 and 7 function to a selection other than SDA and SCL, all access via I2C will be disabled.  
If register [1870] is not set, register bits in Bank 3 are open to read and write commands via I2C with the following exceptions:  
register [1871] Bank 0/1/2 I2C-write protection bit is always protected from I2C write  
registers [1867:1864] I2C Control Code Bit [3:0] is always protected from I2C write  
Note: Any write commands that come to the device via I2C that are not blocked, based on the protection bits, will change the  
contents of the RAM register bits that mirror the NVM bits. These write commands will not change the NVM bits themselves, and  
a POR event will restore the register bits to original programmed contents of the NVM.  
See Section 20 for detailed information on all registers.  
17.5.1 Register Read/Write Protection  
There are six read/write protect modes for the design sequence from being corrupted or copied. See Table 66 for details.  
Datasheet  
22-Jul-2021  
Revision 2.3  
126 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
.
Table 66: Read/Write Protection Options  
Lock Status  
Locked  
for read  
bits  
[1535:0]  
andwrite  
all bits  
Locked  
Locked for read  
forwrite andwrite  
Locked  
Locked  
for read for write  
Unlocked  
bits  
bits  
Bank  
Byte  
Bits  
Description  
all bits  
bits  
[1535:0]  
[1535:0]  
[1535:0]  
register  
[1832] = 0,  
[1871] = 0,  
[1870] = 0  
register  
[1832] = 1,  
[1871] = 0,  
[1870] = 0  
register  
[1832] = 0,  
[1871] = 1,  
[1870] = 0  
register  
[1832] =0,  
[1871] = x,  
[1870] = 1  
register  
[1832] = 1,  
[1871] = 1,  
[1870] = 0  
register  
[1832] = 1,  
[1871] = x,  
[1870] = 1  
0
1
0-63  
511-0  
Connection Matrix  
Outputs  
Configuration  
R/W  
R/W  
-
W
W
-
R
R
-
R
R
-
-
-
-
-
-
-
64-109  
879-512  
110-127 880-1023  
128-186 1495-1024  
Reserved  
Function  
Configuration for  
PINs, LUTs/DFFs,  
OSC,ASMandsome  
configuration for  
DLYs, ACMP  
R/W  
W
R
R
-
-
2
187-191 1535-1496  
192-206 1655-1536  
Reserved  
-
-
-
-
-
-
CNT/DLY counter  
data and some LUTs  
truth table, ACMP  
Vref  
R/W  
R/W  
R/W  
R
R/W  
R
I2C reset bit with  
reloading NVM into  
Data register  
1662  
R/W  
R/W  
R/W  
R
R/W  
R
3
207  
1661-1659,  
Reserved  
R
R
R
R
R
R
R
R
1663  
1658-1656 OSC Power Control  
R/W  
R/W  
R/W  
R/W  
Datasheet  
22-Jul-2021  
Revision 2.3  
127 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 66: Read/Write Protection Options (Continued)  
Lock Status  
Locked  
for read  
bits  
[1535:0]  
andwrite  
all bits  
Locked  
Locked for read  
forwrite andwrite  
Locked  
Locked  
for read for write  
Unlocked  
bits  
bits  
Bank  
Byte  
Bits  
Description  
all bits  
bits  
[1535:0]  
[1535:0]  
[1535:0]  
register  
[1832] = 0,  
[1871] = 0,  
[1870] = 0  
register  
[1832] = 1,  
[1871] = 0,  
[1870] = 0  
register  
[1832] = 0,  
[1871] = 1,  
[1870] = 0  
register  
[1832] =0,  
[1871] = x,  
[1870] = 1  
register  
[1832] = 1,  
[1871] = 1,  
[1870] = 0  
register  
[1832] = 1,  
[1871] = x,  
[1870] = 1  
ASM output RAM  
and User  
configurable RAM /  
OTP  
208-223 1791-1664  
224-227 1823-1792  
R/W  
R/W  
R/W  
R
R/W  
R
Reserved  
Reserved  
-
R/W  
R
-
R/W  
R
-
R/W  
R
-
-
R/W  
R
-
228  
1831-1824  
1839-1836  
1835-1834  
1833  
R
R
-
R
R
-
Product Family ID  
Reserved  
-
-
-
-
229  
Reserved  
R
R
R
R
R
R
I2C Lock for read bits  
[1535:0]  
1832  
R
R
R
R
R
R
230  
231  
232  
1847-1840  
1855-1848  
1863-1856  
Pattern ID  
Reserved  
Reserved  
R/W  
R
R/W  
R
R/W  
R
R
R
R
R/W  
R
R
R
R
R
R
R
R
I2C Lockfor writebits  
[1535:0]  
I2C Lock for write all  
bits  
3
1871  
1870  
R
R
R
R
R
R
R
R
R
R
R
R
233  
1869-1868  
1867-1864  
Reserved  
I2C Control Code  
-
-
-
-
-
-
R
R
R
R
R
R
Counter Current  
Value  
234-239 1919-1872  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Macrocells Output  
240-243 1951-1920 Values (Connection  
Matrix Inputs)  
Connection Matrix  
244  
1959-1952  
R/W  
R
R/W  
R
R/W  
R
R/W  
R
Virtual Inputs  
Macrocells Output  
245-247 1983-1960 Values (Connection  
Matrix Inputs)  
248-250 2007-1984  
251 2015-2008  
252-253 2031-2016  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R/W  
R
R/W  
R
R/W  
R
R/W  
R
3
254  
255  
2039-2032  
2047-2040  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Allow Read and Write Data  
Datasheet  
22-Jul-2021  
Revision 2.3  
128 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
W
R
-
Allow Write Data Only  
Allow Read Data Only  
The Data is protected for Read and Write  
17.5.2 I2C Serial Reset Command  
If I2C serial communication is established with the device, it is possible to reset the device to initial power up conditions, including  
configuration of all macrocells, and all connections provided by the Connection Matrix. This is implemented by setting  
register [1662] I2C reset bit to “1”, which causes the device to re-enable the Power-On Reset (POR) sequence, including the  
reload of all register data from NVM. During the POR sequence, the outputs of the device will be in tri-state. After the reset has  
taken place, the contents of register [1662] will be set to “0” automatically. Figure 110 illustrates the sequence of events for this  
reset function.  
Note: I2C Serial Reset Command is not available during emulation.  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
Stop  
bit  
Internal Reset bit  
Not used, set to 0  
Write bit  
by I2C Stop Signal  
Reset-bit register output  
Internal POR  
reloading NVM into Data register  
Reset-bit register (register [1662]) is cleared by reloading NVM into Data register  
1) I2C write with register [1662] = 1 (I2C reset bit with reloading NVM into Data register)  
2) POR go to LOW and reloading NVM into Data register start after “STOP” of I2C  
3) POR go to HIGH after reloading NVM into Data register  
Figure 110: Reset Command Timing  
17.6 I2C ADDITIONAL OPTIONS  
17.6.1 Reading Counter Data via I2C  
The current count value in four counters in the device can be read via I2C. The counters that have this additional functionality are  
16-bit CNT0 and CNT1, and 8-bit counters CNT4 and CNT6.  
17.6.2 User RAM and OTP Memory Array  
There are eight bytes of RAM memory that can be read and written remotely by I2C commands. The initial contents of this memory  
space can be selected by the user, and this information will be transferred from OTP memory to the RAM memory space during  
Datasheet  
22-Jul-2021  
Revision 2.3  
129 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
the power-up sequence. The lowest order byte in this array (User Configurable RAM/OTP Byte 0) is located at I2C address 0xD8,  
and the highest order byte in this array is located at I2C address 0xDF.  
Table 67: RAM Array Table  
I2C Address  
(hex)  
Highest Bit  
Address  
Lowest Bit  
Address  
Memory Byte  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
1735  
1743  
1751  
1759  
1767  
1775  
1783  
1791  
1728  
1736  
1744  
1752  
1760  
1768  
1776  
1784  
User Configurable RAM/OTP Byte 0  
User Configurable RAM/OTP Byte 1  
User Configurable RAM/OTP Byte 2  
User Configurable RAM/OTP Byte 3  
User Configurable RAM/OTP Byte 4  
User Configurable RAM/OTP Byte 5  
User Configurable RAM/OTP Byte 6  
User Configurable RAM/OTP Byte 7  
Datasheet  
22-Jul-2021  
Revision 2.3  
130 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
18 Analog Temperature Sensor  
The SLG46538-A has an Analog Temperature sensor (TS) with an output voltage linearly-proportional to the Centigrade  
temperature. The TS is rated to operate over a -40 °C to 180 °C temperature range. The error in the whole temperature range  
does not exceed ±10.3 % (±5.7 % in a range from -40 °C to 100 °C). TS output voltage variation over VDD at constant  
temperature is less than ±10.3 %. For more detail refer to section 3.11.  
TS  
Register [1470] = 0 Vref Op Amp Offset Chopper Clock frequency 2 MHz  
Register [1469] = 1 Bandgap Op Amp Offset Chopper Enable  
VDD  
From Connection Matrix Output [109]  
Register [1464]  
PWR DOWN  
1
0
+
-
VREF0  
IO16  
VCP, registers [1474:1472] = 100  
(always CP should be on)  
Open  
TS_O  
Register [1464] = 1  
Registers [1486:1484]  
Register [1478]  
Vref  
select  
0
1
TS_On  
Register [1464] = 1  
Closed  
Figure 111: Analog Temperature Sensor Structure Diagram  
Datasheet  
22-Jul-2021  
Revision 2.3  
131 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
1.2  
1.1  
1
Output Range 1
Output Range 2
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
T (°C)  
Figure 112: TS Output vs. Temperature, VDD = 1.71 V to 5.5 V  
Datasheet  
22-Jul-2021  
Revision 2.3  
132 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
19 External Clocking  
The SLG46538-A supports several ways to use an external, higher accuracy clock as a reference source for internal operations.  
19.1 CRYSTAL MODE  
When register [1136] is set to 1, an external crystal can be connected to IOs 13 and 14 for supplying an accurate clock source.  
See Section 14. An external clocking signal on IO14 can be used in place of the crystal. The high and low limits for crystal  
frequency that can be selected are 32.768 kHz and 40 MHz.  
19.2 IO17 OR IO15 SOURCE FOR 25 KHZ/2 MHZ CLOCK  
When register [1358] is set to 1, an external clocking signal on IOs 15 or 17 will be routed in place of the internal RC oscillator  
derived 25 kHz/2 MHz clock source. When register [1355] is set to 0, IO17 is in use, when set to 1, IO15 is in use. See Figure 69.  
The high and low limits for external frequency that can be selected are 0 MHz and 77 MHz.  
19.3 IO14 SOURCE FOR 25 MHZ CLOCK  
When register [1357] is set to 1, an external clocking signal on IO14 will be routed in place of the internal RC oscillator derived  
25 MHz clock source. See Figure 70. The high and low limits for external frequency that can be selected are 0 MHz and 84 MHz.  
Datasheet  
22-Jul-2021  
Revision 2.3  
133 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
20 Register Definitions  
20.1 REGISTER MAP  
Table 68: Register Map  
Address  
I2C Interface  
Read Write  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Note: For register [0] to register [1495], I2C Read is valid (assuming register [1832] = 0), I2C Write is valid (assuming  
register [1871] = 0)  
Matrix 64-to-1 MUX's 6 selection bits  
5:0  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
ASM-state0-EN0  
ASM-state0-EN1  
ASM-state0-EN2  
ASM-state1-EN0  
ASM-state1-EN1  
ASM-state1-EN2  
ASM-state2-EN0  
ASM-state2-EN1  
ASM-state2-EN2  
ASM-state3-EN0  
ASM-state3-EN1  
ASM-state3-EN2  
ASM-state4-EN0  
ASM-state4-EN1  
ASM-state4-EN2  
ASM-state5-EN0  
ASM-state5-EN1  
ASM-state5-EN2  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
7:6  
13:8  
15:14  
21:16  
23:22  
29:24  
31:30  
37:32  
39:38  
45:40  
47:46  
53:48  
55:54  
61:56  
63:62  
69:64  
71:70  
77:72  
79:78  
85:80  
87:86  
93:88  
95:94  
101:96  
103:102  
109:104  
111:110  
117:112  
119:118  
125:120  
127:126  
133:128  
135:134  
141:136  
143:142  
Datasheet  
22-Jul-2021  
Revision 2.3  
134 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
149:144  
151:150  
157:152  
159:158  
165:160  
167:166  
173:168  
175:174  
181:176  
183:182  
189:184  
191:190  
197:192  
199:198  
205:200  
207:206  
213:208  
215:214  
221:216  
223:222  
229:224  
231:230  
237:232  
239:238  
245:240  
247:246  
253:248  
255:254  
261:256  
263:262  
Read  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Write  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
ASM-state6-EN0  
12  
ASM-state6-EN1  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
ASM-state6-EN2  
ASM-state7-EN0  
ASM-state7-EN1  
ASM-state7-EN2  
ASM-state-nRST  
IO1 Digital Output Source  
IO1 Output Enable  
IO2 Digital Output Source  
IO3 Digital Output Source  
IO3 Output Enable  
IO4 Digital Output Source  
IO5 Digital Output Source  
IO5 Output Enable  
IO6 Digital Output Source (SCL with VI/In-  
put & NMOS Open-Drain)  
269:264  
271:270  
277:272  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
21  
22  
IO7 Digital Output Source (SDA with VI/In-  
put & NMOS Open-Drain)  
Matrix OUT  
279:278  
285:280  
287:286  
293:288  
295:294  
301:296  
303:302  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
IO8 Digital Output Source  
IO8 Output Enable  
23  
24  
25  
IO9 Digital Output Source  
Datasheet  
22-Jul-2021  
Revision 2.3  
135 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
309:304  
311:310  
317:312  
319:318  
325:320  
327:326  
333:328  
335:334  
341:336  
343:342  
349:344  
351:350  
357:352  
359:358  
365:360  
367:366  
373:368  
375:374  
381:376  
383:382  
389:384  
391:390  
397:392  
399:398  
405:400  
407:406  
413:408  
415:414  
421:416  
423:422  
429:424  
431:430  
437:432  
439:438  
Read  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Write  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Reserved  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
IO10 Digital Output Source  
IO10 Output Enable  
Inverter Input  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
IO12 Digital Output Source  
IO13 Digital Output Source  
IO13 Output Enable  
IO14 Digital Output Source  
IO15 Digital Output Source  
IO15 Output Enable  
IO16 Digital Output Source  
IO16 Output Enable  
IO17 Digital Output Source  
ACMP0 PDB (Power-Down)  
ACMP1 PDB (Power-Down)  
ACMP2 PDB (Power-Down)  
ACMP3 PDB (Power-Down)  
Input of Filter_0 with fixed time edge  
detector  
445:440  
447:446  
453:448  
455:454  
461:456  
463:462  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
37  
38  
39  
Input of Filter_1 with fixed time edge  
detector  
Input of Programmable Delay & Edge  
Detector  
Datasheet  
22-Jul-2021  
Revision 2.3  
136 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
469:464  
471:470  
477:472  
479:478  
485:480  
487:486  
493:488  
495:494  
501:496  
503:502  
509:504  
511:510  
517:512  
519:518  
525:520  
527:526  
533:528  
535:534  
541:536  
543:542  
549:544  
551:550  
557:552  
559:558  
565:560  
567:566  
573:568  
575:574  
581:576  
583:582  
589:584  
591:590  
597:592  
599:598  
605:600  
607:606  
613:608  
615:614  
621:616  
623:622  
629:624  
631:630  
Read  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Write  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
OSC 25 kHz/2 MHz PDB (Power-Down)  
OSC 25 MHz PDB (Power-Down)  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
IN0 of LUT2_0 or Clock Input of DFF0  
IN1 of LUT2_0 or Data Input of DFF0  
IN0 of LUT2_1 or Clock Input of DFF1  
IN1 of LUT2_1 or Data Input of DFF1  
IN0 of LUT2_2 or Clock Input of DFF2  
IN1 of LUT2_2 or Data Input of DFF2  
IN0 of LUT2_3 or Clock Input of PGen  
IN1 of LUT2_3 or nRST of PGen  
IN0 of LUT3_0 or Clock Input of DFF3  
IN1 of LUT3_0 or Data Input of DFF3  
IN2 of LUT3_0 or nRST (nSET) of DFF3  
IN0 of LUT3_1 or Clock Input of DFF4  
IN1 of LUT3_1 or Data Input of DFF4  
IN2 of LUT3_1 or nRST (nSET) of DFF4  
IN0 of LUT3_2 or Clock Input of DFF5  
IN1 of LUT3_2 or Data Input of DFF5  
IN2 of LUT3_2 or nRST (nSET) of DFF5  
IN0 of LUT3_3 or Clock Input of DFF6  
IN1 of LUT3_3 or Data Input of DFF6  
Datasheet  
22-Jul-2021  
Revision 2.3  
137 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
637:632  
639:638  
645:640  
647:646  
653:648  
655:654  
661:656  
663:662  
Read  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Write  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
IN2 of LUT3_3 or nRST (nSET) of DFF6  
IN0 of LUT3_4 or Clock Input of DFF7  
IN1 of LUT3_4 or Data Input of DFF7  
IN2 of LUT3_4 or nRST (nSET) of DFF7  
4F  
50  
51  
52  
IN0ofLUT3_5orDelay2Input(orCounter2  
RST Input)  
669:664  
671:670  
677:672  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
53  
IN1 of LUT3_5 or External Clock Input of  
Delay2 (or Counter2)  
Matrix OUT  
54  
55  
56  
679:678  
685:680  
687:686  
Reserved  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
IN2 of LUT3_5  
IN0ofLUT3_6orDelay3Input(orCounter3  
RST Input)  
693:688  
695:694  
701:696  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
IN1 of LUT3_6 or External Clock Input of  
Delay3 (or Counter3)  
Matrix OUT  
57  
58  
59  
703:702  
709:704  
711:710  
Reserved  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
IN2 of LUT3_6  
IN0ofLUT3_7orDelay4Input(orCounter4  
RST Input)  
717:712  
719:718  
725:720  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
IN1 of LUT3_7 or External Clock Input of  
Delay4 (or Counter4)  
Matrix OUT  
5A  
5B  
5C  
727:726  
733:728  
735:734  
Reserved  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
IN2 of LUT3_7  
IN0ofLUT3_8orDelay5Input(orCounter5  
RST Input)  
741:736  
743:742  
749:744  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
IN1 of LUT3_8 or External Clock Input of  
Delay5 (or Counter5)  
Matrix OUT  
5D  
5E  
5F  
751:750  
757:752  
759:758  
Reserved  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
IN2 of LUT3_8  
IN0ofLUT3_9orDelay6Input(orCounter6  
RST Input)  
765:760  
767:766  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Datasheet  
22-Jul-2021  
Revision 2.3  
138 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
IN1 of LUT3_9 or External Clock Input of  
Delay6 (or Counter6)  
773:768  
Matrix OUT  
Valid  
Valid  
60  
775:774  
781:776  
783:782  
789:784  
791:790  
797:792  
799:798  
805:800  
807:806  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
IN2 of LUT3_9  
61  
62  
63  
64  
IN0 of LUT3_10 or Input of Pipe Delay  
IN1 of LUT3_10 or nRST of Pipe Delay  
IN2 of LUT3_10 or Clock of Pipe Delay  
IN0ofLUT4_0orDelay0Input(orCounter0  
RST/SET Input)  
813:808  
815:814  
821:816  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
65  
66  
IN1 of LUT4_0 or External Clock Input of  
Delay0 (or Counter0)  
Matrix OUT  
823:822  
829:824  
831:830  
837:832  
839:838  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
IN2 of LUT4_0 or UP Input of FSM0  
IN3 of LUT4_0 or KEEP Input of FSM0  
67  
68  
IN0ofLUT4_1orDelay1Input(orCounter1  
RST/SET Input)  
845:840  
847:846  
853:848  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
69  
6A  
IN1 of LUT4_1 or External Clock Input of  
Delay1 (or Counter1)  
Matrix OUT  
855:854  
861:856  
863:862  
869:864  
871:870  
Reserved  
Matrix OUT  
Reserved  
Matrix OUT  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
IN2 of LUT4_1 or UP Input of FSM1  
IN3 of LUT4_1 or KEEP Input of FSM1  
6B  
6C  
PD of either Temp-output with BG AND/  
ORcrystal oscillator by register [1268]  
877:872  
Matrix OUT  
Valid  
Valid  
6D  
879:878  
887:880  
895:888  
903:896  
911:904  
919:912  
927:920  
935:928  
943:936  
951:944  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
Datasheet  
22-Jul-2021  
Revision 2.3  
139 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
77  
Register Bit  
959:952  
Read  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Write  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
78  
967:960  
79  
975:968  
7A  
7B  
7C  
7D  
7E  
7F  
983:976  
991:984  
999:992  
1007:1000  
1015:1008  
1023:1016  
IO0  
1024  
1025  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1027:1026  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
1029:1028  
1031:1030  
IO0 Pull Down Resistor Value Selection  
IO0 Mode Control  
Valid  
Valid  
Valid  
Valid  
80  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
IO1  
80  
1032  
1033  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO1 Pull-up/down Resistor Selection  
00: Floating  
IO1 Pull-up/down Resistor Value Se- 01: 10 K  
1035:1034  
1037:1036  
1039:1038  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
lection  
10: 100 K  
11: 1 M  
00: Digital Input without Schmitt Trigger,  
01: Digital Input with Schmitt Trigger,  
10: Low Voltage Digital Input  
11: Reserved  
81  
IO1 Mode Control (sig_io1_oe = 0)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
IO1 Mode Control (sig_io1_oe = 1)  
11: Open-Drain NMOS 2x  
Datasheet  
22-Jul-2021  
Revision 2.3  
140 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
IO2  
Register Bit  
Read  
Write  
1040  
1041  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: 1x  
1: 2x  
IO2 Driver Strength Selection  
0: Pull-down Resistor  
1: Pull-up Resistor  
1042  
IO2 Pull-up/down Resistor Selection  
Valid  
Valid  
Valid  
Valid  
00: Floating  
IO2 Pull-up/down Resistor Value Se- 01: 10 K  
1044:1043  
lection  
10: 100 K  
82  
11: 1 M  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Reserved 100: Push-Pull  
101: Open-Drain NMOS  
1047:1045  
IO2 Mode Control  
Valid  
Valid  
110: Open-Drain PMOS  
111: Reserved  
IO3  
1048  
1049  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO3 Pull-up/down Resistor Selection  
00: Floating  
IO3 Pull-up/down Resistor Value Se- 01: 10 K  
1051:1050  
1053:1052  
1055:1054  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
lection  
10: 100 K  
11: 1 M  
83  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
IO3 Mode Control (sig_io3_oe = 0)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO3 Mode Control (sig_io3_oe = 1)  
IO4  
1056  
1057  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: 1x  
1: 2x  
IO4 Driver Strength Selection  
0: Pull-down Resistor  
1: Pull-up Resistor  
1058  
IO4 Pull-up/down Resistor Selection  
Valid  
Valid  
Valid  
Valid  
00: Floating  
IO4 Pull-up/down Resistor Value Se- 01: 10 K  
1060:1059  
lection  
10: 100 K  
11: 1 M  
84  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Analog Input/Output  
1063:1061  
IO4 Mode Control  
Valid  
Valid  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Analog Input & Open-Drain  
Datasheet  
22-Jul-2021  
Revision 2.3  
141 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
IO5  
Register Bit  
Read  
Write  
1064  
1065  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO5 Pull-up/down Resistor Selection  
00: Floating  
IO5 Pull-up/down Resistor Value Se- 01: 10 K  
1067:1066  
1069:1068  
1071:1070  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
lection  
10: 100 K  
11: 1 M  
85  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
IO5 Mode Control (sig_io5_oe = 0)  
11: Analog Input/Output  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO5 Mode Control (sig_io5_oe = 1)  
IO6  
1072  
1073  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: 1x  
1: 2x  
IO6 Driver Strength Selection  
0: SCL & Virtual Input 0  
1: IO6  
1074  
Select SCL & Virtual Input 0 or IO6  
Valid  
Valid  
Valid  
Valid  
00: Floating  
01: 10 K  
10: 100 K  
1076:1075  
IO6 Pull-down Resistor Value Selection  
86  
11: 1 M  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Reserved  
100: Reserved  
101: Open-Drain NMOS  
110: Reserved  
IO6 (or SCL) Mode Control  
(input mode is selected by register at  
SCL)  
1079:1077  
Valid  
Valid  
111: Reserved  
IO7  
1080  
1081  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: 1x (I2C up to 400 kHz)  
1: 2x (I2C up to 1 MHz)  
IO7 (or SDA) Driver Strength Selection  
0: SDA & Virtual Input 1  
1: IO7  
1082  
Select SDA & Virtual Input 1 or IO7  
Valid  
Valid  
Valid  
Valid  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
1084:1083  
IO7 Pull-down Resistor Value Selection  
87  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Reserved 100: Reserved  
101: Open-Drain NMOS  
IO7 (or SDA) Mode Control  
(input mode is selected by register at  
SDA, output mode is fixed as OD at  
SDA)  
1087:1085  
Valid  
Valid  
110: Reserved  
111: Reserved  
Datasheet  
22-Jul-2021  
Revision 2.3  
142 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
IO8  
Register Bit  
Read  
Write  
0: Super Drive OFF  
1: Super Drive ON (if sig_io8_oe = '1' & IO8 Valid  
Mode Control = '1x')  
IO8 Super Drive (4x, NMOS  
Open-Drain) Selection  
1088  
1089  
Valid  
Valid  
0: Pull-down Resistor  
Valid  
IO8 Pull-up/down Resistor Selection  
1: Pull-up Resistor  
00: Floating  
IO8 Pull-up/down Resistor Value Se- 01: 10 K  
1091:1090  
1093:1092  
1095:1094  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
lection  
10: 100 K  
11: 1 M  
88  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
IO8 Mode Control (sig_io8_oe = 0)  
11: Analog Input/Output  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
IO8 Mode Control (sig_io8_oe = 1)  
11: Open-Drain NMOS 2x  
IO9  
0: Super Drive OFF  
1: Super Drive ON (if IO9 Mode Control =  
'101')  
IO9 Super Drive (4x, NMOS  
Open-Drain) Selection  
1096  
Valid  
Valid  
0: 1x  
1: 2x  
1097  
1098  
IO9 Driver Strength Selection  
Valid  
Valid  
Valid  
Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO9 Pull-up/down Resistor Selection  
00: Floating  
IO9 Pull-up/down Resistor Value Se- 01: 10 K  
1100:1099  
Valid  
Valid  
89  
lection  
10: 100 K  
11: 1 M  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Analog Input/Output  
1103:1101  
IO9 Mode Control  
Valid  
Valid  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Analog Input & Open-Drain  
Datasheet  
22-Jul-2021  
Revision 2.3  
143 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
IO10  
Register Bit  
Read  
Write  
1104  
1105  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO10 Pull-up/down Resistor Selection  
00: Floating  
IO10 Pull-up/down Resistor Value Se- 01: 10 K  
1107:1106  
1109:1108  
1111:1110  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
lection  
10: 100 K  
11: 1 M  
8A  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
IO10 Mode Control (sig_io10_oe = 0)  
11: Analog Input/Output  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO10 Mode Control (sig_io10_oe = 1)  
Reserved  
1112  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1113  
8B  
1115:1114  
1117:1116  
1119:1118  
IO12  
1120  
1121  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: 1x  
1: 2x  
IO12 Driver Strength Selection  
0: Pull-down Resistor  
1: Pull-up Resistor  
1122  
IO12 Pull-up/down Resistor Selection  
Valid  
Valid  
Valid  
Valid  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
IO12 Pull-up/down Resistor Value  
Selection  
1124:1123  
8C  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Analog Input/Output  
1127:1125  
IO12 Mode Control  
Valid  
Valid  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Analog Input & Open-Drain  
Datasheet  
22-Jul-2021  
Revision 2.3  
144 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
IO13  
Register Bit  
Read  
Write  
1128  
1129  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO13 Pull-up/down Resistor Selection  
00: Floating  
IO13 Pull-up/down Resistor Value Se- 01: 10 K  
1131:1130  
1133:1132  
1135:1134  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
lection  
10: 100 K  
11: 1 M  
8D  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
IO13 Mode Control (sig_io13_oe = 0)  
11: Sel for XSOC (X2)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO13 Mode Control (sig_io13_oe = 1)  
IO14  
0: Disable  
1: Enable  
1136  
1137  
1138  
X1 & X2 for crystal OSC enable  
IO14 Driver Strength Selection  
IO14 Pull-up/down Resistor Selection  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: 1x  
1: 2x  
0: Pull-down Resistor  
1: Pull-up Resistor  
00: Floating  
IO14 Pull-up/down Resistor Value Se- 01: 10 K  
1140:1139  
Valid  
Valid  
lection  
10: 100 K  
11: 1 M  
8E  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Sel for XOSC (X1)  
1143:1141  
IO14 Mode Control  
Valid  
Valid  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Reserved  
IO15  
1144  
1145  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO15 Pull-up/down Resistor Selection  
00: Floating  
IO15 Pull-up/down Resistor Value Se- 01: 10 K  
1147:1146  
1149:1148  
1151:1150  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
lection  
10: 100 K  
11: 1 M  
8F  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
IO15 Mode Control (sig_io15_oe = 0)  
11: Analog Input/Output  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO15 Mode Control (sig_io15_oe = 1)  
Datasheet  
22-Jul-2021  
Revision 2.3  
145 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
IO16  
Register Bit  
Read  
Write  
1152  
1153  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO16 Pull-up/down Resistor Selection  
00: Floating  
IO16 Pull-up/down Resistor Value Se- 01: 10 K  
1155:1154  
1157:1156  
1159:1158  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
lection  
10: 100 K  
11: 1 M  
90  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
IO16 Mode Control (sig_io16_oe = 0)  
11: Analog Input/Output  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO16 Mode Control (sig_io16_oe = 1)  
IO17  
1160  
1161  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: 1x  
1: 2x  
IO17 Driver Strength Selection  
0: Pull-down Resistor  
1: Pull-up Resistor  
1162  
IO17 Pull-up/down Resistor Selection  
Valid  
Valid  
Valid  
Valid  
00: Floating  
IO17 Pull-up/down Resistor Value Se- 01: 10 K  
1164:1163  
lection  
10: 100 K  
91  
11: 1 M  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Reserved  
1167:1165  
IO17 Mode Control  
Valid  
Valid  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Reserved  
ACMP1  
ACMP1 Positive Input Source Select 0: IO8  
1: ACMP0 IN+ source  
1168  
1169  
Valid  
Valid  
Valid  
Valid  
ACMP1AnalogBufferEnable(MaxBW 0: Disable analog buffer  
1 MHz)  
1: Enable analog buffer  
00: 0 mV  
01: 25 mV  
92  
10: 50 mV  
11: 200 mV  
1171:1170  
ACMP1 Hysteresis Enable  
Valid  
Valid  
(01: for both external & internal Vref; 10 &  
11: for only internal Vref; External Vref will  
not have 50 mV & 200 mV hysteresis)  
Datasheet  
22-Jul-2021  
Revision 2.3  
146 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
ACMP0  
1172  
ACMP0 Positive Input Source Select 0: IO4  
1: VDD  
Valid  
Valid  
Valid  
Valid  
ACMP0AnalogBufferEnable(MaxBW 0: Disable analog buffer  
1173  
1 MHz)  
1: Enable analog buffer  
00: 0 mV  
01: 25 mV  
92  
10: 50 mV  
11: 200 mV  
(01: for both external & internal Vref; 10 &  
11: for only internal Vref; External Vref will  
not have 50 mV & 200 mV hysteresis)  
1175:1174  
1177:1176  
ACMP0 Hysteresis Enable  
Valid  
Valid  
ACMP3  
ACMP3 Positive Input Source Select 00: IO12  
01: ACMP2 IN+ source  
Valid  
Valid  
Valid  
Valid  
10: ACMP0 IN+ source  
11: Reserved  
00: 0 mV  
01: 25 mV  
10: 50 mV,  
11: 200 mV  
93  
1179:1178  
ACMP3 Hysteresis Enable  
(01: for both external & internal Vref; 10 &  
11: for only internal Vref; External Vref will  
not have 50 mV & 200 mV hysteresis.)  
ACMP2  
ACMP2 Positive Input Source Select 0: IO10  
1: ACMP0 IN+ source  
1180  
Valid  
Valid  
Valid  
Valid  
00: 0 mV  
01: 25 mV  
93  
10: 50 mV  
11: 200 mV  
1182:1181  
ACMP2 Hysteresis Enable  
(01: for both external & internal Vref; 10 &  
11: for only internal Vref; External Vref will  
not have 50 mV & 200 mV hysteresis)  
ACMP1 100 uA Current Source Enable  
93 1183 ACMP1 100 uA Current Source Enable  
0: Disable  
1: Enable  
Valid  
Valid  
LUT3_x Function Select  
LUT3_3 or DFF6 with nRST/nSET Se- 0: LUT3_3  
1184  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
lect  
1: DFF6 with nRST/nSET  
LUT3_2 or DFF5 with nRST/nSET Se- 0: LUT3_2  
1185  
lect  
1: DFF5 with nRST/nSET  
94  
LUT3_1 or DFF4 with nRST/nSET Se- 0: LUT3_1  
1186  
1187  
lect  
1: DFF4 with nRST/nSET  
LUT3_0 or DFF3 with nRST/nSET Se- 0: LUT3_0  
lect  
1: DFF3 with nRST/nSET  
Datasheet  
22-Jul-2021  
Revision 2.3  
147 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
LUT2_x Function Select  
0: LUT2_3  
1: PGen  
1188  
LUT2_3 or PGen Select  
LUT2_2 or DFF2 Select  
LUT2_1 or DFF1 Select  
LUT2_0 or DFF0 Select  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: LUT2_2  
1: DFF2  
1189  
94  
0: LUT2_1  
1: DFF1  
1190  
0: LUT2_0  
1: DFF0  
1191  
LUT4_x Function Select  
0: LUT4_1  
1: DLY/CNT1(16bits)  
1192  
LUT4_1 or DLY/CNT1(16bits) Select  
LUT4_0 or DLY/CNT0(16bits) Select  
Valid  
Valid  
Valid  
Valid  
95  
0: LUT4_0  
1: DLY/CNT0(16bits)  
1193  
LUT3_x Function Select  
0: LUT3_9  
1: DLY/CNT6(8bits)  
1194  
LUT3_9 or DLY/CNT6(8bits) Select  
LUT3_8 or DLY/CNT5(8bits) Select  
LUT3_7 or DLY/CNT4(8bits) Select  
LUT3_6 or DLY/CNT3(8bits) Select  
LUT3_5 or DLY/CNT2(8bits) Select  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: LUT3_8  
1: DLY/CNT5(8bits)  
1195  
0: LUT3_7  
1: DLY/CNT4(8bits)  
1196  
95  
0: LUT3_6  
1: DLY/CNT3(8bits)  
1197  
0: LUT3_5  
1: DLY/CNT2(8bits)  
1198  
1199  
LUT3_4 or DFF7 with nRST/nSET Se- 0: LUT3_4  
lect 1: DFF7 with nRST/nSET  
LUT2_1/DFF1  
1200  
LUT2_1 [0]  
Valid  
Valid  
Valid  
Valid  
0: Low  
1: High  
1201  
1202  
1203  
LUT2_1 [1]/DFF1 Initial Polarity Select  
96  
0: Q output  
1: QB output  
LUT2_1 [2]/DFF1 Output Select  
LUT2_1 [3]/DFF1 or LATCH Select  
Valid  
Valid  
Valid  
Valid  
0: DFF function  
1: LATCH function  
LUT2_0/DFF0  
1204  
LUT2_0 [0]  
Valid  
Valid  
Valid  
Valid  
0: Low  
1: High  
1205  
1206  
1207  
LUT2_0 [1]/DFF0 Initial Polarity Select  
96  
0: Q output  
1: QB output  
LUT2_0 [2]/DFF0 Output Select  
LUT2_0 [3]/DFF0 or LATCH Select  
Valid  
Valid  
Valid  
Valid  
0: DFF function  
1: LATCH function  
LUT2_3/PGen  
LUT2_3[3:0] or PGen4bit counter data  
[3:0]  
97  
1211:1208  
Valid  
Valid  
Datasheet  
22-Jul-2021  
Revision 2.3  
148 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
LUT2_2/DFF2  
1212  
Register Bit  
Read  
Write  
LUT2_2 [0]  
Valid  
Valid  
Valid  
Valid  
0: Low  
1: High  
1213  
1214  
1215  
LUT2_2 [1]/DFF2 Initial Polarity Select  
97  
0: Q output  
1: QB output  
LUT2_2 [2]/DFF2 Output Select  
LUT2_2 [3]/DFF2 or LATCH Select  
Valid  
Valid  
Valid  
Valid  
0: DFF function  
1: LATCH function  
LUT3_0/DFF3  
1219:1216  
LUT3_0 [3:0]  
Valid  
Valid  
Valid  
Valid  
0: Low  
1: High  
1220  
1221  
1222  
1223  
LUT3_0 [4]/DFF3 Initial Polarity Select  
LUT3_0 [5]/DFF3 nRST or nSET Se- 0: nRST from Matrix Output  
lect  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
98  
1: nSET from Matrix Output  
0: Q output  
1: QB output  
LUT3_0 [6]/DFF3 Output Select  
0: DFF function  
1: LATCH function  
LUT3_0 [7]/DFF3 or LATCH Select  
LUT3_1/DFF4  
1227:1224  
LUT3_1 [3:0]  
Valid  
Valid  
Valid  
Valid  
0: Low  
1: High  
1228  
1229  
1230  
1231  
LUT3_1 [4]/DFF4 Initial Polarity Select  
LUT3_1 [5]/DFF4 nRST or nSET Se- 0: nRST from Matrix Output  
lect  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
99  
1: nSET from Matrix Output  
0: Q output  
1: QB output  
LUT3_1 [6]/DFF4 Output Select  
0: DFF function  
1: LATCH function  
LUT3_1 [7]/DFF4 or LATCH Select  
LUT3_2/DFF5  
1235:1232  
LUT3_2 [3:0]  
Valid  
Valid  
Valid  
Valid  
0: Low  
1: High  
1236  
1237  
1238  
1239  
LUT3_2 [4]/DFF5 Initial Polarity Select  
LUT3_2 [5]/DFF5 nRST or nSET Se- 0: nRST from Matrix Output  
lect  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
9A  
1: nSET from Matrix Output  
0: Q output  
1: QB output  
LUT3_2 [6]/DFF5 Output Select  
0: DFF function  
1: LATCH function  
LUT3_2 [7]/DFF5 or LATCH Select  
Datasheet  
22-Jul-2021  
Revision 2.3  
149 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
LUT3_3/DFF6  
1243:1240  
Register Bit  
Read  
Write  
LUT3_3 [3:0]  
Valid  
Valid  
Valid  
Valid  
0: Low  
1: High  
1244  
1245  
1246  
1247  
LUT3_3 [4]/DFF6 Initial Polarity Select  
LUT3_3 [5]/DFF6 nRST or nSET Se- 0: nRST from Matrix Output  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
9B  
lect  
1: nSET from Matrix Output  
0: Q output  
1: QB output  
LUT3_3 [6]/DFF6 Output Select  
0: DFF function  
1: LATCH function  
LUT3_3 [7]/DFF6 or LATCH Select  
LUT3_4/DFF7  
1251:1248  
LUT3_4 [3:0]  
Valid  
Valid  
Valid  
Valid  
0: Low  
1: High  
1252  
1253  
1254  
1255  
LUT3_4 [4]/DFF7 Initial Polarity Select  
LUT3_4 [5]/DFF7 nRST or nSET Se- 0: nRST from Matrix Output  
lect  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
9C  
1: nSET from Matrix Output  
0: Q output  
1: QB output  
LUT3_4 [6]/DFF7 Output Select  
0: DFF function  
1: LATCH function  
LUT3_4 [7]/DFF7 or LATCH Select  
LUT3_10/Pipe Delay  
1259:1256  
9D  
LUT3_10 [3:0]/Pipe Delay OUT0 Select  
LUT3_10 [7:4]/Pipe Delay OUT1 Select  
Valid  
Valid  
Valid  
Valid  
1263:1260  
00: Rising Edge Detector  
Select the Edge Mode of Programma- 01: Falling Edge Detector  
1265:1264  
1267:1266  
Valid  
Valid  
Valid  
Valid  
ble Delay & Edge Detector  
10: Both Edge Detector  
11: Both Edge Delay  
00: 125 ns  
01: 250 ns  
10: 375 ns  
11: 500 ns  
Delay Value Select for Programmable  
Delay & Edge Detector (VDD = 3.3V,  
typical)  
9E  
00: No matrix PD  
01: matrix PD for crystal oscillator  
10: Reserved matrix PD for temp sensor  
11: matrix PD for both crystal oscillator and  
temp sensor  
Crystal oscillator and temp output Pow-  
er-down enable  
1269:1268  
Valid  
Valid  
0: LUT3_10  
1: Pipe Delay  
1270  
1271  
LUT3_10 or Pipe Delay Select  
Pipe Delay OUT1 Polarity Select  
Valid  
Valid  
Valid  
Valid  
0: Non-inverted  
1: Inverted  
Datasheet  
22-Jul-2021  
Revision 2.3  
150 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
DLY/CNT2  
00: On both Falling and Rising Edges (for  
Delay & Counter Reset)  
01: on Falling Edge only (for Delay & Count-  
er Reset)  
10: on Rising Edge only (for Delay & Count-  
er Reset)  
DLY2 Mode Select or Asynchronous  
CNT2 Reset  
1273:1272  
Valid  
Valid  
11: No Delay on either Falling or Rising  
Edges/High Level Reset  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
9F  
1276:1274  
DLY/CNT2 Clock Source Select  
Valid  
Valid  
101: 25 MHz OSC clock  
110: External Clock  
111: Counter1 Overflow  
DLY/CNT2 Output Selection if DLY/  
CNT2 Mode Selection is "11"  
0: Default Output  
1: Edge Detector Output  
1277  
Valid  
Valid  
Valid  
Valid  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
1279:1278  
DLY/CNT2 Mode Selection  
DLY/CNT3  
00: On both Falling and Rising Edges (for  
Delay & Counter Reset)  
01: on Falling Edge only (for Delay & Count-  
er Reset)  
10: on Rising Edge only (for Delay & Count-  
er Reset)  
DLY3 Mode Select or Asynchronous  
CNT3 Reset  
1281:1280  
Valid  
Valid  
Valid  
Valid  
11: No Delay on either Falling or Rising  
Edges/High Level Reset  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
A0  
1284:1282  
DLY/CNT3 Clock Source Select  
101: 25 MHz OSC clock  
110: External Clock  
111: Counter2 Overflow  
DLY/CNT3 Output Selection if DLY/  
CNT3 Mode Selection is "11"  
0: Default Output  
1: Edge Detector Output  
1285  
Valid  
Valid  
Valid  
Valid  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
1287:1286  
DLY/CNT3 Mode Selection  
Datasheet  
22-Jul-2021  
Revision 2.3  
151 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
DLY/CNT4  
00: On both Falling and Rising Edges (for  
Delay & Counter Reset)  
01: on Falling Edge only (for Delay & Count-  
er Reset)  
10: on Rising Edge only (for Delay & Count-  
er Reset)  
DLY4 Mode Select or Asynchronous  
CNT4 Reset  
1289:1288  
Valid  
Valid  
11: No Delay on either Falling or Rising  
Edges/High Level Reset  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
A1  
1292:1290  
DLY/CNT4 Clock Source Select  
Valid  
Valid  
101: 25 MHz OSC clock  
110: External Clock  
111: Counter3 Overflow  
DLY/CNT4 Output Selection if DLY/  
CNT4 Mode Selection is "11"  
0: Default Output  
1: Edge Detector Output  
1293  
Valid  
Valid  
Valid  
Valid  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
1295:1294  
DLY/CNT4 Mode Selection  
DLY/CNT5  
00: On both Falling and Rising Edges (for  
Delay & Counter Reset)  
01: on Falling Edge only (for Delay & Count-  
er Reset)  
10: on Rising Edge only (for Delay & Count-  
er Reset)  
DLY5 Mode Select or Asynchronous  
CNT5 Reset  
1297:1296  
Valid  
Valid  
Valid  
Valid  
11: No Delay on either Falling or Rising  
Edges/High Level Reset  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
A2  
1300:1298  
DLY/CNT5 Clock Source Select  
101: 25 MHz OSC clock  
110: External Clock  
111: Counter4 Overflow  
DLY/CNT5 Output Selection if DLY/  
CNT5 Mode Selection is "11"  
0: Default Output  
1: Edge Detector Output  
1301  
Valid  
Valid  
Valid  
Valid  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
1303:1302  
DLY/CNT5 Mode Selection  
Datasheet  
22-Jul-2021  
Revision 2.3  
152 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
DLY/CNT6  
00: On both Falling and Rising Edges (for  
Delay & Counter Reset)  
01: on Falling Edge only (for Delay & Count-  
er Reset)  
10: on Rising Edge only (for Delay & Count-  
er Reset)  
DLY6 Mode Select or Asynchronous  
CNT6 Reset  
1305:1304  
Valid  
Valid  
11: No Delay on either Falling or Rising  
Edges/High Level Reset  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12, 011: OSC/24  
100: OSC/64  
A3  
1308:1306  
DLY/CNT6 Clock Source Select  
Valid  
Valid  
101: 25 MHz OSC clock  
110: External Clock  
111: Counter5 Overflow  
DLY/CNT6 Output Selection if DLY/  
CNT6 Mode Selection is "11"  
0: Default Output  
1: Edge Detector Output  
1309  
Valid  
Valid  
Valid  
Valid  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
1311:1310  
DLY/CNT6 Mode Selection  
11: Counter mode  
DLY/CNT0  
00: On both Falling and Rising Edges (for  
Delay & Counter Reset)  
01: on Falling Edge only (for Delay & Count-  
er Reset)  
10: on Rising Edge only (for Delay & Count-  
er Reset)  
DLY0 Mode Select or Asynchronous  
CNT0 Reset (16bits)  
1313:1312  
Valid  
Valid  
Valid  
Valid  
11: No Delay on either Falling or Rising  
Edges/High Level Reset  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
DLY/CNT0 Clock Source Select  
(16bits)  
A4  
1316:1314  
101: 25 MHz OSC clock  
110: External Clock  
111: Counter6 Overflow  
0: Reset to 0s  
1: Set to data (Registers [1583:1576,  
1591:1584])  
CNT0/FSM0's Q are Set to data or Re-  
set to 0s Selection (16bits)  
1317  
Valid  
Valid  
Valid  
Valid  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
1319:1318  
DLY/CNT0 Mode Selection (16bits)  
Datasheet  
22-Jul-2021  
Revision 2.3  
153 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
DLY/CNT1  
00: On both Falling and Rising Edges (for  
Delay & Counter Reset)  
01: on Falling Edge only (for Delay & Count-  
er Reset)  
10: on Rising Edge only (for Delay & Count-  
er Reset)  
DLY1 Mode Select or Asynchronous  
CNT1 Reset (16bits)  
1321:1320  
Valid  
Valid  
11: No Delay on either Falling or Rising  
Edges/High Level Reset  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
DLY/CNT1 Clock Source Select  
(16bits)  
A5  
1324:1322  
Valid  
Valid  
101: 25 MHz OSC clock  
110: External Clock  
111: Counter0 Overflow  
0: Reset to 0s  
1: Set to data (Registers [1599:1592,  
1607:1600])  
CNT1/FSM1's Q are Set to data or Re-  
set to 0s Selection (16bits)  
1325  
Valid  
Valid  
Valid  
Valid  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
1327:1326  
DLY/CNT1 Mode Selection (16bits)  
DLY/CNTx One-Shot/Freq. Detect Output Polarity  
DLY/CNT0 stop & restarting enable in 0: Disable  
CNT mode when new data is loaded 1: Enable  
Select the Polarity of DLY/CNT6's One 0: Default Output  
Shot/Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT5's One 0: Default Output  
Shot/Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT4's One 0: Default Output  
Shot/Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT3's One 0: Default Output  
Shot/Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT2's One 0: Default Output  
Shot/Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT1's One 0: Default Output  
Shot/Freq. Detect Output 1: Inverted Output  
Select the Polarity of DLY/CNT0's One 0: Default Output  
Shot/Freq. Detect Output 1: Inverted Output  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
A6  
Datasheet  
22-Jul-2021  
Revision 2.3  
154 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
Oscillator  
00: Div1  
01: Div2  
10: Div4  
11: Div8  
1337:1336  
OSC Clock Pre-divider for 25 MHz  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
OSC Fast Start-Up Enable for 25 kHz/ 0: Disable  
A7  
1338  
2 MHz  
1: Enable  
00: Div1  
01: Div2  
10: Div4  
11: Div8  
OSC Clock Pre-divider for  
25 kHz/2 MHz  
1340:1339  
0: Auto Power-On (If any CNT/DLY use 25  
MHz source)  
1: Force Power-On  
1341  
1342  
1343  
Force 25 MHz Oscillator ON  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Oscillator (25 kHz: Ring OSC, 2 M:  
RC-OSC) Select  
0: 25 kHz Ring OSC  
1: 2 MHz RC-OSC  
A7  
0: Auto Power-On (if any CNT/DLY use  
25k/2 MHz source)  
Force 25 kHz/2 MHz Oscillator ON  
1: Force Power-On  
000: OSC/1  
001: OSC/2  
010: OSC/3  
Internal OSC 25 kHz/2 MHz Frequency 011: OSC/4  
1346:1344  
1349:1347  
Valid  
Valid  
Valid  
Valid  
Divider Control for matrix input [28]  
100: OSC/8  
101: OSC/12  
110: OSC/24  
111: OSC/64  
000: OSC/1  
001: OSC/2  
010: OSC/3  
A8  
Internal OSC 25 kHz/2 MHz Frequency 011: OSC/4  
Divider Control for matrix input [27]  
100: OSC/8  
101: OSC/12  
110: OSC/24  
111: OSC/64  
OSC Clock 25 kHz/2 MHz to matrix in- 0: Disable  
put [28] enable 1: Enable  
1350  
1351  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
OSC Clock 25 kHz/2 MHz to matrix in- 0: Disable  
put [27] enable  
1: Enable  
SM_reg_init [2:0] for SM state default  
setup bits  
1354:1352  
1355  
External oscillator pin selection  
for 25 kHz/2 MHz  
0: IO17  
1: IO15  
OSC Clock 25 MHz to matrix input [29] 0: Disable  
enable 1: Enable  
1356  
A9  
External Clock Source Select instead 0: Internal Oscillator  
1357  
of 25 MHz  
1: External Clock from IO14  
External Clock Source Select instead 0: Internal Oscillator  
1358  
of 25 kHz/2 MHz  
1: External Clock from IO15 or IO17  
DLY/CNT1 stop & restarting enable in 0: Disable  
CNT mode when new data is loaded 1: Enable  
1359  
Datasheet  
22-Jul-2021  
Revision 2.3  
155 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
ASM 8-to-1 MUX’s 3 selection bits  
1362:1360  
1363  
ASM_state0_dec8x1_EN1  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Reserved  
AA  
AB  
1366:1364  
1367  
ASM_state0_dec8x1_EN0  
Reserved  
1370:1368  
1371  
ASM_state1_dec8x1_EN0  
Reserved  
1374:1372  
1375  
ASM_state0_dec8x1_EN2  
Reserved  
1378:1376  
1379  
ASM_state1_dec8x1_EN2  
Reserved  
AC  
AC  
1382:1380  
1383  
ASM_state1_dec8x1_EN1  
Reserved  
1386:1384  
1387  
ASM_state2_dec8x1_EN1  
Reserved  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
1390:1388  
1391  
ASM_state2_dec8x1_EN0  
Reserved  
1394:1392  
1395  
ASM_state3_dec8x1_EN0  
Reserved  
1398:1396  
1399  
ASM_state2_dec8x1_EN2  
Reserved  
1402:1400  
1403  
ASM_state3_dec8x1_EN2  
Reserved  
1406:1404  
1407  
ASM_state3_dec8x1_EN1  
Reserved  
1410:1408  
1411  
ASM_state4_dec8x1_EN1  
Reserved  
1414:1412  
1415  
ASM_state4_dec8x1_EN0  
Reserved  
1418:1416  
1419  
ASM_state5_dec8x1_EN0  
Reserved  
1422:1420  
1423  
ASM_state4_dec8x1_EN2  
Reserved  
1426:1424  
1427  
ASM_state5_dec8x1_EN2  
Reserved  
1430:1428  
1431  
ASM_state5_dec8x1_EN1  
Reserved  
1434:1432  
1435  
ASM_state6_dec8x1_EN1  
Reserved  
1438:1436  
1439  
ASM_state6_dec8x1_EN0  
Reserved  
Datasheet  
22-Jul-2021  
Revision 2.3  
156 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
1442:1440  
1443  
Read  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Write  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
ASM_state7_dec8x1_EN0  
Reserved  
B4  
1446:1444  
1447  
ASM_state6_dec8x1_EN2  
Reserved  
1450:1448  
1451  
ASM_state7_dec8x1_EN2  
Reserved  
B5  
1454:1452  
1455  
ASM_state7_dec8x1_EN1  
Reserved  
Filter/Edge Detector  
00: Rising Edge  
Select the edge mode of Edge Detec- 01: Falling Edge  
1457:1456  
Valid  
Valid  
tor_1  
10: Both Edge  
11: Delay  
Filter_1/Edge Detector_1 output Polar- 0: Filter_1 output  
1458  
Valid  
Valid  
Valid  
Valid  
ity Select  
1: Filter_1 output inverted  
Filter_1 or Edge Detector_1 Select  
(Typ 30 ns @VDD = 3.3 V)  
0: Filter_1  
1: Edge Detector_1  
1459  
B6  
00: Rising Edge  
Select the edge mode of Edge Detec- 01: Falling Edge  
1461:1460  
Valid  
Valid  
tor_0  
10: Both Edge  
11: Delay  
Filter_0/Edge Detector_0 output Polar- 0: Filter_0 output  
1462  
1463  
Valid  
Valid  
Valid  
Valid  
ity Select  
1: Filter_0 output inverted  
Filter_0 or Edge Detector_0 Select  
(Typ 47 ns @VDD = 3.3 V)  
0: Filter_0  
1: Edge Detector_0  
Vref/Bandgap  
0: Disable  
1: Enable  
1464  
Enable temp. sensor  
Valid  
Valid  
00 or 10 with registers [1474:1472] = 100  
(WideVDD r a n g e , 1 . 7 V ~ 5 . 5 V ) :  
Auto-delay mode, 550 uS for VDD < 2.7 V  
& 100 uS for 2.7 V < VDD  
00 or 10 with registers [1474:1472] = X10:  
Always 100 uS delay for 2.7 V < VDD  
00 or 10 with registers [1474:1472] = XX1:  
Always 550 uS delay for VDD < 2.7 V,  
01: Always 550 us delay regardless of  
Bandgap OK for ACMP Output Delay  
Time Select, the start Time is "Reset-  
b_core go to High"  
1466:1465  
Valid  
Valid  
B7  
registers [1474:1472] & VDD  
,
11: Always 100 us delay with 2.7 V < VDD  
regardless of registers [1474:1472]  
1467  
1468  
1469  
1470  
Reserved  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: Disable  
1: Enable  
1471  
Two consecutive DFFs enable for SM  
Valid  
Valid  
Datasheet  
22-Jul-2021  
Revision 2.3  
157 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
0XX: Power divider off (if there is no use of  
VDD/3, VDD/4 @ ACMP negative in)  
100: Reserved  
Power divider (VDD/3, VVDD/4) ON/  
OFF  
1474:1472  
Valid  
Valid  
X10: Reserved  
XX1: Reserved  
В8  
VDD Bypass Enable when device  
power is 1.8 V  
0: Regulator Auto ON  
1: Regulator OFF (VDD Bypass)  
1475  
1476  
Valid  
Valid  
Valid  
0: Auto-Mode  
1: Enable (if chip is Power-down, the Band- Valid  
Force Bandgap ON  
gap will Power-down even if it is Set to 1).  
0: None (Or Programming Enable)  
Valid  
1477  
1478  
1479  
NVM Power-down  
Valid  
Valid  
Valid  
1: Power-down (Or Programming Disable)  
Temp output range control (temp. de- 0: 0.62 V ~ 0.99 V (Typ)  
B8  
Valid  
Valid  
tector is not available)  
1: 0.75 V ~ 1.2 V (Typ)  
0: Disable  
1: Enable  
GPIO Quick Charge Enable  
000: ACMP2 Vref  
001: ACMP3 Vref  
100: VDD/2  
101: VDD/3  
110: VDD/4  
1482:1480  
1483  
Vref1 Output Source Select  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
111: Hi-Z  
B9  
000: ACMP0 Vref  
001: ACMP1 Vref  
100: VDD/2  
1486:1484  
Vref0 Output Source Select  
101: VDD/3  
110: VDD/4  
111: Hi-Z  
1487  
1488  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Wake time Selection in Wake Sleep  
Mode  
0: Short wake time  
1: Normal wake time  
1489  
1490  
1491  
1492  
1493  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: Disable  
1: Enable  
ACMP0 Wake & Sleep function Enable  
ACMP1 Wake & Sleep function Enable  
ACMP2 Wake & Sleep function Enable  
ACMP3 Wake & Sleep function Enable  
0: Disable  
1: Enable  
0: Disable  
1: Enable  
BA  
0: Disable  
1: Enable  
Wake Sleep Output State When WS  
Oscillator is Power-down if DLY/CNT0  
Mode Selection is "11"  
0: Low  
1: High  
1494  
Valid  
Valid  
Wake Sleep Ratio Control Mode Selec- 0: Default Mode  
tion if DLY/CNT0 Mode Selection is "11" 1: Wake Sleep Ratio Control Mode  
1495  
Valid  
Valid  
BB  
BC  
BD  
BE  
1503:1496  
1511:1504  
1519:1512  
1527:1520  
Reserved  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Datasheet  
22-Jul-2021  
Revision 2.3  
158 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
BF  
1535:1528  
Reserved  
Valid  
Valid  
LUT/DLY/CNT Control Data  
LUT3_5 [7:0] or DLY/CNT2 Control  
Data  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
C0  
C1  
C2  
C3  
C4  
1543:1536  
1551:1544  
1559:1552  
1567:1560  
1575:1568  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
LUT3_6 [7:0] or DLY/CNT3 Control  
Data  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
LUT3_7 [7:0] or DLY/CNT4 Control  
Data  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
LUT3_8 [7:0] or DLY/CNT5 Control  
Data  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
LUT3_9 [7:0] or DLY/CNT6 Control  
Data  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
C5  
C6  
C7  
C8  
C9  
CA  
1583:1576  
1591:1584  
1599:1592  
1607:1600  
1615:1608  
1623:1616  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
LUT4_0 [15:0] or DLY/CNT0 (16bits, 1 - 65535 (Delay Time = [Counter Control  
[15:0] = [1591:1576]) Control Data Data + 2]/Freq)  
LUT4_1 [15:0] or DLY/CNT1 (16bits, 1 - 65535 (Delay Time = [Counter Control  
[15:0] = [1607:1592]) Control Data  
Data + 2]/Freq)  
PGen pattern data [15:0] = [1623:1608]  
ACMP0  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
1628:1624  
ACMP0-IN Voltage Select  
Valid  
Valid  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
CB  
11010: IO9: EXT_Vref  
11011: IO5: ACMP0-  
11100: IO9: EXT_Vref/2  
11101: IO5: ACMP0-/2  
11110: Reserved  
11111: Reserved  
00: 1.0x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
1630:1629  
1631  
ACMP0 Positive Input Divider  
Valid  
Valid  
Valid  
Valid  
ACMP0 Low Bandwidth (MAX: 1 MHz) 0: OFF  
E n a b l e  
1: ON  
Datasheet  
22-Jul-2021  
Revision 2.3  
159 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
ACMP1  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
1636:1632  
ACMP1-IN Voltage Select  
Valid  
Valid  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
CC  
11010: EXT_Vref(IO9)  
11011: Reserved  
11100: EXT_Vref(IO9)/2  
11101: Reserved  
11110: Reserved  
11111: Reserved  
00: 1.0x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
1638:1637  
1639  
ACMP1 Positive Input Divider  
Valid  
Valid  
Valid  
Valid  
ACMP1 Low Bandwidth (MAX: 1 MHz) 0: OFF  
E n a b l e  
1: ON  
ACMP2  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
1644:1640  
ACMP2-IN Voltage Select  
Valid  
Valid  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
CD  
11010: IO9: EXT_Vref  
11011: Reserved  
11100: IO9: EXT_Vref/2  
11101: Reserved  
11110: Reserved  
11111: Reserved  
00: 1.0x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
1646:1645  
1647  
ACMP2 Positive Input Divider  
Valid  
Valid  
Valid  
Valid  
ACMP2 Low Bandwidth (MAX: 1 MHz) 0: OFF  
E n a b l e  
1: ON  
Datasheet  
22-Jul-2021  
Revision 2.3  
160 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Read  
Write  
ACMP3  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
1652:1648  
ACMP3-IN Voltage Select  
Valid  
Valid  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
CE  
11010: IO9: EXT_Vref  
11011: Reserved  
11100: IO9: EXT_Vref/2  
11101: Reserved  
11110: Reserved  
11111: Reserved  
00: 1.0x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
1654:1653  
1655  
ACMP3 Positive Input Divider  
Valid  
Valid  
Valid  
Valid  
ACMP3 Low Bandwidth (MAX: 1 MHz) 0: OFF  
E n a b l e  
1: ON  
Misc.  
1656  
1657  
Reserved  
Valid  
Valid  
Valid  
Valid  
Switch from “Matrix OUT: OSC 25 MHz  
PD” to “Matrix OUT: OSC 25 MHz Force  
On”  
0: OSC PD  
1: OSC Force On (Matrix Output [59])  
Switch from “Matrix OUT: OSC 25 kHz/  
2 MHz PD” to “Matrix OUT:  
OSC 25 kHz/2 MHz Force On”  
0: OSC PD  
1: OSC Force On (Matrix Output [58])  
1658  
Valid  
Valid  
CF  
1659  
1660  
1661  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
I2C reset bit with reloading NVM into 0: Keep existing condition  
1662  
Valid  
Valid  
Data register  
1: Reset execution  
1663  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
1671:1664  
1679:1672  
1687:1680  
1695:1688  
1703:1696  
1711:1704  
1719:1712  
1727:1720  
1735:1728  
RAM 8 outputs for ASM-state0  
RAM 8 outputs for ASM-state1  
RAM 8 outputs for ASM-state2  
RAM 8 outputs for ASM-state3  
RAM 8 outputs for ASM-state4  
RAM 8 outputs for ASM-state5  
RAM 8 outputs for ASM-state6  
RAM 8 outputs for ASM-state7  
User configurable RAM/OTP Byte 0  
Datasheet  
22-Jul-2021  
Revision 2.3  
161 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
Register Bit  
1743:1736  
1751:1744  
1759:1752  
1767:1760  
1775:1768  
1783:1776  
1791:1784  
1799:1792  
1807:1800  
1815:1808  
1823:1816  
1831:1824  
Read  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Write  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
User configurable RAM/OTP Byte 1  
User configurable RAM/OTP Byte 2  
User configurable RAM/OTP Byte 3  
User configurable RAM/OTP Byte 4  
User configurable RAM/OTP Byte 5  
User configurable RAM/OTP Byte 6  
User configurable RAM/OTP Byte 7  
Reserved  
Invalid Invalid  
Invalid Invalid  
Invalid Invalid  
Invalid Invalid  
E1  
Reserved  
E2  
Reserved  
E3  
Reserved  
E4  
Reserved  
Valid  
Valid  
I2C lock for read bits [1535:0] (Bank 0/ 0: Disable (Programmed data can be read)  
1832  
Valid  
Invalid  
1/2)  
1: Enable (Programmed data can't be read)  
1833  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
E5  
1835:1834  
1839:1836  
8-bit Pattern ID Byte 0 (From NVM):  
ID[23:16]  
E6  
1847:1840  
Valid  
Valid  
E7  
E8  
1855:1848  
1863:1856  
1867:1864  
1868  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
Valid  
Reserved  
I2C Control Code Bit [3:0]  
Value for slave address  
Reserved  
1869  
Reserved  
Valid  
E9  
0: Writable  
1: Non-writable  
I2C lock for write bits [1535:0] (Bank 0/ 0: Writable  
1870  
1871  
BANK0/1/2/3 I2C-write protection bit  
Valid  
Valid  
Invalid  
Invalid  
1/2)  
1: Non-writable  
EA  
EB  
EC  
ED  
EE  
EF  
1879:1872  
1887:1880  
1895:1888  
1903:1896  
1911:1904  
1919:1912  
CNT4 Counted Value  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
CNT0 (16bits) = [1895:1880] Counted  
Value  
CNT6 Counted Value  
CNT1 (16bits) = [1919:1904] Counted  
Value  
Matrix Input  
1920  
1921  
1922  
1923  
1924  
1925  
1926  
1927  
Matrix Input 0  
Matrix Input 1  
Matrix Input 2  
Matrix Input 3  
Matrix Input 4  
Matrix Input 5  
Matrix Input 6  
Matrix Input 7  
Ground  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
IO0 Digital Input  
IO1 Digital Input  
IO2 Digital Input  
IO3 Digital Input  
IO4 Digital Input  
IO5 Digital Input  
IO8 Digital Input  
F0  
Datasheet  
22-Jul-2021  
Revision 2.3  
162 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
1928  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1940  
1941  
1942  
1943  
1944  
1945  
1946  
1947  
1948  
1949  
1950  
1951  
1952  
1953  
1954  
1955  
1956  
1957  
1958  
1959  
1960  
1961  
1962  
1963  
1964  
1965  
1966  
1967  
Read  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Write  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Valid  
Matrix Input 8  
Matrix Input 9  
Matrix Input 10  
Matrix Input 11  
Matrix Input 12  
Matrix Input 13  
Matrix Input 14  
Matrix Input 15  
Matrix Input 16  
Matrix Input 17  
Matrix Input 18  
Matrix Input 19  
Matrix Input 20  
Matrix Input 21  
Matrix Input 22  
Matrix Input 23  
Matrix Input 24  
Matrix Input 25  
Matrix Input 26  
Matrix Input 27  
Matrix Input 28  
Matrix Input 29  
Matrix Input 30  
Matrix Input 31  
Matrix Input 32  
Matrix Input 33  
Matrix Input 34  
Matrix Input 35  
Matrix Input 36  
Matrix Input 37  
Matrix Input 38  
Matrix Input 39  
Matrix Input 40  
Matrix Input 41  
Matrix Input 42  
Matrix Input 43  
Matrix Input 44  
Matrix Input 45  
Matrix Input 46  
Matrix Input 47  
LUT2_0/DFF0 Output  
LUT2_1/DFF1 Output  
LUT2_2/DFF2 Output  
LUT2_3/PGen Output  
F1  
LUT3_0/DFF3 Output  
LUT3_1/DFF4 Output  
LUT3_2/DFF5 Output  
LUT3_3/DFF6 Output  
LUT3_4/DFF7 Output  
LUT3_5/CNT_DLY2(8bit) Output  
LUT3_6/CNT_DLY3(8bit) Output  
LUT3_7/CNT_DLY4(8bit) Output  
LUT3_8/CNT_DLY5(8bit) Output  
LUT3_9/CNT_DLY6(8bit) Output  
LUT4_0/CNT_DLY0(16bit) Output  
LUT4_1/CNT_DLY1(16bit) Output  
LUT3_10/Pipe Delay (1st stage) Output  
Pipe Delay Output0  
F2  
F3  
F4  
F5  
Pipe Delay Output1  
Fixed "L" output because it is OSC clock  
Fixed "L" output because it is OSC clock  
Fixed "L" output because it is OSC clock  
Filter0/Edge Detect0 Output  
Filter1/Edge Detect1 Output  
Virtual Input [0]  
Virtual Input [1]  
Valid  
Virtual Input [2]  
Valid  
Virtual Input [3]  
Valid  
Virtual Input [4]  
Valid  
Virtual Input [5]  
Valid  
Virtual Input [6]  
Valid  
Virtual Input [7]  
Valid  
RAM_0 Output for ASM-state  
RAM_1 Output for ASM-state  
RAM_2 Output for ASM-state  
RAM_3 Output for ASM-state  
RAM_4 Output for ASM-state  
RAM_5 Output for ASM-state  
RAM_6 Output for ASM-state  
RAM_7 Output for ASM-state  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Datasheet  
22-Jul-2021  
Revision 2.3  
163 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
I2C Interface  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
1968  
Read  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Write  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Matrix Input 48  
Matrix Input 49  
Matrix Input 50  
Matrix Input 51  
Matrix Input 52  
Matrix Input 53  
Matrix Input 54  
Matrix Input 55  
Matrix Input 56  
Matrix Input 57  
Matrix Input 58  
Matrix Input 59  
Matrix Input 60  
IO9 Digital Input  
IO10 Digital Input  
Inverter Output  
1969  
1970  
1971  
IO12 Digital Input  
IO13 Digital Input  
IO14 Digital Input  
IO15 Digital Input  
IO16 Digital Input  
IO17 Digital Input  
ACMP_0 Output  
ACMP_1 Output  
ACMP_2 Output  
ACMP_3 Output  
F6  
1972  
1973  
1974  
1975  
1976  
1977  
1978  
1979  
F7  
1980  
Programmable Delay with Edge Detector  
Output  
1981  
Matrix Input 61  
Valid  
Invalid  
1982  
1983  
Matrix Input 62  
Matrix Input 63  
nRST_core  
VDD  
Valid  
Valid  
Invalid  
Invalid  
Reserved  
F8  
1991:1984  
1999:1992  
2007:2000  
2015:2008  
2023:2016  
2031:2024  
2039:2032  
2047:2040  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
Valid  
F9  
FA  
FB  
FC  
Invalid  
Invalid  
Valid  
FD  
FE  
FF  
Valid  
Datasheet  
22-Jul-2021  
Revision 2.3  
164 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
21 Package Top Marking Definitions  
21.1 TQFN 20L 3.5 MM X 3.5 MM 0.5P PACKAGE  
Part Code  
PPPPP  
Week Code  
WWNNN S/N Code  
Pin 1  
Identifier  
Assembly Code  
+ Revision Code  
ARR  
Datasheet  
22-Jul-2021  
Revision 2.3  
165 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
22 Package Information  
22.1 PACKAGE OUTLINES FOR TQFN 20L 3.5 MM X 3.5 MM 0.5P PACKAGE  
TOP (Marking View)  
Side View  
Bottom (Bump View)  
Datasheet  
22-Jul-2021  
Revision 2.3  
166 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
22.2 TQFN HANDLING  
Be sure to handle TQFN package only in a clean, ESD-safe environment. Tweezers or vacuum pick-up tools are suitable for  
handling. Do not handle TQFN package with fingers as this can contaminate the package pins and interface with solder reflow.  
22.3 SOLDERING INFORMATION  
Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 25.74 mm3 (nominal) for  
TQFN 20L Package. More information can be found at www.jedec.org.  
23 Ordering Information  
Part Number  
Type  
SLG46538-AP  
SLG46538-APTR  
20-pin TQFN  
20-pin TQFN - Tape and Reel (5k units)  
23.1 TAPE AND REEL SPECIFICATIONS  
Max Units  
Trailer (min)  
Leader (min)  
Nominal  
# of  
Pins  
Reel &  
Hub Size  
(mm)  
Tape Part  
Width Pitch  
Package Type  
Package Size  
(mm)  
Length  
Length  
(mm)  
per Reel per Box  
Pockets  
Pockets  
(mm)  
TQFN 20L3.5 mm x  
3.5 mm Green  
20 3.5 x 3.5 x 0.75 5,000 10,000 330/100  
42  
336  
42  
336  
12  
8
23.2 CARRIER TAPE DRAWING AND DIMENSIONS  
Index Hole Index Hole  
PocketBTMPocketBTM Pocket Index Hole Pocket Index Hole  
to Tape  
Edge  
to Pocket Tape Width  
Center  
(mm)  
Length  
(mm)  
Width  
(mm)  
Depth  
(mm)  
Pitch  
(mm)  
Pitch Diameter  
(mm)  
Package Type  
(mm)  
(mm)  
(mm)  
A0  
B0  
K0  
P0  
P1  
D0  
E
F
W
TQFN 20L  
3.5 mm x  
3.8  
3.8  
0.95  
4
8
1.5  
1.75  
5.5  
12  
3.5 mm Green  
Section Y-Y  
Note: 1.Orientation in carrier: Pin1 is at upper left corner (Quadrant 1).  
2.Other material is available.  
Datasheet  
22-Jul-2021  
Revision 2.3  
167 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
24 Layout Guidelines  
24.1 TQFN 20L 3.5 MM X 3.5 MM 0.5P PACKAGE  
Unit: μm  
Datasheet  
22-Jul-2021  
Revision 2.3  
168 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Glossary  
A
ACK  
Acknowledge bit  
ACMP  
ASM  
Analog Comparator  
Asynchronous State Machine  
B
BG  
Bandgap  
C
CLK  
CNT  
Clock  
Counter  
D
DFF  
DLY  
D Flip-Flop  
Delay  
E
EC  
ESD  
Electrical Characteristics  
Electrostatic discharge  
F
FSM  
Finite State Machine  
G
GPI  
GPIO  
GPO  
General Purpose Input  
General Purpose Input/Output  
General Purpose Output  
I
IN  
IO  
Input  
Input/Output  
L
LSB  
LB  
Least Significant Bit  
Low Bandwidth  
Look Up Table  
LUT  
M
MSB  
MUX  
Most Significant Bit  
Multiplexer  
Datasheet  
22-Jul-2021  
Revision 2.3  
169 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
N
nRST  
NVM  
Reset  
Non-Volatile Memory  
O
OD  
Open-Drain  
OE  
Output Enable  
Oscillator  
OSC  
OTP  
OUT  
One Time Programmable  
Output  
P
PD  
Power-Down  
Pattern Generator  
Power-On Reset  
Push-Pull  
PGen  
POR  
PP  
PWR  
P DLY  
Power  
Programmable Delay  
R
R/W  
Read/Write  
S
SCL  
SDA  
I2C Clock Input  
I2C Data Input/Output  
T
TP  
TS  
Thermal Pad  
Temperature Sensor  
V
Vref  
Voltage Reference  
W
WS  
Wake and Sleep Controller  
Datasheet  
22-Jul-2021  
Revision 2.3  
170 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Revision History  
Revision  
2.3  
Date  
Description  
Removed note from section Vref Load Regulation  
Corrected registers [1076:1075], [1084:1083], [1087:1085]  
22-Jul-2021  
19-Feb-2021  
2.2  
Corrected section Pin Configuration - TQFN - 20L  
Corrected section Pin Configuration - TQFN - 20L  
Updated Ordering Information  
Updated ACMP Spec  
2.1  
2.0  
16-Jul-2020  
16-Jun-2020  
Preliminary version  
Datasheet  
22-Jul-2021  
Revision 2.3  
171 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46538-A  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with Asynchronous State Machine and Dual Supply  
Status Definitions  
Revision Datasheet Status  
Product Status  
Definition  
1.<n>  
Target  
Development  
This datasheet contains the design specifications for product development.  
Specifications may change in any manner without notice.  
2.<n>  
Preliminary  
Qualification  
Production  
This datasheet contains the specifications and preliminary characterization  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
3.<n>  
4.<n>  
Final  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Major specification  
changes are communicated via Customer Product Notifications. Datasheet  
changes are communicated via www.dialog-semiconductor.com.  
Obsolete  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted  
to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or  
associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers  
accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion  
and/or use is at the customer's own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as  
to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any  
information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of  
the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor  
reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products,  
software and applications, in accordance with its standard automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty  
that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing,  
such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such  
license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions  
of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are  
the property of their respective owners.  
© 2021 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction  
of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Hong Kong  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
China (Shenzhen)  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
182  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
22-Jul-2021  
Revision 2.3  
172 of 172  
© 2021 Dialog Semiconductor  
CFR0011-120-00  

相关型号:

SLG46538-APTR

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply
DIALOG

SLG46585

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine, LDOs, and DC/DC Converter
DIALOG

SLG46585M

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine, LDOs, and DC/DC Converter
DIALOG

SLG46585MTR

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine, LDOs, and DC/DC Converter
DIALOG

SLG46620-A

Auto Grade GreenPAK Programmable Mixed-signal Matrix
DIALOG

SLG46620-AG

Auto Grade GreenPAK Programmable Mixed-signal Matrix
DIALOG

SLG46620-AGTR

Auto Grade GreenPAK Programmable Mixed-signal Matrix
DIALOG

SLG46722

Personal Computers and Servers
DIALOG

SLG46722V

Personal Computers and Servers
DIALOG

SLG46722VTR

Personal Computers and Servers
DIALOG

SLG46811

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46811V

GreenPAK Programmable Mixed-Signal Matrix
DIALOG