SLG47004V [DIALOG]

GreenPAK Programmable Mixed-Signal Matrix with In-System Programmability and Advanced Analog Features;
SLG47004V
型号: SLG47004V
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

GreenPAK Programmable Mixed-Signal Matrix with In-System Programmability and Advanced Analog Features

文件: 总292页 (文件大小:13302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
General Description  
The SLG47004 provides a small, low power component for commonly used analog signal processing and mixed-signal  
functions. Individual, tunable, analog components used in conjunction with configurable logic provide a way to solve a wide  
variety of tasks with minimal costs. The user creates their circuit design by programming the multiple time Non-Volatile  
Memory (NVM) to configure the interconnect logic, the analog and digital macrocell, and the IO Pins of the SLG47004.  
Key Features  
Two Programmable Bandwidth Op Amps  
3-bit LUT  
3-Op Amp Instrumentation Amplifier Function  
(including Additional Internal Op Amp)  
Rail to Rail Input  
Low Quiescent Current  
Low Offset Voltage  
One Selectable DFF/LATCH or 4-bit LUT  
Seven Multi-Function Macrocells  
Six Selectable DFF/LATCH or 3-bit LUTs + 8-bit  
Delay/Counters  
One Selectable DFF/LATCH or 4-bit LUT + 16-bit  
Delay/Counter  
Analog Comparator Mode  
Optional Vref Voltage Connection for Input Pins  
Serial Communications  
2-kbit (256 x 8) I2C-Compatible (2-Wire) Serial EEPROM  
Emulation with Software Write Protection  
Programmable Delay with Edge Detector Output  
Deglitch Filter or Edge Detector  
Two 1024 Position Digital Rheostats  
I2C Protocol Interface  
User Defined Auto-Trim Option  
Manual Control Option  
I2C Control Option  
Potentiometer Mode  
Two Single-Pole/Single-Throw Analog Switches  
Voltage or Current Source/Sink Mode  
Three Oscillators  
2.048 kHz Oscillator  
2.048 MHz Oscillator  
25 MHz Oscillator  
One Low Offset Chopper Comparator  
Two Low Power General Purpose ACMPs  
ACMP Sampling Mode  
Hysteresis with Independently-Selectable Thresholds  
Analog Temperature Sensor  
Power-On Reset  
In-System Programmability  
Multiple Time Programmable Memory  
Wide Range Power Supply  
Three Voltage References  
Two ACMP Vref Output Buffers  
One High Drive Buffer  
Thirteen Combination Function Macrocells  
2.5 V (±4 %) to 5 V (±10 %) VDD  
Three Selectable DFF/LATCH or 2-bit LUTs  
One Selectable Programmable Pattern Generator or  
2-bit LUT  
Operating Temperature Range: -40 °C to +85 °C  
RoHS Compliant/Halogen-Free  
Package Available  
Seven Selectable DFF/LATCH or 3-bit LUTs  
One Selectable Pipe Delay or Ripple Counter or  
24-pin STQFN: 3 mm x 3 mm x 0.55 mm, 0.4 mm pitch  
Applications  
Adjust Precision Threshold  
Sensor Offset Trimming/Calibration  
Tunable Analog Filters  
Operational Amplifier Adjustable Gain and Offset  
Adjustable Voltage-to-Current Conversions  
Personal Computers and Servers  
PC Peripherals  
Consumer Electronics  
Data Communications Equipment  
Handheld and Portable Electronics  
Smartphones and Fitness Bands  
Notebook and Tablet PCs  
Datasheet  
10-Mar-2021  
Revision 2.4  
1 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Contents  
General Description.................................................................................................................................................................1  
Key Features ............................................................................................................................................................................1  
Applications..............................................................................................................................................................................1  
1 Block Diagram ....................................................................................................................................................................12  
2 Pinout ..................................................................................................................................................................................13  
2.1 Pin Configuration - STQFN-24L ...........................................................................................................................13  
3 Characteristics ...................................................................................................................................................................16  
3.1 Absolute Maximum Ratings .................................................................................................................................16  
3.2 Electrostatic Discharge Ratings ...........................................................................................................................16  
3.3 Recommended Operating Conditions ..................................................................................................................16  
3.4 Electrical Characteristics ......................................................................................................................................17  
3.5 I2C Pins Electrical Characteristics ........................................................................................................................22  
3.6 Macrocells Current Consumption .........................................................................................................................24  
3.7 Timing Characteristics .........................................................................................................................................25  
3.8 Oscillator Characteristics .....................................................................................................................................26  
3.9 ACMP Characteristics ..........................................................................................................................................27  
3.10 Internal Vref Characteristics ...............................................................................................................................28  
3.11 Output Buffers Characteristics ...........................................................................................................................28  
3.12 Analog Temperature Sensor Characteristics .....................................................................................................29  
3.13 Programmable Operational Amplifier Characteristics ........................................................................................30  
3.14 100K Digital Rheostat Characteristics ...............................................................................................................33  
3.15 Analog Switches Characteristics .......................................................................................................................35  
4 User Programmability ........................................................................................................................................................36  
5 IO Pins .................................................................................................................................................................................37  
5.1 GPIO Pins ............................................................................................................................................................37  
5.2 GPI Pins ...............................................................................................................................................................37  
5.3 Pull-Up/Down Resistors .......................................................................................................................................37  
5.4 Fast Pull-Up/Down during Power-Up ...................................................................................................................37  
5.5 I2C Mode IO Structure .........................................................................................................................................38  
5.6 Matrix OE IO Structure .........................................................................................................................................39  
5.7 GPI Structure .......................................................................................................................................................40  
5.8 IO Pins Typical Performance ...............................................................................................................................41  
6 Connection Matrix ..............................................................................................................................................................44  
6.1 Matrix Input Table ................................................................................................................................................45  
6.2 Matrix Output Table .............................................................................................................................................46  
6.3 Connection Matrix Virtual Inputs ..........................................................................................................................49  
6.4 Connection Matrix Virtual Outputs .......................................................................................................................50  
7 Combination Function Macrocells ....................................................................................................................................51  
7.1 2-Bit LUT or D Flip-Flop Macrocells .....................................................................................................................51  
7.2 2-bit LUT or Programmable Pattern Generator ....................................................................................................54  
7.3 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells .............................................................................................56  
7.4 4-Bit LUT or D Flip-Flop with Set/Reset Macrocell ...............................................................................................64  
7.5 3-Bit LUT or Pipe Delay/Ripple Counter Macrocell ..............................................................................................66  
8 Multi-Function Macrocells .................................................................................................................................................70  
8.1 3-Bit LUT or DFF/Latch with 8-Bit Counter/Delay Macrocells ..............................................................................70  
8.2 4-Bit LUT or DFF/Latch with 16-Bit Counter/Delay Macrocell ..............................................................................79  
8.3 CNT/DLY/FSM Timing Diagrams .........................................................................................................................82  
8.4 Wake and Sleep Controller ..................................................................................................................................91  
9 Analog Comparators ..........................................................................................................................................................95  
9.1 Analog Comparators Overview ............................................................................................................................95  
9.2 Chopper Analog Comparator ...............................................................................................................................97  
9.3 ACMP Sampling Mode .........................................................................................................................................98  
9.4 ACMP Typical Performance .................................................................................................................................99  
10 Programmable Operational Amplifiers .........................................................................................................................102  
10.1 General Description .........................................................................................................................................102  
Datasheet  
10-Mar-2021  
Revision 2.4  
2 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
10.2 Modes of Operation ..........................................................................................................................................104  
10.3 Op Amps Typical Performance ........................................................................................................................108  
11 Analog Switch Macrocell ...............................................................................................................................................154  
11.1 Analog Switch General Description ..................................................................................................................154  
11.2 Half Bridge Mode .............................................................................................................................................156  
11.3 Analog Switches Typical Performance .............................................................................................................157  
12 Digital Rheostats and Programmable Trim Block .......................................................................................................159  
12.1 Potentiometer Mode .........................................................................................................................................161  
12.2 Calculating Actual Resistance ..........................................................................................................................161  
12.3 Digital Rheostat Value Self-programming into the NVM ..................................................................................162  
12.4 Trimming process Using Programmable Trim Block ........................................................................................165  
12.5 Using Chopper ACMP ......................................................................................................................................171  
13 Programmable Delay/Edge Detector ............................................................................................................................177  
13.1 Programmable Delay Timing Diagram - Edge Detector Output .......................................................................177  
14 Additional Logic Function. Deglitch Filter ...................................................................................................................178  
15 Voltage Reference ..........................................................................................................................................................179  
15.1 Voltage Reference Overview ...........................................................................................................................179  
15.2 Vref Selection Table ........................................................................................................................................179  
15.3 Vref Block Diagram ..........................................................................................................................................181  
15.4 Voltage Reference Typical Performance .........................................................................................................185  
16 Clocking ..........................................................................................................................................................................188  
16.1 OSC General Description .................................................................................................................................188  
16.2 Oscillator0 (2.048 kHz) .....................................................................................................................................189  
16.3 Oscillator1 (2.048 MHz) ...................................................................................................................................190  
16.4 Oscillator2 (25 MHz) ........................................................................................................................................191  
16.5 CNT/DLY Clock Scheme ..................................................................................................................................191  
16.6 External Clocking .............................................................................................................................................192  
16.7 Oscillators Power-On Delay .............................................................................................................................193  
16.8 Oscillators Accuracy .........................................................................................................................................195  
16.9 Oscillators Settling time ....................................................................................................................................197  
16.10 Oscillators Current Consumption ..................................................................................................................199  
17 Power-On Reset ..............................................................................................................................................................203  
17.1 General Operation ............................................................................................................................................203  
17.2 POR Sequence ................................................................................................................................................204  
17.3 Macrocells Output States During POR Sequence ...........................................................................................204  
18 I2C Serial Communications Macrocell ..........................................................................................................................207  
18.1 I2C Serial Communications Macrocell Overview ..............................................................................................207  
18.2 I2C Serial Communications Device Addressing ...............................................................................................207  
18.3 I2C Serial General Timing ................................................................................................................................208  
18.4 I2C Serial Communications Commands ...........................................................................................................208  
18.5 Chip Configuration Data Protection ..................................................................................................................211  
18.6 I2C Serial Command Register Map ..................................................................................................................212  
18.7 I2C Additional Options ......................................................................................................................................215  
19 Non-Volatile Memory ......................................................................................................................................................217  
19.1 Serial NVM Write Operations ...........................................................................................................................217  
19.2 Serial NVM Read Operations ...........................................................................................................................219  
19.3 Serial NVM Erase Operations ..........................................................................................................................219  
19.4 Acknowledge Polling ........................................................................................................................................220  
19.5 Low power standby mode ................................................................................................................................220  
19.6 Emulated EEPROM Write Protection ...............................................................................................................220  
20 Analog Temperature Sensor .........................................................................................................................................222  
21 Register Definitions .......................................................................................................................................................225  
21.1 Register Map ....................................................................................................................................................225  
22 Package Top Marking System Definition .....................................................................................................................284  
22.1 STQFN-24L 3 mm x 3 mm x 0.55 mm, 0.4P FCD Package ............................................................................284  
23 Package Information ......................................................................................................................................................285  
23.1 Package outlines FOR STQFN 24L 3 mm x 3 mm x 0.55 mm 0.4P Green Package ......................................285  
Datasheet  
10-Mar-2021  
Revision 2.4  
3 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
23.2 STQFN Handling ..............................................................................................................................................285  
23.3 Soldering Information .......................................................................................................................................285  
24 Ordering Information .....................................................................................................................................................286  
24.1 Tape and Reel Specifications ..........................................................................................................................286  
24.2 Carrier Tape Drawing and Dimensions ............................................................................................................286  
25 Layout Guidelines ..........................................................................................................................................................287  
25.1 STQFN 24L 3 mm x 3 mm x 0.55 mm 0.4P Green Package ...........................................................................287  
Glossary................................................................................................................................................................................288  
Revision History...................................................................................................................................................................291  
Datasheet  
10-Mar-2021  
Revision 2.4  
4 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figures  
Figure 1: Block Diagram...........................................................................................................................................................12  
Figure 2: Steps to Create a Custom GreenPAK Device...........................................................................................................36  
Figure 3: IO with I2C Mode IO Structure Diagram....................................................................................................................38  
Figure 4: Matrix OE IO Structure Diagram...............................................................................................................................39  
Figure 5: IO0 GPI Structure Diagram.......................................................................................................................................40  
Figure 6: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C.......................................................41  
Figure 7: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range......................41  
Figure 8: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C .........................................42  
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range......................42  
Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C .......................................43  
Figure 11: Connection Matrix...................................................................................................................................................44  
Figure 12: Connection Matrix Example....................................................................................................................................44  
Figure 13: 2-bit LUT0 or DFF0.................................................................................................................................................51  
Figure 14: 2-bit LUT1 or DFF1.................................................................................................................................................52  
Figure 15: 2-bit LUT2 or DFF2.................................................................................................................................................52  
Figure 16: DFF Polarity Operations..........................................................................................................................................54  
Figure 17: 2-bit LUT3 or PGen.................................................................................................................................................55  
Figure 18: PGen Timing Diagram.............................................................................................................................................55  
Figure 19: 3-bit LUT0 or DFF3.................................................................................................................................................57  
Figure 20: 3-bit LUT1 or DFF4.................................................................................................................................................58  
Figure 21: 3-bit LUT2 or DFF5.................................................................................................................................................58  
Figure 22: 3-bit LUT3 or DFF6.................................................................................................................................................59  
Figure 23: 3-bit LUT4 or DFF7.................................................................................................................................................59  
Figure 25: 3-bit LUT6 or DFF9.................................................................................................................................................60  
Figure 24: 3-bit LUT5 or DFF8.................................................................................................................................................60  
Figure 26: DFF Polarity Operations with nReset......................................................................................................................63  
Figure 27: DFF Polarity Operations with nSet..........................................................................................................................64  
Figure 28: 4-bit LUT0 or DFF10...............................................................................................................................................65  
Figure 29: 3-bit LUT13/Pipe Delay/Ripple Counter..................................................................................................................67  
Figure 30: Example: Ripple Counter Functionality...................................................................................................................68  
Figure 31: Possible Connections Inside Multi-Function Macrocell...........................................................................................70  
Figure 32: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT7/DFF11, CNT/DLY1) ...................................................71  
Figure 33: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT8/DFF12, CNT/DLY2) ...................................................72  
Figure 34: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF13, CNT/DLY3) ...................................................73  
Figure 35: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF14, CNT/DLY4) .................................................74  
Figure 36: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT11/DFF15, CNT/DLY5) .................................................75  
Figure 37: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT12/DFF16, CNT/DLY6) .................................................76  
Figure 38: 4-bit LUT1 or CNT/DLY0.........................................................................................................................................80  
Figure 39: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3 ........................................................................82  
Figure 40: Delay Mode Timing Diagram for Different Edge Select Modes...............................................................................83  
Figure 41: Counter Mode Timing Diagram without Two DFFs Synced Up ..............................................................................83  
Figure 42: Counter Mode Timing Diagram with Two DFFs Synced Up ...................................................................................84  
Figure 43: One-Shot Function Timing Diagram........................................................................................................................85  
Figure 44: Frequency Detection Mode Timing Diagram...........................................................................................................86  
Figure 45: Edge Detection Mode Timing Diagram...................................................................................................................87  
Figure 46: Delayed Edge Detection Mode Timing Diagram.....................................................................................................88  
Figure 47: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3.....88  
Figure 48: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3 .........89  
Figure 49: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3.....89  
Figure 50: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3 .........90  
Figure 51: Counter Value, Counter Data = 3............................................................................................................................90  
Figure 52: Wake and Sleep Controller.....................................................................................................................................91  
Figure 53: Wake and Sleep Timing Diagram, Normal Wake Mode, Counter Reset is Used ...................................................92  
Figure 54: Wake and Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used ......................................................92  
Figure 55: Wake and Sleep Timing Diagram, Normal Wake Mode, Counter Set is Used .......................................................93  
Datasheet  
10-Mar-2021  
Revision 2.4  
5 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 56: Wake and Sleep Timing Diagram, Short Wake Mode, Counter Set is Used ..........................................................93  
Figure 57: ACMP0L Block Diagram .........................................................................................................................................96  
Figure 58: ACMP1L Block Diagram .........................................................................................................................................97  
Figure 59: Chopper ACMP Block Diagram...............................................................................................................................98  
Figure 60: Propagation Delay vs. Vref for ACMPx at T = 25 °C, VDD = 2.4 V to 5.5 V, Hysteresis = 0 ...................................99  
Figure 61: ACMPx Power-On Delay vs. VDD at BG - Forced...................................................................................................99  
Figure 62: ACMPx Input Offset Voltage vs. Vref at T = -40 °C to 85 °C, VDD = 2.4 V to 5.5 V, Gain = 1 ..............................100  
Figure 63: Chopper ACMP Input Offset Voltage vs. Vref at T = -40 °C to 85 °C, VDD = 2.4 V to 5.5 V, Gain = 1 .................100  
Figure 64: ACMPx Current Consumption vs. VDD................................................................................................................................................101  
Figure 65: Chopper ACMP Current Consumption vs. VDD (with 2.048 kHz Clock)................................................................101  
Figure 66: Programmable Operational Amplifier OA0, OA1 Internal Circuit ..........................................................................102  
Figure 67: Internal Operational Amplifier Circuit ....................................................................................................................103  
Figure 68: Example of Input Offset Voltage Compensation...................................................................................................104  
Figure 69: Instrumentation Amplifier Structure.......................................................................................................................105  
Figure 70: Instrumentation Operational Amplifier Configuration for Users Trim.....................................................................106  
Figure 71: Typical Implementation of Voltage Regulator (A) and Current Sources (B, C).....................................................107  
Figure 72: Constant Current Sink...........................................................................................................................................108  
Figure 73: Op Ampx Input Offset Voltage vs. TA at Input CM Voltage = VDD/2, BW = 128 kHz.............................................108  
Figure 74: Op Ampx Input Offset Voltage vs. TA at Input CM Voltage = VDD/2, BW = 512 kHz.............................................109  
Figure 75: Op Ampx Input Offset Voltage vs. TA at Input CM Voltage = VDD/2, BW = 2 MHz ...............................................109  
Figure 76: Op Ampx Input Offset Voltage vs. TA at Input CM Voltage = VDD/2, BW = 8 MHz ............................................... 110  
Figure 77: Internal Op Amp Input Offset Voltage vs. TA at Input CM Voltage = VDD/2, BW = 128 kHz ................................. 110  
Figure 78: Internal Op Amp at Input CM Voltage = VDD/2, BW = 512 kHz............................................................................. 111  
Figure 79: Internal Op Amp at Input CM Voltage = VDD/2, BW = 2 MHz ............................................................................... 111  
Figure 80: Internal Op Amp Input Offset Voltage vs. TA at Input CM Voltage = VDD/2, BW = 8 MHz .................................... 112  
Figure 81: OpAmp0, 1 Input Offset Voltage vs. Input CM Voltage at T = 25 °C, VDDA = 2.4 V ............................................112  
Figure 82: OpAmp0, 1 Input Offset Voltage vs. Input CM Voltage at T = 25 °C, VDDA = 5.5 V ............................................113  
Figure 83: Internal OpAmp Input Offset Voltage vs. Input CM Voltage at T = 25 °C, VDDA = 2.4 V .....................................113  
Figure 84: Internal OpAmp Input Offset Voltage vs. Input CM Voltage at T = 25 °C, VDDA = 5.5 V .....................................114  
Figure 85: Quiescent Current vs. Power Supply Voltage for BW = 128 kHz.......................................................................... 114  
Figure 86: Quiescent Current vs. Power Supply Voltage for BW = 512 kHz.......................................................................... 115  
Figure 87: Quiescent Current vs. Power Supply Voltage for BW = 2 MHz ............................................................................ 115  
Figure 88: Quiescent Current vs. Power Supply Voltage or BW = 8 MHz ............................................................................. 116  
Figure 89: OA0 Open Loop Gain and Phase vs. Frequency for BW = 128 kHz .................................................................... 116  
Figure 90: OA0 Open Loop Gain and Phase vs. Frequency for BW = 512 kHz .................................................................... 117  
Figure 91: OA0 Open Loop Gain and Phase vs. Frequency for BW = 2 MHz .......................................................................117  
Figure 92: OA0 Open Loop Gain and Phase vs. Frequency for BW = 8 MHz .......................................................................118  
Figure 93: OA1 Open Loop Gain and Phase vs. Frequency for BW = 128 kHz .................................................................... 118  
Figure 94: OA1 Open Loop Gain and Phase vs. Frequency for BW = 512 kHz .................................................................... 119  
Figure 95: OA1 Open Loop Gain and Phase vs. Frequency for BW = 2 MHz .......................................................................119  
Figure 96: OA1 Open Loop Gain and Phase vs. Frequency for BW = 8 MHz .......................................................................120  
Figure 97: PSRR vs. Frequency VDD = 2.4 V to 5.5 V..........................................................................................................120  
Figure 98: 0.1 Hz to 10 Hz Noise, BW = 128 kHz..................................................................................................................121  
Figure 99: 0.1 Hz to 10 Hz Noise, BW = 512 kHz..................................................................................................................121  
Figure 100: 0.1 Hz to 10 Hz Noise, BW = 2 MHz...................................................................................................................122  
Figure 101: 0.1 Hz to 10 Hz Noise, BW = 2 MHz...................................................................................................................122  
Figure 102: Channel Separation vs. Frequency.....................................................................................................................123  
Figure 103: Op Ampx Noise Voltage Density vs. Frequency..................................................................................................123  
Figure 104: Slew Rate vs. Ambient Temperature G = 1 V/V; RL = 50 kΩ for BW = 128 kHz ................................................124  
Figure 105: Slew Rate vs. Ambient Temperature G = 1 V/V; RL = 50 kΩ for BW = 512 kHz ................................................124  
Figure 106: Slew Rate vs. Ambient Temperature G = 1 V/V; RL = 50 kΩ for BW = 2 MHz ...................................................125  
Figure 107: Slew Rate vs. Ambient Temperature G = 1 V/V; RL = 50 kΩ for BW = 8 MHz....................................................125  
Figure 108: Small Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 128 kHz..............................126  
Figure 109: Small Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 512 kHz..............................126  
Figure 110: Small Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 2 MHz ................................127  
Figure 111: Small Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 8 MHz ................................127  
Figure 112: Small Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 128 kHz......................128  
Datasheet  
10-Mar-2021  
Revision 2.4  
6 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 113: Small Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 512 kHz......................128  
Figure 114: Small Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 2 MHz.........................129  
Figure 115: Small Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 8 MHz.........................129  
Figure 116: Large Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 80 pF, BW = 128 kHz .............................130  
Figure 117: Large Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 80 pF, BW = 512kHz ..............................130  
Figure 118: Large Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 80 pF, BW = 2 MHz ................................131  
Figure 119: Large Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 80 pF, BW = 8 MHz ................................131  
Figure 120: Large Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 128 kHz......................132  
Figure 121: Large Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 512 kHz......................132  
Figure 122: Large Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 2 MHz ........................133  
Figure 123: Large Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 8 MHz ........................133  
Figure 124: Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 128 kHz ............................................134  
Figure 125: Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 512 kHz ............................................134  
Figure 126: Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 2 MHz ...............................................135  
Figure 127: Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 8 MHz ...............................................135  
Figure 128: Non-Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 128 kHz.....................................136  
Figure 129: Non-Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 512 kHz.....................................136  
Figure 130: Non-Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 2 MHz .......................................137  
Figure 131: Non-Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 8 MHz .......................................137  
Figure 132: Small Signal Overshoot vs. Capacitive Load VDD = 3.3 V, G = 1 V/V, BW = 128 kHz.......................................138  
Figure 133: Small Signal Overshoot vs. Capacitive Load VDD = 3.3 V, G = 1 V/V, BW = 512 kHz.......................................138  
Figure 134: Small Signal Overshoot vs. Capacitive Load VDD = 3.3 V, G = 1 V/V, BW = 2 MHz..........................................139  
Figure 135: Small Signal Overshoot vs. Capacitive Load VDD = 3.3 V, G = 1 V/V, BW = 8 MHz..........................................139  
Figure 136: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 128 kHz, RLOAD = 600 Ω....................................140  
Figure 137: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 128 kHz, RLOAD = 50 kΩ ....................................140  
Figure 138: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 128 kHz, RLOAD = 600 Ω....................................141  
Figure 139: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 128 kHz, RLOAD = 50 kΩ....................................141  
Figure 140: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 512 kHz, RLOAD = 50 kΩ ....................................142  
Figure 141: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 512 kHz, RLOAD = 50 kΩ ....................................142  
Figure 142: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 512 kHz, RLOAD = 600 Ω....................................143  
Figure 143: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 512kHz, RLOAD = 50 kΩ.....................................143  
Figure 144: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 2 MHz, RLOAD = 600 Ω.......................................144  
Figure 145: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 2 MHz, RLOAD = 50 kΩ.......................................144  
Figure 146: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 2 MHz, RLOAD = 600 Ω ......................................145  
Figure 147: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 2 MHz, RLOAD = 50 kΩ.......................................145  
Figure 148: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 8MHz, RLOAD = 600 Ω........................................146  
Figure 149: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 8 MHz, RLOAD = 50 kΩ.......................................146  
Figure 150: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 8 MHz, RLOAD = 600 Ω ......................................147  
Figure 151: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 8 MHz, RLOAD = 50 kΩ.......................................147  
Figure 152: Overload Recovery Time vs. Power Supply Voltage RL= 50 kΩ; G = 1 V/V, Rising...........................................148  
Figure 153: Overload Recovery Time vs. Power Supply Voltage RL= 50 kΩ; G = 1 V/V, Falling..........................................148  
Figure 154: Output Response to Power Down Signal G = 1 V/V; RL = 50 kΩ; CL = 20 pF; VIN = VS/2, BW = 128 kHz ......149  
Figure 155: Output Response to Power Down Signal G = 1 V/V; RL = 50 kΩ; CL = 20 pF; VIN = VS/2, BW = 512 kHz ......149  
Figure 156: Output Response to Power Down Signal G = 1 V/V; RL = 50 kΩ; CL = 20 pF; VIN = VS/2, BW = 2 MHz.........150  
Figure 157: Output Response to Power Down Signal G = 1 V/V; RL = 50 kΩ; CL = 20 pF; VIN = VS/2, BW = 8 MHz.........150  
Figure 158: Opampx Turn-On/Off Time vs. VDD at VIN = VDD/2, BW = 128 kHz ................................................................151  
Figure 159: Opampx Turn-On/Off Time vs. VDD at VIN = VDD/2, BW = 512 kHz ................................................................151  
Figure 160: Opampx Turn-On/Off Time vs. VDD at VIN = VDD/2, BW = 2 MHz ...................................................................152  
Figure 161: Opampx Turn-On/Off Time vs. VDD at VIN = VDD/2, BW = 8MHz ....................................................................152  
Figure 162: Opamps Quiescent Current Consumption vs. VDD......................................................................................................................153  
Figure 163: Analog Switch 0 Control Circuit...........................................................................................................................154  
Figure 164: Analog Switch 1 Control Circuit...........................................................................................................................155  
Figure 165: Structure of Half Bridge.......................................................................................................................................156  
Figure 166: Typical RON vs. Input Voltage (Vi) for Vi = 0 to VDDA, LOAD = 1 mA,  
I
VDDA = 2.4 V................................................157  
VDDA = 5.5 V................................................157  
Figure 167: Typical RON vs. Input Voltage (Vi) for Vi = 0 to VDDA, LOAD = 1 mA,  
I
Figure 168: Turn-On Time vs. VDD at RLOAD = 100 Ω to GND, VIN = VDD/2.......................................................................................................158  
Figure 169: Turn-Off Time vs. VDD at RLOAD = 100 Ω to GND, VIN = VDD/2.......................................................................................................158  
Datasheet  
10-Mar-2021  
Revision 2.4  
7 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 170: Programmable Trim Blocks and Digital Rheostat’s Internal Circuit.....................................................................160  
Figure 171: Rheostats in Potentiometer Mode......................................................................................................................161  
Figure 172: Rheostat Tolerance Registers............................................................................................................................162  
Figure 173: Flowchart of "Program" and "Reload" Signals ....................................................................................................163  
Figure 174: Example of Latching and Processing "Program" and "Reload" Signals..............................................................164  
Figure 175: Example of Auto-Trim Process for a Single Rheostat.........................................................................................166  
Figure 176: Example of Auto-Trim Process with External Clock Signal.................................................................................167  
Figure 177: Example of Auto-Trim Process for Two Rheostats .............................................................................................168  
Figure 178: Example of Auto-Trim Process via I2C................................................................................................................169  
Figure 179: Example of Hardware Configuration...................................................................................................................170  
Figure 180: Example of User Specific Trimming Process under I2C Master Control.............................................................171  
Figure 181: DNL vs. Digital Code, Rheostat Mode (VAB = 1 V) at T = 25 °C.........................................................................172  
Figure 182: INL vs. Digital Code, Rheostat Mode (VAB = 1 V) at T = 25 °C ..........................................................................172  
Figure 183: DNL vs. Digital Code, Potentiometer Mode (VAB = 1 V) at T = 25 °C.................................................................173  
Figure 184: INL vs. Digital Code, Potentiometer Mode (VAB = 1 V) at T = 25 °C ..................................................................173  
Figure 185: (ΔRAB/RAB)/ΔTA Rheostat Mode Tempco...........................................................................................................174  
Figure 186: RHx Zero Scale Error vs. Temperature (VIN = 1 V) ............................................................................................174  
Figure 187: Transition Glitch in Worst Case (Code = 511 to Code = 512).............................................................................175  
Figure 188: Gain vs. Frequency (Code = 512) at T = 25 °C, VDDA = 5 V...............................................................................175  
Figure 189: RHx Settling Time vs. VDD at ILOAD = 1 mA, T = 25 °C .........................................................................................176  
Figure 190: Programmable Delay ..........................................................................................................................................177  
Figure 191: Edge Detector Output .........................................................................................................................................177  
Figure 192: Deglitch Filter or Edge Detector..........................................................................................................................178  
Figure 193: Generalized Vref Structure..................................................................................................................................181  
Figure 194: ACMP0L, ACMP1L Voltage Reference Block Diagram......................................................................................182  
Figure 195: HD Buffer and Chopper ACMP Reference Block Diagram.................................................................................183  
Figure 196: Operational Amplifiers Voltage Reference Block Diagram..................................................................................184  
Figure 197: Typical Load Regulation, Vref = 320 mV, T = -40 °C to +85 °C, Buffer - Enable................................................185  
Figure 198: Typical Load Regulation, Vref = 640 mV, T = -40 °C to +85 °C, Buffer - Enable................................................185  
Figure 199: Typical Load Regulation, Vref = 1280 mV, T = -40 °C to +85 °C, Buffer - Enable..............................................186  
Figure 200: Typical Load Regulation, Vref = 2048 mV, T = -40 °C to +85 °C, Buffer - Enable..............................................186  
Figure 201: Typical Input Offset Voltage vs. Vref at VDD = 2.4 V to 5.5 V, T = 25 °C, Buffer Disabled .................................187  
Figure 202: Oscillator0 Block Diagram...................................................................................................................................189  
Figure 203: Oscillator1 Block Diagram...................................................................................................................................190  
Figure 204: Oscillator2 Block Diagram...................................................................................................................................191  
Figure 205: Clock Scheme.....................................................................................................................................................192  
Figure 206: Oscillator Startup Diagram..................................................................................................................................193  
Figure 207: OSC0 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2.048 kHz....................................................193  
Figure 208: OSC1 Oscillator Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 2.048 MHz....................................194  
Figure 209: OSC2 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC2 = 25 MHz.........................................................194  
Figure 210: OSC0 Frequency vs. Temperature, OSC0 = 2.048 kHz.....................................................................................195  
Figure 211: OSC1 Frequency vs. Temperature, OSC1 = 2.048 MHz....................................................................................195  
Figure 212: OSC2 Frequency vs. Temperature, OSC2 = 25 MHz.........................................................................................196  
Figure 213: Oscillators Total Error vs. Temperature ..............................................................................................................196  
Figure 214: Oscillator0 Settling Time, VDD = 3.3 V, T = 25 °C, OSC0 = 2 kHz......................................................................197  
Figure 215: Oscillator1 Settling Time, VDD = 3.3 V, T = 25 °C, OSC1 = 2 MHz ....................................................................197  
Figure 216: Oscillator2 Settling Time, VDD = 3.3 V, T = 25 °C, OSC2 = 25 MHz (Normal Start)...........................................198  
Figure 217: Oscillator2 Settling Time, VDD = 3.3 V, T = 25 °C, OSC2 = 25 MHz (Start with Delay)......................................198  
Figure 218: OSC1 Current Consumption vs. VDD (Pre-Divider = 1).......................................................................................199  
Figure 219: OSC1 Current Consumption vs. VDD (Pre-Divider = 4).......................................................................................199  
Figure 220: OSC1 Current Consumption vs. VDD (Pre-Divider = 8).......................................................................................200  
Figure 221: OSC2 Current Consumption vs. VDD (Pre-Divider = 1).......................................................................................200  
Figure 222: OSC2 Current Consumption vs. VDD (Pre-Divider = 4).......................................................................................201  
Figure 223: OSC2 Current Consumption vs. VDD (Pre-Divider = 8).......................................................................................202  
Figure 224: POR Sequence...................................................................................................................................................204  
Figure 225: Internal Macrocell States During POR Sequence...............................................................................................205  
Figure 226: Power-Down........................................................................................................................................................206  
Datasheet  
10-Mar-2021  
Revision 2.4  
8 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 227: Basic Command Structure..................................................................................................................................207  
Figure 228: I2C General Timing Characteristics.....................................................................................................................208  
Figure 229: Byte Write Command, R/W = 0...........................................................................................................................208  
Figure 230: Sequential Write Command................................................................................................................................209  
Figure 231: Current Address Read Command, R/W = 1........................................................................................................209  
Figure 232: Random Read Command ...................................................................................................................................210  
Figure 233: Sequential Read Command................................................................................................................................210  
Figure 234: Reset Command Timing .....................................................................................................................................211  
Figure 235: Example of I2C Byte Write Bit Masking...............................................................................................................216  
Figure 236: Page Write Command.........................................................................................................................................218  
Figure 237: I2C Block Addressing ..........................................................................................................................................219  
Figure 238: Analog Temperature Sensor Structure Diagram.................................................................................................223  
Figure 239: TS Output vs. Temperature, VDD = 3.3 V ...........................................................................................................224  
Datasheet  
10-Mar-2021  
Revision 2.4  
9 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Tables  
Table 1: Functional Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 2: Pin Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 3: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 4: Electrostatic Discharge Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 5: Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted . . . . . . . . . . . . . . . . . . . . 17  
Table 7: EC of the I2C Pins at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted . . . . . . . . . . . . 22  
Table 8: I2C Pins Timing Characteristics at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted. . . . . . 23  
Table 9: Typical Current Estimated for Each Macrocell at T = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 10: Typical Delay Estimated for Each Macrocell at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 11: Programmable Delay Expected Typical Delays and Widths at T = 25 °C . . . . . . . . . . . . . . . . . . . . . 25  
Table 12: Typical Filter Rejection Pulse Width at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 13: Typical Counter/Delay Offset Measurements at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 14: Oscillators Frequency Limits, VDD = 2.4 V to 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 15: Oscillators Power-On Delay at T = 25 °C, OSC Power Setting: "Auto Power-On" . . . . . . . . . . . . . . . . . 27  
Table 16: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted . . . . . . . . . . 27  
Table 17: Internal Vref Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 18: HD Buffer Electrical Characteristics at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted . . . 28  
Table 19: Vref0 Output Buffer at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted . . . . . . . . . . . 28  
Table 20: TS Output vs Temperature (Output Range 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 21: TS Output vs Temperature (Output Range 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 22: EC of OA, VDDA = 2.4 V to 5.5 V, VCM = VDDA/2, VOUT ≈ VDDA/2, RL = 100 kΩ to VDDA/2, CL = 50 pF, T = 25 °C 30  
Table 23: 100K Digital Rheostat EC at VA=VDD, VB=GND, T=-40°C to +85°C, VDD= 2.4V to 5.5V Unless Otherwise Noted33  
Table 24: Analog Switch0/Voltage Regulator EС at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted . 35  
Table 25: Analog Switch1/Current Sink EС at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted . . . . 35  
Table 26: Matrix Input Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 27: Matrix Output Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 28: Connection Matrix Virtual Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 29: 2-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 30: 2-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 31: 2-bit LUT2 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 32: 2-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 33: 2-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 34: 2-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 35: 3-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 36: 3-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 37: 3-bit LUT2 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 38: 3-bit LUT3 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 39: 3-bit LUT4 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 40: 3-bit LUT5 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 41: 3-bit LUT6 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 42: 3-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 43: 4-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 44: 4-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 45: 3-bit LUT13 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 46: 3-bit LUT7 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 47: 3-bit LUT8 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 48: 3-bit LUT9 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 49: 3-bit LUT10 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 50: 3-bit LUT11 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 51: 3-bit LUT12 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 52: 4-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 53: 4-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 54: Op Amp Bandwidth Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Table 55: Analog Switch 0 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Table 56: Analog Switch 1 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Table 57: Vref Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Table 58: Oscillator Operation Mode Configuration Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Table 59: RPR Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Table 60: RPR Bit Function Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Table 61: NPR Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Datasheet  
10-Mar-2021  
Revision 2.4  
10 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 62: NPR Bit Function Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Table 63: Read/Write Register Protection Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Table 64: Erase Register Bit Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Table 65: Erase Register Bit Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Table 66: Write/Erase Protect Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Table 67: Write/Erase Protect Register Bit Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Table 68: Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Datasheet  
10-Mar-2021  
Revision 2.4  
11 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
1
Block Diagram  
AGND  
OA1-  
OA1_OUT  
IO6  
IO7  
OA1+  
Oscillators  
1024 Position  
Rheostat  
2.048  
MHz  
2.048  
kHz  
25  
MHz  
HD  
Buffer  
1024 Position  
Rheostat  
2K bits  
EEPROM  
Emulation  
VDDA  
Multiple Time  
Programmable  
Memory  
IO5  
IO4  
In-System  
Programmability  
Programmable  
Trim Block  
Combination Function Macrocells  
OA0+  
OA0-  
2-bit  
LUT2_0  
or DFF0  
2-bit  
LUT2_1  
or DFF1  
2-bit  
LUT2_2  
or DFF2  
2-bit  
LUT2_3  
or PGen  
Chopper  
ACMP  
ACMP1L  
ACMP0L  
3bit  
LUT3_0  
or DFF3  
3-bit  
LUT3_1  
or DFF4  
3-bit  
LUT3_2  
or DFF5  
3-bit  
LUT3_3  
or DFF6  
IO3  
IO2  
Prog,  
OA0  
3-bit  
LUT3_4  
or DFF7  
3-bit  
LUT3_5  
or DFF8  
3-bit  
LUT3_6  
or DFF9  
4-bit  
LUT4_0  
or DFF10  
Int.  
OA  
3-bit LUT3_13  
or Pipe Delay  
or Ripple CNT  
OA0_OUT  
Prog,  
OA1  
Multi-Function Macrocells  
Temperature  
Sensor  
RH0_A  
RH0_B  
IO1  
Low Power Vref  
3-bit LUT3_9  
/DFF13  
3-bitLUT3_10  
/DFF14  
3-bitLUT3_7  
/DFF11  
3-bit LUT3_8  
/DFF12  
+8bit  
+8bit  
+8bit  
+8bit  
CNT/DLY3  
CNT/DLY4  
Analog Switch 0/  
Voltage Regulator Mode  
CNT/DLY1  
CNT/DLY2  
3-bit LUT3_12  
/DFF16  
4-bitLUT4_1  
/DFF17+  
16bit  
3-bitLUT3_11  
/DFF15  
+8bit  
CNT/DLY5  
VDD  
+8bit  
Analog Switch 1/  
Current Sink Mode  
CNT/DLY6  
CNT/DLY0  
I2C Serial  
Communication  
Programmable  
Delay or Edge  
Detect  
Filter with  
Edge Detect  
POR  
RH1_B  
GND  
RH1_A  
IO0  
SCL  
SDA  
Figure 1: Block Diagram  
Datasheet  
10-Mar-2021  
Revision 2.4  
12 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
2
Pinout  
2.1 PIN CONFIGURATION - STQFN-24L  
Pin # Signal Name Pin Functions  
1
2
V
Analog Power Supply  
Analog Ground  
DDA  
AGND  
OA0-  
3
Op Amp0 Inverting Input  
Op Amp0 Non-Inverting Input  
4
OA0+  
5
OA0_OUT Op Amp0_OUT/ACMP0L+ /  
6
RH0_A  
RH0_B  
RH1_A  
RH1_B  
SCL  
Digital Rheostat 0 Terminal A  
Digital Rheostat 0 Terminal B  
Digital Rheostat 1 Terminal A  
Digital Rheostat 1 Terminal B  
I2C_SCL  
24  
1
19  
23  
21  
20  
22  
V
IO4  
IO3  
IO2  
IO1  
GND  
18  
17  
16  
15  
14  
DDA  
7
8
AGND  
OA0-  
2
3
4
5
9
10  
11  
I2C_SDA  
OA0+  
SDA  
GPIO, ACMP0L-, ACMP1L-, EXT_OSC0_IN,  
Vref0_Out or Temp_Sens_Out  
OA0_OUT  
RH0_A  
12  
IO0  
6
7
13  
12  
V
DD  
8
9
10 11  
13  
14  
V
Digital Power Supply  
Digital Ground  
DD  
GND  
GPIO, Chop_ACMP+, Vref1_OUT or  
Temp_Sens_Out, EXT_OSC1_IN or SLA_0  
15  
IO1  
16  
17  
18  
19  
20  
21  
22  
23  
24  
IO2  
IO3  
IO4  
IO5  
IO6  
I0  
GPIO, ACMP0L+, EXT_OSC2_IN, SLA_1  
GPIO, AS_1_A, ACMP1L+ or SLA_2  
GPIO, AS_1_B, Chop_ACMP-or SLA_3  
GPIO, AS_0_B  
STQFN-24  
(Top View)  
GPIO, AS_0_A, HD_Buff_Out, In Amp_Vref  
GPI, In Amp_OUT  
OA1_OUT Op Amp1_OUT, ACMP1L+  
OA1+  
OA1-  
Op Amp1 Non-inverting Input  
Op Amp1 Inverting Input  
Legend:  
ACMPx+: ACMPx Positive Input  
ACMPx-: ACMPx Negative Input  
SCL: I2C Clock Input  
SDA: I2C Data Input/Output  
Vrefx: Voltage Reference Output  
SLA: Slave Address  
Table 1: Functional Pin Description  
Pin No.  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
STQFN 24L  
1
2
VDDA  
VDDA  
Analog Power Supply  
Analog Ground  
--  
--  
--  
--  
AGND  
AGND  
Op Amp0  
Inverting Input  
3
4
OA0-  
OA0-  
Analog  
--  
Op Amp0  
Non-Inverting Input  
OA0+  
OA0+  
Analog  
--  
--  
Analog  
--  
OA0_OUT  
ACMP0L+  
Op Amp0 Output  
OA0_OUT  
RH0_A  
Analog Comparator 0 Positive In-  
5
6
Analog  
put  
Digital Rheostat 0  
Terminal A  
RH0_A  
--  
--  
Datasheet  
10-Mar-2021  
Revision 2.4  
13 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 1: Functional Pin Description(Continued)  
Pin No.  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
STQFN 24L  
Digital Rheostat 0  
Terminal B  
7
RH0_B  
RH1_A  
RH1_B  
RH0_B  
RH1_A  
RH1_B  
--  
--  
--  
--  
--  
--  
Digital Rheostat 1  
Terminal A  
8
9
Digital Rheostat 1  
Terminal B  
10  
11  
SCL  
SDA  
SCL  
SDA  
IO0  
I2C Serial Clock  
I2C Serial Data  
--  
--  
--  
--  
--  
General Purpose IO  
--  
Analog Comparator 0  
Negative Input  
Analog  
ACMP0L-  
ACMP1L-  
--  
--  
--  
Analog Comparator 1  
Negative Input  
Analog  
12  
IO0  
External Clock  
Connection  
EXT_OSC0_IN  
--  
Vref0_Out  
VDD  
Voltage Reference 0 Output  
Digital Power Supply  
Digital Ground  
--  
--  
--  
--  
Analog  
13  
14  
VDD  
--  
--  
--  
GND  
GND  
IO1  
General Purpose IO  
CHOP_ACMP+  
Chopper ACMP  
Positive Input  
Analog  
--  
Analog  
--  
Temp_Sens_Out  
EXT_OSC1_IN  
Temperature Sensor Output  
--  
--  
15  
IO1  
External Clock  
Connection  
Slave  
Address 0  
SLA_0  
IO2  
--  
--  
--  
--  
--  
General Purpose IO  
Analog Comparator 0  
Positive Input  
ACMP0L+  
Analog  
16  
IO2  
External Clock  
Connection  
EXT_OSC2_IN  
SLA_1  
--  
--  
--  
--  
Slave  
Address 1  
IO3  
General Purpose IO  
--  
--  
AS_1_A  
Analog Switch 1Input A  
Analog  
Analog  
Analog Comparator 1  
Positive Input  
17  
18  
IO3  
IO4  
ACMP1L+  
SLA_2  
--  
--  
--  
--  
Slave  
Address 2  
IO4  
General Purpose IO  
--  
--  
AS_1_B  
Analog Switch 1 Input B  
Analog  
Analog  
Chopper ACMP  
Negative Input  
Analog  
--  
--  
--  
Slave  
Address 3  
SLA_3  
Datasheet  
10-Mar-2021  
Revision 2.4  
14 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 1: Functional Pin Description(Continued)  
Pin No.  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
STQFN 24L  
IO5  
AS_0_B  
IO6  
General Purpose IO  
Analog Switch 0 Input B  
General Purpose IO  
--  
Analog  
--  
--  
19  
IO5  
Analog  
--  
AS_0_A  
HD_Buffer_Out  
Analog Switch 0 Input A  
High Drive Buffer Out put  
Analog  
--  
Analog  
Analog  
20  
IO6  
Instrumentation  
Amplifier  
In Amp_Vref  
Analog  
--  
Voltage Reference  
I0  
General Purpose Input  
--  
--  
--  
21  
22  
I0  
Instrumentation  
Amplifier Output  
In Amp Out  
OA1_OUT  
ACMP1L+  
Analog  
--  
Op Amp1 Output  
Analog  
--  
OA1_OUT  
Analog Comparator 1  
Positive Input  
Analog  
Op Amp1  
Non-inverting Input  
23  
24  
OA1+  
OA1-  
OA1+  
OA1-  
Analog  
Analog  
--  
--  
Op Amp1  
Inverting Input  
Table 2: Pin Type Definitions  
Pin Type  
VDDA  
AGND  
OA-  
Description  
Analog Power Supply  
Analog Ground  
Op Amp Inverting Input  
Op Amp Non-Inverting Input  
Op Amp Output  
OA+  
OA_OUT  
RH_A  
RH_B  
SCL  
Digital Rheostat Terminal A  
Digital Rheostat Terminal B  
I2C Serial Clock  
SDA  
I2C Serial Data  
IO  
General Purpose Input/Output  
Digital Power Supply  
Digital Ground  
VDD  
GND  
I
General Purpose Input  
Datasheet  
10-Mar-2021  
Revision 2.4  
15 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
3
Characteristics  
3.1 ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational  
sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect  
device reliability.  
Analog and digital grounds must be connected together on the PCB board. The place of connection depends on users schematic.  
For application cases with low digital current of SLG47004, both AGND and GND should be connected to analog ground plane.  
Table 3: Absolute Maximum Ratings  
Parameter  
VDD to GND, VDDA to AGND (Note 1)  
Maximum Slew Rate of VDDA  
Voltage at Input Pin  
Min  
Max  
7
Unit  
V
-0.3  
--  
2
V/µs  
V
GND-0.3  
VDD+0.3  
1.0  
Current at Input Pin  
-1.0  
--  
mA  
mA  
mA  
mA  
mA  
nA  
TJ = 85 °C  
110  
50  
MaximumAverage or DC Current through  
DDA or AGND Pin (Per chip side)  
V
TJ = 110°C  
TJ = 85 °C  
TJ = 110°C  
--  
--  
100  
50  
MaximumAverage or DC Current through  
DD or GND Pin (Per chip side)  
V
--  
Input leakage (Absolute Value)  
--  
1000  
150  
150  
132  
Storage Temperature Range  
Junction Temperature  
-65  
--  
°C  
°C  
Thermal Resistance (Note 2)  
Moisture Sensitivity Level  
--  
°C/W  
1
Note 1 VDDA must be equal to VDD  
Note 2 Measurements based on Analog Switches  
3.2 ELECTROSTATIC DISCHARGE RATINGS  
Table 4: Electrostatic Discharge Ratings  
Parameter  
Min  
2000  
1300  
Max  
--  
Unit  
V
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model)  
--  
V
3.3 RECOMMENDED OPERATING CONDITIONS  
Table 5: Recommended Operating Conditions  
Parameter  
Condition  
Min  
Max  
Unit  
2.4  
5.5  
V
Supply Voltage (VDDA  
)
During NVM Write and Erase  
commands  
2.5  
5.5  
V
Operating Temperature  
Capacitor Value at VDD  
-40  
0.1  
85  
--  
°C  
µF  
Allowable Input Voltage at Analog  
Pins  
Analog Input Common Mode Range  
-0.2  
VDDA+0.2  
V
Datasheet  
10-Mar-2021  
Revision 2.4  
16 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
3.4 ELECTRICAL CHARACTERISTICS  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
0.7x  
VDD  
Logic Input (Note 1)  
--  
VDD+ 0.3  
V
VIH  
HIGH-Level Input Voltage  
0.8x  
VDD  
Logic Input with Schmitt Trigger  
Low-Level Logic Input (Note 1)  
Logic Input (Note 1)  
--  
--  
--  
VDD+ 0.3  
VDD+ 0.3  
V
V
V
1.25  
GND-  
0.3  
0.3x  
VDD  
GND-  
0.3  
0.2x  
VDD  
VIL  
LOW-Level Input Voltage  
Logic Input with Schmitt Trigger  
--  
--  
V
V
GND-  
0.3  
Low-Level Logic Input (Note 1)  
0.5  
VDD = 2.5 V +/- 8 % (Note 1)  
VDD = 3.3 V +/- 10 % (Note 1)  
VDD = 5 V +/- 10 % (Note 1)  
0.28  
0.34  
0.50  
0.43  
0.46  
0.63  
0.54  
0.56  
0.74  
V
V
V
Schmitt Trigger Hysteresis  
Voltage  
VHYS  
Maximal Voltage Applied to  
any PIN in High Impedance  
State  
VDD  
+
VO  
--  
--  
V
0.3  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Push-Pull, 1x Drive, IOH = 1 mA,  
VDD = 2.4 V (Note 1)  
2.178  
2.389  
2.598  
2.712  
3.039  
3.36  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Push-Pull, 1x Drive, IOH = 1 mA,  
VDD = 2.5 V (Note 1)  
Push-Pull, 1x Drive, IOH = 1 mA,  
VDD = 2.7 V (Note 1)  
Push-Pull, 1x Drive, IOH = 3 mA,  
VDD = 3.0 V (Note 1)  
Push-Pull, 1x Drive, IOH = 3 mA,  
VDD = 3.3 V (Note 1)  
Push-Pull, 1x Drive, IOH = 3 mA,  
VDD = 3.6 V (Note 1)  
Push-Pull, 1x Drive, IOH = 5 mA,  
VDD = 4.5 V (Note 1)  
4.157  
4.678  
5.201  
2.239  
2.443  
2.648  
2.854  
3.165  
3.474  
Push-Pull, 1x Drive, IOH = 5 mA,  
VDD = 5.0 V (Note 1)  
VOH  
HIGH-Level Output Voltage  
Push-Pull, 1x Drive, IOH = 5 mA,  
VDD = 5.5 V (Note 1)  
Push-Pull, 2x Drive, IOH = 1 mA,  
VDD = 2.4 V (Note 1)  
Push-Pull, 2x Drive, IOH = 1 mA,  
VDD = 2.5 V (Note 1)  
Push-Pull, 2x Drive, IOH = 1 mA,  
VDD = 2.7 V (Note 1)  
Push-Pull, 2x Drive, IOH = 3 mA,  
VDD = 3.0 V (Note 1)  
Push-Pull, 2x Drive, IOH = 3 mA,  
VDD = 3.3 V (Note 1)  
Push-Pull, 2x Drive, IOH = 3 mA,  
VDD = 3.6 V (Note 1)  
Datasheet  
10-Mar-2021  
Revision 2.4  
17 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 2x Drive, IOH = 5 mA,  
VDD = 4.5 V (Note 1)  
4.314  
--  
--  
V
Push-Pull, 2x Drive, IOH = 5 mA,  
VDD = 5.0 V (Note 1)  
VOH  
HIGH-Level Output Voltage  
4.821  
5.329  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Push-Pull, 2x Drive, IOH = 5 mA,  
VDD = 5.5 V (Note 1)  
--  
Push-Pull, 1x Drive, IOL= 1 mA,  
VDD = 2.4 V (Note 1)  
0.085  
0.079  
0.074  
0.210  
0.195  
0.183  
0.271  
0.256  
0.246  
0.046  
0.043  
0.040  
0.114  
0.107  
0.102  
0.152  
0.145  
0.140  
0.038  
0.035  
0.033  
0.094  
Push-Pull, 1x Drive, IOL= 1 mA,  
VDD = 2.5 V (Note 1)  
--  
Push-Pull, 1x Drive, IOL= 1 mA,  
VDD = 2.7 V (Note 1)  
--  
Push-Pull, 1x Drive, IOL = 3 mA,  
VDD = 3.0 V (Note 1)  
--  
Push-Pull, 1x Drive, IOL = 3 mA,  
VDD = 3.3 V (Note 1)  
--  
Push-Pull, 1x Drive, IOL = 3 mA,  
VDD = 3.6 V (Note 1)  
--  
Push-Pull, 1x Drive, IOL= 5 mA,  
VDD = 4.5 V (Note 1)  
--  
Push-Pull, 1x Drive, IOL= 5 mA,  
VDD = 5.0 V (Note 1)  
--  
Push-Pull, 1x Drive, IOL= 5 mA,  
VDD = 5.5 V (Note 1)  
--  
Push-Pull, 2x Drive, IOL= 1 mA,  
VDD = 2.4 V (Note 1)  
--  
Push-Pull, 2x Drive, IOL = 1 mA,  
VDD = 2.5 V (Note 1)  
--  
VOL  
LOW-Level Output Voltage  
Push-Pull, 2x Drive, IOL = 1 mA,  
VDD = 2.7 V (Note 1)  
--  
Push-Pull, 2x Drive, IOL= 3 mA,  
VDD = 3.0 V (Note 1)  
--  
Push-Pull, 2x Drive, IOL= 3 mA,  
VDD = 3.3 V (Note 1)  
--  
Push-Pull, 2x Drive, IOL= 3 mA,  
VDD = 3.6 V (Note 1)  
--  
Push-Pull, 2x Drive, IOL = 5 mA,  
VDD = 4.5 V (Note 1)  
--  
Push-Pull, 2x Drive, IOL = 5 mA,  
VDD = 5.0 V (Note 1)  
--  
Push-Pull, 2x Drive, IOL = 5 mA,  
VDD = 5.5 V (Note 1)  
--  
NMOS OD, 1x Drive, IOL= 1 mA,  
VDD = 2.4 V (Note 1)  
--  
NMOS OD, 1x Drive, IOL = 1 mA,  
VDD = 2.5 V (Note 1)  
--  
NMOS OD, 1x Drive, IOL = 1 mA,  
VDD = 2.7 V (Note 1)  
--  
NMOS OD, 1x Drive, IOL = 3 mA,  
VDD = 3.0 V (Note 1)  
--  
Datasheet  
10-Mar-2021  
Revision 2.4  
18 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
NMOS OD, 1x Drive, IOL = 3 mA,  
VDD = 3.3 V (Note 1)  
--  
--  
0.088  
0.084  
0.127  
0.121  
0.117  
0.032  
0.03  
0.029  
0.064  
0.062  
0.059  
0.085  
0.081  
0.08  
--  
V
NMOS OD, 1x Drive, IOL = 3 mA,  
VDD = 3.6 V (Note 1)  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
V
V
NMOS OD, 1x Drive, IOL = 5 mA,  
VDD = 4.5 V (Note 1)  
NMOS OD, 1x Drive, IOL = 5 mA,  
VDD = 5.0 V (Note 1)  
--  
V
NMOS OD, 1x Drive, IOL = 5 mA,  
VDD = 5.5 V (Note 1)  
--  
V
NMOS OD, 2x Drive, IOL= 1 mA,  
VDD2 = 2.4 V (Note 1)  
--  
V
NMOS OD, 2x Drive, IOL = 1 mA,  
VDD = 2.5 V (Note 1)  
--  
V
VOL  
LOW-Level Output Voltage  
NMOS OD, 2x Drive, IOL = 1 mA,  
VDD = 2.7 V (Note 1)  
--  
V
NMOS OD, 2x Drive, IOL = 3 mA,  
VDD = 3.0 V (Note 1)  
--  
V
NMOS OD, 2x Drive, IOL = 3 mA,  
VDD = 3.3 V (Note 1)  
--  
V
NMOS OD, 2x Drive, IOL = 3 mA,  
VDD = 3.6 V (Note 1)  
--  
V
NMOS OD, 2x Drive, IOL = 5 mA,  
VDD = 4.5 V (Note 1)  
--  
V
NMOS OD, 2x Drive, IOL = 5 mA,  
VDD = 5.0 V (Note 1)  
--  
V
NMOS OD, 2x Drive, IOL = 5 mA,  
VDD = 5.5 V (Note 1)  
--  
V
Push-Pull, 1x Drive, VOH = VDD - 0.2  
VDD = 2.4 V (Note 1)  
1.60  
1.76  
1.92  
5.64  
8.56  
11.51  
20.46  
25.12  
29.34  
3.10  
3.40  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Push-Pull, 1x Drive, VOH = VDD - 0.2  
VDD = 2.5 V (Note 1)  
--  
Push-Pull, 1x Drive, VOH = VDD - 0.2  
VDD = 2.7 V (Note 1)  
--  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = 3.0 V (Note 1)  
--  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = 3.3 V (Note 1)  
--  
HIGH-Level Output Current Push-Pull, 1x Drive,  
IOH  
--  
(Note 2)  
VOH = 2.4 V, VDD = 3.6 V (Note 1)  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = 4.5 V (Note 1)  
--  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = 5.0 V (Note 1)  
--  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = 5.5 V (Note 1)  
--  
Push-Pull, 2x Drive, VOH = VDD - 0.2  
VDD = 2.4 V (Note 1)  
--  
Push-Pull, 2x Drive, VOH = VDD - 0.2  
VDD = 2.5 V (Note 1)  
--  
Datasheet  
10-Mar-2021  
Revision 2.4  
19 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 2x Drive, VOH = VDD - 0.2  
VDD = 2.7 V (Note 1)  
3.69  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = 3.0 V (Note 1)  
10.89  
16.54  
22.28  
39.61  
48.49  
56.39  
1.73  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = 3.3 V (Note 1)  
HIGH-Level Output Current Push-Pull, 2x Drive,  
IOH  
(Note 2)  
VOH = 2.4 V, VDD = 3.6 V (Note 1)  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = 4.5 V (Note 1)  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = 5.0 V (Note 1)  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = 5.5 V (Note 1)  
--  
--  
Push-Pull, 1x Drive, VOL = 0.15 V,  
VDD = 2.4 V (Note 1)  
Push-Pull, 1x Drive, VOL = 0.15 V,  
VDD = 2.5 V (Note 1)  
1.87  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Push-Pull, 1x Drive, VOL = 0.15 V,  
VDD = 2.7 V (Note 1)  
2.00  
Push-Pull, 1x Drive, VOL = 0.4 V,  
VDD = 3.0 V (Note 1)  
5.45  
Push-Pull, 1x Drive, VOL = 0.4 V,  
VDD = 3.3 V (Note 1)  
5.90  
Push-Pull, 1x Drive, VOL = 0.4 V,  
VDD = 3.6 V (Note 1)  
6.29  
Push-Pull, 1x Drive, VOL = 0.4 V,  
VDD = 4.5 V (Note 1)  
7.25  
Push-Pull, 1x Drive, VOL = 0.4 V,  
VDD = 5.0 V (Note 1)  
7.67  
LOW-Level Output Current Push-Pull, 1x Drive, VOL = 0.4 V,  
IOL  
8.01  
(Note 2)  
VDD = 5.5 V (Note 1)  
Push-Pull, 2x Drive, VOL = 0.15 V,  
VDD = 2.4 V (Note 1)  
3.20  
Push-Pull, 2x Drive, VOL = 0.15 V,  
VDD = 2.5 V (Note 1)  
3.44  
Push-Pull, 2x Drive, VOL = 0.15 V,  
VDD = 2.7 V (Note 1)  
3.65  
Push-Pull, 2x Drive, VOL = 0.4 V,  
VDD = 3.0 (Note 1)  
10.01  
10.73  
11.36  
12.85  
13.52  
Push-Pull, 2x Drive, VOL = 0.4 V,  
VDD = 3.3 (Note 1)  
Push-Pull, 2x Drive, VOL = 0.4 V,  
VDD = 3.6 (Note 1)  
Push-Pull, 2x Drive, VOL = 0.4 V,  
VDD = 4.5 (Note 1)  
Push-Pull, 2x Drive, VOL = 0.4 V,  
VDD = 5.0 (Note 1)  
Datasheet  
10-Mar-2021  
Revision 2.4  
20 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 2x Drive, VOL = 0.4 V,  
VDD = 5.5 (Note 1)  
14.05  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
NMOS OD, 1x Drive, VOL = 0.15 V,  
VDD = 2.4 V (Note 1)  
3.91  
4.19  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
NMOS OD, 1x Drive, VOL = 0.15 V,  
VDD = VDD2 = 2.5 V (Note 1)  
NMOS OD, 1x Drive, VOL = 0.15 V,  
VDD = 2.7 V (Note 1)  
4.44  
NMOS OD, 1x Drive, VOL = 0.4 V,  
VDD = 3.0 V (Note 1)  
12.18  
13.02  
13.75  
15.47  
16.19  
16.80  
6.28  
NMOS OD, 1x Drive, VOL = 0.4 V,  
VDD = 3.3 V (Note 1)  
NMOS OD, 1x Drive, VOL = 0.4 V,  
VDD = 3.6 V (Note 1)  
NMOS OD, 1x Drive, VOL = 0.4 V,  
VDD = 4.5 V (Note 1)  
NMOS OD, 1x Drive, VOL = 0.4 V,  
VDD = 5.0 V (Note 1)  
LOW-Level Output Current NMOS OD, 1x Drive, VOL = 0.4 V,  
IOL  
(Note 2)  
VDD = 5.5 V (Note 1)  
NMOS OD, 2x Drive, VOL = 0.15 V,  
VDD = 2.4 V (Note 1)  
NMOS OD, 2x Drive, VOL = 0.15 V,  
VDD = 2.5 V (Note 1)  
6.68  
NMOS OD, 2x Drive, VOL = 0.15 V,  
VDD = 2.7 V (Note 1)  
7.02  
NMOS OD, 2x Drive, VOL = 0.4 V,  
VDD = 3.0 V (Note 1)  
20.14  
21.23  
22.12  
24.84  
26.08  
26.72  
NMOS OD, 2x Drive, VOL = 0.4 V,  
VDD = 3.3 V (Note 1)  
NMOS OD, 2x Drive, VOL = 0.4 V,  
VDD = 3.6 V (Note 1)  
NMOS OD, 2x Drive, VOL = 0.4 V,  
VDD = 4.5 V (Note 1)  
NMOS OD, 2x Drive, VOL = 0.4 V,  
VDD = 5.0 V (Note 1)  
NMOS OD, 2x Drive, VOL = 0.4 V,  
VDD = 5.5 V (Note 1)  
TSU  
TWR  
Startup Time  
From VDD rising past PONTHR  
VDD = 2.5 V to 5.5 V  
--  
--  
1.904  
2.651  
20  
ms  
ms  
ms  
V
NVM Page Write Time  
NVM Page Erase Time  
Power-On Threshold  
--  
--  
--  
TER  
VDD = 2.5 V to 5.5 V  
--  
20  
PONTHR  
VDD Level Required to Start Up the Chip  
1.60  
2.07  
VDD Level Required to Switch Off the  
Chip  
POFFTHR Power-Off Threshold  
0.97  
--  
1.531  
V
Datasheet  
10-Mar-2021  
Revision 2.4  
21 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
1 M for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD (Note 1)  
0.72  
1.12  
1.4  
134.4  
13.5  
MΩ  
Pull-up or Pull-down  
Resistance  
100 k for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD (Note 1)  
RPULL  
72  
110  
10  
kΩ  
kΩ  
10 k For Pull-up: VIN = GND;  
for Pull-down: VIN = VDD (Note 1)  
6.32  
PINs 10, 11  
PIN 12  
--  
--  
--  
--  
--  
--  
2.905  
3.476  
3.677  
10.228  
27.964  
5.671  
--  
--  
--  
--  
--  
--  
pF  
pF  
pF  
pF  
pF  
pF  
PINs 15, 16  
PINs 17, 18, 19  
PIN 20  
CIN  
Input Capacitance  
PIN 21  
Note 1 No hysteresis.  
Note 2 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
3.5 I2C PINS ELECTRICAL CHARACTERISTICS  
Table 7: EC of the I2C Pins at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted  
Fast-Mode  
Fast-Mode Plus  
Parameter Description  
Condition  
Unit  
Min  
Max  
Min  
Max  
LOW-level Input  
Voltage  
VIL  
-0.5  
0.3xVDD  
-0.5  
0.3xVDD  
V
V
V
HIGH-level Input  
Voltage  
VIH  
0.7xVDD  
0.05xVDD  
5.5  
--  
0.7xVDD  
5.5  
--  
Hysteresis of Schmitt  
Trigger Inputs  
VHYS  
0.05xVDD  
(Open-Drain) at 3 mA sink  
current  
LOW-Level Output  
Voltage 1  
VOL1  
0
0
0.4  
0
0
0.4  
V
V
V
DD > 2 V  
(Open-Drain) at 2 mA sink  
current  
VDD ≤ 2 V  
LOW-Level Output  
Voltage 2  
VOL2  
0.2xVDD  
0.2xVDD  
VOL = 0.4 V, VDD = 2.4 V  
VOL = 0.4 V, VDD = 3.0 V  
VOL = 0.4 V, VDD = 4.5 V  
VOL= 0.6 V  
3
3
3
6
--  
--  
--  
--  
16.75  
20  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
LOW-Level Output  
IOL  
Current (Note 1)  
20  
--  
Output Fall Time from  
VIHmin to VILmax  
(Note 1)  
14x  
(VDD/5.5  
V)  
10x  
(VDD/5.5  
V)  
tof  
250  
50  
120  
50  
ns  
ns  
PulseWidthofSpikes  
that must be  
suppressed by the  
tSP  
0
0
Input Filter  
Input Current (each  
IO Pin)  
Ii  
0.1xVDD < VI < 0.9xVDDmax  
-10  
--  
+10  
10  
-10  
--  
+10  
10  
µA  
pF  
Capacitance(eachIO  
Pin)  
Ci  
Datasheet  
10-Mar-2021  
Revision 2.4  
22 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 7: EC of the I2C Pins at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted(Continued)  
Fast-Mode  
Min Max  
Fast-Mode Plus  
Min Max  
Parameter Description  
Condition  
Unit  
Note 1 Does not meet standard I2C specifications: tof = 20x(VDD/5.5 V) (min); For Fast-mode Plus IOL = 20 mA (min) at  
VOL = 0.4 V.  
Note 2 For Fast-mode Plus SDA pin must be configured as NMOS 2x Open-Drain, see register [1155] in Section 21.  
Table 8: I2C Pins Timing Characteristics at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted  
Fast-Mode  
Fast-Mode  
Plus  
Parameter Description  
Condition  
Unit  
Min  
--  
Max  
400  
--  
Min  
--  
Max  
1000  
--  
FSCL  
tLOW  
tHIGH  
Clock Frequency, SCL  
kHz  
ns  
Clock Pulse Width Low  
Clock Pulse Width High  
1300  
600  
500  
260  
--  
--  
ns  
Input Filter Spike Suppression  
(SCL, SDA)  
tI  
--  
--  
50  
900  
--  
--  
--  
50  
450  
--  
ns  
ns  
ns  
tAA  
tBUF  
Clock Low to Data Out Valid  
Bus Free Time between Stop and  
Start  
1300  
500  
tHD_STA  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
Start Hold Time  
Start Set-up Time  
Data Hold Time  
Data Set-up Time  
Inputs Rise Time  
Inputs Fall Time  
Stop Set-up Time  
Data Out Hold Time  
600  
600  
0
--  
--  
260  
260  
0
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
--  
--  
100  
--  
--  
50  
--  
--  
300  
300  
--  
120  
120  
--  
tF  
--  
--  
tSU_STD  
tDH  
600  
50  
260  
50  
--  
--  
Note 1 Timing diagram can be found in Figure 228.  
Datasheet  
10-Mar-2021  
Revision 2.4  
23 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
3.6 MACROCELLS CURRENT CONSUMPTION  
Table 9: Typical Current Estimated for Each Macrocell at T = 25°C  
Parameter  
Description Note  
Chip Quiescent, BG disabled  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
0.056  
0.357  
0.079  
0.391  
0.13  
0.472  
Chip Quiescent, BG enabled  
OSC2 25 MHz, pre-divider = 1  
OSC2 25 MHz, pre-divider = 4  
OSC2 25 MHz, pre-divider = 8  
OSC1 2.048 MHz, pre-divider = 1  
OSC1 2.048 MHz, pre-divider = 4  
OSC1 2.048 MHz, pre-divider = 8  
OS00 2.048 kHz, pre-divider = 1  
OSC0 2.048 kHz, pre-divider = 4  
OSC0 2.048 kHz, pre-divider = 8  
Push-Pull 1x + 4 pF @ 2.048 kHz  
Push-Pull 1x + 4 pF @ 2.048 MHz  
Temperature Sensor, range 1  
40.954  
31.716  
29.897  
18.951  
18.255  
18.116  
0.330  
49.907  
37.448  
34.998  
19.751  
18.809  
18.622  
0.363  
71.075  
51.515  
47.664  
21.507  
20.023  
19.730  
0.443  
0.327  
0.359  
0.437  
0.326  
0.359  
0.436  
0.384  
0.436  
0.554  
66.582  
11.001  
11.140  
6.198  
82.354  
11.050  
11.188  
6.260  
115.785  
11.356  
11.493  
6.484  
Temperature Sensor, range 2  
One ACMPx_L (includes internal Vref)  
Two ACMPx_L (includes internal Vref)  
8.530  
8.616  
8.954  
I
Current  
Op AmpX Quiescent Current  
(128 kHz bandwidth)  
31.663  
32.227  
33.005  
µA  
µA  
Op AmpX Quiescent Current  
(8.192 MHz bandwidth)  
604.144  
607.979  
609.342  
In Amp Quiescent Current (three Op  
Amps are ON, Rf1 = Rf2 = 50 kΩ,  
Rg =1 kΩ, 128 kHz bandwidth, Charge  
Pump - Disabled)  
95.33  
72.352  
97.105  
73.973  
99.895  
76.688  
µA  
µA  
µA  
In Amp Quiescent Current (three Op  
Amps are ON, Rf1 = Rf2 = 50 kΩ,  
Rg =1 kΩ, 128 kHz bandwidth, Charge  
Pump - Enabled)  
In Amp Quiescent Current (three Op  
Amps are ON, Rf1 = Rf2 = 50 kΩ,  
Rg =1 kΩ, 8.192 MHz bandwidth,  
Charge Pump - Disabled)  
1810.631  
1821.938  
1826.541  
In Amp Quiescent Current (three Op  
Amps are ON, Rf1 = Rf2 = 50 kΩ,  
Rg =1 kΩ, 8.192 MHz bandwidth,  
Charge Pump - Enabled)  
1229.011  
31.719  
1236.282  
33.940  
1241.784  
38.717  
µA  
µA  
Chopper ACMP (with 2.048 kHz clock)  
Datasheet  
10-Mar-2021  
Revision 2.4  
24 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
3.7 TIMING CHARACTERISTICS  
Table 10: Typical Delay Estimated for Each Macrocell at T = 25 °C  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5.0 V  
Unit  
Parameter Description Conditions  
Rising Falling Rising Falling Rising Falling  
tpd  
tpd  
Delay  
Delay  
Digital Input to PP 1x  
26  
27  
18  
20  
13  
15  
ns  
ns  
Digital Input with Schmitt Trigger to  
PP 1x  
27  
28  
19  
21  
15  
15  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Digital Input to PP 2x  
24  
28  
--  
25  
246  
24  
17  
20  
--  
18  
163  
18  
12  
15  
--  
14  
95  
13  
ns  
ns  
ns  
Low Voltage Digital input to PP 1x  
Digital input to NMOS output  
Output enable from Pin, OE Hi-Z  
to 1  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
26  
--  
--  
26  
--  
19  
--  
--  
19  
--  
13  
--  
--  
14  
--  
ns  
ns  
ns  
Output enable from Pin, OE Hi-Z  
to 0  
Digital input to 1x3-State  
(Z to 1)  
26  
19  
13  
Digital input to x3-State  
(Z to 0)  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
--  
24  
--  
26  
--  
--  
17  
--  
17  
--  
--  
13  
--  
14  
--  
ns  
ns  
ns  
Digital input to 2x3-State  
(Z to 1)  
Digital input to 2x3-State  
(Z to 0)  
24  
19  
12  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tw  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Width  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
LUT2bt  
17  
19  
17  
20  
12  
13  
15  
17  
16  
77  
12  
14  
14  
18  
18  
74  
8
9
8
ns  
ns  
ns  
ns  
ns  
ns  
LUT3bit  
10  
10  
12  
12  
70  
LUT4bit  
20  
21  
9
LATCH  
25  
25  
12  
11  
48  
DFF  
24  
25  
CNT/DLY  
Edge detect  
Edge detect  
Edge detect Delayed  
Ripple Counter  
PGen  
107  
107  
206  
19  
205  
20  
161  
13  
160  
13  
116  
8
116  
8
ns  
ns  
ns  
ns  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
241  
45  
241  
60  
175  
32  
175  
44  
125  
22  
125  
31  
20  
177  
115  
36  
20  
177  
115  
37  
14  
121  
83  
14  
121  
83  
9
10  
78  
57  
18  
ns  
ns  
ns  
ns  
Filter  
77  
57  
17  
Inverter Filter  
Pipe Delay  
25  
26  
Table 11: Programmable Delay Expected Typical Delays and Widths at T = 25 °C  
Parameter  
Description  
Note  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V Unit  
tw  
tw  
Pulse Width, 1 cell mode: (any) edge detect, edge detect output  
Pulse Width, 2 cell mode: (any) edge detect, edge detect output  
Pulse Width, 3 cell mode: (any) edge detect, edge detect output  
Pulse Width, 4 cell mode: (any) edge detect, edge detect output  
223  
444  
663  
882  
18  
163  
324  
484  
643  
12  
118  
233  
347  
461  
8
ns  
ns  
ns  
ns  
ns  
tw  
tw  
time1  
Delay, 1 cell  
mode: (any) edge detect, edge detect output  
Datasheet  
10-Mar-2021  
Revision 2.4  
25 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 11: Programmable Delay Expected Typical Delays and Widths at T = 25 °C (Continued)  
Parameter  
time1  
Description  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
Delay, 1 cell  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
Note  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V Unit  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
18  
18  
12  
12  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
time1  
8
time1  
18  
12  
8
time2  
243  
464  
683  
902  
176  
337  
497  
655  
126  
241  
356  
470  
time2  
time2  
time2  
Table 12: Typical Filter Rejection Pulse Width at T = 25 °C  
Parameter  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
< 177 < 122 < 78  
Unit  
Filtered Pulse Width  
ns  
Table 13: Typical Counter/Delay Offset Measurements at T = 25 °C  
Parameter  
OSC Freq  
25 MHz  
OSC Power  
auto  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Power-On time  
<0.04  
<0.5  
<500  
4
<0.13  
<0.5  
<500  
4
<0.13  
<0.5  
<500  
4
Power-On time  
2.048 MHz  
2.048 kHz  
25 MHz  
auto  
Power-On time  
auto  
frequency settling time  
frequency settling time  
frequency settling time  
variable (CLK period)  
variable (CLK period)  
variable (CLK period)  
auto  
2.048 MHz  
2.048 kHz  
25 MHz  
auto  
0.3  
0.4  
0.4  
auto  
660  
570  
480  
forced  
forced  
forced  
0-40  
0-0.5  
0-488  
0-40  
0-0.5  
0-488  
0-40  
0-0.5  
0-488  
2.048 MHz  
2.048 kHz  
25 MHz/  
2.048 kHz  
tpd (non-delayed edge)  
either  
35  
14  
10  
ns  
3.8 OSCILLATOR CHARACTERISTICS  
Table 14: Oscillators Frequency Limits, VDD = 2.4 V to 5.5 V  
Temperature Range  
+25 °C  
-40 °C to +85 °C  
OSC  
Minimum  
Value, kHz  
Maximum  
Value, kHz  
Minimum  
Value, kHz  
Maximum  
Value, kHz  
Error, %  
Error, %  
+2.00  
-2.00  
+2.00  
-2.00  
+2.00  
-2.00  
+3.03  
-7.13  
+1.63  
-2.20  
+3.60  
-4.80  
2.048 kHz OSC0  
2.048 MHz OSC1  
25 MHz OSC2  
2.007  
2007  
2.089  
2089  
1.902  
2.110  
2003.017  
23799.64  
2081.296  
25900.32  
24500  
25500  
Datasheet  
10-Mar-2021  
Revision 2.4  
26 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
3.8.1 OSC Power-On Delay  
Table 15: Oscillators Power-On Delay at T = 25 °C, OSC Power Setting: "Auto Power-On"  
OSC2 25 MHz  
Start with Delay  
Power  
OSC0 2.048 kHz  
OSC1 2.048 MHz  
OSC2 25 MHz  
Supply  
Range  
(VDD) V  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, ns  
Typical  
Maximum  
Value, ns  
Typical  
Maximum  
Value, ns  
Value, µs  
688.658  
673.305  
584.854  
494.549  
470.605  
Value, ns  
521.838  
511.273  
461.524  
417.841  
410.224  
Value, ns  
47.316  
44.580  
31.229  
21.331  
19.924  
Value, ns  
149.854  
148.574  
143.901  
142.340  
142.158  
2.40  
2.50  
3.30  
5.00  
5.50  
890.850  
862.190  
716.920  
582.281  
549.359  
534.426  
524.612  
476.126  
433.196  
425.767  
52.408  
49.272  
34.985  
24.667  
23.143  
156.326  
154.942  
149.772  
147.284  
147.092  
3.9 ACMP CHARACTERISTICS  
Table 16: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted  
Parameter Description  
Conditions  
Note  
Min  
Typ  
--  
Max  
Unit  
V
Positive Input  
Negative Input  
0
0
VDD  
VDD  
ACMP Input Voltage  
VACMP  
Range  
--  
V
T = -40 °C to +85 °C  
T = 25 °C  
-6.364  
--  
3.709  
3.425  
2.61  
mV  
mV  
mV  
mV  
ACMP Input Offset  
ACMPxL, Vhys = 0 mV,  
Gain = 1,  
-5.853 -1.025  
Voffset  
T = -40 °C to +85 °C  
T = 25 °C  
-4.30  
-2.74  
--  
Chopper ACMP Input Vref = 32 mV to 2048 mV  
Offset  
-0.79  
1.37  
ACMP Startup Time  
when BG ON  
ACMP Power-On delay,  
--  
--  
--  
--  
91.02  
µs  
Minimalrequiredwaketime  
for the "Wake and Sleep  
function", for ACMPxL  
tstart  
T = -40 °C to +85 °C  
ACMP Startup Time  
when BG OFF  
2797.95 µs  
Gain = 1x  
--  
--  
--  
--  
--  
10  
--  
--  
GΩ  
MΩ  
MΩ  
MΩ  
µs  
Gain = 0.5x  
Gain = 0.33x  
Gain = 0.25x  
1.627  
1.626  
1.625  
2.593  
Series Input  
Resistance  
Rsin  
--  
--  
ACMPxL, Vref =1.024 V,  
Gain = 1,  
Overdrive = 100 mV  
Low to High  
High to Low  
Low to High  
3.647  
--  
--  
2.829  
2.808  
5.127  
5.143  
µs  
µs  
Propagation Delay,  
Response Time  
PROP  
ACMPxL,  
Vref = 32 mV to 2048 mV,  
Gain = 1,  
High to Low  
--  
2.937  
7.486  
µs  
Overdrive = 100 mV  
G = 1  
1
1
1
G = 0.5  
G = 0.33  
G = 0.25  
0.496  
0.331  
0.248  
0.5  
0.504  
0.337  
0.253  
G
Gain Error  
0.334  
0.25  
Datasheet  
10-Mar-2021  
Revision 2.4  
27 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
3.10 INTERNAL VREF CHARACTERISTICS  
Table 17: Internal Vref Characteristics  
Parameter Description  
Conditions  
Note  
Min  
Typ  
Max  
Unit  
Vref  
T = 25 °C  
-0.2  
--  
0.2  
%
Internal Vref  
Accuracy  
Accuracy at  
and  
VDD = 2.4 V to 5.5 V,  
No loading  
T = -40 °C to +85 °C  
-0.7  
--  
0.7  
%
Vref > 1216 mV  
Loading  
3.11 OUTPUT BUFFERS CHARACTERISTICS  
Table 18: HD Buffer Electrical Characteristics at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted  
Parameter  
Description  
Conditions  
Offset  
Min  
Typ  
Max  
Unit  
VDDA = 5 V, VOUT = 0.5 V to  
4 V, T = 25 °C  
--  
--  
--  
0.088  
--  
9.936  
10.503  
33.564  
mV  
mV  
VOFFSET  
Input Offset Voltage  
VDDA = 5 V, VOUT = 0.5 V to  
4 V, T = -40 °C to +85 °C  
Offset Drift with  
Temperature  
VOUT = VDDA/2,  
T = -40 °C to +85 °C  
dVOFFSET/dt  
1.033  
µV/C  
Output  
VDDA = 5 V,  
V
OUT = 2.048 V,  
ΔVOUT(I)  
Load Regulation  
--  
-0.146  
0.718  
mV  
mV  
mA  
ILOAD = 0.5 mA to 2 mA,  
T = 25 °C  
VDDA = 2.5 V to 5 V,  
V
ΔVOUT(U)  
ISС  
Line Regulation  
--  
--  
0.803  
--  
3.781  
25  
OUT = 2.048 V, T = 25 °C  
V
DDA = 2.4 V to 5.5 V,  
Short Circuit Current  
T = -40 °C to +85 °C  
Shutdown Characteristics  
RLOAD = 5 kΩ, T = 25 °C,  
RLOAD = 5 kΩ, T = 25 °C  
ton  
toff  
Buffer Turn-On Time  
Buffer Turn-Off Time  
--  
--  
--  
42.583  
--  
µs  
µs  
0.076  
Table 19: Vref0 Output Buffer at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted  
Parameter Description  
Vref0 Buffer Output  
Conditions  
Note  
Min  
Typ  
Max  
Unit  
T = 25 °C  
Loading = 200 µA  
-1  
--  
--  
1
%
%
Accuracy,  
Vref = 32 mV to  
2048 mV, Buffer  
Enabled  
Loading = 1 mA  
-5  
5
Load Resistance = 1 MΩ  
--  
--  
--  
--  
5
pF  
pF  
Vref0  
Buffer  
Accuracy  
and  
Load Resistance =  
560 kΩ  
10  
Load Resistance =  
100 kΩ  
Loading  
--  
--  
40  
pF  
Vref0 Buffer Output  
Capacitance Loading  
Load Resistance =  
10 kΩ  
--  
--  
--  
--  
--  
--  
80  
pF  
pF  
pF  
Load Resistance = 2 kΩ  
120  
150  
Load Resistance = 1 kΩ,  
Vref=32mV to1024mV  
Datasheet  
10-Mar-2021  
Revision 2.4  
28 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
3.12 ANALOG TEMPERATURE SENSOR CHARACTERISTICS  
Table 20: TS Output vs Temperature (Output Range 1)  
VDD = 2.5 V  
Typical, mV  
VDD = 3.3 V  
Typical, mV  
VDD = 5.0 V  
T, °C  
Accuracy, %  
±1.29  
±1.31  
±.1.33  
±1.34  
±1.34  
±1.36  
±1.39  
±1.43  
±1.48  
±1.52  
±1.58  
±1.62  
±1.67  
±1.69  
Accuracy, %  
±1.28  
±1.30  
±1.32  
±1.33  
±1.34  
±1.36  
±1.37  
±1.42  
±1.46  
±1.51  
±1.55  
±1.61  
±1.65  
±1.68  
Typical, mV  
998  
Accuracy, %  
±1.25  
±1.28  
±1.29  
±1.31  
±1.32  
±1.33  
±1.36  
±1.40  
±1.44  
±1.48  
±1.53  
±1.59  
±1.63  
±1.66  
-40  
-30  
-20  
-10  
0
1004  
978  
955  
933  
910  
886  
863  
840  
817  
793  
769  
746  
722  
710  
999  
976  
954  
931  
908  
885  
862  
838  
815  
792  
768  
744  
721  
709  
976  
953  
930  
907  
10  
20  
30  
40  
50  
60  
70  
80  
85  
884  
861  
838  
814  
791  
767  
744  
720  
708  
Table 21: TS Output vs Temperature (Output Range 2)  
VDD = 2.5 V  
T, °C  
VDD = 3.3 V  
VDD = 5.0 V  
Typical, mV  
1208  
1181  
1153  
1126  
1098  
1070  
1042  
1014  
986  
Accuracy, %  
±1.36  
±1.37  
±1.39  
±1.42  
±1.42  
±1.44  
±1.45  
±1.49  
±1.53  
±1.58  
±1.63  
±1.68  
±1.72  
±1.76  
Typical, mV  
1206  
1179  
1151  
1124  
1096  
1068  
1040  
1012  
984  
Accuracy, %  
±1.35  
±1.35  
±1.37  
±1.40  
±1.40  
±1.42  
±1.44  
±1.48  
±1.52  
±1.56  
±1.62  
±1.66  
±1.71  
±1.74  
Typical, mV  
1205  
1178  
1150  
1123  
1095  
1067  
1039  
1011  
983  
Accuracy, %  
±1.32  
±1.33  
±1.35  
±1.38  
±1.38  
±1.41  
±1.42  
±1.46  
±1.50  
±1.54  
±1.60  
±1.64  
±1.69  
±1.71  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
85  
957  
956  
955  
929  
927  
926  
900  
898  
898  
872  
870  
869  
857  
855  
855  
Datasheet  
10-Mar-2021  
Revision 2.4  
29 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
3.13 PROGRAMMABLE OPERATIONAL AMPLIFIER CHARACTERISTICS  
Table 22: EC of OA, VDDA = 2.4 V to 5.5 V, VCM = VDDA/2, VOUT  
VDDA/2, RL = 100 kΩ to VDDA/2, CL = 50 pF, T = 25 °C  
Parameter  
Description  
Conditions (Note 1)  
Min  
Typ  
Max  
Unit  
Input Voltage Offset (without Customers Trimming, Included Factory Block Offset Trim)  
VOFFSET  
Input Offset Voltage  
VCM = VDD/2  
--  
--  
500  
1
1000  
5
µV  
VCM = VDD/2,  
T = -40 °C to +85 °C  
µV/°C  
Offset Drift with  
Temperature  
dVOFFSET/dt  
VCM = GND,  
T = -40 °C to +85 °C  
--  
1
5
µV/°C  
Trimmed Input Offset (Customer Perspective after Using Digital Rheostats with Gain = 200x) (Note 2)  
VDD = 3.3 V,  
VCM = 0 V to VDD  
VOFFSET  
Input Offset Voltage  
--  
50  
--  
µV  
Input Voltage Range  
Input Common-Mode  
Voltage Range  
VDD  
+ 0.2  
VCMR  
T = -40 °C to +85 °C  
-0.2  
80  
--  
110  
90  
95  
90  
V
GND + 0.8 V < VCM < VDD - 0.8 V, T  
= -40 °C to +85 °C  
--  
--  
--  
--  
dB  
dB  
dB  
dB  
Common-Mode  
Rejection Ratio  
CMRR  
GND < VCM< GND+ 0.8 V or  
VDD - 0.8 V < VCM < VDD  
75  
V
CM = VDD/2,  
85  
T = -40 °C to +85 °C  
Power Supply Rejection  
Ratio  
PSRR  
CS  
VCM = GND,  
T = -40 °C to +85 °C  
80  
Channel Separation  
VDD = 5 V, f = 10 Hz  
VDD = 5 V, f = 1 kHz  
Input Current and Impedance  
T = 25 °C  
--  
--  
100  
80  
--  
--  
dB  
dB  
--  
--  
--  
--  
--  
--  
--  
4
pA  
pA  
pA  
pA  
IB  
Input Bias Current  
Input Offset Current  
T = +85 °C  
125  
T = 25 °C  
1.804  
32.864  
IOFFSET  
T = +85 °C  
Common-Mode Input  
Resistance  
RCM  
RDIFF  
CCM  
--  
--  
--  
--  
10^13  
10^13  
5
--  
--  
Ω
Ω
Differential Input  
Resistance  
Input Capacitance  
Common-Mode  
7
pF  
pF  
Input Capacitance  
Differential  
CDIFF  
1.949  
2.274  
Open-Loop Gain  
RLOAD = 1 MΩ,  
GND + 0.1 V < VOUT < VDD - 0.1 V,  
T = -40 °C to +85 °C  
100  
100  
123.796  
124.093  
--  
--  
dB  
dB  
AOL  
DC Open Loop Gain  
RLOAD = 50 kΩ,  
GND + 0.5 V < VOUT < VDD - 0.5 V  
T = -40 °C to +85 °C  
Output  
Datasheet  
10-Mar-2021  
Revision 2.4  
30 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 22: EC of OA, VDDA = 2.4 V to 5.5 V, VCM = VDDA/2, VOUT  
VDDA/2, RL = 100 kΩ to VDDA/2, CL = 50 pF, T = 25 °C  
Parameter  
Description  
Conditions (Note 1)  
Min  
Typ  
Max  
Unit  
RLOAD = 50 kΩ,  
T = -40 °C to +85 °C  
-6.7  
--  
--  
mV  
VOH  
BW = 8.192 MHz,  
RLOAD = 600 Ω,  
-143  
--  
--  
--  
--  
--  
mV  
mV  
mV  
T = -40 °C to +85 °C  
Maximum Voltage  
Swing  
RLOAD = 50 kΩ,  
T = -40 °C to +85 °C  
4.8  
101  
VOL  
BW = 8.192 MHz,  
RLOAD = 600 Ω,  
--  
T = -40 °C to +85 °C  
Linear Output Swing  
Range  
VOVR from Rail  
RLOAD = 1 MΩ  
GND +  
100  
VOSR  
--  
VDD - 100  
mV  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
BW = 128 kHz,  
T = -40 °C to +85 °C  
--  
--  
--  
--  
10.693  
14.288  
22.230  
51.489  
20.010  
26.206  
39.910  
89.567  
--  
--  
--  
--  
--  
--  
--  
BW = 512 kHz,  
T = -40 °C to +85 °C  
ISC to GND  
BW = 2.048 MHz,  
T = -40 °C to +85 °C  
BW = 8.192 MHz,  
T = -40 °C to +85 °C  
ISС  
Short Circuit Current  
BW = 128 kHz,  
T = -40 °C to +85 °C  
BW = 512 kHz,  
T = -40 °C to +85 °C  
ISC to VDD  
BW = 2.048 MHz,  
T = -40 °C to +85 °C  
BW = 8.192 MHz,  
T = -40 °C to +85 °C  
--  
--  
mA  
pF  
CLOAD  
Capacitive Load Drive  
Supply Voltage  
--  
Power Supply  
VDD  
Guaranteed by PSRR Test  
2.4  
--  
--  
5.5  
--  
V
T = 25 °C,  
VDDA = 2.5 V to 5.5 V  
32.558  
µA  
Quiescent Current per  
Amplifier,  
BW = 128 kHz  
T = -40 °C to +85 °C,  
VDDA = 2.5 V to 5.5 V  
--  
--  
--  
--  
--  
--  
--  
32.160  
87.576  
--  
--  
--  
--  
--  
--  
--  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
T = 25 °C,  
VDDA = 2.5 V to 5.5 V  
Quiescent Current per  
Amplifier,  
BW = 512 kHz  
IQ  
T = -40 °C to +85 °C,  
VDDA = 2.5 V to 5.5 V  
86.940  
(including  
charge pump  
current  
T = 25 °C,  
VDDA = 2.5 V to 5.5 V  
236.020  
233.160  
608.094  
594.150  
Quiescent Current per  
Amplifier,  
BW = 2.048 MHz  
consumption)  
T = -40 °C to +85 °C,  
VDDA = 2.5 V to 5.5 V  
T = 25 °C,  
VDDA = 2.5 V to 5.5 V  
Quiescent Current per  
Amplifier,  
BW = 8.192 MHz  
T = -40 °C to +85 °C,  
VDDA = 2.5 V to 5.5 V  
Datasheet  
10-Mar-2021  
Revision 2.4  
31 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 22: EC of OA, VDDA = 2.4 V to 5.5 V, VCM = VDDA/2, VOUT  
VDDA/2, RL = 100 kΩ to VDDA/2, CL = 50 pF, T = 25 °C  
Parameter  
Description  
Conditions (Note 1)  
Min  
Typ  
Max  
Unit  
T = -40 °C to +85 °C,  
VDDA = 2.5 V to 5.5 V  
Full Shutdown  
--  
103.352  
--  
nA  
IQ  
Partial Shutdown  
(Note 3),  
BW = 128 kHz  
(including  
charge pump  
current  
--  
--  
T = 25 °C  
14.916  
14.916  
--  
--  
µA  
µA  
consumption) Partial Shutdown  
(Note 3),  
T = 25 °C  
BW = 8.192 MHz  
Frequency Response  
BW = 128 kHz  
BW = 512 kHz  
BW = 2.048 MHz  
BW = 8.192 MHz  
90  
128  
512  
166  
666  
kHz  
kHz  
kHz  
kHz  
RLOAD = 10 kΩ,  
CLOAD = 20 pF,  
G = +1 V/V  
358  
Gain Bandwidth Product  
GBW  
PM  
1434  
5734  
2048  
8192  
2662  
10650  
G = +1 V/V,  
BW = 128 kHz → 8.192 MHz; RLOAD  
Phase Margin  
Slew Rate  
44  
70  
--  
degree  
= 10 kΩ,  
CLOAD = 20 pF  
BW = 128 kHz,  
T = -40 °C to +85 °C  
--  
--  
--  
--  
--  
0.091  
0.380  
1.834  
6.310  
500  
--  
--  
--  
--  
--  
V/µs  
V/µs  
V/µs  
V/µs  
µs  
BW = 512 kHz,  
T = -40 °C to +85 °C  
RLOAD =50kΩ,  
CLOAD = 85 pF  
SR  
BW = 2.048 MHz,  
T = -40 °C to +85 °C  
BW = 8.192 MHz,  
T = -40 °C to +85 °C  
Overload Recovery  
Time  
T = -40 °C to +85 °C  
LOAD = 50 kΩ  
tOR  
R
Noise  
f = 1 kHz,  
BW = 128 kHz  
--  
--  
--  
--  
1.3  
0.2  
0.7  
0.1  
--  
--  
--  
--  
%
%
%
AV = 1,  
f = 1 kHz,  
BW = 512 kHz  
RLOAD = 50 kΩ,  
Total Harmonic  
Distortion  
THD  
VOUT(PP)  
VDD/2  
=
f = 1 kHz,  
BW = 2.048 MHz  
f = 1 kHz,  
BW = 8.192 MHz  
%
en  
Input Voltage Noise  
f = 0.1 to 10 Hz  
f = 1 kHz  
--  
--  
--  
--  
--  
4
--  
--  
--  
--  
--  
µVpp  
BW = 128 kHz  
BW = 512 kHz  
BW = 2.048 MHz  
BW = 8.192 MHz  
130  
125  
120  
75  
nV/  
Input Voltage Noise  
Density  
Vn  
Hz  
fA/  
Input Current Noise  
Density  
In  
f = 1 kHz  
--  
1
--  
Hz  
Shutdown Characteristics  
Datasheet  
10-Mar-2021  
Revision 2.4  
32 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 22: EC of OA, VDDA = 2.4 V to 5.5 V, VCM = VDDA/2, VOUT  
VDDA/2, RL = 100 kΩ to VDDA/2, CL = 50 pF, T = 25 °C  
Parameter  
Description  
Conditions (Note 1)  
Min  
Typ  
Max  
Unit  
VCM = VDDA/2,  
RL = 50 kΩ  
BW = 8.192  
MHz,  
--  
2.121  
5.363  
µs  
T = -40 °C to  
+85 °C  
VDDA > VCM  
(VDDA - 1.3)  
>
--  
--  
2.145  
5.330  
µs  
µs  
ton  
Amplifier Turn-On Time  
Amplifier Turn-Off Time  
VCM = VDDA/2,  
RL = 50 kΩ  
25.458  
43.158  
BW = 128 kHz,  
T = -40 °C to  
+85 °C  
VDDA > VCM  
(VDDA - 1.3)  
>
--  
--  
35.134  
0.671  
70.602  
1.015  
µs  
µs  
toff  
--  
Comparator Mode  
VID = 100 mV, BW = 128 kHz  
VID = 100 mV, BW = 512 kHz  
--  
--  
15  
--  
--  
µs  
µs  
3.5  
Propagation Delay  
Output High to Low  
VID = 100 mV,  
BW = 2.048 MHz  
tPHL  
--  
--  
1.2  
4.2  
--  
--  
µs  
µs  
VID = 100 mV,  
BW = 8.192 MHz  
VID = 100 mV, BW = 128 kHz  
VID = 100 mV, BW = 512 kHz  
--  
--  
14  
--  
--  
µs  
µs  
3.5  
Propagation Delay  
Output Low to High  
VID = 100 mV,  
BW = 2.048 MHz  
tPLH  
--  
--  
1.2  
4.2  
--  
--  
µs  
µs  
V
ID = 100 mV,  
BW = 8.192 MHz  
3 Op Amp Instrumentation Amplifier Mode  
Mismatch Between  
Internal Resistors (R1,  
R2, R3, R4)  
RINT_TL  
--  
--  
0.15  
%
Note 1 AGND  
= GND, unless otherwise noted  
Note 2 Equivalent offset voltage of the amplifier after user’s trim using digital rheostat. Gain of the amplifier is G=200 and the  
zero output voltage level Vzero = VDD/2 (See Section 10.2.1)  
Note 3 Op amps analog supporting blocks are always turned on.  
3.14 100K DIGITAL RHEOSTAT CHARACTERISTICS  
Table 23: 100K Digital Rheostat EC at VA=VDD, VB=GND, T=-40°C to +85°C, VDD= 2.4V to 5.5V Unless Otherwise Noted  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Rheostat Pin Voltage  
Range  
Voltage between any (Aor B)  
pins and AGND  
VDR  
AGND  
--  
VDDA  
V
Digital Rheostat  
Resistance  
Full resistance with all  
switches open (Note 1)  
RDR  
80  
44.381  
--  
100  
--  
120  
110  
kΩ  
Ω
Minimal Rheostat  
Resistance  
RDR_MIN  
Code = 0x00  
Mismatch between  
rheostats  
RMATCH  
Code = 0x3FF, T = 25 °C  
0.043  
--  
%
Number of taps  
1024  
Datasheet  
10-Mar-2021  
Revision 2.4  
33 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 23: 100K Digital Rheostat EC at VA=VDD, VB=GND, T=-40°C to +85°C, VDD= 2.4V to 5.5V Unless Otherwise Noted  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Frequency applied on one  
side of resistor chain and  
-3 dB frequency measured at  
the other side with full 100  
KΩ, assume no additional  
load  
BWDTDR  
Digital Rheostat Bandwidth  
Step Resistance  
--  
50  
--  
kHz  
RS  
--  
--  
98.266  
--  
--  
2
Ω
Max current through  
Rheostat  
IDR_MAX  
T = 25 °C  
mA  
nV/√  
Hz  
ESW_N  
Resistor Noise Voltage  
RAB = 25 kΩ, f = 1 kHz  
--  
--  
30  
--  
--  
Chopper Comparator  
Switching Frequency  
fChACMP  
30  
kHz  
µV  
Chopper comparator offset  
when Auto-Trim process is  
active  
VCh_offset  
--  
0
100  
--  
300  
25  
Counter Frequency  
independent from the  
Rheostat  
The counter frequency is  
determined by user selection  
fDR_CLK  
MHz  
VA = 5 V, VB = 0 V, ±1 LSB  
error band, Auto-Trim mode  
--  
--  
--  
--  
10  
1
kHz  
kHz  
Rheostat Switch Speed  
(Note 2)  
fDR_SWCH  
VA = 5 V, VB = 0 V, ±1 LSB  
error band, regular mode  
Maximum Capacitance of  
A, B pins Measured to  
AGND  
All switches are ON,  
f = 200 kHz  
СDR  
--  
33.461  
--  
pF  
Includingactivechargepump  
current consumption  
ILKG  
Leakage Current  
Zero-Scale Error  
--  
--  
--  
--  
--  
--  
--  
--  
1000  
1.203  
±1  
nA  
Error  
ZScale  
Code = 0x00  
LSB  
LSB  
LSB  
Integral  
Non-linearity  
INL  
Differential  
Non-linearity  
DNL  
±1  
RLOAD <12.5 kΩ  
--  
--  
--  
--  
240  
120  
60  
--  
--  
--  
--  
kHz  
kHz  
kHz  
kHz  
RLOAD = 12.5 kΩ to 25 kΩ  
RLOAD = 25 kΩ to 50 kΩ  
RLOAD = 50 kΩ to 100 kΩ  
Bandwidth -3 dB  
(Load = 30 pF)  
BWDTCAP  
αR(T)  
30  
Resistance Temperature  
Coefficient  
ppm/  
°C  
VAB = const,  
--  
--  
110  
Potentiometer Mode  
Integral  
Non-linearity in  
Potentiometer Mode  
INLPOT  
--  
--  
--  
--  
±1  
±1  
LSB  
LSB  
Differential  
Non-linearity in  
Potentiometer Mode  
DNLPOT  
Note 1 User can calculate actual Digital Rheostat value using calibration data from NVM (see Section 12.2).  
Note 2 Includes internal timing. External circuit should be counted separately.  
Datasheet  
10-Mar-2021  
Revision 2.4  
34 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
3.15 ANALOG SWITCHES CHARACTERISTICS  
Table 24: Analog Switch0/Voltage Regulator EС at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Maximum Voltage At Pins  
Voltage between any Analog  
Switch pin to AGND  
VAS  
0
--  
VDD + 0.3  
V
Maximum Switching  
Frequency  
fMAX  
RL = 50 kΩ  
3
--  
--  
--  
MHz  
Ω
VDD = 3.3 V,  
VIN < 1.2 V,  
--  
29.621  
N-ch FET, T = 25 °C  
RON  
ON Resistance  
VDD = 3.3 V,  
VDD - 1.2 < VIN < VDD  
P-ch FET, T = 25 °C  
,
--  
--  
3.857  
--  
7.456  
0.1  
Ω
Switch OFF; from IN to OUT  
VA = VDD or VB = VDD  
IPWROFF  
IPWRON  
ISW_MAX  
OFF Leakage Current  
--  
--  
--  
nA  
µA  
mA  
ON Leakage Current  
(Including Charge Pump  
Current Consumption)  
Switch ON,  
quiescent current  
consumption  
--  
Maximum ON-state Switch VA = VDD, load connected to  
Current ground, VAB= 0.4 V  
100  
--  
Table 25: Analog Switch1/Current Sink EС at T = -40 °C to +85 °C, VDD = 2.4 V to 5.5 V Unless Otherwise Noted  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Maximum Voltage At Pins  
Voltage between any Analog  
Switch pin to AGND  
VAS  
0
--  
V
DD + 0.3  
V
Maximum Switching  
Frequency  
fMAX  
RL = 50 kΩ  
3
--  
--  
--  
MHz  
Ω
V
DD = 3.3 V,  
VIN < 1.2 V,  
--  
0.809  
N-ch FET, T = 25 °C  
RON  
ON Resistance  
VDD = 3.3 V,  
VDD - 1.2 < VIN < VDD  
P-ch FET, T = 25 °C  
,
--  
--  
95.5  
--  
--  
8.073  
0.1  
Ω
Switch OFF; from IN to OUT,  
VA = VDD or VB = VDD  
IPWROFF  
IPWRON  
ISW_MAX  
OFF Leakage Current  
nA  
µA  
mA  
ON Leakage Current  
(including charge pump  
current consumption)  
Switch ON  
quiescent current  
consumption  
--  
--  
Maximum ON-state Switch VA = VDD, load connected to  
100  
--  
--  
Current  
ground, VAB= 0.4 V  
Datasheet  
10-Mar-2021  
Revision 2.4  
35 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
4
User Programmability  
The SLG47004 is a user programmable device with Multiple-Time-Programmable (MTP) memory elements that are able to  
configure the connection matrix and macrocells. A programming development kit allows the user the ability to create initial  
devices. Once the design is finalized, the programming code (.gpx file) is forwarded to Dialog Semiconductor to integrate into a  
production process.  
Product  
Definition  
E-mail Product Idea, Definition, Drawing or  
Customer creates their own design in  
Schematic to  
GreenPAK Designer  
CMBUGreenPAK@diasemi.com  
Dialog Semiconductor Applications  
Engineer will review design specifications  
with customer  
Customer verifies GreenPAK in system  
design  
GreenPAK Design  
approved  
Samples, Design and Characterization  
Report send to customer  
GreenPAK Design  
approved  
Customers verifies GreenPAK design  
GreenPAK Design  
Approved in system test  
Custom GreenPAK part enters production  
Figure 2: Steps to Create a Custom GreenPAK Device  
Datasheet  
10-Mar-2021  
Revision 2.4  
36 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
5
IO Pins  
The SLG47004 has a total of 7 GPIO Pins which can function as either a user-defined Input or Output, as well as serve as a  
special function (such as outputting the voltage reference) and 1 GPI Pin.  
5.1 GPIO PINS  
IO0, IO1, IO2, IO3, IO4, IO5, and IO6 serve as General Purpose IO Pins.  
5.2 GPI PINS  
I0 serve as General Purpose Input Pin.  
5.3 PULL-UP/DOWN RESISTORS  
All IO Pins have the option of user-selectable resistors that can be connected to the pin structure. The selectable values on these  
resistors are 10 k, 100 kΩ, and 1 M. The internal resistors can be configured as either Pull-up or Pull-downs.  
5.4 FAST PULL-UP/DOWN DURING POWER-UP  
During power-up, IO Pull-up/down resistance will switch to 2.6 kinitially and then it will switch to normal setting value. This  
function is enabled by register [1207].  
Datasheet  
10-Mar-2021  
Revision 2.4  
37 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
5.5 I2C MODE IO STRUCTURE  
5.5.1 I2C Mode Structure (for SCL and SDA)  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Reserved  
10: Low Voltage Digital In mode 1, lv_en = 1  
11: Reserved  
VDD  
PAD  
Non-Schmitt  
Trigger Input  
WOSMT_EN  
Digital IN  
VDD  
Low Voltage  
Input 1  
LV_EN  
I2C SDA (SCL) Signal  
not available for direct user control  
Figure 3: IO with I2C Mode IO Structure Diagram  
Datasheet  
10-Mar-2021  
Revision 2.4  
38 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
5.6 MATRIX OE IO STRUCTURE  
Non-Schmitt  
Trigger Input  
Input Mode registers [1153:1152]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
WOSMT_EN  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: analog IO mode  
Schmitt  
Trigger Input  
Digital IN  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1  
SMT_EN  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS 1x Open-Drain mode, od1x_en = 1  
11: NMOS 2x Open-Drain mode, od2x_en = 1, od1x_en = 1  
Low Voltage  
Input  
Note 1: Digital Out and OE are Matrix Output, Digital In is Matrix Input.  
Note 2: Can be varied over PVT, for reference only.  
LV_EN  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
s1  
s0  
172 Ω  
(Note 2)  
900 kΩ  
Res_sel  
[1:0]  
90 kΩ  
10 kΩ  
VDD  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Digital OUT  
Digital OUT  
OE  
OE  
OD1x_EN  
PP1x_EN  
VDD  
PAD  
VDD  
Digital OUT  
Digital OUT  
OE  
OE  
OD2x_EN  
PP2x_EN  
Figure 4: Matrix OE IO Structure Diagram  
Datasheet  
10-Mar-2021  
Revision 2.4  
39 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
5.7 GPI STRUCTURE  
5.7.1 GPI Structure (for I0)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1, OE=0  
01: Digital In with Schmitt Trigger, smt_en = 1, OE = 0  
10: Low Voltage Digital In mode, lv_en = 1, OE = 0  
11: Reserved  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
Note 1: OE cannot be selected by user.  
Note 2: OE is Matrix output, Digital In is Matrix input.  
Low Voltage  
Input  
LV_EN  
OE  
Floating  
PAD  
s0  
s1  
s2  
s3  
VDD  
s1  
s0  
900 kΩ  
Res_sel  
[1:0]  
90 kΩ  
10 kΩ  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Figure 5: IO0 GPI Structure Diagram  
Datasheet  
10-Mar-2021  
Revision 2.4  
40 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
5.8 IO PINS TYPICAL PERFORMANCE  
Figure 6: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C  
80  
70  
60  
50  
40  
30  
20  
10  
0
Open Drain 1x @ VDD = 5 V  
Open Drain 1x @ VDD = 3.3 V  
Open Drain 1x @ VDD = 2.5 V  
Push-Pull 1x @ VDD = 5 V  
Push-Pull 1x @ VDD = 3.3 V  
Push-Pull 1x @ VDD = 2.5 V  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
VOL (V)  
Figure 7: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range  
Datasheet  
10-Mar-2021  
Revision 2.4  
41 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
30  
Open Drain 1x @ VDD = 5 V  
25  
Open Drain 1x @ VDD = 3.3 V  
Open Drain 1x @ VDD = 2.5 V  
Push-Pull 1x @ VDD = 5 V  
20  
15  
10  
5
Push-Pull 1x @ VDD = 3.3 V  
Push-Pull 1x @ VDD = 2.5 V  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
VOL (V)  
Figure 8: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C  
140  
130  
120  
110  
100  
90  
Open Drain 2x @ VDD = 5 V  
Open Drain 2x @ VDD = 3.3 V  
Open Drain 2x @ VDD = 2.5 V  
Push-Pull 2x @ VDD = 5 V  
Push-Pull 2x @ VDD = 3.3 V  
Push-Pull 2x @ VDD = 2.5 V  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
VOL (V)  
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range  
Datasheet  
10-Mar-2021  
Revision 2.4  
42 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
50  
45  
Open Drain 2x @ VDD = 5 V  
Open Drain 2x @ VDD = 3.3 V  
40  
Open Drain 2x @ VDD = 2.5 V  
Push-Pull 2x @ VDD = 5 V  
35  
Push-Pull 2x @ VDD = 3.3 V  
Push-Pull 2x @ VDD = 2.5 V  
30  
25  
20  
15  
10  
5
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
VOL (V)  
Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C  
Datasheet  
10-Mar-2021  
Revision 2.4  
43 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
6
Connection Matrix  
The Connection Matrix in the SLG47004 is used to create an internal routing for internal functional macrocells of the device  
once it is programmed. The output of each functional macrocell within the SLG47004 has a specific digital bit code assigned to  
it, that is either set to active "High" or inactive "Low", based on the design that is created. Once the 2048 register bits within the  
SLG47004 are programmed, a fully custom circuit will be created.  
The Connection Matrix has 64 inputs and 99 outputs. Each of the 64 inputs to the Connection Matrix is hard-wired to the digital  
output of a particular source macrocell, including IOs, LUTs, analog comparators, other digital resources, such as VDD and GND.  
The input to a digital macrocell uses a 6-bit register to select one of these 64 input lines.  
For a complete list of the SLG47004’s register table, see Section 21  
.
Matrix Input Signal  
N
Functions  
GND  
0
1
2
3
LUT2_0/DFF0 output  
LUT2_1/DFF1 output  
LUT2_2/DFF2 output  
VDD  
VDD  
62  
63  
Matrix Inputs  
N
0
1
2
99  
Registers  
registers [5:0]  
registers [11:6]  
registers [17:12]  
registers [599:594]  
Matrix OUT: IN0 of  
LUT2_0 or Clock  
Input of DFF0  
Matrix OUT: IN1 of  
LUT2_0 or Data  
Input of DFF0  
Matrix Out: IN0 of  
LUT2_1 or Clock  
Input of DFF1  
Function  
OP Vref ENABLE  
Matrix Outputs  
Figure 11: Connection Matrix  
Function  
Connection Matrix  
IO13  
IO12  
LUT  
IO12  
IO13  
IO14  
LUT  
IO14  
Figure 12: Connection Matrix Example  
Datasheet  
10-Mar-2021  
Revision 2.4  
44 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
6.1 MATRIX INPUT TABLE  
Table 26: Matrix Input Table  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
GND  
1
LUT2_0/DFF0 output  
LUT2_1/DFF1 output  
LUT2_2/DFF2 output  
LUT2_3/PGen output  
LUT3_0/DFF3 output  
LUT3_1/DFF4 output  
LUT3_2/DFF5 output  
LUT3_3/DFF6 output  
LUT3_4/DFF7 output  
LUT3_5/DFF8 output  
LUT3_6/DFF9 output  
CNT_DLY0 output  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
MLT0_LUT4_1/DFF17_OUT  
CNT_DLY1 output  
MLT1_LUT3_7/DFF11_OUT  
CNT_DLY2 output  
MLT2_LUT3_8/DFF12_OUT  
CNT_DLY3 output  
MLT3_LUT3_9/DFF13_OUT  
CNT_DLY4 output  
MLT4_LUT3_10/DFF14_OUT  
CNT_DLY5 output  
MLT5_LUT3_11/DFF15_OUT  
CNT_DLY6 output  
MLT6_LUT3_12/DFF16_OUT  
LUT3_13/Pipe Delay/RippleCNT_out0  
Pipe Delay/RippleCNT_out1  
Pipe Delay/RippleCNT_out2  
LUT4_0/DFF10 output  
Programmable Delay Edge Detect Output  
Edge Detect Filter Output  
I2C_virtual_0 Input  
I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
Datasheet  
10-Mar-2021  
Revision 2.4  
45 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 26: Matrix Input Table(Continued)  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
RH0 Idle/Active  
RH1 Idle/Active  
Output of Op Amp0 in ACMP mode  
Output of Op Amp1 in ACMP mode  
IO0 Digital Input  
IO1 Digital Input  
IO2 Digital Input  
IO3 Digital Input  
IO4 Digital Input  
IO5 Digital Input  
IO6 Digital Input  
I0 Digital Input  
Oscillator0 output 0  
Oscillator1 output 0  
Oscillator2 output  
Chopper ACMP Out  
ACMP0 Output (low speed)  
ACMP1 Output (low speed)  
Oscillator0 output 1  
Oscillator1 output 1  
POR OUT  
VDD  
VDD  
VDD  
6.2 MATRIX OUTPUT TABLE  
Table 27: Matrix Output Table  
Register Bit  
Address  
Matrix Output  
Number  
Matrix Output Signal Function  
[5:0]  
IN0 of LUT2_0 or Clock Input of DFF0  
IN1 of LUT2_0 or Data Input of DFF0  
IN0 of LUT2_1 or Clock Input of DFF1  
IN1 of LUT2_1 or Data Input of DFF1  
IN0 of LUT2_2 or Clock Input of DFF2  
IN1 of LUT2_2 or Data Input of DFF2  
IN0 of LUT2_3 or Clock Input of PGen  
IN1 of LUT2_3 or nRST of PGen  
0
1
2
3
4
5
6
7
8
[11:6]  
[17:12]  
[23:18]  
[29:24]  
[35:30]  
[41:36]  
[47:42]  
[53:48]  
IN0 of LUT3_0 or CLK Input of DFF3  
Datasheet  
10-Mar-2021  
Revision 2.4  
46 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 27: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[59:54]  
[65:60]  
IN1 of LUT3_0 or Data of DFF3  
9
IN2 of LUT3_0 or nRST (nSET) of DFF3  
IN0 of LUT3_1 or CLK Input of DFF4  
IN1 of LUT3_1 or Data of DFF4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
[71:66]  
[77:72]  
[83:78]  
IN2 of LUT3_1 or nRST (nSET) of DFF4  
IN0 of LUT3_2 or CLK Input of DFF5  
IN1 of LUT3_2 or Data of DFF5  
[89:84]  
[95:90]  
[101:96]  
[107:102]  
[113:108]  
[119:114]  
[125:120]  
[131:126]  
[137:132]  
[143:138]  
[149:144]  
[155:150]  
[161:156]  
[167:162]  
[173:168]  
IN2 of LUT3_2 or nRST(nSET) of DFF5  
IN0 of LUT3_3 or CLK Input of DFF6  
IN1 of LUT3_3 or Data of DFF6  
IN2 of LUT3_3 or nRST (nSET) of DFF6  
IN0 of LUT3_4 or CLK Input of DFF7  
IN1 of LUT3_4 or Data of DFF7  
IN2 of LUT3_4 or nRST (nSET) of DFF7  
IN0 of LUT3_5 or CLK Input of DFF8  
IN1 of LUT3_5 or Data of DFF8  
IN2 of LUT3_5 or nRST (nSET) of DFF8  
IN0 of LUT3_6 or CLK Input of DFF9  
IN1 of LUT3_6 or CLK Input of DFF9  
IN2 of LUT3_6 or nRST (nSET) of DFF9  
IN0 of LUT3_7 or CLK Input of DFF11  
Delay1 Input (or Counter1 nRST Input)  
[179:174]  
[185:180]  
[191:186]  
[197:192]  
[203:198]  
[209:204]  
[215:210]  
[221:216]  
[227:222]  
[233:228]  
[239:234]  
IN1 of LUT3_7 or nRST (nSET) of DFF11  
Delay1 Input (or Counter1 nRST Input)  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
IN2 of LUT3_7 or Data of DFF11  
Delay1 Input (or Counter1 nRST Input)  
IN0 of LUT3_8 or CLK Input of DFF12  
Delay2 Input (or Counter2 nRST Input)  
IN1 of LUT3_8 or nRST (nSET) of DFF12  
Delay2 Input (or Counter2 nRST Input)  
IN2 of LUT3_8 or Data of DFF12  
Delay2 Input (or Counter2 nRST Input)  
IN0 of LUT3_9 or CLK Input of DFF13  
Delay3 Input (or Counter3 nRST Input)  
IN1 of LUT3_9 or nRST (nSET) of DFF13  
Delay3 Input (or Counter3 nRST Input)  
IN2 of LUT3_9 or Data of DFF13  
Delay3 Input (or Counter3 nRST Input)  
IN0 of LUT3_10 or CLK Input of DFF14  
Delay4 Input (or Counter4 nRST Input)  
IN1 of LUT3_10 or nRST (nSET) of DFF14  
Delay4 Input (or Counter4 nRST Input)  
Datasheet  
10-Mar-2021  
Revision 2.4  
47 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 27: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
IN2 of LUT3_10 or Data of DFF14  
[245:240]  
40  
41  
42  
43  
44  
45  
46  
Delay4 Input (or Counter4 nRST Input)  
IN0 of LUT3_11 or CLK Input of DFF15  
[251:246]  
Delay5 Input (or Counter5 nRST Input)  
IN1 of LUT3_11 or nRST (nSET) of DFF15  
[257:252]  
Delay5 Input (or Counter5 nRST Input)  
IN2 of LUT3_11 or nRST (nSET) of DFF15  
[263:258]  
Delay5 Input (or Counter5 nRST Input)  
IN0 of LUT3_12 or CLK Input of DFF16  
[269:264]  
Delay6 Input (or Counter6 nRST Input)  
IN1 of LUT3_12 or nRST (nSET) of DFF16  
[275:270]  
Delay6 Input (or Counter6 nRST Input)  
IN2 of LUT3_12 or Data of DFF16  
[281:276]  
Delay6 Input (or Counter6 nRST Input)  
[287:282]  
[293:288]  
[299:294]  
[305:300]  
[311:306]  
[317:312]  
[323:318]  
IN0 of LUT3_13 or Input of Pipe Delay or UP signal of RIPP CNT  
IN1 of LUT3_13 or nRST of Pipe Delay or nSet of RIPP CNT  
IN2 of LUT3_13 or CLK of Pipe Delay_RIPP CNT  
IN0 of LUT4_0 or CLK of DFF10  
47  
48  
49  
50  
51  
52  
53  
54  
IN1 of LUT4_0 or Data of DFF10  
IN2 of LUT4_0 or nRST (nSET) of DFF10  
IN3 of LUT4_0  
IN0 of LUT4_1 or CLK Input of DFF17  
Delay0 Input (or Counter0 nRST Input)  
[329:324]  
[335:330]  
IN1 of LUT4_1 or nRST of DFF17  
Delay0 Input (or Counter0 nRST Input)  
Delay/Counter0 External CLK source  
55  
56  
IN2 of LUT4_1 or nSet of DFF17  
Delay0 Input (or Counter0 nRST Input)  
Delay/Counter0 External CLK source  
KEEP Input of FSM0  
[341:336]  
IN3 of LUT4_1 or Data of DFF17  
Delay0 Input (or Counter0 nRST Input)  
UP Input of FSM0  
57  
[347:342]  
[353:348]  
[359:354]  
[365:360]  
[371:366]  
[377:372]  
[383:378]  
[389:384]  
[395:390]  
[401:396]  
[407:402]  
[413:408]  
Programmable delay/edge detect input  
Filter/Edge detect input  
IO0 DOUT  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
IO0 DOUT OE  
IO1 DOUT  
IO1 DOUT OE  
IO2 DOUT  
IO2 DOUT OE  
IO3 DOUT  
IO3 DOUT OE  
IO4 DOUT  
Datasheet  
10-Mar-2021  
Revision 2.4  
48 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 27: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[419:414]  
[425:420]  
[431:426]  
[437:432]  
[443:438]  
[449:444]  
[455:450]  
[461:456]  
[467:462]  
[473:468]  
[479:474]  
[485:480]  
[491:486]  
[497:492]  
[503:498]  
[509:504]  
[515:510]  
[521:516]  
[527:522]  
[533:528]  
[539:534]  
[545:540]  
[551:546]  
[557:552]  
[563:558]  
[569:564]  
[575:570]  
[581:576]  
[587:582]  
[593:588]  
[599:594]  
IO4 DOUT OE  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
IO5 DOUT  
IO5 DOUT OE  
IO6 DOUT  
IO6 DOUT OE  
Set of PT0 block  
Clock of PT0 block  
Reload of PT0 block  
Program of PT0 block  
Up/Down of PT0 block  
Set of PT1 block  
Clock of PT1 block  
Reload of PT1 block  
Program of PT1 block  
Up/Down of PT1 block  
FIFO Reset of PT blocks  
Power Up of Chopper ACMP  
Rheostats Charge Pump Enable  
ASW0 enable/Half bridge Enable  
ASW1 enable/Half bridge data  
ACMP0 Power Up  
ACMP1 Power Up  
Oscillator0 Enable  
Oscillator1 Enable  
Oscillator2 Enable  
VrefO, Temp sensor, VrefO Power Up  
HDBUF Enable  
Op Amp0 Power Up  
Op Amp1 Power Up  
Op Amp2 Power Up  
Op amps Vref Enable  
Note 1 For each Address, the two most significant bits are unused.  
6.3 CONNECTION MATRIX VIRTUAL INPUTS  
As mentioned previously, the Connection Matrix inputs come from the outputs of various digital macrocells on the device. Eight  
of the Connection Matrix inputs have the special characteristic that the state of these signal lines comes from a corresponding  
data bit written as a register value via I2C. This gives the user the ability to write data via the serial channel, and have this  
information translated into signals that can be driven into the Connection Matrix and from the Connection Matrix to the digital  
inputs of other macrocells on the device. The I2C address for reading and writing these register values is at 0x7C (124).  
An I2C write command to these register bits will set the signal values going into the Connection Matrix to the desired state. A  
read command to these register bits will read either the original data values coming from the NVM memory bits (that were  
Datasheet  
10-Mar-2021  
Revision 2.4  
49 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
loaded during the initial device startup), or the values from a previous write command (if that has happened).  
See Table 28.  
Table 28: Connection Matrix Virtual Inputs  
Matrix Input  
Number  
Register Bit  
Addresses (d)  
Matrix Input Signal Function  
32  
33  
34  
35  
36  
37  
38  
39  
I2C_virtual_0 Input  
I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
[992]  
[993]  
[994]  
[995]  
[996]  
[997]  
[998]  
[999]  
6.4 CONNECTION MATRIX VIRTUAL OUTPUTS  
The digital outputs of the various macrocells are routed to the Connection Matrix to enable interconnections to the inputs of other  
macrocells in the device. At the same time, it is possible to read the state of each of the macrocell outputs as a register value via  
I2C. This option, called Connection Matrix Virtual Outputs, allows the user to remotely read the values of each macrocell output.  
The I2C addresses for reading these register values are bytes 0xC4 (196) to 0xCA (202). Write commands to these same register  
values will be ignored (with the exception of the Virtual Input register bits at byte 0x7C (124)).  
Datasheet  
10-Mar-2021  
Revision 2.4  
50 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
7
Combination Function Macrocells  
The SLG47004 has 13 combination function macrocells that can serve as more than one logic or timing function. In each case,  
they can serve as a Look Up Table (LUT), or as another logic or timing function. See the list below for the functions that can be  
implemented in these macrocells:  
Three macrocells that can serve as either 2-bit LUT or as D Flip-Flop  
Seven macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input  
One macrocell that can serve as either 3-bit LUT or as Pipe Delay/Ripple Counter  
One macrocell that can serve as either 2-bit LUT or as Programmable Pattern Generator (PGen)  
One macrocell that can serve as either 4-bit LUT or as D Flip-Flop with Set/Reset Input  
Inputs/Outputs for the 13 combination function macrocells are configured from the connection matrix with specific logic functions  
being defined by the state of configuration bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user-defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
7.1 2-BIT LUT OR D FLIP-FLOP MACROCELLS  
There is one macrocell that can serve as either 2-bit LUT or as D Flip-Flop. When used to implement LUT functions, the 2-bit  
LUT takes in two input signals from the connection matrix and produces a single output, which goes back into the connection  
matrix. When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and  
clock (CLK) inputs for the Flip-Flop, with the output going back to the connection matrix.  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change.  
LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK is  
High).  
register [1483] DFF or LATCH Select  
IN1  
register [1482] Output Select (Q or nQ)  
S0  
From Connection Matrix Output [1]  
register [1481] DFF Initial Polarity Select  
OUT  
2-bit LUT0  
0: 2-bit LUT0 IN1  
1: DFF0 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
Input [1]  
S0  
S1  
4-bits NVM  
registers [1483:1480]  
0: 2-bit LUT0 Out  
1: DFF0 Out  
DFF/Latch  
Registers  
D
S0  
S1  
From Connection Matrix Output [0]  
Q/nQ  
DFF0  
0: 2-bit LUT0 IN0  
1: DFF0 CLK  
CLK  
1-bit NVM  
register [1492]  
Figure 13: 2-bit LUT0 or DFF0  
Datasheet  
10-Mar-2021  
Revision 2.4  
51 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
register [1487] DFF or LATCH Select  
register [1486] Output Select (Q or nQ)  
register [1485] DFF Initial Polarity Select  
IN1  
S0  
From Connection Matrix Output [3]  
OUT  
2-bit LUT1  
0: 2-bit LUT1 IN1  
1: DFF1 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [2]  
4-bits NVM  
registers [1487:1484]  
S1  
0: 2-bit LUT1 Out  
1: DFF1 Out  
DFF/Latch  
Registers  
D
S0  
S1  
From Connection Matrix Output [2]  
Q/nQ  
DFF1  
0: 2-bit LUT1 IN0  
1: DFF1 CLK  
CLK  
1-bit NVM  
register [1493]  
Figure 14: 2-bit LUT1 or DFF1  
register [1491] DFF or LATCH Select  
register [1490] Output Select (Q or nQ)  
register [1489] DFF Initial Polarity Select  
IN1  
S0  
S1  
From Connection Matrix Output [5]  
OUT  
2-bit LUT2  
0: 2-bit LUT2 IN1  
1: DFF2 Data  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [3]  
4-bits NVM  
registers [1491:1488]  
S1  
0: 2-bit LUT2 Out  
1: DFF2 Out  
DFF/Latch  
Registers  
D
S0  
S1  
From Connection Matrix Output [4]  
Q/nQ  
DFF2  
0: 2-bit LUT2 IN0  
1: DFF2 CLK  
CLK  
1-bit NVM  
register [1494]  
Figure 15: 2-bit LUT2 or DFF2  
Datasheet  
10-Mar-2021  
Revision 2.4  
52 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
7.1.1 2-Bit LUT or D Flip-Flop Macrocell Used as 2-Bit LUT  
Table 29: 2-bit LUT0 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1480]  
register [1481]  
register [1482]  
register [1483]  
LSB  
0
1
1
0
1
1
MSB  
Table 30: 2-bit LUT1 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1484]  
register [1485]  
register [1486]  
register [1487]  
LSB  
0
1
1
0
1
1
MSB  
Table 31: 2-bit LUT2 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1488]  
register [1489]  
register [1490]  
register [1491]  
LSB  
0
1
1
0
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT0 is defined by registers [1483:1480]  
2-Bit LUT1 is defined by registers [1487:1484]  
2-Bit LUT2 is defined by registers [1491:1488]  
Table 32 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 32: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
Datasheet  
10-Mar-2021  
Revision 2.4  
53 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
7.1.2 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
Q with nReset (Case 1)  
Initial Polarity: Low  
Q with nReset (Case 1)  
Figure 16: DFF Polarity Operations  
7.2 2-BIT LUT OR PROGRAMMABLE PATTERN GENERATOR  
The SLG47004 has one combination function macrocell that can serve as a logic or a timing function. This macrocell can serve  
as a Look Up Table (LUT), or a Programmable Pattern Generator (PGen).  
When used to implement LUT functions, the 2-bit LUT takes in two input signals from the connection matrix and produces a  
single output, which goes back into the connection matrix. When used as a LUT to implement combinatorial logic functions, the  
outputs of the LUT can be configured to any user defined function, including the following standard digital logic devices (AND,  
NAND, OR, NOR, XOR, XNOR). The user can also define the combinatorial relationship between inputs and outputs to be any  
selectable function.  
It is possible to define the RST level for the PGen macrocell. There are both high level reset (RST) and a low level reset (nRST)  
options available, which are selected by register [1517]. When operating as the Programmable Pattern Generator, the output of  
the macrocell will clock out a sequence of two to sixteen bits that are user selectable in their bit values, and user selectable in  
the number of bits (up to sixteen) that are output before the pattern repeats.  
Datasheet  
10-Mar-2021  
Revision 2.4  
54 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
From Connection Matrix Output [6]  
From Connection Matrix Output [7]  
In0  
In1  
OUT  
2-bit LUT3  
LUT Truth  
Table  
To Connection Matrix Input [4]  
S0  
S1  
0: 2-bit LUT3 OUT  
1: PGen OUT  
registers [1515:1512]  
Pattern  
size  
nRST  
CLK  
PGen  
OUT  
PGen  
Data  
register [1516]  
registers [1511:1496]  
Figure 17: 2-bit LUT3 or PGen  
VDD  
t
t
nRST  
CLK  
OUT  
1
2
6
8
16 17  
3
5
7
0
4
9
10 11  
14 15  
12 13  
t
D7  
D6  
D5  
D10  
D8  
D4  
D3  
D2  
D1  
D15  
D0  
D9  
D0  
D15  
D14  
D13  
D12  
D11  
D0  
t
Figure 18: PGen Timing Diagram  
Datasheet  
10-Mar-2021  
Revision 2.4  
55 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
7.2.1 2-Bit LUT or PGen Macrocell Used as 2-Bit LUT  
Table 33: 2-bit LUT1 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1512]  
register [1513]  
register [1514]  
register [1515]  
LSB  
0
1
1
0
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT3 is defined by [1515:1512]  
Table 34 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 34: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
7.3 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELLS  
There are seven macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset inputs. When used to  
implement LUT functions, the 3-bit LUTs each takes in three input signals from the connection matrix and produces a single  
output, which goes back into the connection matrix. When used to implement D Flip-Flop function, the three input signals from  
the connection matrix go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output  
going back to the connection matrix. It is possible to define the active level for the reset/set input of DFF/LATCH macrocell.  
There are both active high level reset/set (RST/SET) and active low level reset/set (nRST/nSET) options available, which are  
selected by register [1523].  
The DFF3 operation will flow the functional description:  
If register [1522] = 0, and the CLK is rising edge triggered, then Q = D, otherwise Q will not change.  
If register [1522] = 1, then data from D is written into the DFF by the rising edge on CLK and output to Q by the falling edge on  
CLK.  
Datasheet  
10-Mar-2021  
Revision 2.4  
56 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
register [1527] DFF or Latch Select  
register [1526] Output Select (Q or nQ)  
register [1525] DFF Initial Polarity Select  
register [1524] DFF nRST or nSET Select  
register [1523] Active level selection for  
RST/SET  
IN2  
IN1  
From Connection  
Matrix Output [10]  
S0  
S1  
register [1522] Q1 or Q2 Select  
OUT  
3-bit LUT0  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [9]  
To Connection Matrix  
S0  
S1  
Input [5]  
S0  
S1  
8-bits NVM  
registers [1527:1520]  
From Connection  
Matrix Output [8]  
S0  
S1  
DFF/Latch  
Registers  
0
1
Q/nQ  
DFF  
DFF  
D
D
Q
D
Q
nRST/  
nSET  
nRST/  
CL  
nSET  
CL  
nRST/nSET  
CLK  
register [1522]  
1-bit NVM  
register [1518]  
Figure 19: 3-bit LUT0 or DFF3  
Datasheet  
10-Mar-2021  
Revision 2.4  
57 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
register [1535] DFF or LATCH Select  
IN2  
IN1  
register [1534] Output Select (Q or nQ)  
register [1533] DFF Initial Polarity Select  
register [1532] DFF nRST or nSET Select  
register [1531] Active level selection for  
RST/SET  
From Connection  
Matrix Output [13]  
S0  
S1  
OUT  
3-bit LUT1  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [12]  
To Connection Matrix  
S0  
S1  
Input [6]  
S0  
8-bits NVM  
registers [1535:1528]  
S1  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [11]  
S0  
S1  
nRST/nSET  
CLK  
DFF4  
Q/nQ  
1-bit NVM  
register [1519]  
Figure 20: 3-bit LUT1 or DFF4  
register [791] DFF or LATCH Select  
IN2  
From Connection  
Matrix Output [16]  
S0  
S1  
register [790] Output Select (Q or nQ)  
register [789] DFF Initial Polarity Select  
register [788] DFF nRST or nSET Select  
register [787] Active level selection for RST/SET  
IN1  
OUT  
3-bit LUT2  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [15]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [7]  
8-bits NVM  
registers [791:784]  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [14]  
S0  
S1  
nRST/nSET  
CLK  
DFF5  
Q/nQ  
1-bit NVM  
register [824]  
Figure 21: 3-bit LUT2 or DFF5  
Datasheet  
10-Mar-2021  
Revision 2.4  
58 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
register [799] DFF or LATCH Select  
register [798] Output Select (Q or nQ)  
register [797] DFF Initial Polarity Select  
register [796] DFF nRST or nSET Select  
register [795] Active level selection for RST/SET  
IN2  
IN1  
From Connection  
Matrix Output [19]  
S0  
S1  
OUT  
3-bit LUT3  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [18]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [8]  
8-bits NVM  
registers [799:792]  
DFF  
Registers  
D
From Connection  
Matrix Output [17]  
S0  
S1  
nRST/nSET  
CLK  
DFF6  
Q/nQ  
1-bit NVM  
register [825]  
Figure 22: 3-bit LUT3 or DFF6  
register [807] DFF or LATCH Select  
register [806] Output Select (Q or nQ)  
register [805] DFF Initial Polarity Select  
register [804] DFF nRST or nSET Select  
register [803] Active level selection for RST/SET  
IN2  
From Connection  
Matrix Output [22]  
S0  
S1  
IN1  
OUT  
3-bit LUT4  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [21]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [9]  
8-bits NVM  
registers [807:800]  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [20]  
S0  
S1  
nRST/nSET  
CLK  
DFF7  
Q/nQ  
1-bit NVM  
registers [826]  
Figure 23: 3-bit LUT4 or DFF7  
Datasheet  
10-Mar-2021  
Revision 2.4  
59 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
register [815] DFF or LATCH Select  
register [814] Output Select (Q or nQ)  
register [813] DFF Initial Polarity Select  
register [812] DFF nRST or nSET Select  
register [811] Active level selection for RST/SET  
IN2  
IN1  
From Connection  
Matrix Output [25]  
S0  
S1  
OUT  
3-bit LUT5  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [24]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [10]  
8-bits NVM  
registers [815:808]  
DFF  
Registers  
D
From Connection  
Matrix Output [23]  
S0  
S1  
nRST/nSET  
CLK  
DFF8  
Q/nQ  
1-bit NVM  
register [827]  
Figure 24: 3-bit LUT5 or DFF8  
register [823] DFF or LATCH Select  
register [822] Output Select (Q or nQ)  
register [821] DFF Initial Polarity Select  
register [820] DFF nRST or nSET Select  
register [819] Active level selection for RST/SET  
IN2  
From Connection  
Matrix Output [28]  
S0  
S1  
IN1  
OUT  
3-bit LUT6  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [27]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [11]  
8-bits NVM  
registers [823:816]  
DFF  
Registers  
D
From Connection  
Matrix Output [26]  
S0  
S1  
nRST/nSET  
CLK  
DFF9  
Q/nQ  
1-bit NVM  
register [828]  
Figure 25: 3-bit LUT6 or DFF9  
Datasheet  
10-Mar-2021  
Revision 2.4  
60 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
7.3.1 3-Bit LUT or D Flip-Flop Macrocells Used as 3-Bit LUTs  
Table 35: 3-bit LUT0 Truth Table  
Table 39: 3-bit LUT4 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1520]  
register [1521]  
register [1522]  
register [1523]  
register [1524]  
register [1525]  
register [1526]  
register [1527]  
LSB  
register [800]  
register [801]  
register [802]  
register [803]  
register [804]  
register [805]  
register [806]  
register [807]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 36: 3-bit LUT1 Truth Table  
Table 40: 3-bit LUT5 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1528]  
register [1529]  
register [1530]  
register [1531]  
register [1532]  
register [1533]  
register [1534]  
register [1535]  
register [808]  
register [809]  
register [810]  
register [811]  
register [812]  
register [813]  
register [814]  
register [815]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 37: 3-bit LUT2 Truth Table  
Table 41: 3-bit LUT6 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [784]  
register [785]  
register [786]  
register [787]  
register [788]  
register [789]  
register [790]  
register [791]  
register [816]  
register [817]  
register [818]  
register [819]  
register [820]  
register [821]  
register [822]  
register [823]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
Table 38: 3-bit LUT3 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [792]  
register [793]  
register [794]  
register [795]  
register [796]  
register [797]  
register [798]  
register [799]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MSB  
Datasheet  
10-Mar-2021  
Revision 2.4  
61 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Each macrocell, when programmed for a LUT function, uses an 8-bit register to define their output function:  
3-Bit LUT0 is defined by registers [1527:1520]  
3-Bit LUT1 is defined by registers [1535:1528]  
3-Bit LUT2 is defined by registers [791:784]  
3-Bit LUT3 is defined by registers [799:792]  
3-Bit LUT4 is defined by registers [807:800]  
3-Bit LUT5 is defined by registers [815:808]  
3-Bit LUT6 is defined by registers [823:816]  
Table 42 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the four 3-bit LUT logic cells.  
Table 42: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-3  
OR-3  
NOR-3  
XOR-3  
XNOR-3  
Datasheet  
10-Mar-2021  
Revision 2.4  
62 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
7.3.2 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Initial Polarity: Low  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Figure 26: DFF Polarity Operations with nReset  
Datasheet  
10-Mar-2021  
Revision 2.4  
63 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Initial Polarity: Low  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Figure 27: DFF Polarity Operations with nSet  
7.4 4-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELL  
There is one macrocell that can serve as either a 4-bit LUT or as a D Flip-Flop with Set/Reset inputs. When used to implement  
LUT functions, the 4-bit LUT takes in four input signals from the connection matrix and produces a single output, which goes  
back into the connection matrix. When used to implement D Flip-Flop function, the input signals from the connection matrix go to  
the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the connection  
matrix.  
If register [842] = 0, and the CLK is rising edge triggered, then Q = D, otherwise Q will not change.  
If register [842] = 1, then data from D is written into the DFF by the rising edge on CLK and output to Q by the falling edge on  
CLK. It is possible to define the active level for the reset/set input of DFF/LATCH macrocell. There are both active high level  
reset/set (RST/SET) and active low level reset/set (nRST/nSET) options available, which are selected by register [843].  
Datasheet  
10-Mar-2021  
Revision 2.4  
64 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
From Connection  
register [847] DFF or LATCH Select  
S0  
S1  
Matrix Output [53]  
register [846] Output Select (Q or nQ)  
register [845] DFF Initial Polarity Select  
register [844] DFF nRST or nSET Select  
register [843]Active level selection for RST/SET  
register [842] Q1 or Q2 Select  
IN3  
IN2  
IN1  
From Connection  
Matrix Output [52]  
S0  
S1  
OUT  
4-bit LUT0  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [51]  
To Connection Matrix  
S0  
S1  
Input [29]  
S0  
16-bits NVM  
registers [847:832]  
S1  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [50]  
S0  
S1  
nRST/nSET DFF10  
RST/SET  
Q/nQ  
Q1/Q2  
CLK  
Select  
register [842]  
1-bit NVM  
register [829]  
Figure 28: 4-bit LUT0 or DFF10  
7.4.1 4-Bit LUT Macrocell Used as 4-Bit LUT  
Table 43: 4-bit LUT0 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [832]  
register [833]  
register [834]  
register [835]  
register [836]  
register [837]  
register [838]  
register [839]  
register [840]  
register [841]  
register [842]  
register [843]  
register [844]  
register [845]  
register [846]  
register [847]  
LSB  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
MSB  
Datasheet  
10-Mar-2021  
Revision 2.4  
65 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:  
4-Bit LUT0 is defined by registers [847:832]  
Table 44: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
7.5 3-BIT LUT OR PIPE DELAY/RIPPLE COUNTER MACROCELL  
There is one macrocell that can serve as either a 3-bit LUT or as a Pipe Delay/Ripple Counter.  
When used to implement LUT functions, the 3-bit LUT takes in three input signals from the connection matrix and produces a  
single output, which goes back into the connection matrix.  
When used as a Pipe Delay, there are three inputs signals from the matrix, Input (IN), Clock (CLK), and Reset (nRST). The Pipe  
Delay cell is built from 16 D Flip-Flop logic cells that provide the three delay options, two of which are user selectable. The DFF  
cells are tied in series where the output (Q) of each delay cell goes to the next DFF cell input (IN). Both of the two outputs (OUT0  
and OUT1) provide user selectable options for 1 to 16 stages of delay. There are delay output points for each set of the OUT0  
and OUT1 outputs to a 4-input mux that is controlled by registers [851:848] for OUT0 and registers [855:852] for OUT1.  
The 4-input MUX is used to control the selection of the amount of delay.  
The overall time of the delay is based on the clock used in the SLG47004 design. Each DFF cell has a time delay of the inverse  
of the clock time (either external clock or the internal Oscillator within the SLG47004). The sum of the number of DFF cells used  
will be the total time delay of the Pipe Delay logic cell. OUT1 Output can be inverted (as selected by register [859]).  
In the Ripple Counter mode, there are 3 options for setting, which use 7 bits. There are 3 bits to set nSET value (SV) in range  
from 0 to 7. It is a value, which will be set into the Ripple Counter outputs when nSET input goes LOW. End value (EV) will use  
3 bits for setting outputs code, which will be last code in the cycle. After reaching the EV, the Ripple Counter goes to the first code  
by the rising edge on CLK input. The Functionality mode option uses 1 bit. This setting defines how exactly Ripple Counter will  
operate.  
The user can select one of the functionality modes by register: RANGE or FULL. If the RANGE option is selected, the count starts  
from SV. If UP input is LOW the count goes down: SV→EV→EV-1 to SV+1→SV, and others (if SV is smaller than EV), or SV→SV-  
1 to EV+1→EV→SV (if SV is bigger than EV). If UP input is HIGH, count starts from SV up to EV, and others.  
In the FULL range configuration the Ripple Counter functions as follows. If UP input is LOW, the count starts from SV and goes  
down to 0. Then current counter value jumps to EV and goes down to 0, and others.  
If UP input is HIGH, count goes up starting from SV. Then current counter value jumps to 0 and counts up to EV, and others. See  
Ripple Counter functionality example in Figure 30.  
Every step is executed by the rising edge on CLK input.  
Datasheet  
10-Mar-2021  
Revision 2.4  
66 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
registers [855:848]  
From Connection  
Matrix Output [47]  
IN0  
From Connection  
Matrix Output [48]  
IN1  
IN2  
OUT  
3-bit LUT13  
From Connection  
Matrix Output [49]  
registers [855:852]  
Pipe Delay  
register [859]  
0
1
0
1
OUT2  
OUT1  
To Connection  
Matrix Input[28]  
register [858]  
From Connection  
Matrix Output [47]  
IN  
From Connection  
Matrix Output [48]  
nRST  
16 Flip-Flops  
0
1
OUT1  
From Connection  
Matrix Output [49]  
CLK  
To Connection  
Matrix Input [27]  
register [858]  
OUT0  
0
1
OUT0  
To Connection  
Matrix Input [26]  
0
1
registers [851:848]  
1 Pipe OUT  
register [857]  
Ripple Counter  
3 Flip-Flops  
UP  
From Connection  
Matrix Output [47]  
UP/DOWN  
Control  
OUT0  
D
Q
DFF1  
CLK  
From Connection  
Matrix Output [49]  
CL  
nQ  
nSET  
From Connection  
Matrix Output [48]  
SET  
OUT1  
OUT2  
Control  
D
Q
DFF2  
CL  
nQ  
Mode & SET/END  
Value Control  
D
Q
DFF3  
nQ  
CL  
registers [854:848]  
Figure 29: 3-bit LUT13/Pipe Delay/Ripple Counter  
Datasheet  
10-Mar-2021  
Revision 2.4  
67 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 30: Example: Ripple Counter Functionality  
7.5.1 3-Bit LUT or Pipe Delay Macrocells Used as 3-Bit LUT  
Table 45: 3-bit LUT13 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [848]  
register [849]  
register [850]  
register [851]  
register [852]  
register [853]  
register [854]  
register [855]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Datasheet  
10-Mar-2021  
Revision 2.4  
68 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Each macrocell, when programmed for a LUT function, uses an 8-bit register to define their output function:  
3-Bit LUT13 is defined by registers [855:848]  
Datasheet  
10-Mar-2021  
Revision 2.4  
69 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
8
Multi-Function Macrocells  
The SLG47004 has seven Multi-Function macrocells that can serve as more than one logic or timing function. In each case, they  
can serve as a LUT, DFF with flexible settings, or as CNT/DLY with multiple modes such as One Shot, Frequency Detect, Edge  
Detect, and others. Also, the macrocell is capable to combine those functions: LUT/DFF connected to CNT/DLY or CNT/DLY  
connected to LUT/DFF, see Figure 31.  
See the list below for the functions that can be implemented in these macrocells:  
Six macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-Bit Counter/Delays  
One macrocell that can serve as a 4-bit LUT/D Flip-Flop and as 16-Bit Counter/Delay/FSM  
To Connection Matrix  
To Connection Matrix  
From  
From  
Connection  
Matrix  
Connection  
To Connection  
Matrix  
To Connection  
Matrix  
LUT  
or  
DFF  
Matrix  
LUT  
or  
DFF  
CNT/DLY  
CNT/DLY  
Figure 31: Possible Connections Inside Multi-Function Macrocell  
Inputs/Outputs for the seven Multi-Function macrocells are configured from the connection matrix with specific logic functions  
being defined by the state of NVM bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
8.1 3-BIT LUT OR DFF/LATCH WITH 8-BIT COUNTER/DELAY MACROCELLS  
There are six macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-Bit Counter/Delays.  
When used to implement LUT functions, the 3-bit LUTs each takes in three input signals from the connection matrix and produces  
a single output, which goes back into the connection matrix or can be connected to CNT/DLY's input.  
When used to implement D Flip-Flop function, the three input signals from the connection matrix go to the data (D), clock (CLK),  
and Reset/Set (nRST/nSET) inputs of the Flip-Flop, with the output going back to the connection matrix or to the CNT/DLY's input.  
When used to implement Counter/Delays, each macrocell has a dedicated matrix input connection. For flexibility, each of these  
macrocells has a large selection of internal and external clock sources, as well as the option to chain from the output of the  
previous (N-1) CNT/DLY macrocell, to implement longer count/delay circuits. These macrocells can also operate in a One-Shot  
mode, which will generate an output pulse of user-defined width. They can also operate in a Frequency Detection or Edge  
Detection mode.  
Counter/Delay macrocell has an initial value, which defines its initial value after SLG47004 is powered up. It is possible to select  
initial Low or initial High, as well as initial value defined by a Delay In signal.  
For example, in case initial LOW option is used, the rising edge delay will start operation.  
For timing diagrams refer to Section 8.3.  
Note: After two DFF – counters initialize with counter data = 0 after POR.  
Initial state = 1 – counters initialize with counter data = 0 after POR.  
Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.  
Datasheet  
10-Mar-2021  
Revision 2.4  
70 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
CNT5 and CNT6 current count value can be read via I2C. However, it is possible to change the counter data (value counter starts  
operating from) for any macrocell using I2C write commands. In this mode, it is possible to load count data immediately (after two  
DFF) or after counter ends counting. See Section 18.7.1 for further details.  
8.1.1 3-Bit LUT or 8-Bit CNT/DLY Block Diagrams  
register [1391] DFF or LATCH Select  
register [1390] Output Select (Q or nQ)  
From Connection  
register [1389] (nRST or nSET) from  
Matrix Output [31]  
IN2  
IN1  
IN0  
matrix Output  
register [1388] DFF Initial Polarity Select  
S0  
S1  
3-bit LUT7  
S0  
S1  
OUT  
LUT Truth  
Table  
From Connection  
Matrix Output [30]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [15]  
8-bits NVM  
registers [1391:1384]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [29]  
S0  
S1  
S0  
S1  
nRST/nSET DFF/  
Q/nQ  
LATCH11  
CLK  
register [1244]  
LUT/DFF Sel  
registers [1399:1392]  
registers [1243:1240]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [14]  
0
S0  
OUT  
CNT/DLY1  
S0  
S1  
S2  
S1  
S2  
S3  
DLY_IN/CNT Reset  
Config  
Data  
registers [1255:1245],  
[1339:1338]  
0
S3  
Figure 32: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT7/DFF11, CNT/DLY1)  
Datasheet  
10-Mar-2021  
Revision 2.4  
71 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
register [1407] DFF or LATCH Select  
register [1406] Output Select (Q or nQ)  
register [1405] (nRST or nSET) from  
matrix Output  
From Connection  
Matrix Output [34]  
IN2  
register [1404] DFF Initial Polarity Select  
S0  
S1  
3-bit LUT8  
S0  
S1  
OUT  
IN1  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [33]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [17]  
8-bits NVM  
registers [1407:1400]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [32]  
S0  
S1  
S0  
S1  
nRST/nSET  
CLK  
DFF/  
Latch12  
Q/nQ  
register [1260]  
LUT/DFF Sel  
registers [1415:1408]  
registers [1259:1256]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [16]  
0
S0  
OUT  
CNT/DLY2  
S0  
S1  
S2  
S1  
S2  
S3  
DLY_IN/CNT Reset  
Config  
Data  
0
S3  
registers [1271:1261], [1345:1344]  
Figure 33: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT8/DFF12, CNT/DLY2)  
Datasheet  
10-Mar-2021  
Revision 2.4  
72 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
register [1423] DFF or LATCH Select  
register [1422] Output Select (Q or nQ)  
register [1421] (nRST or nSET) from  
matrix Output  
From Connection  
Matrix Output [37]  
IN2  
register [1420] DFF Initial Polarity Select  
S0  
S1  
3-bit LUT9  
S0  
S1  
OUT  
IN1  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [36]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [19]  
8-bits NVM  
registers [1423:1416]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [35]  
S0  
S1  
S0  
S1  
nRST/nSET  
DFF/  
Q/nQ  
Latch13  
CLK  
register [1276]  
LUT/DFF Sel  
registers [1275:1272]  
Mode Sel  
registers [1431:1424]  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [18]  
0
S0  
OUT  
CNT/DLY3  
S0  
S1  
S2  
S1  
S2  
S3  
DLY_IN/CNT Reset  
Config  
Data  
0
S3  
registers [1287:1277], [1347:1346]  
Figure 34: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF13, CNT/DLY3)  
Datasheet  
10-Mar-2021  
Revision 2.4  
73 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
register [1439] DFF or LATCH Select  
register [1438] Output Select (Q or nQ)  
register [1437] (nRST or nSET) from  
matrix Output  
From Connection  
Matrix Output [40]  
IN2  
register [1436] DFF Initial Polarity Select  
S0  
3-bit LUT10  
S0  
OUT  
IN1  
S1  
S1  
LUT Truth  
Table  
IN0  
From Connection  
Matrix Output [39]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [21]  
8-bits NVM  
registers [1439:1432]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [38]  
S0  
S1  
S0  
S1  
nRST/nSET  
DFF/  
Q/nQ  
Latch14  
CLK  
register [1292]  
LUT/DFF Sel  
registers [1447:1440  
registers [1291:1288]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [20]  
0
S0  
OUT  
CNT/DLY4  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1303:1293], [1349:1348]  
Figure 35: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF14, CNT/DLY4)  
Datasheet  
10-Mar-2021  
Revision 2.4  
74 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
register [1455] DFF or LATCH Select  
register [1454] Output Select (Q or nQ)  
register [1453] (nRST or nSET) from  
matrix Output  
From Connection  
Matrix Output [43]  
register [1452] DFF Initial Polarity Select  
IN2  
S0  
3-bit LUT11  
S0  
OUT  
IN1  
S1  
S1  
LUT Truth  
Table  
IN0  
From Connection  
Matrix Output [42]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [23]  
8-bits NVM  
registers [1455:1448]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [41]  
S0  
S1  
S0  
S1  
nRST/nSET  
DFF/  
Q/nQ  
Latch15  
CLK  
register [1308]  
LUT/DFF Sel  
registers [1307:1304]  
Mode Sel  
registers [1463:1456]  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [22]  
0
S0  
OUT  
CNT/DLY5  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1319:1309], [1351:1350]  
Figure 36: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT11/DFF15, CNT/DLY5)  
Datasheet  
10-Mar-2021  
Revision 2.4  
75 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
register [1471] DFF or LATCH Select  
register [1470] Output Select (Q or nQ)  
register [1469] (nRST or nSET) from  
matrix Output  
From Connection  
Matrix Output [46]  
register [1468] DFF Initial Polarity Select  
IN2  
S0  
3-bit LUT12  
S0  
OUT  
IN1  
S1  
S1  
LUT Truth  
Table  
IN0  
From Connection  
Matrix Output [45]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [25]  
8-bits NVM  
registers [1471:1464]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [44]  
S0  
S1  
S0  
S1  
nRST/nSET  
DFF/  
Q/nQ  
Latch16  
CLK  
register [1324]  
LUT/DFF Sel  
registers [1479:1472]  
registers [1323:1320]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [24]  
0
S0  
OUT  
CNT/DLY6  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1335:1325], [1341:1340]  
Figure 37: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT12/DFF16, CNT/DLY6)  
As shown in Figure 32 to Figure 37 there is a possibility to use LUT/DFF and CNT/DLY simultaneously.  
Note: It is not possible to use LUT and DFF at once, one of these macrocells must be selected.  
Case 1. LUT/DFF in front of CNT/DLY. Three input signals from the connection matrix go to previously selected LUT or DFF's  
inputs and produce a single output which goes to a CND/DLY input. In its turn Counter/Delay's output goes back to the matrix.  
Case 2. CNT/DLY in front of LUT/DFF. Two input signals from the connection matrix go to CND/DLY's inputs (IN and CLK). Its  
output signal can be connected to any input of previously selected LUT or DFF, after which the signal goes back to the matrix.  
Case 3. Single LUT/DFF or CNT/DLY. Also, it is possible to use a standalone LUT/DFF or CNT/DLY. In this case, all inputs  
and output of the macrocell are connected to the matrix.  
Datasheet  
10-Mar-2021  
Revision 2.4  
76 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
8.1.2 3-Bit LUT or CNT/DLYs Used as 3-Bit LUTs  
Table 46: 3-bit LUT7 Truth Table  
Table 50: 3-bit LUT11 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1384]  
register [1385]  
register [1386]  
register [1387]  
register [1388]  
register [1389]  
register [1390]  
register [1391]  
LSB  
register [1448]  
register [1449]  
register [1450]  
register [1451]  
register [1452]  
register [1453]  
register [1454]  
register [1455]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 47: 3-bit LUT8 Truth Table  
Table 51: 3-bit LUT12 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1400]  
register [1401]  
register [1402]  
register [1403]  
register [1404]  
register [1405]  
register [1406]  
register [1407]  
register [1464]  
register [1465]  
register [1466]  
register [1467]  
register [1468]  
register [1469]  
register [1470]  
register [1471]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
Table 48: 3-bit LUT9 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1416]  
register [1417]  
register [1418]  
register [1419]  
register [1420]  
register [1421]  
register [1422]  
register [1423]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MSB  
LSB  
Table 49: 3-bit LUT10 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1432]  
register [1433]  
register [1434]  
register [1435]  
register [1436]  
register [1437]  
register [1438]  
register [1439]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MSB  
Datasheet  
10-Mar-2021  
Revision 2.4  
77 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Each macrocell, when programmed for a LUT function, uses an 8-bit register to define their output function:  
3-Bit LUT7 is defined by registers [1391:1384]  
3-Bit LUT8 is defined by registers [1407:1400]  
3-Bit LUT9 is defined by registers [1423:1416]  
3-Bit LUT10 is defined by registers [1439:1432]  
3-Bit LUT11 is defined by registers [1455:1448]  
3-Bit LUT12 is defined by registers [1471:1464]  
Datasheet  
10-Mar-2021  
Revision 2.4  
78 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
8.2 4-BIT LUT OR DFF/LATCH WITH 16-BIT COUNTER/DELAY MACROCELL  
There is one macrocell that can serve as either 4-bit LUT/D Flip-Flops or as 16-bit Counter/Delay.  
When used to implement LUT function, the 4-bit LUT takes in four input signals from the Connection Matrix and produces a single  
output, which goes back into the Connection Matrix.  
When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and clock (CLK)  
inputs for the Flip-Flop, with the output going back to the connection matrix.  
When used to implement 16-Bit Counter/Delay function, two of the four input signals from the connection matrix go to the external  
clock (EXT_CLK) and reset (DLY_IN/CNT Reset) for the Counter/Delay, with the output going back to the connection matrix.  
This macrocell has an optional Finite State Machine (FSM) function. There are two additional matrix inputs for Up and Keep to  
support FSM functionality  
This macrocell can also operate in a one-shot mode, which will generate an output pulse of user-defined width.  
This macrocell can also operate in a frequency detection or edge detection mode.  
This macrocell can have its active count value read via I2C. See Section 18.7.1 for further details.  
Note: After two DFF – counters initialize with counter data = 0 after POR.  
Initial state = 1 – counters initialize with counter data = 0 after POR.  
Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.  
Datasheet  
10-Mar-2021  
Revision 2.4  
79 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
8.2.1 4-Bit LUT or DFF/LATCH with 16-Bit CNT/DLY Block Diagram  
From Connection  
Matrix Output [57]  
IN3  
register [1367] DFF or LATCH Se-  
S0  
S1  
lect  
register [1366] DFF Output Select  
(Q or nQ)  
register [1365] DFF Initial Polarity  
Select  
S1  
S0  
S1  
S0  
IN2  
IN1  
From Connection  
Matrix Output [56]  
0
4-bit LUT1  
S1  
S0  
S0  
S1  
S1  
S0  
0
OUT  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [55]  
S1  
S0  
To Connection  
S0  
S0  
S1  
S1  
S0  
Matrix Input [13]  
registers [1217:1216] =  
00, 10, 11  
16-bits NVM  
registers [1367:1352]  
1
S1  
From Connection  
Matrix Output [54]  
DFF  
D
S1  
S0  
Registers  
S0  
S1  
S1  
S0  
nSET  
Q/nQ  
DFF17  
1
nRST  
CLK  
LUT/DFF Sel  
register [1220]  
registers [1222:1221]  
registers [1383:1368]  
CNT  
registers [1219:1216]  
Mode Selection  
0
S0  
S1  
S2  
S3  
Data  
ext_CLK  
CMO* [56]  
CMO* [55]  
S0  
S1  
To Connection  
Matrix Input [12]  
S0  
0
0
S0  
S1  
S2  
S3  
CMO* [57]  
CMO* [56]  
CMO* [55]  
CMO* [54]  
S1  
S2  
S3  
OUT  
CNT/DLY0  
DLY_IN/CNT Reset  
CMO* [55]  
S1  
S0  
From Connection  
Matrix Output [56]  
0
KEEP  
UP  
From Connection  
Matrix Output [57]  
FSM  
S1  
S0  
Config  
Data  
0
Note: CMO - Connection Matrix Output  
registers [1238:1223],  
[1337:1336]  
registers [1217:1216] = 01  
Figure 38: 4-bit LUT1 or CNT/DLY0  
Datasheet  
10-Mar-2021  
Revision 2.4  
80 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
8.2.2 4-Bit LUT or 16-Bit Counter/Delay Macrocells Used as 4-Bit LUTs  
Table 52: 4-bit LUT1 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1352]  
register [1353]  
register [1354]  
register [1355]  
register [1356]  
register [1357]  
register [1358]  
register [1359]  
register [1360]  
register [1361]  
register [1362]  
register [1363]  
register [1364]  
register [1365]  
register [1366]  
register [1367]  
LSB  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:  
4-Bit LUT1 is defined by registers [1367:1352]  
Table 53: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
Datasheet  
10-Mar-2021  
Revision 2.4  
81 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
8.3 CNT/DLY/FSM TIMING DIAGRAMS  
8.3.1 Delay Mode CNT/DLY0 to CNT/DLY6  
Delay In  
Asynchronous delay variable  
Asynchronous delay variable  
OSC: force Power-On  
(always running)  
Delay Output  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
Delay In  
offset  
offset  
OSC: auto Power-On  
(powers up from delay in)  
Delay Output  
delay = offset + period x (counter data + 1)  
See offset in table 3  
delay = offset + period x (counter data + 1)  
See offset in table 3  
Figure 39: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3  
Datasheet  
10-Mar-2021  
Revision 2.4  
82 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
The macrocell shifts the respective edge to a set time and restarts by appropriate edge. It works as a filter if the input signal is  
shorter than the delay time.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
Delay Function  
Rising Edge Detection  
t
Delay Function  
Falling Edge Detection  
t
Delay Function  
Both Edge Detection  
t
Figure 40: Delay Mode Timing Diagram for Different Edge Select Modes  
8.3.2 Count Mode (Count Data: 3), Counter Reset (Rising Edge Detect) CNT/DLY0 to CNT/DLY6  
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in first rising edge CLK  
Figure 41: Counter Mode Timing Diagram without Two DFFs Synced Up  
Datasheet  
10-Mar-2021  
Revision 2.4  
83 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in 0 CLK after reset  
Figure 42: Counter Mode Timing Diagram with Two DFFs Synced Up  
Datasheet  
10-Mar-2021  
Revision 2.4  
84 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
8.3.3 One-Shot Mode CNT/DLY0 to CNT/DLY6  
This macrocell will generate a pulse whenever a selected edge is detected on its input. Register bits set the edge selection. The  
pulse width is determined by counter data and clock selection properties.  
The output pulse polarity (non-inverted or inverted) is selected by register bit. Any incoming edges will be ignored during the pulse  
width generation. The following diagram shows one-shot function for non-inverted output.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
One-Shot Function  
Rising Edge Detection  
t
One-Shot Function  
Falling Edge Detection  
t
One-Shot Function  
Both Edge Detection  
t
Figure 43: One-Shot Function Timing Diagram  
This macrocell generates a high level pulse with a set width (defined by counter data) when detecting the respective edge. It does  
not restart while pulse is high.  
8.3.4 Frequency Detection Mode CNT/DLY0 to CNT/DLY6  
Rising Edge: The output goes high if the time between two successive edges is less than the delay. The output goes low if the  
second rising edge has not come after the last rising edge in specified time.  
Falling Edge: The output goes high if the time between two falling edges is less than the set time. The output goes low if the  
second falling edge has not come after the last falling edge in specified time.  
Both Edge: The output goes high if the time between the rising and falling edges is less than the set time, which is equivalent to  
the length of the pulse. The output goes low if after the last rising/falling edge and specified time, the second edge has not come.  
Datasheet  
10-Mar-2021  
Revision 2.4  
85 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Frequency Detector Function  
Rising Edge Detection  
Frequency Detector Function  
Falling Edge Detection  
t
t
Frequency Detector Function  
Both Edge Detection  
Figure 44: Frequency Detection Mode Timing Diagram  
Datasheet  
10-Mar-2021  
Revision 2.4  
86 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
8.3.5 Edge Detection Mode CNT/DLY1 to CNT/DLY6  
The macrocell generates high level short pulse when detecting the respective edge. See Table 10.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Edge Detector Function  
Rising Edge Detection  
Edge Detector Function  
Falling Edge Detection  
t
t
Edge Detector Function  
Both Edge Detection  
Figure 45: Edge Detection Mode Timing Diagram  
8.3.6 Delayed Edge Detection Mode CNT/DLY0 to CNT/DLY6  
In Delayed Edge Detection Mode, High-level short pulses are generated on the macrocell output after the configured delay time,  
if the corresponding edge was detected on the input.  
If the input signal is changed during the set delay time, the pulse will not be generated.  
Datasheet  
10-Mar-2021  
Revision 2.4  
87 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delayed Edge Detector  
Function Rising  
Edge Detection  
Delayed Edge Detector  
Function Falling  
Edge Detection  
t
t
Delayed Edge Detector  
Function Both  
Edge Detection  
Figure 46: Delayed Edge Detection Mode Timing Diagram  
8.3.7 CNT/FSM Mode CNT/DLY0  
RESET IN  
KEEP  
COUNT END  
CLK  
3
2
1
0
3
2
1
0
3
2
1
3
2
1
0
0
Q
Note: Q = current counter value  
Figure 47: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3  
Datasheet  
10-Mar-2021  
Revision 2.4  
88 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
SET IN  
KEEP  
COUNT END  
CLK  
2
1
0
3
2
1
0
3
3
2
1
2
1
0
3
3
Q
Note: Q = current counter value  
Figure 48: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3  
RESETI N  
KEEP  
COUNT END  
CLK  
65535  
65533 65534  
5
6
7
8
9
3
4
5
3
4
5
1
2
3
4
0
Q
Note: Q = current counter value  
Figure 49: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3  
Datasheet  
10-Mar-2021  
Revision 2.4  
89 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
SET IN  
KEEP  
COUNT END  
CLK  
65533 65534 65535  
8
9
10 11 12  
3
4
5
3
4
5
4
5
6
7
3
Q
Note: Q = current counter value  
Figure 50: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3  
8.3.8 Difference in Counter Value for Counter, Delay, One-Shot, and Frequency Detect Modes  
There is a difference in counter value for Counter and Delay/One-Shot/Frequency Detect modes. Compared to Counter mode,  
in Delay/One-Shot/Frequency Detect modes the counter value is shifted for two rising edges of the clock signal. See Figure 51.  
One-Shot/Freq. SET/Delay IN  
CLK  
CNT Out  
0
3
2
1
0
CNT Data  
3
2
DLY Out  
Delay Data  
3
3
2
1
3
3
3
One-Shot Out  
One-Shot Data  
3
3
2
3
3
1
3
Figure 51: Counter Value, Counter Data = 3  
Datasheet  
10-Mar-2021  
Revision 2.4  
90 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
8.4 WAKE AND SLEEP CONTROLLER  
The SLG47004 has a Wake and Sleep (WS) function for ACMP. The macrocell CNT/DLY0 can be reconfigured for this purpose  
registers [1224:1223] = 11 and register [1232] = 1. The WS serves for power saving, it allows to switch on and off selected ACMPs  
on selected bit of 16-bit counter.  
Note 1: BG/Analog_Good time is long and should be considered in the wake and sleep timing in case it dynamically powers on/off.  
Note 2: Wake time should be long enough to make sure ACMP and Vref have enough time to get a sample before going to sleep.  
Power Control  
From Connection Matrix Output [91] for 2 kHz OSC0.  
WS Controller  
OSC0  
CNT0_out  
CNT  
cnt_end  
To Connection Matrix Input [12]  
ck  
CK_OSC  
Divider  
Analog Control Block  
ACMPs WS EN [1:0]  
register [612], register [634]  
2
bg/regulator  
pd  
From Connection  
Matrix Output [90:89]  
WS_out  
WS_PD  
WS_PD  
(from OSC PD)  
ACMPs_PD  
2
WS_out  
WS_PD to WS out  
state selection register [1233]  
registers [1230:1227]  
WS clock freq. selection  
registers [1383:1368]  
WS ratio control data  
ACMPs  
registers [633], [611]  
WS mode: normal or short wake  
ACMP0, ACMP1 OUT  
2
+
-
0
1
Note: WS_PD is High at OSC0 power-down  
2
To Connection  
Matrix Input  
[57:56]  
ACMPs_PD  
WS_out  
nRST  
BG/Analog_Good  
Figure 52: Wake and Sleep Controller  
Datasheet  
10-Mar-2021  
Revision 2.4  
91 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
time between Reset goes low  
and 1st WS clock rising edge  
Force Wake  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP Latches Last Data  
Normal ACMP  
Operation  
ACMP follows input  
Sleep Mode  
ACMP Latches New Data  
Normal ACMP  
Sleep Mode  
ACMP Latches  
New Data  
Operation  
ACMP follows input  
BG/Analog  
Startup time*  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 53: Wake and Sleep Timing Diagram, Normal Wake Mode, Counter Reset is Used  
time between Reset goes low  
and 1st WS clock rising edge  
Force Wake  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP Latches Last Data  
Sleep Mode  
ACMP Latches New Data  
Normal ACMP  
Operation for short time  
ACMP follows input  
Sleep Mode  
ACMP Latches  
New Data  
Normal ACMP  
Operation for short time  
ACMP follows input  
BG/Analog  
Startup time*  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 54: Wake and Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used  
Datasheet  
10-Mar-2021  
Revision 2.4  
92 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
time between Reset goes low  
and 1st WS clock rising edge  
Force Sleep  
CNT_SET  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP Latches Last Data  
Normal ACMP  
Operation  
ACMP follows input  
Sleep Mode  
ACMP Latches New Data  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1 us to make sure the data is correct during LATCH.  
Figure 55: Wake and Sleep Timing Diagram, Normal Wake Mode, Counter Set is Used  
time between Reset goes low  
and 1st WS clock rising edge  
Force Sleep  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
Sleep Mode  
ACMP Latches New Data  
ACMP Latches Last Data  
Normal ACMP  
Operation for short time  
ACMP follows input  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 56: Wake and Sleep Timing Diagram, Short Wake Mode, Counter Set is Used  
Note: If low power BG is powered on/off by WS, the wake time should be longer than 2.1 ms. The BG/analog start up time will  
take maximal 2 ms. If low power BG is always on, OSC0 period is longer than required wake time. The short wake mode can be  
used to reduce the current consumption. The short wake mode is edge triggered, when the wake signal is latched by rising edge  
and released the Power-On signal after the ACMP output data is latched. This allows to have a valid ACMP data for any type of  
wake signal and have the optimized current consumption.  
Datasheet  
10-Mar-2021  
Revision 2.4  
93 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
To use any ACMP under WS controller, the following settings must be done:  
CNT/DLY0 must be set to Wake and Sleep Controller function (for all ACMPs);  
Register WS => enable (for each ACMP separately);  
CNT/DLY0 set/reset input = 0 (for all ACMPs).  
As the OSC any oscillator with any pre-divider can be used. The user can select a period of time while the ACMP is sleeping in  
a range of 1 - 65535 clock cycles. Before they are sent to sleep their outputs are latched, so the ACMPs remain their state (High  
or Low) while sleeping.  
WS controller has the following settings:  
Wake and Sleep Output State (High/Low)  
If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = High, the  
ACMP is continuously on.  
If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = Low, the  
ACMP is continuously off.  
Both cases WS function is turned off.  
Counter Data (Range: 1 to 65535)  
User can select wake and sleep ratio of the ACMP; counter data = sleep time, one clock = wake time.  
Q mode - defines the state of WS counter data when Set/Reset signal appears Reset - when active signal appears, the WS  
counter will reset to zero and High level signal on its output will turn on the ACMPs. When Reset signal goes out, the WS  
counter will go Low and turn off the ACMPs until the counter counts up to the end. Set - when active signal appears, the WS  
counter will stop and Low level signal on its output will turn off the ACMPs. When Set signal goes out, the WS counter will go  
on counting and High level signal will turn on the ACMPs while counter is counting up to the end.  
Note: The OSC0 matrix power down to control ACMP WS is not supported for short wait time option.  
Edge Select defines the edge for Q mode  
High level Set/Reset - switches mode Set/Reset when level is High  
Note: Q mode operates only in case of "High Level Set/Reset”.  
Wake time selection - time required for wake signal to turn the ACMPs on  
Normal Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on until  
WS signal is Low again. Wake time is one clock period. It should be longer than BG turn on time and minimal required  
comparing time of the ACMP.  
Short Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on for 1 µs  
and turn off regardless of WS signal. The WS signal width does not matter.  
Keep - pauses counting while Keep = 1  
Up - reverses counting  
If Up = 1, CNT is counting up from user selected value to 65535.  
If Up = 0, CNT is counting down from user selected value to 0.  
Datasheet  
10-Mar-2021  
Revision 2.4  
94 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
9
Analog Comparators  
9.1 ANALOG COMPARATORS OVERVIEW  
There are two Low Power Rail-to-Rail General Purpose Analog Comparators (ACMP) macrocells in the SLG47004. For the  
ACMP macrocells to be used in a GreenPAK design, the power-up signals (ACMP0_L_pdb and ACMP1_L_pdb) need to be  
active. By connecting to signals coming from the Connection Matrix, it is possible to have each ACMP be ON continuously, OFF  
continuously, or switched on periodically, based on a digital signal coming from the Connection Matrix. When ACMP is powered  
down, its output is low. Two General Purpose Analog Comparators are optimized for low power operation.  
Each of the General Purpose ACMP cells has a positive input signal that can be provided by a variety of external sources, and  
can also have a selectable gain stage (1x, 0.5x, 0.33x, 0.25x) before connection to the analog comparator. The gain divider is  
unbuffered and has an input resistance of 2 M(typ) for 0.5x, 0.33x, 0.25x, and 10 Gfor 1x. Each of the General Purpose  
ACMP macrocells has a negative input signal that is either created from an internal Vref or provided by any external source  
(from external pins). Note that the external Vref signal is filtered with a 2nd order low pass filter with 8 kHz typical bandwidth, see  
in Figure 57 and Figure 58.  
Input bias current < 1 nA (typ).  
PWR UP = 1 => ACMP is powered up.  
PWR UP = 0 => ACMP is powered down.  
Both General Purpose Analog Comparators have "Low Energy Power Up" setting (register [608] - AСMP0, register [630] -  
AСMP1). When enabled, it allows reducing average power consumption during ACMP power up process. This setting changes  
power up sequence of analog macrocells:  
Low Energy Power Up register [608], register [630] = 0 - all analog macrocells associated with ACMP turns on simultaneously.  
Low Energy Power Up register [608], register [630] = 1 - the first macrocell that begins to turn on is Bandgap. Other analog  
macrocells begin to turn on only after BG_OK signal is valid. This option slightly increases general ACMP Power-On time, while  
reducing the average current consumption.  
During power-up, the ACMP output will remain LOW, and then becomes valid after power up signal goes high for ACMP0_L and  
ACMP1_L (see parameter tstart in Table 16).  
Each cell also has a flexible hysteresis selection, to offer hysteresis of 32 steps, but not more than Vref voltage. It means that  
there are 6-bits to select Vref and independent 6-bits to select the hysteresis (no need to have an adder logic).  
It’s possible to enable low pass filter at the Vref input. But it’s highly recommended to enable this LPF only when hysteresis  
Vhys > 196 mV.  
ACMP0_L IN+ options are OA0_out, GPIOx (PIN), VDD.  
ACMP1_L IN+ options are OA1, GPIOx (PIN), ACMP0L_IN+, Temp Sensor OUT.  
Datasheet  
10-Mar-2021  
Revision 2.4  
95 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
9.1.1 ACMP0L Block Diagram  
registers [629:624]  
registers [623:618]  
to ACMP1_L  
6-bit  
Hysteresis  
Selection  
registers [615:614]  
OA0_Out  
ACMP  
Ready  
00  
01  
10  
GPIO  
Selectable  
Gain  
+
-
To Connection  
Matrix Input [56]  
0
1
Internal VDD  
pUp  
Vref  
Latch  
Low Power  
ACMP  
registers [617:616]  
register [612]  
W/S Control  
GPIO  
1000000  
register [613]  
From Connection  
Matrix Output [89]  
0111111-  
0000000  
LPF  
Vref  
registers [629:624]  
registers [623:618]  
Figure 57: ACMP0L Block Diagram  
Datasheet  
10-Mar-2021  
Revision 2.4  
96 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
9.1.2 ACMP1L Block Diagram  
registers [651:646]  
registers [645:640]  
6-bit  
Hysteresis  
Selection  
registers [637:636]  
OA1_Out  
00  
01  
10  
11  
ACMP  
Ready  
GPIO  
Selectable  
Gain  
+
-
From ACMP0_L_IN+  
To Connection  
Matrix Input [57]  
0
1
pUp  
Vref  
Temp Sensor  
Latch  
Low Power  
ACMP  
registers [639:638]  
register [634]  
W/S Control  
GPIO  
1000000  
register [635]  
From Connection  
Matrix Output [90]  
0111111-  
0000000  
LPF  
Vref  
registers [651:646]  
registers [645:640]  
Figure 58: ACMP1L Block Diagram  
9.2 CHOPPER ANALOG COMPARATOR  
There is one Chopper Rail-to-Rail Analog Comparator (ACMP) macrocells in the SLG47004. It is possible to use Chopper  
ACMP to do in system trim by changing the Rheostat resistance in Auto-Trim mode. It is also possible to use a Chopper ACMP  
as a general purpose analog comparator.  
The chopper ACMP power up signal is controlled either by internal Auto-Trim logic (Set 0/1 of Digital Rheostat 0/1) or by matrix  
input.  
The chopper ACMP is automatically powered on during the calibration time to control the up/down signal of the counter/rheostat,  
when the Auto-Trim is enabled (register [909]= 0).  
In order to use Chopper ACMP as a standalone comparator (Auto-Trim mode is disabled, register [909] = 1) user should provide  
the clock signal to this macrocell. Clock source can be internal oscillators or any pulses from the connection matrix.  
Note that clock frequency for the Chopper ACMP shouldn’t be greater than fChACMP. Please refer to Table 23.  
Output of Chopper ACMP can be optionally inverted by register [882].  
The matrix output [85] is used to control chopper ACMP power up signal for the general purpose usage, see Figure 59. It is  
possible to use the chopper ACMP as a general purpose ACMP after Auto-Trim procedure is completed, since the power up  
signal is a logic OR of the latched Set (Digital Rheostat 0/1) signal and matrix signal. If Auto-Trim (Set 0/1 of Digital Rheostat  
0/1) is disabled and chopper ACMP channel is set to Auto (Channel 0/1), then ACMP output defaults to Channel 0 while  
Channel 1 is ignored.  
The power-up signals need to be active high in order to use the Chopper ACMP. By connecting to signals coming from the  
Connection Matrix, it is possible to have ACMP be ON continuously, OFF continuously, or switched on periodically based on a  
Datasheet  
10-Mar-2021  
Revision 2.4  
97 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
digital signal coming from the Connection Matrix. When ACMP is powered down, its output is low.  
There are no Gain and Hysteresis selection for chopper ACMP compared to the ACMP0L and ACMP1L.  
It's possible to select different reference sources for Chopper ACMP. It can be:  
external voltage from pin;  
divided internal voltage from internal reference source (from 32 mV to 2048 mV);  
divided internal reference voltage from HD Buffer (64 steps);  
divided VDDA voltage (64 steps).  
For more information see Section 15.  
The positive input of the Chopper ACMP can be connected to the Op Amp0 out or Op Amp1 out or In Amp out, or to the external  
PIN.  
The inputs of Chopper ACMP can be reconfigured while operating in AutoTrim mode. There is one configuration of inputs  
(Figure 59) for case when Set0 (Digital Rheostat 0) signal is latched, and another configuration of Chopper ACMP inputs when  
Set1 (Digital Rheostat 1) signal is latched. For example, M1 MUX can be configured to operate with In Amp out when Set0  
(Digital Rheostat 0) is latched and Chopper_ACMP+ pin when Set1 (Digital Rheostat 1) is latched. The same way, “-” input of  
Chopper ACMP can be configured to work with any of possible inputs when Set0 (Digital Rheostat 0) or Set1 (Digital Rheostat  
1) are latched.  
Note that the default configuration is the configuration for Set0 (Digital Rheostat 0) signal. When Chopper ACMP operates as  
separate ACMP and AutoTrim function is disabled, inputs of Chopper ACMP are defined by registers [893:892].  
Figure 59: Chopper ACMP Block Diagram  
9.3 ACMP SAMPLING MODE  
Both General Purpose Analog Comparators (ACMPL0 and ACMPL1) have an optional sampling mode. In this mode, ACMP is  
enabled for the shortest amount of time after rising edge at Power Up input to get a valid data. Then ACMP latches its value and  
goes sleep again.  
Registers [610], [632] enable sampling mode for two comparators.  
Datasheet  
10-Mar-2021  
Revision 2.4  
98 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
9.4 ACMP TYPICAL PERFORMANCE  
12  
10  
8
High To Low, Overdrive = 10 mV  
6
4
2
0
Low to High, Overdrive = 10 mV  
High to Low, Overdrive = 100 mV  
Low to High, Overdrive = 100 mV  
0
512  
1024  
1536  
2048  
Vref (mV)  
Figure 60: Propagation Delay vs. Vref for ACMPx at T = 25 °C, VDD = 2.4 V to 5.5 V, Hysteresis = 0  
190  
ACMPx (T = -40°C)  
ACMPx (T = 25°C)  
170  
ACMPx (T = 85°C)  
150  
130  
110  
90  
70  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
VDD (V)  
Figure 61: ACMPx Power-On Delay vs. VDD at BG - Forced  
Datasheet  
10-Mar-2021  
Revision 2.4  
99 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
6
4
2
0
-2  
-4  
-6  
-8  
32  
480  
1024  
1600  
2048  
Vref (mV)  
Figure 62: ACMPx Input Offset Voltage vs. Vref at T = -40 °C to 85 °C, VDD = 2.4 V to 5.5 V, Gain = 1  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
-50  
-100  
-150  
-200  
-250  
32  
480  
1024  
1600  
2048  
Vref (mV)  
Figure 63: Chopper ACMP Input Offset Voltage vs. Vref at T = -40 °C to 85 °C, VDD = 2.4 V to 5.5 V, Gain = 1  
Datasheet  
10-Mar-2021  
Revision 2.4  
100 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
8
T = 85 °C  
T = 25 °C  
7.5  
T = -40 °C  
7
6.5  
6
5.5  
5
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
Figure 64: ACMPx Current Consumption vs. VDD  
50  
45  
40  
35  
30  
25  
T = 85 °C  
T = 25 °C  
T = -40 °C  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
Figure 65: Chopper ACMP Current Consumption vs. VDD (with 2.048 kHz Clock)  
Datasheet  
10-Mar-2021  
Revision 2.4  
101 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
10 Programmable Operational Amplifiers  
10.1 GENERAL DESCRIPTION  
The SLG47004 contains three operational amplifiers with rail-to-rail input and output. Two of them (Programmable Op Amps)  
have the additional functions of driving internal analog FETs (Voltage Regulator and Current Sink modes) and Comparator  
mode. The third Internal Op Amp is an amplifier with internal resistors, and can be configured as a difference amplifier with Gain  
= 1. All three op amps can function as instrumentation amplifiers. The structures of the op amps are shown in Figure 66 and  
Figure 67.  
Figure 66: Programmable Operational Amplifier OA0, OA1 Internal Circuit  
Datasheet  
10-Mar-2021  
Revision 2.4  
102 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 67: Internal Operational Amplifier Circuit  
Each of the two Programmable Op Amp inputs has a hardware connection to the external pin and an optional connection to the  
internal voltage reference source, which makes it possible to create precise voltage or current source. For more detailed  
description of op amp Vref sources see Section 15. The output of the operational amplifier is hardwired to an external pin. This  
output can also be connected to the Programmable Trim block of rheostat macrocell, ACMP non-inverting input (ACMP0_L+ for  
OA0, ACMP1_L+ for OA1), or control the corresponding Analog Switch, depending on the mode of operation. Each  
Programmable Op Amp can also be configured as an analog comparator, in which case its output signal is connected to the  
Connection Matrix through a dedicated buffer.  
Each Programmable Op Amp has a programmable bandwidth that can be set by two register bits. In addition, internal charge  
pump setting for each Op Amp must be changed according to bandwidth selection, see Table 54.  
The bandwidths may vary up to +/-30 % over PVT. Each operational amplifier is factory trimmed. This trimming is independent of  
the trimming associated with the onboard digital rheostat (system calibration).  
The Internal operational amplifier shares its inputs with the Programmable Op Amps outputs. The voltage reference for the  
internal amplifier can be sourced from either the internal or external Vref. Note that if the internal Vref is used as a source for the  
instrumentation amplifier Vref, the user can optionally connect this Vref to the output pin, or disconnect the Vref from output pin  
and use this pin as GPIO.  
Also, if the Internal Op Amp is inactive (In Amp Mode is disabled), the user can use the In Amp_Vref pin as GPIO. The In  
Amp_Out pin can be configured as GPI.  
Table 54: Op Amp Bandwidth Settings  
Op Amp0  
Op Amp1  
Op Amp2 (Internal)  
Op Amp  
Bandwidth  
Selection  
Bandwidth  
Selection  
Charge Pump  
Frequency  
Bandwidth  
Selection  
Charge Pump  
Frequency  
Bandwidth  
Selection  
Charge Pump  
Frequency  
Register Bit →  
128 kHz  
745 744  
955  
0
954  
0
747 746  
963  
0
962  
0
749 748  
971  
0
970  
0
0
0
0
0
0
0
512 kHz  
0
1
1
1
0
1
0
1
0
1
1
1
0
1
0
1
0
1
1
1
0
1
0
1
2.048 MHz  
8.192 MHz  
1
0
1
0
1
0
1
1
1
0
1
0
Datasheet  
10-Mar-2021  
Revision 2.4  
103 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
10.2 MODES OF OPERATION  
In order to use any of the op amp macrocells in the GreenPAK Designer, the power up signal (PWR_UP) must be set to logic  
High. By default, all op amp macrocells are turned off after SLG47004 startup. During power-up, outputs of all op amps will  
remain in a Hi-Z state and then become valid (see parameter ton in Table 22).  
Operational amplifiers turn-on time can be decreased by setting register bits [759:757] to 1. In this case op amps analog  
supporting blocks are always turned on. Note that current consumption of op amp will be increased when op amp is powered  
down and bits [759:757] is 1 (see Section 3.13).  
See the list below for the op amp operation modes:  
Operational Amplifier mode;  
Instrumentation Amplifier mode;  
Analog Comparator mode;  
Voltage Regulator mode;  
Current Sink mode.  
10.2.1 Operational Amplifier Mode  
In this mode, the Programmable Op Amp operates as a conventional operational amplifier. Also, the Programmable Op Amp  
can source the corresponding non-inverting ACMP input (see ACMP macrocell settings). The output of the Programmable Op  
Amp macrocell is in a Hi-Z state while the macrocell is turned off.  
Figure 68 shows the example of differential amplifier with input offset voltage compensation with help of digital rheostat and  
programmable trim block. Zero input voltage equal to output voltage VOUT = VDD/2.  
Figure 68: Example of Input Offset Voltage Compensation  
10.2.2 Instrumentation Amplifier Mode  
If this mode is active (Matrix Output [98] is High level), the two Programmable Op Amps and the single Internal Op Amp work  
together in Instrumentation Amplifier configuration, shown in Figure 69. When power up signal is logic LOW the output of In Amp  
is in Hi-Z state.  
Datasheet  
10-Mar-2021  
Revision 2.4  
104 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 69: Instrumentation Amplifier Structure  
The absolute value of internal resistors R1, R2, R3, R4 is <RINT> kΩ ±20 %. The mismatch between resistors in one IC is  
<RINT_TL> %. The resistors Rf and Rg are user defined external resistors. The output voltage VOUT of the instrumentation  
amplifier shown in Figure 69 is  
VOUT = (1 + 2Rf / Rg)(VIN+ - VIN-) + VREF  
The user can trim both the gain and the offset error of the instrumentation amplifier using two of the Rheostats from the  
SLG47004. Figure 70 shows the configuration of the instrumentation amplifier in this scenario.  
Datasheet  
10-Mar-2021  
Revision 2.4  
105 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 70: Instrumentation Operational Amplifier Configuration for Users Trim  
Note that in Figure 70, the Demux connects to the Vref external input with an internal buffer (register [756] = 1). This allows us to  
eliminate the influence of resistor divider Rdiv and Rheostat0 on instrumentation amplifier.  
It is possible to use a built-in Auto-Trim function for either setting the zero point of the Wheatstone bridge sensor using the In  
Amp or tuning a system output voltage to the desired level. However, the following limitations exist for using the built-in Auto-  
Trim function to trim both total system offset and system gain errors:  
- The Auto-Trim procedures of total offset compensation and system gain error must be done iteratively starting and finishing  
with the total offset compensation: 1st iteration - offset compensation, 2nd iteration - gain trim, 3rd iteration - offset  
compensation. Extra iterations can be added to achieve a better accuracy. The last iteration should be an offset  
compensation.  
- Total system offset (sensor offset + Op Amp1 offset + Op Amp2 offset) must not be greater than Vsensor_output_range/2.  
It's possible to power external components like bridge or ADC from internal HD Buffer of SLG47004 to improve accuracy of  
system.  
10.2.3 Analog Comparator Mode  
Both operational amplifiers have an Analog Comparator mode in which they work as conventional rail-to-rail comparators.  
10.2.4 Voltage Regulator Mode  
In this mode, the op amp output drives P-FET (part of Analog Switch). Note that FETs of Analog Switches have different  
resistances. Analog Switch 0 has Rds_PMOS << Rds_NMOS, while Analog Switch 1 has Rds_NMOS << Rds_PMOS. That's  
why it is recommended to implement voltage regulator mode using Analog Switch 0. In this mode the op amp output is High  
when the macrocell is turned off. Figure 71 (A) shows the typical implementation of the voltage source function. Optionally, the  
Datasheet  
10-Mar-2021  
Revision 2.4  
106 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
user can use this mode to implement a constant current source with load connected to ground (Figure 71, B, C). Note that op  
amp must operate in operational amplifier mode (register 750 = 0 for Op Amp0, register 751 = 0 for Op Amp1).  
Figure 71: Typical Implementation of Voltage Regulator (A) and Current Sources (B, C)  
Note that in this mode only an enhanced P channel FET of An_Sw_0 is used.  
10.2.5 Current Sink Mode  
Also, the op amp output can drive the N-FET (part of the Analog Switch) in order to implement a constant current sink. Note that  
FETs of Analog Switches have different resistances. Analog Switch 0 has Rds_PMOS << Rds_NMOS, while Analog Switch 1  
has Rds_NMOS << Rds_PMOS. That's why it is recommended to implement current sink mode using Analog Switch 1. In this  
mode, the op amp output is LOW when the macrocell is turned off. Figure 72 (A) shows a typical implementation of this Current  
Sink Function. Note that op amp must operate in operational amplifier mode (register 750 = 0 for Op Amp0, register 751 = 0 for  
Op Amp1).  
Datasheet  
10-Mar-2021  
Revision 2.4  
107 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 72: Constant Current Sink  
Note that in this mode only an enhanced N channel FET of An_Sw_1 is used.  
10.3 OP AMPS TYPICAL PERFORMANCE  
TA = 25 °C, VDDA = 5.0 V, VSS = GND, VCM = VDD/2, VOUT = VDD/2, VL = VDD/2, RL = 1 MΩ to VL, CL = 80 pF, unless otherwise  
stated.  
275  
250  
Opampx, 128 kHz, 2.4 V  
225  
Opampx, 128 kHz, 5.5 V  
200  
175  
150  
125  
100  
75  
50  
25  
0
T (°C)  
Figure 73: Op Ampx Input Offset Voltage vs. TA at Input CM Voltage = VDD/2, BW = 128 kHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
108 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
250  
Opampx, 512 kHz, 5.5 V  
225  
Opampx, 512 kHz, 2.4 V  
200  
175  
150  
125  
100  
75  
50  
25  
0
T (°C)  
Figure 74: Op Ampx Input Offset Voltage vs. TA at Input CM Voltage = VDD/2, BW = 512 kHz  
225  
200  
Opampx, 2 MHz, 5.5 V  
175  
Opampx, 2 MHz, 2.4 V  
150  
125  
100  
75  
50  
25  
0
T (°C)  
Figure 75: Op Ampx Input Offset Voltage vs. TA at Input CM Voltage = VDD/2, BW = 2 MHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
109 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
200  
Opampx, 8 MHz, 2.4 V  
Opampx, 8 MHz, 5.5 V  
175  
150  
125  
100  
75  
50  
25  
0
T (°C)  
Figure 76: Op Ampx Input Offset Voltage vs. TA at Input CM Voltage = VDD/2, BW = 8 MHz  
250  
225  
200  
175  
150  
125  
100  
75  
Internal OA, 128 kHz, 2.4 V  
50  
Internal OA, 128 kHz, 5.5 V  
25  
0
T (°C)  
Figure 77: Internal Op Amp Input Offset Voltage vs. TA at Input CM Voltage = VDD/2, BW = 128 kHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
110 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
225  
200  
175  
150  
125  
100  
75  
Internal OA, 512 kHz, 2.4 V  
Internal OA, 512 kHz, 5.5 V  
50  
25  
0
T (°C)  
Figure 78: Internal Op Amp at Input CM Voltage = VDD/2, BW = 512 kHz  
250  
225  
200  
175  
150  
125  
100  
75  
Internal OA, 2 MHz, 2.4 V  
Internal OA2, 2 MHz, 5.5 V  
50  
25  
0
T (°C)  
Figure 79: Internal Op Amp at Input CM Voltage = VDD/2, BW = 2 MHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
111 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
200  
Internal OA, 8 MHz, 2.4 V  
Internal OA, 8 MHz, 5.5 V  
175  
150  
125  
100  
75  
50  
25  
0
T (°C)  
Figure 80: Internal Op Amp Input Offset Voltage vs. TA at Input CM Voltage = VDD/2, BW = 8 MHz  
110  
100  
90  
80  
70  
60  
50  
40  
OAx, 128 kHz, 2.4 V  
30  
OAx, 512 kHz, 2.4 V  
OAx, 2 MHz, 2.4 V  
OAx, 8 MHz, 2.4 V  
20  
10  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
Input CM Voltage (V)  
Figure 81: OpAmp0, 1 Input Offset Voltage vs. Input CM Voltage at T = 25 °C, VDDA = 2.4 V  
Revision 2.4  
Datasheet  
10-Mar-2021  
112 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
110  
100  
90  
80  
70  
60  
50  
40  
OAx, 128 kHz, 5.5 V  
OAx, 512 kHz, 5.5 V  
OAx, 2 MHz, 5.5 V  
OAx, 8 MHz, 5.5 V  
30  
20  
10  
0
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
Input CM Voltage (V)  
Figure 82: OpAmp0, 1 Input Offset Voltage vs. Input CM Voltage at T = 25 °C, VDDA = 5.5 V  
130  
120  
110  
100  
90  
80  
70  
60  
50  
Internal OA, 512 kHz, 2.4 V  
40  
Internal OA, 8 MHz, 2.4 V  
Internal OA, 2 MHz, 2.4 V  
Internal OA, 128 kHz, 2.4 V  
30  
20  
10  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
Input CM Voltage (V)  
Figure 83: Internal OpAmp Input Offset Voltage vs. Input CM Voltage at T = 25 °C, VDDA = 2.4 V  
Datasheet  
10-Mar-2021  
Revision 2.4  
113 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
130  
120  
110  
100  
90  
80  
70  
60  
50  
Internal OA, 512 kHz, 5.5 V  
40  
Internal OA, 8 MHz, 5.5 V  
Internal OA, 2 MHz, 5.5 V  
Internal OA, 128 kHz, 5.5 V  
30  
20  
10  
0
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
Input CM Voltage (V)  
Figure 84: Internal OpAmp Input Offset Voltage vs. Input CM Voltage at T = 25 °C, VDDA = 5.5 V  
40  
T = -40°C  
39  
T = 25°C  
T = 85°C  
38  
37  
36  
35  
34  
33  
32  
31  
30  
2.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VDD (V)  
Figure 85: Quiescent Current vs. Power Supply Voltage for BW = 128 kHz  
Revision 2.4  
Datasheet  
10-Mar-2021  
114 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
96  
T = -40°C  
T = 25°C  
94  
T = 85°C  
92  
90  
88  
86  
84  
82  
2.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VDD (V)  
Figure 86: Quiescent Current vs. Power Supply Voltage for BW = 512 kHz  
246  
244  
242  
240  
238  
236  
234  
232  
230  
228  
226  
T = -40°C  
T = 25°C  
T = 85°C  
2.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VDD (V)  
Figure 87: Quiescent Current vs. Power Supply Voltage for BW = 2 MHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
115 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
650  
T = -40°C  
T = 25°C  
640  
T = 85°C  
630  
620  
610  
600  
590  
580  
570  
2.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VDD (V)  
Figure 88: Quiescent Current vs. Power Supply Voltage or BW = 8 MHz  
140  
130  
120  
110  
100  
90  
200  
150  
100  
50  
Gain, BW = 128 kHz, VDD = 2.4 V  
Gain, BW = 128 kHz, VDD = 3.3 V  
Gain, BW = 128 kHz, VDD = 5.5 V  
Phase, BW = 128 kHz, VDD = 2.4 V  
Phase, BW = 128 kHz, VDD = 3.3 V  
Phase, BW = 128 kHz, VDD = 5.5 V  
80  
70  
60  
50  
0
40  
30  
-50  
-100  
-150  
-200  
20  
10  
0
-10  
-20  
-30  
-40  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
1000000  
10000000 100000000  
Frequency (Hz)  
Figure 89: OA0 Open Loop Gain and Phase vs. Frequency for BW = 128 kHz  
Revision 2.4  
Datasheet  
10-Mar-2021  
116 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
140  
200  
150  
100  
50  
130  
120  
110  
100  
90  
Gain, BW = 512 kHz, VDD = 2.4 V  
Gain, BW = 512 kHz, VDD = 3.3 V  
Gain, BW = 512 kHz, VDD = 5.5 V  
Phase, BW = 512 kHz, VDD = 2.4 V  
Phase, BW = 512 kHz, VDD = 3.3 V  
Phase, BW = 512 kHz, VDD = 5.5 V  
80  
70  
60  
50  
0
40  
30  
-50  
-100  
-150  
20  
10  
0
-10  
-20  
-30  
-40  
-200  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
1000000  
10000000  
100000000  
Frequency (Hz)  
Figure 90: OA0 Open Loop Gain and Phase vs. Frequency for BW = 512 kHz  
140  
200  
150  
100  
50  
Gain, BW = 2 MHz, VDD = 2.4 V  
Gain, BW = 2 MHz, VDD = 3.3 V  
Gain, BW = 2 MHz, VDD = 5.5 V  
Phase, BW = 2 MHz, VDD = 2.4 V  
Phase, BW = 2 MHz, VDD = 3.3 V  
Phase, BW = 2 MHz, VDD = 5.5 V  
130  
120  
110  
100  
90  
80  
70  
60  
50  
0
40  
30  
-50  
-100  
-150  
-200  
20  
10  
0
-10  
-20  
-30  
-40  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
1000000  
10000000  
Frequency (Hz)  
Figure 91: OA0 Open Loop Gain and Phase vs. Frequency for BW = 2 MHz  
Revision 2.4  
Datasheet  
10-Mar-2021  
117 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
140  
200  
150  
100  
50  
Gain, BW = 8 MHz, VDD = 2.4 V  
130  
120  
110  
100  
90  
Gain, BW = 8 MHz, VDD = 3.3 V  
Gain, BW = 8 MHz, VDD = 5.5 V  
Phase, BW = 8 MHz, VDD = 2.4 V  
Phase, BW = 8 MHz, VDD = 3.3 V  
Phase, BW = 8 MHz, VDD = 5.5 V  
80  
70  
60  
50  
0
40  
30  
-50  
-100  
-150  
-200  
20  
10  
0
-10  
-20  
-30  
-40  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
1000000  
10000000  
Frequency (Hz)  
Figure 92: OA0 Open Loop Gain and Phase vs. Frequency for BW = 8 MHz  
140  
130  
120  
110  
100  
90  
200  
150  
100  
50  
Gain, BW = 128 kHz, VDD = 2.4 V  
Gain, BW = 128 kHz, VDD = 3.3 V  
Gain, BW = 128 kHz, VDD = 5.5 V  
Phase, BW = 128 kHz, VDD = 2.4 V  
Phase, BW = 128 kHz, VDD = 3.3 V  
Phase, BW = 128 kHz, VDD = 5.5 V  
80  
70  
60  
50  
0
40  
30  
-50  
-100  
-150  
-200  
20  
10  
0
-10  
-20  
-30  
-40  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
1000000  
10000000  
Frequency (Hz)  
Figure 93: OA1 Open Loop Gain and Phase vs. Frequency for BW = 128 kHz  
Revision 2.4  
Datasheet  
10-Mar-2021  
118 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
140  
200  
Gain, BW = 512 kHz, VDD = 2.4 V  
130  
Gain, BW = 512 kHz, VDD = 3.3 V  
120  
Gain, BW = 512 kHz, VDD = 5.5 V  
150  
100  
50  
110  
100  
90  
Phase, BW = 512 kHz, VDD = 2.4 V  
Gain, BW = 512 kHz, VDD = 3.3 V  
Gain, BW = 512 kHz, VDD = 5.5 V  
80  
70  
60  
50  
0
40  
30  
-50  
-100  
-150  
-200  
20  
10  
0
-10  
-20  
-30  
-40  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
1000000  
10000000  
Frequency (Hz)  
Figure 94: OA1 Open Loop Gain and Phase vs. Frequency for BW = 512 kHz  
140  
130  
120  
110  
100  
90  
200  
Gain, BW = 2 MHz, VDD = 2.4 V  
Gain, BW = 2 MHz, VDD = 3.3 V  
Gain, BW = 2 MHz, VDD = 5.5 V  
Phase, BW = 2 MHz, VDD = 2.4 V  
Phase, BW = 2 MHz, VDD = 3.3 V  
Gain, BW = 2 MHz, VDD = 5.5 V  
150  
100  
50  
80  
70  
60  
50  
0
40  
30  
-50  
-100  
-150  
-200  
20  
10  
0
-10  
-20  
-30  
-40  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
1000000  
10000000  
Frequency (Hz)  
Figure 95: OA1 Open Loop Gain and Phase vs. Frequency for BW = 2 MHz  
Revision 2.4  
Datasheet  
10-Mar-2021  
119 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
140  
200  
150  
100  
50  
Gain, BW = 8 MHz, VDD = 2.4 V  
130  
120  
110  
100  
90  
Gain, BW = 8 MHz, VDD = 3.3 V  
Gain, BW = 8 MHz, VDD = 5.5 V  
Phase, BW = 8 MHz, VDD = 2.4 V  
Phase, BW = 8 MHz, VDD = 3.3 V  
Phase, BW = 8 MHz, VDD = 5.5 V  
80  
70  
60  
50  
0
40  
30  
-50  
-100  
-150  
-200  
20  
10  
0
-10  
-20  
-30  
-40  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
1000000  
10000000  
Frequency (Hz)  
Figure 96: OA1 Open Loop Gain and Phase vs. Frequency for BW = 8 MHz  
10  
0
BW = 128 kHz  
BW = 512 kHz  
BW = 2 MHz  
BW = 8 MHz  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.01  
0.10  
1.00  
10.00  
100.00  
1000.00  
10000.00  
f (kHz)  
Figure 97: PSRR vs. Frequency VDD = 2.4 V to 5.5 V  
Datasheet  
10-Mar-2021  
Revision 2.4  
120 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (2 s/div)  
Figure 98: 0.1 Hz to 10 Hz Noise, BW = 128 kHz  
Time (2 s/div)  
Figure 99: 0.1 Hz to 10 Hz Noise, BW = 512 kHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
121 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (2 s/div)  
Figure 100: 0.1 Hz to 10 Hz Noise, BW = 2 MHz  
Time (2 s/div)  
Figure 101: 0.1 Hz to 10 Hz Noise, BW = 2 MHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
122 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
0
-10  
-20  
BW = 128 kHz  
BW = 512 kHz  
-30  
BW = 2 MHz  
-40  
BW = 8 MHz  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
10  
100  
1 000  
10 000  
100 000  
1 000 000  
10 000 000  
f (Hz)  
Figure 102: Channel Separation vs. Frequency  
700  
BW = 128 kHz  
BW = 512 kHz  
BW = 2 MHz  
BW = 8 MHz  
600  
500  
400  
300  
200  
100  
0
10  
100  
1 000  
10 000  
100 000  
1 000 000  
f (Hz)  
Figure 103: Op Ampx Noise Voltage Density vs. Frequency  
Datasheet  
10-Mar-2021  
Revision 2.4  
123 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
85  
80  
75  
70  
65  
60  
55  
128 kHz, 5.5 V, Falling  
128 kHz, 5.5 V, Rising  
128 kHz, 3.3 V, Falling  
128 kHz, 3.3 V, Rising  
128 kHz, 2.4 V, Falling  
128 kHz, 2.4 V, Rising  
50  
T (°C)  
Figure 104: Slew Rate vs. Ambient Temperature G = 1 V/V; RL = 50 kΩ for BW = 128 kHz  
340  
320  
300  
280  
260  
240  
220  
512 kHz, 5.5 V, Falling  
512 kHz, 5.5 V, Rising  
512 kHz, 3.3 V, Falling  
512 kHz, 3.3 V, Rising  
512 kHz, 2.4 V, Falling  
512 kHz, 2.4 V, Rising  
T (°C)  
Figure 105: Slew Rate vs. Ambient Temperature G = 1 V/V; RL = 50 kΩ for BW = 512 kHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
124 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
2100  
2 MHz, 5.5 V, Falling  
2 MHz, 5.5 V, Rising  
1900  
2 MHz, 3.3 V, Rising  
2 MHz, 2.4 V, Rising  
2 MHz, 3.3 V, Falling  
2 MHz, 2.4 V, Falling  
1700  
1500  
1300  
1100  
900  
700  
T (°C)  
Figure 106: Slew Rate vs. Ambient Temperature G = 1 V/V; RL = 50 kΩ for BW = 2 MHz  
5400  
4900  
4400  
3900  
3400  
2900  
2400  
1900  
1400  
900  
8 MHz, 5.5 V, Rising  
8 MHz, 3.3 V, Rising  
8 MHz, 2.4 V, Rising  
8 MHz, 5.5 V, Falling  
8 MHz, 2.4 V, Falling  
8 MHz, 3.3 V, Falling  
T (°C)  
Figure 107: Slew Rate vs. Ambient Temperature G = 1 V/V; RL = 50 kΩ for BW = 8 MHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
125 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (20 μs/div)  
Figure 108: Small Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 128 kHz  
Time (20 μs/div)  
Figure 109: Small Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 512 kHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
126 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (10 μs/div)  
Figure 110: Small Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 2 MHz  
Time (10 μs/div)  
Figure 111: Small Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 8 MHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
127 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (5 μs/div)  
Figure 112: Small Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 128 kHz  
Time (5 μs/div)  
Figure 113: Small Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 512 kHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
128 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (5 μs/div)  
Figure 114: Small Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 2 MHz  
Time (0.2 μs/div)  
Figure 115: Small Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 8 MHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
129 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (20 μs/div)  
Figure 116: Large Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 80 pF, BW = 128 kHz  
Time (20 μs/div)  
Figure 117: Large Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 80 pF, BW = 512kHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
130 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (20 μs/div)  
Figure 118: Large Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 80 pF, BW = 2 MHz  
Time (20 μs/div)  
Figure 119: Large Signal Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 80 pF, BW = 8 MHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
131 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (20 μs/div)  
Figure 120: Large Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 128 kHz  
Time (20 μs/div)  
Figure 121: Large Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 512 kHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
132 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (5 μs/div)  
Figure 122: Large Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 2 MHz  
Time (2.5 μs/div)  
Figure 123: Large Signal Non-Inverting Step Response G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 8 MHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
133 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (60 μs/div)  
Figure 124: Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 128 kHz  
Time (60 μs/div)  
Figure 125: Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 512 kHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
134 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (30 μs/div)  
Figure 126: Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 2 MHz  
Time (15 μs/div)  
Figure 127: Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 8 MHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
135 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (60 μs/div)  
Figure 128: Non-Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 128 kHz  
Time (60 μs/div)  
Figure 129: Non-Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 512 kHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
136 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (30 μs/div)  
Figure 130: Non-Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 2 MHz  
Time (15 μs/div)  
Figure 131: Non-Inverting Overload Recovery G = -1 V/V, RL = 50 kΩ, CL = 60 pF, BW = 8 MHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
137 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
80  
Overshoot (40 mV p-p)  
70  
Overshoot (100 mV p-p)  
Undershoot (40 mV p-p)  
60  
Undershoot (100 mV p-p)  
50  
40  
30  
20  
10  
0
100  
1000  
10000  
CLOAD (pF)  
Figure 132: Small Signal Overshoot vs. Capacitive Load VDD = 3.3 V, G = 1 V/V, BW = 128 kHz  
80  
70  
60  
50  
40  
30  
20  
10  
0
Overshoot (40 mV p-p)  
Overshoot (100 mV p-p)  
Undershoot (40 mV p-p)  
Undershoot (100 mV p-p)  
100  
1000  
10000  
CLOAD (pF)  
Figure 133: Small Signal Overshoot vs. Capacitive Load VDD = 3.3 V, G = 1 V/V, BW = 512 kHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
138 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
90  
Overshoot (40 mV p-p)  
80  
Overshoot (100 mV p-p)  
Undershoot (100 mV p-p)  
Undershoot (40 mV p-p)  
70  
60  
50  
40  
30  
20  
10  
0
100  
1000  
10000  
CLOAD (pF)  
Figure 134: Small Signal Overshoot vs. Capacitive Load VDD = 3.3 V, G = 1 V/V, BW = 2 MHz  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Undershoot (40 mV p-p)  
Overshoot (40 mV p-p)  
470  
100  
CLOAD (pF)  
Figure 135: Small Signal Overshoot vs. Capacitive Load VDD = 3.3 V, G = 1 V/V, BW = 8 MHz  
Revision 2.4  
Datasheet  
10-Mar-2021  
139 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
220  
Output CM Voltage Low, Rload = 600 Ω, VDD = 5.5 V  
210  
Output CM Voltage Low, Rload = 600 Ω, VDD = 3.3 V  
Output CM Voltage Low, Rload = 600 Ω, VDD = 2.4 V  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 136: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 128 kHz, RLOAD = 600 Ω  
2.9  
2.6  
2.3  
2
1.7  
1.4  
Output CM Voltage Low, Rload = 50 kΩ, VDD = 5.5 V  
1.1  
Output CM Voltage Low, Rload = 50 kΩ, VDD = 3.3 V  
Output CM Voltage Low, Rload = 50 kΩ, VDD = 2.4 V  
0.8  
0.5  
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 137: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 128 kHz, RLOAD = 50 kΩ  
Datasheet  
10-Mar-2021  
Revision 2.4  
140 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
360  
Output CM Voltage High, Rload = 600 Ω, VDD = 5.5 V  
350  
Output CM Voltage High, Rload = 600 Ω, VDD = 3.3 V  
340  
Output CM Voltage High, Rload = 600 Ω, VDD = 2.4 V  
330  
320  
310  
300  
290  
280  
270  
260  
250  
240  
230  
220  
210  
200  
190  
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 138: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 128 kHz, RLOAD = 600 Ω  
5
4.5  
4
3.5  
Output CM Voltage High, Rload = 50 kΩ, VDD = 5.5 V  
Output CM Voltage High, Rload = 50 kΩ, VDD = 2.4 V  
3
Output CM Voltage High, Rload = 50 kΩ, VDD = 3.3 V  
2.5  
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 139: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 128 kHz, RLOAD = 50 kΩ  
Datasheet  
10-Mar-2021  
Revision 2.4  
141 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
180  
Output CM Voltage Low, Rload = 600 Ω, VDD = 5.5 V  
Output CM Voltage Low, Rload = 600 Ω, VDD = 3.3 V  
170  
Output CM Voltage Low, Rload = 600 Ω, VDD = 2.4 V  
160  
150  
140  
130  
120  
110  
100  
90  
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 140: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 512 kHz, RLOAD = 50 kΩ  
2.5  
2
1.5  
Output CM Voltage Low, Rload = 50 kΩ, VDD = 5.5 V  
1
Output CM Voltage Low, Rload = 50 kΩ, VDD = 3.3 V  
Output CM Voltage Low, Rload = 50 kΩ, VDD = 2.4 V  
0.5  
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 141: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 512 kHz, RLOAD = 50 kΩ  
Datasheet  
10-Mar-2021  
Revision 2.4  
142 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
290  
Output CM Voltage High, Rload = 600 Ω, VDD = 5.5 V  
Output CM Voltage High, Rload = 600 Ω, VDD = 3.3 V  
270  
Output CM Voltage High, Rload = 600 Ω, VDD = 2.4 V  
250  
230  
210  
190  
170  
150  
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 142: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 512 kHz, RLOAD = 600 Ω  
4.4  
4.1  
3.8  
3.5  
3.2  
2.9  
Output CM Voltage High, Rload = 50 kΩ, VDD = 5.5 V  
2.6  
Output CM Voltage High, Rload = 50 kΩ, VDD = 2.4 V  
Output CM Voltage High, Rload = 50 kΩ, VDD = 3.3 V  
2.3  
2
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 143: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 512kHz, RLOAD = 50 kΩ  
Datasheet  
10-Mar-2021  
Revision 2.4  
143 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
140  
Output CM Voltage Low, Rload = 600 Ω, VDD = 5.5 V  
Output CM Voltage Low, Rload = 600 Ω, VDD = 3.3 V  
130  
Output CM Voltage Low, Rload = 600 Ω, VDD = 2.4 V  
120  
110  
100  
90  
80  
70  
60  
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 144: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 2 MHz, RLOAD = 600 Ω  
2.5  
2
1.5  
1
Output CM Voltage Low, Rload = 50 kΩ, VDD = 5.5 V  
Output CM Voltage Low, Rload = 50 kΩ, VDD = 3.3 V  
0.5  
Output CM Voltage Low, Rload = 50 kΩ, VDD = 2.4 V  
0
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 145: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 2 MHz, RLOAD = 50 kΩ  
Datasheet  
10-Mar-2021  
Revision 2.4  
144 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
220  
200  
180  
160  
140  
120  
Output CM Voltage High, Rload = 600 Ω, VDD = 5.5 V  
Output CM Voltage High, Rload = 600 Ω, VDD = 2.4 V  
Output CM Voltage High, Rload = 600 Ω, VDD = 3.3 V  
100  
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 146: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 2 MHz, RLOAD = 600 Ω  
3.6  
3.4  
3.2  
3
2.8  
2.6  
2.4  
2.2  
2
Output CM Voltage High, Rload = 50 kΩ, VDD = 5.5 V  
Output CM Voltage High, Rload = 50 kΩ, VDD = 2.4 V  
1.8  
Output CM Voltage High, Rload = 50 kΩ, VDD = 3.3 V  
1.6  
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 147: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 2 MHz, RLOAD = 50 kΩ  
Datasheet  
10-Mar-2021  
Revision 2.4  
145 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
100  
Output CM Voltage Low, Rload = 600 Ω, VDD = 5.5 V  
Output CM Voltage Low, Rload = 600 Ω, VDD = 3.3 V  
Output CM Voltage Low, Rload = 600 Ω, VDD = 2.4 V  
90  
80  
70  
60  
50  
40  
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 148: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 8MHz, RLOAD = 600 Ω  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
Output CM Voltage Low, Rload = 50 kΩ, VDD = 5.5 V  
Output CM Voltage Low, Rload = 50 kΩ, VDD = 3.3 V  
Output CM Voltage Low, Rload = 50 kΩ, VDD = 2.4 V  
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 149: Output Voltage Low (VOUT - GND) vs. Temperature at BW = 8 MHz, RLOAD = 50 kΩ  
Datasheet  
10-Mar-2021  
Revision 2.4  
146 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
130  
Output CM Voltage High, Rload = 600 Ω, VDD = 5.5 V  
Output CM Voltage High, Rload = 600 Ω, VDD = 3.3 V  
120  
Output CM Voltage High, Rload = 600 Ω, VDD = 2.4 V  
110  
100  
90  
80  
70  
60  
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 150: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 8 MHz, RLOAD = 600 Ω  
16  
14  
12  
10  
8
Output CM Voltage High, Rload = 50 kΩ, VDD = 5.5 V  
Output CM Voltage High, Rload = 50 kΩ, VDD = 2.4 V  
6
4
2
0
Output CM Voltage High, Rload = 50 kΩ, VDD = 3.3 V  
-40  
-30  
-20  
-10  
0
10  
20  
T (°C)  
30  
40  
50  
60  
70  
80  
Figure 151: Output Voltage High (VDDA- VOUT) vs. Temperature at BW = 8 MHz, RLOAD = 50 kΩ  
Datasheet  
10-Mar-2021  
Revision 2.4  
147 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
60  
50  
40  
30  
20  
10  
0
128 kHz, Rising  
512 kHz, Rising  
2 MHz, Rising  
8 MHz, Rising  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
VDD (V)  
4.2  
4.5  
4.8  
5.1  
5.4  
Figure 152: Overload Recovery Time vs. Power Supply Voltage RL= 50 kΩ; G = 1 V/V, Rising  
1.4  
1.2  
1
128 kHz, Falling  
512 kHz, Falling  
2 MHz, Falling  
8 MHz, Falling  
0.8  
0.6  
0.4  
0.2  
0
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
VDD (V)  
4.2  
4.5  
4.8  
5.1  
5.4  
Figure 153: Overload Recovery Time vs. Power Supply Voltage RL= 50 kΩ; G = 1 V/V, Falling  
Revision 2.4  
Datasheet  
10-Mar-2021  
148 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (10 μs/div)  
Figure 154: Output Response to Power Down Signal G = 1 V/V; RL = 50 kΩ; CL = 20 pF; VIN = VS/2, BW = 128 kHz  
Time (2 μs/div)  
Figure 155: Output Response to Power Down Signal G = 1 V/V; RL = 50 kΩ; CL = 20 pF; VIN = VS/2, BW = 512 kHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
149 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (1 μs/div)  
Figure 156: Output Response to Power Down Signal G = 1 V/V; RL = 50 kΩ; CL = 20 pF; VIN = VS/2, BW = 2 MHz  
Time (1 μs/div)  
Figure 157: Output Response to Power Down Signal G = 1 V/V; RL = 50 kΩ; CL = 20 pF; VIN = VS/2, BW = 8 MHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
150 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
40  
Turn-On Time @ T = -40 °C  
Turn-On Time @ T = 25 °C  
Turn-On Time @ T = 85 °C  
35  
Turn-Off Time @ T = -40 °C  
Turn-Off Time @ T = 25 °C  
Turn-Off Time @ T = 85 °C  
30  
25  
20  
15  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
VDD (V)  
Figure 158: Opampx Turn-On/Off Time vs. VDD at VIN = VDD/2, BW = 128 kHz  
20  
18  
16  
14  
12  
10  
8
Turn-Off Time @ T = -40 °C  
Turn-Off Time @ T = 25 °C  
Turn-Off Time @ T = 85 °C  
Turn-On Time @ T = -40 °C  
Turn-On Time @ T = 25 °C  
6
4
2
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
VDD (V)  
Figure 159: Opampx Turn-On/Off Time vs. VDD at VIN = VDD/2, BW = 512 kHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
151 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
18  
16  
14  
12  
10  
Turn-Off Time @ T = -40 °C  
Turn-Off Time @ T = 25 °C  
Turn-Off Time @ T = 85 °C  
Turn-On Time @ T = -40 °C  
Turn-On Time @ T = 25 °C  
Turn-On Time @ T = 85 °C  
8
6
4
2
0
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
VDD (V)  
Figure 160: Opampx Turn-On/Off Time vs. VDD at VIN = VDD/2, BW = 2 MHz  
18  
16  
14  
12  
10  
8
Turn-Off Time @ T = -40 °C  
Turn-Off Time @ T = 25 °C  
Turn-Off Time @ T = 85 °C  
Turn-On Time @ T = -40 °C  
Turn-On Time @ T = 25 °C  
Turn-On Time @ T = 85 °C  
6
4
2
0
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
VDD (V)  
Figure 161: Opampx Turn-On/Off Time vs. VDD at VIN = VDD/2, BW = 8MHz  
Revision 2.4  
Datasheet  
10-Mar-2021  
152 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
600  
500  
400  
300  
200  
100  
0
BW = 8 MHz  
BW = 2 MHz  
BW = 512 kHz  
BW = 128 kHz  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
Figure 162: Opamps Quiescent Current Consumption vs. VDD  
Datasheet  
10-Mar-2021  
Revision 2.4  
153 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
11 Analog Switch Macrocell  
11.1 ANALOG SWITCH GENERAL DESCRIPTION  
The SLG47004 contains two single-pole/single throw (SPST) normally open analog switches (AS). The structure of the Analog  
Switches is shown in Figure 163 and Figure 164.  
Each analog switch can be controlled from the following sources:  
Connection matrix  
Operational Amplifier macrocell.  
Small NMOS (small PMOS) of Analog Switch must be enabled when macrocell is controlled by logic signal from connection  
matrix. Otherwise, small NMOS (small PMOS) must be disabled when macrocell is controlled by op amp.  
Table 55 and Table 56 show possible operation modes of analog switches.  
Figure 163: Analog Switch 0 Control Circuit  
Datasheet  
10-Mar-2021  
Revision 2.4  
154 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 164: Analog Switch 1 Control Circuit  
Table 55: Analog Switch 0 Modes of Operation  
Half Bridge  
Mode Enable  
Matrix/Op  
Amp Control  
Small nMOS  
Enable  
Register [740] Register [738] Register [736]  
Mode of Operation  
Analog Switch mode with big pMOS only (control from connection  
matrix)  
0
0
0
Analog Switch mode with all FETs enabled (control from connection  
matrix)  
0
0
1
0
1
x
1
0
0
Voltage Regulator mode  
Half Bridge mode with big pMOS only (control from connection ma-  
trix)  
Half Bridge mode with all FETs enabled (control from connection  
matrix)  
1
x
1
Datasheet  
10-Mar-2021  
Revision 2.4  
155 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 56: Analog Switch 1 Modes of Operation  
Half Bridge  
Mode Enable  
Matrix/Op  
Amp Control  
Small pMOS  
Enable  
Register [740] Register [739] Register [737]  
Mode of Operation  
Analog Switch mode with big nMOS only (control from connection  
matrix)  
0
0
0
Analog Switch mode with all FETs enabled (control from connection  
matrix)  
0
0
1
0
1
x
1
0
0
Current Sink mode  
Half Bridge mode with big nMOS only (control from connection ma-  
trix)  
Half Bridge mode with all FETs enabled (control from connection  
matrix)  
1
x
1
11.2 HALF BRIDGE MODE  
Two switches can be externally connected in series to create a half bridge. Please refer to tables Table 55 and Table 56 to  
enable half bridge mode. Additional logic will be connected to the analog switches to simplify control. Figure 165 shows the half  
bridge structure with two analog switches.  
Figure 165: Structure of Half Bridge  
Datasheet  
10-Mar-2021  
Revision 2.4  
156 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
11.3 ANALOG SWITCHES TYPICAL PERFORMANCE  
70  
60  
AS0 VDD = 2.4 V  
AS1 VDD = 2.4 V  
50  
40  
30  
20  
10  
0
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
VIN (V)  
Figure 166: Typical RON vs. Input Voltage (Vi) for Vi = 0 to VDDA, LOAD = 1 mA, VDDA = 2.4 V  
I
40  
35  
30  
25  
20  
15  
10  
5
AS0 VDD = 5.5 V  
AS1 VDD = 5.5 V  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
Figure 167: Typical RON vs. Input Voltage (Vi) for Vi = 0 to VDDA, LOAD = 1 mA, VDDA = 5.5 V  
I
Datasheet  
10-Mar-2021  
Revision 2.4  
157 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
240  
AS0 (T = -40 °C)  
AS1 (T = -40°C)  
AS0 (T = 25 °C)  
AS1 (T = 25 °C)  
AS0 (T = 85 °C)  
AS1 (T = 85 °C)  
220  
200  
180  
160  
140  
120  
100  
80  
60  
40  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
VDD (V)  
Figure 168: Turn-On Time vs. VDD at RLOAD = 100 Ω to GND, VIN = VDD/2  
450  
400  
350  
300  
250  
200  
150  
100  
50  
AS0 (T = -40 °C)  
AS1 (T = -40°C)  
AS0 (T = 25 °C)  
AS1 (T = 25 °C)  
AS0 (T = 85 °C)  
AS1 (T = 85 °C)  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
VDD (V)  
Figure 169: Turn-Off Time vs. VDD at RLOAD = 100 Ω to GND, VIN = VDD/2  
Datasheet  
10-Mar-2021  
Revision 2.4  
158 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
12 Digital Rheostats and Programmable Trim Block  
The SLG47004 contains two 10-bit Digital Rheostats. The structure of both macrocells is shown in Figure 170. The range of  
digital code that corresponds to the rheostat resistance ranges from 0 to 1023 (1024 taps). Code 0 corresponds to the minimum  
resistance between the RHx_A and RHx_B terminals. As the code value increases, the resistance between the RHx_A and  
RHx_B terminals monotonically increases. Consequently, when the code value decreases, the resistance between the RH0_A  
and RH0_B terminals decreases as well (see Section 12.2). The voltage on any rheostat pin can be in the range from AGND to  
VDDA, as well as be dynamically changed during operation.  
To guarantee proper operation of digital rheostats charge pump must be turned on (matrix input [86] must be logic High or  
registers [912] = 1, [913] = 1). Optionally user can turn off rheostats charge pump to decrease energy consumption. But it's  
strongly recommended to use the charge pump if VDD < 4.5 V.  
It is possible to use the rheostat in the following different modes:  
Changing the Rheostat value using the I2C interface;  
Manually changing the rheostat value using clock and up/down signals, similar to the counter;  
Using the Built-in Auto-Trim mode, where the rheostat value change is done using a special logic based on the signal from  
the Chopper ACMP.  
The Programmable Trim (PT) blocks of rheostats macrocell contain analog MUXs, digital MUXs, Chopper ACMP, and additional  
logic. The two analog MUXs (M1 and M2) and the Chopper ACMP are both shared between the two rheostats. All analog and  
digital MUXs are set by NVM bits and can be overwritten with I2C.  
The M_CK0 and M_CK1 MUXs select the clock source from internal pre-dividers of the internal oscillators or from the  
connection matrix. The internal clock sources for the rheostats are OSC0, OSC0/8, OSC0/64, OSC0/512, OSC0/4096,  
OSC0/32768, OSC0/262144, OSC1, OSC1/8, OSC1/64, and OSC1/512. The PT blocks of the rheostat use the same clock  
scheme as Counter/Delay Macrocells (refer to 16.5). M_CH0 and M_CH1 select the Chopper comparator or a matrix output as  
the signal source for the main rheostat up/down counter direction. The output of the Chopper ACMP is connected with the  
Up/Down inputs of the PT blocks by default. The output of the Chopper ACMP can be optionally inverted by setting register  
[882] to “1”.  
M1 MUX selects the input for the Chopper comparator to be connected either internally to one of 3 integrated op amps (Op  
Amp0 out, Op Amp1 out, In Amp Out) or externally to a PIN. M2 MUX is simplified symbol of Chopper ACMP reference selection  
blocks. The Chopper ACMP reference ("-" input) can be: analog signal from pin, divided internal Vref voltage (6-bit divider), or  
divide VDDA voltage (6-bit divider). In Auto-Trim mode each of Rheostats has it own settings for Chopper ACMP inputs. For more  
information about Chopper ACMP Vref see Section 9.2.  
The power-up signal for the Chopper ACMP can be handled either by matrix output signal or Set0/Set1 signal from the PT  
macrocell. In Auto-Trim mode (Auto_Cal _Dis_RHx NVM bit = 0) additional internal logic enables the clocking of the  
corresponding PT macrocell counter and disables clocking when one of the stop conditions is reached. See a detailed  
description in Section 12.4. In Figure 170 when Auto_Cal _Dis_RHx NVM bit = 0 (Auto-Trim mode is enabled), the clocking  
pulses for the internal PT macrocell counter are under control of additional logic. When Auto_Cal _Dis_RHx NVM bit = 1 (Auto-  
Trim mode is disabled), all additional logics (Set signal, internal Set signal, Idle/Active signal) operate the same way, but clock  
pulses are always enabled and generated externally by the user. Calibration channel can be selected automatically (1st channel  
is channel 0, second channel is channel 1) or can be set manually by registers [893:892].  
The inputs of Chopper ACMP can be reconfigured while operating in Auto-Trim mode. There is one configuration of inputs (M1,  
M2 configuration, Figure 170) for the case when Set0 signal is latched, and another configuration of M1, M2 MUXs when Set1  
signal is latched. For example, M1 MUX can be configured to operate with In Amp out when Set0 is latched and  
Chopper_ACMP+ pin when Set1 is latched. The same way, M2 can be configured to work with any of M2 inputs when Set0 or  
Set1 are latched. Note that the default configuration is the configuration for Set0 signal. When Chopper ACMP operates as  
separate ACMP and Auto-Trim function is disabled, M1 and M2 MUXs operates with configuration for Set0 signal.  
Keep in mind that two Auto-Trim processes cannot be done simultaneously. When the Auto-Trim process for one rheostat is  
active, all signals on the Set input for another rheostat will be ignored. See a detailed description in 12.4.1. The initial user  
defined value of Digital Rheostat resistance can be programmed into the NVM. The initial value will be loaded during the Power-  
On event and this value will be used as the initial rheostat resistance, as well as a starting point for count down or count up.  
Both read and write operations are allowed for rheostat resistance value, stored in NVM. Also, both read and write operations  
are allowed for current rheostat resistance value. RH0 read operation - registers [1561:1552], write operation - registers  
[1545:1536]. RH1 read operation - registers [1689:1680], write operation - registers [1673:1664].  
Datasheet  
10-Mar-2021  
Revision 2.4  
159 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 170: Programmable Trim Blocks and Digital Rheostat’s Internal Circuit  
Datasheet  
10-Mar-2021  
Revision 2.4  
160 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
PT macrocell signals:  
“Set”: external Set signal begins the Auto-Trim process when Auto_Cal _Dis_RHx bit is cleared (registers [901]). Otherwise,  
this signal has no effect. The behavior of the PT macrocell in Auto-Trim mode is described below.  
“Reload”: when Reload goes high the rheostat value stored in the MTP NVM will be loaded into the rheostat (Register and  
Counter) overwriting any current setting. This signal is edge sensitive. It has no effect while the Auto-Trim procedure is active.  
For detailed information see Section 12.3.  
“Program”: when Program goes high the Internal Counter value of the rheostat will be programmed into the MTP overwriting  
any current value in the NVM. This procedure can be done up to 1000 times. This signal is also edge sensitive. It has no  
effect while the Auto-Trim procedure is active. For detailed information see 12.3. To enable "Program" signal from connection  
matrix RH_PRB register must be cleared (RH_PRB [1796] = 0). If RH_PRB [1796] register is set to 1, the access to NVM is  
disabled for "Program" signal. Refer to Section 19.6 for more details.  
“Clock”: this input has the following options: the PT macrocell can be clocked internally or from matrix. When clocked  
internally, the clock is automatically enabled/disabled by the Set input logic in Auto-Trim mode. The internal clock is  
synchronized with the Chopper ACMP clock.  
“Up/Down”: the rheostat counter counts up when the signal is High and down when the signal is Low.  
“Idle/Active”: this is the connection matrix input, that is logic HIGH by default. It goes LOW with rising edge on SET input if  
Auto-Trim mode is enabled (Auto_Cal _Dis_RHx NVM bit = 0). After the end of Auto-Trim procedure (one of stop conditions  
occurs) this signal sets to logic HIGH again.  
“FIFO nReset”: low level at this input clears internal FIFO buffer for commands Reload and Program for both rheostats. User  
should provide high logic level at this input for the normal rheostat operation.  
There is also an overflow protection option, for which the counter will stop counting up when the maximum value (0x3FF) is  
reached or stop counting down when the minimum value (0x00) is reached. The digital rheostat is initialized/powered in the first  
place. The rheostat value is Hi-Z (or highest resistance if it is impossible to disconnect the rheostat) during the Power-On  
sequence.  
12.1 POTENTIOMETER MODE  
This mode allows two 2-pin rheostats to work as one 3-pin potentiometer. When this mode is active (register [917] = 1), user  
changes the value of RH0 internal counter. In this mode, the value of RH1 counter is the inverted value of RH0 counter (Figure  
171). Note that the RH0_B pin and the RH1_A pin must be connected externally. Also, note that the Auto-Trim function isn't  
allowed in Potentiometer Mode.  
Figure 171: Rheostats in Potentiometer Mode  
12.2 CALCULATING ACTUAL RESISTANCE  
In applications where the absolute rheostat resistance is critical, the user can calculate it using the rheostat tolerance data, the  
minimum rheostat resistance, and the desired code.  
The 16-bit tolerance data for both rheostats has been programmed into registers 0xE6 to 0xE9. These registers can be used to  
calculate the total rheostat resistance. The 16th bit defines the sign (0 = +, 1 = -) of the tolerance. The other fifteen bits  
correspond to the absolute value of the rheostat tolerances variation from 100 kΩ measured at 25 °C.  
Datasheet  
10-Mar-2021  
Revision 2.4  
161 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
Tolerance  
Tolerance Sign  
Magnitude  
(0 : +) | (1 : -)  
Figure 172: Rheostat Tolerance Registers  
Note that the rheostat tolerance data is programmed into registers 0xE6 to 0xE9. To avoid losing this tolerance data, special  
attention must be paid when erasing and reprogramming page 14 in the NVM.  
The rheostat value at a given code depends on the total digital rheostat resistance. The equations below can be used to  
calculate the rheostat resistance.  
RCode = (RDR - RDR MIN) x (code/1023) + RDR MIN  
RDR = 100 x 103 + (signRH_Tolerance x RRH_Tolerance  
)
where:  
Code - Rheostat Resistance at a Given Code;  
R
RDR - Total Digital Rheostat Resistance;  
RDR MIN - Minimum Rheostat Resistance;  
code - Rheostat Position Ranging from 0x000 to 0x3FF;  
signRH_Tolerance - the MSB of the Rheostat’s Tolerance Data;  
RRH_Tolerance - the 15 LSBs of the Rheostat’s Tolerance Data.  
For example, let's say that 0x2B67 has been written into the rheostat tolerance registers within the GreenPAK's NVM. B15  
corresponds to a positive sign while B14:0 translates into a decimal value of 11111. RDR calculates to approximately 111,111 Ω  
and can be used with the minimum rheostat resistance to calculate the resistance at a given code. Note that the minimum  
rheostat resistance must be measured to obtain precise results, but a range is provided in Table 23.  
12.3 DIGITAL RHEOSTAT VALUE SELF-PROGRAMMING INTO THE NVM  
The current value of rheostat is stored in the Internal Counter. This value can be programmed into the MTP by setting logic  
HIGH at "Program" input. In this case, SLG47004 will generate a specific memory control sequence to rewrite a new value into  
the NVM. There is a separate NVM page that is dedicated for the Digital Rheostat value.  
There is a dedicated bit RH_PRB, that enables/disables "Program" signal of PT block to change NVM rheostats resistance  
values. If RH_PRB[1796] = 0, "Program" signal is enabled. If RH_PRB[1796] = 1, "Program" signal is disabled. Note that  
RH_PRB bit has no effect on I2C access to NVM. To enable/disable I2C access to rheostat resistance value, stored in NVM,  
user must change NPRB0, NPRB1 bits. Refer to Section 18.5.  
SLG47004 can latch up to four "Program" and "Reload" signals of RH0 and RH1 (Reload RH0, Program RH0, Reload RH1,  
Program RH1). The same signal can't be latched second time, until it is processed. All latched signals will be processed in the  
order of arrival (FIFO buffer), since only one signal can access NVM at the same time. If Auto-Trim process of RH0 or RH1 is  
active and one or more "Reload", "Program" signals for corresponding rheostat come, SLG47004 will wait until the end of Auto-  
Trim process and then process will latch "Reload", "Program" signals. Set0 or Set1 signal can be latched at any time and  
processed when rheostat clocking isn't disabled by "Program" or "Reload" signals.  
User can clear the FIFO buffer by setting low logic level at FIFO nReset input of PT blocks.  
Datasheet  
10-Mar-2021  
Revision 2.4  
162 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 173: Flowchart of "Program" and "Reload" Signals  
Datasheet  
10-Mar-2021  
Revision 2.4  
163 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 174: Example of Latching and Processing "Program" and "Reload" Signals  
Since the access to the MTP NVM is disabled during NVM self-programming procedure, the device will not acknowledge it via  
I2C interface. This can be used to determine when the erase/programming cycle is completed (this feature can be used to  
maximize bus throughput). ACK polling can be used in this case.  
If the device is still busy during the write cycle, then no ACK will be returned. If no ACK is returned, then the Start bit and control  
byte must be re-sent. Once the cycle is complete, then the device will return the ACK and the master can proceed with the next  
Read or Write command.  
Datasheet  
10-Mar-2021  
Revision 2.4  
164 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
12.4 TRIMMING PROCESS USING PROGRAMMABLE TRIM BLOCK  
There are several ways of implementing the trimming process using the PT block. One of the essential features of the PT  
macrocell is the Auto-Trim function described below. It allows the user to design simple calibration circuits for a wide variety of  
applications.  
12.4.1 Trimming Process with Auto-Trim Option Enabled  
For using the Auto-Trim function the following preliminary steps must be taken:  
Clear Auto_Cal _Dis_RHx NVM bit (0 is default value). This enables Auto-Trim function.  
Configure M1 MUX (registers [875:872]). It can be user system voltage feedback. If Auto-Trim function is used for two  
rheostats, M1 MUX must be configured for both rheostats (for cases when Set0 is latched and when Set1 is latched).  
Configure M2 MUX. It can be user desired set point threshold. If Auto-Trim function is used for two rheostats, M2 MUX must  
be configured for both rheostats (for cases when Set0 is latched and when Set1 is latched). Remember, that M2 MUX is  
simplified symbol of Chopper ACMP reference selection blocks.  
Configure M_CH0 (M_CH1) MUX to work with Chopper ACMP (M_CH0,1 MUXs are configured to work with Chop ACMP by  
default).  
Configure inverting or non-inverting Chopper ACMP output (registers [923], [920] and [882]);  
Select clock source (internal clock from internal pre-dividers or from connection matrix). Note that in Auto-Trim mode clock  
source frequency for the PT Block is limited by the Chopper Comparator time response. Therefore, the clock source  
frequency must not be greater than <fChACMP> kHz.  
Start the Auto-Trim process by setting the Set0 (Set1) input of PT block to a High level. The Auto-Trim process stops if one of  
three stop conditions occur:  
1) 2nd time change on Up/Down input at the moment of rising edge on Clock input (see Figure 175).  
2) the value of rheostat reaches its maximum (1023).  
3) the value of rheostat reaches its minimum (0).  
Stop conditions result in a change of the Idle/Active signal, which resets the internal Auto-Trim logic.  
Note that the Set input is edge sensitive, but if the user keeps a High logic level at this input after reaching the set point, the  
PT block will continue to operate and continue to switch rheostat around the set point.  
To start new Auto-Trim process user should reapply a High level on Set input.  
The detailed flow of Auto-Trim process is shown in Figure 175, Figure 176, Figure 177.  
Datasheet  
10-Mar-2021  
Revision 2.4  
165 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 175: Example of Auto-Trim Process for a Single Rheostat  
The key events of the Auto-Trim process are the following (see Figure 175):  
1. During the startup event the SLG47004 loads the rheostat value from NVM to Internal Counter. In this example this value is  
512.  
2. The Trim process starts with a rising edge on Set input. This Set signal is latched until the end of the Auto-Trim process. The  
Set signal will enable the Chopper ACMP and the Vref, if they were not enabled earlier. After a ready signal from analog blocks  
(BG_OK & Vref_OK), the clock pulses for the internal counter are enabled. The counter starts to count up or down depending on  
the level at the Up/Down input. If user selected the “Internal Clock” option for Clock input, these clock pulses are generated  
automatically during trim time. Each rising edge of the Clock pulse changes the value of the counter and, consequently, the  
value of the rheostat.  
3. There are three stop conditions for the Auto-Trim process:  
1) A subsequent change on Up/Down input at the moment of rising edge on Clock input.  
Datasheet  
10-Mar-2021  
Revision 2.4  
166 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
2) The value of the rheostat reaches its maximum (1023).  
3) The value of the rheostat reaches its minimum (0).  
If the Set input signal is shorter than the trim time, the Auto-Trim process stops automatically after a stop condition occurs (event  
3, Figure 175). However, if a stop condition comes and High logic level holds on the Set input, the rheostat value will be  
switched near the set point until a Low level on the Set input occurs (event 7, Figure 175). Note that the Idle/Active signal  
changes its level to High (Auto-Trim is done) even if the user keeps a High logic level at the Set input.  
After the end of the Auto-Trim process, Chopper ACMP powers down and its output goes to a Low logic level.  
4. After a rising edge at the “Reload” signal, the value from NVM is copied to the rheostat Internal Counter overwriting current  
rheostat settings.  
5. During this event user starts Auto-Trim process, but holds High logic level at Set input for a time longer than Auto-Trim  
process.  
6. A “Program” signal comes. The “Program” command is latched and will be executed at the end of the Auto-Trim process.  
7. The Auto-Trim process stops when the signal at the Set input goes to Low level. Note that a logic High level at the Set input  
was held longer than the time that was needed for the Auto-Trim process. At the end of the Auto-Trim process, the SLG47004  
starts the NVM self-programming routine to copy the rheostat value from Reg LATCH to MPT NVM.  
Figure 176 shows a similar Auto-Trim example. The only difference is that the user defined clock source as “External clock” from  
connection matrix. The clock pulses are present at the Clock input all the time, but have effect (rheostat value changes) during  
Trim time only. The stop condition for this case is the following: PT block reaches boundary value of 1023 and the logic level at  
change Set input is Low.  
Figure 176: Example of Auto-Trim Process with External Clock Signal  
Datasheet  
10-Mar-2021  
Revision 2.4  
167 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 177 shows Auto-Trim process flow for two rheostats.  
Figure 177: Example of Auto-Trim Process for Two Rheostats  
Datasheet  
10-Mar-2021  
Revision 2.4  
168 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
12.4.2 I2C Controlled Trimming Process with Auto-Trim Option Enabled  
It's possible to start the Auto-Trim process via I2C interface. In this case the user must configure the SLG47004 PT macrocell as  
described in Section 12.4.1. To start the Auto-Trim process via I2C interface the user can use I2C virtual inputs.  
Also, an external I2C master device can force the SLG47004 to reload the rheostat value from NVM ("Reload" command) or to  
copy rheostat value to NVM ("Program" command) using I2C virtual inputs.  
See Figure 178 for an example of the Auto-Trim process under external I2C master control.  
Figure 178: Example of Auto-Trim Process via I2C  
The key events of the Auto-Trim process under external I2C master control are as follows:  
1. During the startup event the SLG47004 loads the rheostat value from the NVM to the Internal Counter. In the example this  
value is 512.  
2. I2C master sends the message to set High one of the I2C virtual inputs that is connected with Set input of the PT macrocell.  
3. After the I2C message is received and processed, the I2C virtual input and the Set input will be at a High logic level. The Auto-  
Trim process begins.  
4. I2C master clears the virtual input and, consequently, the Set input. The Auto-Trim process goes on until a trim stop condition  
occurs.  
Datasheet  
10-Mar-2021  
Revision 2.4  
169 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
5. The Auto-Trim process ends. The stop condition in this example is a 2nd change on Up/Down input at the moment of rising  
edge on the Clock input and Low level at the Set input.  
12.4.3 Changing Rheostat Value Directly via I2C  
The user can perform their own trim algorithm setting the rheostat value directly via I2C interface. In the example below, a  
microcontroller uses a user defined trim algorithm to change SLG47004‘s rheostat via I2C interface (Figure 179). Note that  
during Auto-Trim process SLG47004 will return nACK, if master tries to get access (both read and write) to rheostats registers  
via I2C.  
Figure 179: Example of Hardware Configuration  
Note that the PT Registers are allowed to read and write via communication interface, if not protected.  
The preliminary configuration of system shown in Figure 179 is the following:  
Auto_Cal _Dis_RHx bit is set to 1 (disable Auto-Trim mode);  
M1 MUX (registers [875:872])) is configured to work with user system voltage feedback (pin Chop_ACMP+);  
M2 MUX is configured to work with SLG47004 programmable Vref. Note that M2 MUX is simplified symbol of Chopper ACMP  
reference selection blocks (see Section 9.2);  
Chopper ACMP is powered up from connection matrix. Chopper ACMP out is connected to output pin;  
No Clock source for PT block.  
The example of a system trim via I2C is shown in the figure below. In this example the I2C master uses a simple approximation  
algorithm for reaching the set point. Every next step the rheostat code is changed by ±(Previous rheostat code step value/2).  
The sign depends on the Chopper ACMP output. The algorithm steps are as follows:  
Set rheostat code to 1024/2 = 512;  
Wait until the system settles down and check if Chopper ACMP output = 1, then Next_rheostat_code = 512 + (512/2). If  
Chopper ACMP output = 0, then Next_rheostat_code = 512 - (512/2);  
Repeat previous step until Next_rheostat_code = Prev_rheostat_code ± 1;  
Datasheet  
10-Mar-2021  
Revision 2.4  
170 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 180: Example of User Specific Trimming Process under I2C Master Control  
The key events of a user specific trimming process under I2C master control are as follows:  
1. During the startup event the SLG47004 loads the rheostat value from NVM to Internal Counter. In the example this value is  
512.  
2. I2C master writes a new value to the Rheostat’s Internal Counter according to Chopper ACMP output. Note that the minimum  
time for changing the rheostat code depends on the time response of the user system.  
3. After the trim process is completed, the I2C master sets the I2C virtual input to logic “1”. This input is connected to the  
"Reload" signal of the PT macrocell. The rising edge on this input starts the NVM self-programming routine.  
4. The I2C master clears the I2C virtual input.  
Additionally, the I2C Master macrocell can use internal resources such as an ADC to read the system data, find the error, and  
then adjust the Rheostat value. Also, it is possible to change the Rheostat value for different conditions. For example, the I2C  
Master macrocell can change the Rheostat value based on the temperature change to reduce the system error.  
12.5 USING CHOPPER ACMP  
When the Auto-Trim Function is disabled, the Chopper comparator can be used as a standalone analog comparator. Inputs of  
the Chopper ACMP are selected by the M1 and M2 analog MUXs. Output of the Chopper ACMP can be optionally inverted by  
register [882]. This comparator output is the input [55] of the connection matrix. In case of a disabled Auto-Trim Function, the  
power up source for the Chopper ACMP comes from connection matrix. Please refer to Section 9 for more details.  
Datasheet  
10-Mar-2021  
Revision 2.4  
171 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
0.2  
VDD = 2.4 V  
0.15  
0.1  
VDD = 5.5 V  
0.05  
0
-0.05  
-0.1  
-0.15  
0
64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code (Decimal)  
Figure 181: DNL vs. Digital Code, Rheostat Mode (VAB = 1 V) at T = 25 °C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VDD = 2.4 V  
VDD = 5.5 V  
-0.1  
-0.2  
0
64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code (Decimal)  
Figure 182: INL vs. Digital Code, Rheostat Mode (VAB = 1 V) at T = 25 °C  
Datasheet  
10-Mar-2021  
Revision 2.4  
172 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
0.2  
VDD = 2.4 V  
0.15  
0.1  
VDD = 5.5 V  
0.05  
0
-0.05  
-0.1  
-0.15  
0
64  
128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code (Decimal)  
Figure 183: DNL vs. Digital Code, Potentiometer Mode (VAB = 1 V) at T = 25 °C  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VDD = 2.4 V  
VDD = 5.5 V  
0
64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code (Decimal)  
Figure 184: INL vs. Digital Code, Potentiometer Mode (VAB = 1 V) at T = 25 °C  
Datasheet  
10-Mar-2021  
Revision 2.4  
173 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
64  
128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code (Decimal)  
Figure 185: (ΔRAB/RAB)/ΔTA Rheostat Mode Tempco  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VDD = 5.5 V  
VDD = 2.4 V  
T (°C)  
Figure 186: RHx Zero Scale Error vs. Temperature (VIN = 1 V)  
Datasheet  
10-Mar-2021  
Revision 2.4  
174 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Time (50 μs/div)  
Figure 187: Transition Glitch in Worst Case (Code = 511 to Code = 512)  
10  
0
-10  
-20  
-30  
-40  
-50  
10  
100  
1 000  
10 000  
100 000  
1 000 000  
10 000 000  
f (Hz)  
Figure 188: Gain vs. Frequency (Code = 512) at T = 25 °C, VDDA = 5 V  
Datasheet  
10-Mar-2021  
Revision 2.4  
175 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
6.0  
UP  
DOWN  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
VDD (V)  
Figure 189: RHx Settling Time vs. VDD at ILOAD = 1 mA, T = 25 °C  
Datasheet  
10-Mar-2021  
Revision 2.4  
176 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
13 Programmable Delay/Edge Detector  
The SLG47004 has a programmable time delay logic cell available, that can generate a delay that is selectable from one of four  
timings (time 2) configured in the GreenPAK Designer. The programmable time delay cell can generate one of four different delay  
patterns, rising edge detection, falling edge detection, both edge detection, and both edge delay. These four patterns can be  
further modified with the addition of delayed edge detection, which adds an extra unit of delay, as well as glitch rejection during  
the delay period. See Figure 191 for further information.  
Note: The input signal must be longer than the delay, otherwise it will be filtered out.  
registers [865:864]  
registers [867:866]  
Delay Value Selection  
Edge Mode Selection  
To Connection  
Matrix Input [30]  
Programmable  
From Connection Matrix Output [58]  
IN  
OUT  
Delay  
Figure 190: Programmable Delay  
13.1 PROGRAMMABLE DELAY TIMING DIAGRAM - EDGE DETECTOR OUTPUT  
width  
width  
IN  
time1  
Rising Edge Detector  
time1  
Falling Edge Detector  
Edge Detector  
Output  
Both Edge Detector  
Both Edge Delay  
time2  
time2  
time1 is a fixed value  
time2 delay value is selected via register  
Figure 191: Edge Detector Output  
Please refer to Table 11.  
Datasheet  
10-Mar-2021  
Revision 2.4  
177 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
14 Additional Logic Function. Deglitch Filter  
The SLG47004 has one Deglitch Filter macrocell with inverter function that is connected directly to the Connection Matrix inputs  
and outputs. In addition, this macrocell can be configured as an Edge Detector, with the following settings:  
Rising Edge Detector  
Falling Edge Detector  
Both Edge Detector  
Both Edge Delay  
Filter  
R
From Connection Matrix  
Output [59]  
0
1
C
0
1
To Connection Matrix  
Input [31]  
Edge  
Detector  
Logic  
registers [871:870]  
register [868]  
register [869]  
Figure 192: Deglitch Filter or Edge Detector  
Datasheet  
10-Mar-2021  
Revision 2.4  
178 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
15 Voltage Reference  
15.1 VOLTAGE REFERENCE OVERVIEW  
The SLG47004 has a Voltage Reference (Vref) Macrocell to provide reference to analog comparators and operational amplifiers.  
The macrocell also has the option to output reference voltages on external pins (see Table 1). Vref0 and Vref1 share output buffers  
with Temperature sensor. Note that user can use any of output buffers, but Temperature sensor is calibrated for Vref1 output  
buffer. See Table 57 for the available selections for each analog comparator. Also, see Figure 193, Figure 194, and Figure 195,  
which show the reference output structure.  
Also there is a high drive voltage reference macrocell called HD Buffer. The purpose of this macrocell is to provide stable voltage  
to the relatively high-power load (Please refer to the Table 18). HD Buffer has shared voltage reference source with the Op Amp0  
Vref. User can select output voltage in the range from VDD/64 to VDD with a step VDD/64, or output voltage in a range from 32 mV  
to 2.048 V with a step 32 mV (see Figure 195).  
15.2 VREF SELECTION TABLE  
Table 57: Vref Selection Table  
SEL[5:0]  
0
Vref  
0.032  
0.064  
0.096  
0.128  
0.16  
SEL[5:0]  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
Vref  
1.088  
1.12  
1
2
1.152  
1.184  
1.216  
1.248  
1.28  
3
4
5
0.192  
0.224  
0.256  
0.288  
0.32  
6
7
1.312  
1.344  
1.376  
1.408  
1.44  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
0.352  
0.384  
0.416  
0.448  
0.48  
1.472  
1.504  
1.536  
1.568  
1.6  
0.512  
0.544  
0.576  
0.608  
0.64  
1.632  
1.664  
1.696  
1.728  
1.76  
0.672  
0.704  
0.736  
0.768  
0.8  
1.792  
1.824  
1.856  
1.888  
1.92  
0.832  
0.864  
0.896  
0.928  
0.96  
1.952  
1.984  
2.016  
Datasheet  
10-Mar-2021  
Revision 2.4  
179 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 57: Vref Selection Table(Continued)  
SEL[5:0]  
Vref  
SEL[5:0]  
Vref  
30  
31  
32  
0.992  
1.024  
1.056  
63  
64  
2.048  
External  
Datasheet  
10-Mar-2021  
Revision 2.4  
180 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
15.3 VREF BLOCK DIAGRAM  
Figure 193: Generalized Vref Structure  
Datasheet  
10-Mar-2021  
Revision 2.4  
181 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 194: ACMP0L, ACMP1L Voltage Reference Block Diagram  
Datasheet  
10-Mar-2021  
Revision 2.4  
182 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 195: HD Buffer and Chopper ACMP Reference Block Diagram  
Datasheet  
10-Mar-2021  
Revision 2.4  
183 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 196: Operational Amplifiers Voltage Reference Block Diagram  
Datasheet  
10-Mar-2021  
Revision 2.4  
184 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
15.4 VOLTAGE REFERENCE TYPICAL PERFORMANCE  
r.  
350  
300  
250  
200  
150  
VDD = 5 V  
100  
VDD = 3.3 V  
VDD = 2.5 V  
50  
0
0
1
2
3
4
5
I, mA  
Figure 197: Typical Load Regulation, Vref = 320 mV, T = -40 °C to +85 °C, Buffer - Enable  
700  
600  
500  
400  
300  
200  
VDD = 5 V  
100  
0
VDD = 3.3 V  
VDD = 2.5 V  
0
1
2
3
4
5
I, mA  
Figure 198: Typical Load Regulation, Vref = 640 mV, T = -40 °C to +85 °C, Buffer - Enable  
Datasheet  
10-Mar-2021  
Revision 2.4  
185 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
1400  
1200  
1000  
800  
600  
400  
VDD = 5 V  
VDD = 3.3 V  
200  
VDD = 2.5 V  
0
0
1
2
3
4
5
I, mA  
Figure 199: Typical Load Regulation, Vref = 1280 mV, T = -40 °C to +85 °C, Buffer - Enable  
2100  
1800  
1500  
1200  
900  
600  
VDD = 5 V  
VDD = 3.3 V  
300  
VDD = 2.5 V  
0
0
1
2
3
4
5
I, mA  
Figure 200: Typical Load Regulation, Vref = 2048 mV, T = -40 °C to +85 °C, Buffer - Enable  
Datasheet  
10-Mar-2021  
Revision 2.4  
186 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
0
128  
256  
384  
512  
640  
768  
896 1024 1152 1280 1408 1536 1664 1792 1920 2048  
Vref (mV)  
Figure 201: Typical Input Offset Voltage vs. Vref at VDD = 2.4 V to 5.5 V, T = 25 °C, Buffer Disabled  
Datasheet  
10-Mar-2021  
Revision 2.4  
187 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
16 Clocking  
16.1 OSC GENERAL DESCRIPTION  
The SLG47004 has three internal oscillators to support a variety of applications:  
Oscillator0 (2.048 kHz)  
Oscillator1 (2.048 MHz)  
Oscillator2 (25 MHz)  
There are two divider stages for each oscillator that give the user flexibility for introducing clock signals to connection matrix, as  
well as various other Macrocells. The pre-divider (first stage) for Oscillator allows the selection of /1, /2, /4, or /8 to divide down  
frequency from the fundamental. The second stage divider has an input of frequency from the pre-divider, and outputs one of  
eight different frequencies divided by /1, /2, /3, /4, /8, /12, /24, or /64 on Connection Matrix Input lines [52], [53], and [54]. Please  
see Figure 205 for more details on the SLG47004 clock scheme.  
Oscillator2 (25 MHz) has an additional function of 100 ns delayed startup, which can be enabled/disabled by register [713]. This  
function is recommended to use when analog blocks are used along with the Oscillator.  
The Matrix Power-down/Force On function allows switching off or force on the oscillator using an external pin. The Matrix Power-  
down/Force On (Connection Matrix Output [91], [92], [93]) signal has the highest priority. The OSC operates according to the  
Table 58.  
Table 58: Oscillator Operation Mode Configuration Settings  
Register:  
OSC Enable  
Signal from  
CNT/DLY  
Register:  
Auto Power-  
On or Force  
On  
OSC  
Operation  
Mode  
External  
Clock  
Signal From Power-Down  
POR  
Connection  
Matrix  
or Force On  
by Matrix In-  
put  
Selection  
Macrocells  
0
1
X
1
X
X
X
X
X
X
X
OFF  
Internal OSC  
is OFF,  
X
logic is ON  
1
1
1
0
0
0
1
1
0
0
1
X
X
X
1
X
X
X
OFF  
ON  
ON  
ON  
CNT/DLY  
requires OSC  
1
0
0
X
0
CNT/DLY  
does not  
OFF  
1
0
0
X
0
require OSC  
Note 1 The OSC will run only when any macrocell that uses OSC is powered on.  
Datasheet  
10-Mar-2021  
Revision 2.4  
188 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
16.2 OSCILLATOR0 (2.048 KHZ)  
From Connection Matrix  
Output [91]  
Power-down/Force On  
Matrix Output control register [721]  
OSC Power Mode  
register [720]  
2.048 kHz Pre-divided Clock  
PD/FORCE ON  
registers [725:724]  
OSC0  
Auto Power-On  
Force Power-On  
(2.048 kHz) OUT  
0
0
1
DIV /1 /2 /4 /8  
0
1
Ext. Clock  
Pre-divider  
1
/ 2  
/ 3  
2
3
4
5
6
7
Ext. CLK Sel register [722]  
To Connection Matrix  
Input [52]  
/ 4  
OUT0  
/ 8  
OUT1  
To Connection Matrix  
Input [58]  
/ 12  
/ 24  
/ 64  
registers [728:726]  
registers [733:731]  
Second Stage  
Divider  
Figure 202: Oscillator0 Block Diagram  
Datasheet  
10-Mar-2021  
Revision 2.4  
189 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
16.3 OSCILLATOR1 (2.048 MHZ)  
From Connection Matrix  
Output [92]  
Power-down/Force On  
Matrix Output control register [689]  
OSC Power Mode  
register [688]  
2.048 MHz Pre-divided Clock  
PD/FORCE ON  
registers [692:691]  
OSC1  
Auto Power-On  
Force Power-On  
(2.048 MHz)OUT  
0
0
1
DIV /1 /2 /4 /8  
0
1
Ext. Clock  
Pre-divider  
1
/ 2  
/ 3  
2
3
4
5
6
7
Ext. CLK Sel register [690]  
To Connection Matrix  
Input [53]  
/ 4  
OUT0  
/ 8  
OUT1  
To Connection Matrix  
Input [59]  
/ 12  
/ 24  
/ 64  
registers [695:693]  
registers [703:701]  
Second Stage  
Divider  
Figure 203: Oscillator1 Block Diagram  
Datasheet  
10-Mar-2021  
Revision 2.4  
190 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
16.4 OSCILLATOR2 (25 MHZ)  
From Connection Matrix  
Output [93]  
Power-down/Force On  
Matrix Output control register [705]  
OSC Power Mode  
register [704]  
25 MHz Pre-divided Clock  
PD/FORCE ON  
registers [709:708]  
OSC2  
(25 MHz)  
Auto Power-On  
Force Power-On  
OUT  
0
0
1
Startup delay  
DIV /1 /2 /4 /8  
0
1
Pre-divider  
register [713]  
1
/ 2  
/ 3  
Ext. Clock  
2
3
4
5
6
Ext. CLK Sel [706]  
To Connection Matrix  
Input [54]  
/ 4  
/ 8  
/ 12  
/ 24  
/ 64  
7
registers [712:710]  
Second Stage  
Divider  
Figure 204: Oscillator2 Block Diagram  
16.5 CNT/DLY CLOCK SCHEME  
Each CNT/DLY within Multi-Function macrocell has its own additional clock divider connected to oscillators pre-divider. Available  
dividers are:  
OSC0/1, OSC0/8, OSC0/64, OSC0/512, OSC0/4096, OSC0/32768, OSC0/262144  
OSC1/1, OSC1/8, OSC1/64, OSC1/512  
OSC2/1, OSC2/4  
Datasheet  
10-Mar-2021  
Revision 2.4  
191 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
[3:0]  
0
1
25 MHz Pre-divided clock  
Div4  
2
Div8  
3
4
5
6
7
8
CNT/DLY/  
ONESHOT/  
FREQ_DET/  
2.048 MHz Pre-divided clock  
2.048 kHz Pre-divided clock  
Div64  
Div512  
DLY_EDGE_DET  
Div8  
Div64  
CNT overflow  
Div512  
9
Div4096  
Div32768  
Div262144  
10  
11  
12  
13  
14  
15  
CNT (x-1) overflow  
from Connection Matrix Out  
(separate for each CNT/DLY macrocell)  
CNT0/CNT1/CNT2/CNT3/CNT4/  
CNT5/CNT6/RH0 CLK/RH1 CLK  
none  
Figure 205: Clock Scheme  
16.6 EXTERNAL CLOCKING  
The SLG47004 supports several ways to use an external, higher accuracy clock as a reference source for internal operations.  
16.6.1 IO1 Source for Oscillator0 (2.048 kHz)  
When register [722] is set to 1, an external clocking signal on IO0 will be routed in place of the internal oscillator derived 2.048 kHz  
clock source. See Figure 202. The high and low limits for frequency that can be selected are 0 MHz and 10 MHz.  
16.6.2 IO3 Source for Oscillator1 (2.048 MHz)  
When register [690] is set to 1, an external clocking signal on IO1 will be routed in place of the internal oscillator derived 2.048 MHz  
clock source. See Figure 203. The high and low limits for frequency that can be selected are 0 MHz and 10 MHz.  
16.6.3 IO2 Source for Oscillator2 (25 MHz)  
When register [706] is set to 1, an external clocking signal on IO2 will be routed in place of the internal oscillator derived 25 MHz  
clock source. See Figure 204. The external frequency range is 0 MHz to 20 MHz at VDD = 2.4 V, 0 MHz to 30 MHz at VDD = 3.3 V,  
0 MHz to 50 MHz at VDD = 5.0 V.  
Datasheet  
10-Mar-2021  
Revision 2.4  
192 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
16.7 OSCILLATORS POWER-ON DELAY  
OSC enable  
Power-On  
Delay  
CLK  
Figure 206: Oscillator Startup Diagram  
Note 1 OSC power mode: “Auto Power-On”.  
Note 2 “OSC enable” signal appears when any macrocell that uses OSC is powered on  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
2.4  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
VDD (V)  
Figure 207: OSC0 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2.048 kHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
193 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
560  
540  
520  
500  
480  
460  
440  
420  
400  
2.4  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
VDD (V)  
Figure 208: OSC1 Oscillator Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 2.048 MHz  
160  
140  
120  
100  
80  
60  
40  
20  
0
2.4  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
VDD (V)  
Figure 209: OSC2 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC2 = 25 MHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
194 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
16.8 OSCILLATORS ACCURACY  
Note: OSC power setting: Force Power-On; Clock to matrix input - enable; Bandgap: turn on by register - enable.  
2.2  
2.18  
Fmax @ VDD = 2.5 V to 5 V  
2.16  
Ftyp @ VDD = 3.3 V  
Fmin @ VDD = 2.5 V to 5 V  
2.14  
2.12  
2.1  
2.08  
2.06  
2.04  
2.02  
2
1.98  
1.96  
1.94  
1.92  
1.9  
T (°C)  
Figure 210: OSC0 Frequency vs. Temperature, OSC0 = 2.048 kHz  
2.15  
2.13  
2.11  
2.09  
2.07  
2.05  
2.03  
2.01  
Fmax @ VDD = 2.5 V to 5 V  
1.99  
Ftyp @ VDD = 3.3 V  
1.97  
Fmin @ VDD = 2.5 V to 5.5 V  
1.95  
T (°C)  
Figure 211: OSC1 Frequency vs. Temperature, OSC1 = 2.048 MHz  
Datasheet  
10-Mar-2021  
Revision 2.4  
195 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
26.1  
25.9  
25.7  
Fmax @ VDD = 2.5 V to 5 V  
25.5  
Ftyp @ VDD = 3.3 V  
25.3  
Fmin @ VDD = 3.3 V  
25.1  
24.9  
24.7  
24.5  
24.3  
24.1  
23.9  
23.7  
T (°C)  
Figure 212: OSC2 Frequency vs. Temperature, OSC2 = 25 MHz  
8
2.048 kHz Total Error @ VDD = 2.3 V to 5.5 V  
7
6
5
4
3
2
1
25 MHz Total Error @ VDD = 2.3 V to 5.5 V  
2.048 MHz Total Error @ VDD = 2.3 V to 5.5 V  
T (°C)  
Figure 213: Oscillators Total Error vs. Temperature  
Datasheet  
10-Mar-2021  
Revision 2.4  
196 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Note: For more information see Section 3.8.  
16.9 OSCILLATORS SETTLING TIME  
488  
487  
486  
485  
484  
0
1
2
3
4
Period  
Figure 214: Oscillator0 Settling Time, VDD = 3.3 V, T = 25 °C, OSC0 = 2 kHz  
510  
500  
490  
480  
470  
460  
450  
0
1
2
3
4
5
6
Period  
Figure 215: Oscillator1 Settling Time, VDD = 3.3 V, T = 25 °C, OSC1 = 2 MHz  
Revision 2.4  
Datasheet  
10-Mar-2021  
197 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
60  
55  
50  
45  
40  
35  
30  
25  
20  
0
1
2
3
4
5
6
7
8
9
10  
11  
Period  
Figure 216: Oscillator2 Settling Time, VDD = 3.3 V, T = 25 °C, OSC2 = 25 MHz (Normal Start)  
160  
140  
120  
100  
80  
60  
40  
20  
0
1
2
3
4
5
6
7
8
Period  
Figure 217: Oscillator2 Settling Time, VDD = 3.3 V, T = 25 °C, OSC2 = 25 MHz (Start with Delay)  
Datasheet  
10-Mar-2021  
Revision 2.4  
198 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
16.10 OSCILLATORS CURRENT CONSUMPTION  
24  
22  
20  
18  
16  
14  
12  
10  
T = 85 °C  
T = 25 °C  
T = -40 °C  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
Figure 218: OSC1 Current Consumption vs. VDD (Pre-Divider = 1)  
24  
22  
20  
18  
16  
14  
12  
10  
T = 85 °C  
T = 25 °C  
T = -40 °C  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
Figure 219: OSC1 Current Consumption vs. VDD (Pre-Divider = 4)  
Datasheet  
10-Mar-2021  
Revision 2.4  
199 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
24  
22  
20  
18  
16  
14  
12  
10  
T = 85 °C  
T = 25 °C  
T = -40 °C  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
Figure 220: OSC1 Current Consumption vs. VDD (Pre-Divider = 8)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
T = 85 °C  
T = 25 °C  
T = -40 °C  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
Figure 221: OSC2 Current Consumption vs. VDD (Pre-Divider = 1)  
Datasheet  
10-Mar-2021  
Revision 2.4  
200 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
T = 85 °C  
T = 25 °C  
T = -40 °C  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
Figure 222: OSC2 Current Consumption vs. VDD (Pre-Divider = 4)  
Datasheet  
10-Mar-2021  
Revision 2.4  
201 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
55  
50  
45  
40  
35  
30  
25  
T = 85 °C  
T = 25 °C  
T = -40 °C  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
Figure 223: OSC2 Current Consumption vs. VDD (Pre-Divider = 8)  
Datasheet  
10-Mar-2021  
Revision 2.4  
202 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
17 Power-On Reset  
The SLG47004 has a Power-On Reset (POR) macrocell to ensure correct device initialization and operation of all macrocells in  
the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the VDD power is first  
ramping to the device, and also while the VDD is falling during Power-down. To accomplish this goal, the POR drives a defined  
sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of  
the IOs.  
17.1 GENERAL OPERATION  
The SLG47004 is guaranteed to be powered down and non-operational when the VDD voltage (voltage on PIN13) is less than  
Power-Off Threshold (see in Table 6), but not less than -0.6 V. Another essential condition for the chip to be powered down is that  
no voltage higher (Note) than the VDD voltage is applied to any other PIN. For example, if VDD voltage is 0.3 V, applying a voltage  
higher than 0.3 V to any other PIN is incorrect, and can lead to incorrect or unexpected device behavior.  
Note: There is a 0.6 V margin due to forward drop voltage of the ESD protection diodes.  
To start the POR sequence in the SLG47004, the voltage applied on the VDD should be higher than the Power-On Threshold  
(Note). The full operational VDD range for the SLG47004 is 2.4 V to 5.5 V. This means that the VDD voltage must ramp up to the  
operational voltage value, but the POR sequence will start earlier, as soon as the VDD voltage rises to the Power-On Threshold.  
After the POR sequence has started, the SLG47004 will have a typical Startup Time (see in Table 6) to go through all the steps  
in the sequence, and will be ready and completely operational after the POR sequence is complete.  
Note: The Power-On Threshold is defined in Table 6.  
To power down the chip, the VDD voltage should be lower than the operational and to guarantee that chip is powered down, it  
should be less than Power-Off Threshold.  
All PINs are in high impedance state when the chip is powered down and while the POR sequence is taking place. The last step  
in the POR sequence releases the IO structures from the high impedance state, at which time the device is operational. The pin  
configuration at this point in time is defined by the design programmed into the chip. Also, as it was mentioned before, the voltage  
on PINs can’t be bigger than the VDD, this rule also applies to the case when the chip is powered on.  
Datasheet  
10-Mar-2021  
Revision 2.4  
203 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
17.2 POR SEQUENCE  
The POR system generates a sequence of signals that enable certain macrocells. The sequence is shown in Figure 224.  
VDD  
t
POR_NVM  
(reset for NVM)  
t
t
t
t
t
t
t
NVM_ready_out  
POR_GPI  
(reset for input enable,  
Digital Rheostat (default value))  
POR_LUT  
(reset for LUT/FILTER)  
POR_CORE  
(reset for DLY/OSC/DFF  
/LATCH/Pipe DLY/ACMP/  
Edge Detector in Filter)  
POR_OUT  
(generate low to high to matrix)  
POR_GPO  
(reset for output enable)  
Figure 224: POR Sequence  
As can be seen from Figure 224 after the VDD has started ramping up and crossed the Power-On Threshold, first, the on-chip  
NVM memory is reset. Next, the chip reads the data from NVM and transfers this information to a CMOS LATCH, that serves to  
configure each macrocell, and the Connection Matrix, which routes signals between macrocells. The third stage causes the reset  
of the input pins, and then enables them. At that time Digital Rheostats value is set to its default value. After that, the LUTs are  
reset and become active. After LUTs, the Delay cells, OSCs, DFFs, LATCHES, and Pipe Delay are initialized. Only after all  
macrocells are initialized, internal POR signal (POR macrocell output) goes from LOW to HIGH (POR_OUT in Figure 224). The  
last portion of the device to be initialized is the output pins, which transition from high impedance to active at this point.  
The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many  
environmental factors, such as: slew rate, VDD value, temperature, and even will vary from chip to chip (process influence).  
17.3 MACROCELLS OUTPUT STATES DURING POR SEQUENCE  
To have a full picture of SLG47004 operation during powering and POR sequence refer to Figure 225, which describes the  
macrocell output states during the POR sequence.  
First, before the NVM has been reset, all macrocells have their output set to logic LOW (except the output pins which are in high  
impedance state). On the next step, some of the macrocells start initialization: input pins output state becomes LOW; Digital  
Rheostats value is set to its default value; LUTs also output LOW. After that input pins are enabled. Next, only LUTs are configured.  
Then, all other macrocells are initialized. After macrocells are initialized, internal POR matrix signal switches from LOW to HIGH.  
The last are output pins that become active and determined by the input signals.  
Datasheet  
10-Mar-2021  
Revision 2.4  
204 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
VDD  
Guaranteed HIGH before POR_GPI  
t
VDD _out  
to matrix  
Unpredictable  
t
t
Input PIN _out  
Unpredictable  
Determined by External Signal  
to matrix  
Digital Rheostats  
Resistance  
Hi-Z  
Default Value from NVM  
t
LUT/FILTER_out  
to matrix  
Unpredictable  
Unpredictable  
Unpredictable  
Unpredictable  
Unpredictable  
Determined by Input signals  
Determined by input signals  
t
t
t
t
t
t
OUT = IN without Delay  
Programmable Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
Determined by initial state  
DFF/LATCH/ACMP/Edge  
Detector in Filter_out  
to matrix  
Determined by Input signals  
Determined by input signals  
OUT = IN without Delay  
Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
POR_out  
to matrix  
Ext. GPO  
Tri-state  
Determined by input signals  
Output State Unpredictable  
Figure 225: Internal Macrocell States During POR Sequence  
17.3.1 Initialization  
All internal macrocells by default have initial low level. Starting from indicated power-up time of 1.6 V to 2.07 V, macrocells in  
SLG47004 are powered on while forced to the reset state. All outputs are in Hi-Z and chip starts loading data from NVM. Then  
the reset signal is released for internal macrocells and they start to initialize according to the following sequence:  
1. Input pins, Pull-up/down, Digital Rheostats, Op Amps.  
2. LUTs.  
3. DFFs, Delays/Counters, Pipe Delay, OSCs, ACMPs.  
4. POR output to matrix.  
5. Output pin corresponds to the internal logic.  
The Vref output pin driving signal can precede POR output signal going high by 3 µs to 5 µs. The POR signal going high indicates  
the mentioned power-up sequence is complete.  
Note: The maximum voltage applied to any pin should not be higher than the VDD level. There are ESD Diodes between pin →  
Datasheet  
10-Mar-2021  
Revision 2.4  
205 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
VDD and pin → GND on each pin. Exceeding VDD results in leakage current on the input pin, and VDD will be pulled up, following  
the voltage on the input pin.  
17.3.2 Power-Down  
VDD (V)  
2 V  
1.53 V  
0.97 V  
1 V Vref Out Signal  
1 V  
Time  
Not guaranteed output state  
Figure 226: Power-Down  
During Power-down macrocells in SLG47004 are powered off after VDD falling down below Power-Off Threshold. Please note,  
that during a slow rampdown outputs can possibly switch state.  
Datasheet  
10-Mar-2021  
Revision 2.4  
206 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
2
18 I C Serial Communications Macrocell  
18.1 I2C SERIAL COMMUNICATIONS MACROCELL OVERVIEW  
In the standard use case for the GreenPAK devices, the configuration choices made by the user are stored as bit settings in the  
Non-Volatile Memory (NVM), and this information is transferred at startup time to volatile RAM registers that enable the  
configuration of the macrocells. Other RAM registers in the device are responsible for setting the connections in the Connection  
Matrix to route signals in the manner most appropriate for the user’s application.  
The I2C Serial Communications Macrocell in this device allows an I2C bus Master to read and write this information via a serial  
channel directly to the RAM registers, allowing the remote re-configuration of macrocells, and remote changes to signal chains  
within the device.  
The I2C bus Master is also able to read and write other register bits that are not associated with NVM memory. As an example,  
the input lines to the Connection Matrix can be read as digital register bits. These are the signal outputs of each of the macrocells  
in the device, giving the I2C bus Master the capability to remotely read the current value of any macrocell.  
The user has the flexibility to control read access and write access via registers bits registers [1795:1792]. See Section 19 for  
more details on I2C read/write memory protection.  
18.2 I2C SERIAL COMMUNICATIONS DEVICE ADDRESSING  
Each command to the I2C Serial Communications macrocell begins with a Control Byte. The bits inside this Control Byte are  
shown in Figure 227.After the Start bit, the first four bits are a control code. Each bit in a control code can be sourced independently  
from the register or by value defined externally by IO1, IO2, IO3, and IO4. The LSB of the control code is defined by the value of  
IO1, while the MSB is defined by the value of IO4. The address source (either register bit or PIN) for each bit in the control code  
is defined by registers [1019:1016]. This gives the user flexibility on the chip level addressing of this device and other devices on  
the same I2C bus.The default control code is 0001. The Block Address is the next three bits (A10, A9, A8), which will define the  
most significant bits in the addressing of the data to be read or written by the command. The last bit in the Control Byte is the R/W  
bit, which selects whether a read command or write command is requested, with a “1” selecting for a Read command, and a “0”  
selecting for a Write command. This Control Byte will be followed by an Acknowledge bit (ACK), which is sent by this device to  
indicate successful communication of the Control Byte data.  
In the I2C-bus specification and user manual there are two groups of eight addresses (0000 xxx and 1111 xxx) that are reserved  
for the special functions, such as a system General Call address. If the user of this device choses to set the Control Code to either  
“1111” or “0000” in a system with other slave device, please consult the I2C-bus specification and user manual to understand the  
addressing and implementation of these special functions, to ensure reliable operation.  
In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of  
information, resulting in a total address space of 2K bytes. The valid addresses are shown in the memory map in Figure 237.  
With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word  
Address.  
Start  
bit  
Acknowledge  
bit  
Control Byte  
Word Address  
A
10  
A
9
A
8
A
7
A
0
S
X
X
X
X
R/W ACK  
Control  
Code  
Block  
Address  
Read/Write bit  
Figure 227: Basic Command Structure  
Datasheet  
10-Mar-2021  
Revision 2.4  
207 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
18.3 I2C SERIAL GENERAL TIMING  
General timing characteristics for the I2C Serial Communications macrocell are shown in Figure 228. Timing specifications can  
be found in the AC Characteristics, section 3.4.  
tHIGH  
tF  
tR  
tLOW  
SCL  
tSU STA  
tHD DAT  
tHD STA  
tSU DAT  
tSU STO  
SDA IN  
tBUF  
tAA  
tDH  
SDA OUT  
Figure 228: I2C General Timing Characteristics  
18.4 I2C SERIAL COMMUNICATIONS COMMANDS  
18.4.1 Byte Write Command  
Following the Start condition from the Master, the Control Code [4 bits], the Block Address [3 bits], and the R/W bit (set to “0”) are  
placed onto the I2C bus by the Master. After the SLG47004 sends an Acknowledge bit (ACK), the next byte transmitted by the  
Master is the Word Address. The Block Address (A10, A9, A8), combined with the Word Address (A7 through A0), together set  
the internal address pointer in the SLG47004, where the data byte is to be written. After the SLG47004 sends another  
Acknowledge bit, the Master will transmit the data byte to be written into the addressed memory location. The SLG47004 again  
provides an Acknowledge bit and then the Master generates a Stop condition. The internal write cycle for the data will take place  
at the time that the SLG47004 generates the Acknowledge bit.  
It is possible to latch all IOs during I2C write command to the register configuration data (block address A10, A9, A8 = 000),  
register [985] = 1 - Enable. It means that IOs will remain their state until the write command is done.  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
Stop  
bit  
R/W bit = 0  
Figure 229: Byte Write Command, R/W = 0  
Datasheet  
10-Mar-2021  
Revision 2.4  
208 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
18.4.2 Sequential Write Command  
The write Control Byte, Word Address, and the first data byte are transmitted to the SLG47004 in the same way as in a Byte Write  
command. However, instead of generating a Stop condition, the Bus Master continues to transmit data bytes to the SLG47004.  
Each subsequent data byte will increment the internal address counter, and will be written into the next higher byte in the command  
addressing. As in the case of the Byte Write command, the internal write cycle will take place at the time that the SLG47004  
generates the Acknowledge bit.  
Acknowledge  
Acknowledge  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n + 1)  
Data (n + x)  
Control Byte  
Word Address (n)  
Data (n)  
A
10  
A
9
A
8
ACK  
ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
Write bit  
Figure 230: Sequential Write Command  
18.4.3 Current Address Read Command  
The Current Address Read Command reads from the current pointer address location. The address pointer is incremented at the  
first STOP bit following any write control byte. For example, if a Sequential Read command (which contains a write control byte)  
reads data up to address n, the address pointer would get incremented to n + 1 upon the STOP of that command. Subsequently,  
a Current Address Read that follows would start reading data at n + 1. The Current Address Read Command contains the Control  
Byte sent by the Master, with the R/W bit = “1”. The SLG47004 will issue an Acknowledge bit, and then transmit eight data bits  
for the requested byte. The Master will not issue an Acknowledge bit, and follow immediately with a Stop condition  
Start  
bit  
Acknowledge  
bit  
Stop  
bit  
Bus Activity  
Control Byte  
Data (n)  
A
10  
A
9
A
8
S
X
X
X
X
R
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
No Ack  
bit  
R/W bit = 1  
Figure 231: Current Address Read Command, R/W = 1  
18.4.4 Random Read Command  
The Random Read command starts with a Control Byte (with R/W bit set to “0”, indicating a write command) and Word Address  
to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the same as the Byte Write  
command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address  
counter in preparation for the second half of the command. After the Start bit, the Bus Master issues a second control byte with  
the R/W bit set to “1”, after which the SLG47004 issues an Acknowledge bit followed by the requested eight data bits.  
Datasheet  
10-Mar-2021  
Revision 2.4  
209 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Acknowledge  
Stop  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n)  
Control Byte  
Word Address (n)  
Control Byte  
A
10  
A
9
A
8
A
10  
A
9
A
8
S
ACK  
X
X
X
X
R ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
Control  
Code  
Block  
Address  
Control  
Code  
Block  
Address  
No Ack  
bit  
Write bit  
Read bit  
Figure 232: Random Read Command  
18.4.5 Sequential Read Command  
The Sequential Read command is initiated in the same way as a Random Read command, except that once the SLG47004  
transmits the first data byte, the Bus Master issues an Acknowledge bit as opposed to a Stop condition in a random read. The  
Bus Master can continue reading sequential bytes of data, and will terminate the command with a Stop condition.  
Acknowledge  
Start  
bit  
bit  
Bus Activity  
Data (n + 2)  
Data (n + x)  
Control Byte  
Data (n)  
Data (n + 1)  
A
8
A
10  
A
9
ACK  
P
SDA LINE  
S
X
X
X
X
R
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
No Ack  
bit  
Read bit  
Figure 233: Sequential Read Command  
18.4.6 I2C Serial Reset Command  
If I2C serial communication is established with the device, it is possible to reset the device to initial power up conditions, including  
configuration of all macrocells and all connections provided by the Connection Matrix. This is implemented by setting register [984]  
I2C reset bit to “1”, which causes the device to re-enable the Power-On Reset (POR) sequence, including the reload of all register  
data from NVM. During the POR sequence, the outputs of the device will be in tri-state. After the reset has taken place, the contents  
of register [984] will be set to “0” automatically. The Figure 234 illustrates the sequence of events for this reset function.  
Datasheet  
10-Mar-2021  
Revision 2.4  
210 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Internal Reset bit  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, se  
t to 0  
Write bit  
by I2C Stop Signal  
Reset-bit register output  
DFF output gated by stop signal  
Internal POR for core only  
Figure 234: Reset Command Timing  
18.5 CHIP CONFIGURATION DATA PROTECTION  
The SLG47004 utilizes a scheme that allows a portion or the entire Register and NVM to be inhibited from being read or  
written/erased. There are two bytes that define the register and NVM access or change. The second byte NPR defines the chip  
NVM data configuration read and write protection. The first byte RPR defines the register read and write protection. If desired,  
the protection lock bit (PRL) can be set so that protection may no longer be modified, thereby making the current protection  
scheme permanent. The status of the RPR and NPR can be determined by following a Random Read sequence. Changing the  
state of the RPR and NPR is accomplished with a Byte Write sequence with the requirements outlined in this section.  
Special care must be taken when NVM page 14 is rewritten (registers [1919:1792]). This page contains rheostats tolerance data  
that can be permanently lost during write/erase operation.  
The RPR register is located on H’E0 address, while NPR is located on H’E1 address.  
The RPR format is shown in Table 59, and the RPR bit functions are included in Table 60.  
Table 59: RPR Format  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RPR  
RH_PRB  
RPRB3  
RPRB2  
RPRB1  
RPRB0  
* Becomes read only after PRL is high. The content is permanently locked for write and erase after PRL is high.  
Table 60: RPR Bit Function Description  
Bit  
Name  
Type  
R/W*  
R/W*  
Description  
0: Program signal from connection matrix is enabled  
1: Program signal from connection matrix is disabled  
4
RH_PRB  
RPRB3  
--  
2k Register  
Write  
00: 2k register data is unprotected for write;  
01: 2k register data is partly protected for write; Please refer to the Table 63.  
10: 2k register data is fully protected for write.  
3:2  
Selection  
Bits  
RPRB2  
R/W*  
Datasheet  
10-Mar-2021  
Revision 2.4  
211 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 60: RPR Bit Function Description(Continued)  
Bit  
Name  
2k Register  
Type  
Description  
RPRB1  
RPRB0  
R/W*  
00: 2k register data is unprotected for read;  
01: 2k register data is partly protected for read; Please refer to the Table 63.  
10: 2k register data is fully protected for read.  
Read  
Selection  
Bits  
1:0  
R/W*  
The NPR format is shown in Table 61, and the NPR bit functions are included in Table 62.  
Table 61: NPR Format  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
NPR  
Table 62: NPR Bit Function Description  
NPRB1  
NPRB0  
Bit  
Name  
Type  
Description  
NPRB1  
NPRB0  
R/W*  
00: 2k NVM Configuration data is unprotected for read and write/erase;  
01: 2k NVM Configuration data is fully protected for read;  
10: 2k NVM Configuration data is fully protected for write/erase;  
11: 2k NVM Configuration data is fully protected for read and write/erase.  
2k NVM  
Configuration  
Selection Bits  
1:0  
R/W*  
* Becomes read only after PRL is high. The content is permanently locked for write and erase after PRL is high.  
The protection selection bits allow different levels of protection of the register and NVM Memory Array.  
There is a dedicated bit RH_PRB, that enables/disables "Program" signal of PT block to change NVM rheostats resistance values.  
If RH_PRB [1796] = 0, "Program" signal is enabled. If RH_PRB [1796] = 1, "Program" signal is disabled. Note that RH_PRB bit  
has no effect on I2C access to NVM. To enable/disable I2C access to rheostat resistance value, stored in NVM, user must change  
NPRB0, NPRB1 bits.  
The Protect Lock Bit (PRL) is used to permanently lock (for write and erase) the current state of the RPR and NPR,as well as  
EEPROM protection. A Logic 0 indicates that the protection byte can be modified, whereas a Logic 1 indicates the byte has been  
locked and can no longer be modified.  
In this case it is impossible to erase the whole page E with protection bytes. The PRL is located at E4 address (register [1824]).  
18.6 I2C SERIAL COMMAND REGISTER MAP  
There are nine read/write protect modes for the design sequence from being corrupted or copied. See Table 63 for details.  
Table 63: Read/Write Register Protection Options  
Protection Modes Configuration  
Partly  
Lock  
Read &  
Lock  
Lock  
Read &  
Partly  
Lock  
Partly  
Lock  
Read/  
Write  
Partly  
Lock  
Read  
Partly  
Lock  
Write  
Lock  
Read/  
Write  
Configurations  
Lock  
Read  
Lock  
Write  
Unlock  
Register  
Address  
Test  
Mode  
Write  
Write  
00  
00  
01  
00  
00  
01  
01  
01  
01  
10  
10  
01  
10  
00  
00  
10  
10  
10  
RPR[1:0]  
RPR[3:2]  
2
I C Byte Write Bit  
Masking  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R
W
W
W
W
R
R
-
-
-
-
F6  
(section 18.7.2)  
2
I C Serial Reset  
Command  
7Bb'0  
(section 18.4.6)  
Datasheet  
10-Mar-2021  
Revision 2.4  
212 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 63: Read/Write Register Protection Options(Continued)  
Protection Modes Configuration  
Partly  
Lock  
Read &  
Lock  
Lock  
Read &  
Partly  
Lock  
Partly  
Lock  
Read/  
Write  
Partly  
Lock  
Read  
Partly  
Lock  
Write  
Lock  
Read/  
Write  
Configurations  
RPR[1:0]  
Lock  
Read  
Lock  
Write  
Unlock  
Register  
Address  
Test  
Mode  
Write  
Write  
00  
00  
01  
00  
00  
01  
01  
01  
01  
10  
10  
01  
10  
00  
00  
10  
10  
10  
RPR[3:2]  
Outputs Latching  
2
During I C Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R
W
W
W
W
R
R
-
-
-
-
7Bb'1  
7C  
(section18.7)  
Connection Matrix  
Virtual Inputs  
(section 6.3)  
RH0_CNT Data  
RH1_CNT Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R
W
W
W
W
R
R
-
-
R/W  
R/W  
C0,C1  
D0,D1  
Macrocells Output  
Values (Connection  
Matrix Inputs,  
section  
R
R
R
R
R
-
-
R
-
R
C4~CA  
Counter Current  
Value  
R
R
R
R
R
-
-
R
-
R
CB~CE  
RH0_CNT Value  
RH1_CNT Value  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
C2,C3  
D2,D3  
Protection Mode  
Selection  
R/W  
R/W  
R
R
R
R
R
R
R
R
R/W  
R
R
R7  
R
R
R
E4'b0  
(sections 18.6,  
19.6)  
7Fb'3~7F  
b'0  
2
I C Slave Address  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Pin slave address  
select  
7Fb'7~7F  
b'4  
Service page lock  
RH0 Tolerance Data  
RH1 Tolerance Data  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
F3b'0  
E6,E7  
E8,E9  
Protect Mode  
Config  
(RH_PRB,RPR,  
NPR,WPR)  
R/W*  
W**  
R/W*  
W**  
R/W*  
W**  
R/W*  
W**  
R/W*  
W**  
R/W*  
W**  
R/W*  
W**  
R/W*  
W**  
R/W*  
W**  
R/W*  
W**  
E0, E1, E2  
E3  
Page Erase byte  
Macrocells Inputs  
Configuration  
00~4A  
(4B rev)  
(Connection Matrix  
Outputs)  
R/W  
W
R
-
-
-
W
R
-
-
(section 6.2  
)
Configuration Bits  
for All Macrocells  
(IOs, ACMPs,  
Combination  
Function  
R/W  
W
R
-
-
-
W
R
-
-
Macrocells, and  
others)  
R/W  
W
Allow Read and Write Data  
Allow Write Data Only  
W**  
Pages that can be erased are defined by NVM write protection  
Datasheet  
10-Mar-2021  
Revision 2.4  
213 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
R
-
Allow Read Data Only  
The Data is protected for Read and Write  
Note 1 R/W becomes read only if protection mode selection (lock bit) is set to 1.  
Note 2 R/W Readable/writable depend on the "Trim mode enable" bit. If “Trim mode enable” bit value = 1, then trim bits are  
enable.  
It is possible to read some data from macrocells, such as counter current value, connection matrix, and connection matrix virtual  
inputs. The I2C write will not have any impact on data in case data comes from macrocell output, except Connection Matrix Virtual  
Inputs. The silicon identification service bits allow identifying silicon family, its revision, and others.  
R/W* - Becomes read only after PRL is high.See Section 21 for detailed information on all registers.  
Datasheet  
10-Mar-2021  
Revision 2.4  
214 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
18.7 I2C ADDITIONAL OPTIONS  
When Output latching during I2C write to the register configuration data (block address A10, A9, A8 = 000), registers [985] = 1  
allows all PINs output value to be latched while register content is changing. It will protect the output change due to configuration  
process during I2C write in case multiple register bytes are changed. Inputs and internal macrocells retain their status during I2C  
write.  
See Section 21 for detailed information on all registers.  
18.7.1 Reading Counter Data via I2C  
The current count value in three counters in the device can be read via I2C. The counters that have this additional functionality  
are 16-bit CNT0, and 8-bit counters CNT2 and CNT4.  
18.7.2 I2C Byte Write Bit Masking  
The I2C macrocell inside SLG47004 supports masking of individual bits within a byte that is written to the RAM memory space.  
This function is supported across the entire RAM memory space. To implement this function, the user performs a Byte Write  
Command (see Section 18.4.1 for details) on the I2C Byte Write Mask Register (address 0F6H) with the desired bit mask pattern.  
This sets a bit mask pattern for the target memory location that will take effect on the next Byte Write Command to this register  
byte. Any bit in the mask that is set to “1” in the I2C Byte Write Mask Register will mask the effect of changing that particular bit  
in the target register, during the next Byte Write Command. The contents of the I2C Byte Write Mask Register are reset (set to  
00h) after valid Byte Write Command. If the next command received by the device is not a Byte Write Command, the effect of the  
bit masking function will be aborted, and the I2C Byte Write Mask Register will be reset with no effect. Figure 235 shows an  
example of this function.  
Datasheet  
10-Mar-2021  
Revision 2.4  
215 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
User Actions  
Byte Write Command, Address = C9, Data = 11110000b [sets mask bits]  
Byte Write Command, Address = 74h, Data = 10101010b [writes data with mask]  
Memory Address 74h (original contents)  
Mask to choose bit from new  
write command  
1
1
1
1
0
0
1
1
0
0
Mask to choose bit from  
original register contents  
Memory Address 74h (new data in write command)  
0 1  
1
0
1
0
0
0
Bit from new write command  
Memory Address C9 (mask register)  
1
1
1
0
0
0
Bit from original register  
contents  
Memory Address 74h (new contents after write command)  
1
1
0
0
1
0
1
0
Figure 235: Example of I2C Byte Write Bit Masking  
Datasheet  
10-Mar-2021  
Revision 2.4  
216 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
19 Non-Volatile Memory  
The SLG47004 provides 2,048 bits of Serial Electrically Erasable Configuration Register memory that is used for device  
configuration, and 2,048 bits Programmable Read-Only Memory (emulated EEPROM). Each of these memory spaces is internally  
organized as 16 pages of 16 bytes. The device features a Software Write Protection feature with five different programmable  
levels of protection for the emulated EEPROM array. The protection settings of the device can be made permanent if desired.  
The emulated EEPROM memory operates with a supply voltage ranging from 2.4 V to 5.5 V for Read and 2.5 V to 5.5 V for Write.  
The emulated EEPROM inside the SLG47004 operates as a slave device and utilizes a simple I2C compatible 2-wire digital serial  
interface to communicate with a host controller commonly referred to as the bus Master. The Master initiates and controls all read  
and write operations to the Slave devices on the serial bus, and both the Master and the Slave devices can transmit and receive  
data on the bus.  
Key features:  
Low-voltage Operation  
for Read: VCC = 2.4 V to 5.5 V  
for Write: VCC = 2.5 V to 5.5 V  
I2C-Compatible (2-Wire) Serial Interface  
100 kHz Standard Mode  
400 kHz Fast Mode (FM)  
Software Write Protection of the EEPROM Emulation Array  
Five configuration options  
Protection settings can be made permanent  
Low Current Consumption  
Read Current 0.5 mA max  
Page Write Current 3.0 mA max  
Chip Erase Current 3.0 mA max  
Standby Current (1.0 μA max)  
16-byte Page Write Mode  
Self-timed Write/Erase Cycle (20 ms max)  
Reliability  
Endurance: 1,000 write cycles  
Data retention: 10 years at 125 °C  
19.1 SERIAL NVM WRITE OPERATIONS  
Write access to the NVM is possible by setting A3, A2, A1, A0 to “0000”, which allows serial write data for a single page only.  
Upon receipt of the proper Control Byte and Word Address bytes, the SLG47004 will send an ACK. The device will then be ready  
to receive page data, which is 16 sequential writes of 8-bit data words. The SLG47004 will respond with an ACK after each data  
word is received. The addressing device, such as a bus Master, must then terminate the write operation with a Stop condition  
after all page data is written. At that time the device will enter an internally self-timed write cycle, which will be completed within  
tWR (20 ms). While the data is being written into the NVM Memory Array, all inputs, outputs, internal logic, and I2C access to the  
Register data will be operational/valid. Please refer to Figure 237 for the SLG47004 Memory Map.  
Note: The 16 programmed bytes should be in the same page. Any I2C command that does not meet specific requirements will  
be ignored and NVM will remain unprogrammed.  
Note: Special care must be taken when NVM page 14 is rewritten (registers [1919:1792]). This page contains rheostats  
tolerance data that can be permanently lost during write/erase operation.  
SLG47004 will ignore the Serial NVM Write command in case the self-programming procedure for programming rheostat value  
into the NVM is in progress. The SLG47004 will respond with NACK in this case. Please refer to the Acknowledge Polling  
section for more details.  
Datasheet  
10-Mar-2021  
Revision 2.4  
217 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Data “1” cannot be re-programmed as data “0” without erasure. Each byte can only be programmed one time without erasure.  
Acknowledge  
Acknowledge  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n + 1)  
Data (n + 15)  
Control Byte  
Word Address (n)  
Data (n)  
A
10  
A
8
A
7
A
6
A
5
A
4
A
3
A
2
A
1
A
0
A
9
ACK  
ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
R/W bit  
Figure 236: Page Write Command  
A10 will be ignored during communication to SLG47004.  
A9 = 1 will enable access to the NVM.  
A9 = 1 and A8 = 0 corresponds to the 2K bits chip configuration NVM data.  
A9 = 1 and A8 = 1 corresponds to the 2K bits of emulated EEPROM data.  
A3, A2, A1, and A0 should be 0000 for the page write operation.  
In a single page, if the data written to any byte is 00H, the contents of the matching byte in NVM memory will not be altered.  
Datasheet  
10-Mar-2021  
Revision 2.4  
218 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
2
I C Block Address  
Memory Space  
Lowest I2C  
Address = 000h  
2 kbits Register Data Configuration  
A10 = 0  
A9 = 0  
A9 = 0  
A9 = 1  
A9 = 1  
A9 = X  
A8 = 0  
Not Used  
A10 = 0  
A10 = 0  
A10 = 0  
A10 = 1  
A8 = 1  
A8 = 0  
A8 = 1  
A8 = X  
2 kbits NVM Data Configuration  
2 kbits EEPROM  
Not Used  
Highest I2C  
Address = 7FFh  
Figure 237: I2C Block Addressing  
19.2 SERIAL NVM READ OPERATIONS  
There are three read operations:  
Current Address Read  
Random Address Read  
Sequential Read  
Please refer to the Section 18 for more details.  
19.3 SERIAL NVM ERASE OPERATIONS  
The erase scheme allows a portion or the entire emulated EEPROM including the 2K bits NVM chip configuration to be erased  
by modifying the contents of the Erase Registers (ERSE <2:0>). Changing the state of the ERSE is accomplished with a Byte  
Write sequence with the requirements outlined in this section.  
The ERSE registers are located on byte E3h.  
The ERSE format is shown in Table 64, and the ERSE bit functions are included in Table 65.  
Table 64: Erase Register Bit Format  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
PageErase  
Register  
ERSE2  
ERSE1  
ERSE0  
ERSEB4  
ERSEB3  
ERSEB2  
ERSEB1  
ERSEB0  
Datasheet  
10-Mar-2021  
Revision 2.4  
219 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 65: Erase Register Bit Function Description  
Bit  
7
Name  
Type  
W
Description  
ERSE2  
ERSE1  
ERSE0  
000: erase disable  
110: cause the NVM erase: full NVM (4k bits) erase for ERSCHIP = 1 if  
DIS_ERSCHIP = 0 or page erase for  
Erase  
Enable  
6
W
ERSCHIP = 0  
5
W
4
ERSEB4  
ERSEB3  
ERSEB2  
ERSEB1  
ERSEB0  
W
3
W
Page  
Selection  
for Erase  
Define the page address, which will be erased:  
ERSB4 = 0 corresponds to the Upper 2K NVM used for chip configuration;  
ERSB4 = 1 corresponds to the 2-k emulated EEPROM  
2
W
1
W
0
W
Upon receipt of the proper Device Address and Erase Registers Address, the SLG47004 will send an ACK. The device will then  
be ready to receive Erase Registers data. The SLG47004 will respond with an ACK after Erase Registers data word is received.  
The addressing device, such as a bus Master, must then terminate the write operation with a Stop condition. At that time the  
device will enter an internally self-timed erase cycle, which will be completed within tER ms. While the data is being written into  
the Memory Array, all inputs, outputs, internal logic, and I2C access to the Register data will be operational/valid.  
After the erase has taken place, the contents of ERSE bits will be set to “0” automatically. The internal erase cycle will be triggered  
at the time the Stop Bit in the I2C command is received.  
19.4 ACKNOWLEDGE POLLING  
An Acknowledge Polling routine can be implemented to optimize time sensitive applications that would prefer not to wait the fixed  
maximum write cycle time (tWR) or erase maximum cycle time (tER). This method allows the application to know immediately when  
the Serial EEPROM emulation write/erase cycle has completed, so a subsequent operation can be started. Once the internally  
self-timed write/erase cycle has started, an Acknowledge Polling routine can be initiated. This involves repeatedly sending a Start  
condition followed by a valid Device Address byte (NVM block address) with the R/W bit set at Logic 0. The device will not respond  
with an ACK while the write cycle is ongoing. Once the internal write/erase cycle has completed, emulated EEPROM will respond  
with an ACK, allowing a new read, erase, or write operation to be immediately initiated.  
The same behavior will happen during the self-programming procedure when the rheostat value is written into the NVM.  
The length of the self-timed write cycle (tWR) and self-timed erase cycle (tER) is defined as the amount of time from the Stop  
condition that begins the internal write operation to the Start condition of the first Device Address byte that includes NVM address  
(A9 = 1; A8 = X) sent to the SLG47004, that it subsequently responds to with an ACK.  
19.5 LOW POWER STANDBY MODE  
Emulated EEPROM inside the SLG47004 has a low power standby mode which is enabled when any one of the following occurs:  
A valid power-up sequence is performed  
A Stop condition is received by the devices unless it initiates an internal write/erase cycle  
At the completion of an internal write/erase cycle  
An unsuccessful match of the device type identifier or hardware address in the Device Address byte occurs  
19.6 EMULATED EEPROM WRITE PROTECTION  
The SLG47004 utilizes a software scheme that allows a portion or the entire emulated EEPROM to be inhibited from being written  
or erased by modifying the contents of the Write Protection Register (WPR). If desired, the WPR can be set so that it may no  
longer be modified/erased, thereby making the current protection scheme permanent. The status of the WPR can be determined  
by following a Random Read sequence. Changing the state of the WPR is accomplished with a Byte Write sequence with the  
requirements outlined in this section.  
Datasheet  
10-Mar-2021  
Revision 2.4  
220 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
The WPR register is located at E2 Address.  
The WPR format is shown in Table 66, and the WPR bit functions are included in Table 67.  
Table 66: Write/Erase Protect Register Format  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
WPR  
Table 67: Write/Erase Protect Register Bit Function Description  
WPRE  
WPB1  
WPB0  
Bit  
Name  
Write Protect  
Register Enable  
Type  
R/W  
R/W  
Description  
0: No Software Write Protection enabled (default)  
1: Write Protection is set by the state of WPB [1:0] bits  
2
WPRE  
WPB1  
00: Upper quarter of emulated EEPROM is write protected (default)  
01: Upper half of emulated EEPROM is write protected  
10: Upper 3/4 of emulated EEPROM is write protected.  
11: Entire emulated EEPROM is write protected.  
Write Protect  
Block Bits  
1:0  
WPB0  
R/W  
Write Protect Enable (WPRE): The Write Protect Enable Bit is used to enable or disable the device Software Write/Erase Protect.  
A Logic 0 in this position will disable Software Write/Erase Protection, and a Logic 1 will enable this function.  
Write Protect Block Bits (WPB1:WPB0): The Write Protect Block bits allow four levels of protection of the Memory Array, provided  
that the WPRE bit is a Logic 1. If the WPRE bit is a Logic 0, the state of the WPB1:0 bits have no impact on device protection.  
Protect Lock Bit (PRL): The Protect Lock Bit is used to permanently lock the current state of the WPR, as well as RPR and NPR  
(see Section 18.5). A Logic 0 indicates that the WPR, RPR, and NPR can be modified, whereas a Logic 1 indicates the WPR,  
RPR, and NPR has been locked and can no longer be modified. The PRL register bit is located at register [1824] address.  
Datasheet  
10-Mar-2021  
Revision 2.4  
221 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
20 Analog Temperature Sensor  
The SLG47004 has an Analog Temperature sensor (TS) with an output voltage linearly-proportional to the Centigrade  
temperature. The TS cell shares buffer with Vref 0, so it is impossible to use both cells simultaneously, its output can be connected  
directly to the IO0 or IO1 or the ACPM1_L positive input. Using buffer causes low-output impedance, linear output and makes  
interfacing to readout or control circuitry especially easy. Vref0 and Vref1 share output buffers with Temperature sensor. Note,  
that user can use any of output buffers, but Temperature sensor is calibrated for Vref1 output buffer. The TS is rated to operate  
over a -40 °C to 85 °C temperature range. The error in the whole temperature range does not exceed ±1.76 %. For more details  
refer to Section 3.12.  
VTS1 = -2.3 x T + 907.4  
VTS2 = -2.8 x T + 1095.4  
where:  
VTS1 (mV) - TS Output Voltage, range 1  
VTS2 (mV) - TS Output Voltage, range 2  
T (°C) - Temperature  
Datasheet  
10-Mar-2021  
Revision 2.4  
222 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Figure 238: Analog Temperature Sensor Structure Diagram  
Datasheet  
10-Mar-2021  
Revision 2.4  
223 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
1.25  
1.2  
Output Range 2  
Output Range 1  
1.15  
1.1  
1.05  
1
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
T (°C)  
Figure 239: TS Output vs. Temperature, VDD = 3.3 V  
Datasheet  
10-Mar-2021  
Revision 2.4  
224 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
21 Register Definitions  
21.1 REGISTER MAP  
Table 68: Register Map  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
Matrix Output  
0
1
2
OUT0:  
IN0 of LUT2_0 or Clock Input of DFF0  
3
4
0
5
6
LUT2_0 & DFF0  
7
8
OUT1:  
IN1 of LUT2_0 or Data Input of DFF0  
9
10  
11  
12  
1
13  
14  
15  
16  
17  
18  
OUT2:  
IN0 of LUT2_1 or Clock Input of DFF1  
LUT2_1 & DFF1  
19  
20  
2
OUT3:  
IN1 of LUT2_1 or Data Input of DFF1  
21  
22  
23  
24  
25  
26  
OUT4:  
IN0 of LUT2_2 or Clock Input of DFF2  
27  
3
28  
29  
30  
31  
32  
33  
34  
LUT2_2 & DFF2  
OUT5:  
IN1 of LUT2_2 or Data Input of DFF2  
35  
36  
4
37  
38  
39  
OUT6:  
LUT2_3 & PGen  
IN0 of LUT2_3 or Clock Input of PGen  
Datasheet  
10-Mar-2021  
Revision 2.4  
225 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
Byte  
OUT6:  
IN0 of LUT2_3 or Clock Input of PGen  
5
LUT2_3 & PGen  
OUT7:  
IN1 of LUT2_3 or nRST of PGen  
OUT8:  
IN0 of LUT3_0 or CLK Input of DFF3  
6
7
8
OUT9:  
LUT3_0 & DFF3  
IN1 of LUT3_0 or Data Input of DFF3  
OUT10:  
IN2 of LUT3_0 or nRST (nSET) of DFF3  
OUT11:  
IN0 of LUT3_1 or CLK Input of DFF4  
OUT12:  
LUT3_1 & DFF4  
IN1 of LUT3_1 or Data Input of DFF4  
9
OUT13:  
IN2 of LUT3_1 or nRST (nSET) of DFF4  
A
Datasheet  
10-Mar-2021  
Revision 2.4  
226 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
84  
85  
86  
A
OUT14:  
IN0 of LUT3_2 or CLK Input of DFF5  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
B
C
D
E
F
OUT15:  
LUT3_2 & DFF5  
IN1 of LUT3_2 or Data Input of DFF5  
OUT16:  
IN2 of LUT3_2 or nRST (nSET) of DFF5  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
OUT17:  
IN0 of LUT3_3 or CLK Input of DFF6  
OUT18:  
LUT3_3 & DFF6  
IN1 of LUT3_3 or Data Input of DFF6  
OUT19:  
IN2 of LUT3_3 or nRST (nSET) of DFF6  
OUT20:  
IN0 of LUT3_4 or CLK Input of DFF7  
LUT3_4 & DFF7  
OUT21:  
IN1 of LUT3_4 or Data Input of DFF7  
Datasheet  
10-Mar-2021  
Revision 2.4  
227 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
OUT21:  
IN1 of LUT3_4 or Data Input of DFF7  
10  
LUT3_4 & DFF7  
OUT22:  
IN2 of LUT3_4 or nRST (nSET) of DFF7  
11  
12  
13  
OUT23:  
IN0 of LUT3_5 or CLK Input of DFF8  
OUT24:  
LUT3_5 & DFF8  
IN1 of LUT3_5 or Data Input of DFF8  
OUT25:  
IN2 of LUT3_5 or nRST (nSET) of DFF8  
OUT26:  
IN0 of LUT3_6 or CLK Input of DFF9  
14  
15  
OUT27:  
LUT3_6 & DFF9  
IN1 of LUT3_6 or Data Input of DFF9  
OUT28:  
IN2 of LUT3_6 or nRST (nSET) of DFF9  
Datasheet  
10-Mar-2021  
Revision 2.4  
228 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
15  
OUT29:  
IN0 of LUT3_7 or CLK Input of DFF11  
Delay1 Input (or Counter1 nRST Input)  
16  
17  
18  
19  
1A  
OUT30:  
Multi_function1  
IN1 of LUT3_7 or nRST (nSET) of DFF11  
Delay1 Input (or Counter1 nRST Input)  
OUT31:  
IN2 of LUT3_7 or Data of DFF11  
Delay1 Input (or Counter1 nRST Input)  
OUT32:  
IN0 of LUT3_8 or CLK Input of DFF12  
Delay2 Input (or Counter2 nRST Input)  
OUT33:  
Multi_function2  
IN1 of LUT3_8 or nRST (nSET) of DFF12  
Delay2 Input (or Counter2 nRST Input)  
OUT34:  
IN2 of LUT3_8 or Data of DFF12  
Delay2 Input (or Counter2 nRST Input)  
OUT35:  
Multi_function3  
IN0 of LUT3_9 or CLK Input of DFF13  
Delay3 Input (or Counter3 nRST Input)  
Datasheet  
10-Mar-2021  
Revision 2.4  
229 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
OUT36:  
IN1 of LUT3_9 or nRST (nSET) of DFF13  
Delay3 Input (or Counter3 nRST Input)  
1B  
Multi_function3  
OUT37:  
IN2 of LUT3_9 or Data of DFF13  
Delay3 Input (or Counter3 nRST Input)  
1C  
1D  
1E  
1F  
20  
OUT38:  
IN0 of LUT3_10 or CLK Input of DFF14  
Delay4 Input (or Counter4 nRST Input)  
OUT39:  
Multi_function4  
IN1 of LUT3_10 or nRST (nSET) of DFF14  
Delay4 Input (or Counter4 nRST Input)  
OUT40:  
IN2 of LUT3_10 or Data of DFF14  
Delay4 Input (or Counter4 nRST Input)  
OUT41:  
IN0 of LUT3_11 or CLK Input of DFF15  
Delay5 Input (or Counter5 nRST Input)  
OUT42:  
Multi_function5  
IN1 of LUT3_11 or nRST (nSET) of DFF15  
Delay5 Input (or Counter5 nRST Input)  
OUT43:  
IN2 of LUT3_11 or Data of DFF15  
Delay5 Input (or Counter5 nRST Input)  
Datasheet  
10-Mar-2021  
Revision 2.4  
230 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
OUT44:  
IN0 of LUT3_12 or CLK Input of DFF16  
Delay6 Input (or Counter6 nRST Input)  
21  
OUT45:  
Multi_function6  
IN1 of LUT3_12 or nRST (nSET) of DFF16  
Delay6 Input (or Counter6 nRST Input)  
22  
23  
24  
25  
26  
OUT46:  
IN2 of LUT3_12 or Data of DFF16  
Delay6 Input (or Counter6 nRST Input)  
OUT47:  
IN0 of LUT3_13 or Input of Pipe Delay or UP signal of  
RIPP CNT  
OUT48:  
LUT3_13 & Pipe Delay (RIPP CNT)  
IN1 of LUT3_13 or nRST of Pipe Delay or nSET of RIPP  
CNT  
OUT49:  
IN2 of LUT3_13 or Clock of Pipe  
Delay_RIPP CNT  
OUT50:  
IN0 of LUT4_0 or CLK Input of DFF10  
LUT4_DFF10  
OUT51:  
IN1 of LUT4_0 or Data of DFF10  
Datasheet  
10-Mar-2021  
Revision 2.4  
231 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
OUT52:  
IN2 of LUT4_0 or nRST (nSET) of DFF10  
27  
LUT4_DFF10  
OUT53:  
IN3 of LUT4_0  
28  
29  
2A  
2B  
2C  
OUT54:  
IN0 of LUT4_1 or CLK Input of DFF17  
Delay0 Input (or Counter0 nRST Input)  
OUT55:  
IN1 of LUT4_1 or nRST of DFF17  
Delay0 Input (or Counter0 nRST Input)  
Delay/Counter0 External CLK source  
Multi_function0  
OUT56:  
IN2 of LUT4_1 or nSET of DFF17  
Delay0 Input (or Counter0 nRST Input)  
Delay/Counter0 External CLK source  
KEEP Input of FSM0  
OUT57:  
IN3 of LUT4_1 or Data of DFF17  
Delay0 Input (or Counter0 nRST Input)  
UP Input of FSM  
Programmable delay  
Filter/Edge detector  
OUT58: Programmable delay/edge detect input  
OUT59: Filter/Edge detect input  
Datasheet  
10-Mar-2021  
Revision 2.4  
232 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
OUT60: IO0 DOUT  
2D  
IO0  
OUT61: IO0 DOUT OE  
OUT62: IO1 DOUT  
2E  
2F  
30  
31  
32  
IO1  
IO2  
IO3  
OUT63: IO1 DOUT OE  
OUT64: IO2 DOUT  
OUT65: IO2 DOUT OE  
OUT66: IO3 DOUT  
OUT67: IO3 DOUT OE  
Datasheet  
10-Mar-2021  
Revision 2.4  
233 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
OUT68: IO4 DOUT  
33  
IO4  
OUT69: IO4 DOUT OE  
OUT70: IO5 DOUT  
34  
35  
36  
37  
38  
IO5  
OUT71: IO5 DOUT OE  
OUT72: IO6 DOUT  
IO6  
OUT73: IO6 DOUT OE  
OUT74:  
set0 of Auto Calibration  
Programmable Trim Block0  
OUT75:  
clock0 of Auto Calibration  
Datasheet  
10-Mar-2021  
Revision 2.4  
234 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
OUT76:  
reload0 of Auto Calibration  
39  
Programmable Trim Block0  
OUT77:  
program0 of Auto Calibration  
3A  
3B  
3C  
3D  
3E  
OUT78:  
Rheostat Counter0 up/down  
0: down, 1: up. (register [920] = 0)  
0: up, 1: down. (register [920] = 1)  
Digital Rheostat  
OUT79:  
set1 of Auto Calibration  
OUT80:  
clock1 of Auto Calibration  
Programmable Trim Block1  
OUT81:  
reload1 of Auto Calibration  
OUT82:  
program1 of Auto Calibration  
OUT83:  
Rheostat Counter1 up/down  
0: down, 1: up. (register [923] = 0)  
0: up, 1: down. (register [923] = 1)  
Digital Rheostat  
Datasheet  
10-Mar-2021  
Revision 2.4  
235 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
OUT84:  
FIFO Reset of PT blocks  
FIFO nRST of the control logic of reload0/reload1/auto  
program0/auto program1  
3F  
OUT85:  
Chopper ACMP Power Up  
Chopper ACMP  
Digital Rheostat  
Analog Switch0  
Analog Switch1  
ACMP0  
40  
41  
42  
43  
44  
OUT86:  
Rheostat Charge pump enable  
OUT87:  
ASW0 enable/Half bridge enable  
OUT88:  
ASW1 enable/Half bridge data  
OUT89:  
ACMP0 Power Up  
OUT90:  
ACMP1 Power Up  
ACMP1  
OUT91:  
OSC0 ENABLE  
OSC0  
Datasheet  
10-Mar-2021  
Revision 2.4  
236 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
OUT92:  
OSC1  
OSC1 ENABLE  
45  
OUT93:  
OSC2 ENABLE  
OSC2  
46  
47  
48  
49  
4A  
OUT94:  
Temperature Sensor  
VREFO TEMPSEN/VREFO Power Up  
OUT95:  
HDBUF ENABLE  
HDBUF  
OUT96:  
Op Amp0  
Op Amp1  
Op Amp2  
Op amps  
OP0(Op Amp ACMP0) Power Up  
OUT97:  
OP1(Op Amp ACMP1) Power Up  
OUT98:  
OP2 Power Up (In Amp Mode)  
OUT99:  
OP VREF ENABLE  
Datasheet  
10-Mar-2021  
Revision 2.4  
237 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
600  
601  
602  
603  
604  
605  
606  
607  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
4B  
ACMP0  
ACMP Low Energy Power Up enable  
(ACMP power after bg_ok)  
608  
1: enable  
609  
610  
ACMP input path LPF enable  
ACMP sampling mode enable  
1: enable  
1: enable  
0: short time wake sleep enable  
1: short time wake sleep disable  
1: enable  
611  
612  
613  
614  
ACMP short time wake sleep mode disable  
ACMP wake sleep function enable  
ACMP Vref path LPF enable  
(when ACMP hysteresis > 196 mV)  
4C  
1: enable  
00: 1  
01: 0.5  
10: 1/3  
11: 1/4  
00: OP0 output  
01: from Pin  
10: tie VDD  
ACMP input divider selection  
ACMP input mux selection  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
4D  
4E  
000000-111111:  
ACMP Low to High Vref selection  
ACMP High to Low Vref selection  
32 mV ~2.048 V/step = 32 mV  
000000-111111:  
32 mV ~2.048 V/step = 32 mV  
ACMP1  
ACMP Low Energy Power Up enable  
(ACMP power after bg_ok)  
630  
1: enable  
4E  
631  
632  
ACMP input path LPF enable  
ACMP sampling mode enable  
1: enable  
1: enable  
0: short time wake sleep enable  
1: short time wake sleep disable  
1: enable  
633  
634  
635  
636  
ACMP short time wake sleep mode disable  
ACMP wake sleep function enable  
ACMP Vref path LPF enable  
(when ACMP hysteresis > 196 mV)  
4F  
1: enable  
00: 1  
01: 0.5  
10: 1/3  
11: 1/4  
ACMP input divider selection  
637  
Datasheet  
10-Mar-2021  
Revision 2.4  
238 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
638  
00: OP1 output  
01: from Pin  
4F  
ACMP input mux selection  
10: ACMP0 input mux output  
11: VrefO1 Temp sensor output  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
000000-111111:  
ACMP Low to High Vref selection  
ACMP High to Low Vref selection  
32 mV ~2.048 V/step = 32 mV  
50  
51  
000000-111111:  
32 mV ~2.048 V/step = 32 mV  
Vref  
652  
653  
654  
655  
656  
657  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
51  
0: ACMP0 VREF  
1: Temp Sensor  
658  
VREFO0 input source selection  
659  
660  
VREFO0 output buffer enable  
VREFO0 register Power Up  
1: enable  
VREFO0 register power on signal  
52  
0: Power Up from reg  
1: from matrix  
no use  
661  
662  
663  
664  
665  
VREFO0 Power Up selection  
Reserved  
VREFO1's temp sensor to ACMP1 input path en- Temp Sensor output to ACMP1 enable  
able  
1: enable  
0:1V; 1:1.2V  
0: ACMP1 Vref  
1: TS  
VREFO1's temp sensor range selection  
VREFO1 input source selection  
666  
667  
VREFO1 output buffer enable  
VREFO1 register Power Up  
1: enable  
VrefO1 register power on signal  
53  
0: Power Up from reg  
1: from matrix  
668  
669  
VREFO1 Power Up selection  
ACMP Vrefs source selection  
ACMP Vref gen source selection  
(0: VBG, 1: VDD  
)
670  
671  
672  
673  
674  
ACMP0 external Vref enable  
ACMP1 external Vref enable  
Reserved  
Reserved  
Reserved  
1:enable  
1:enable  
54  
54  
Datasheet  
10-Mar-2021  
Revision 2.4  
239 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
Reserved  
54  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
55  
OSC1  
when matrix output enable/pd control signal = 0:  
0: auto on by delay cells  
688  
689  
OSC1 turn on by register  
1: always on  
0: matrix down  
1: matrix on  
0: internal OSC1  
1: external clock from PAD15  
00: div 1  
01: div 2  
10: div 4  
11: div8  
OSC1 matrix power down or on select  
OSC1 external clock source enable  
690  
691  
OSC1 post divider ratio control  
56  
692  
693  
694  
000: /1  
001:/2  
010:/4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
0: disable  
1: enable  
OSC1 matrix divider ratio control  
OSC1 matrix out enable  
695  
696  
697  
698  
699  
Reserved  
Reserved  
Reserved  
0: disable  
1: enable  
700  
OSC1 2nd output to matrix enable  
57  
701  
702  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
OSC1 2nd matrix divider ratio control  
703  
OSC2  
Datasheet  
10-Mar-2021  
Revision 2.4  
240 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
when matrix output enable/pd control signal = 0:  
0: auto on by delay cells  
1: always on  
704  
OSC2 turn on by register  
0: matrix down  
1: matrix on  
0: internal OSC2  
1: external clock from IO2  
0: disable  
1: enable  
00: div 1  
01: div 2  
10: div 4  
11: div8  
705  
706  
OSC2 matrix power down or on select  
OSC2 external clock source enable  
OSC2 matrix out enable  
58  
707  
708  
OSC2 post divider ratio control  
709  
710  
711  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
OSC2 matrix divider ratio control  
OSC2 startup delay with 100ns  
712  
0: enable  
1: disable  
713  
59  
714  
715  
716  
717  
718  
719  
Reserved  
Reserved  
Reserved  
Op Amp0 sr boost for OP 8 MHz  
Op Amp1 sr boost for OP 8 MHz  
Op Amp2 sr boost for OP 8 MHz  
0: enable, 1: disable  
0: enable, 1: disable  
0: enable, 1: disable  
OSC0  
when matrix output enable/pd control signal = 0:  
0: auto on by delay cells  
1: always on  
720  
OSC0 turn on by register  
0: matrix down  
1: matrix on  
0: internal OSC0  
1: external clock from IO0  
0: disable  
1: enable  
00: div 1  
01: div 2  
10: div 4  
11: div8  
721  
722  
OSC0 matrix power down or on select  
OSC0 external clock source enable  
OSC0 matrix out enable  
5A  
723  
724  
OSC0 post divider ratio control  
725  
726  
727  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
OSC0 matrix divider ratio control  
5B  
728  
Datasheet  
10-Mar-2021  
Revision 2.4  
241 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
enable OSC0 output gating by wake_sleep signal  
(note: the wake_sleep clock is separated path, so it  
is not gated)  
0: no gating  
1: enable  
729  
0: disable  
1: enable  
730  
OSC0 2nd output to matrix enable  
731  
732  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
5B  
OSC0 2nd matrix divider ratio control  
733  
734  
735  
Reserved  
Reserved  
Analog Switch  
0: small NMOS disable  
736  
ASW0 small NMOS enable selection  
ASW1 small PMOS enable selection  
ASW0 big PMOS control selection  
ASW1 big NMOS control selection  
ASW half bridge mode enable  
1: small NMOS enable by matrix87  
0: small PMOS disable  
1: small PMOS enable by matrix88  
0: control by matrix87  
1:control by Op Amp0  
0: control by matrix88  
1:control by Op Amp1  
0: analog switch mode  
1: half bridge (enable from matrix87; data from matrix88)  
00: bypass  
01: 20ns  
10: 100ns  
11: 500ns  
737  
738  
739  
5C  
740  
741  
ASW half bridge dead time select  
Reserved  
742  
743  
Op Amp0/1/2  
744  
00: 128 kHz  
01: 512 kHz  
10: 2 MHz  
11: 8 MHz  
00: 128 kHz  
01: 512 kHz  
10: 2 MHz  
11: 8 MHz  
00: 128 kHz  
01: 512 kHz  
10: 2 MHz  
11: 8 MHz  
Op Amp0 bandwidth selection  
Op Amp1 bandwidth selection  
Op Amp2 bandwidth selection  
745  
746  
747  
5D  
748  
749  
0: Op amp mode  
1: ACMP mode  
0: Op amp mode  
1: ACMP mode  
750  
751  
ACMP/Op Amp0 mode  
ACMP/Op Amp1 mode  
0: Op amp input common voltage higher than VDD-1.5V,  
enable CP  
5E  
752  
Op Amp0 charge pump disable  
1: Op amp input common voltage lower than VDD-1.5V,  
disable CP  
Datasheet  
10-Mar-2021  
Revision 2.4  
242 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: Op amp input common voltage higher than VDD-1.5V,  
enable CP;  
753  
754  
Op Amp1 charge pump disable  
Op Amp2 charge pump disable  
1: Op amp input common voltage lower than VDD-1.5V,  
disable CP  
0: Op amp input common voltage higher than VDD-1.5V,  
enable CP  
1: Op amp input common voltage lower than VDD-1.5V,  
disable CP  
0: path on (for normal function)  
1: path off (for trim function)  
0: without buffer  
1: with buffer  
755  
756  
Path between Op Amp0/1 and Op Amp2  
Op Amp2's Vref buffer bypass control  
5E  
0: on/off follows op amp  
1: always on except input common voltage of op amp low-  
er than VDD-1.5 V  
0: on/off follows op amp  
1: always on except input common voltage of op amp low-  
er than VDD-1.5V  
0: on/off follows op amp  
1: always on except input common voltage of op amp low-  
er than VDD-1.5V  
757  
758  
759  
Supporting blocks for Op Amp0 on/off  
Supporting blocks for Op Amp1 on/off  
Supporting blocks for Op Amp2 on/off  
760  
761  
762  
763  
764  
765  
Op amp ACMP Vref0 output selection[0]  
Op amp ACMP Vref0 output selection[1]  
Op amp ACMP Vref0 output selection[2]  
Op amp ACMP Vref0 output selection[3]  
Op amp ACMP Vref0 output selection[4]  
Op amp ACMP Vref0 output selection[5]  
000000-111111: 32 mV ~2.048 V/step = 32 mV  
5F  
Op amp ACMP Vref0 register enable  
(select by register [782])  
0: dynamic on/off  
1: Vref enable  
766  
767  
768  
769  
770  
771  
772  
773  
Vref0 to op amp/ACMP input enable  
Op amp ACMP Vref1 output selection[0]  
Op amp ACMP Vref1 output selection[1]  
Op amp ACMP Vref1 output selection[2]  
Op amp ACMP Vref1 output selection[3]  
Op amp ACMP Vref1 output selection[4]  
Op amp ACMP Vref1 output selection[5]  
0:disable; 1: enable  
000000-111111: 32 mV ~2.048 V/step = 32 mV  
60  
Op amp ACMP Vref1 register enable  
(select by register [783])  
Vref1 to op amp/ACMP input enable  
0: dynamic on/off  
1: Vref enable  
0:disable; 1: enable  
0: Vref to ACMP negative input  
1: Vref to ACMP positive input  
774  
775  
776  
Op amp ACMP Vref0 output selection  
0: Vref to ACMP negative input  
1: Vref to ACMP positive input  
0: disable  
1: enable  
0: disable  
1: enable  
0: 2.048 V  
1: VDD  
0: 2.048 V  
1: VDD  
0: from register [766]  
1: from matrix99  
777  
778  
779  
780  
781  
782  
Op amp ACMP Vref1 output selection  
Op amp Vref0 LPF enable  
Op amp Vref1 LPF enable  
61  
Op amp ACMP Vref0 input voltage selection  
Op amp ACMP Vref1 input voltage selection  
Op amp ACMP vref0 enable selection  
Datasheet  
10-Mar-2021  
Revision 2.4  
243 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: from register [774]  
1: from matrix99  
61  
783  
Op amp ACMP vref1 enable selection  
LUT3_2/DFF5  
784  
785  
786  
<2:0>: LUT3_2 <2:0>  
<3>:LUT3_2 <3>/DFF5 Active level selection for  
RST/SET  
0: Active low level reset/set,  
1: Active high level reset/set  
787  
<4>:LUT3_2<4>/DFF5  
0: RSTB from Matrix Output,  
1: SETB from Matrix Output  
62  
LUT3_2_DFF5 setting  
788  
<5>:LUT3_2 <5>/DFF5 Initial Polarity Select 0: Low, 1:  
High  
<6>:LUT3_2 <6>/DFF5 Output Select  
0: Q output, 1: QB output  
<7>:LUT3_2 <7>/DFF5 or Latch Select  
0: DFF function, 1: Latch function  
789  
790  
791  
LUT3_3/DFF6  
792  
793  
794  
<2:0>: LUT3_3 <2:0>  
<3>:LUT3_3 <3>/DFF6 Active level selection for  
RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
795  
<4>:LUT3_3<4>/DFF6  
0: RSTB from Matrix Output, 1: SETB from Matrix  
Output  
LUT3_3_DFF6 setting  
63  
796  
<5>:LUT3_3 <5>/DFF6 Initial Polarity Select  
0: Low, 1: High  
<6>:LUT3_3 <6>/DFF6 Output Select  
0: Q output, 1: QB output  
<7>:LUT3_3 <7>/DFF6 or Latch Select  
0: DFF function, 1: Latch function  
797  
798  
799  
LUT3_4/DFF7  
800  
801  
802  
<2:0>: LUT3_4 <2:0>  
<3>:LUT3_4 <3>/DFF7 Active level selection for  
RST/SET  
803  
0: Active low level reset/set, 1: Active high level reset/set  
<4>:LUT3_4<4>/DFF7  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
<5>:LUT3_4 <5>/DFF7 Initial Polarity Select  
0: Low, 1: High  
<6>:LUT3_4 <6>/DFF7 Output Select  
0: Q output, 1: QB output  
<7>:LUT3_4 <7>/DFF7 or Latch Select  
0: DFF function, 1: Latch function  
64  
LUT3_4_DFF7 setting  
LUT3_4_DFF7 setting  
804  
805  
806  
64  
807  
LUT3_5/DFF8  
Datasheet  
10-Mar-2021  
Revision 2.4  
244 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
808  
809  
<2:0>: LUT3_5 <2:0>  
810  
<3>:LUT3_5 <3>/DFF8 Active level selection for  
RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
811  
<4>:LUT3_5<4>/DFF8  
65  
LUT3_5_DFF8 setting  
812  
813  
814  
815  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
<5>:LUT3_5 <5>/DFF8 Initial Polarity Select 0: Low, 1:  
High  
<6>:LUT3_5 <6>/DFF8 Output Select  
0: Q output, 1: QB output  
<7>:LUT3_5 <7>/DFF8 or Latch Select  
0: DFF function, 1: Latch function  
LUT3_6/DFF9  
816  
817  
818  
<2:0>: LUT3_6 <2:0>  
<3>:LUT3_6 <3>/DFF9 Active level selection for  
RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
819  
<4>:LUT3_6<4>/DFF9  
0: RSTB from Matrix Output, 1: SETB from Matrix  
Output  
66  
LUT3_6_DFF9 setting  
820  
<5>:LUT3_6 <5>/DFF9 Initial Polarity Select  
0: Low, 1: High  
<6>:LUT3_6 <6>/DFF9 Output Select  
0: Q output, 1: QB output  
<7>:LUT3_6 <7>/DFF9 or Latch Select  
0: DFF function, 1: Latch function  
0: LUT3_2  
1: DFF5  
0: LUT3_3  
1: DFF6  
0: LUT3_4  
1: DFF7  
0: LUT3_5  
1: DFF8  
0: LUT3_5  
1: DFF8  
821  
822  
823  
824  
825  
826  
827  
828  
829  
LUT3_2 or DFF5 Select  
LUT3_3 or DFF6 Select  
LUT3_4 or DFF7 Select  
LUT3_5 or DFF8 Select  
LUT3_6 or DFF9 Select  
LUT4_0 or DFF10 Select  
67  
0: LUT4_0  
1: DFF10  
830  
831  
Reserved  
Reserved  
LUT4_0/DFF10  
Datasheet  
10-Mar-2021  
Revision 2.4  
245 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
832  
833  
834  
835  
836  
837  
838  
839  
840  
841  
68  
<9:0>: LUT4_0 <9:0>  
<10>:LUT4_0 <10>/DFF10 stage selection  
0: Q of first DFF; 1 Q of second DFF  
LUT4_0_DFF10 setting  
842  
<11>:LUT4_0 <11>/DFF10 Active level selection for  
RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
843  
69  
<12>:LUT4_0 <12>/DFF10  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
<13>:LUT4_0 <13> /DFF10 Initial Polarity Select  
0: Low, 1: High  
<14>:LUT4_0 <14>/DFF10 Output Select  
0: Q output, 1: QB output  
844  
845  
846  
847  
<15>:LUT4_0 <15>/DFF10 or Latch Select  
0: DFF function, 1: Latch function  
LUT3_13/Pipe Delay (RIPP CNT)  
848  
849  
850  
851  
852  
853  
854  
at LUT/pipe delay mode  
bit<7:4>: LUT3_13 <7:4> / REG_S1<3:0> pipe delay out1  
sel  
bit<3:0>: LUT3_13 <3:0> / REG_S0<3:0> pipe delay out0  
sel  
6A  
LUT value or pipe delay out sel or nSET/END value at RIPP CNT mode  
bit<2:0> is the nSET value.  
bit<5:3> is the END value  
bit<6> is the range control:  
0: full cycle, 1: range cycle  
bit<7> No used  
855  
0: Active low level reset/set  
1: Active high level reset/set  
Out of LUT3_13 or Out0 of Pipe Delay/RIPP CNT 0: LUT3_13  
856  
857  
858  
859  
Active level selection for RST/SET  
Select  
1: OUT0 of Pipe Delay or RIPP CNT  
0: Pipe delay mode selection  
1: Ripple Counter mode selection  
0: Non-inverted  
1: Inverted  
PIPE_RIPP_CNT_S  
6B  
Pipe Delay OUT1 Polarity Select  
860  
861  
862  
863  
Reserved  
Reserved  
Reserved  
Reserved  
Programmable Delay  
Datasheet  
10-Mar-2021  
Revision 2.4  
246 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
864  
00: 125ns  
01: 250ns  
10: 375ns  
11: 500ns  
Delay Value Select for Programmable Delay &  
Edge Detector  
865  
866  
867  
6C  
00: Rising Edge Detector  
Select the Edge Mode of Programmable Delay & 01: Falling Edge Detector  
Edge Detector  
10: Both Edge Detector  
11: Both Edge Delay  
Filter/Edge Detector  
0: filter  
1: edge detect  
868  
Filter or Edge Detector selection  
0: output non-invert  
1: output invert  
00: Rising Edge Detect  
01: Falling Edge Detect  
10: Both Edge Detect  
11: Both Edge DLY  
869  
870  
Output Polarity Select  
Select the edge mode  
6C  
871  
Chopper ACMP  
872  
00: from In Amp out  
Chopper ACMP positive input selection for calibra- 01: from Op Amp0 out  
tion channel0  
10: from Op Amp1 out  
11: IO1  
00: from In Amp out  
873  
874  
Chopper ACMP positive input selection for calibra- 01: from Op Amp0 out  
6D  
tion channel1  
10: from Op Amp1 out  
11: IO1  
875  
876  
877  
878  
879  
880  
881  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0: output non-invert  
1: output invert  
882  
Output Polarity Select  
883  
884  
885  
886  
887  
888  
6E  
Reserved  
Reserved  
889  
6F  
890  
891  
Reserved  
Reserved  
Calibration  
Datasheet  
10-Mar-2021  
Revision 2.4  
247 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: calibration channel0  
1: calibration channel1  
0:calibration channel auto selection  
1: from register [892]  
892  
893  
auto calibration channel selection by register  
auto calibration channel selection source selection  
0: From Chopper ACMP  
6F  
894  
895  
RH_CNT1 clock source selection  
RH_CNT0 clock source selection  
(Chopper ACMP changes one time per rheostat clock)  
1: from matrix directly  
0: From Chopper ACMP  
(Chopper ACMP changes one time per rheostat clock)  
1: from matrix directly  
896  
897  
898  
0000: OSC1  
0001:OSC1/8  
0010:OSC1/64  
0011: OSC1/512  
0100: OSC0  
0101:OSC0/8  
Calibration0 clock divider  
0110: OSC0/64  
0111: OSC0/512  
1000: OSC0/4096  
1001: OSC0/32768  
1010: OSC0/262144 1011/1100/1101/1110: GND  
1111: EXTCLK  
899  
70  
0: chopper ACMP  
1: matrix83  
0: auto calibration enable  
1: disable  
900  
901  
Up/down selection  
auto_calibration disable  
902  
903  
904  
905  
906  
Reserved  
Reserved  
0000: OSC1  
0001:OSC1/8  
0010:OSC1/64  
0011: OSC1/512  
0100: OSC0  
0101: OSC0/8  
Calibration1 clock divider  
0110: OSC0/64  
0111: OSC0/512  
1000: OSC0/4096  
1001: OSC0/32768  
1010: OSC0/262144 1011/1100/1101/1110: GND  
1111: EXTCLK  
907  
71  
0: chopper ACMP  
1: matrix83  
0: auto calibration enable  
1: disable  
908  
909  
Up/down selection  
auto_calibration disable  
910  
911  
Reserved  
Reserved  
Digital Rheostats  
Datasheet  
10-Mar-2021  
Revision 2.4  
248 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: control by matrix86  
1: on  
0: control by matrix86  
1: on  
0: from LPBG chopper OSC  
1: from OSC1  
912  
913  
914  
915  
916  
POTCP0 turn on by register  
POTCP1 turn on by register  
POTCP0/1 clock source selection  
POTCP0/1 clock source select from register  
Reserved  
0: by register [914]  
1: calibration auto on  
72  
917  
918  
919  
Reserved  
Reserved  
Reserved  
0: default (up = 0 down mode, up = 1 up mode)  
1: (up = 0 up mode, up = 1 down mode)  
920  
Polarity selection of RH_CNT0 UP signal  
921  
922  
Reserved  
Reserved  
0: default (up = 0 down mode, up = 1 up mode)  
1: (up = 0 up mode, up = 1 down mode)  
923  
Polarity selection of RH_CNT1 UP signal  
73  
924  
925  
926  
927  
Reserved  
Reserved  
Reserved  
Reserved  
HD Buffer  
928  
929  
930  
931  
932  
933  
Chop ACMP Vref selection for calibration  
channel 0  
000000-111111: 1/64 ~ 64/64  
(divider input select by register [946])  
74  
Chop ACMP calibration channel0 external Vref se- 0: external Vref (pin18)  
934  
lection  
1: internal Vref  
935  
936  
937  
938  
939  
940  
941  
Reserved  
000000-111111: 1/64 ~ 64/64  
(divider input select by register [946])  
Chop ACMP Vref selection for calibration channel 1  
75  
Chop ACMP calibration channel1 external Vref se- 0: external Vref (pin18)  
942  
943  
lection  
1: internal Vref  
Reserved  
Datasheet  
10-Mar-2021  
Revision 2.4  
249 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
HD buffer register enable  
(select by register [945])  
0: disable  
1: enable  
0: from register [944]  
1: from matrix95  
944  
945  
HD buffer enable selection  
0: from HD buffer output  
1: from op amp Vref voltage (2.048/VDD selection register  
in Vref block)  
946  
Chop ACMP Vref divider input selection  
76  
947  
948  
949  
950  
951  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CP OSC/Regulator  
0: multiple OSC mode  
1: single OSC mode  
952  
CPOSC single or multiple mode select  
953  
954  
Reserved  
00: 250 kHz  
01: 1 MHz  
10: 4 MHz  
11: 8 MHz  
CPOSC0 frequency select  
955  
77  
956  
Reserved  
Reserved  
957  
958  
959  
960  
961  
962  
Reserved  
Reserved  
Reserved  
00: 250 kHz  
01: 1 MHz  
10: 4 MHz  
11: 8 MHz  
CPOSC1 frequency select  
963  
78  
964  
Reserved  
Reserved  
965  
966  
967  
968  
Reserved  
Reserved  
969  
970  
Reserved  
00: 250 kHz  
01: 1 MHz  
10: 4 MHz  
11: 8 MHz  
CPOSC2 frequency select  
971  
79  
972  
973  
974  
975  
Reserved  
Reserved  
Reserved  
Datasheet  
10-Mar-2021  
Revision 2.4  
250 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
976  
00: none  
01: internal Vref  
10: Rheostat Vref  
11: external Vref  
Buffer Vref select  
977  
978  
979  
980  
981  
982  
983  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7A  
0: Keep existing condition  
984  
985  
I2C soft reset  
1: Reset execution, reload NVM to registers  
0: disable  
1: enable  
IO latch enable during I2C write  
986  
987  
Reserved  
Reserved  
7B  
988  
Reserved  
989  
Reserved  
990  
Reserved  
991  
992  
993  
994  
995  
996  
997  
998  
Reserved  
Matrix Input 32  
Matrix Input 33  
Matrix Input 34  
Matrix Input 35  
Matrix Input 36  
Matrix Input 37  
Matrix Input 38  
Matrix Input 39  
I2C_virtual_0 Input  
I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
7C  
7D  
7E  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
Reserved  
Reserved  
Datasheet  
10-Mar-2021  
Revision 2.4  
251 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1016  
1017  
1018  
1019  
I2C slave address  
0: from register [1016]  
1: from PAD15  
0: from register [1017]  
1: from PAD16  
0: from register [1018]  
1: from PAD17  
0: from register [1019]  
1: from PAD18  
1020  
1021  
1022  
1023  
slave address selection bit0  
slave address selection bit1  
slave address selection bit2  
slave address selection bit3  
7F  
1024  
1025  
1026  
1027  
1028  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
80  
Reserved  
Reserved  
81  
Reserved  
Reserved  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
Reserved  
82  
Reserved  
Reserved  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
Reserved  
83  
Reserved  
Reserved  
1055  
Datasheet  
10-Mar-2021  
Revision 2.4  
252 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
Reserved  
84  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
85  
86  
87  
88  
Datasheet  
10-Mar-2021  
Revision 2.4  
253 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1140  
Reserved  
89  
Reserved  
Reserved  
Reserved  
8A  
8B  
8C  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
8D  
8E  
Reserved  
Reserved  
Datasheet  
10-Mar-2021  
Revision 2.4  
254 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1150  
8E  
Reserved  
8F  
Reserved  
Reserved  
1151  
SCL/SDA  
1152  
00: digital without Schmitt trigger  
01: digital with Schmitt trigger  
10: low voltage digital in  
11: analog IO  
input mode configuration  
1153  
90  
1154  
1155  
Reserved  
0: I2C fast mode +  
I2C mode selection  
1: I2C standard/fast mode  
IO0  
1156  
1157  
1158  
1159  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
input mode configuration  
output mode configuration  
90  
1160  
1161  
00: floating  
01: 10k  
Pull-up/down resistance selection  
Pull-up/down selection  
10: 100k  
11: 1M  
91  
0: Pull-down  
1: Pull-up  
1162  
IO1  
1163  
1164  
1165  
1166  
1167  
1168  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
input mode configuration  
output mode configuration  
91  
Pull-up/down resistance selection  
Pull-up/down selection  
92  
0: Pull-down  
1: Pull-up  
1169  
IO2  
Datasheet  
10-Mar-2021  
Revision 2.4  
255 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1170  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
input mode configuration  
output mode configuration  
1171  
1172  
92  
1173  
1174  
1175  
Pull-up/down resistance selection  
Pull-up/down selection  
0: Pull-down  
1: Pull-up  
93  
1176  
IO3  
1177  
1178  
1179  
1180  
1181  
1182  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
input mode configuration  
output mode configuration  
93  
Pull-up/down resistance selection  
Pull-up/down selection  
0: Pull-down  
1: Pull-up  
1183  
IO4  
1184  
1185  
1186  
1187  
1188  
1189  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
input mode configuration  
output mode configuration  
94  
Pull-up/down resistance selection  
Pull-up/down selection  
0: Pull-down  
1: Pull-up  
1190  
IO5  
Datasheet  
10-Mar-2021  
Revision 2.4  
256 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
94  
1191  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
input mode configuration  
1192  
1193  
1194  
1195  
1196  
output mode configuration  
95  
Pull-up/down resistance selection  
Pull-up/down selection  
0: Pull-down  
1: Pull-up  
1197  
IO6  
1198  
1199  
1200  
1201  
1202  
1203  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
0: Pull-down  
1: Pull-up  
95  
input mode configuration  
output mode configuration  
96  
Pull-up/down resistance selection  
Pull-up/down selection  
1204  
I0  
1205  
1206  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
input mode configuration  
96  
0: disable  
1: enable  
1207  
IO fast Pull-up/down enable  
1208  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
97  
Datasheet  
10-Mar-2021  
Revision 2.4  
257 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1216  
1217  
1218  
1219  
mulit_function selection  
dly2lut selection  
Multi0 register configure  
output selection of LUT4_1/DFF17:  
0: LUT4_1  
98  
1220  
1: DFF17  
1221  
1222  
1223  
external clock selection  
00: DLY  
01: one shoot  
10: frequency detect  
11: CNT register [1238] = 0  
DLY/CNT0 Mode Selection  
1224  
1225  
1226  
00: both edge  
01: falling edge  
10: rising edge  
11: High Level Reset (only in CNT mode)  
DLY/CNT0 edge Mode Selection  
1227  
1228  
1229  
Clock source sel[3:0]  
0000: 25M(OSC2)  
0001: 25M/4  
0010: 2M(OSC1)  
0011: 2M/8  
0100: 2M/64  
99  
0101: 2M/512  
0110: 2K(OSC0)  
0111: 2K/8  
DLY/CNT0 Clock Source Select  
1000: 2K/64  
1001: 2K/512  
1230  
1010: 2K/4096  
1011: 2K/32768  
1100: 2K/262144  
1101: CNT6_END  
1110: External  
1111: Not used  
0: Reset to 0  
1: Set to data  
0: Default Mode,  
1: Wake Sleep Mode  
(registers [1224:1223] = 11)  
1231  
1232  
FSM0 SET/RST Selection  
wake sleep mode selection  
0: low  
1: high  
0: bypass  
1: after two DFF  
0: bypass  
1: after two DFF  
0: bypass  
1: after two DFF  
1233  
1234  
1235  
1236  
1237  
Wake sleep power down state selection  
Keep signal sync selection  
UP signal sync selection  
9A  
CNT0 CNT mode SYNC selection  
CNT0 output pol selection  
0: Default Output  
1: Inverted Output  
0: normal  
1238  
1239  
CNT0 DLY EDET FUNCTION Selection  
Reserved  
1: DLY function edge detection (registers [1224:1223] =  
00)  
Datasheet  
10-Mar-2021  
Revision 2.4  
258 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1240  
1241  
1242  
1243  
mulit_function selection  
dly2lut selection  
Multi1 register configure  
output selection of LUT3_7/DFF11:  
0: LUT3_7  
1: DFF11  
0: normal  
1: DLY function edge detection  
1244  
1245  
9B  
CNT1 DLY EDET FUNCTION Selection  
(registers [1251:1248] = 0000/0001/0010)  
0: bypass  
1: after two DFF  
0: Default Output  
1: Inverted Output  
1246  
1247  
CNT1 CNT mode SYNC selection  
CNT1 output pol selection  
1248  
1249  
1250  
0000: both edge Delay  
0001: falling edge delay  
0010: rising edge delay  
0011: both edge One Shot  
0100: falling edge One Shot  
0101: rising edge One Shot  
0110: both edge freq detect  
0111: falling edge freq detect  
1000: rising edge freq detect  
1001: both edge detect  
1010: falling edge detect  
1011: rising edge detect  
1100: both edge reset CNT  
1101: falling edge reset CNT  
1110: rising edge reset CNT  
1111: high level reset CNT  
CNT1 function and edge mode selection  
1251  
1252  
1253  
1254  
Clock source sel[3:0]  
0000: 25M(OSC2)  
0001: 25M/4  
9C  
0010: 2M(OSC1)  
0011: 2M/8  
0100: 2M/64  
0101: 2M/512  
0110: 2K(OSC0)  
0111: 2K/8  
DLY/CNT1 Clock Source Select  
1000: 2K/64  
1001: 2K/512  
1255  
1010: 2K/4096  
1011: 2K/32768  
1100: 2K/262144  
1101: CNT0_END  
1110: External  
1111: Not used  
Datasheet  
10-Mar-2021  
Revision 2.4  
259 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1256  
1257  
1258  
1259  
mulit_function selection  
dly2lut selection  
Multi2 register configure  
output selection of LUT3_8/DFF12:  
0: LUT3_8  
1: DFF12  
1260  
1261  
9D  
0: normal  
CNT2 DLY EDET FUNCTION Selection  
1: DLY function edge detection (registers [1267:1264] =  
0000/0001/0010)  
0: bypass  
1: after two DFF  
0: Default Output  
1: Inverted Output  
1262  
1263  
CNT2 CNT mode SYNC selection  
CNT2 output pol selection  
1264  
1265  
1266  
0000: both edge Delay  
0001: falling edge delay  
0010: rising edge delay  
0011: both edge One Shot  
0100: falling edge One Shot  
0101: rising edge One Shot  
0110: both edge freq detect  
0111: falling edge freq detect  
1000: rising edge freq detect  
1001: both edge detect  
1010: falling edge detect  
1011: rising edge detect  
1100: both edge reset CNT  
1101: falling edge reset CNT  
1110: rising edge reset CNT  
111: high level reset CNT  
9E  
CNT2 function and edge mode selection  
1267  
1268  
1269  
1270  
Clock source sel[3:0]  
0000: 25M(OSC2)  
0001: 25M/4  
0010: 2M(OSC1)  
0011: 2M/8  
0100: 2M/64  
0101: 2M/512  
0110: 2K(OSC0)  
0111: 2K/8  
9E  
DLY/CNT2 Clock Source Select  
1000: 2K/64  
1001: 2K/512  
1271  
1010: 2K/4096  
1011: 2K/32768  
1100: 2K/262144  
1101: CNT1_END  
1110: External  
1111: Not used  
Datasheet  
10-Mar-2021  
Revision 2.4  
260 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1272  
1273  
1274  
1275  
mulit_function selection  
dly2lut selection  
Multi3 register configure  
output selection of LUT3_9/DFF13:  
0: LUT3_9  
1: DFF13  
1276  
1277  
9F  
0: normal  
CNT3 DLY EDET FUNCTION Selection  
1: DLY function edge detection(registers [1283:1280] =  
0000/0001/0010)  
0: bypass;  
1: after two DFF  
0: Default Output,  
1: Inverted Output  
1278  
1279  
CNT3 CNT mode SYNC selection  
CNT3 output pol selection  
1280  
1281  
1282  
0000: both edge Delay  
0001: falling edge delay  
0010: rising edge delay  
0011: both edge One Shot  
0100: falling edge One Shot  
0101: rising edge One Shot  
0110: both edge freq detect  
0111: falling edge freq detect  
1000: rising edge freq detect  
1001: both edge detect  
1010: falling edge detect  
1011: rising edge detect  
1100: both edge reset CNT  
1101: falling edge reset CNT  
1110: rising edge reset CNT  
1111: high level reset CNT  
CNT3 function and edge mode selection  
1283  
1284  
1285  
1286  
Clock source sel[3:0]  
0000: 25M(OSC2)  
0001: 25M/4  
A0  
0010: 2M(OSC1)  
0011: 2M/8  
0100: 2M/64  
0101: 2M/512  
0110: 2K(OSC0)  
0111: 2K/8  
DLY/CNT3 Clock Source Select  
1000: 2K/64  
1001: 2K/512  
1287  
1010: 2K/4096  
1011: 2K/32768  
1100: 2K/262144  
1101: CNT2_END  
1110: External  
1111: Not used  
Datasheet  
10-Mar-2021  
Revision 2.4  
261 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1288  
1289  
1290  
1291  
mulit_function selection  
dly2lut selection  
Multi4 register configure  
output selection of LUT3_10/DFF14:  
0: LUT3_10  
1: DFF14  
1292  
1293  
A1  
0: normal  
CNT4 DLY EDET FUNCTION Selection  
1: DLY function edge detection (registers [1299:1296] =  
0000/0001/0010)  
0: bypass  
1: after two DFF  
0: Default Output  
1: Inverted Output  
1294  
1295  
CNT4 CNT mode SYNC selection  
CNT4 output pol selection  
1296  
1297  
1298  
0000: both edge Delay  
0001: falling edge delay  
0010: rising edge delay  
0011: both edge One Shot  
0100: falling edge One Shot  
0101: rising edge One Shot  
0110: both edge freq detect;  
0111: falling edge freq detect  
1000: rising edge freq detect  
1001: both edge detect  
1010: falling edge detect  
1011: rising edge detect  
1100: both edge reset CNT  
1101: falling edge reset CNT  
1110: rising edge reset CNT  
1111: high level reset CNT  
CNT4 function and edge mode selection  
1299  
1300  
1301  
1302  
Clock source sel[3:0]  
0000: 25M(OSC2)  
0001: 25M/4  
A2  
0010: 2M(OSC1)  
0011: 2M/8  
0100: 2M/64  
0101: 2M/512  
0110: 2K(OSC0)  
0111: 2K/8  
DLY/CNT4 Clock Source Select  
1000: 2K/64  
1001: 2K/512  
1303  
1010: 2K/4096  
1011: 2K/32768  
1100: 2K/262144  
1101: CNT3_END  
1110: External  
1111: Not used  
Datasheet  
10-Mar-2021  
Revision 2.4  
262 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1304  
1305  
1306  
1307  
mulit_function selection  
dly2lut selection  
Multi5 register configure  
output selection of LUT3_11/DFF15:  
0: LUT3_11  
1: DFF15  
1308  
1309  
A3  
0: normal  
CNT5 DLY EDET FUNCTION Selection  
1: DLY function edge detection (registers [1315:1312] =  
0000/0001/0010)  
0: bypass  
1: after two DFF  
0: Default Output  
1: Inverted Output  
1310  
1311  
CNT5 CNT mode SYNC selection  
CNT5 output pol selection  
1312  
1313  
1314  
0000: both edge Delay  
0001: falling edge delay  
0010: rising edge delay  
0011: both edge One Shot  
0100: falling edge One Shot  
0101: rising edge One Shot  
0110: both edge freq detect  
0111: falling edge freq detect  
1000: rising edge freq detect  
1001: both edge detect  
1010: falling edge detect  
1011: rising edge detect  
1100: both edge reset CNT  
1101: falling edge reset CNT  
1110: rising edge reset CNT  
1111: high level reset CNT  
CNT5 function and edge mode selection  
1315  
1316  
1317  
1318  
Clock source sel[3:0]  
0000: 25M(OSC2)  
0001: 25M/4  
A4  
0010: 2M(OSC1)  
0011: 2M/8  
0100: 2M/64  
0101: 2M/512  
0110: 2K(OSC0)  
0111: 2K/8  
DLY/CNT5 Clock Source Select  
1000: 2K/64  
1001: 2K/512  
1319  
1010: 2K/4096  
1011: 2K/32768  
1100: 2K/262144  
1101: CNT4_END  
1110: External  
1111: Not used  
Datasheet  
10-Mar-2021  
Revision 2.4  
263 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1320  
1321  
1322  
1323  
mulit_function selection  
dly2lut selection  
Multi6 register configure  
output selection of LUT3_12/DFF16:  
0: LUT3_12  
1: DFF16  
1324  
1325  
A5  
0: normal  
CNT6 DLY EDET FUNCTION Selection  
1: DLY function edge detection (registers [1331:1328] =  
0000/0001/0010)  
0: bypass  
1: after two DFF  
0: Default Output  
1: Inverted Output  
1326  
1327  
CNT6 CNT mode SYNC selection  
CNT6 output pol selection  
1328  
1329  
1330  
0000: both edge Delay  
0001: falling edge delay  
0010: rising edge delay  
0011: both edge One Shot  
0100: falling edge One Shot  
0101: rising edge One Shot  
0110: both edge freq detect  
0111: falling edge freq detect  
1000: rising edge freq detect  
1001: both edge detect  
1010: falling edge detect  
1011: rising edge detect  
1100: both edge reset CNT  
1101: falling edge reset CNT  
1110: rising edge reset CNT  
1111: high level reset CNT  
CNT6 function and edge mode selection  
1331  
A6  
1332  
1333  
1334  
Clock source sel[3:0]  
0000: 25M(OSC2)  
0001: 25M/4  
0010: 2M(OSC1)  
0011: 2M/8  
0100: 2M/64  
0101: 2M/512  
0110: 2K(OSC0)  
0111: 2K/8  
DLY/CNT6 Clock Source Select  
1000: 2K/64  
1001: 2K/512  
1335  
1010: 2K/4096  
1011: 2K/32768  
1100: 2K/262144  
1101: CNT5_END  
1110: External  
1111: Not used  
Datasheet  
10-Mar-2021  
Revision 2.4  
264 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1336  
00: bypass the initial  
01: initial 0  
CNT0 initial value selection  
10: initial 1  
1337  
1338  
11: initial 1  
00:bypass the initial  
01: initial 0  
10: initial 1  
11: initial 1  
00: bypass the initial  
01: initial 0  
10: initial 1  
CNT1 initial value selection  
CNT6 initial value selection  
1339  
1340  
1341  
A7  
11: initial 1  
1342  
1343  
1344  
Reserved  
Reserved  
00: bypass the initial  
01: initial 0  
CNT2 initial value selection  
CNT3 initial value selection  
10: initial 1  
1345  
1346  
11: initial 1  
00: bypass the initial  
01: initial 0  
10: initial 1  
11: initial 1  
00: bypass the initial  
01: initial 0  
10: initial 1  
11: initial 1  
00:bypass the initial  
01: initial 0  
1347  
1348  
1349  
1350  
1351  
A8  
CNT4 initial value selection  
CNT5 initial value selection  
10: initial 1  
11: initial 1  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1360  
1361  
1362  
1363  
1364  
A9  
<12:0>:LUT4_1 <12:0>  
Multi0_LUT4_DFF setting  
AA  
<13>:LUT4_1 <13>/DFF17  
Initial Polarity Select 0: Low, 1: High  
<14>:LUT4_1 <14>/DFF17 Output Select 0: Q output, 1:  
QB output  
<15>:LUT4_1 <15>/DFF17 or Latch Select 0: DFF func-  
1365  
1366  
1367  
tion, 1: Latch function  
Datasheet  
10-Mar-2021  
Revision 2.4  
265 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1368  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
AB  
REG_CNT0_D<15:0>  
Data[15:0]  
AC  
<3:0>:LUT3_7 <3:0>  
<4>:LUT3_7 <4>/DFF11 Initial Polarity Select  
0: Low, 1: High  
<5>:LUT3_7 <5>/DFF11  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
<6>:LUT3_7 <6>/DFF11 Output Select  
0: Q output, 1: QB output  
<7>:LUT3_7 <7>/DFF11 or Latch Select  
0: DFF function, 1: Latch function  
1388  
1389  
1390  
1391  
AD  
Multi1_LUT3_DFF setting  
Multi1_CNT1  
1392  
1393  
1394  
1395  
1396  
AE  
REG_CNT1_D<7:0>  
Data[7:0]  
1397  
1398  
1399  
1400  
1401  
1402  
1403  
<3:0>:LUT3_8 <3:0>  
<4>:LUT3_8 <4>/DFF12 Initial Polarity Select  
0: Low, 1: High  
<5>:LUT3_8 <5>/DFF12  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
<6>:LUT3_8 <6>/DFF12 Output Select  
0: Q output, 1: QB output  
1404  
AF  
Multi2_LUT3_DFF setting  
1405  
1406  
1407  
<7>:LUT3_8 <7>/DFF12 or Latch Select  
0: DFF function, 1: Latch function  
Datasheet  
10-Mar-2021  
Revision 2.4  
266 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1408  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
B0  
REG_CNT2_D<7:0>  
Data[7:0]  
<3:0>:LUT3_9 <3:0>  
<4>:LUT3_9 <4>/DFF13 Initial Polarity Select  
0: Low, 1: High  
<5>:LUT3_9 <5>/DFF13  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
<6>:LUT3_9 <6>/DFF13 Output Select  
0: Q output, 1: QB output  
1420  
1421  
1422  
1423  
B1  
B2  
B3  
B4  
Multi3_LUT3_DFF setting  
<7>:LUT3_9 <7>/DFF13 or Latch Select  
0: DFF function, 1: Latch function  
1424  
1425  
1426  
1427  
1428  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
REG_CNT3_D<7:0>  
Data[7:0]  
<3:0>:LUT3_10 <3:0>  
<4>:LUT3_10 <4>/DFF14 Initial Polarity Select  
0: Low, 1: High  
<5>:LUT3_10 <5>/DFF14  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
<6>:LUT3_10 <6>/DFF14 Output Select  
0: Q output, 1: QB output  
1436  
1437  
1438  
1439  
Multi4_LUT3_DFF setting  
<7>:LUT3_10 <7>/DFF14 or Latch Select  
0: DFF function, 1: Latch function  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
REG_CNT4_D<7:0>  
Data[7:0]  
Datasheet  
10-Mar-2021  
Revision 2.4  
267 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1448  
1449  
1450  
1451  
<3:0>:LUT3_11<3:0>  
<4>:LUT3_11<4>/DFF15 Initial Polarity Select  
0: Low, 1: High  
<5>:LUT3_11 <5>/DFF15  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
<6>:LUT3_11 <6>/DFF15 Output Select  
0: Q output, 1: QB output  
1452  
1453  
1454  
1455  
B5  
Multi5_LUT3_DFF setting  
<7>:LUT3_11 <7>/DFF15 or Latch Select  
0: DFF function, 1: Latch function  
1456  
1457  
1458  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
B6  
B7  
B8  
REG_CNT5_D<7:0>  
Multi6_LUT3_DFF setting  
REG_CNT6_D<7:0>  
Data[7:0]  
<3:0>:LUT3_12 <3:0>  
<4>:LUT3_12 <4>/DFF16 Initial Polarity Select  
0: Low, 1: High  
<5>:LUT3_12 <5>/DFF16  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
<6>:LUT3_12 <6>/DFF16 Output Select  
0: Q output, 1: QB output  
1468  
1469  
1470  
1471  
<7>:LUT3_12 <7>/DFF16 or Latch Select  
0: DFF function, 1: Latch function  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
Data[7:0]  
Datasheet  
10-Mar-2021  
Revision 2.4  
268 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1480  
<0>:LUT2_0 <0>  
<1>:LUT2_0 <1>/DFF0 Initial Polarity Select  
0: Low, 1: High  
<2>:LUT2_0 <2>/DFF0 Output Select  
0: Q output, 1: QB output  
1481  
1482  
LUT2_0/DFF0 setting  
<3>:LUT2_0 <3>/DFF0 or Latch Select  
0: DFF function, 1: Latch function  
<0>:LUT2_0 <0>  
<1>:LUT2_0 <1>/DFF0 Initial Polarity Select  
0: Low, 1: High  
1483  
1484  
1485  
B9  
LUT2_1/DFF1 setting  
LUT2_2/DFF2 setting  
<2>:LUT2_0 <2>/DFF0 Output Select  
0: Q output, 1: QB output  
<3>:LUT2_0 <3>/DFF0 or Latch Select  
0: DFF function, 1: Latch function  
<0>:LUT2_0 <0>  
<1>:LUT2_0 <1>/DFF0 Initial Polarity Select  
0: Low, 1: High  
<2>:LUT2_0 <2>/DFF0 Output Select  
0: Q output, 1: QB output  
<3>:LUT2_0 <3>/DFF0 or Latch Select  
0: DFF function, 1: Latch function  
0: LUT2_0  
1: DFF0  
0: LUT2_1  
1: DFF1  
1486  
1487  
1488  
1489  
1490  
1491  
1492  
1493  
1494  
BA  
LUT2_0 or DFF0 Select  
LUT2_1 or DFF1 Select  
0: LUT2_2  
1: DFF2  
LUT2_2 or DFF2 Select  
Reserved  
1495  
1496  
1497  
1498  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1510  
1511  
BB  
PGen data  
PGen Data[15:0]  
BC  
Datasheet  
10-Mar-2021  
Revision 2.4  
269 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1512  
1513  
1514  
1515  
LUT2_3<3:0> or PGen 4bit counter  
data<3:0>  
LUT2_3_VAL or PGen_data  
0: LUT2_3  
1: PGen  
0: Active low level reset/set  
1: Active high level reset/set  
0: LUT3_0  
1: DFF3  
0: LUT3_1  
1: DFF4  
1516  
1517  
1518  
1519  
LUT2_3 or PGen Select  
BD  
Active level selection for RST/SET  
LUT3_0 or DFF3 Select  
LUT3_1 or DFF4 Select  
1520  
1521  
<1:0>: LUT3_0 <1:0>  
<2>:LUT3_0 <2>/DFF3 stage selection  
0: Q of first DFF; 1 Q of second DFF  
1522  
<3>:LUT3_0 <3>/DFF3 Active level selection for  
RST/SET  
1523  
0: Active low level reset/set, 1: Active high level  
reset/set  
BE  
LUT3_0_DFF3 setting  
<4>:LUT3_0 <4>/DFF3  
0: RSTB from Matrix Output, 1: SETB from Matrix  
Output  
1524  
<5>:LUT3_0 <5>/DFF3 Initial Polarity Select  
0: Low, 1: High  
<6>:LUT3_0 <6>/DFF3 Output Select  
0: Q output, 1: QB output  
<7>:LUT3_0 <7>/DFF3 or Latch Select  
0: DFF function, 1: Latch function  
1525  
1526  
1527  
1528  
1529  
1530  
<2:0>: LUT3_1 <2:0>  
<3>:LUT3_1 <3>/DFF4 Active level selection for  
RST/SET  
1531  
1532  
0: Active low level reset/set, 1: Active high level  
reset/set  
<4>:LUT3_1 <4>/DFF4  
0: RSTB from Matrix Output, 1: SETB from Matrix  
Output  
BF  
LUT3_1_DFF4 setting  
<5>:LUT3_1 <5>/DFF4 Initial Polarity Select  
0: Low, 1: High  
<6>:LUT3_1 <6>/DFF4 Output Select  
0: Q output, 1: QB output  
<7>:LUT3_1 <7>/DFF4 or Latch Select  
0: DFF function, 1: Latch function  
1533  
1534  
1535  
Datasheet  
10-Mar-2021  
Revision 2.4  
270 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1536  
1537  
1538  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583  
C0  
0000000000: 0  
~
1111111111:100k  
Rheostat0 data selection  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
C1  
C2  
C3  
C4  
C5  
Rheostat0 current value (read only)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Matrix Input 0  
Matrix Input 1  
Matrix Input 2  
Matrix Input 3  
Matrix Input 4  
Matrix Input 5  
Matrix Input 6  
Matrix Input 7  
Matrix Input 8  
Matrix Input 9  
Matrix Input 10  
Matrix Input 11  
Matrix Input 12  
Matrix Input 13  
Matrix Input 14  
Matrix Input 15  
Datasheet  
10-Mar-2021  
Revision 2.4  
271 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1620  
1621  
1622  
1623  
Matrix Input 16  
Matrix Input 17  
Matrix Input 18  
Matrix Input 19  
Matrix Input 20  
Matrix Input 21  
Matrix Input 22  
Matrix Input 23  
Matrix Input 24  
Matrix Input 25  
Matrix Input 26  
Matrix Input 27  
Matrix Input 28  
Matrix Input 29  
Matrix Input 30  
Matrix Input 31  
Matrix Input 40  
Matrix Input 41  
Matrix Input 42  
Matrix Input 43  
Matrix Input 44  
Matrix Input 45  
Matrix Input 46  
Matrix Input 47  
Matrix Input 48  
Matrix Input 49  
Matrix Input 50  
Matrix Input 51  
Matrix Input 52  
Matrix Input 53  
Matrix Input 54  
Matrix Input 55  
Matrix Input 56  
Matrix Input 57  
Matrix Input 58  
Matrix Input 59  
Matrix Input 60  
Matrix Input 61  
Matrix Input 62  
Matrix Input 63  
C6  
C7  
C8  
C9  
CA  
Datasheet  
10-Mar-2021  
Revision 2.4  
272 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1624  
1625  
1626  
1627  
1628  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1660  
1661  
1662  
1663  
CB  
CNT0_Q  
CC  
CD  
CE  
CF  
CNT5_Q  
CNT6_Q  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
10-Mar-2021  
Revision 2.4  
273 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1664  
1665  
1666  
1667  
1668  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1710  
1711  
D0  
0000000000: 0  
~
1111111111:100k  
Rheostat1 data selection  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
D1  
D2  
D3  
D4  
D5  
Rheostat1 current value (read only)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
10-Mar-2021  
Revision 2.4  
274 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
D6  
D7  
D8  
D9  
DA  
DB  
Datasheet  
10-Mar-2021  
Revision 2.4  
275 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ID[24]: Reserved  
DC  
ReservedforNVMPower-UpCheckPatternStatus (A55A  
match from Flag)  
1769  
ID[25]: Reserved  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1790  
1791  
1792  
ID[27:26]: Reserved for Silicon Identification  
Service Bits (metal hard code)  
DD  
Reserved  
Reserved  
DE  
DF  
Reserved  
00: 2k register data is unprotected for read  
01: 2k register data is partly protected for read  
10: 2k register data is fully protected for read  
11: reserved  
00: 2k register data is unprotected for write  
01: 2k register data is partly protected for write  
10: 2k register data is fully protected for write  
11: reserved  
RPR<1:0>  
(2k register read selection bits)  
1793  
1794  
1795  
RPR<3:2>  
(2k register write selection bits)  
E0  
0: Rheostat Program Input from matrix enabled  
1: Rheostat Program Input from matrix disabled  
1796  
RH_PRB  
1797  
1798  
1799  
Reserved  
Reserved  
Reserved  
Datasheet  
10-Mar-2021  
Revision 2.4  
276 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1800  
00:2kNVM Configurationdatais unprotectedforreadand  
write/erase  
01: 2k NVM Configuration data is fully protected for read  
10: 2k NVM Configuration data is fully protected for  
write/erase  
NPR<1:0>  
(2k NVM configuration selection bits)  
1801  
1802  
11: 2k NVM Configuration data is fully protected for read  
and write/erase  
00: Rheosta0 NVM Configuration data is unprotected for  
read and write/erase  
01: Rheosta0 NVM Configuration data is fully protected  
for read  
NPR<3:2>  
(Rheostat0 NVM configuration selection bits)  
10: Rheosta0 NVM Configuration data is fully protected  
for write/erase  
1803  
1804  
1805  
E1  
11: Rheosta0 NVM Configuration data is fully protected  
for read and write/erase  
00: Rheosta1 NVM Configuration data is unprotected for  
read and write/erase  
01: Rheosta1 NVM Configuration data is fully protected  
for read  
NPR<5:4>  
(Rheostat1 NVM configuration selection bits)  
10: Rheosta1 NVM Configuration data is fully protected  
for write/erase  
11: Rheosta1 NVM Configuration data is fully protected  
for read and write/erase  
1806  
1807  
1808  
Reserved  
Reserved  
00: Upper 1/4 (page16~19) of EEPROM is write protected  
(default)  
01: Upper 2/4 (page16~23) of EEPROM is write protected  
10: Upper 3/4 (page16~27) of EEPROM is write protected  
11: Entire (page16~31) EEPROM is write protected  
WPR<1:0>  
(EEPROM Write protect block bits  
range: page31~16)  
1809  
WPRE  
0: No Software Write Protection enabled (default)  
1: Write Protection is set by the state of the WPR<1:0> bits  
1810  
(EEPROM Write protect register enable)  
E2  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1820  
1821  
1822  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Define the page address which will be erased  
ERSE<4> = 0 corresponds to the upper 2k NVM used for  
chip configuration  
ERSE<4:0>  
(Page selection for erase)  
ERSE<4> = 1 corresponds to the 2k  
EEPROM  
E3  
000/001/010/011/100/101/111: erase disable  
110: cause the NVM erase: full NVM (4k bits) erase for  
ERSCHIP = 1 if  
DIS_ERSCHIP=0 or page erase for  
ERSCHIP=0.  
0: RPR/WPR/NPR setting can be changed  
1: RPR/WPR/NPR setting cannot be changed  
ERSE <2:0>  
(Erase enable)  
1823  
1824  
PRL  
(Protection lock)  
1825  
1826  
1827  
1828  
1829  
1830  
1831  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
E4  
Datasheet  
10-Mar-2021  
Revision 2.4  
277 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1850  
1851  
1852  
1853  
1854  
E5  
Reserved  
Rheostat0 tolerance data <0>  
Rheostat0 tolerance data <1>  
Rheostat0 tolerance data <2>  
Rheostat0 tolerance data <3>  
Rheostat0 tolerance data <4>  
Rheostat0 tolerance data <5>  
Rheostat0 tolerance data <6>  
Rheostat0 tolerance data <7>  
Rheostat0 tolerance data <8>  
Rheostat0 tolerance data <9>  
Rheostat0 tolerance data <10>  
Rheostat0 tolerance data <11>  
Rheostat0 tolerance data <12>  
Rheostat0 tolerance data <13>  
Rheostat0 tolerance data <14>  
E6  
E7  
E8  
0: “+”  
1: "-"  
1855  
Sign of Rheostat0 tolerance data  
1856  
1857  
1858  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1870  
Rheostat1 tolerance data <0>  
Rheostat1 tolerance data <1>  
Rheostat1 tolerance data <2>  
Rheostat1 tolerance data <3>  
Rheostat1 tolerance data <4>  
Rheostat1 tolerance data <5>  
Rheostat1 tolerance data <6>  
Rheostat1 tolerance data <7>  
Rheostat1 tolerance data <8>  
Rheostat1 tolerance data <9>  
Rheostat1 tolerance data <10>  
Rheostat1 tolerance data <11>  
Rheostat1 tolerance data <12>  
Rheostat1 tolerance data <13>  
Rheostat1 tolerance data <14>  
E9  
EA  
0: "+";  
1: "-"  
1871  
Sign of Rheostat1 tolerance data  
1872  
1873  
1874  
1875  
Reserved  
Datasheet  
10-Mar-2021  
Revision 2.4  
278 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1876  
1877  
1878  
1879  
1880  
1881  
1882  
1883  
1884  
EA  
Reserved  
Reserved  
Reserved  
Reserved  
EB  
1885  
1886  
Reserved  
1887  
1888  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907  
1908  
1909  
1910  
1911  
1912  
1913  
1914  
1915  
1916  
1917  
1918  
1919  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
EC  
ED  
EE  
EF  
Datasheet  
10-Mar-2021  
Revision 2.4  
279 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1920  
1921  
1922  
1923  
1924  
1925  
1926  
1927  
1928  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1940  
1941  
1942  
1943  
F0  
Reserved  
F1  
Reserved  
F2  
Reserved  
0: Service page can be changed  
1: Service page is locked  
0: chopper enable  
1: chopper off  
1944  
1945  
Service page lock bit  
BG Chopper off  
1946  
1947  
Reserved  
Reserved  
F3  
0: power on  
1: power off  
1948  
BG register power down  
1949  
1950  
1951  
1952  
1953  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1954  
Reserved  
1955  
1956  
1957  
1958  
1959  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
F4  
Datasheet  
10-Mar-2021  
Revision 2.4  
280 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1960  
1961  
1962  
1963  
1964  
1965  
1966  
1967  
1968  
1969  
1970  
1971  
1972  
1973  
1974  
1975  
1976  
1977  
1978  
1979  
1980  
1981  
1982  
1983  
1984  
1985  
1986  
1987  
1988  
1989  
1990  
1991  
1992  
1993  
1994  
1995  
1996  
1997  
1998  
1999  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
F5  
0: overwrite;  
1: mask the bit which set to high  
F6  
F7  
F8  
F9  
I2C write mask bits  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
10-Mar-2021  
Revision 2.4  
281 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
2000  
2001  
2002  
2003  
2004  
Reserved  
FA  
2005  
2006  
2007  
Reserved  
Reserved  
Reserved  
2008  
2009  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
2018  
2019  
2020  
2021  
2022  
2023  
2024  
2025  
2026  
2027  
2028  
2029  
2030  
2031  
2032  
2033  
2034  
2035  
2036  
2037  
2038  
2039  
Reserved  
FB  
FC  
FD  
FE  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
10-Mar-2021  
Revision 2.4  
282 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Table 68: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
2040  
2041  
2042  
2043  
2044  
2045  
2046  
2047  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
FF  
Datasheet  
10-Mar-2021  
Revision 2.4  
283 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
22 Package Top Marking System Definition  
22.1 STQFN-24L 3 MM X 3 MM X 0.55 MM, 0.4P FCD PACKAGE  
Part Code  
PPPPP  
Date Code  
WWNNN S/N Code  
Assembly House Code +  
Revision Code  
Pin 1  
Identifier  
ARR  
Datasheet  
10-Mar-2021  
Revision 2.4  
284 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
23 Package Information  
23.1 PACKAGE OUTLINES FOR STQFN 24L 3 MM X 3 MM X 0.55 MM 0.4P GREEN PACKAGE  
JEDEC MO-220  
Bottom View  
Top View  
Side View  
23.2 STQFN HANDLING  
Be sure to handle STQFN package only in a clean, ESD-safe environment. Tweezers or vacuum pick-up tools are suitable for  
handling. Do not handle STQFN package with fingers as this can contaminate the package pins and interface with solder reflow.  
23.3 SOLDERING INFORMATION  
Please see IPC/JEDEC J-STD-020: for relevant soldering information. More information can be found at www.jedec.org.  
Datasheet  
10-Mar-2021  
Revision 2.4  
285 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
24 Ordering Information  
Part Number  
Type  
SLG47004V  
24-pin STQFN  
24-pin STQFN - Tape and Reel (5k units)  
SLG47004VTR  
24.1 TAPE AND REEL SPECIFICATIONS  
Max Units  
per Reel per Box  
Leader (min)  
Length  
Trailer (min)  
Nominal  
Package Size  
(mm)  
Reel &  
Hub Size  
(mm)  
Tape  
Width Pitch  
(mm) (mm)  
Part  
Package # of  
Length  
Type  
Pins  
Pockets  
Pockets  
(mm)  
(mm)  
STQFN 24L  
3 mm x3mm  
0.4P FC  
24  
3 x 3 x 0.55  
5.000  
10.000 330 / 100  
42  
336  
42  
336  
12  
8
Green  
24.2 CARRIER TAPE DRAWING AND DIMENSIONS  
Index Hole Index Hole  
PocketBTMPocketBTM Pocket Index Hole Pocket Index Hole  
to Tape  
Edge  
to Pocket Tape Width  
Center  
(mm)  
Length  
(mm)  
Width  
(mm)  
Depth  
(mm)  
Pitch  
(mm)  
Pitch  
(mm)  
Diameter  
(mm)  
Package  
Type  
(mm)  
(mm)  
A0  
B0  
K0  
P0  
P1  
D0  
E
F
W
STQFN 24L  
3 mm x3mm  
0.4P FC  
3.3  
3.3  
0.8  
4
8
1.55  
1.75  
5.5  
12  
Green  
Notes:  
1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2  
2. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE  
3. A0 AND B0 ARE CALCULATED ON A PLANE AT A DISTANCE “R” ABOVE THE BOTTOM OF THE POCKET.  
Note: Orientation in carrier: Pin1 is at upper left corner (Quadrant1).  
Datasheet  
10-Mar-2021  
Revision 2.4  
286 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
25 Layout Guidelines  
SLG47004 has two analog supply pins and two ground pins: VDD, VDDA, GND and AGND. Separating analog supply voltage  
from digital one helps to minimize noise generated by the digital part of IC.  
Analog supply voltage domain: operational amplifiers, charge pumps for op amps, charge pumps for Oscillators, bias generators  
and regulators for op amps, digital rheostats, Chopper ACMP, HD Buffer, Vref of op amp and HD Buffer, Low Power Bandgap.  
Digital supply voltage domain: ACMPs, Vref of ACMPs, Vref output buffers, Oscillator 0, Oscillator 1, Oscillator 2, I2C macrocell,  
NVM logic, Multi-function and Combination Function macrocells.  
Analog and digital grounds must be connected together on the PCB board. The place of connection depends on users  
schematic. For application cases with low digital current of SLG47004, both AGND and GND should be connected to analog  
ground plane.  
25.1 STQFN 24L 3 MM X 3 MM X 0.55 MM 0.4P GREEN PACKAGE  
Datasheet  
10-Mar-2021  
Revision 2.4  
287 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Glossary  
A
ACK  
Acknowledge bit  
ACMP  
ACMPH  
ACMPL  
AS  
Analog Comparator  
Analog Comparator High Speed  
Analog Comparator Low Power  
Analog Switch  
B
BG  
Bandgap  
C
CLK  
CMO  
CNT  
Clock  
Connection matrix output  
Counter  
D
DFF  
DLY  
DNL  
DR  
D Flip-Flop  
Delay  
Differential Non-Linearity  
Digital Rheostat  
E
EC  
Electrical Characteristics  
Erase Enable  
ERSE  
ERSR  
ESD  
EV  
Erase Register  
Electrostatic discharge  
End Value  
F
FSM  
Finite State Machine  
G
GPI  
GPIO  
GPO  
General Purpose Input  
General Purpose Input/Output  
General Purpose Output  
I
IN  
Input  
In Amp  
DNL  
Instrumentation Amplifier  
Differential Non-Linearity  
Datasheet  
10-Mar-2021  
Revision 2.4  
288 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
INL  
IO  
Integral Non-Linearity  
Input/Output  
L
LPF  
LSB  
LUT  
LV  
Low Pass Filter  
Least Significant Bit  
Look Up Table  
Low Voltage  
M
MSB  
MTP  
MUX  
Most Significant Bit  
Multiple-Time-Programmable  
Multiplexer  
N
NPR  
nRST  
NVM  
Non-Volatile Memory Read/Write/Erase Protection  
Reset  
Non-Volatile Memory  
O
OA  
Operational Amplifier  
Open-Drain  
OD  
OE  
Output Enable  
Operational Amplifier  
Oscillator  
Op Amp  
OSC  
OUT  
Output  
P
PD  
Power-down  
PGen  
POR  
PP  
Pattern Generator  
Power-On Reset  
Push-Pull  
PRL  
PT  
Protect Lock Bit  
Programmable Trim  
Power  
PWR  
P DLY  
Programmable Delay  
R
RPR  
RPRB  
RPRL  
Register Read/Write Protection  
Register Read/Write Protection Bit  
Register Protection Read/Write/Erase Lock  
Datasheet  
10-Mar-2021  
Revision 2.4  
289 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
R/W  
Read/Write  
S
SCL  
SDA  
SLA  
SMT  
SPST  
SV  
I2C Clock Input  
I2C Data Input/Output  
Slave Address  
With Schmitt Trigger  
Single-pole/Single throw  
nSET Value  
T
TS  
Temperature Sensor  
Voltage Reference  
V
Vref  
W
WOSMT  
WPB  
WPR  
WPRE  
WS  
Without Schmitt Trigger  
Write Protect Bit  
Write Protection Register  
Write Protect Enable  
Wake and Sleep Controller  
Datasheet  
10-Mar-2021  
Revision 2.4  
290 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Revision History  
Revision  
Date  
Description  
Updated Carrier Tape Drawing and Dimensions  
Added Vref Performance: Typical Input Offset Voltage vs. Vref  
2.4  
10-Mar-2021  
Updated Tape and Reel Specification  
Added Op Amps, Analog Switches, Rheostats, OSCs, ACMPs, TS, Vref Typical Performance  
Updated Thermal Resistance parameter in Absolute Maximum Ratings Table  
Updated Op Amp Typical Performance  
2.3  
2-Mar-2021  
Updated 100K Digital Rheostat EC  
Updated table Read/Write Register Protection Options  
Updated Analog Switch Spec Conditions  
Fixed typos  
2.2  
3-Dec-2020  
2.1  
2.0  
13-Nov-2020 Removed TSSOP Package  
9-Nov-2020 Preliminary version  
Datasheet  
10-Mar-2021  
Revision 2.4  
291 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47004  
Preliminary  
GreenPAK Programmable Mixed-Signal Matrix  
with In-System Programmability and Advanced Analog Features  
Status Definitions  
Revision Datasheet Status  
Product Status  
Definition  
1.<n>  
Target  
Development  
This datasheet contains the design specifications for product development.  
Specifications may change in any manner without notice.  
2.<n>  
Preliminary  
Qualification  
Production  
This datasheet contains the specifications and preliminary characterization  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
3.<n>  
4.<n>  
Final  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Major specification  
changes are communicated via Customer Product Notifications. Datasheet  
changes are communicated via www.dialog-semiconductor.com.  
Obsolete  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted  
to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or  
associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers  
accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion  
and/or use is at the customer's own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as  
to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any  
information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of  
the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor  
reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products,  
software and applications, in accordance with its standard automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty  
that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing,  
such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such  
license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions  
of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are  
the property of their respective owners.  
© 2021 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction  
of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Hong Kong  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
China (Shenzhen)  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
309  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
10-Mar-2021  
Revision 2.4  
292 of 292  
© 2021 Dialog Semiconductor  
CFR0011-120-00  

相关型号:

SLG47004VTR

GreenPAK Programmable Mixed-Signal Matrix with In-System Programmability and Advanced Analog Features
DIALOG

SLG47105

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features
DIALOG

SLG47105V

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features
DIALOG

SLG47105VTR

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features
DIALOG

SLG47502

Low Voltage GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG47502V

Low Voltage GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG47502VTR

Low Voltage GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG47503

Low Voltage GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG47503M

Low Voltage GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG47503MTR

Low Voltage GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG4X42522-A

GreenPAK ™ Voltage Monitor
DIALOG

SLG4X42522-AG

GreenPAK ™ Voltage Monitor
DIALOG