SLG47105V [DIALOG]

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features;
SLG47105V
型号: SLG47105V
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features

文件: 总253页 (文件大小:3559K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
General Description  
The SLG47105 provides a small, low power component for commonly used Mixed-Signal and Bridge functions. The user  
creates their circuit design by programming the one time programmable (OTP) Non-Volatile Memory (NVM) to configure the  
interconnect logic, the IO Pins, the High Voltage Pins, and the macrocells of the SLG47105.  
Configurable PWM macrocells in combination with Special High Voltage outputs will be useful for a motor drive or load drive  
applications. High Voltage pins allow to design smart level translators or to drive the high voltage high current load.  
Key Features  
Two Power Supply Inputs:  
Four Selectable DFF/LATCH/3-bit LUTs + 8-bit Delay/  
Counters  
One Selectable DFF/LATCH/4-bit LUT + 16-bit Delay/  
Counter  
2.5 V (±8 %) to 5.0 V (±10 %) VDD  
3.3 V (±9 %) to 12.0 V (±10 %) VDD2  
Four High Voltage High Current Drive GPOs  
Dual/Single Full Bridge Motor Driver Option  
Twelve Combination Function Macrocells  
Quad/Dual/Single Half Bridge Driver Option  
Three Selectable DFF/LATCH or 2-bit LUTs  
One Selectable Programmable Pattern Generator or  
2-bit LUT  
Six Selectable DFF/LATCH or 3-bit LUTs  
One Selectable Pipe Delay or Ripple Counter or 3-bit  
LUT  
SLEEP Function  
Low RDS ON High Side + Low Side resistance = 0.4 Ω  
2 A Peak, 1.5 A RMS per Full Bridge (at VDD2 = 5 V,  
T = 25 °C) (Note 1)  
4 A Peak, 3 A RMS per two Full Bridge connected in  
parallel (at VDD2 = 5 V, T = 25 °C) (Note 1)  
2 A Peak, 1.5 A RMS per Half Bridge GPO  
(at VDD2 = 5 V, T = 25 °C) (Note 1)  
One Selectable DFF/LATСH or 4-bit LUT  
Two PWM Macrocells  
Flexible 8-bit/7-bit PWM Mode with the Duty Cycle  
Control  
16 Preset Duty Cycle Registers Switching Mode for  
PWM Sine or Other Waveforms (Note 2)  
Integrated Protections:  
- Over Current Protection (OCP)  
- Short Circuit Protection  
- Under-Voltage Lockout (UVLO)  
- Thermal Shutdown (TSD)  
Serial Communications  
I2C Protocol Interface  
SENSE_A, SENSE_B Inputs that are connected to the  
Programmable Delay with Edge Detector Output  
Additional Logic Function – One Deglitch Filter with Edge  
Detectors  
Two Oscillators (OSC)  
Current Comparators for Current Control  
Fault Signal Indicator individual per Full Bridge:  
- OCP  
- UVLO  
- TSD  
2.048 kHz Oscillator  
25 MHz Oscillator  
Differential Amplifier with Integrator and Comparator for  
Motor Speed Control Function  
Analog Temperature Sensor with ACMP Connected Out-  
put  
POR  
One Time Programmable Memory  
Operating Temperature Range: -40 °C to 85 °C  
RoHS Compliant/Halogen-Free  
20-pin STQFN: 2 mm x 3 mm x 0.55 mm, 0.4 mm pitch  
Two Current Sense Comparators with Dynamical Vref  
Mode  
Two High-Speed General Purpose ACMPs  
Modes: UVLO, OCP, TSD, Voltage Monitor, Current  
Monitor  
One Voltage Reference (Vref) Output  
Five Multi-Function Macrocells  
Applications  
Smart Locks  
Toys  
Personal Computers and Servers  
Consumer Electronics  
Motor Drivers  
HV MOSFET Drivers  
Video Security Cameras  
LED Matrix Dimmers  
Note 1 Power dissipation and thermal limits must be observed. See Section 3.3  
Note 2 For all PWM features see Section 13.  
Datasheet  
31-Aug-2021  
Revision 3.4  
1 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Contents  
General Description.................................................................................................................................................................1  
Key Features.............................................................................................................................................................................1  
Applications..............................................................................................................................................................................1  
1 Block Diagram ....................................................................................................................................................................10  
2 Pinout ..................................................................................................................................................................................11  
2.1 Pin Configuration - STQFN- 20L ..........................................................................................................................11  
3 Characteristics ...................................................................................................................................................................13  
3.1 Absolute Maximum Ratings .................................................................................................................................13  
3.2 Electrostatic Discharge Ratings ...........................................................................................................................13  
3.3 Recommended Operating Conditions ..................................................................................................................14  
3.4 Thermal Information .............................................................................................................................................14  
3.5 Electrical Characteristics ......................................................................................................................................14  
3.6 I2C Pins Electrical Characteristics ........................................................................................................................19  
3.7 Macrocells Current Consumption .........................................................................................................................22  
3.8 HV Output Electrical Characteristic ......................................................................................................................23  
3.9 Protection Circuits Electrical Characteristic .........................................................................................................27  
3.10 Timing Characteristics ........................................................................................................................................28  
3.11 Counter/Delay Characteristics ...........................................................................................................................30  
3.12 Oscillator Characteristics ...................................................................................................................................30  
3.13 Current Sense Comparator Characteristics .......................................................................................................31  
3.14 Differential Amplifier with Integrator and Comparator Characteristics ..............................................................33  
3.15 ACMP Characteristics ........................................................................................................................................34  
3.16 Analog Temperature Sensor Characteristics .....................................................................................................36  
4 User Programmability ........................................................................................................................................................38  
5 System Overview ...............................................................................................................................................................39  
5.1 GPIO Pins ............................................................................................................................................................39  
5.2 High Voltage Output Pins .....................................................................................................................................39  
5.3 Connection Matrix ................................................................................................................................................39  
5.4 Two Current Sense Comparators ........................................................................................................................39  
5.5 Differential Amplifier with Integrator and Comparator ..........................................................................................39  
5.6 Two general purpose analog comparators ...........................................................................................................39  
5.7 Voltage reference .................................................................................................................................................39  
5.8 Twelve Combination Function Macrocells ............................................................................................................39  
5.9 Five Multi-Function Macrocells .............................................................................................................................39  
5.10 Two PWM Macrocells ........................................................................................................................................39  
5.11 Serial Communication ........................................................................................................................................40  
5.12 Programmable Delay .........................................................................................................................................40  
5.13 Additional Logic Function ...................................................................................................................................40  
5.14 Two Oscillators ...................................................................................................................................................40  
5.15 Dual VDD .....................................................................................................................................................................................................40  
6 Input/Output Pins ...............................................................................................................................................................41  
6.1 GPIO Pins ............................................................................................................................................................41  
6.2 GPI Pin .................................................................................................................................................................41  
6.3 HV GPO Pins .......................................................................................................................................................41  
6.4 Pull-Up/Down Resistors .......................................................................................................................................41  
6.5 Fast Pull-Up/Down during Power-Up ...................................................................................................................41  
6.6 ESD Protection .....................................................................................................................................................41  
6.7 GPI IO Structure (for VDD Group) .........................................................................................................................42  
6.8 I2C Mode IO Structure (for VDD Group) ................................................................................................................43  
6.9 Matrix OE IO Structure (for VDD Group) ...............................................................................................................45  
6.10 GPO Matrix OE Structure (For VDD2 Group) ......................................................................................................46  
6.11 IO Typical Performance .....................................................................................................................................48  
7 High Voltage Output Modes ..............................................................................................................................................51  
7.1 Full Bridge Mode ..................................................................................................................................................53  
Datasheet  
31-Aug-2021  
Revision 3.4  
2 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
7.2 Half Bridge mode .................................................................................................................................................56  
7.3 Pre-Driver Mode ...................................................................................................................................................57  
7.4 Parallel Connection of HV GPO ...........................................................................................................................57  
7.5 Protection Circuits ................................................................................................................................................58  
7.6 PWM Voltage Control ...........................................................................................................................................59  
7.7 High Voltage Outputs Typical Performance .........................................................................................................60  
8 Differential Amplifier with Integrator and Comparator ...................................................................................................70  
8.1 Differential Amplifier with Integrator Block Diagram .............................................................................................71  
8.2 Differential Amplifier Load Regulation ..................................................................................................................71  
9 Current Sense Comparator ...............................................................................................................................................73  
9.1 Current Sense Comparator0 Block Diagram ........................................................................................................73  
9.2 Current Sense Comparator1 Block Diagram ........................................................................................................74  
9.3 Current Regulation ...............................................................................................................................................74  
9.4 Current Sense Comparator Typical Performance ................................................................................................75  
10 Connection Matrix ............................................................................................................................................................77  
10.1 Matrix Input Table .............................................................................................................................................78  
10.2 Matrix Output Table ............................................................................................................................................80  
10.3 Connection Matrix Virtual Inputs ........................................................................................................................82  
10.4 Connection Matrix Virtual Outputs .....................................................................................................................83  
11 Combination Function Macrocells ..................................................................................................................................84  
11.1 2-bit LUT or D Flip-Flop Macrocells ...................................................................................................................84  
11.2 2-bit LUT or Programmable Pattern Generator ..................................................................................................87  
11.3 3-bit LUT or D Flip-Flop with Set/Reset Macrocells ...........................................................................................89  
11.4 3-bit LUT or D Flip-Flop with Set/Reset Macrocell or PWM Chopper ................................................................96  
11.5 3-bit LUT or Pipe Delay/Ripple Counter Macrocell ..........................................................................................103  
11.6 4-bit LUT or D Flip-Flop Macrocell ...................................................................................................................106  
12 Multi-Function Macrocells .............................................................................................................................................109  
12.1 3-bit LUT or DFF/LATCH with 8-bit Counter/Delay Macrocells ........................................................................110  
12.2 4-bit LUT or DFF/LATCH with 16-bit Counter/Delay Macrocell ........................................................................116  
12.3 CNT/DLY/FSM Timing Diagrams .....................................................................................................................119  
12.4 Wake and Sleep Controller ..............................................................................................................................128  
13 Pulse Width Modulator Macrocell (PWM) .....................................................................................................................133  
13.1 8-bit/7-bit PWM Configurations ........................................................................................................................133  
13.2 PWM Inputs ......................................................................................................................................................133  
13.3 PWM Outputs ...................................................................................................................................................133  
13.4 I2C/Matrix/Auto dynamically changeable Duty Cycle and Period .....................................................................134  
13.5 I2C PWM Duty Cycle read/write .......................................................................................................................134  
13.6 Flexible OSC-integrated Divider .......................................................................................................................134  
13.7 Inverted Output option ......................................................................................................................................134  
13.8 Changeable dead band option for OUT+ and OUT- ........................................................................................134  
13.9 Initial PWM value .............................................................................................................................................136  
13.10 Sync On/Off setting for Power-Down signal ...................................................................................................136  
13.11 Regular/Preset Registers Mode .....................................................................................................................140  
13.12 PWM Continuous/Autostop mode ..................................................................................................................141  
13.13 Internal Oscillator Auto Disable Mode ............................................................................................................141  
13.14 Phase Correct PWM Mode ............................................................................................................................144  
13.15 PWM Period Output .......................................................................................................................................144  
13.16 PWM Block Diagrams ....................................................................................................................................145  
13.17 PWM Register Settings ..................................................................................................................................146  
14 Analog Comparators .....................................................................................................................................................150  
14.1 ACMP0H Block Diagram ..................................................................................................................................151  
14.2 ACMP1H Block Diagram ..................................................................................................................................152  
14.3 ACMP Typical Performance .............................................................................................................................153  
15 Programmable Delay/Edge Detector ............................................................................................................................156  
15.1 Programmable Delay Timing Diagram - Edge Detector OUTPUT ...................................................................156  
16 Additional Logic Function. Deglitch Filter ...................................................................................................................157  
17 Voltage Reference ..........................................................................................................................................................158  
Datasheet  
31-Aug-2021  
Revision 3.4  
3 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
17.1 Voltage Reference Overview ...........................................................................................................................158  
17.2 Vref Selection Table .........................................................................................................................................158  
17.3 Mode Selection ................................................................................................................................................159  
17.4 Vref Block Diagram ..........................................................................................................................................160  
17.5 Vref Load Regulation .......................................................................................................................................161  
18 Clocking ..........................................................................................................................................................................163  
18.1 OSC General description .................................................................................................................................163  
18.2 Oscillator0 (2.048 kHz) .....................................................................................................................................164  
18.3 Oscillator1 (25 MHz) ........................................................................................................................................164  
18.4 CNT/DLY Clock Scheme ..................................................................................................................................165  
18.5 PWM Clock Scheme ........................................................................................................................................165  
18.6 External Clocking .............................................................................................................................................166  
18.7 Oscillators Power-On Delay .............................................................................................................................167  
18.8 Oscillators Accuracy .........................................................................................................................................168  
18.9 Oscillators Settling Time ..................................................................................................................................170  
18.10 Oscillators Current Consumption ...................................................................................................................171  
19 Low Power Bandgap (LP_BG) .......................................................................................................................................175  
20 Power-On Reset ..............................................................................................................................................................176  
20.1 General Operation ............................................................................................................................................176  
20.2 POR Sequence ................................................................................................................................................177  
20.3 Macrocells Output States During POR Sequence ...........................................................................................178  
21 I2C Serial Communications Macrocell ..........................................................................................................................180  
21.1 I2C Serial Communications Macrocell Overview ..............................................................................................180  
21.2 I2C Serial Communications Device Addressing ...............................................................................................180  
21.3 I2C Serial General Timing ................................................................................................................................181  
21.4 I2C Serial Communications Commands ...........................................................................................................181  
21.5 I2C Serial Command Register Map ..................................................................................................................184  
22 Analog Temperature Sensor .........................................................................................................................................188  
23 Register Definitions .......................................................................................................................................................190  
23.1 Register Map ....................................................................................................................................................190  
24 Package Top Marking Definitions .................................................................................................................................241  
24.1 STQFN 20L 2 mm x 3 mm 0.4P FCD Green ...................................................................................................241  
25 Package Information ......................................................................................................................................................242  
25.1 Package Outlines for STQFN 20L 2 mm x 3 mm 0.4P FCD Green Package ..................................................242  
25.2 Moisture Sensitivity Level .................................................................................................................................243  
25.3 Soldering Information .......................................................................................................................................243  
26 Ordering Information .....................................................................................................................................................243  
26.1 Tape and Reel Specifications ..........................................................................................................................243  
26.2 Carrier Tape Drawing and Dimensions ............................................................................................................243  
27 Thermal Guidelines ........................................................................................................................................................245  
28 Layout consideration .....................................................................................................................................................246  
29 Layout Guidelines ..........................................................................................................................................................248  
29.1 STQFN 20L 2 mm x 3.0 mm x 0.55 mm 0.4P FCD Package ...........................................................................248  
Glossary................................................................................................................................................................................249  
Revision History...................................................................................................................................................................252  
Datasheet  
31-Aug-2021  
Revision 3.4  
4 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Figures  
Figure 1: Block Diagram...........................................................................................................................................................10  
Figure 2: Steps to Create a Custom GreenPAK Device...........................................................................................................38  
Figure 3: GPI Structure Diagram..............................................................................................................................................42  
Figure 4: GPIO with I2C Mode Structure Diagram ...................................................................................................................43  
Figure 5: GPIO Matrix OE IO Structure Diagram .....................................................................................................................45  
Figure 6: HV GPO Matrix OE IO Structure Diagram (for HV GPOs 0 and 1)...........................................................................46  
Figure 7: HV GPO Matrix OE IO Structure Diagram (for HV GPOs 2 and 3)...........................................................................47  
Figure 8: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C.......................................................48  
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range......................48  
Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C .......................................49  
Figure 11: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range....................49  
Figure 12: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C .......................................50  
Figure 13: HV OUT Block Diagram..........................................................................................................................................52  
Figure 14: Full Bridge Mode Operation....................................................................................................................................53  
Figure 15: Drive and Decay Modes..........................................................................................................................................55  
Figure 16: Half Bridge Mode Operation....................................................................................................................................56  
Figure 17: Parallel Connection of HV GPOs for Full Bridge Mode...........................................................................................57  
Figure 18: Overcurrent Protection Operation...........................................................................................................................59  
Figure 19: Full Bridge Typical Drain-Source High Side On-Resistance vs. Load Current at VDD = 5.5 V, VDD2 = 5 V............60  
Figure 20: Full Bridge Typical Drain-Source Low Side On-Resistance vs. Load Current at VDD = 5.5 V, VDD2 = 5 V ............60  
Figure 21: Full Bridge Typical Drain-Source High Side On-Resistance vs. Temperature at ILOAD = 0.5 A, VDD = 2.3 V ........61  
Figure 22: Full Bridge Typical Drain-Source High Side On-Resistance vs. Temperature at ILOAD = 0.5 A, VDD = 5.5 V ........61  
Figure 23: Full Bridge Typical Drain-Source Low Side On-Resistance vs. Temperature at ILOAD = 0.5 A, VDD = 2.3 V .........62  
Figure 24: Full Bridge Typical Drain-Source Low Side On-Resistance vs. Temperature at ILOAD = 0.5 A, VDD = 5.5 V .........62  
Figure 25: Full Bridge Typical Drain-Source On-Resistance vs. VDD2 at VDD = 5.5 V, ILOAD = 0.1 A......................................63  
Figure 26: Half Bridge Under-voltage Lockout Value vs. Temperature at VDD = 3.3 V............................................................63  
Figure 27: Full Bridge High Side OCP Threshold Distribution at VDD=2.3V to 5.5V, VDD2=3V to 13.2V, TJ=-40 °C to 150°C 64  
Figure 28: Full Bridge Low Side OCP Threshold Distribution at VDD=2.3V to 5.5V, VDD2= 3V to 13.2V, TJ= -40°C to 150°C 64  
Figure 29: Full Bridge OCP Threshold vs. VDD2 at VDD = 5.5 V...............................................................................................65  
Figure 30: Half Bridge Dead Band Time vs. VDD2 at VDD = 2.3 V to 5.5 V, f = 50 kHz for Pre-Driver Mode ...........................65  
Figure 31: Half Bridge Dead Band Time vs. VDD2 at VDD = 2.3 V to 5.5 V, f = 50 kHz for Regular Mode ...............................66  
Figure 32: Half Bridge Output Transition Time vs. VDD2 at VDD = 2.3 V to 5.5 V, f = 50 kHz for Pre-Driver Mode..................66  
Figure 33: Half Bridge Output Transition Time vs. VDD2 at VDD = 2.3 V to 5.5 V, f = 50 kHz for Regular Mode......................67  
Figure 34: One Half Bridge IDD2 vs. VDD2 at VDD = 5.5 V ........................................................................................................67  
Figure 35: All Four Half Bridges IDD2 vs. VDD2 at VDD = 5.5 V.................................................................................................68  
Figure 36: Two Full Bridges + One CCMP IDD2 vs. VDD2 at VDD = 5.5 V ................................................................................68  
Figure 37: One Full Bridge + Integrator + PWM + OSC1 IDD2 vs. VDD2 at VDD = 5.5 V ..........................................................69  
Figure 38: Differential Amplifier with Integrator Block Diagram................................................................................................71  
Figure 39: Typical Load Regulation at VOUT = 4.096 V, VDD = 2.3 V to 5.5 V, VDD2 = 5 V .....................................................71  
Figure 40: Typical Load Regulation at VOUT = 4.096 V, VDD = 2.3 V to 5.5 V, VDD2 = 9 V .....................................................72  
Figure 41: Current Sense Comparator0 Block Diagram...........................................................................................................73  
Figure 42: Current Sense Comparator1 Block Diagram...........................................................................................................74  
Figure 43: Input Offset Voltage Error vs. Vref for CCMPx (including Amplifier Offset and ACMP Offset) ...............................75  
Figure 44: Typical Propagation Delay vs. Vref for CCMPx at T = 25 °C, at VDD = 2.3 V to 5.5 V, Gain = 4............................75  
Figure 45: CCMPx Power-On Delay vs. VDD (BG is Forced On).............................................................................................76  
Figure 46: Connection Matrix...................................................................................................................................................77  
Figure 47: Connection Matrix Example....................................................................................................................................77  
Figure 48: 2-bit LUT0 or DFF0.................................................................................................................................................84  
Figure 49: 2-bit LUT1 or DFF1.................................................................................................................................................85  
Figure 50: 2-bit LUT2 or DFF2.................................................................................................................................................85  
Figure 51: DFF Polarity Operations..........................................................................................................................................87  
Figure 52: 2-bit LUT3 or PGen.................................................................................................................................................88  
Figure 53: PGen Timing Diagram.............................................................................................................................................88  
Figure 54: 3-bit LUT0 or DFF3.................................................................................................................................................90  
Figure 55: 3-bit LUT3 or DFF6.................................................................................................................................................91  
Datasheet  
31-Aug-2021  
Revision 3.4  
5 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Figure 56: 3-bit LUT4 or DFF7.................................................................................................................................................91  
Figure 57: 3-bit LUT5 or DFF8.................................................................................................................................................92  
Figure 58: DFF Polarity Operations with nReset......................................................................................................................94  
Figure 59: DFF Polarity Operations with nSet..........................................................................................................................95  
Figure 60: 3-bit LUT1 or DFF4.................................................................................................................................................96  
Figure 61: 3-bit LUT2 or DFF5.................................................................................................................................................96  
Figure 62: PWM Chopper Circuit Example ..............................................................................................................................98  
Figure 63: PWM Chopper Interconnection...............................................................................................................................98  
Figure 64: PWM Chopper. Overcurrent Timing Diagram.........................................................................................................99  
Figure 65: PWM Chopper. Overcurrent Start During Blanking Time........................................................................................99  
Figure 66: PWM Chopper. PWM Duty Cycle is Less than Blanking Time ...............................................................................99  
Figure 67: PWM Chopper. 0% Duty Cycle.............................................................................................................................100  
Figure 68: PWM Chopper. Overcurrent when 100 % Duty Cycle ..........................................................................................100  
Figure 69: DFF Polarity Operations with nReset....................................................................................................................101  
Figure 70: DFF Polarity Operations with nSet........................................................................................................................102  
Figure 71: 3-bit LUT6/Pipe Delay/Ripple Counter..................................................................................................................104  
Figure 72: Example of Ripple Counter Functionality..............................................................................................................105  
Figure 73: 4-bit LUT0 or DFF9...............................................................................................................................................107  
Figure 74: Possible Connections Inside Multi-Function Macrocell.........................................................................................109  
Figure 75: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT7/DFF10, CNT/DLY1) .................................................111  
Figure 76: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT8/DFF11, CNT/DLY2) .................................................112  
Figure 77: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF12, CNT/DLY3) .................................................113  
Figure 78: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF13, CNT/DLY4) ...............................................114  
Figure 79: 16-bit Multi-Function Macrocell Block Diagram (4-bit LUT1/DFF14, CNT/DLY/FSM0).........................................117  
Figure 80: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3 ......................................................................119  
Figure 81: Delay Mode Timing Diagram for Different Edge Select Modes.............................................................................120  
Figure 82: Counter Mode Timing Diagram without Two DFFs Synced Up ............................................................................120  
Figure 83: Counter Mode Timing Diagram with Two DFFs Synced Up .................................................................................121  
Figure 84: One-Shot Function Timing Diagram......................................................................................................................122  
Figure 85: Frequency Detection Mode Timing Diagram.........................................................................................................123  
Figure 86: Edge Detection Mode Timing Diagram.................................................................................................................124  
Figure 87: Delayed Edge Detection Mode Timing Diagram...................................................................................................125  
Figure 88: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3...126  
Figure 89: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3 .......126  
Figure 90: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3...127  
Figure 91: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator Is Forced On, UP = 1) for Counter Data = 3.......127  
Figure 92: Counter Value, Counter Data = 3..........................................................................................................................128  
Figure 93: Wake/Sleep Controller..........................................................................................................................................129  
Figure 94: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Reset is Used ........................................................129  
Figure 95: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used ...........................................................130  
Figure 96: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Set is Used ............................................................130  
Figure 97: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Set is Used ...............................................................131  
Figure 98: PWM Output Waveforms and Test Circuit Example for Driving NMOS FETs ......................................................135  
Figure 99: PWM Output Waveforms and Test Circuit Example for Driving NMOS and PMOS FETs....................................135  
Figure 100: PWM Output Waveforms for Phase Correct PWM Mode ...................................................................................136  
Figure 101: Power-Down with SYNC On/Off = 1 and Dead Band = 0 CLK ...........................................................................137  
Figure 102: Power-Down with SYNC On/Off = 1 and Dead Band = 1 to 3 CLK ....................................................................138  
Figure 103: Power-Down with SYNC On/Off = 0 and Dead Band = 0 CLK ...........................................................................139  
Figure 104: Power-Down with SYNC On/Off = 0 and Dead Band = 1 to 3 CLK ....................................................................140  
Figure 105: Example of PWM Auto Oscillator Control ...........................................................................................................143  
Figure 106: Phase Correct PWM Mode .................................................................................................................................144  
Figure 107: PWM Period Waveform.......................................................................................................................................144  
Figure 108: PWM0 Functional Diagram.................................................................................................................................145  
Figure 109: PWM1 Functional Diagram.................................................................................................................................146  
Figure 110: ACMP0H Block Diagram.....................................................................................................................................151  
Figure 111: ACMP1H Block Diagram.....................................................................................................................................152  
Figure 112: ACMPxH Input Offset Voltage vs. Vref at VDD = 2.3 V to 5.5 V, T = -40 °C to 85 °C .........................................153  
Datasheet  
31-Aug-2021  
Revision 3.4  
6 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Figure 113: Propagation Delay vs. Vref for ACMPxH at T = 25 °C, at VDD = 2.3 V to 5.5 V, Gain = 1, Hysteresis = 0.........153  
Figure 114: ACMPxH Power-On Delay vs. VDD....................................................................................................................................................154  
Figure 115: ACMPxH Current Consumption vs. VDD at Vref = 32 mV...................................................................................154  
Figure 116: ACMPxH Current Consumption vs. VDD at Vref = 1024 mV...............................................................................155  
Figure 117: ACMPxH Current Consumption vs. VDD at Vref = 2016 mV...............................................................................155  
Figure 118: Programmable Delay ..........................................................................................................................................156  
Figure 119: Edge Detector Output.........................................................................................................................................156  
Figure 120: Deglitch Filter/Edge Detector..............................................................................................................................157  
Figure 121: Voltage Reference Block Diagram......................................................................................................................160  
Figure 122: Typical Load Regulation, Vref = 320 mV, T = -40 °C to +85 °C, Buffer - Enabled..............................................161  
Figure 123: Typical Load Regulation, Vref = 640 mV, T = -40 °C to +85 °C, Buffer - Enabled..............................................161  
Figure 124: Typical Load Regulation, Vref = 1280 mV, T = -40 °C to +85 °C, Buffer - Enabled............................................162  
Figure 125: Typical Load Regulation, Vref = 2016 mV, T = -40 °C to +85 °C, Buffer - Enabled............................................162  
Figure 126: Oscillator0 Block Diagram...................................................................................................................................164  
Figure 127: Oscillator1 Block Diagram...................................................................................................................................164  
Figure 128: Clock Scheme.....................................................................................................................................................165  
Figure 129: PWM Clock Scheme...........................................................................................................................................165  
Figure 130: Oscillator Startup Diagram..................................................................................................................................167  
Figure 131: Oscillator0 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2.048 kHz .............................................167  
Figure 132: Oscillator1 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 25 MHz .................................................168  
Figure 133: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz..............................................................................168  
Figure 134: Oscillator1 Frequency vs. Temperature, OSC1 = 25 MHz .................................................................................169  
Figure 135: Oscillators Total Error vs. Temperature..............................................................................................................169  
Figure 136: Oscillator0 Settling Time, VDD = 3.3 V, T = 25 °C, OSC0 = 2 kHz .....................................................................170  
Figure 137: Oscillator1 Settling Time, VDD = 3.3 V, T = 25 °C, OSC1 = 25 MHz (Normal Start)...........................................170  
Figure 138: Oscillator1 Settling Time, VDD = 3.3 V, T = 25 °C, OSC1 = 25 MHz (Start with Delay)......................................171  
Figure 139: OSC0 Current Consumption vs. VDD (All Pre-Dividers)......................................................................................171  
Figure 140: OSC1 Current Consumption vs. VDD (Pre-Divider = 1).......................................................................................172  
Figure 141: OSC1 Current Consumption vs. VDD (Pre-Divider = 2).......................................................................................172  
Figure 142: OSC1 Current Consumption vs. VDD (Pre-Divider = 4).......................................................................................173  
Figure 143: OSC1 Current Consumption vs. VDD (Pre-Divider = 8).......................................................................................173  
Figure 144: OSC1 Current Consumption vs. VDD (Pre-Divider = 12).....................................................................................174  
Figure 145: POR Sequence...................................................................................................................................................177  
Figure 146: Internal Macrocell States During POR Sequence...............................................................................................178  
Figure 147: Power-Down .......................................................................................................................................................179  
Figure 148: Basic Command Structure..................................................................................................................................181  
Figure 149: I2C General Timing Characteristics ....................................................................................................................181  
Figure 150: Byte Write Command, R/W = 0...........................................................................................................................182  
Figure 151: Sequential Write Command................................................................................................................................182  
Figure 152: Current Address Read Command, R/W = 1 .......................................................................................................183  
Figure 153: Random Read Command...................................................................................................................................183  
Figure 154: Sequential Read Command................................................................................................................................183  
Figure 155: Reset Command Timing .....................................................................................................................................185  
Figure 156: Example of I2C Byte Write Bit Masking ..............................................................................................................187  
Figure 157: Analog Temperature Sensor Structure Diagram.................................................................................................188  
Figure 158: TS Output vs. Temperature, VDD = 2.3 V to 5.5 V..............................................................................................189  
Figure 159: STQFN 20L 2x3mm 0.4P FCD Package ............................................................................................................242  
Figure 160: Die Temperature when HV OUTs are Active.......................................................................................................245  
Figure 161: Typical Application Circuit ...................................................................................................................................246  
Figure 162: PCB Layout Example..........................................................................................................................................247  
Datasheet  
31-Aug-2021  
Revision 3.4  
7 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Tables  
Table 1: Pin Description...........................................................................................................................................................11  
Table 2: Pin Type Definitions ...................................................................................................................................................12  
Table 3: Absolute Maximum Ratings........................................................................................................................................13  
Table 4: Electrostatic Discharge Ratings .................................................................................................................................13  
Table 5: Recommended Operating Conditions........................................................................................................................14  
Table 6: Recommended Operating Conditions........................................................................................................................14  
Table 7: EC at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted...............................................................14  
Table 8: EC of the I2C Pins for Digital Input Mode at T = -40 °C to +150 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted.19  
Table 9: EC of the I2C Pins for Low-Level Input Mode at T= -40°C to +150°C, VDD = 2.3V to 5.5V Unless Otherwise Noted20  
Table 10: I2C Pins Timing Characteristics, DI Mode, T = -40 °C to +150 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted.20  
Table 11: I2C Pins Timing Characteristics, DILV Mode, T = -40°C to +150°C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted21  
Table 12: Typical Current Estimated for Each Macrocell at T = 25 °C.....................................................................................22  
Table 13: HV Output Electrical Characteristic (Full Bridge or Half Bridge Modes)...................................................................23  
Table 14: HV Output Electrical Characteristic (Pre-driver Mode).............................................................................................25  
Table 15: Protection Circuits....................................................................................................................................................27  
Table 16: Typical Startup Estimated for Chip at T = 25 °C ......................................................................................................28  
Table 17: Typical Delay Estimated for Each Macrocell at T = 25 °C........................................................................................28  
Table 18: Programmable Delay Expected Typical Delays and Widths at T = 25 °C................................................................29  
Table 19: Typical Filter Rejection Pulse Width at T = 25 °C ....................................................................................................29  
Table 20: LP_BG Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V.......................................................................30  
Table 21: Typical Counter/Delay Offset at T = 25 C ................................................................................................................30  
Table 22: OSC0 Frequency Limits, VDD = 2.3 V to 5.5 V.........................................................................................................30  
Table 23: OSC1 Frequency Limits, VDD = 2.3 V to 5.5 V.........................................................................................................30  
Table 24: Oscillators Power-On Delay at T = 25 °C, OSC Power Setting: "Auto Power-On" ..................................................31  
Table 25: Current Sense Comparator Specifications at T = -40 °C to +85 °C, VDD = 2.3 to 5.5 V Unless Otherwise Noted...31  
Table 26: Differential Amplifier Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted..........33  
Table 27: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted................................34  
Table 28: TS Output vs Temperature (Output Range 1) ..........................................................................................................36  
Table 29: TS Output vs Temperature (Output Range 2) ..........................................................................................................36  
Table 30: ESD Resistors Value................................................................................................................................................41  
Table 31: GPIO2 Mode Selection.............................................................................................................................................44  
Table 32: GPIO3 Mode Selection.............................................................................................................................................44  
Table 33: HV OUT CTRL0 Full Bridge Logic for IN-IN Mode...................................................................................................53  
Table 34: HV OUT CTRL1 Full Bridge Logic for IN-IN Mode...................................................................................................53  
Table 35: HV OUT CTRL0 Full Bridge Logic for PH-EN Mode................................................................................................54  
Table 36: HV OUT CTRL1 Full Bridge Logic for PH-EN Mode................................................................................................54  
Table 37: PWM Control of Motor Speed (IN-IN Mode).............................................................................................................54  
Table 38: PWM Control of Motor Speed (PH-EN Mode)..........................................................................................................54  
Table 39: HV_GPO0_HD Half Bridge Logic.............................................................................................................................56  
Table 40: HV_GPO1_HD Half Bridge Logic.............................................................................................................................56  
Table 41: HV_GPO2_HD Half Bridge Logic.............................................................................................................................56  
Table 42: HV_GPO3_HD Half Bridge Logic.............................................................................................................................57  
Table 43: Matrix Input Table.....................................................................................................................................................78  
Table 44: Matrix Output Table..................................................................................................................................................80  
Table 45: Connection Matrix Virtual Inputs ..............................................................................................................................83  
Table 46: 2-bit LUT0 Truth Table.............................................................................................................................................86  
Table 47: 2-bit LUT1 Truth Table.............................................................................................................................................86  
Table 48: 2-bit LUT2 Truth Table.............................................................................................................................................86  
Table 49: 2-bit LUT Standard Digital Functions .......................................................................................................................86  
Table 50: 2-bit LUT1 Truth Table.............................................................................................................................................89  
Table 51: 2-bit LUT Standard Digital Functions .......................................................................................................................89  
Table 52: 3-bit LUT0 Truth Table.............................................................................................................................................93  
Table 53: 3-bit LUT4 Truth Table.............................................................................................................................................93  
Table 54: 3-bit LUT3 Truth Table.............................................................................................................................................93  
Table 55: 3-bit LUT5 Truth Table.............................................................................................................................................93  
Table 56: 3-bit LUT Standard Digital Functions .......................................................................................................................93  
Table 57: 3-bit LUT1 Truth Table.............................................................................................................................................97  
Table 58: 3-bit LUT2 Truth Table.............................................................................................................................................97  
Table 59: 3-bit LUT Standard Digital Functions .......................................................................................................................97  
Table 60: 3-bit LUT6 Truth Table...........................................................................................................................................106  
Table 61: 4-bit LUT0 Truth Table...........................................................................................................................................108  
Datasheet  
31-Aug-2021  
Revision 3.4  
8 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 62: 4-bit LUT Standard Digital Functions .....................................................................................................................108  
Table 63: 3-bit LUT7 Truth Table...........................................................................................................................................115  
Table 64: 3-bit LUT9 Truth Table...........................................................................................................................................115  
Table 65: 3-bit LUT8 Truth Table...........................................................................................................................................115  
Table 66: 3-bit LUT10 Truth Table.........................................................................................................................................115  
Table 67: 4-bit LUT1 Truth Table...........................................................................................................................................118  
Table 68: 4-bit LUT Standard Digital Functions .....................................................................................................................118  
Table 69: Regular/Preset Mode Registers.............................................................................................................................141  
Table 70: Conditions for Disabling/Enabling an Internal Oscillator ........................................................................................141  
Table 71: PWM0 Register Settings........................................................................................................................................146  
Table 72: PWM1 Register Settings........................................................................................................................................147  
Table 73: Vref Selection Table...............................................................................................................................................158  
Table 74: Mode Selection Table.............................................................................................................................................159  
Table 75: Oscillator Operation Mode Configuration Settings.................................................................................................163  
Table 76: Read/Write Protection Options...............................................................................................................................184  
Table 77: Register Map..........................................................................................................................................................190  
Table 78: MSL Classification..................................................................................................................................................243  
Table 79: Ordering Information ..............................................................................................................................................243  
Datasheet  
31-Aug-2021  
Revision 3.4  
9 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
1
Block Diagram  
Filter  
I2C Serial  
Multi-Function Macrocells  
VDD  
GPI  
VDD2_A  
OTP  
POR  
with Edge  
Detector  
Communication  
3-bit  
LUT3_7/  
3-bit  
LUT3_8/  
DFF10+8bit  
CNT/DLY1  
DFF11+8bit  
CNT/DLY2  
Programmable  
Delay with  
Edge Detector  
VDD2_B  
Temperature  
Sensor  
Oscillators  
3-bit  
3-bit  
LUT3_9/  
LUT3_10/  
DFF13+8bit  
CNT/DLY4  
DFF12+8bit  
CNT/DLY3  
2.048kHz  
25MHz  
SENSE_A  
SENSE_B  
High Speed Analog  
GPIO0  
GPIO1  
4-bit  
LUT4_1 /  
DFF14+16bit  
CNT/DLY0  
PWM Macrocells  
ACMP0H  
ACMP1H  
8-bit  
PWM1  
8-bit  
PWM0  
Charge  
Pump  
HV_GPO0_HD  
OCP  
LS  
LS  
LS  
LS  
SCL/  
GPIO2  
High  
Speed  
Vref  
Combination Function Macrocells  
Charge  
Pump  
HV_GPO1_HD  
OCP  
SDA/  
GPIO3  
2-bit  
LUT2_0  
or DFF0  
2-bit  
LUT2_1  
or DFF1  
2-bit  
LUT2_2  
or DFF2  
HV GPO Control  
Analog  
GPIO4  
GPIO5  
Charge  
Pump  
HV_GPO2_HD  
OCP  
Current  
Sense  
Comp0  
2-bit  
LUT2_3  
or PGen  
3-bit  
LUT3_0  
or DFF3  
3-bit LUT3_1  
or DFF4/  
PWM Chop0  
Charge  
Pump  
HV_GPO3_HD  
OCP  
Diff Amp +  
Integrator  
3-bit  
LUT3_4  
or DFF7  
3-bit  
LUT3_3  
or DFF6  
3-bit LUT3_2  
or DFF5/  
PWM Chop1  
GPIO6  
GND  
Current  
Sense  
Comp1  
GND_HV  
GND_HV  
3-bit  
LUT3_6  
or PD/  
4-bit  
LUT4_0  
or DFF9  
3-bit  
LUT3_5  
or DFF8  
Ripple CNT  
Figure 1: Block Diagram  
Datasheet  
31-Aug-2021  
Revision 3.4  
10 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
2
Pinout  
2.1 PIN CONFIGURATION - STQFN- 20L  
Table 1: Pin Description  
Pin # Signal Name Pin Functions  
1
2
VDD  
Power Supply 2.5 V – 5.0 V  
Matrix OE GPIO, Vref OUT, Diff Amp Vset Input,  
TS _OUT  
GPIO0  
3
4
GPI  
GPI, EXT_Vref0, SLA_0  
Analog Ground  
18 17  
20 19  
GND_HV  
SDA/GPIO3  
SCL/GPIO2  
GPIO1  
VDD  
GPIO0  
1
2
3
16  
15  
14  
Winding A Sense, relate to HV_GPO0_HD,  
HV_GPO1_HD  
5
SENSE_A  
GND  
6
7
8
9
V
High Voltage Power Supply 3.3 V - 12.0 V (Note )  
DD2_A  
GPI  
HV_GPO0_HD HV_GPO_HD  
HV_GPO1_HD HV_GPO_HD  
HV_GPO2_HD HV_GPO_HD  
GND_HV  
GND_HV  
SENSE_A  
VDD2_A  
13 GND_HV  
4
5
12  
SENSE_B  
10 HV_GPO3_HD HV_GPO_HD  
6
11  
11  
12  
13  
14  
V
High Voltage Power Supply 3.3 V - 12.0 V (Note )  
DD2_B  
VDD2_B  
Winding B Sense, relate to HV_GPO2_HD,  
HV_GPO3_HD  
7
8
9
10  
SENSE_B  
GND_HV  
GPIO1  
Analog Ground  
Matrix OE GPIO, SLA_1, EXT_CLK for OSC0 or  
Current Sense CMP0 EXT_Vref  
15  
16  
SCL/GPIO2 SCL, GPIO  
SDA/GPIO3 SDA, GPIO  
Matrix OE GPIO, EXT_Vref1, SLA_2, EXT_CLK  
for OSC1 or Current Sense CMP1 EXT_Vref  
17  
GPIO4  
18  
19  
20  
GND  
General Ground  
GPIO5  
GPIO6  
Matrix OE GPIO, ACMP0_H  
STQFN-20L  
(Top View)  
Matrix OE GPIO, SLA_3, ACMP1_H  
Legend:  
ACMP: Analog Comparator  
CMP: Comparator  
Diff Amp: Differential Amplifier  
GPI: General Purpose Input  
GPO: General Purpose Output  
GPIO: General Purpose Input/Output  
HD: High Current Drive  
HV: High Voltage  
SCL: I2C Clock Input  
SDA: I2C Data Input/Output  
SLA_x: Slave Address  
Vrefx: Voltage Reference Output  
TS_OUT: Temperature Sensor Output  
EXT: External  
CLK: Clock  
Datasheet  
31-Aug-2021  
Revision 3.4  
11 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 2: Pin Type Definitions  
Pin Type  
VDD  
Description  
Power Supply  
GPIO  
General Purpose Input/Output  
General Purpose Input  
High Voltage General Purpose Output High Current Drive  
I2C Serial Clock Input  
GPI  
HV_GPO_HD  
SCL  
SDA  
I2C Serial Data Input/Output  
GND  
General Ground  
GND_X  
SENSE_X  
VDD2_X  
Analog Ground  
Current Sense Pin  
High Voltage Power Supply  
Datasheet  
31-Aug-2021  
Revision 3.4  
12 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
3
Characteristics  
3.1 ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational  
sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect  
device reliability.  
Table 3: Absolute Maximum Ratings  
Parameter  
Description  
Condition  
Min  
-0.3  
Max  
7.0  
Unit  
V
Supply voltage on VDD relative to GND  
Supply voltage on VDD2 relative to GND  
DC Input Voltage  
-0.3  
18  
V
GND - 0.5 V  
V
DD + 0.5 V  
V
(Through VDD or  
GND pin) for VDD  
group  
Maximum VDD Average or DC Current  
--  
--  
120  
mA  
mA  
(Through each  
VDD2_A, VDD2_B,  
SENSE_A or  
Maximum VDD2 or Sense Average or DC  
Current  
2000  
SENSE_B pin)  
Push-Pull 1x  
--  
--  
--  
--  
--  
--  
--  
--  
11  
16  
Maximum Average  
Through VDD Group  
pins  
Push-Pull 2x  
OD 1x  
or  
TJ = -40 °C to 85 °C  
TJ = -40 °C to 150 °C  
mA  
DC Current (VDD  
power supply)  
11  
OD 2x  
21  
Push-Pull 1x  
Push-Pull 2x  
OD 1x  
3.8  
7.6  
3.8  
7.6  
Maximum Average  
or  
DC Current (VDD  
power supply)  
Through VDD Group  
pins  
mA  
mA  
OD 2x  
Maximum Average  
or DC Current  
(VDD2 power  
Push-Pull/  
Half Bridge  
Through VDD2 High  
Current Group pins  
--  
1500  
supply)  
Internally  
limited by  
OCP  
Maximum pulsed current sink/sourced  
per HV HD pin  
Pulsewidth<0.5ms;  
duty cycle < 2 %  
--  
mA  
mA  
Through VDD Group  
pin  
Current at Input Pin  
-0.1  
1.0  
Input Leakage Current (Absolute Value)  
Storage Temperature Range  
Junction Temperature  
--  
-65  
--  
1000  
150  
nA  
°C  
°C  
150  
Moisture Sensitivity Level  
1
3.2 ELECTROSTATIC DISCHARGE RATINGS  
Table 4: Electrostatic Discharge Ratings  
Parameter  
Min  
4000  
1300  
Max  
--  
Unit  
V
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model)  
--  
V
Datasheet  
31-Aug-2021  
Revision 3.4  
13 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
3.3 RECOMMENDED OPERATING CONDITIONS  
Table 5: Recommended Operating Conditions  
Parameter  
Condition  
Min  
2.3  
3.0  
-40  
-40  
Typ  
3.3  
12.0  
25  
Max  
5.5  
13.2  
85  
Unit  
V
Supply Voltage (VDD  
)
High Supply Voltage (VDD2  
)
V
Operating Ambient Temperature (TA)  
Junction Temperature Range (TJ)  
Capacitor Value at VDD  
°C  
°C  
µF  
(Note )  
--  
150  
--  
0.1  
Allowable Input Voltage at  
Analog Pins  
VDD or VDD2  
(Note 1)  
Analog Input Common Mode Range  
0
--  
V
Note 1 VDD for GPI, GPIO4, GPIO5, GPIO6 and VDD2 for HV GPO0 and HV GPO1  
3.4 THERMAL INFORMATION  
Table 6: Recommended Operating Conditions  
Parame-  
ter  
Description  
Condition  
Min  
Typ  
Max  
Unit  
θJA  
Thermal Resistance  
4L JEDEC PCB  
--  
--  
65  
°C/W  
4L JEDEC PCB with a thermal vias  
that connect thermal pad through all  
layers of the PCB  
θJA  
Thermal Resistance  
--  
--  
46  
°C/W  
Junction-to-case (top)  
Thermal Resistance  
θJC(top)  
θJB  
--  
--  
23.50  
25.51  
--  
--  
°C/W  
°C/W  
Junction-to-board  
Thermal Resistance  
Junction-to-case (top)  
ψJC(top) Characterization  
--  
--  
6.80  
--  
--  
°C/W  
°C/W  
Parameter  
Junction-to-board  
Characterization  
Parameter  
ψJB  
24.44  
3.5 ELECTRICAL CHARACTERISTICS  
Table 7: EC at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
0.7x  
VDD  
VDD  
0.3  
+
Logic Input (Note 1)  
--  
V
HIGH-Level Input Voltage for  
VDD group (Note 3)  
0.8x  
VDD  
VDD  
0.3  
+
VIH  
Logic Input with Schmitt Trigger  
Low-Level Logic Input (Note 1)  
Logic Input (Note 1)  
--  
--  
--  
--  
--  
V
V
V
V
V
VDD  
0.3  
+
1.25  
GND-  
0.3  
0.3x  
VDD  
LOW-Level Input Voltage for  
GND-  
0.3  
0.2x  
VDD  
VIL  
Logic Input with Schmitt Trigger  
Low-Level Logic Input (Note 1)  
V
DD group (Note 3)  
GND-  
0.3  
0.5  
Datasheet  
31-Aug-2021  
Revision 3.4  
14 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 7: EC at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 1x Drive,  
VDD = 2.5 V ± 8 %, IOH = 1 mA  
2.07  
--  
--  
V
Push-Pull, 1x Drive,  
VDD = 3.3 V ± 10 %, IOH = 3 mA  
2.54  
3.95  
2.13  
2.69  
4.11  
2.05  
2.49  
3.90  
2.12  
2.67  
4.09  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Push-Pull, 1x Drive,  
VDD = 5 V ± 10 %, IOH = 5 mA  
HIGH-Level Output Voltage  
for VDD Group  
TJ = -40 °C to 85 °C  
Push-Pull, 2x Drive,  
VDD = 2.5 V ± 8 %, IOH = 1 mA  
--  
Push-Pull, 2x Drive,  
VDD = 3.3 V ± 10 %, IOH = 3 mA  
--  
Push-Pull, 2x Drive,  
VDD = 5 V ± 10 %, IOH = 5 mA  
--  
VOH  
Push-Pull, 1x Drive,  
--  
V
DD = 2.5 V ± 8 %, IOH = 1 mA  
Push-Pull, 1x Drive,  
DD = 3.3 V ± 10 %, IOH = 3 mA  
--  
V
HIGH-Level Output Voltage  
for VDD Group  
Push-Pull, 1x Drive,  
VDD = 5 V ± 10 %, IOH = 5 mA  
--  
TJ = -40 °C to 150 °C  
Push-Pull, 2x Drive,  
VDD = 2.5 V ± 8 %, IOH = 1 mA  
--  
Push-Pull, 2x Drive,  
--  
V
DD = 3.3 V ± 10 %, IOH = 3 mA  
Push-Pull, 2x Drive,  
VDD = 5 V ± 10 %, IOH = 5 mA  
--  
Push-Pull, 1x Drive,  
VDD = 2.5 V ± 8 %, IOL= 1 mA  
0.08  
0.18  
0.21  
0.04  
0.09  
0.11  
0.030  
0.068  
0.083  
0.014  
Push-Pull, 1x Drive,  
--  
V
DD = 3.3 V ± 10 %, IOL = 3 mA  
Push-Pull, 1x Drive,  
VDD = 5 V ± 10 %, IOL= 5 mA  
--  
Push-Pull, 2x Drive,  
VDD = 2.5 V ± 8 %, IOL = 1 mA  
--  
Push-Pull, 2x Drive,  
VDD = 3.3 V ± 10 %, IOL= 3 mA  
--  
LOW-Level Output Voltage  
for VDD Group  
VOL  
Push-Pull, 2x Drive,  
VDD = 5 V ± 10 %, IOL = 5 mA  
TJ = -40 °C to 85 °C  
--  
NMOS OD, 1x Drive,  
VDD = 2.5 V ± 8 %, IOL = 1 mA  
--  
NMOS OD, 1x Drive,  
VDD = 3.3 V ± 10 %, IOL = 3 mA  
--  
NMOS OD, 1x Drive,  
VDD = 5 V ± 10 %, IOL = 5 mA  
--  
NMOS OD, 2x Drive,  
VDD = 2.5 V ± 8 %, IOL = 1 mA  
--  
Datasheet  
31-Aug-2021  
Revision 3.4  
15 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 7: EC at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
NMOS OD, 2x Drive,  
VDD = 3.3 V ± 10 %, IOL = 3 mA  
--  
--  
0.035  
V
LOW-Level Output Voltage  
for VDD Group  
TJ = -40 °C to 85 °C  
NMOS OD, 2x Drive,  
VDD = 5 V ± 10 %, IOL = 5 mA  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.083  
0.09  
0.21  
0.26  
0.04  
0.11  
0.13  
0.035  
0.082  
0.100  
0.017  
0.042  
0.052  
--  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Push-Pull, 1x Drive,  
VDD = 2.5 V ± 8 %, IOL= 1 mA  
--  
Push-Pull, 1x Drive,  
VDD = 3.3 V ± 10 %, IOL = 3 mA  
--  
Push-Pull, 1x Drive,  
VDD = 5 V ± 10 %, IOL= 5 mA  
--  
Push-Pull, 2x Drive,  
VDD = 2.5 V ± 8 %, IOL = 1 mA  
--  
Push-Pull, 2x Drive,  
VDD = 3.3 V ± 10 %, IOL= 3 mA  
--  
VOL  
Push-Pull, 2x Drive,  
--  
LOW-Level Output Voltage  
for VDD Group  
TJ = -40 °C to 150 °C  
V
DD = 5 V ± 10 %, IOL = 5 mA  
NMOS OD, 1x Drive,  
VDD = 2.5 V ± 8 %, IOL = 1 mA  
--  
NMOS OD, 1x Drive,  
VDD = 3.3 V ± 10 %, IOL = 3 mA  
--  
NMOS OD, 1x Drive,  
--  
V
DD = 5 V ± 10 %, IOL = 5 mA  
NMOS OD, 2x Drive,  
VDD = 2.5 V ± 8 %, IOL = 1 mA  
--  
--  
NMOS OD, 2x Drive,  
VDD = 3.3 V ± 10 %, IOL = 3 mA  
NMOS OD, 2x Drive,  
--  
V
DD = 5 V ± 10 %, IOL = 5 mA  
Push-Pull, VDD2 = 5 V ± 10 %,  
IOH2 = 10 mA  
4.496  
8.097  
10.797  
--  
HIGH-Level Output Voltage  
for VDD2 High Current Group  
Push-Pull, VDD2 = 9 V ± 10 %,  
IOH2 = 10 mA  
VOH2  
--  
Push-Pull, VDD2 = 12 V ± 10 %,  
IOH2 = 10 mA  
--  
Push-Pull, VDD2 = 5 V ± 10 %,  
IOL2 = 10 mA  
0.004  
0.004  
0.004  
LOW-Level Output Voltage  
Push-Pull, VDD2 = 9 V ± 10 %,  
VOL2  
--  
for VDD2 High Current Group IOL2 = 10 mA  
Push-Pull, VDD2 = 12 V ± 10 %,  
IOL2 = 10 mA  
--  
Datasheet  
31-Aug-2021  
Revision 3.4  
16 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 7: EC at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 1x Drive,  
VDD = 2.5 V ± 8 %, VOH = VDD - 0.2  
1.43  
--  
--  
mA  
Push-Pull, 1x Drive,  
VDD = 3.3 V ± 10 %, VOH = 2.4 V  
4.80  
18.60  
2.87  
9.56  
36.83  
1.27  
4.35  
16.70  
2.52  
8.57  
32.99  
1.92  
6.18  
8.98  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
HIGH-Level Output Pulse  
Current (Note 2)  
Push-Pull, 1x Drive,  
VDD = 5 V ± 10 %, VOH = 2.4 V  
Voltage for VDD Group,  
TJ = -40 °C to 85 °C  
Push-Pull, 2x Drive,  
VDD = 2.5 V ± 8 %, VOH = VDD - 0.2  
Push-Pull, 2x Drive,  
VDD = 3.3 V ± 10 %, VOH = 2.4 V  
Push-Pull, 2x Drive,  
VDD = 5 V ± 10 %, VOH = 2.4 V  
IOH  
Push-Pull, 1x Drive,  
VDD = 2.5 V ± 8 %, VOH = VDD - 0.2  
Push-Pull, 1x Drive,  
V
DD = 3.3 V ± 10 %, VOH = 2.4 V  
HIGH-Level Output Pulse  
Current (Note 2)  
Push-Pull, 1x Drive,  
VDD = 5 V ± 10 %, VOH = 2.4 V  
Voltage for VDD Group,  
TJ = -40 °C to 150 °C  
Push-Pull, 2x Drive,  
VDD = 2.5 V ± 8 %, VOH = VDD - 0.2  
Push-Pull, 2x Drive,  
V
DD = 3.3 V ± 10 %, VOH = 2.4 V  
Push-Pull, 2x Drive,  
VDD = 5 V ± 10 %, VOH = 2.4 V  
Push-Pull, 1x Drive, VDD = 2.5 V ± 8 %,  
VOL = 0.15 V  
LOW-Level Output Pulse  
Current (Note 2)  
Push-Pull, 1x Drive, VDD = 3.3 V ± 10 %,  
VOL = 0.4 V  
IOL  
Voltage for VDD Group,  
TJ = -40 °C to 85 °C  
Push-Pull, 1x Drive, VDD = 5.0 V ± 10 %,  
V
OL = 0.4 V  
Datasheet  
31-Aug-2021  
Revision 3.4  
17 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 7: EC at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 2x Drive, VDD = 2.5 V ± 8 %,  
VOL = 0.15 V  
3.82  
--  
--  
mA  
Push-Pull, 2x Drive, VDD = 3.3 V ± 10 %,  
VOL = 0.4 V  
12.25  
17.67  
4.71  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
nA  
Push-Pull, 2x Drive, VDD = 5.0 V ± 10 %,  
VOL = 0.4 V  
NMOS OD, 1x Drive, VDD = 2.5 V ± 8 %,  
VOL = 0.15 V  
--  
--  
LOW-Level Output Pulse  
Current (Note 2)  
NMOS OD, 1x Drive, VDD = 3.3 V ± 10%,  
VOL = 0.4 V  
15.16  
21.84  
9.24  
--  
--  
Voltage for VDD Group,  
TJ = -40 °C to 85 °C  
NMOS OD, 1x Drive, VDD = 5.0 V ± 10%,  
VOL = 0.4 V  
--  
--  
NMOS OD, 2x Drive, VDD = 2.5 V ± 8 %,  
VOL = 0.15 V  
--  
--  
NMOS OD, 2x Drive, VDD = 3.3 V ± 10%,  
29.51  
41.90  
1.63  
--  
--  
V
OL = 0.4 V  
NMOS OD, 2x Drive, VDD = 5.0 V ± 10%,  
VOL = 0.4 V  
--  
--  
Push-Pull, 1x Drive, VDD = 2.5 V ± 8 %,  
VOL = 0.15 V  
--  
--  
Push-Pull, 1x Drive, VDD = 3.3 V ± 10%,  
VOL = 0.4 V  
5.23  
--  
--  
IOL  
Push-Pull, 1x Drive, VDD = 5.0 V ± 10%,  
7.52  
--  
--  
V
OL = 0.4 V  
Push-Pull, 2x Drive, VDD = 2.5 V ± 8 %,  
VOL = 0.15 V  
3.22  
--  
--  
Push-Pull, 2x Drive, VDD = 3.3 V ± 10%,  
VOL = 0.4 V  
10.34  
14.78  
3.99  
--  
--  
LOW-Level Output Pulse  
Current (Note 2)  
Push-Pull, 2x Drive, VDD = 5.0 V ± 10%,  
--  
--  
V
OL = 0.4 V  
Voltage for VDD Group,  
TJ = -40 °C to 150 °C  
NMOS OD, 1x Drive, VDD = 2.5 V ± 8 %,  
VOL = 0.15 V  
--  
--  
NMOS OD, 1x Drive, VDD = 3.3 V ± 10%,  
VOL = 0.4 V  
12.77  
18.26  
7.83  
--  
--  
NMOS OD, 1x Drive, VDD = 5.0 V ± 10%,  
VOL = 0.4 V  
--  
--  
NMOS OD, 2x Drive, VDD = 2.5 V ± 8 %,  
VOL = 0.15 V  
--  
--  
NMOS OD, 2x Drive, VDD = 3.3 V ± 10%,  
VOL = 0.4 V  
24.94  
35.03  
--  
--  
--  
NMOS OD, 2x Drive, VDD = 5.0 V ± 10%,  
VOL = 0.4 V  
--  
--  
All macrocells are in SLEEP  
For VDD2 <= 5.0V  
mode including charge pumps UVLO disabled  
Isleep  
--  
219  
2.16  
1.83  
VDD Level Required to Start Up the Chip,  
TJ = -40 °C to 150 °C  
PONTHR  
Power-On Threshold  
1.80  
1.98  
1.55  
V
VDD Level Required to Switch Off the  
Chip, TJ = -40 °C to 150 °C  
POFFTHR Power-Off Threshold  
1.33  
V
Datasheet  
31-Aug-2021  
Revision 3.4  
18 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 7: EC at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
1 M for Pull-up: VIN = GND;  
for Pull-down: VIN = DVDD  
0.79  
0.98  
1.25  
MΩ  
Pull-up or Pull-down  
Resistance  
TJ = -40 °C to 85°C  
100 k for Pull-up: VIN = GND;  
for Pull-down: VIN = DVDD  
87.1  
8.2  
100.4  
11.1  
0.98  
100  
116  
13.6  
1.25  
120  
kΩ  
kΩ  
10 k For Pull-up: VIN = GND;  
for Pull-down: VIN = DVDD  
RPULL  
1 M for Pull-up: VIN = GND;  
for Pull-down: VIN = DVDD  
0.79  
80  
MΩ  
kΩ  
Pull-up or Pull-down  
Resistance  
TJ = -40 °C to 150 °C  
100 k for Pull-up: VIN = GND;  
for Pull-down: VIN = DVDD  
10 k For Pull-up: VIN = GND;  
for Pull-down: VIN = DVDD  
8.2  
--  
11.1  
2.5  
13.6  
--  
kΩ  
CIN  
Input Capacitance  
pF  
Note 1 No hysteresis.  
Note 2 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
Note 3 ESD resistor should be taken into consideration when using pull-up/pull-down resistors. It may affect VIH and VIL. See  
sections 6.6 to 6.9.  
3.6 I2C PINS ELECTRICAL CHARACTERISTICS  
Table 8: EC of the I2C Pins for Digital Input Mode at T = -40 °C to +150 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Fast-Mode  
Fast-Mode Plus  
Parameter Description  
Condition  
Unit  
Min  
Max  
Min  
Max  
LOW-level Input  
Voltage  
VIL  
-0.5  
0.3xVDD  
-0.5  
0.3xVDD  
V
V
V
HIGH-level Input  
Voltage  
VIH  
0.7xVDD  
0.05xVDD  
5.5  
--  
0.7xVDD  
5.5  
--  
Hysteresis of Schmitt  
Trigger Inputs  
VHYS  
0.05xVDD  
(Open-Drain) at 3 mA sink  
current  
VDD > 2 V  
LOW-Level Output  
Voltage 1  
VOL1  
0
0
0.4  
0
0
0.4  
V
V
(Open-Drain) at 2 mA sink  
current  
VDD ≤ 2 V  
LOW-Level Output  
Voltage 2  
VOL2  
0.2xVDD  
0.2xVDD  
VOL = 0.4 V  
VOL = 0.6 V  
3
6
--  
--  
20  
--  
--  
--  
mA  
mA  
LOW-Level Output  
Current  
IOL  
Output Fall Time from  
VIHmin to VILmax  
(Note 1)  
14x  
(VDD/5.5 V)  
14x  
(VDD/5.5 V)  
tof  
250  
120  
ns  
PulseWidthofSpikes  
that must be  
suppressed by the  
Input Filter  
tSP  
0
50  
0
50  
ns  
Input Current each IO  
Pin  
Ii  
0.1xVDD < VI < 0.9xVDDmax  
-10  
--  
+10  
10  
-10  
--  
+10  
10  
µA  
Capacitance for each  
IO Pin  
Ci  
pF  
Datasheet  
31-Aug-2021  
Revision 3.4  
19 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 8: EC of the I2C Pins for Digital Input Mode at T = -40 °C to +150 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Fast-Mode  
Min Max  
Note 1 Does not meet standard I2C specifications: tof = 20x(VDD/5.5 V) (min).  
Note 2 For Fast-mode Plus SDA pin must be configured as 3.2x Open-Drain, see register [837] in Section 23.  
Fast-Mode Plus  
Parameter Description  
Condition  
Unit  
Min Max  
Table 9: EC of the I2C Pins for Low-Level Input Mode at T= -40°C to +150°C, VDD = 2.3V to 5.5V Unless Otherwise Noted  
Fast-Mode  
Parame-  
Description  
Condition  
Unit  
ter  
Min  
-0.5  
1.2  
Max  
0.5  
VIL  
LOW-level Input Voltage  
HIGH-level Input Voltage  
V
V
VIH  
5.5  
Hysteresis of Schmitt Trigger  
Inputs  
VHYS  
VOL1  
VOL2  
0.05xVDD  
--  
V
V
V
(Open-Drain) at 3 mA sink current  
LOW-Level Output Voltage 1  
LOW-Level Output Voltage 2  
0
0
0.4  
V
DD > 2 V  
(Open-Drain) at 2 mA sink current  
VDD ≤ 2 V  
0.2xVDD  
VOL = 0.4 V  
VOL = 0.6 V  
3
6
--  
--  
mA  
mA  
IOL  
LOW-Level Output Current  
Output Fall Time from VIHmin to  
14x  
(VDD/5.5 V)  
tof  
250  
50  
ns  
ns  
V
ILmax (Note 1)  
Pulse Width of Spikes that must  
be suppressed by the Input Filter  
tSP  
0
Ii  
Input Current each IO Pin  
0.1xVDD < VI < 0.9xVDDmax  
-10  
--  
+10  
10  
µA  
Ci  
Capacitance for each IO Pin  
pF  
Note 1 Does not meet standard I2C specifications: tof = 20x(VDD/5.5 V) (min)  
Table 10: I2C Pins Timing Characteristics, DI Mode, T = -40 °C to +150 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Speed  
Parameter Description  
Condition  
400 kHz  
1 MHz  
Unit  
Min  
--  
Typ  
--  
Max  
400  
--  
Min  
--  
Typ  
--  
Max  
1000 kHz  
FSCL  
tLOW  
tHIGH  
Clock Frequency, SCL  
Clock Pulse Width Low  
Clock Pulse Width High  
1300  
600  
--  
500  
260  
--  
--  
--  
ns  
ns  
--  
--  
--  
Input Filter Spike Suppression  
(SCL, SDA)  
tI  
--  
--  
--  
--  
--  
50  
900  
--  
--  
--  
--  
--  
--  
50  
450  
--  
ns  
ns  
ns  
tAA  
tBUF  
Clock Low to Data OUT Valid  
Bus Free Time between Stop  
and Start  
1300  
500  
tHD_STA  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
Start Hold Time  
Start Set-up Time  
Data Hold Time  
Data Set-up Time  
Inputs Rise Time  
600  
600  
0
--  
--  
--  
--  
--  
--  
--  
260  
260  
0
--  
--  
--  
--  
--  
--  
--  
ns  
ns  
ns  
ns  
ns  
--  
--  
100  
--  
--  
50  
--  
--  
300  
120  
Datasheet  
31-Aug-2021  
Revision 3.4  
20 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 10: I2C Pins Timing Characteristics, DI Mode, T = -40 °C to +150 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Speed  
Parameter Description  
Condition  
400 kHz  
1 MHz  
Unit  
Min  
--  
Typ  
--  
Max  
300  
--  
Min  
--  
Typ  
--  
Max  
120  
--  
tF  
Inputs Fall Time  
ns  
ns  
ns  
tSU_STO  
Stop Set-up Time  
600  
50  
--  
260  
50  
--  
tDH  
Data OUT Hold Time  
--  
--  
--  
--  
Note 1: Please follow official I2C spec UM10204  
Table 11: I2C Pins Timing Characteristics, DILV Mode, T = -40°C to +150°C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Speed  
Parameter  
Description  
Condition  
400 kHz  
Unit  
Min  
--  
Typ  
--  
Max  
400  
--  
FSCL  
tLOW  
tHIGH  
Clock Frequency, SCL  
Clock Pulse Width Low  
Clock Pulse Width High  
kHz  
ns  
1300  
600  
--  
--  
--  
ns  
Input Filter Spike Suppression (SCL,  
SDA)  
tI  
--  
--  
50  
ns  
tAA  
tBUF  
Clock Low to Data OUT Valid  
Bus Free Time between Stop and Start  
Start Hold Time  
--  
1300  
600  
600  
327  
443  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
900  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHD_STA  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
--  
Start Set-up Time  
--  
Data Hold Time (Note 1)  
Data Set-up Time (Note 1)  
Inputs Rise Time  
--  
--  
300  
300  
--  
tF  
Inputs Fall Time  
--  
tSU_STO  
tDH  
Stop Set-up Time  
600  
Data OUT Hold Time  
50  
--  
Note 1 Does not meet standard I2C specifications: tHD_DAT = 0 ns (min), tSU_DAT = 100 ns (min) for Fast-mode  
Note 2: Please follow official I2C spec UM10204  
Note 3: When SCL Input is in Low-Level Logic mode max frequency is 400kHz  
Datasheet  
31-Aug-2021  
Revision 3.4  
21 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
3.7 MACROCELLS CURRENT CONSUMPTION  
Table 12: Typical Current Estimated for Each Macrocell at T = 25 °C  
Parameter Description Note  
Chip Quiescent (Pdet + OTP st-by)  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
0.038  
0.040  
0.047  
µA  
Chip Quiescent and LPBG (LPBG + Pdet  
+ OTP st-by + I2C en + leakages),  
UVLO disabled  
0.57  
0.59  
0.63  
µA  
µA  
µA  
Chip Quiescent and LPBG (LPBG + Pdet  
+ OTP st-by + I2C en + leakages),  
UVLO_A enabled  
18.06  
18.17  
18.16  
18.14  
18.45  
18.44  
Chip Quiescent and LPBG (LPBG + Pdet  
+ OTP st-by + I2C en + leakages),  
UVLO_B enabled  
Chip Quiescent and LPBG (LPBG + Pdet  
+ OTP st-by + I2C en + leakages),  
UVLO_A and UVLO B enabled  
20.98  
21.6  
21.14  
21.7  
21.53  
22.1  
µA  
µA  
Vref (LPBG + Vref_mux +  
Vref_OUT_BUF)  
OSC1 25 MHz, Pre-divider = 1  
OSC1 25 MHz, Pre-divider = 2  
OSC1 25 MHz, Pre-divider = 4  
OSC1 25 MHz, Pre-divider = 8  
OSC1 25 MHz, Pre-divider = 12  
OSC0 2.048 kHz, Pre-divider = 1  
OSC0 2.048 kHz, Pre-divider = 4  
OSC0 2.048 kHz, Pre-divider = 8  
IO with 1x push-pull + 4 pF (2.048 kHz)  
62.37  
47.41  
40.14  
36.28  
35.21  
0.35  
79.3  
59.3  
49.4  
44.2  
42.8  
0.35  
0.35  
0.35  
0.16  
126.74  
94.93  
79.02  
70.81  
68.41  
0.37  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
0.34  
0.37  
IDD  
Current  
0.34  
0.37  
0.13  
0.22  
Temperature Sensor (LPBG + Vref_mux  
+ Vref_OUT_BUF + I_TS)  
23  
22  
23  
µA  
µA  
µA  
µA  
One ACMPxH  
(includes internal Vref) (Note 1)  
36.1  
21.5  
56.8  
36.5  
22.0  
57.6  
37.8  
23.2  
59.9  
One ACMPxH  
(includes external Vref) (Note 1)  
Two ACMPxH  
(includes internal Vref) (Note 1)  
Two ACMPxH  
(includes external Vref) (Note 1)  
38.1  
39.2  
42.5  
µA  
µA  
Any Half Bridge, VDD2 = 5 V  
164.7  
193.7  
270.2  
All Four Half Bridges  
(or Two Full Bridges),  
VDD2 = 5 V  
341.3  
375.1  
464.1  
µA  
One Full Bridge + Integrator + PWM +  
OSC1, VDD2 = 5 V  
476.4  
361.3  
419.9  
596.6  
394.1  
453.5  
886.2  
480.7  
542.5  
µA  
µA  
µA  
Two Full Bridges + one CCMP (any Vref,  
any Gain), VDD2 = 5 V  
Two Full Bridges + two CCMP (any Vref,  
any Gain), VDD2 = 5 V  
Datasheet  
31-Aug-2021  
Revision 3.4  
22 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 12: Typical Current Estimated for Each Macrocell at T = 25 °C(Continued)  
Parameter Description Note  
Any Half Bridge, VDD2 = 5 V  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
164.3  
162.0  
160.6  
µA  
All Four Half Bridges  
(or Two Full Bridges),  
VDD2 = 5 V  
348.1  
338.9  
332.4  
µA  
One Full Bridge + Integrator + PWM +  
OSC1  
406.9  
327.7  
348.1  
2.1  
402.7  
319.4  
338.9  
2.1  
402.3  
313.6  
332.4  
2.1  
µA  
µA  
µA  
µA  
µA  
Two Full Bridges + one CCMP (any Vref,  
any Gain), VDD2 = 5 V  
IDD2  
Current  
Two Full Bridges + two CCMP (any Vref,  
any Gain), VDD2 = 5 V  
Under-voltage Lockout A or B Enabled,  
VDD2 = 5 V  
Under-voltage LockoutAand B Enabled,  
4.17  
4.17  
4.17  
V
DD2 = 5 V  
Note 1 Numbers for ACMPs are averaged from different Vref since different Vref has different current  
Note 2 VDD2 = VDD_A = VDD_B  
3.8 HV OUTPUT ELECTRICAL CHARACTERISTIC  
Table 13: HV Output Electrical Characteristic (Full Bridge or Half Bridge Modes)  
Parameter  
Description  
Condition  
Min  
Typ  
Max  
Unit  
VDD2 = 5 V, 16 Ω to GND,  
10 % to 90 % VDD2  
TJ = -40 °C to 150 °C  
,
tR  
Rise time HV OUT  
80  
116  
200  
200  
ns  
ns  
VDD2 = 5 V, 16 Ω to GND,  
90 % to 10 % VDD2  
TJ = -40 °C to 85 °C  
,
80  
80  
115  
115  
tF  
Fall time HV OUT  
VDD2 = 5 V, 16 Ω to GND,  
90 % to 10 % VDD2  
,
225  
ns  
TJ = -40 °C to 150 °C  
VDD2 = 3 V,  
TJ = -40 °C to 150 °C  
--  
--  
--  
337  
75  
--  
--  
ns  
ns  
Dead band time of  
HV_GPOx_HD in Pre-  
driver mode (not for Driv-  
er mode)  
(Break before making  
For Full Bridge and Half  
Bridge mode)  
VDD2 = 5 V,  
TJ = -40 °C to 150 °C  
tDEAD  
VDD2 = 13.2 V,  
TJ = -40 °C to 150 °C  
91  
--  
;
ns  
Dead band time, gener-  
ated by PWM block  
PWM_tDEAD  
Configured in PWM block  
0; 1·Tclk; 2·Tclk; 3·Tclk  
Clktime  
Datasheet  
31-Aug-2021  
Revision 3.4  
23 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 13: HV Output Electrical Characteristic (Full Bridge or Half Bridge Modes)(Continued)  
Parameter  
Description  
Condition  
Min  
Typ  
Max  
Unit  
VDD2 = 13.2 V, Io = 500 mA,  
TJ = 25 ºC  
--  
170  
--  
mΩ  
VDD2 = 13.2 V, Io = 500 mA,  
TJ = 150 ºC  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
170  
--  
295  
--  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
VDD2 = 9.0 V, Io = 500 mA,  
TJ = 25ºC  
VDD2 = 9.0 V, Io = 500 mA,  
TJ = 150 ºC  
HS FET on resistance  
(SENSE_A, SENSE_B,  
GND_HV and GND Pins  
are connected together)  
295  
--  
VDD2 = 5.0 V, Io = 500 mA,  
TJ = 25 ºC  
176  
--  
VDD2 = 5.0 V, Io = 500 mA,  
TJ = 150ºC  
304  
--  
VDD2 = 3.0 V, Io = 500 mA,  
TJ = 25ºC  
255  
--  
VDD2 = 3.0 V, Io = 500 mA,  
TJ = 150ºC  
426  
--  
RDS(ON)  
VDD2 = 13.2 V, Io = 500 mA,  
TJ = 25ºC  
182  
--  
VDD2 = 13.2 V, Io = 500 mA,  
TJ = 150ºC  
332  
--  
VDD2 = 9.0 V, Io = 500 mA,  
TJ = 25ºC  
182  
--  
VDD2 = 9.0 V, Io = 500 mA,  
TJ = 150ºC  
LS FET on resistance  
(SENSE_A, SENSE_B,  
332  
--  
GND_HV and GND Pins VDD2 = 5.0 V, Io = 500 mA,  
185  
--  
are connected together)  
TJ = 25ºC  
VDD2 = 5.0 V, Io = 500 mA,  
TJ = 150ºC  
338  
--  
VDD2 = 3.0 V, Io = 500 mA,  
TJ = 25ºC  
232  
--  
VDD2 = 3.0 V, Io = 500 mA,  
TJ = 150ºC  
414  
GPO0_HD, GPO1_HD (Note 1),  
VDD2 = 5.0 V,  
23.2  
23.2  
--  
--  
--  
--  
--  
32.9  
35.2  
0.2  
µA  
µA  
µA  
µA  
TJ = -40 °C to 85 °C,  
Sleep Mode  
GPO0_HD, GPO1_HD (Note 1),  
VDD2 = 5.0 V,  
TJ = -40 °C to 150 °C,  
Sleep Mode  
IOFF  
Off-state leakage current  
GPO2_HD, GPO3_HD,  
VDD2 = 5.0 V,  
TJ = -40 °C to 85 °C,  
Sleep Mode  
GPO2_HD, GPO3_HD,  
VDD2 = 5.0 V,  
TJ = -40 °C to 150 °C,  
--  
1.5  
Sleep Mode  
Datasheet  
31-Aug-2021  
Revision 3.4  
24 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 13: HV Output Electrical Characteristic (Full Bridge or Half Bridge Modes)(Continued)  
Parameter  
Description  
Condition  
Min  
Typ  
Max  
Unit  
VDD2 = 5.0 V,  
TJ = -40 °C to 150 °C,  
Static (PWM is off), including the  
charge pump OSC  
--  
--  
250  
µA  
SingleHVDriverCurrent  
Consumption (including  
support circuits),  
VDD2 = 5.0 V,  
without output load  
--  
344  
625  
µA  
TJ = -40 °C to 150 °C,  
IDD2  
Switching (PWM = 250 kHz)  
All HV Drivers On  
Current Consumption  
(including support cir-  
cuits), without output  
load  
VDD2 = 5.0 V,  
TJ = -40 °C to 150 °C,  
Static (PWM is off), including the  
charge pump OSC  
100  
--  
--  
800  
134  
µA  
µs  
HV SLEEP OUT high to output  
transition, BG is always on,  
Another pins SLEEP - disable  
tWAKE  
Wake-up time  
82.3  
Note 1 There is a resistive voltage divider in front of Diff Amplifier that is connected to GPO0_HD and GPO1_HD.  
Table 14: HV Output Electrical Characteristic (Pre-driver Mode)  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
VDD2 = 5 V, 16 Ω to GND,  
10 % to 90 % VDD2  
TJ = -40 °C to 85 °C  
,
10  
13  
21  
ns  
tR  
Rise time HV OUT  
VDD2 = 5 V, 16 Ω to GND,  
10 % to 90 % VDD2  
TJ = -40 °C to 150 °C  
,
10  
8
13  
11  
11  
22  
23  
25  
ns  
ns  
ns  
VDD2 = 5 V, 16 Ω to GND,  
10 % to 90 % VDD2  
,
TJ = -40 °C to 85 °C  
tF  
Fall time HV OUT  
VDD2 = 5 V, 16 Ω to GND,  
10 % to 90 % VDD2  
,
8
TJ = -40 °C to 150°C  
VDD2 = 3 V,  
TJ = -40 °C to 150 °C  
--  
--  
--  
55  
23  
22  
--  
--  
ns  
ns  
ns  
Dead band time of  
HV_GPOx_HD in Pre-  
driver mode (not for Driv-  
er mode)  
(Break before making  
For Full Bridge and Half  
Bridge mode)  
VDD2 = 5 V,  
TJ = -40 °C to 150 °C  
tDEAD  
VDD2 = 13.2 V,  
TJ = -40 °C to 150 °C  
--  
;
Clk  
time  
PWM_tDEAD  
PWM dead band time  
Configured in PWM block  
0; 1·Tclk; 2·Tclk; 3·Tclk  
Datasheet  
31-Aug-2021  
Revision 3.4  
25 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 14: HV Output Electrical Characteristic (Pre-driver Mode) (Continued)  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
VDD2 = 13.2 V, Io = 500 mA,  
TJ = 25 ºC  
--  
171  
--  
mΩ  
VDD2 = 13.2 V, Io = 500 mA,  
TJ = 150 ºC  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
171  
--  
295  
--  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
VDD2 = 9.0 V, Io = 500 mA,  
TJ = 25 ºC  
VDD2 = 9.0 V, Io = 500 mA,  
TJ = 150 ºC  
HS FET on resistance  
(SENSE_A, SENSE_B,  
295  
--  
GND_HV and GND Pins VDD2 = 5.0 V, Io = 500 mA,  
177  
--  
are connected together)  
TJ = 25 ºC  
VDD2 = 5.0 V, Io = 500 mA,  
TJ = 150 ºC  
305  
--  
VDD2 = 3.0 V, Io = 500 mA,  
TJ = 25 ºC  
256  
--  
VDD2 = 3.0 V, Io = 500 mA,  
TJ = 150 ºC  
426  
--  
RDS(ON)  
VDD2 = 13.2 V, Io = 500 mA,  
TJ = 25 ºC  
182  
--  
VDD2 = 13.2 V, Io = 500 mA,  
TJ = 150 ºC  
332  
--  
VDD2 = 9.0 V, Io = 500 mA,  
TJ = 25 ºC  
182  
--  
VDD2 = 9.0 V, Io = 500 mA,  
TJ = 150 ºC  
LS FET on resistance  
(SENSE_A, SENSE_B,  
331  
--  
GND_HV and GND Pins VDD2 = 5.0 V, Io = 500 mA,  
185  
--  
are connected together)  
TJ = 25 ºC  
VDD2 = 5.0 V, Io = 500 mA,  
TJ = 150 ºC  
338  
--  
VDD2 = 3.0 V, Io = 500 mA,  
TJ = 25 ºC  
232  
--  
VDD2 = 3.0 V, Io = 500 mA,  
TJ = 150 ºC  
414  
GPO0_HD, GPO1_HD (Note 1),  
VDD2 = 5.0 V,  
23.2  
23.2  
--  
--  
--  
--  
--  
32.9  
35.2  
0.2  
µA  
µA  
µA  
µA  
TJ = -40 °C to 85 °C,  
Sleep Mode  
GPO0_HD, GPO1_HD (Note 1),  
VDD2 = 5.0 V,  
TJ = -40 °C to 150 °C,  
Sleep Mode  
IOFF  
Off-state leakage current  
GPO2_HD, GPO3_HD,  
VDD2 = 5.0 V,  
TJ = -40 °C to 85 °C,  
Sleep Mode  
GPO2_HD, GPO3_HD,  
VDD2 = 5.0 V,  
TJ = -40 °C to 150 °C,  
--  
1.5  
Sleep Mode  
Datasheet  
31-Aug-2021  
Revision 3.4  
26 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 14: HV Output Electrical Characteristic (Pre-driver Mode) (Continued)  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
VDD2 = 5.0 V,  
TJ = -40 °C to 150 °C,  
PWM is off, including the charge  
pump OSC  
--  
--  
200  
µA  
Charge Pump consump-  
tion current (from VDD1  
Pin or VDD2 Pin)  
IDD2  
VDD2 = 5.0 V,  
TJ = -40 °C to 150 °C,  
PWM = 250 kHz  
100  
--  
--  
800  
134  
µA  
µs  
HV SLEEP OUT high to output  
transition, BG is always on,  
Another pins SLEEP - disable  
tWAKE  
Wake-up time  
82.3  
Note 1 There is a resistive voltage divider in front of Diff Amplifier that is connected to GPO0_HD and GPO1_HD.  
3.9 PROTECTION CIRCUITS ELECTRICAL CHARACTERISTIC  
Table 15: Protection Circuits  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Overcurrent protection  
threshold  
IOCP  
Per any HS or LS FET  
--  
2.18  
--  
A
VDD = 5 V, VDD2 = 5 V,  
T = 25 ºC, Deglitch = Enable,  
High Side  
--  
--  
2.497  
1.232  
--  
--  
µs  
µs  
tOCP1  
OCP deglitch time (Note 1)  
VDD = 5 V, VDD2 = 5 V,  
T = 25 ºC, Deglitch = Enable,  
Low Side  
Delay = 492 µs  
Delay = 656 µs  
Delay = 824 µs  
Delay = 988 µs  
Delay = 1152 µs  
Delay = 1316 µs  
Delay = 1480 µs  
Delay = 1640µs  
--  
--  
--  
--  
--  
--  
--  
--  
491  
655  
--  
--  
--  
--  
--  
--  
--  
--  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
818  
982  
tOCP2  
OCP retry time (Note 2)  
1146  
1309  
1473  
1637  
Recover from  
Under-voltage lockout  
At rising edge of VDD2  
At falling edge of VDD2  
Junction temperature TJ  
--  
--  
--  
--  
2.90  
2.77  
159  
V
V
VUVLO  
(Note 3)  
Under-voltage lockout  
Thermal shutdown tem-  
perature  
TTSD  
135  
141  
°C  
Thermal shutdown hyster-  
esis  
THYST  
--  
16  
--  
°C  
Note 1: OCP deglitch time option can be enabled by register [873] and register [875] separately for each Full Bridge. The High  
Side FETs doesn't have OCP deglitch time if the current through the FET is higher than IOCP level during enable time.This is  
done to avoid huge currents during retry when the short is persist on the output.  
Note 2: OCP retry time can be selected separately for each HV OUT: HV GPO0 - registers[780:778], HV GPO1 -  
registers[788:786], HV GPO2 - registers[796:794], HV GPO3 - registers[804:802]. For more information check the Section 7.5.3.  
Note 3: UVLO Function can be enabled separately for VDD2_A by register [864] and VDD2_B by register [865]. For more  
information see Section 7.5.5.  
Datasheet  
31-Aug-2021  
Revision 3.4  
27 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
3.10 TIMING CHARACTERISTICS  
Table 16: Typical Startup Estimated for Chip at T = 25 °C  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
From VDD rising past  
PONTHR  
TSU  
Chip Startup Time  
--  
1
2
ms  
Table 17: Typical Delay Estimated for Each Macrocell at T = 25 °C  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
Parameter Description Note  
Unit  
Rising Falling Rising Falling Rising Falling  
25  
25  
tpd  
tpd  
Delay  
Delay  
16  
18  
12  
13  
ns  
ns  
Digital Input to PP 1x  
Digital Input with Schmitt Trigger  
to PP 1x  
25  
26  
17  
19  
14  
14  
Low Voltage Digital Input to  
PP 1x  
25  
22  
tpd  
Delay  
247  
24  
17  
15  
157  
17  
13  
11  
83  
13  
ns  
ns  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tw  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Width  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Digital Input to PP 2x  
Digital Input to NMOS 1x  
Digital Input to NMOS 2x  
1x3-State Hi-Z to 0  
1x3-State Hi-Z to 1  
2x3-State Hi-Z to 0  
2x3-State Hi-Z to 1  
OE Hi-Z to 0  
--  
--  
23  
23  
--  
--  
17  
16  
--  
--  
13  
12  
ns  
ns  
--  
24  
--  
23  
--  
--  
17  
--  
17  
--  
--  
12  
--  
12  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
23  
--  
16  
--  
11  
--  
23  
--  
16  
--  
12  
--  
23  
--  
17  
--  
12  
--  
24  
22  
24  
72  
17  
19  
20  
24  
24  
18  
--  
17  
15  
15  
51  
11  
13  
13  
17  
18  
12  
--  
12  
10  
10  
35  
8
OE Hi-Z to 1  
24  
25  
71  
17  
19  
19  
24  
26  
18  
20  
--  
17  
17  
50  
12  
13  
12  
17  
15  
13  
14  
--  
11  
11  
34  
8
DFF  
LATCH  
CTN/DLY  
2-bit LUT  
8
9
3-bit LUT  
9
9
4-bit LUT  
12  
10  
8
12  
11  
9
Pipe Delay nRESET OUT Q, nQ  
Pipe Delay OUT0 Q, nQ  
PGEN CLK  
--  
10  
--  
PGEN nRESET Zto0  
PGEN nRESET Zto1  
Edge detect  
21  
256  
18  
275  
180  
--  
13  
180  
12  
190  
118  
--  
9
255  
19  
274  
209  
191  
180  
--  
179  
12  
191  
137  
123  
119  
--  
125  
8
125  
8
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Edge detect  
132  
75  
--  
133  
82  
73  
75  
--  
Edge detect Delayed  
Filter nQ  
Filter nQ First spark  
Filter Q  
209  
191  
--  
136  
123  
--  
81  
73  
--  
Filter Q First spark  
Inverter Filter nQ First spark  
165  
107  
68  
Datasheet  
31-Aug-2021  
Revision 3.4  
28 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 17: Typical Delay Estimated for Each Macrocell at T = 25 °C(Continued)  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
164  
25  
29  
33  
25  
25  
25  
25  
23  
22  
25  
23  
22  
--  
--  
107  
17  
29  
23  
17  
17  
16  
16  
15  
14  
16  
15  
14  
--  
--  
68  
11  
13  
15  
11  
11  
11  
11  
11  
10  
11  
10  
10  
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Inverter Filter Q First spark  
Ripple CNT CLK UP Q1  
Ripple CNT CLK UP Q2  
Ripple CNT CLK UP Q3  
Ripple CNT CLK DOWN Q1  
Ripple CNT CLK DOWN Q2  
Ripple CNT CLK DOWN Q3  
Ripple CNT nSET UP Q1  
Ripple CNT nSET UP Q2  
Ripple CNT nSET UP Q3  
Ripple CNT nSET DOWN Q1  
Ripple CNT nSET DOWN Q2  
Ripple CNT nSET DOWN Q3  
PWM CHOPPER BLANK  
PWM OUT- nQ1  
23  
22  
22  
24  
29  
36  
41  
42  
46  
41  
40  
40  
37  
25  
--  
16  
16  
16  
17  
20  
25  
29  
29  
31  
28  
27  
27  
25  
17  
--  
11  
11  
11  
11  
13  
16  
19  
19  
21  
19  
18  
18  
17  
11  
--  
--  
--  
--  
24  
21  
--  
16  
14  
--  
11  
9
PWM0 OUT- Q1  
--  
--  
--  
PWM0 OUT+ nQ1  
22  
15  
--  
10  
PWM0 OUT+ Q1  
Table 18: Programmable Delay Expected Typical Delays and Widths at T = 25 °C  
Parameter  
tw  
Description  
Note  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V Unit  
Pulse Width, 1 cell mode: (any) edge detect, edge detect output  
Pulse Width, 2 cell mode: (any) edge detect, edge detect output  
Pulse Width, 3 cell mode: (any) edge detect, edge detect output  
Pulse Width, 4 cell mode: (any) edge detect, edge detect output  
234  
464  
695  
926  
18  
162  
321  
481  
641  
12  
113  
222  
334  
445  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw  
tw  
tw  
time1  
time1  
time1  
time1  
time2  
time2  
time2  
time2  
Delay, 1 cell  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
Delay, 1 cell  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
18  
12  
8
18  
12  
8
18  
12  
8
249  
476  
704  
933  
173  
329  
488  
647  
120  
229  
339  
450  
Table 19: Typical Filter Rejection Pulse Width at T = 25 °C  
Parameter  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
< 180 < 118 < 71  
Unit  
Filtered Pulse Width  
ns  
Datasheet  
31-Aug-2021  
Revision 3.4  
29 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 20: LP_BG Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V  
Parameter  
Description  
Conditions  
Min  
--  
Typ  
--  
Max  
2.5  
--  
Unit  
ms  
LP_BG Start-Up Time  
LP_BG Icc  
--  
555  
nA  
3.11 COUNTER/DELAY CHARACTERISTICS  
Table 21: Typical Counter/Delay Offset at T = 25 C  
Parameter  
OSC Freq  
25 MHz  
OSC Power-On VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
ns  
Power-On time  
auto  
auto  
134  
496  
127  
443  
125  
398  
Power-On time  
2.048 kHz  
25 MHz  
µs  
Frequency settling time  
Frequency settling time  
Variable (CLK period)  
Variable (CLK period)  
auto  
850  
1100  
1200  
900  
ns  
2.048 kHz  
25 MHz  
auto  
900  
950  
µs  
forced  
forced  
39-42  
476-495  
39-42  
476-495  
39-42  
476-495  
ns  
2.048 kHz  
µs  
Typical Propagation Delay  
(non-delayed edge)  
25 MHz  
either  
39  
26  
17  
ns  
3.12 OSCILLATOR CHARACTERISTICS  
Table 22: OSC0 Frequency Limits, VDD = 2.3 V to 5.5 V  
Junction Temperature Range  
-40 °C to +85 °C -40 °C to +125 °C  
Min. Max. Error,  
+25 °C  
-40 °C to +150 °C  
OSC  
Min.  
Value  
Max.  
Value  
Error,  
%
Min.  
Max.  
Error,  
%
Min.  
Max.  
Error,  
Value  
Value  
%
Value  
Value  
Value  
Value  
%
2.048  
kHz  
OSC0  
+1.12  
-1.61  
+4.35  
+4.35  
-7.17  
+4.35  
2.015  
kHz  
2.071  
kHz  
1.901  
kHz  
2.137  
kHz  
1.901  
kHz  
2.137  
kHz  
1.720  
kHz  
2.137  
kHz  
-7.17  
-16.01  
Table 23: OSC1 Frequency Limits, VDD = 2.3 V to 5.5 V  
Junction Temperature Range  
-40 °C to +85 °C  
+25 °C  
-40 °C to +150 °C  
Minimum Maximum  
OSC  
Minimum Maximum  
Minimum Maximum  
Error, %  
Error, %  
Error, %  
Value  
Value  
Value  
Value  
Value  
Value  
+1.20  
-1.56  
+3.78  
-3.66  
+3.78  
-5.76  
25 MHz  
OSC1  
24.610  
MHz  
25.300  
MHz  
24.084  
MHz  
25.944  
MHz  
23.560  
MHz  
25.944  
MHz  
Datasheet  
31-Aug-2021  
Revision 3.4  
30 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
3.12.1 OSC Power-On Delay  
Table 24: Oscillators Power-On Delay at T = 25 °C, OSC Power Setting: "Auto Power-On"  
OSC1 25 MHz  
Power Supply  
Range  
OSC0 2.048 kHz  
OSC1 25 MHz  
Start with Delay  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, ns  
Typical  
Maximum  
Value, ns  
(VDD) V  
Value, µs  
Value, ns  
Value, ns  
2.30  
2.50  
3.30  
5.00  
5.50  
521  
660  
622  
539  
469  
452  
50  
44  
29  
18  
17  
59  
50  
34  
32  
31  
138  
148  
143  
137  
137  
137  
496  
134  
443  
127  
398  
125  
385  
125  
3.13 CURRENT SENSE COMPARATOR CHARACTERISTICS  
Table 25: Current Sense Comparator Specifications at T = -40 °C to +85 °C, VDD = 2.3 to 5.5 V Unless Otherwise Noted  
Parameter  
Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
Per Full Bridge  
SENSE_x Pin  
(LS FET only)  
Current limit input  
range  
IFET*RSENSE  
RCurrCMP  
50  
--  
500  
mV  
120 mV input  
504 mV input  
120 mV input  
504 mV input  
120 mV input  
504 mV input  
60 mV input  
252 mV input  
60 mV input  
252 mV input  
60 mV input  
252 mV input  
-3.1  
-0.9  
-4.5  
-1.2  
-4.5  
-1.2  
-5.1  
-1.6  
-7.5  
-2.0  
-7.5  
-2.2  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
+3.9  
+1.0  
+4.7  
+1.2  
+5.6  
+1.4  
+7.7  
+1.8  
+8.8  
+2.1  
+10.4  
+2.5  
%
%
%
%
%
%
%
%
%
%
%
%
TJ = 25 °C  
TJ = -40 °C to  
85 °C  
Current Sense  
accuracy  
Iaccur  
TJ = -40 °C to  
150 °C  
TJ = 25 °C  
TJ = -40 °C to  
85 °C  
Current Sense  
accuracy  
Iaccur  
TJ = -40 °C to  
150 °C  
Current Sense  
CMP Power-  
On delay  
Current Sense CMP  
Startup Time  
tstart  
TJ = -40 °C to 85 °C  
--  
6.7  
12.1  
µs  
Datasheet  
31-Aug-2021  
Revision 3.4  
31 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 25: Current Sense Comparator Specifications at T = -40 °C to +85 °C, VDD = 2.3 to 5.5 V Unless Otherwise Noted  
Parameter  
Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
Low to High,  
TJ = -40 °C to 85 °C,  
Vref = 1024 mV,  
Overdrive = 100 mV  
--  
0.5  
0.9  
µs  
Low to High,  
TJ = -40 °C to 85 °C,  
Vref = 1024 mV,  
Overdrive = 10 mV  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.9  
0.5  
1
2.5  
1.0  
3.7  
0.9  
5.6  
1.0  
7.0  
0.9  
2.6  
1.0  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Low to High,  
TJ = -40 °C to 85 °C,  
Vref = 480 mV to 2016 mV,  
Overdrive = 100 mV  
Low to High,  
TJ = -40 °C to 85 °C,  
Vref = 480 mV to 2016 mV,  
Overdrive = 10 mV  
High to Low,  
TJ = -40 °C to 85 °C,  
Vref = 1024 mV,  
Overdrive = 100 mV  
0.6  
1.8  
0.6  
1.8  
0.5  
1.0  
0.6  
High to Low,  
Propagation Delay,  
Response Time  
TJ = -40 °C to 85 °C,  
Vref = 1024 mV,  
Overdrive = 10 mV  
PROP  
High to Low,  
TJ = -40 °C to 85 °C,  
Vref = 480 mV to 2016 mV,  
Overdrive = 100 mV  
High to Low,  
TJ = -40 °C to 85 °C,  
Vref = 480 mV to 2016 mV,  
Overdrive = 10 mV  
Low to High,  
TJ = -40 °C to 150 °C,  
Vref = 1024 mV,  
Overdrive = 100 mV  
Low to High,  
TJ = -40 °C to 150 °C,  
Vref = 1024 mV,  
Overdrive = 10 mV  
Low to High,  
TJ = -40 °C to 150 °C,  
Vref = 480 mV to 2016 mV,  
Overdrive = 100 mV  
Datasheet  
31-Aug-2021  
Revision 3.4  
32 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 25: Current Sense Comparator Specifications at T = -40 °C to +85 °C, VDD = 2.3 to 5.5 V Unless Otherwise Noted  
Parameter  
Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
Low to High,  
TJ = -40 °C to 150 °C,  
Vref = 480 mV to 2016 mV,  
Overdrive = 10 mV  
--  
1.0  
3.7  
µs  
High to Low,  
TJ = -40 °C to 150 °C,  
Vref = 1024 mV,  
Overdrive = 100 mV  
--  
--  
--  
--  
0.6  
1.9  
0.6  
1.9  
1.0  
5.6  
1.1  
7.9  
µs  
µs  
µs  
µs  
High to Low,  
Propagation Delay,  
Response Time  
TJ = -40 °C to 150 °C,  
Vref = 1024 mV,  
Overdrive = 10 mV  
PROP  
High to Low,  
TJ = -40 °C to 150 °C,  
Vref = 480 mV to 2016 mV,  
Overdrive = 100 mV  
High to Low,  
TJ = -40 °C to 150 °C,  
Vref = 480 mV to 2016 mV,  
Overdrive = 10 mV  
3.14 DIFFERENTIAL AMPLIFIER WITH INTEGRATOR AND COMPARATOR CHARACTERISTICS  
Table 26: Differential Amplifier Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
VDD2 = 5 V to 13.2 V, VOUT = 4.096 V,  
ILoad = 0.5 A, TJ = 25 °C  
--  
±0.8  
--  
%
VDD2 = 9 V to 13.2 V, VOUT = 8.064 V,  
ILoad = 0.5 A, TJ = 25 °C  
--  
--  
--  
--  
--  
±1.2  
±0.8  
±1.2  
±0.8  
±1.2  
--  
--  
--  
--  
--  
%
%
%
%
%
VDD2 = 5 V to 13.2 V, VOUT = 4.096 V,  
ILoad = 0.5 A, TJ = -40 °C to 85 °C  
∆VLINe  
Line Regulation  
VDD2 = 9 V to 13.2 V, VOUT = 8.064 V,  
ILoad = 0.5 A, TJ = -40 °C to 85 °C  
VDD2 = 5 V to 13.2 V, VOUT = 4.096 V,  
ILoad = 0.5 A, TJ = -40 °C to 150 °C  
V
DD2 = 9 V to 13.2 V, VOUT = 8.064 V,  
ILoad = 0.5 A, TJ = -40 °C to 150 °C  
Datasheet  
31-Aug-2021  
Revision 3.4  
33 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 26: Differential Amplifier Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Parameter  
∆VLOAD  
fINT  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
VDD2 = 5 V, VOUT = 4.096 V,  
ILOAD = 200 mA to 500 mA,  
TJ = 25 °C  
--  
±1.8  
--  
%
VDD2 = 9 V, VOUT = 4.096 V,  
I
LOAD = 200 mA to 900 mA,  
--  
--  
--  
--  
±2.1  
±1.8  
±2.1  
±1.8  
--  
--  
--  
--  
%
%
%
%
TJ = 25 °C  
VDD2 = 5 V, VOUT = 4.096 V,  
I
LOAD = 200 mA to 500 mA,  
TJ = -40 °C to 85 °C  
DD2 = 9 V, VOUT = 4.096 V,  
Load Regulation  
V
ILOAD = 200 mA to 900 mA,  
TJ = -40 °C to 85 °C  
VDD2 = 5 V, VOUT = 4.096 V,  
ILOAD = 200 mA to 500 mA,  
TJ = -40 °C to 150 °C  
VDD2 = 9 V, VOUT = 4.096 V,  
ILOAD = 200 mA to 900 mA,  
TJ = -40 °C to 150 °C  
--  
±2.1  
--  
--  
--  
%
Integrated Frequency  
44  
kHz  
3.15 ACMP CHARACTERISTICS  
Table 27: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Parameter Description  
Note  
Condition  
Min  
0
Typ  
--  
Max  
Unit  
V
Positive Input  
Negative Input  
VDD  
VDD  
ACMP Input Voltage  
VACMP  
Range  
0
--  
V
ACMPxH Vhys = 0 mV,  
Gain = 1,  
Vref = 32 mV to 2016 mV  
-8  
-9.8  
--  
--  
--  
--  
6.5  
7.2  
32  
mV  
mV  
µs  
TJ = -40 °C to 85 °C  
TJ = -40 °C to 150 °C  
TJ = -40 °C to 85 °C  
TJ = -40 °C to 150 °C  
ACMP Input Offset  
(Note 2)  
Voffset  
ACMPxH Power-On delay,  
ACMP Startup Time Minimal required wake  
tstart  
time for the "Wake and  
SLEEP function"  
--  
--  
32.7  
µs  
VHYS = 32 mV  
30  
62  
--  
--  
--  
--  
--  
35  
66  
mV  
mV  
mV  
mV  
mV  
VHYS = 64 mV  
ACMPxH  
TJ = -40 °C to 85 °C  
TJ = -40 °C to 150 °C  
VHYS = 192 mV  
187  
29  
197  
36  
Built-in Hysteresis  
(Note 1) (Note 2)  
VHYS  
VHYS = 32 mV  
VHYS = 64 mV  
61  
67  
VHYS = 192 mV  
Gain = 1x  
186  
--  
--  
10  
--  
198  
--  
mV  
GΩ  
MΩ  
MΩ  
MΩ  
Gain = 0.5x  
Series Input  
1.7  
1.7  
1.7  
2.4  
2.4  
2.4  
Rsin  
Resistance  
Gain = 0.33x  
--  
Gain = 0.25x  
--  
Datasheet  
31-Aug-2021  
Revision 3.4  
34 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 27: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Condition  
Min  
Typ  
Max  
Unit  
ACMPxH, Vref =1.024 V,  
Gain = 1,  
Overdrive = 100 mV  
Low to High,  
TJ = -40 °C to 85 °C  
--  
0.51  
1.51  
µs  
High to Low,  
TJ = -40 °C to 85 °C  
--  
--  
--  
--  
--  
--  
--  
0.51  
0.53  
0.52  
0.51  
0.51  
0.53  
0.52  
0.79  
1.51  
1.11  
1.51  
0.80  
1.51  
1.18  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Low to High,  
TJ = -40 °C to 85 °C  
ACMPxH, Vref =  
0.032 V to 2.016 V,  
Gain = 1,  
High to Low,  
TJ = -40 °C to 85 °C  
Overdrive = 100 mV  
Propagation Delay,  
PROP  
Response Time  
Low to High,  
TJ = -40 °C to 150 °C  
ACMPxH, Vref =  
1.024 V,  
Gain = 1,  
High to Low,  
TJ = -40 °C to 150 °C  
Overdrive = 100 mV  
Low to High,  
TJ = -40 °C to 150 °C  
ACMPxH, Vref =  
0.032 V to 2.016 V,  
Gain = 1,  
High to Low,  
TJ = -40 °C to 150 °C  
Overdrive = 100 mV  
G = 1  
1
1
1
G = 0.5  
G = 0.33  
G = 0.25  
G = 1  
0.487  
0.320  
0.244  
1
0.500  
0.334  
0.250  
1
0.519  
0.346  
0.260  
1
TJ = -40 °C to 85 °C  
Gain Error (including  
threshold and  
internal Vref error)  
G
G = 0.5  
G = 0.33  
G = 0.25  
0.485  
0.320  
0.244  
0.500  
0.334  
0.250  
0.519  
0.346  
0.260  
TJ = -40 °C to 150 °C  
TJ = 25 °C  
-0.50  
--  
--  
--  
+0.50  
+1.64  
9.6  
%
%
Internal Vref  
accuracy  
Vrefaccuracy  
Vref ≥ 1.216 V  
TJ = -40 °C to 150 °C -1.64  
-17.1  
Vref output buffer  
offset (when  
connected to the  
output Pin)  
mV  
TJ = 25 °C  
Vrefbuf_offset  
Vref = 32 mV to 2016 mV  
TJ = -40 °C to 150 °C -18.0  
--  
11.1  
mV  
1 MΩ  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
5
pF  
pF  
pF  
pF  
pF  
560 kΩ  
100 kΩ  
10 kΩ  
2 kΩ  
10  
Vref Output Buffer  
Capacitance  
Loading  
40  
Resistance Load in  
Condition cell  
CVREF  
80  
120  
1 kΩ, Vref: 32 mV to  
1024 mV  
--  
--  
150  
pF  
Note 1 VIL = Vin - VHYS, VIH = Vin.  
Note 2 ESD resistor should be taken into consideration when using pull-up/pull-down resistors. It may affect VIH and VIL. See  
sections 6.6 to 6.9.  
Datasheet  
31-Aug-2021  
Revision 3.4  
35 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
3.16 ANALOG TEMPERATURE SENSOR CHARACTERISTICS  
Table 28: TS Output vs Temperature (Output Range 1)  
VDD = 2.5 V  
Typical, mV  
VDD = 3.3 V  
Typical, mV  
VDD = 4.5 V to 5.5 V  
Typical, mV  
T, °C  
Accuracy, %  
±1.7  
±1.5  
±1.4  
±1.2  
±1.2  
±1.1  
±1.3  
±1.3  
±1.4  
±1.5  
±1.6  
±1.6  
±1.7  
±1.7  
±1.7  
±1.7  
±1.7  
±1.7  
±1.7  
±1.6  
±1.6  
±1.6  
±2.0  
Accuracy, %  
±1.7  
±1.5  
±1.4  
±1.2  
±1.2  
±1.1  
±1.2  
±1.2  
±1.3  
±1.4  
±1.5  
±1.5  
±1.6  
±1.6  
±1.6  
±1.6  
±1.6  
±1.6  
±1.6  
±1.5  
±1.6  
±1.6  
±2.0  
Accuracy, %  
±1.6  
±1.5  
±1.3  
±1.2  
±1.1  
±1.1  
±1.2  
±1.2  
±1.3  
±1.4  
±1.5  
±1.6  
±1.6  
±1.7  
±1.6  
±1.7  
±1.7  
±1.7  
±1.6  
±1.6  
±1.6  
±1.5  
±1.9  
-40  
-30  
-20  
-10  
0
998.9  
976.9  
954.3  
931.7  
908.9  
908.9  
862.9  
851.0  
839.4  
816.2  
792.8  
769.1  
745.1  
721.1  
708.8  
696.8  
672.4  
648.0  
623.5  
611.0  
598.5  
573.5  
549.1  
998.8  
976.8  
954.2  
931.6  
908.7  
885.7  
862.8  
850.9  
839.3  
816.1  
792.6  
768.9  
744.9  
721.0  
708.7  
696.6  
672.3  
647.9  
623.3  
610.8  
598.3  
573.4  
548.9  
998.9  
976.9  
954.4  
931.8  
909.0  
886.0  
863.0  
851.2  
839.6  
816.4  
793.0  
769.3  
745.3  
721.4  
709.1  
697.1  
672.8  
648.4  
623.9  
611.4  
598.9  
574.0  
549.6  
10  
20  
25  
30  
40  
50  
60  
70  
80  
85  
90  
100  
110  
120  
125  
130  
140  
150  
Table 29: TS Output vs Temperature (Output Range 2)  
VDD = 2.5 V  
T, °C  
VDD = 3.3 V  
VDD = 5 V  
Typical, mV  
1206.1  
1179.5  
1152.2  
1124.9  
1097.3  
1069.6  
1041.8  
1027.5  
1013.5  
985.4  
Accuracy, %  
±1.7  
Typical, mV  
1205.9  
1179.3  
1152.1  
1124.7  
1097.2  
1069.4  
1041.6  
1027.3  
1013.3  
985.2  
Accuracy, %  
±1.7  
Typical, mV  
1206.0  
1179.5  
1152.2  
1124.9  
1097.4  
1069.7  
1041.9  
1027.7  
1027.7  
985.6  
Accuracy, %  
±1.6  
-40  
-30  
-20  
-10  
0
±1.5  
±1.5  
±1.5  
±1.4  
±1.4  
±1.3  
±1.2  
±1.2  
±1.2  
±1.2  
±1.1  
±1.1  
10  
20  
25  
30  
40  
50  
60  
70  
±1.1  
±1.1  
±1.1  
±1.2  
±1.2  
±1.2  
±1.3  
±1.2  
±1.2  
±1.3  
±1.3  
±1.3  
±1.5  
±1.4  
±1.4  
957.1  
±1.5  
956.9  
±1.5  
957.3  
±1.5  
928.5  
±1.6  
928.3  
±1.5  
928.7  
±1.6  
899.5  
±1.6  
899.3  
±1.6  
899.7  
±1.6  
Datasheet  
31-Aug-2021  
Revision 3.4  
36 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 29: TS Output vs Temperature (Output Range 2)(Continued)  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
T, °C  
Typical, mV  
Accuracy, %  
±1.7  
Typical, mV  
Accuracy, %  
±1.6  
Typical, mV  
Accuracy, %  
±1.6  
80  
85  
870.6  
855.7  
841.2  
811.8  
782.3  
752.7  
737.6  
722.5  
692.5  
663.0  
870.4  
855.6  
841.0  
811.7  
782.1  
752.5  
737.5  
722.3  
692.3  
662.8  
870.9  
856.1  
841.5  
812.2  
782.7  
753.2  
738.1  
723.0  
693.0  
663.5  
±1.7  
±1.6  
±1.6  
90  
±1.7  
±1.6  
±1.7  
100  
110  
120  
125  
130  
140  
150  
±1.7  
±1.6  
±1.7  
±1.7  
±1.6  
±1.7  
±1.7  
±1.6  
±1.7  
±1.6  
±1.5  
±1.6  
±1.6  
±1.5  
±1.6  
±1.5  
±1.5  
±1.5  
±1.9  
±1.9  
±1.8  
Datasheet  
31-Aug-2021  
Revision 3.4  
37 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
4
User Programmability  
The SLG47105 is a user programmable device with one time programmable (OTP) memory elements that are able to configure  
the connection matrix and macrocells. A programming development kit allows the user the ability to create initial devices. Once  
the design is finalized, the programming code (.hvp file) is forwarded to Dialog Semiconductor to integrate into a production  
process.  
Product  
Definition  
E-mail Product Idea, Definition, Drawing or  
Customer creates their own design in  
Schematic to  
GreenPAK Designer  
CMBUGreenPAK@diasemi.com  
Dialog Semiconductor Applications  
Engineer will review design specifications  
with customer  
Customer verifies GreenPAK in system  
design  
GreenPAK Design  
approved  
Samples, Design and Characterization  
Report send to customer  
GreenPAK Design  
approved  
Customers verifies GreenPAK design  
GreenPAK Design  
approved in system test  
Custom GreenPAK part enters production  
Figure 2: Steps to Create a Custom GreenPAK Device  
Datasheet  
31-Aug-2021  
Revision 3.4  
38 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
5
System Overview  
5.1 GPIO PINS  
Digital Input (low voltage or normal voltage, with or without Schmitt Trigger)  
NMOS Open-Drain Outputs  
Push-Pull Outputs  
Analog IO  
10 k/100 k/1 MPull-up/Pull-down resistors  
GPIO with OE can be configured as bidirectional IO or three-state output  
5.2 HIGH VOLTAGE OUTPUT PINS  
High voltage digital output in Push-Pull, Open-Drain configurations or Full Bridge logic  
Build-in Overcurrent and Short Circuit protection  
Configurable Dead Band Time  
Sleep mode to save energy  
Advanced Voltage Control and Current Control  
5.3 CONNECTION MATRIX  
Digital matrix for circuit connections based on user design  
5.4 TWO CURRENT SENSE COMPARATORS  
SENSE_x pin that is connected to a positive input of Sense Comparator for Advanced Current Control  
Separate Selectable Vref: 6-bit selection  
Static or Dynamic Vref selection  
Configurable Gain: 4x or 8x  
5.5 DIFFERENTIAL AMPLIFIER WITH INTEGRATOR AND COMPARATOR  
Low Quiescent Current  
Provide constant motor speed for variable VDD2  
Connected to HV GPO0 and HV GPO1  
5.6 TWO GENERAL PURPOSE ANALOG COMPARATORS  
Wide Vref Selector: 32 mV to 2016 mV, with 32 mV step  
Selectable hysteresis: 2-bit selection  
Configurable Gain (resistor divider) 1x; 0.5x; 0.33x; 0.25x  
Different input sources: PINs, VDD or Temp sense  
5.7 VOLTAGE REFERENCE  
Used for references on Analog Comparators  
Can be driven to external pin  
5.8 TWELVE COMBINATION FUNCTION MACROCELLS  
Three Selectable DFF/LATCH or 2-bit LUTs  
One Selectable Programmable Pattern Generator or 2-bit LUT  
Six Selectable DFF/LATCH with Set/Reset input or 3-bit LUTs  
One Selectable Pipe Delay or Ripple Counter or 3-bit LUT  
One Selectable DFF/LATCH with Set/Reset input or 4-bit LUT  
5.9 FIVE MULTI-FUNCTION MACROCELLS  
Four Selectable DFF/LATCH/3-bit LUTs + 8-bit Delay/Counters  
One Selectable DFF/LATCH/4-bit LUT + 16-bit Delay/Counter  
5.10 TWO PWM MACROCELLS  
Flexible 8-bit or 7-bit PWM mode with the Duty Cycle control  
True 0 % and 100 % Duty Cycle  
Regular or 16 Preset Registers mode  
Autostop mode  
Datasheet  
31-Aug-2021  
Revision 3.4  
39 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Phase correct mode  
Selectable separate Dead Band Time  
Glitch Safety  
5.11 SERIAL COMMUNICATION  
I2C Interface  
5.12 PROGRAMMABLE DELAY  
125 ns/250 ns/375 ns/500 ns @ 3.3 V  
Includes Edge Detection function  
5.13 ADDITIONAL LOGIC FUNCTION  
One Deglitch filter macrocell  
Includes Edge Detection function  
5.14 TWO OSCILLATORS  
2.048 kHz  
25 MHz  
5.15 DUAL VDD  
General Power Supply VDD in range 2.5 V to 5.0 V  
Second Power Supply VDD2 in range 3.3 V to 12.0 V (Note )  
Two GPIOs groups: VDD GPIOs Group, VDD2 GPOs Group  
Note VDD2_A Pin should be used necessarily if VDD2 is used. Using VDD2_B without using VDD2_A is unacceptable, because  
internal high voltage circuit part is supplied by VDD2_A Pin. Therefore, HV_GPO0_HD and HV_GPO1_HD should be used firstly.  
Datasheet  
31-Aug-2021  
Revision 3.4  
40 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
6
Input/Output Pins  
6.1 GPIO PINS  
The SLG47105 has a total of 7 GPIO, 1 GPI, and 4 HV GPO Pins, which can function as either a user-defined Input or Output,  
as well as serving as a special function (such as outputting the voltage reference).  
6.2 GPI PIN  
GPI serves as General Purpose Input Pin of VDD Group.  
6.3 HV GPO PINS  
HV GPO0, HV GPO1, HV GPO2, HV GPO3 serve as High Voltage General Purpose Output Pins of VDD2 Group.  
6.4 PULL-UP/DOWN RESISTORS  
All IO Pins of VDD Group have the option for user selectable resistors connected to the input structure. The selectable values on  
these resistors are 10 k, 100 k, and 1 M. The internal resistors can be configured as either Pull-up or Pull-downs.  
6.5 FAST PULL-UP/DOWN DURING POWER-UP  
During power-up, IO Pull-up/down resistance will switch to 2.6 kinitially and then it will switch to the normal setting value. This  
function is enabled by register [754].  
6.6 ESD PROTECTION  
Every pin has the ESD protection circuit built-in, see Figure 3, Figure 4, Figure 5. In addition to the ESD diodes, when  
configured as inputs, all pins have a series resistor which decreases the exceeding input current to a safe level. For the value of  
the resistors refer to Table 30. It should be noted, this additional input resistance will affect the input thresholds (VIH and VIL)  
when using pull-up/pull-down resistors.  
Table 30: ESD Resistors Value  
Pin  
Value, Ohm  
200  
GPIO0  
GPI  
200  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
1060  
200  
200  
1060  
1060  
1060  
Datasheet  
31-Aug-2021  
Revision 3.4  
41 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
6.7 GPI IO STRUCTURE (FOR VDD GROUP)  
6.7.1 GPI IO Structure  
Non-Schmitt  
Trigger Input  
WOSMT_EN  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: Analog IO mode  
Schmitt  
Trigger Input  
Digital IN  
Note 1: Can be varied over PVT, for reference only.  
Note 2: Should be taken into consideration when using pull-up/pull-down resistors.  
SMT_EN  
May affect VIH and VIL  
.
Low Voltage  
Input  
LV_EN  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
s1  
s0  
200 Ω  
(Note 1, 2)  
900 kΩ  
90 kΩ  
10 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
PAD  
Figure 3: GPI Structure Diagram  
Datasheet  
31-Aug-2021  
Revision 3.4  
42 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
6.8 I2C MODE IO STRUCTURE (FOR VDD GROUP)  
6.8.1 I2C Mode IO Structure (for SCL/GPIO2 and SDA/GPIO3, Register OE)  
Input Mode [1:0]  
00: Digital Input without Schmitt Trigger, WOSMT_EN = 1  
01: Digital Input with Schmitt Trigger, SMT_EN = 1  
10: Low Voltage, Digital Input, LV_EN = 1  
11: Reserved  
Non-Schmitt  
Trigger Input  
Note 1: It is possible to apply an input voltage higher than VDD to GPIO2 and  
GPIO3. However, this voltage should not exceed 5.5 V.  
Note 2: GPIO2 and GPIO3 don‘t support Push-Pull and PMOS Open-Drain  
modes.  
WOSMT_EN  
SMT_EN  
Note 3: When an internal Pull-up/down is used, the input voltage can‘t be higher  
than VDD  
.
Schmitt  
Trigger Input  
Note 4: OE goes HIGH only when I2C_EN signal = 0 and register [831] = 1  
(for GPIO2)/register[837] = 1 (for GPIO3).  
Digital IN  
Note 5: When OE is HIGH, Input Mode[1:0] = 11 must be selected.  
Note 6: When I2C_EN signal = 1, fast+ mode (3.2x OD for SDA) can be select-  
ed by register [830] = 0 and standard/fast mode (0.8x OD for SDA) can be se-  
lected by register [830] = 1.  
Low Voltage  
Input  
Note 7: When OE is HIGH, only OD 3.2x option is active.  
Note 8: When I2C_EN signal = 1, internal Pull-Up/Down Resistors would be al-  
ways floating.  
LV_EN  
Note 9: Can be varied over PVT, for reference only.  
Note 10: Should be taken into consideration when using pull-up/pull-down re-  
sistors. May affect VIH and VIL  
.
Floating  
s0  
VDD  
s1  
s2  
s3  
s1  
s0  
900 kΩ  
90 kΩ  
10 kΩ  
200 Ω  
(Note 9, 10)  
I2C_EN  
Pull-up_EN  
I2C_EN  
OE  
s1  
s0  
Res_sel [1:0]  
register [831] for GPIO2 and  
register [837] for GPIO3  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
OD 0.8x  
Digital OUT  
OE  
I2C_EN  
s1  
s0  
register [830]  
OD 2.4x  
I2C_EN  
I2C Digital OUT  
I2C_EN  
OD 0.8x  
PAD  
Figure 4: GPIO with I2C Mode Structure Diagram  
Datasheet  
31-Aug-2021  
Revision 3.4  
43 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 31: GPIO2 Mode Selection  
Register [2032]  
Register [831]  
Register [830]  
GPIO2 Mode  
I2C SCL  
0
1
1
x
0
1
x
x
x
GPI, depends on registers [826:825]  
GPO, 3.4x OD only  
Table 32: GPIO3 Mode Selection  
Register [2032]  
Register [837]  
Register [830]  
GPIO3 Mode  
I2C SDA, fast+  
I2C SDA, standard/fast  
GPI, depends on registers [833:832]  
GPO, 3.4x OD only  
0
0
1
1
x
x
0
1
0
1
x
x
Datasheet  
31-Aug-2021  
Revision 3.4  
44 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
6.9 MATRIX OE IO STRUCTURE (FOR VDD GROUP)  
6.9.1 Matrix OE IO Structure (for GPIOs 0, 1, 4, 5, 6)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, WOSMT_EN = 1, OE = 0  
01: Digital In with Schmitt Trigger, SMT_EN = 1, OE = 0  
10: Low Voltage Digital In mode, LV_EN = 1, OE = 0  
WOSMT_EN  
OE  
OE  
11: Analog IO mode  
Schmitt  
Trigger Input  
Output Mode [1:0]  
00: Push-Pull 1x mode, PP1x_EN = 1, OE = 1  
01: Push-Pull 2x mode, PP2x_EN = 1, PP1x_EN = 1, OE = 1  
10: NMOS 1x Open-DRAIN mode, OD1x_EN = 1, OE = 1  
11: NMOS 2x Open-DRAIN mode, OD2x_EN = 1, OD1x_EN = 1, OE = 1  
Digital IN  
SMT_EN  
Low Voltage  
Input  
Note 1: Digital OUT and OE are Matrix Output, Digital In is Matrix Input.  
Note 2: Can be variated over PTV, for reference only.  
Note 3: Should be taken into consideration when using pull-up/pull-down  
resistors. May affect VIH and VIL  
Note 4: 200 Ohm for GPIO0, 1060 Ohm for GPIOs 1, 4, 5, and 6.  
.
LV_EN  
OE  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
s1  
s0  
(Note 2, 3, 4)  
900 kΩ  
90 kΩ  
10 kΩ  
VDD  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Digital OUT  
Digital OUT  
OE  
OE  
OD1x_EN  
PP1x_EN  
VDD  
PAD  
VDD  
Digital OUT  
Digital OUT  
OE  
OE  
OD2x_EN  
PP2x_EN  
Figure 5: GPIO Matrix OE IO Structure Diagram  
Datasheet  
31-Aug-2021  
Revision 3.4  
45 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
6.10 GPO MATRIX OE STRUCTURE (FOR VDD2 GROUP)  
Using SLEEP mode to minimize supply current should be sufficient under normal operation.  
Outputs HV GPO0, HV GPO1, HV GPO2, HV GPO3 have individual HV_SLEEP Input signal. If Sleep Input is active, Charge  
Pumps are disabled, and Full Bridge FETs are set to Hi-Z state.  
6.10.1 GPO with Matrix OE Structure (for HV GPOs 0 and 1)  
Output Mode registers [777:776] for HV_GPO_0, registers [785:784] for HV_GPO_1:  
00: Hi-Z mode (High Impedance)  
01: NMOS 1x LOW SIDE Open-DRAIN mode (Open-DRAIN LOW side On)  
10: NMOS 1x HIGH SIDE Open-DRAIN mode (Open-DRAIN HIGH side On)  
11: Push-Pull 1x mode (Open-DRAIN HIGH and LOW sides On)  
HV GPO SLEEP  
VDD2_A  
Charge Pump  
Open-DRAIN HIGH side  
register [777] for HV_GPO0  
register [785] for HV_GPO1  
Level Shifter  
PAD  
Open-DRAIN LOW side  
Digital OUT  
register [776] for HV_GPO0  
from matrix  
register [784] for HV_GPO1  
OE  
current_sense_a  
SENSE_A  
GND  
GND_HV  
GND_HV  
GND_HV  
Figure 6: HV GPO Matrix OE IO Structure Diagram (for HV GPOs 0 and 1)  
Datasheet  
31-Aug-2021  
Revision 3.4  
46 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
6.10.2 GPO with Matrix OE Structure (for HV GPOs 2 and 3)  
Output Mode registers [793:792] for HV_GPO_2, registers [801:800] for HV_GPO_3:  
00: Hi-Z mode (High Impedance)  
01: NMOS 1x LOW SIDE Open-DRAIN mode (Open-DRAIN LOW side On)  
10: NMOS 1x HIGH SIDE Open-DRAIN mode (Open-DRAIN HIGH side On)  
11: Push-Pull 1x mode (Open-DRAIN HIGH and LOW sides On)  
HV GPO SLEEP  
VDD2_B  
Charge Pump  
Open-DRAIN HIGH side  
register [793] for HV_GPO2  
register [801] for HV_GPO3  
Level Shifter  
PAD  
Open-DRAIN LOW side  
register [792] for HV_GPO2  
register [800] for HV_GPO3  
Digital OUT  
from matrix  
OE  
current_sense_b  
SENSE_B  
GND  
GND_HV  
GND_HV  
GND_HV  
Figure 7: HV GPO Matrix OE IO Structure Diagram (for HV GPOs 2 and 3)  
Datasheet  
31-Aug-2021  
Revision 3.4  
47 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
6.11 IO TYPICAL PERFORMANCE  
Figure 8: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C  
80  
70  
60  
50  
40  
30  
20  
10  
0
Open Drain 1x @ VDD = 5 V  
Open Drain 1x @ VDD = 3.3 V  
Open Drain 1x @ VDD = 2.5 V  
Push-Pull 1x @ VDD = 5 V  
Push-Pull 1x @ VDD = 3.3 V  
Push-Pull 1x @ VDD = 2.5 V  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
VOL (V)  
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range  
Datasheet  
31-Aug-2021  
Revision 3.4  
48 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
30  
Open Drain 1x @ VDD = 5 V  
25  
Open Drain 1x @ VDD = 3.3 V  
Open Drain 1x @ VDD = 2.5 V  
Push-Pull 1x @ VDD = 5 V  
20  
15  
10  
5
Push-Pull 1x @ VDD = 3.3 V  
Push-Pull 1x @ VDD = 2.5 V  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
VOL (V)  
Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C  
160  
Open Drain 2x @ VDD = 5 V  
Open Drain 2x @ VDD = 3.3 V  
Open Drain 2x @ VDD = 2.5 V  
Push-Pull 2x @ VDD = 5 V  
Push-Pull 2x @ VDD = 3.3 V  
Push-Pull 2x @ VDD = 2.5 V  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
VOL (V)  
Figure 11: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range  
Datasheet  
31-Aug-2021  
Revision 3.4  
49 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
50  
45  
Open Drain 2x @ VDD = 5 V  
Open Drain 2x @ VDD = 3.3 V  
40  
Open Drain 2x @ VDD = 2.5 V  
Push-Pull 2x @ VDD = 5 V  
35  
Push-Pull 2x @ VDD = 3.3 V  
Push-Pull 2x @ VDD = 2.5 V  
30  
25  
20  
15  
10  
5
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
VOL (V)  
Figure 12: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C  
Datasheet  
31-Aug-2021  
Revision 3.4  
50 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
7
High Voltage Output Modes  
The device integrates four High Drive Half bridges, PWM voltage regulation method, current regulation circuitry, and protection  
circuits, including dead band circuit.  
HV GPOs work as power pins, so if two bridges open simultaneously for any reason, for example, timing desynchronization, it  
will result in cross-conduction (shoot-through) between the two bridges and damage the chip. To avoid this, tDEAD is entered  
between switching on upper and lower power transistors. During output state transition from LOW to HIGH, the lower NMOS  
turns off and only after tDEAD the upper NMOS turns on. While tDEAD the pin is in Hi-Z state. The same process is applied when  
transiting from HIGH to LOW. tDEAD is different for DRIVER and PREDRIVER modes.  
The user can select Modes of HV Outputs:  
Full Bridge Mode;  
Half Bridge Mode;  
Pre-Driver Mode.  
PWM Voltage regulation is useful for designs where there is a need to maintain constant motor speed with changeable power  
supply level. When the High VDD2 is decreasing (battery discharging), it's possible to increase PWM duty cycle, and when the  
High VDD2 is increasing (battery charging) it's possible to decrease PWM duty cycle. It's possible to turn off the PWM and HV  
GPO for battery saving when the motor is idle, and others.  
Datasheet  
31-Aug-2021  
Revision 3.4  
51 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Pre-Driver Mode  
register [781]  
From HV GPO0 Sleep  
Connection Matrix Output [23]  
to integrator_switch_input  
TSD  
HVDD  
OCP  
from HV GPO0 OE  
Connection Matrix  
Output[13]  
0
1
CHARGE  
PUMP  
HV_GPO0_HD  
OE1  
from HV GPO0 Output  
Connection Matrix  
Output[12]  
PIN LOGIC  
IN1/EN  
0
1
Decay  
Mode IN  
OCP  
OUT1  
Fault_1A  
TSD  
Stepper  
Motor  
DCM  
HVDD  
OCP  
FULL BRIDGE  
LOGIC  
0
1
register [874]  
Full Bridge Logic Mode: IN-IN/PH-EN  
CHARGE  
PUMP  
OUT2  
PIN LOGIC  
0
1
HV_GPO1_HD  
SENSE_A  
IN2/PH  
OE2  
from HV GPO1 Output  
Connection Matrix Output[14]  
OCP  
Fault_2A  
from HV GPO1 OE  
Connection Matrix Output[15]  
register [782]  
Full Bridge Mode  
current_sense_a  
to Fault_A Connection Matrix Input [50]  
from HV GPO1 Sleep  
Connection Matrix Output[24]  
TSD  
Pre-Driver Mode  
register [797]  
From HV GPO2 Sleep  
Connection Matrix Output [25]  
TSD  
HVDD  
OCP  
from HV GPO2 OE  
Connection Matrix Output[17]  
0
1
CHARGE  
PUMP  
HV_GPO2_HD  
OE1  
PIN LOGIC  
IN1/EN  
from HV GPO2 Output  
Connection Matrix Output[16]  
0
1
Decay  
Mode IN  
OCP  
OUT1  
Fault_1B  
TSD  
DCM  
HVDD  
OCP  
FULL BRIDGE  
LOGIC  
0
1
register [876]  
Full Bridge Logic  
Mode: IN-IN/PH-EN  
CHARGE  
PUMP  
OUT2  
PIN LOGIC  
0
1
HV_GPO3_HD  
SENSE_B  
IN2/PH  
OE2  
from HV GPO3 Output  
Connection Matrix Output[18]  
OCP  
Fault_2B  
from HV GPO3 OE  
Connection Matrix Output[19]  
register [798]  
Full Bridge Mode  
current_sense_b  
to Fault_B Connection Matrix Input [51]  
from HV GPO3 Sleep  
Connection Matrix Output[26]  
Figure 13: HV OUT Block Diagram  
Datasheet  
31-Aug-2021  
Revision 3.4  
52 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
7.1 FULL BRIDGE MODE  
Full Bridge mode is selected by setting register [782] and register [798] to 1 for HV_GPO0/HV_GPO1 and HV_GPO2/HV_GPO3  
respectively. In this mode, HV GPO0 functions in couple with HV GPO1 and HV GPO2 functions in couple with HV GPO3. This  
mode is useful for driving up to two DC motors with the ability to change the motors rotation direction. Also, this mode can be  
used to drive one Stepper Motor as shown in Figure 14.  
HV_GPO0_HD  
HV_GPO0_HD  
Stepper  
HV_GPO1_HD  
Motor  
HV_GPO2_HD  
HV_GPO1_HD  
HV_GPO3_HD  
Figure 14: Full Bridge Mode Operation  
OE inputs of high voltage pins aren't used in Full-Bridge mode except HV GPO0 OE input and HV GPO2 OE input in PH-EN  
sub-mode, where these inputs are used to select Decay Mode for each of Full Bridges.  
Note : All 4 Sleep pins in this mode are active separately.  
Other inputs and outputs operate depending on Control_Sel register [874] and register [876] for HV_GPO0/HV_GPO1 and  
HV_GPO2/HV_GPO3 respectively as shown in Table 33 to Table 36.  
Table 33: HV OUT CTRL0 Full Bridge Logic for IN-IN Mode  
HV_GPO0_HD  
(Pin 7)  
HV_GPO1_HD  
(Pin 8)  
Sleep_x  
IN0  
IN1  
Function  
1
0
0
0
0
X
0
0
1
1
X
0
1
0
1
Hi-Z  
Hi-Z  
L
Hi-Z  
Hi-Z  
H
Off (Coast)  
Coast  
Reverse  
Forward  
Brake  
H
L
L
L
Table 34: HV OUT CTRL1 Full Bridge Logic for IN-IN Mode  
HV_GPO2_HD  
(Pin 9)  
HV_GPO3_HD  
(Pin 10)  
Sleep_x  
IN0  
IN1  
Function  
1
0
0
0
0
X
0
0
1
1
X
0
1
0
1
Hi-Z  
Hi-Z  
L
Hi-Z  
Hi-Z  
H
Off (Coast)  
Coast  
Reverse  
Forward  
Brake  
H
L
L
L
Note 1 Sleep 0 and Sleep 1 should be connected together in Full Bridge Mode for each HV OUT CTRL block  
Datasheet  
31-Aug-2021  
Revision 3.4  
53 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
.
Table 35: HV OUT CTRL0 Full Bridge Logic for PH-EN Mode  
HV_GPO0_HD HV_GPO1_HD  
Sleep_x  
Decay  
EN  
PH  
Function  
(Pin 7)  
Hi-Z  
Hi-Z  
L
(Pin 8)  
Hi-Z  
Hi-Z  
L
1
0
0
0
0
X
X
0
0
1
1
X
X
X
0
Off (Coast)  
Coast  
0 (Fast Decay)  
1 (Slow Decay)  
Brake  
X
X
H
L
Forward  
Reverse  
1
L
H
.
Table 36: HV OUT CTRL1 Full Bridge Logic for PH-EN Mode  
HV_GPO2_HD HV_GPO3_HD  
Sleep_x  
Decay  
EN  
PH  
Function  
(Pin 9)  
Hi-Z  
Hi-Z  
L
(Pin 10)  
1
0
0
0
0
X
X
0
0
1
1
X
X
X
0
Hi-Z  
Hi-Z  
L
Off (Coast)  
Coast  
0 (Fast Decay)  
1 (Slow Decay)  
Brake  
X
X
H
L
Forward  
Reverse  
1
L
H
HV GPO0, HV GPO1, HV GPO2, and HV GPO3 are tri-state Pins, which can't be pulled up/down internally.  
The HV GPOs can be used to control the motor speed with the help of PWM technique. Fast decay mode causes a rapid  
reduction in inductive current and allows the motor to coast toward zero velocity. Slow decay mode leads to a slower reduction  
in inductive current, but produces rapid deceleration.  
For IN-IN mode, to drive DC motor in fast-decay mode, the PWM signal should be applied to one of IN0 or IN1 inputs, while the  
other is held in the logic LOW state. To use slow-decay mode, one of IN0 or IN1 inputs should be sourced by PWM signal, while  
the opposite pin is held in the logic HIGH state.  
Table 37: PWM Control of Motor Speed (IN-IN Mode)  
Function  
IN0  
PWM  
1
IN1  
0
Forward PWM, fast decay  
Forward PWM, slow decay  
Reverse PWM, fast decay  
Reverse PWM, slow decay  
PWM  
PWM  
1
0
PWM  
PH-EN mode is convenient for Full Bridge control by internal PWM macrocell, because PWM signal is connected to EN input  
only. In this case there is no need to use an additional MUXs. Rotation direction is changed by PH input.  
Table 38: PWM Control of Motor Speed (PH-EN Mode)  
Function  
EN  
PH  
0
Decay  
Forward PWM, fast decay  
Reverse PWM, fast decay  
Forward PWM, slow decay  
Reverse PWM, slow decay  
PWM  
PWM  
PWM  
PWM  
0
0
1
1
1
0
1
Figure 15 shows the current paths in a different drive and decay modes.  
Datasheet  
31-Aug-2021  
Revision 3.4  
54 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
HVDD  
HVDD  
HV_GPO1_HD HV_GPO0_HD  
HV_GPO1_HD  
HV_GPO0_HD  
PWR_GND  
PWR_GND  
FORWARD  
REVERSE  
HVDD  
HVDD  
HV_GPO0_HD  
HV_GPO1_HD HV_GPO0_HD  
HV_GPO1_HD  
PWR_GND  
PWR_GND  
SLOW DECAY  
FORWARD FAST DECAY  
Figure 15: Drive and Decay Modes  
Datasheet  
31-Aug-2021  
Revision 3.4  
55 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
7.2 HALF BRIDGE MODE  
Half Bridge Mode is selected by setting register [782] and register [798] to 0 for HV_GPO0/HV_GPO1 and HV_GPO2/  
HV_GPO3 respectively. This mode is the default mode for HV GPO pins. In this mode, there is a possibility to drive up to four  
motors spinning in one direction.  
HV_GPO0_HD  
DCM  
Figure 16: Half Bridge Mode Operation  
In Half Bridge mode HV GPO will work as shown in Table 39 to Table 42.  
Table 39: HV_GPO0_HD Half Bridge Logic  
HV_GPO0_HD  
Function  
Sleep0  
OE0  
IN0  
(PIN 7)  
Hi-Z  
Hi-Z  
L
Off  
1
0
0
0
X
0
1
1
X
X
0
1
Off (Coast)  
Brake  
Forward  
H
Table 40: HV_GPO1_HD Half Bridge Logic  
HV_GPO1_HD  
(PIN 8)  
Function  
Sleep1  
OE1  
IN1  
Off  
1
0
0
0
X
0
1
1
X
X
0
1
Hi-Z  
Hi-Z  
L
Off (Coast)  
Brake  
Forward  
H
Table 41: HV_GPO2_HD Half Bridge Logic  
HV_GPO2_HD  
(PIN 9)  
Function  
Sleep0  
OE0  
IN0  
Off  
1
0
0
X
0
1
X
X
0
Hi-Z  
Hi-Z  
L
Off (Coast)  
Brake  
Datasheet  
31-Aug-2021  
Revision 3.4  
56 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 41: HV_GPO2_HD Half Bridge Logic  
HV_GPO2_HD  
(PIN 9)  
Function  
Sleep0  
OE0  
IN0  
Forward  
0
1
1
H
Table 42: HV_GPO3_HD Half Bridge Logic  
HV_GPO3_HD  
(PIN 10)  
Function  
Sleep1  
OE1  
IN1  
Off  
1
0
0
0
X
0
1
1
X
X
0
1
Hi-Z  
Hi-Z  
L
Off (Coast)  
Brake  
Forward  
H
Note: All 4 Sleep inputs in this mode are active separately  
7.3 PRE-DRIVER MODE  
This mode is activated by setting register [781] and register [797] to 1 for HV_GPO0/HV_GPO1 and HV_GPO2/HV_GPO3  
respectively. The difference of this mode is that the rise time tR and fall time tF of High Drive HV GPO MOSFETs are much  
smaller than in regular mode. This allows using SLG47105 as a driver for external transistors.  
When this mode is active, user can configure HV GPO to work in Full Bridge or Half Bridge Modes, as well as in regular mode  
(Pre-Driver Mode is disabled, registers [781] / [797] = 0).  
7.4 PARALLEL CONNECTION OF HV GPO  
The user can connect outputs in parallel to increase current rating. Note that this mode has no special register for activation.  
To work in parallel Full Bridge Mode, the user must connect HV_GPO0_HD with HV_GPO2_HD and HV_GPO1_HD with  
HV_GPO3_HD. Figure 17 shows a simplified schematic of DC motor connected to parallel Full Bridge of SLG47105.  
Note that user can configure HV GPO outputs in Half Bridge Mode and connect them in parallel. In this case, user must take  
care of HV GPO control to prevent short circuit.  
HV_GPO0_HD  
HV_GPO2_HD  
DCM  
HV_GPO1_HD  
HV_GPO3_HD  
Figure 17: Parallel Connection of HV GPOs for Full Bridge Mode  
Datasheet  
31-Aug-2021  
Revision 3.4  
57 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
7.5 PROTECTION CIRCUITS  
7.5.1 General FAULT signals  
The SLG47105 has five FAULT signals. Two of them are FAULT_A and FAULT_B. They are the general signals which consist of  
all available FAULT signals for both VDD2_A and VDD2_B separately.  
FAULT_A:  
Over-current Protection OCP_A  
Thermal Shutdown  
Under-voltage Lockout  
FAULT_B:  
Over-current Protection OCP_B  
Thermal Shutdown  
Under-voltage Lockout  
For more information on each of FAULT signals see Section 7.5.3 (Over-current Protection), Section 7.5.4 (Thermal Shutdown),  
and Section 7.5.5 (Under-voltage Lockout).  
7.5.2 Advanced Current Control  
A current control circuit is provided to regulate the system in the event of an overcurrent condition, for example, an abnormal  
mechanical load of DC motor. This circuit can be used for implementing constant current closed loop systems or for current  
limitation.  
The current is sensed by external sense resistors connected to SENSE_A and SENSE_B Pins. Two current comparators are  
used to convert these currents to logic level. Using a current comparator with PWM block, output current can be dynamically  
changed. For example, for a stepper motor for micro stepping it is possible to set 16 values for sinusoidal current limit form.  
7.5.3 Over-Current Protection (OCP)  
Each of FETs has an analog current limit circuit for turning off FETs when the current exceeds the threshold. When the  
overcurrent (IOCP) persists for longer than the tOCP1 time, the FETs in the Half Bridge are disabled, and FAULT signal to matrix  
driven high. tOCP1 time is optional. It can be enabled by register [873] for HV GPO0/1 and by register [875] for HV GPO2/3.  
When this option is disabled, OCP circuit reacts immediately without deglitch time. The FETs will be disabled along tOCP2 time  
when the current decreases to a normal value. tOCP2 could be changed by setting the registers (HV GPO0 - registers[780:778],  
HV GPO1 - registers[788:786], HV GPO2 - registers[796:794], HV GPO3 - registers[804:802]). Overcurrent conditions are  
detected for both high- and low-side FETs. There are special type of matrix input FAULTs, first one is personal matrix input [60]  
for OCP_FAULT_A and another one is personal matrix input [61] for OCP_FAULT_B.  
Datasheet  
31-Aug-2021  
Revision 3.4  
58 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Short Circuit  
Short Circuit Removed  
Current per  
IOCP  
HV OUT  
t
t
t
tOCP1  
Fault_X  
tOCP2  
HV OUTx  
Hi-Z  
Hi-Z  
Hi-Z  
ON  
ON  
Figure 18: Overcurrent Protection Operation  
7.5.4 Thermal Shutdown (TSD) and Thermal Considerations  
If the die temperature exceeds safe limits TSD, all output FETs in each Full/Half Bridge are disabled. After the die temperature  
has fallen to a safe level, operation automatically resumes. Note that TSD is active only during HV GPOs are wake. When all HV  
GPOs are in Power-down, TSD function is inactive. The SLG47105 has a special package optimized for better heat dissipation.  
All HV output pins and central plates should be thermally connected to copper traces or pads on the PCB for better heat  
dissipation. It is recommended to use thermal vias under the Ground and VDD plates for the better thermal characteristic.  
TSD_FAULT signal is connected to Matrix Input [62]. TSD_FAULT signal is also present in FAULT_A and FAULT_B signals.  
7.5.5 Under-Voltage Lockout (UVLO)  
When the voltage on the pin VDD2 is less than the VUVLO, then the HV_GPOx outputs are disabled, Fault_A and Fault_B outputs  
are driven HIGH. When the voltage rises to the minimal VDD2 voltage, then the Fault outputs is driven LOW and work is  
restored.  
UVLO can be enabled separately for VDD2_A and VDD2_B by register [864]/[865].  
7.6 PWM VOLTAGE CONTROL  
The SLG47105 provides the ability to control the voltage applied to the motor winding. This feature allows achieving constant  
motor speed during supply voltage variations.  
To use this function, the user needs to enable Full Bridge mode and use the integrator on first Full Bridge, which consists of  
HV_GPO0_HD and HV_GPO1_HD Pins. The integrator output is connected to the positive input of separate Analog  
Comparator. Also, Vref value on the negative comparator input must be selected. The integrator monitors the voltage difference  
between HV_GPO0_HD and HV_GPO1_HD Pins of Full Bridge and integrates it to get an average voltage value.  
The outputs of the comparator must be connected to the PWM block with or without an additional logic circuit. If the average  
output voltage is lower than Vref, the duty cycle of the PWM output needs to increase; if the average output value is higher than  
Vref, the duty cycle needs to decrease; when the average output value is equal to Comparator threshold, PWM duty cycle is  
kept by EQUAL output.  
Note that if the desired output voltage (reference of ACMP) is greater than the supply voltage, the device will operate at 100 %  
duty cycle and the voltage regulation feature will be disabled. In this mode the device behaves as a conventional Full Bridge  
driver.  
Datasheet  
31-Aug-2021  
Revision 3.4  
59 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
7.7 HIGH VOLTAGE OUTPUTS TYPICAL PERFORMANCE  
290  
270  
T = 150 °C  
T = 25 °C  
T = 85 °C  
T = -40 °C  
250  
230  
210  
190  
170  
150  
130  
I (A)  
Figure 19: Full Bridge Typical Drain-Source High Side On-Resistance vs. Load Current at VDD = 5.5 V, VDD2 = 5 V  
290  
270  
T = 150 °C  
T = 25 °C  
T = 85 °C  
T = -40 °C  
250  
230  
210  
190  
170  
150  
130  
I (A)  
Figure 20: Full Bridge Typical Drain-Source Low Side On-Resistance vs. Load Current at VDD = 5.5 V, VDD2 = 5 V  
Datasheet  
31-Aug-2021  
Revision 3.4  
60 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
370  
350  
VDD2 = 3 V  
330  
310  
290  
270  
250  
230  
210  
190  
170  
150  
130  
VDD2 = 5 V  
VDD2 = 9 V  
VDD2 = 13.2 V  
T (°C)  
Figure 21: Full Bridge Typical Drain-Source High Side On-Resistance vs. Temperature at ILOAD = 0.5 A, VDD = 2.3 V  
370  
350  
VDD2 = 3 V  
330  
310  
290  
270  
250  
230  
210  
190  
170  
150  
130  
VDD2 = 5 V  
VDD2 = 9 V  
VDD2 = 13.2 V  
T (°C)  
Figure 22: Full Bridge Typical Drain-Source High Side On-Resistance vs. Temperature at ILOAD = 0.5 A, VDD = 5.5 V  
Datasheet  
31-Aug-2021  
Revision 3.4  
61 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
370  
350  
VDD2 = 3 V  
330  
310  
290  
270  
250  
230  
210  
190  
170  
150  
130  
VDD2 = 5 V  
VDD2 = 9 V  
VDD2 = 13.2 V  
T (°C)  
Figure 23: Full Bridge Typical Drain-Source Low Side On-Resistance vs. Temperature at ILOAD = 0.5 A, VDD = 2.3 V  
370  
350  
VDD2 = 3 V  
330  
310  
290  
270  
250  
230  
210  
190  
170  
150  
130  
VDD2 = 5 V  
VDD2 = 9 V  
VDD2 = 13.2 V  
T (°C)  
Figure 24: Full Bridge Typical Drain-Source Low Side On-Resistance vs. Temperature at ILOAD = 0.5 A, VDD = 5.5 V  
Datasheet  
31-Aug-2021  
Revision 3.4  
62 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
0.4  
High Side @ Tj = 150 °C  
Low Side @ Tj = 150 °C  
Low Side @ Tj = 85 °C  
Low Side @ Tj = 25 °C  
Low Side @ Tj = -40 °C  
High Side @ Tj = 85 °C  
0.35  
High Side @ Tj = 25 °C  
High Side @ Tj = -40 °C  
0.3  
0.25  
0.2  
0.15  
0.1  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10 10.5 11 11.5 12 12.5 13  
VDD2 (V)  
Figure 25: Full Bridge Typical Drain-Source On-Resistance vs. VDD2 at VDD = 5.5 V, ILOAD = 0.1 A  
2.8  
2.78  
2.76  
2.74  
Fault A, Upper Limit  
Fault B, Upper Limit  
2.72  
Fault A, Lower Limit  
2.7  
Fault B, Lower Limit  
2.68  
2.66  
2.64  
2.62  
2.6  
T (°C)  
Figure 26: Half Bridge Under-voltage Lockout Value vs. Temperature at VDD = 3.3 V  
Datasheet  
31-Aug-2021  
Revision 3.4  
63 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
7%  
6%  
5%  
4%  
3%  
2%  
1%  
0%  
OCP threshold (A)  
Figure 27: Full Bridge High Side OCP Threshold Distribution at VDD=2.3V to 5.5V, VDD2=3V to 13.2V, TJ=-40 °C to 150°C  
7%  
6%  
5%  
4%  
3%  
2%  
1%  
0%  
OCP threshold (A)  
Figure 28: Full Bridge Low Side OCP Threshold Distribution at VDD=2.3V to 5.5V, VDD2= 3V to 13.2V, TJ= -40°C to 150°C  
Datasheet  
31-Aug-2021  
Revision 3.4  
64 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
2.4  
2.35  
2.3  
2.25  
2.2  
2.15  
2.1  
2.05  
Low Side @ Tj = -40 °C  
High Side @ Tj = -40 °C  
Low Side @ Tj = 85 °C  
Low Side @ Tj = 150 °C  
High Side @ Tj = 150 °C  
Low Side @ Tj = 25 °C  
High Side @ Tj = 25 °C  
High Side @ Tj = 85 °C  
2
1.95  
1.9  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
VDD2 (V)  
Figure 29: Full Bridge OCP Threshold vs. VDD2 at VDD = 5.5 V  
8
8.5  
9
9.5 10 10.5 11 11.5 12 12.5 13  
68  
Tj = 150 °C, Rising  
Tj = 25 °C, Rising  
Tj = 150 °C, Falling  
Tj = 25 °C, Falling  
Tj = 85 °C, Rising  
Tj = -40 °C, Rising  
Tj = 85 °C, Falling  
Tj = -40 °C, Falling  
63  
58  
53  
48  
43  
38  
33  
28  
23  
18  
13  
8
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10 10.5 11 11.5 12 12.5 13  
VDD2 (V)  
Figure 30: Half Bridge Dead Band Time vs. VDD2 at VDD = 2.3 V to 5.5 V, f = 50 kHz for Pre-Driver Mode  
Datasheet  
31-Aug-2021  
Revision 3.4  
65 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
390  
Tj = 150 °C, Rising  
Tj = 25 °C, Rising  
Tj = 150 °C, Falling  
Tj = 25 °C, Falling  
Tj = 85 °C, Rising  
Tj = -40 °C, Rising  
Tj = 85 °C, Falling  
Tj = -40 °C, Falling  
370  
350  
330  
310  
290  
270  
250  
230  
210  
190  
170  
150  
130  
110  
90  
70  
50  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10 10.5 11 11.5 12 12.5 13  
VDD2 (V)  
Figure 31: Half Bridge Dead Band Time vs. VDD2 at VDD = 2.3 V to 5.5 V, f = 50 kHz for Regular Mode  
18  
Tj = 150 °C, Rising  
Tj = 25 °C, Rising  
Tj = 150 °C, Falling  
Tj = 25 °C, Falling  
Tj = 85 °C, Rising  
Tj = -40 °C, Rising  
Tj = 85 °C, Falling  
Tj = -40 °C, Falling  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10 10.5 11 11.5 12 12.5 13  
VDD2 (V)  
Figure 32: Half Bridge Output Transition Time vs. VDD2 at VDD = 2.3 V to 5.5 V, f = 50 kHz for Pre-Driver Mode  
Datasheet  
31-Aug-2021  
Revision 3.4  
66 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
170  
165  
160  
155  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
Tj = 150 °C, Rising  
Tj = 25 °C, Rising  
Tj = 150 °C, Falling  
Tj = 25 °C, Falling  
Tj = 85 °C, Rising  
Tj = -40 °C, Rising  
Tj = 85 °C, Falling  
Tj = -40 °C, Falling  
95  
90  
85  
80  
75  
70  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10 10.5 11 11.5 12 12.5 13  
VDD2 (V)  
Figure 33: Half Bridge Output Transition Time vs. VDD2 at VDD = 2.3 V to 5.5 V, f = 50 kHz for Regular Mode  
360  
340  
320  
Tj = 150 °C  
300  
Tj = 85 °C  
280  
Tj = 25 °C  
Tj = -40 °C  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10 10.5 11 11.5 12 12.5 13  
VDD2 (V)  
Figure 34: One Half Bridge IDD2 vs. VDD2 at VDD = 5.5 V  
Datasheet  
31-Aug-2021  
Revision 3.4  
67 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
850  
800  
750  
Tj = 150 °C  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
Tj = 85 °C  
Tj = 25 °C  
Tj = -40 °C  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10 10.5 11 11.5 12 12.5 13  
VDD2 (V)  
Figure 35: All Four Half Bridges IDD2 vs. VDD2 at VDD = 5.5 V  
800  
700  
600  
500  
400  
300  
200  
Tj = 150 °C  
Tj = 85 °C  
Tj = 25 °C  
Tj = -40 °C  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10 10.5 11 11.5 12 12.5 13  
VDD2 (V)  
Figure 36: Two Full Bridges + One CCMP IDD2 vs. VDD2 at VDD = 5.5 V  
Datasheet  
31-Aug-2021  
Revision 3.4  
68 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
Tj = 150 °C  
Tj = 85 °C  
Tj = 25 °C  
Tj = -40 °C  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10 10.5 11 11.5 12 12.5 13  
VDD2 (V)  
Figure 37: One Full Bridge + Integrator + PWM + OSC1 IDD2 vs. VDD2 at VDD = 5.5 V  
Datasheet  
31-Aug-2021  
Revision 3.4  
69 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
8
Differential Amplifier with Integrator and Comparator  
Differential Amplifier with Integrator and Analog Comparator is connected to HV_GPO0_HD and HV_GPO1_HD (first Full  
Bridge). This macrocell is useful when there is a need to keep the constant voltage at Full Bridge load. Differential Amplifier with  
Integrator and Comparator has dedicated power-up input control (Connection Matrix output). During LOW on power-up input the  
Differential Amplifier with Integrator and Comparator is in power down state and its outputs are latched in previous state.  
"Upward" output of macrocell is active LOW when Average Voltage Difference on Full Bridge (integrated Voltage) is higher than  
upper Vref of Comparator (including Differential Amplifier influence). "Upward" output can be optionally inverted by setting  
register [753] to 0.  
"Equal" output is active HIGH when integrated Voltage is equal to Comparator Threshold.  
The inputs of the Differential Amplifier can be:  
-HV_GPO0_HD or HV_GPO1_HD outputs for non-inverting ("+") input;  
-HV_GPO1_HD or HV_GPO0_HD outputs for inverting ("-") input.  
The internal multiplexer connects HV_GPOx_HD Pins to Differential Amplifier inputs in right combination automatically,  
depending on Full Bridge logic inputs current state (in Full Bridge Mode only).  
The Comparator IN- voltage source is internal 32 mV - 2016 mV with 32 mV step or external voltage (GPIO0). There is 0.25x  
Gain divider after Differential Amplifier.  
The Differential Amplifier operation conditions:  
PWM0 is enabled  
HV OUT CRTL0 is configured in Full Bridge mode  
PWM frequency 44 kHz or higher to make sure that Integrator operates correctly.  
The integrated DC voltage level is applied to the comparator negative input. The comparator outputs are used to control the  
PWM duty cycle. In this case, a closed loop system controls the PWM duty cycle to ensure the constant average output voltage  
level.  
Note that PWM duty cycle CNT CLK requires the rate of update at latest two PWM period cycles or more.  
Differential Amplifier with Integrator and Analog Comparator macrocell operates synchronously to PWM0 macrocell. So, to use  
Differential Amplifier with Integrator and Analog Comparator it is necessary to enable PWM0 macrocell and Oscillator, used by  
this PWM macrocell.  
It's recommended not to use Hi-Z state of HV_GPO0_HD and HV_GPO1_HD Pins when working with Differential Amplifier with  
Integrator and Comparator macrocell. Hi-Z state can decrease the accuracy of Differential Amplifier and may cause thermal shut  
down due to current flow through the diodes in the HV outputs, when Hi-Z state is enabled.  
Datasheet  
31-Aug-2021  
Revision 3.4  
70 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
8.1 DIFFERENTIAL AMPLIFIER WITH INTEGRATOR BLOCK DIAGRAM  
Auto Switch  
Logic  
Internal  
Vref  
000000-  
111110  
Ext. VREF  
(GPIO0)  
111111  
invert UPWARD  
register[753]  
Vref  
registers [669:664  
]
Diff. Amp  
from HV GPO0 HD  
from HV GPO1 HD  
0
1
to Diff. Amp+Integrator  
UPWARD Matrix Input [44]  
0
1
/4  
Integrator  
powerUp  
ACMP  
powerUp  
to Diff. Amp+Integrator  
EQUAL Matrix Input [45]  
0
1
powerUp  
Diff_Amp+Integrator_En  
Matrix Output [94]  
Figure 38: Differential Amplifier with Integrator Block Diagram  
8.2 DIFFERENTIAL AMPLIFIER LOAD REGULATION  
4.1  
4.08  
4.06  
4.04  
4.02  
4
3.98  
3.96  
3.94  
Tj = 150 °C, PWM f = 49 kHz  
Tj = 85 °C, PWM f = 49 kHz  
Tj = -40 °C, PWM f = 49 kHz  
Tj = 85 °C, PWM f = 196 kHz  
Tj = -40 °C, PWM f = 196 kHz  
3.92  
Tj = 25 °C, PWM f = 49 kHz  
Tj = 150 °C, PWM f = 196 kHz  
3.9  
Tj = 25 °C, PWM f = 196 kHz  
3.88  
0.2  
0.3  
0.4  
0.5  
I (A)  
Figure 39: Typical Load Regulation at VOUT = 4.096 V, VDD = 2.3 V to 5.5 V, VDD2 = 5 V  
Datasheet  
31-Aug-2021  
Revision 3.4  
71 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
4.08  
4.04  
4
3.96  
3.92  
3.88  
3.84  
3.8  
Tj = 150 °C, PWM f = 49 kHz  
Tj = 25 °C, PWM f = 49 kHz  
Tj = 150 °C, PWM f = 196 kHz  
Tj = 25 °C, PWM f = 196 kHz  
Tj = 85 °C, PWM f = 49 kHz  
Tj = -40 °C, PWM f = 49 kHz  
Tj = 85 °C, PWM f = 196 kHz  
Tj = -40 °C, PWM f = 196 kHz  
3.76  
3.72  
3.68  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
I (A)  
Figure 40: Typical Load Regulation at VOUT = 4.096 V, VDD = 2.3 V to 5.5 V, VDD2 = 9 V  
Datasheet  
31-Aug-2021  
Revision 3.4  
72 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
9
Current Sense Comparator  
There are two Current Sense Comparator macrocells in the SLG47105.  
Each of the Current CMP macrocells has a positive input signal that is connected to SENSE_x pins through Selectable Gain  
block. The options for Selectable Gain are 4x or 8x.  
Each of the Current CMP macrocells has a negative input signal that can be connected to static or dynamic variable Vref. The  
static Vref value is selected via registers. The dynamically changed Vref values are selected with the help of one of the PWM  
blocks, different for each Current Sense Comparator. In this case, 6-bit Vref is selected by 6 Low Significant bits of Synchro  
Buffer, which is a part of the PWM block (detailed in Section 13). For example, the Current Sense Comparator Vref can be  
changed "on the flight" from 16-bytes Register File, which is connected to the Synchro Buffer by PWM block settings, and where  
user-defined Vref values are stored. The Vref values are switched Up or Down depending on the level of PWM macrocell Up/  
Down input, each pulse on DUTY_CYCLE_CLK input.  
Note 1: The PWM block can be active when 16-bytes Register File is used by Current Sense Comparator.  
Note 2: The Vref can be changed in a range from 32 mV to 2016 mV with 32 mV step.  
During power-up, the Current Sense Comparator output will remain LOW, and then become valid 12.5 μs (max) after power-up  
signal goes high.  
Current Sense Comparator0 IN+ is connected with SENSE_A pin through Selectable Gain0.  
Current Sense Comparator1 IN+ is connected with SENSE_B pin through Selectable Gain1.  
9.1 CURRENT SENSE COMPARATOR0 BLOCK DIAGRAM  
register [866]  
CCMP0  
Ready  
Current CMP0  
current_sense_a  
Selectable  
Gain0  
to Connection  
4x/8x  
Matrix Input [48]  
0
1
PU  
Internal Vref  
0.032V-2.016V  
Or Ext Vref  
000000-  
111111  
Static Current  
Sense0 threshold  
registers [701:696]  
0
1
invert current CMP0 Out  
register [867]  
Dynamic from PWM0  
CCMP0 nDisable  
register [870]  
Current Closed  
Loop mode register [702]  
from HV GPO0 Sleep  
Connection Matrix Output[23]  
from HV GPO1 Sleep  
Connection Matrix Output[24]  
Figure 41: Current Sense Comparator0 Block Diagram  
Datasheet  
31-Aug-2021  
Revision 3.4  
73 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
9.2 CURRENT SENSE COMPARATOR1 BLOCK DIAGRAM  
register [868]  
CCMP1  
Ready  
Current CMP1  
current_sense_b  
Selectable  
to Connection  
Matrix Input [49]  
Gain0  
4x/8x  
0
1
PU  
Internal Vref  
000000-  
0.032V-2.016V  
Or Ext Vref  
111111  
Static Current  
Sense1 threshold  
registers [709:704]  
0
invert current CMP1 Out  
register [869]  
Dynamic from PWM1  
Current Closed  
Loop mode register [710]  
1
CCMP1 nDisable  
register [871]  
from HV GPO2 Sleep  
Connection Matrix Output[25]  
from HV GPO3 Sleep  
Connection Matrix Output[26]  
Figure 42: Current Sense Comparator1 Block Diagram  
9.3 CURRENT REGULATION  
To use the Current Regulation, it is necessary to connect sense-resistors between SENSE_x pins and ground. The resistor  
value is calculated by the formula:  
Vref[n]  
I[n] = -------------------------------------  
Rsense × Gain  
Where:  
I[n]- Load Current (through controlled winding or resistive load) for selected Vref[n]  
Vref - reference voltage of Current Sense Comparator, constant value, external source, or selectable value from Register File  
RSENSE - resistance of the sense resistor  
GAIN - selectable gain (4x or 8x, selectable by the register)  
The reference voltage can be set statically or dynamically. For static reference voltage setting it is required to calculate RSENSE  
for selected reference voltage and desired motor current.  
For dynamic reference voltage setting it is required to calculate RSENSE for the maximal user-defined reference voltage and  
maximal current via motor winding.  
16 values in the Reg File can be used to determine the shape of motor current, for example, sin current for the stepper motor.  
DUTY_CYCLE_CLK input of PWM macrocell is used to switch to the next Vref value, and UP/DOWN input of PWM macrocell  
selects the direction of Vref change (next or previous Vref value). For more detailed description of Reg File see Section 13.  
Datasheet  
31-Aug-2021  
Revision 3.4  
74 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
9.4 CURRENT SENSE COMPARATOR TYPICAL PERFORMANCE  
40  
30  
Upper Limit  
Lower Limit  
20  
10  
0
480  
1024  
1568  
-10  
-20  
-30  
Vref (mV)  
T = -40 °C to 150 °C, VDD = 2.3 V to 5.5 V, Gain = 4  
Figure 43: Input Offset Voltage Error vs. Vref for CCMPx (including Amplifier Offset and ACMP Offset)  
0.7  
0.6  
0.5  
0.4  
High To Low, Overdrive = 10 mV  
0.3  
Low to High, Overdrive = 10 mV  
High to Low, Overdrive = 100 mV  
0.2  
Low to High, Overdrive = 100 mV  
0.1  
0
480  
992  
1504  
2016  
Vref (mV)  
Figure 44: Typical Propagation Delay vs. Vref for CCMPx at T = 25 °C, at VDD = 2.3 V to 5.5 V, Gain = 4  
Datasheet  
31-Aug-2021  
Revision 3.4  
75 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
10  
9
8
7
6
Tj = -40 °C  
Tj = 25 °C  
Tj = 85 °C  
Tj = 150 °C  
5
4
3
2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
VDD (V)  
Figure 45: CCMPx Power-On Delay vs. VDD (BG is Forced On)  
Datasheet  
31-Aug-2021  
Revision 3.4  
76 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
10 Connection Matrix  
The Connection Matrix in the SLG47105 is used to create the internal routing for internal functional macrocells of the device once  
it is programmed. The registers are programmed from the one time programmable (OTP) NVM cell during Test Mode Operation.  
The output of each functional macrocell within the SLG47105 has a specific digital bit code assigned to it, that is either set to  
active “High”, or inactive “Low”, based on the design that is created. Once the 2048 register bits within the SLG47105 are  
programmed, a fully custom circuit will be created.  
The Connection Matrix has 64 inputs and 96 outputs. Each of the 64 inputs to the Connection Matrix is hard-wired to the digital  
output of a particular source macrocell, including IO pins, LUTs, analog comparators, other digital resources, such as VDD and  
GND. The input to a digital macrocell uses a 6-bit register to select one of these 64 input lines.  
For a complete list of the SLG47105’s register table, see Section 23.  
Matrix Input Signal  
N
Functions  
GND  
0
1
2
3
LUT2_0/DFF OUT  
LUT2_1/DFF OUT  
LUT2_2/DFF OUT  
TSD_FAULT  
VDD  
62  
63  
Matrix Inputs  
0
1
2
94  
N
Registers  
registers [5:0]  
registers [11:6]  
registers [17:12]  
registers [569:564]  
Diff_Amp_Intergator_EN  
GPIO0  
Digital Output  
GPIO0  
Digital Output OE  
GPIO1  
Digital Output  
Function  
Matrix Outputs  
Figure 46: Connection Matrix  
Function  
Connection Matrix  
GPIO0  
GPIO1  
LUT  
GPIO0  
GPIO1  
GPIO4  
LUT  
GPIO4  
Figure 47: Connection Matrix Example  
Datasheet  
31-Aug-2021  
Revision 3.4  
77 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
10.1 MATRIX INPUT TABLE  
Table 43: Matrix Input Table  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
GND  
1
LUT2_0/DFF0 output  
2
LUT2_1/DFF1 output  
3
LUT2_2/DFF2 output  
4
LUT2_3/PGen output  
5
LUT3_0/DFF3 output  
6
LUT3_1/DFF4/Chopper0 output  
LUT3_2/DFF5/Chopper1 output  
LUT3_3/DFF6 output  
7
8
9
LUT3_4/DFF7 output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
LUT3_5/DFF8 output  
LUT4_0/DFF9 output  
LUT3_6/PD/RIPP CNT output0  
LUT3_6/PD/RIPP CNT output1  
LUT3_6/PD/RIPP CNT output2  
PROG_DLY_EDET_OUT  
MULTFUNC_8BIT_1: DLY_CNT_OUT  
MULTFUNC_8BIT_2: DLY_CNT_OUT  
MULTFUNC_8BIT_3: DLY_CNT_OUT  
MULTFUNC_8BIT_4: DLY_CNT_OUT  
MULTFUNC_8BIT_1: LUT3_DFF_OUT  
MULTFUNC_8BIT_2: LUT3_DFF_OUT  
MULTFUNC_8BIT_3: LUT3_DFF_OUT  
MULTFUNC_8BIT_4: LUT3_DFF_OUT  
MULTFUNC_16BIT_0: DLY_CNT_OUT  
MULTFUNC_16BIT_0: LUT4_DFF_OUT  
GPIO0 Digital Input  
GPI Digital Input  
GPIO1 Digital Input  
GPIO4 Digital Input  
GPIO5 Digital Input  
GPIO6 Digital Input  
GPIO2 digital input or I2C_virtual_0 Input  
GPIO3 digital input or I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
Datasheet  
31-Aug-2021  
Revision 3.4  
78 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 43: Matrix Input Table(Continued)  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
PWM0_OUT+  
PWM0_OUT-  
PWM1_OUT+  
PWM1_OUT-  
Diff. Amp +Integrator UPWARD  
Diff. Amp +Integrator EQUAL  
ACMP0H_OUT  
ACMP1H_OUT  
CurrentSenseComp0_OUT  
CurrentSenseComp1_OUT  
Fault_A  
Fault_B  
EDET_FILTER_OUT  
Oscillator1 (25 MHz) output  
Flex-Divider output  
Oscillator0 (2.048 kHz) output 0  
Oscillator0 (2.048 kHz) output 1  
POR OUT  
PWM0_PERIOD  
PWM1_PERIOD  
OCP_FAULT_A  
OCP_FAULT_B  
TSD_FAULT  
VDD  
Datasheet  
31-Aug-2021  
Revision 3.4  
79 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
10.2 MATRIX OUTPUT TABLE  
Table 44: Matrix Output Table  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[5:0]  
GPIO0 Digital Output  
0
[11:6]  
GPIO0 Digital Output OE  
GPIO1 Digital Output  
1
[17:12]  
2
[23:18]  
GPIO1 Digital Output OE  
GPIO2 Digital Output  
3
[29:24]  
4
[35:30]  
GPIO3 Digital Output  
5
[41:36]  
GPIO4 Digital Output  
6
[47:42]  
GPIO4 Digital Output OE  
GPIO5 Digital Output  
7
[53:48]  
8
[59:54]  
GPIO5 Digital Output OE  
GPIO6 Digital Output  
9
[65:60]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
[71:66]  
GPIO6 Digital Output OE  
HV GPO0 Digital Output  
HV GPO0 Digital Output OE  
HV GPO1 Digital Output  
HV GPO1 Digital Output OE  
HV GPO2 Digital Output  
HV GPO2 Digital Output OE  
HV GPO3 Digital Output  
HV GPO3 Digital Output OE  
Reserved  
[77:72]  
[83:78]  
[89:84]  
[95:90]  
[101:96]  
[107:102]  
[113:108]  
[119:114]  
[125:120]  
[131:126]  
[137:132]  
[143:138]  
[149:144]  
[155:150]  
[161:156]  
[167:162]  
[173:168]  
[179:174]  
[185:180]  
[191:186]  
[197:192]  
[203:198]  
[209:204]  
[215:210]  
[221:216]  
[227:222]  
Reserved  
Reserved  
HV GPO0 SLEEP  
HV GPO1 SLEEP  
HV GPO2 SLEEP  
HV GPO3 SLEEP  
IN0 of LUT2_0 or Clock Input of DFF0  
IN1 of LUT2_0 or Data Input of DFF0  
IN0 of LUT2_3 or Clock Input of PGen  
IN1 of LUT2_3 or nRST of PGen  
IN0 of LUT2_1 or Clock Input of DFF1  
IN1 of LUT2_1 or Data Input of DFF1  
IN0 of LUT2_2 or Clock Input of DFF2  
IN1 of LUT2_2 or Data Input of DFF2  
IN0 of LUT3_0 or Clock Input of DFF3  
IN1 of LUT3_0 or Data Input of DFF3  
IN2 of LUT3_0 or nRST(nSET) of DFF3  
Datasheet  
31-Aug-2021  
Revision 3.4  
80 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 44: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[233:228]  
[239:234]  
[245:240]  
[251:246]  
[257:252]  
[263:258]  
[269:264]  
[275:270]  
[281:276]  
[287:282]  
[293:288]  
[299:294]  
[305:300]  
[311:306]  
[317:312]  
[323:318]  
[329:324]  
[335:330]  
[341:336]  
[347:342]  
[353:348]  
[359:354]  
IN0 of LUT3_1 or Clock Input of DFF4  
IN1 of LUT3_1 or Data Input of DFF4  
IN2 of LUT3_1 or nRST(nSET) of DFF4  
IN0 of LUT3_2 or Clock Input of DFF5  
IN1 of LUT3_2 or Data Input of DFF5  
IN2 of LUT3_2 or nRST(nSET) of DFF5  
IN0 of LUT3_3 or Clock Input of DFF6  
IN1 of LUT3_3 or Data Input of DFF6  
IN2 of LUT3_3 or nRST(nSET) of DFF6  
IN0 of LUT3_4 or Clock Input of DFF7  
IN1 of LUT3_4 or Data Input of DFF7  
IN2 of LUT3_4 or nRST(nSET) of DFF7  
IN0 of LUT3_5 or Clock Input of DFF8  
IN1 of LUT3_5 or Data Input of DFF8  
IN2 of LUT3_5 or nRST(nSET) of DFF8  
IN0 of LUT3_6 or Input of Pipe Delay or UP Signal of RIPP CNT  
IN1 of LUT3_6 or nRST of Pipe Delay or nSET of RIPP CNT  
IN2 of LUT3_6 or Clock of Pipe/RIPP_CNT  
IN0 of LUT4_0 or Clock Input of DFF9  
IN1 of LUT4_0 or Data Input of DFF9  
IN2 of LUT4_0 or nRST(nSET) of DFF9  
IN3 of LUT4_0  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
MULTFUNC_8BIT_1: IN0 of LUT3_7 or Clock Input of DFF10,  
Delay1 Input (or Counter1 nRST Input)  
[365:360]  
[371:366]  
[377:372]  
[383:378]  
[389:384]  
[395:390]  
[401:396]  
[407:402]  
[413:408]  
[419:414]  
MULTFUNC_8BIT_1: IN1 of LUT3_7 or nRST (nSET) of DFF10,  
Delay1 Input (or Counter1 nRST Input) or Delay/Counter1 External Clock Source  
61  
62  
63  
64  
65  
66  
67  
68  
69  
MULTFUNC_8BIT_1: IN2 of LUT3_7 or Data Input of DFF10,  
Delay1 Input (or Counter1 nRST Input)  
MULTFUNC_8BIT_2: IN0 of LUT3_8 or Clock Input of DFF11,  
Delay2 Input (or Counter2 nRST Input)  
MULTFUNC_8BIT_2: IN1 of LUT3_8 or nRST (nSET) of DFF11,  
Delay2 Input (or Counter2 nRST Input) or Delay/Counter2 External Clock Source  
MULTFUNC_8BIT_2: IN2 of LUT3_8 or Data Input of DFF11,  
Delay2 Input (or Counter2 nRST Input)  
MULTFUNC_8BIT_3: IN0 of LUT3_9 or Clock Input of DFF12,  
Delay3 Input (or Counter3 nRST Input)  
MULTFUNC_8BIT_3: IN1 of LUT3_9 or nRST (nSET) of DFF12,  
Delay3 Input (or Counter3 nRST Input) or Delay/Counter3 External Clock Source  
MULTFUNC_8BIT_3: IN2 of LUT3_9 or Data Input of DFF12,  
Delay3 Input (or Counter3 nRST Input)  
MULTFUNC_8BIT_4: IN0 of LUT3_10 or Clock Input of DFF13,  
Delay4 Input (or Counter4 nRST Input)  
Datasheet  
31-Aug-2021  
Revision 3.4  
81 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 44: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
MULTFUNC_8BIT_4: IN1 of LUT3_10 or nRST (nSET) of DFF13;  
[425:420]  
70  
71  
72  
73  
74  
75  
Delay4 Input (or Counter4 nRST Input) or Delay/Counter4 External Clock Source  
MULTFUNC_8BIT_4: IN2 of LUT3_10 or Data Input of DFF13;  
Delay4 Input (or Counter4 nRST Input)  
[431:426]  
MULTFUNC_16BIT_0: IN0 of LUT4_1 or Clock Input of DFF14; Delay0 Input (or Count-  
er0 RST/SET Input)  
[437:432]  
MULTFUNC_16BIT_0: IN1 of LUT4_1 or nRST of DFF14;  
[443:438]  
Delay0 Input (or Counter0 nRST Input) or Delay/Counter0 External Clock Source  
MULTFUNC_16BIT_0: IN2 of LUT4_1 or nSET of DFF14 or KEEP Input of FSM0 or  
External Clock Input of Delay0 (or Counter0)  
[449:444]  
MULTFUNC_16BIT_0: IN3 of LUT4_1 or Data Input of DFF14;  
[455:450]  
Delay0 Input (or Counter0 nRST Input) or UP Input of FSM0  
[461:456]  
[467:462]  
[473:468]  
[479:474]  
[485:480]  
[491:486]  
[497:492]  
[503:498]  
[509:504]  
[515:510]  
[521:516]  
[527:522]  
[533:528]  
[539:534]  
[545:540]  
[551:546]  
[557:552]  
[563:558]  
[569:564]  
[575:570]  
PWM0_UP/DOWN  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
PWM0_KEEP/STOP  
PWM0_DUTY_CYCLE_CNT  
PWM0_EXT_CLK  
PWM0_RESET/SET  
PWM1_UP/DOWN  
PWM1_KEEP/STOP  
PWM1_DUTY_CYCLE_CNT  
PWM1_EXT_CLK  
PWM1_RESET/SET  
pd of ACMP0H from the matrix  
pd of ACMP1H from the matrix  
Filter/Edge detect input  
Programmable delay/edge detect input  
OSC0 ENABLE from matrix  
OSC1 ENABLE from matrix  
Temp sensor PD from matrix  
BG Power-down from the matrix  
Diff_Amp_Integrator_En  
Reserved  
10.3 CONNECTION MATRIX VIRTUAL INPUTS  
As mentioned previously, the Connection Matrix inputs come from the outputs of various digital macrocells on the device. Eight  
of the Connection Matrix inputs have the special characteristic that the state of these signal lines comes from a corresponding  
data bit written as a register value via I2C. This gives the user the ability to write data via the serial channel, and have this  
information translated into signals that can be driven into the Connection Matrix and from the Connection Matrix to the digital  
inputs of other macrocells on the device. The I2C address for reading and writing these register values is at 0x4C (76).  
An I2C write command to these register bits will set the signal values going into the Connection Matrix to the desired state. A read  
command to these register bits will read either the original data values coming from the NVM memory bits (that were loaded during  
the initial device startup) or the values from a previous write command (if that has happened).  
Datasheet  
31-Aug-2021  
Revision 3.4  
82 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 45: Connection Matrix Virtual Inputs  
Matrix Input  
Register Bit  
Addresses (d)  
Matrix Input Signal Function  
Number  
32  
33  
34  
35  
36  
37  
38  
39  
I2C_virtual_0 Input  
I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
[608]  
[609]  
[610]  
[611]  
[612]  
[613]  
[614]  
[615]  
10.4 CONNECTION MATRIX VIRTUAL OUTPUTS  
The digital outputs of the various macrocells are routed to the Connection Matrix to enable interconnections to the inputs of other  
macrocells in the device. At the same time it is possible to read the state of each of the macrocell outputs as a register value via  
I2C. This option, called Connection Matrix Virtual Outputs, allows the user to remotely read the values of each macrocell output.  
The I2C addresses for reading these register values are registers [639:576]. Write commands to the same register values will be  
ignored (with the exception of the Virtual Input register bits at registers [615:608]).  
Datasheet  
31-Aug-2021  
Revision 3.4  
83 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
11 Combination Function Macrocells  
The SLG47105 has 12 combination function macrocells that can serve more than one logic or timing function. In each case, they  
can serve as a Look Up Table (LUT), or as another logic or timing function. See the list below for the functions that can be  
implemented in these macrocells.  
Three macrocells that can serve as either 2-bit LUT or as D Flip-Flop  
Four macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input  
Two macrocells that can serve as either 3-bit LUTs, as D Flip-Flops with Set/Reset Input or as PWM Choppers  
One macrocell that can serve as either 3-bit LUT or as Pipe Delay/Ripple Counter  
One macrocell that can serve as either 2-bit LUT or as Programmable Pattern Generator (PGen)  
One macrocell that can serve as either 4-bit LUT or as D Flip-Flop with Set/Reset Input  
Inputs/Outputs for the 12 combination function macrocells are configured from the connection matrix with specific logic functions  
being defined by the state of configuration bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
11.1 2-BIT LUT OR D FLIP-FLOP MACROCELLS  
There are three macrocells that can serve as either 2-bit LUT or as D Flip-Flop. When used to implement LUT functions, the 2-  
bit LUT takes in two input signals from the connection matrix and produces a single output, which goes back into the connection  
matrix. When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and  
clock (CLK) inputs for the Flip-Flop, with the output going back to the connection matrix.  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change  
LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK is  
High).  
register [1251] DFF or LATCH Select  
IN1  
register [1250] Output Select (Q or nQ)  
S0  
From Connection Matrix Output [28]  
register [1249] DFF Initial Polarity Select  
OUT  
2-bit LUT0  
0: 2-bit LUT0 IN1  
1: DFF0 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
Input [1]  
S0  
S1  
4-bits NVM  
registers [1251:1248]  
0: 2-bit LUT0 OUT  
1: DFF0 OUT  
DFF/  
LATCH  
D
S0  
S1  
From Connection Matrix Output [27]  
Q/nQ  
DFF0  
0: 2-bit LUT0 IN0  
1: DFF0 CLK  
CLK  
1-bit NVM  
register [1260]  
Figure 48: 2-bit LUT0 or DFF0  
Datasheet  
31-Aug-2021  
Revision 3.4  
84 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
register [1255] DFF or LATCH Select  
register [1254] Output Select (Q or nQ)  
register [1253] DFF Initial Polarity Select  
IN1  
S0  
From Connection Matrix Output [32]  
OUT  
2-bit LUT1  
0: 2-bit LUT1 IN1  
1: DFF1 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [2]  
4-bits NVM  
registers [1255:1252]  
S1  
0: 2-bit LUT1 OUT  
1: DFF1 OUT  
DFF/  
LATCH  
D
S0  
S1  
From Connection Matrix Output [31]  
Q/nQ  
DFF1  
0: 2-bit LUT1 IN0  
1: DFF1 CLK  
CLK  
1-bit NVM  
register [1261]  
Figure 49: 2-bit LUT1 or DFF1  
register [1259] DFF or LATCH Select  
register [1258] Output Select (Q or nQ)  
register [1257] DFF Initial Polarity Select  
IN1  
S0  
S1  
From Connection Matrix Output [34]  
OUT  
2-bit LUT2  
0: 2-bit LUT2 IN1  
1: DFF2 Data  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [3]  
4-bits NVM  
registers [1259:1256]  
S1  
0: 2-bit LUT2 OUT  
1: DFF2 OUT  
DFF/  
LATCH  
D
S0  
S1  
From Connection Matrix Output [33]  
Q/nQ  
DFF2  
0: 2-bit LUT2 IN0  
1: DFF2 CLK  
CLK  
1-bit NVM  
register [1262]  
Figure 50: 2-bit LUT2 or DFF2  
Datasheet  
31-Aug-2021  
Revision 3.4  
85 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
11.1.1 2-bit LUT or D Flip-Flop Macrocell Used as 2-bit LUT  
Table 46: 2-bit LUT0 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1248]  
register [1249]  
register [1250]  
register [1251]  
LSB  
0
1
1
0
1
1
MSB  
Table 47: 2-bit LUT1 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1252]  
register [1253]  
register [1254]  
register [1255]  
LSB  
0
1
1
0
1
1
MSB  
Table 48: 2-bit LUT2 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1256]  
register [1257]  
register [1258]  
register [1259]  
LSB  
0
1
1
0
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-bit LUT0 is defined by registers [1251:1248]  
2-bit LUT1 is defined by registers [1255:1252]  
2-bit LUT2 is defined by registers [1259:1256]  
Table 49 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 49: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
Datasheet  
31-Aug-2021  
Revision 3.4  
86 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
11.1.2 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
Q with nReset (Case 1)  
Initial Polarity: Low  
Q with nReset (Case 1)  
Figure 51: DFF Polarity Operations  
11.2 2-BIT LUT OR PROGRAMMABLE PATTERN GENERATOR  
The SLG47105 has one combination function macrocell that can serve as a logic or timing function. This macrocell can serve as  
a Look Up Table (LUT), or a Programmable Pattern Generator (PGen).  
When used to implement LUT functions, the 2-bit LUT takes in two input signals from the connection matrix and produces a single  
output, which goes back into the connection matrix. When used as a LUT to implement combinatorial logic functions, the outputs  
of the LUT can be configured to any user-defined function, including the following standard digital logic devices (AND, NAND,  
OR, NOR, XOR, XNOR). The user can also define the combinatorial relationship between inputs and outputs to be any selectable  
function.  
It is possible to define the RST level for the PGen macrocell. There are both high-level reset (RST) and a low-level reset (nRST)  
options available, which are selected by register [1193]. When operating as a Programmable Pattern Generator, the output of the  
macrocell will clock out a sequence of two to sixteen bits that are user selectable in their bit values, and user selectable in the  
number of bits (up to sixteen) that are output before the pattern repeats.  
Datasheet  
31-Aug-2021  
Revision 3.4  
87 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
From Connection Matrix Output [29]  
From Connection Matrix Output [30]  
IN0  
IN1  
OUT  
2-bit LUT3  
LUT Truth  
Table  
To Connection Matrix Input [4]  
S0  
S1  
0: 2-bit LUT3 OUT  
1: PGen OUT  
registers [1171:1168]  
Pattern  
size  
nRST/RST  
CLK  
PGen  
OUT  
PGen  
Data  
register [1192]  
registers [1191:1176]  
Figure 52: 2-bit LUT3 or PGen  
VDD  
t
t
nRST  
CLK  
OUT  
1
2
6
8
16 17  
3
5
7
0
4
9
10 11  
14 15  
12 13  
t
D7  
D6  
D5  
D10  
D8  
D4  
D3  
D2  
D1  
D15  
D0  
D9  
D0  
D15  
D14  
D13  
D12  
D11  
D0  
t
Figure 53: PGen Timing Diagram  
Datasheet  
31-Aug-2021  
Revision 3.4  
88 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
11.2.1 2-bit LUT or PGen Macrocell Used as 2-bit LUT  
Table 50: 2-bit LUT1 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1168]  
register [1169]  
register [1170]  
register [1171]  
LSB  
0
1
1
0
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-bit LUT3 is defined by registers [1171:1168]  
Table 51 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 51: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
11.3 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELLS  
There are four macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset inputs. When used to implement  
LUT functions, the 3-bit LUTs each takes in three input signals from the connection matrix and produces a single output, which  
goes back into the connection matrix. When used to implement D Flip-Flop function, the three input signals from the connection  
matrix go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the  
connection matrix. It is possible to define the active level for the reset/set input of DFF/LATCH macrocell. There are both active  
high level reset/set (RST/SET) and active low level reset/set (nRST/nSET) options available, which are selected by register  
[1226].  
DFF3 functionality is different from the other DFFs. DFF3 operation will flow the functional description below:  
If register [1228] = 0, and the CLK is rising edge triggered, then Q = D, otherwise Q will not change.  
If register [1228] = 1, then data from D is written into the DFF by the rising edge on CLK and output to Q by the falling edge on  
CLK.  
Datasheet  
31-Aug-2021  
Revision 3.4  
89 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
register [1231] DFF or LATCH Select  
register [1230] Output Select (Q or nQ)  
register [1229] DFF Initial Polarity Select  
register [1228] Q1 or Q2 Select  
register [1227] DFF nRST or nSET Select  
register [1226] Active level selection for RST/  
SET  
IN2  
IN1  
From Connection  
Matrix Output [37]  
S0  
S1  
OUT  
3-bit LUT0  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [36]  
To Connection Matrix  
S0  
S1  
Input [5]  
S0  
S1  
8-bits NVM  
registers [1231:1224]  
From Connection  
Matrix Output [35]  
S0  
S1  
DFF/Latch  
Registers  
0
1
Q/nQ  
DFF  
DFF  
D
D
Q
D
Q
nRST/  
nRST/  
nSET  
CLK  
CLK  
nSET  
nRST/nSET  
CLK  
register [1228]  
1-bit NVM  
register [1199]  
Figure 54: 3-bit LUT0 or DFF3  
Datasheet  
31-Aug-2021  
Revision 3.4  
90 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
register [1159] DFF or LATCH Select  
register [1158] Output Select (Q or nQ)  
register [1157] DFF Initial Polarity Select  
register [1156] DFF nRST or nSET Select  
register [1155] Active level selection RST/  
SET  
IN2  
IN1  
From Connection  
Matrix Output [46]  
S0  
S1  
OUT  
3-bit LUT3  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [45]  
To Connection Matrix  
S0  
S1  
Input [8]  
S0  
8-bits NVM  
registers [1159:1152]  
S1  
DFF/  
LATCH  
D
From Connection  
Matrix Output [44]  
S0  
S1  
nRST/nSET  
CLK  
DFF6  
Q/nQ  
1-bit NVM  
register [1174]  
Figure 55: 3-bit LUT3 or DFF6  
register [1167] DFF or LATCH Select  
register [1166] Output Select (Q or nQ)  
register [1165] DFF Initial Polarity Select  
register [1164] DFF nRST or nSET Select  
register [1163] Active level selection for RST/  
SET  
IN2  
From Connection  
Matrix Output [49]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT4  
LUT Truth  
Table  
From Connection  
Matrix Output [48]  
To Connection Matrix  
S0  
S1  
Input [9]  
S0  
8-bits NVM  
registers [1167:1160]  
S1  
DFF/  
LATCH  
D
From Connection  
Matrix Output [47]  
S0  
S1  
nRST/nSET DFF7  
Q/nQ  
RST/SET  
CLK  
1-bit NVM  
register [1175]  
Figure 56: 3-bit LUT4 or DFF7  
Datasheet  
31-Aug-2021  
Revision 3.4  
91 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
register [1247] DFF or LATCH Select  
register [1246] Output Select (Q or nQ)  
register [1245] DFF Initial Polarity Select  
register [1244] DFF nRST or nSET Select  
register [1243] Active level selection for RST/  
SET  
IN2  
From Connection  
S0  
Matrix Output [52]  
IN1  
IN0  
OUT  
3-bit LUT5  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [51]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [10]  
8-bits NVM  
registers [1247:1240]  
DFF/  
LATCH  
D
From Connection  
Matrix Output [50]  
S0  
S1  
nRST/nSET DFF8  
RST/SET  
Q/nQ  
CLK  
1-bit NVM  
register [1263]  
Figure 57: 3-bit LUT5 or DFF8  
Datasheet  
31-Aug-2021  
Revision 3.4  
92 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
11.3.1 3-bit LUT or D Flip-Flop Macrocells Used as 3-bit LUTs  
Table 52: 3-bit LUT0 Truth Table  
Table 54: 3-bit LUT3 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1224]  
register [1225]  
register [1226]  
register [1227]  
register [1228]  
register [1229]  
register [1230]  
register [1231]  
LSB  
register [1152]  
register [1153]  
register [1154]  
register [1155]  
register [1156]  
register [1157]  
register [1158]  
register [1159]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 53: 3-bit LUT4 Truth Table  
Table 55: 3-bit LUT5 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1160]  
register [1161]  
register [1162]  
register [1163]  
register [1164]  
register [1165]  
register [1166]  
register [1167]  
register [1240]  
register [1241]  
register [1242]  
register [1243]  
register [1244]  
register [1245]  
register [1246]  
register [1247]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
1
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-bit LUT0 is defined by registers [1231:1224]  
3-bit LUT3 is defined by registers [1159:1152]  
3-bit LUT4 is defined by registers [1167:1160]  
3-bit LUT5 is defined by registers [1247:1240]  
Table 56 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the four 3-bit LUT logic cells.  
Table 56: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-3  
OR-3  
NOR-3  
XOR-3  
XNOR-3  
Datasheet  
31-Aug-2021  
Revision 3.4  
93 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
11.3.2 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Initial Polarity: Low  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Figure 58: DFF Polarity Operations with nReset  
Datasheet  
31-Aug-2021  
Revision 3.4  
94 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Initial Polarity: Low  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Figure 59: DFF Polarity Operations with nSet  
Datasheet  
31-Aug-2021  
Revision 3.4  
95 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
11.4 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELL OR PWM CHOPPER  
There are two macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset inputs, or as PWM Chopper.  
When used to implement LUT functions, the 3-bit LUTs each takes in three input signals from the connection matrix and  
produces a single output, which goes back into the connection matrix. When used to implement D Flip-Flop function, the three  
input signals from the connection matrix go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop,  
with the output going back to the connection matrix. It is possible to define the active level for the reset/set input of DFF/LATCH  
macrocell. There are both active high-level reset/set (RST/SET) and active low-level reset/set (nRST/nSET) options available,  
which are selected by register [1139] and register [1147]. When used to implement PWM Chopper function, the three input  
signals from the connection matrix go to the PWM input (PWM) and Blanking Time input (Blanking Time), and Chopper input  
(Chop) for the PWM Chopper, with the output (OUT) going back to the connection matrix.  
register [1143] DFF or Latch Select  
register [1142] Output Select (Q or nQ)  
register [1141] DFF Initial Polarity Select  
register [1140] DFF nRST or nSET Select  
register [1139] Active level selection for RST/SET  
S0  
IN2  
from Connection  
Matrix Output [40]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT1  
LUT Truth  
Table  
S1  
S0  
S1  
from Connection  
Matrix Output [39]  
S0  
S1  
registers [1143:1136 ]  
DFF/Latch  
Register  
S0  
D
to Connection Matrix  
Input [6]  
S0  
S0  
S1  
nRST/nSET  
RST/SET  
S1  
Q/nQ  
from Connection  
Matrix Output [38]  
DFF4  
S0  
S1  
S1  
CLK  
1-bit NVM  
register [1172]  
PWM  
Chop  
Q/nQ  
PWM Chopper0  
Blanking time  
LUT3_1/DFF4 or  
Chopper0 select  
register [1264]  
Figure 60: 3-bit LUT1 or DFF4  
register [1151] DFF or Latch Select  
S0  
IN2  
register [1150] Output Select (Q or nQ)  
register [1149] DFF Initial Polarity Select  
register [1148] DFF nRST or nSET Select  
register [1147] Active level selection for RST/SET  
from Connection  
Matrix Output [43]  
S0  
S1  
IN1  
OUT  
3-bit LUT2  
LUT Truth  
Table  
S1  
IN0  
S0  
from Connection  
Matrix Output [42]  
S0  
S1  
registers [1151:1144]  
DFF/Latch  
Register  
S0  
S1  
D
to Connection Matrix  
Input [7]  
S0  
S0  
S1  
nRST/nSET  
RST/SET  
S1  
Q/nQ  
from Connection  
Matrix Output [41]  
DFF5  
S0  
S1  
S1  
CLK  
1-bit NVM  
register [1173]  
PWM  
Chop  
Q/nQ  
PWM Chopper1  
Blanking time  
LUT3_2/DFF5 or  
Chopper1 select  
register [1266]  
Figure 61: 3-bit LUT2 or DFF5  
Datasheet  
31-Aug-2021  
Revision 3.4  
96 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
11.4.1 3-bit LUT or D Flip-Flop or PWM Chopper Macrocells Used as 3-bit LUTs  
Table 57: 3-bit LUT1 Truth Table  
Table 58: 3-bit LUT2 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1136]  
register [1137]  
register [1138]  
register [1139]  
register [1140]  
register [1141]  
register [1142]  
register [1143]  
LSB  
register [1144]  
register [1145]  
register [1146]  
register [1147]  
register [1148]  
register [1149]  
register [1150]  
register [1151]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
1
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-bit LUT1 is defined by registers [1143:1136]  
3-bit LUT2 is defined by registers [1151:1144]  
Table 59 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the four 3-bit LUT logic cells.  
Table 59: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-3  
OR-3  
NOR-3  
XOR-3  
XNOR-3  
Datasheet  
31-Aug-2021  
Revision 3.4  
97 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
11.4.2 PWM chopper  
PWM Chopper function can be used to chop PWM Duty Cycle by Current Comparator signal.  
PWM  
OUT+  
Blanking  
Time  
PWM  
OUT HV OUT  
PWM Chopper  
OUT  
Delay  
(falling)  
PWM  
Period  
IN  
OUT  
Chop  
OUT  
Current CMP  
Figure 62: PWM Chopper Circuit Example  
In PWM Chopper mode all internal components of 3-bit LUT or D Flip-Flop, or PWM Chopper Macrocell are connected as  
shown in Figure 63.  
Mimic  
Delay  
POR  
D
Q
DFF  
Output  
CLK  
Delay  
nRST  
Mimic  
Delay  
Invert OUT  
Register [1265] for Chopper0  
Register [1267] for Chopper1  
from PWM OUT+  
from Current CMP  
from Blanking Time  
Combination  
Logic  
PWM chopper  
Figure 63: PWM Chopper Interconnection  
This configuration allows ignoring Current Comparator signal during Blanking time during the motor start period. Any active  
signal from Current CMP after Blanking time causes PWM Duty Cycle chopping to currently Period end. The following figures  
demonstrate PWM Chopper operation.  
Datasheet  
31-Aug-2021  
Revision 3.4  
98 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
PWM  
OUT+  
PWM  
Period  
Blanking  
time  
3us  
Curr. CMP  
out  
OUT  
Figure 64: PWM Chopper. Overcurrent Timing Diagram  
PWM  
OUT+  
Blanking  
time  
3us  
Curr. CMP  
out  
go low after  
OUT  
blanking time  
Figure 65: PWM Chopper. Overcurrent Start During Blanking Time  
PWM  
OUT+  
Blanking  
time  
Curr. CMP  
out  
OUT  
Don’t go LOW if  
blanking is HIGH  
Figure 66: PWM Chopper. PWM Duty Cycle is Less than Blanking Time  
Datasheet  
31-Aug-2021  
Revision 3.4  
99 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
PWM  
OUT+  
PWM  
PERIOD  
Blanking  
time  
3us  
Curr. CMP  
out  
OUT  
Figure 67: PWM Chopper. 0% Duty Cycle  
PWM  
OUT+  
Blanking  
time  
3us  
Curr. CMP  
out  
OUT  
Figure 68: PWM Chopper. Overcurrent when 100 % Duty Cycle  
Datasheet  
31-Aug-2021  
Revision 3.4  
100 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
11.4.3 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Initial Polarity: Low  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Figure 69: DFF Polarity Operations with nReset  
Datasheet  
31-Aug-2021  
Revision 3.4  
101 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Initial Polarity: Low  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Figure 70: DFF Polarity Operations with nSet  
Datasheet  
31-Aug-2021  
Revision 3.4  
102 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
11.5 3-BIT LUT OR PIPE DELAY/RIPPLE COUNTER MACROCELL  
There is one macrocell that can serve as either a 3-bit LUT or as a Pipe Delay/Ripple Counter.  
When used to implement LUT functions, the 3-bit LUT takes in three input signals from the connection matrix and produces a  
single output, which goes back into the connection matrix.  
When used as a Pipe Delay, there are three inputs signals from the matrix, Input (IN), Clock (CLK), and Reset (nRST). The Pipe  
Delay cell is built from 16 D Flip-Flop logic cells that provide the three delay options, two of which are user selectable. The DFF  
cells are tied in series where the output (Q) of each delay cell goes to the next DFF cell input (IN). Both of the two outputs (OUT0  
and OUT1) provide user selectable options for 1 - 16 stages of delay. There are delay output points for each set of the OUT0 and  
OUT1 outputs to a 4-input mux that is controlled by registers [1203:1200] for OUT0 and registers [1207:1204] for OUT1. The 4-  
input mux is used to control the selection of the amount of delay.  
The overall time of the delay is based on the clock used in the SLG47105 design. Each DFF cell has a time delay of the inverse  
of the clock time (either external clock or the internal Oscillator within the SLG47105). The sum of the number of DFF cells used  
will be the total time delay of the Pipe Delay logic cell. OUT1 Output can be inverted (as selected by register [1197]).  
In the Ripple Counter mode, there are 3 options for setting which use 7 bits. There are 3 bits to set nSET value (SV) in the range  
from 0 to 7. This value will be set into the Ripple Counter outputs when nSET input goes LOW. End value (EV) will use 3 bits for  
setting output code, which will be last code in the cycle. After reaching the EV, the Ripple Counter goes to the first code by the  
rising edge on CLK input. The Functionality mode option uses 1 bit. This setting defines how exactly Ripple Counter will operate.  
The user can select one of the functionality modes by the register: RANGE or FULL. If the RANGE option is selected, the count  
starts from SV. If UP input is LOW the count goes down: SV→EV→EV-1 to SV+1→SV, and others (if SV is smaller than EV), or  
SV→SV-1 to EV+1→EV→SV (if SV is bigger than EV). If UP input is HIGH, the count starts from SV up to EV, and others.  
In the FULL range configuration, the Ripple Counter functions as follows. If UP input is LOW, the count starts from SV and goes  
down to 0. The current counter value jumps to EV and goes down to 0, and others.  
If UP input is HIGH, the count goes up starting from SV. The current counter value jumps to 0 and counts up to EV, and others.  
See Ripple Counter functionality example in Figure 72.  
Every step is executed by the rising edge on CLK input.  
Datasheet  
31-Aug-2021  
Revision 3.4  
103 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
registers [1207:1200]  
From Connection  
Matrix Output [53]  
IN0  
From Connection  
Matrix Output [54]  
IN1  
IN2  
OUT  
3-bit LUT6  
From Connection  
Matrix Output [55]  
Pipe Delay registers [1207:1204]  
register [1197]  
0
1
0
1
OUT2  
OUT1  
To Connection  
Matrix Input [14]  
register [1196]  
From Connection  
Matrix Output [53]  
IN  
From Connection  
Matrix Output [54]  
nRST  
16 Flip-Flops  
0
OUT1  
From Connection  
Matrix Output [55]  
CLK  
To Connection  
Matrix Input [13]  
1
register [1196]  
OUT0  
0
OUT0  
To Connection  
Matrix Input [12]  
0
1
1
registers [1203:1200]  
1 Pipe OUT  
register [1195]  
Ripple Counter  
3 Flip-Flops  
UP  
From Connection  
Matrix Output [53]  
UP/DOWN  
Control  
OUT0  
D
Q
DFF1  
CLK  
From Connection  
Matrix Output [55]  
CLK  
nQ  
nSET  
From Connection  
Matrix Output [54]  
SET  
OUT1  
OUT2  
Control  
D
Q
DFF2  
CLK  
nQ  
Mode & SET/END  
Value Control  
D
Q
DFF3  
CLK  
nQ  
registers [1206:1200]  
Figure 71: 3-bit LUT6/Pipe Delay/Ripple Counter  
Datasheet  
31-Aug-2021  
Revision 3.4  
104 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Figure 72: Example of Ripple Counter Functionality  
Datasheet  
31-Aug-2021  
Revision 3.4  
105 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
11.5.1 3-bit LUT or Pipe Delay Macrocells Used as 3-bit LUT  
Table 60: 3-bit LUT6 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1200]  
register [1201]  
register [1202]  
register [1203]  
register [1204]  
register [1205]  
register [1206]  
register [1207]  
LSB  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MSB  
Macrocell, when programmed for a LUT function, uses an 8-bit register to define their output function:  
3-bit LUT6 is defined by registers [1207:1200]  
11.6 4-BIT LUT OR D FLIP-FLOP MACROCELL  
There is one macrocell that can serve as either 4-bit LUT or as D Flip-Flop. When used to implement LUT functions, the 4-bit  
LUT takes in two input signals from the connection matrix and produces a single output, which goes back into the connection  
matrix. When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and  
clock (CLK) inputs for the Flip-Flop, with the output going back to the connection matrix.  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change.  
LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output when CLK is  
High).  
Datasheet  
31-Aug-2021  
Revision 3.4  
106 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
From Connection  
register [1223] DFF or LATCH Select  
register [1222] Output Select (Q or nQ)  
register [1221] DFF Initial Polarity Select  
register [1220] Q1 or Q2 Select  
register [1219] DFF nRST or nSET Select  
register [1218] Active level selection for RST/SET  
S0  
S1  
Matrix Output [59]  
IN3  
IN2  
From Connection  
Matrix Output [58]  
S0  
S1  
IN1  
IN0  
OUT  
4-bit LUT0  
LUT Truth  
Table  
From Connection  
Matrix Output [57]  
To Connection Matrix  
S0  
S1  
Input [11]  
S0  
S1  
16-bits NVM  
registers [1223:1208]  
From Connection  
Matrix Output [56]  
S0  
S1  
DFF/Latch  
Registers  
0
Q/nQ  
DFF  
DFF  
D
D
Q
1
D
Q
nRST/  
nSET  
CL  
nRST/  
nSET  
CL  
nRST/nSET  
CLK  
register [1220]  
1-bit NVM  
register [1198]  
Figure 73: 4-bit LUT0 or DFF9  
Datasheet  
31-Aug-2021  
Revision 3.4  
107 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
11.6.1 4-bit LUT Macrocell Used as 4-bit LUT  
Table 61: 4-bit LUT0 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1208]  
register [1209]  
register [1210]  
register [1211]  
register [1212]  
register [1213]  
register [1214]  
register [1215]  
register [1216]  
register [1217]  
register [1218]  
register [1219]  
register [1220]  
register [1221]  
register [1222]  
register [1223]  
LSB  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:  
4-bit LUT1 is defined by registers [1223:1208]  
Table 62: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
Datasheet  
31-Aug-2021  
Revision 3.4  
108 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
12 Multi-Function Macrocells  
The SLG47105 has 5 Multi-Function macrocells that can serve as more than one logic or timing function. In each case, they can  
serve as a LUT, DFF with flexible settings, or as CNT/DLY with multiple modes such as One Shot, Frequency Detect, Edge Detect,  
and others. Also, the macrocell is capable to combine those functions: LUT/DFF connected to CNT/DLY or CNT/DLY connected  
to LUT/DFF, see Figure 74.  
See the list below for the functions that can be implemented in these macrocells:  
Four macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-bit Counter/Delays  
One macrocell that can serve as a 4-bit LUT/D Flip-Flop and as 16-bit Counter/Delay/FSM  
To Connection Matrix  
To Connection Matrix  
From Connection  
Matrix  
To Connection  
Matrix  
From Connection  
Matrix  
To Connection  
Matrix  
LUT  
or  
DFF  
LUT  
or  
DFF  
CNT/DLY  
CNT/DLY  
Figure 74: Possible Connections Inside Multi-Function Macrocell  
Inputs/Outputs for the 5 Multi-Function macrocells are configured from the connection matrix with specific logic functions being  
defined by the state of NVM bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
Datasheet  
31-Aug-2021  
Revision 3.4  
109 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
12.1 3-BIT LUT OR DFF/LATCH WITH 8-BIT COUNTER/DELAY MACROCELLS  
There are four macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-bit Counter/Delays.  
When used to implement LUT functions, the 3-bit LUTs each takes in three input signals from the connection matrix and produces  
a single output, which goes back into the connection matrix or can be connected to CNT/DLY's input.  
When used to implement D Flip-Flop function, the three input signals from the connection matrix go to the data (D), clock (CLK),  
and Reset/Set (nRST/nSET) inputs of the Flip-Flop, with the output going back to the connection matrix or to the CNT/DLY's input.  
When used to implement Counter/Delays, each macrocell has a dedicated matrix input connection. For flexibility, each of these  
macrocells has a large selection of internal and external clock sources, as well as the option to chain from the output of the  
previous (N-1) CNT/DLY macrocell, to implement longer count/delay circuits. These macrocells can also operate in a One-Shot  
mode, which will generate an output pulse of user-defined width. They can also operate in a Frequency Detection or Edge  
Detection mode.  
Counter/Delay macrocell has an initial value, which defines its initial value after GPAK is powered up. It is possible to select initial  
Low or initial High, as well as the initial value defined by a Delay In signal.  
For example, in case the initial LOW option is used, the rising edge delay will start operation.  
For timing diagrams refer to Section 12.3.  
Only CNT0 and CNT4 current count value can be read via I2C. However, it is possible to change the counter data (value counter  
starts operating from) for any macrocell using I2C write commands. In this mode, it is possible to load count data immediately  
(after two DFF) or after counter ends counting. See Section 21.5.4 for further details.  
Note: After two DFF – counters initialize with counter data = 0 after POR.  
Initial state = 1 – counters initialize with counter data = 0 after POR.  
Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.  
Datasheet  
31-Aug-2021  
Revision 3.4  
110 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
12.1.1 3-bit LUT or 8-bit CNT/DLY Block Diagrams  
register [1039] DFF or LATCH Se-  
lect  
From Connection  
register [1038] Output Select (Q or  
nQ)  
Matrix Output [62]  
IN2  
register [1037] (nRST or nSET)  
from matrix Output  
register [1036] DFF Initial Polarity  
S0  
3-bit LUT7  
S0  
S1  
OUT  
IN1  
IN0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [61]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [20]  
8-bits NVM  
registers [1039:1032]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [60]  
S0  
S1  
S0  
S1  
nRST/nSET  
DFF/  
Q/nQ  
LATCH10  
CLK  
register [925]  
LUT/DFF Sel  
registers [1047:1040]  
registers [924:921]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [16]  
0
S0  
OUT  
CNT/DLY1  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [938:926]  
Figure 75: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT7/DFF10, CNT/DLY1)  
Datasheet  
31-Aug-2021  
Revision 3.4  
111 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
register [1055] DFF or LATCH Select  
register [1054] Output Select (Q or  
nQ)  
register [1053] (nRST or nSET) from  
matrix Output  
register [1052] DFF Initial Polarity Se-  
lect  
From Connection  
Matrix Output [65]  
IN2  
S0  
3-bit LUT8  
S0  
S1  
OUT  
IN1  
IN0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [64]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [21]  
8-bits NVM  
registers [1055:1048]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [63]  
S0  
S1  
S0  
S1  
DFF/  
LATCH11  
nRST/nSET  
Q/nQ  
CLK  
register [943]  
LUT/DFF Sel  
registers [1063:1056]  
registers [942:939]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [17]  
0
S0  
OUT  
CNT/DLY2  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [956:944]  
Figure 76: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT8/DFF11, CNT/DLY2)  
Datasheet  
31-Aug-2021  
Revision 3.4  
112 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
register [1071] DFF or LATCH Select  
register [1070] Output Select (Q or nQ)  
register [1069] (nRST or nSET) from  
matrix Output  
register [1068] DFF Initial Polarity Se-  
lect  
From Connection  
Matrix Output [68]  
IN2  
S0  
3-bit LUT9  
S0  
S1  
OUT  
IN1  
IN0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [67]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [22]  
8-bits NVM  
registers [1071:1064]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [66]  
S0  
S1  
S0  
S1  
DFF/  
LATCH12  
nRST/nSET  
Q/nQ  
CLK  
register [959]  
LUT/DFF Sel  
registers [1079:1072]  
registers [967:964]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [18]  
0
S0  
OUT  
CNT/DLY3  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [958:957], [963:960], [974:968]  
Figure 77: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF12, CNT/DLY3)  
Datasheet  
31-Aug-2021  
Revision 3.4  
113 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
register [1087] DFF or LATCH Se-  
lect  
From Connection  
register [1086] Output Select (Q or  
nQ)  
Matrix Output [71]  
IN2  
register [1085] (nRST or nSET)  
from matrix Output  
register [1084] DFF Initial Polarity  
S0  
3-bit LUT10  
S0  
S1  
OUT  
IN1  
IN0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [70]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [23]  
8-bits NVM  
registers [1087:1080]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [69]  
S0  
S1  
S0  
S1  
nRST/nSET DFF/  
Q/nQ  
LATCH13  
CLK  
register [979]  
LUT/DFF Sel  
registers [1095:1088]  
registers [983:980]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [19]  
0
S0  
OUT  
CNT/DLY4  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [978:975], [992:984]  
Figure 78: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF13, CNT/DLY4)  
There is a possibility to use LUT/DFF and CNT/DLY simultaneously.  
Note: It is not possible to use LUT and DFF at once, one of these macrocells must be selected.  
Case 1. LUT/DFF in front of CNT/DLY. Three input signals from the connection matrix go to previously selected LUT or DFF's  
inputs and produce a single output which goes to a CND/DLY input. In its turn Counter/Delay's output goes back to the matrix.  
Case 2. CNT/DLY in front of LUT/DFF. Two input signals from the connection matrix go to CND/DLY's inputs (IN and CLK). Its  
output signal can be connected to any input of previously selected LUT or DFF, after which the signal goes back to the matrix.  
Case 3. Single LUT/DFF or CNT/DLY. Also, it is possible to use a standalone LUT/DFF or CNT/DLY. In this case, all inputs  
and output of the macrocell are connected to the matrix.  
Datasheet  
31-Aug-2021  
Revision 3.4  
114 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
12.1.2 3-bit LUT or CNT/DLYs Used as 3-bit LUTs  
Table 63: 3-bit LUT7 Truth Table  
Table 65: 3-bit LUT8 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1032]  
register [1033]  
register [1034]  
register [1035]  
register [1036]  
register [1037]  
register [1038]  
register [1039]  
LSB  
register [1048]  
register [1049]  
register [1050]  
register [1051]  
register [1052]  
register [1053]  
register [1054]  
register [1055]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 64: 3-bit LUT9 Truth Table  
Table 66: 3-bit LUT10 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1064]  
register [1065]  
register [1066]  
register [1067]  
register [1068]  
register [1069]  
register [1070]  
register [1071]  
register [1080]  
register [1081]  
register [1082]  
register [1083]  
register [1084]  
register [1085]  
register [1086]  
register [1087]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
1
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-bit LUT7 is defined by registers [1039:1032]  
3-bit LUT8 is defined by registers [1055:1048]  
3-bit LUT9 is defined by registers [1071:1064]  
3-bit LUT10 is defined by registers [1087:1080]  
Datasheet  
31-Aug-2021  
Revision 3.4  
115 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
12.2 4-BIT LUT OR DFF/LATCH WITH 16-BIT COUNTER/DELAY MACROCELL  
There is one macrocell that can serve as either 4-bit LUT or as 16-bit Counter/Delay. When used to implement LUT function, the  
4-bit LUT takes in four input signals from the Connection Matrix and produces a single output, which goes back into the  
Connection Matrix. When used to implement 16-bit Counter/Delay function, two of four input signals from the connection matrix  
go to the external clock (EXT_CLK) and reset (DLY_IN/CNT Reset) for the Counter/Delay, with the output going back to the  
connection matrix.  
This macrocell has an optional Finite State Machine (FSM) function. There are two additional matrix inputs for Up and Keep to  
support FSM functionality.  
This macrocell can also operate in a one-shot mode, which will generate an output pulse of user-defined width.  
This macrocell can also operate in a frequency detection or edge detection mode.  
This macrocell can have its active count value read via I2C. See Section 21.5.4 for further details.  
Note: After two DFF – counters initialize with counter data = 0 after POR.  
Initial state = 1 – counters initialize with counter data = 0 after POR.  
Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.  
Datasheet  
31-Aug-2021  
Revision 3.4  
116 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
12.2.1 4-bit LUT or DFF/LATCH with 16-bit CNT/DLY Block Diagram  
From Connection  
Matrix Output [75]  
IN3  
register [1015] DFF or Latch Select  
register [1014] DFF Output Select  
(Q or nQ)  
register [1013] DFF Initial Polarity  
Select  
S0  
S1  
S1  
S0  
S1  
S0  
IN2  
IN1  
From Connection  
Matrix Output [74]  
0
4-bit LUT1  
S1  
S0  
S0  
S1  
S1  
S0  
0
OUT  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [73]  
S1  
S0  
To Connection  
S0  
S0  
S1  
S1  
S0  
Matrix Input [25]  
registers  
[897:896] ≠ 01  
16-bits NVM  
registers [1015:1000]  
1
S1  
From Connection  
Matrix Output [72]  
DFF  
D
S1  
S0  
Registers  
S0  
S1  
S1  
S0  
nSET  
Q/nQ  
DFF14  
1
nRST  
CLK  
LUT/DFF Sel  
register [900]  
registers [902:901]  
registers [1031:1016]  
CNT  
registers [899:896]  
0
S0  
S1  
S2  
S3  
Data  
ext_CLK  
CMO* [74]  
CMO* [73]  
S0  
S1  
To Connection  
Matrix Input [24]  
S0  
0
0
S0  
S1  
S2  
S3  
CMO* [75]  
CMO* [74]  
CMO* [73]  
CMO* [72]  
S1  
S2  
S3  
OUT  
CNT/DLY0  
DLY_IN/CNT Reset  
CMO* [73]  
S1  
S0  
From Connection  
Matrix Output [74]  
0
KEEP  
UP  
From Connection  
Matrix Output [75]  
FSM  
S1  
S0  
Config  
Data  
registers [902:901]  
0
Note: CMO - Connection Matrix Output  
register [897:896] = 01  
Figure 79: 16-bit Multi-Function Macrocell Block Diagram (4-bit LUT1/DFF14, CNT/DLY/FSM0)  
Datasheet  
31-Aug-2021  
Revision 3.4  
117 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
12.2.2 4-bit LUT or 16-bit Counter/Delay Macrocells Used as 4-bit LUTs  
Table 67: 4-bit LUT1 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1000]  
register [1001]  
register [1002]  
register [1003]  
register [1004]  
register [1005]  
register [1006]  
register [1007]  
register [1008]  
register [1009]  
register [1010]  
register [1011]  
register [1012]  
register [1013]  
register [1014]  
register [1015]  
LSB  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:  
4-bit LUT1 is defined by registers [1015:1000]  
Table 68: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
Datasheet  
31-Aug-2021  
Revision 3.4  
118 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
12.3 CNT/DLY/FSM TIMING DIAGRAMS  
12.3.1 Delay Mode CNT/DLY0 to CNT/DLY4  
Delay In  
Asynchronous delay variable  
Asynchronous delay variable  
OSC: force Power-On  
(always running)  
Delay Output  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
Delay In  
offset  
offset  
OSC: auto Power-On  
(powers up from delay in)  
Delay Output  
delay = offset + period x (counter data + 1)  
See offset in Table 24  
delay = offset + period x (counter data + 1)  
See offset in Table 24  
Figure 80: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3  
Datasheet  
31-Aug-2021  
Revision 3.4  
119 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
The macrocell shifts the respective edge to a set time and restarts by appropriate edge. It works as a filter if the input signal is  
shorter than the delay time.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
Delay Function  
Rising Edge Detection  
t
Delay Function  
Falling Edge Detection  
t
Delay Function  
Both Edge Detection  
t
Figure 81: Delay Mode Timing Diagram for Different Edge Select Modes  
12.3.2 Count Mode (Count Data: 3), Counter Reset (Rising Edge Detect) CNT/DLY0 to CNT/DLY4  
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in first rising edge CLK  
Figure 82: Counter Mode Timing Diagram without Two DFFs Synced Up  
Datasheet  
31-Aug-2021  
Revision 3.4  
120 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Note 1 This mode may cause counter data to be loaded wrong, if reset releases at the same time when the clock appears. As a  
solution please use the mode with two DFFs synced up.  
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in 0 CLK after reset  
Figure 83: Counter Mode Timing Diagram with Two DFFs Synced Up  
12.3.3 One-shot Mode CNT/DLY0 to CNT/DLY4  
This macrocell will generate a pulse whenever a selected edge is detected on its input. Register bits set the edge selection. The  
pulse width is determined by counter data and clock selection properties.  
The output pulse polarity (non-inverted or inverted) is selected by register bit. Any incoming edges will be ignored during the pulse  
width generation. The following diagram shows one-shot function for non-inverted output.  
Datasheet  
31-Aug-2021  
Revision 3.4  
121 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
.
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
One-Shot Function  
Rising Edge Detection  
One-Shot Function  
Falling Edge Detection  
t
t
One-Shot Function  
Both Edge Detection  
Figure 84: One-Shot Function Timing Diagram  
This macrocell generates a high level pulse with a set width (defined by counter data) when detecting the respective edge. It does  
not restart while pulse is high.  
12.3.4 Frequency Detection Mode CNT/DLY0 to CNT/DLY4  
Rising Edge: The output goes high if the time between two successive edges is less than the delay. The output goes low if the  
second rising edge has not come after the last rising edge in specified time.  
Falling Edge: The output goes high if the time between two falling edges is less than the set time. The output goes low if the  
second falling edge has not come after the last falling edge in specified time.  
Both Edge: The output goes high if the time between the rising and falling edges is less than the set time, which is equivalent to  
the length of the pulse. The output goes low if after the last rising/falling edge and specified time, the second edge has not come.  
Datasheet  
31-Aug-2021  
Revision 3.4  
122 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Frequency Detector Function  
Rising Edge Detection  
Frequency Detector Function  
Falling Edge Detection  
t
t
Frequency Detector Function  
Both Edge Detection  
Figure 85: Frequency Detection Mode Timing Diagram  
Datasheet  
31-Aug-2021  
Revision 3.4  
123 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
12.3.5 Edge Detection Mode CNT/DLY1 to CNT/DLY4  
The macrocell generates high level short pulse when detecting the respective edge.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Edge Detector Function  
Rising Edge Detection  
Edge Detector Function  
Falling Edge Detection  
t
t
Edge Detector Function  
Both Edge Detection  
Figure 86: Edge Detection Mode Timing Diagram  
Datasheet  
31-Aug-2021  
Revision 3.4  
124 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
12.3.6 Delayed Edge Detection Mode CNT/DLY0 to CNT/DLY4  
In Delayed Edge Detection Mode, High level short pulses are generated on the macrocell output after the configured delay time,  
if the corresponding edge was detected on the input.  
If the input signal is changed during the set delay time, the pulse will not be generated. See Figure 87.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Delayed Edge Detector Function  
Rising Edge Detection  
Delayed Edge Detector Function  
Falling Edge Detection  
t
t
Delayed Edge Detector Function  
Both Edge Detection  
Figure 87: Delayed Edge Detection Mode Timing Diagram  
Datasheet  
31-Aug-2021  
Revision 3.4  
125 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
12.3.7 CNT/FSM Mode CNT/DLY0  
RESET IN  
KEEP  
COUNT END  
CLK  
3
2
1
0
3
2
1
0
3
2
1
3
2
1
0
0
Q
Note: Q = current counter value  
Figure 88: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3  
SET IN  
KEEP  
COUNT END  
CLK  
2
1
0
3
2
1
0
3
3
2
1
2
1
0
3
3
Q
Note: Q = current counter value  
Figure 89: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3  
Datasheet  
31-Aug-2021  
Revision 3.4  
126 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
RESETI N  
KEEP  
COUNT END  
CLK  
65535  
65533 65534  
5
6
7
8
9
3
4
5
3
4
5
1
2
3
4
0
Q
Note: Q = current counter value  
Figure 90: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3  
SET IN  
KEEP  
COUNT END  
CLK  
65533 65534 65535  
8
9
10 11 12  
3
4
5
3
4
5
4
5
6
7
3
Q
Note: Q = current counter value  
Figure 91: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator Is Forced On, UP = 1) for Counter Data = 3  
Datasheet  
31-Aug-2021  
Revision 3.4  
127 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
12.3.8 The Difference in Counter Value for Counter, Delay, One-Shot, and Frequency Detect Modes  
There is a difference in counter value for Counter and Delay/One-Shot/Frequency Detect modes. Compared to Counter mode,  
in Delay/One-Shot/Frequency Detect modes the counter value is shifted for two rising edges of the clock signal.  
One-Shot/Freq. SET/Delay IN  
CLK  
CNT OUT  
3
2
1
0
0
3
CNT Data  
2
DLY OUT  
3
3
2
Delay Data  
1
3
3
3
One-Shot OUT  
One-Shot Data  
3
3
2
3
1
3
3
Figure 92: Counter Value, Counter Data = 3  
12.4 WAKE AND SLEEP CONTROLLER  
SLG47105 has a Wake and Sleep function for two General Purpose ACMPs. The macrocell CNT/DLY0 can be reconfigured for  
this purpose by setting register [918] = 1 and registers [904:903] = 11. The WS serves for power saving, it allows to switch on and  
off selected General Purpose ACMPs on a selected bit of 16-bit counter.  
Datasheet  
31-Aug-2021  
Revision 3.4  
128 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Note 1 BG/Analog_Good time is long and should be considered in the wake and sleep timing in case it dynamically powers on/off.  
Note 2 Wake time should be long enough to make sure ACMP and Vref have enough time to get a sample before going to sleep.  
Power Control  
from Connection Matrix Output[90] for 2.048 kHz OSC0  
OSC0  
WS Controller  
CNT0_OUT  
to Connection Matrix Input[24]  
cnt_end  
ck CNT0  
Analog Control Block  
Divider  
CLK_OSC  
WS_PD  
ACMPxH WS EN[1:0]  
register [672] / [673]  
2
bg/regulator  
pd  
WS_out  
form Connection Matrix  
Output [87:86]  
WS_PD  
(from OSC PD)  
ACMPxH_PD  
2
WS_PD to WS OUT  
state selection register [917]  
WS_out  
WS clock freq. selection  
registers [910:907]  
WS ratio control data  
registers [1031:1016]  
ACMPxH  
WS mode: normal or short wake  
register [674]  
0
1
ACMPxH OUT  
2
to Connection Matrix  
Input [46:47]  
Note: WS_PD is High at OSC0 power down  
ACMPxH_PD  
2
WS_out  
BG/Analog_Good  
Figure 93: Wake/Sleep Controller  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Wake  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP LATCHes Last Data  
Normal ACMP  
Operation  
ACMP follows input  
Sleep Mode  
ACMP LATCHes New Data  
Normal ACMP  
Sleep Mode  
ACMP LATCHes  
New Data  
Operation  
ACMP follows input  
BG/Analog  
Startup time*  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 94: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Reset is Used  
Datasheet  
31-Aug-2021  
Revision 3.4  
129 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Wake  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is LATCHed  
Data is LATCHed  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
Sleep Mode  
Normal ACMP  
Operation for short time  
ACMP follows input  
Sleep Mode  
ACMP LATCHes  
New Data  
ACMP LATCHes Last Data  
ACMP LATCHes New Data  
Normal ACMP  
Operation for short time  
ACMP follows input  
BG/Analog  
Startup time*  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 95: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Sleep  
CNT_SET  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP LATCHes Last Data  
Normal ACMP  
Operation  
ACMP follows input  
Sleep Mode  
ACMP LATCHes New Data  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 96: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Set is Used  
Datasheet  
31-Aug-2021  
Revision 3.4  
130 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Sleep  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is LATCHed  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
Sleep Mode  
ACMP LATCHes New Data  
ACMP LATCHes Last Data  
Normal ACMP  
Operation for short time  
ACMP follows input  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 97: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Set is Used  
Note: If low power BG is powered on/off by WS, the wake time should be longer than 2.1 ms. The BG/analog startup time will  
take maximal 2 ms. Therefore, 8 periods of the Oscillator0 is recommended for the wake time, when BG is configured to Auto  
Power mode. If low power BG is always on, Oscillator0 period is longer than required wake time. The short wake mode can be  
used to reduce the current consumption. The short wake mode is edge triggered when the wake signal is latched by a rising edge  
and released the Power-On signal after the ACMP output data is latched. This allows to have a valid ACMP data for any type of  
wake signal and have the optimized current consumption.  
To use any ACMP under WS controller, the following settings must be done:  
ACMP Power-Up Input from matrix = 1 (for each ACMP separately);  
CNT/DLY0 must be set to Wake and Sleep Controller function (for all ACMP);  
Register WS → enable (for each ACMP separately);  
CNT/DLY0 set/reset input = 0 (for all ACMP).  
As the OSC, any oscillator with any pre-divider can be used. The user can select a period of time while the ACMP is sleeping in  
a range of 1 - 65535 clock cycles. Before they are sent to sleep their outputs are latched, so the ACMPs remain their state (High  
or Low) while sleeping.  
WS controller has the following settings:  
Wake and Sleep Output State (High/Low)  
If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = High, the  
ACMP is continuously on.  
If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = Low, the  
ACMP is continuously off.  
Both cases WS function is turned off.  
Counter Data (Range: 1 - 65535)  
The User can select wake and sleep ratio of the ACMP; counter data = sleep time, one clock = wake time.  
Q mode - defines the state of WS counter data when Set/Reset signal appears Reset - when active signal appears, the WS  
counter will reset to zero and High level signal on its output will turn on the ACMPs. When Reset signal goes out, the WS  
Datasheet  
31-Aug-2021  
Revision 3.4  
131 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
counter will go Low and turn off the ACMP until the counter counts up to the end. Set - when active signal appears, the WS  
counter will stop and Low level signal on its output will turn off the ACMP. When Set signal goes out, the WS counter will go on  
counting and High level signal will turn on the ACMP while counter is counting up to the end.  
Note: The OSC0 matrix power down to control ACMP WS is not supported for short wait time option.  
Edge Select defines the edge for Q mode  
High level Set/Reset - switches mode Set/Reset when level is High  
Note: Q mode operates only in case of "High Level Set/Reset”.  
Wake time selection - time required for wake signal to turn the ACMPxH on  
Normal Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on until  
WS signal is Low again. Wake time is one clock period. It should be longer than BG turn on time and minimal required com-  
paring time of the ACMP.  
Short Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on for 1 µs  
and turn off regardless of WS signal. The WS signal width does not matter.  
Keep - pauses counting while Keep = 1  
Up - reverses counting  
If Up = 1, CNT is counting up from user selected value to 65535.  
If Up = 0, CNT is counting down from user selected value to 1.  
Datasheet  
31-Aug-2021  
Revision 3.4  
132 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
13 Pulse Width Modulator Macrocell (PWM)  
The SLG47105 has two PWM blocks. Inputs/Outputs for the macrocells are configured from the connection matrix with specific  
logic functions being defined by the state of NVM bits.  
PWM macrocell features:  
8-bit (7-bit) PWM Resolution  
I2C/Matrix/Auto dynamically changeable Duty Cycle  
Changeable Period by changing PWM clock source  
Flexible OSC-integrated divider for PWM period selection  
I2C Duty cycle read/write  
Synchronous change of all PWM blocks by sequential I2C write command  
Configurable dead band option for OUT+ and OUT-  
16 Preset Duty Cycle Registers Switching Mode (for PWM sine or other waveforms)  
Autostop at 0 % and 100 % of PWM duty cycle value  
Synchro OFF Mode (wait for PWM period end before stop block)  
Inv/non-Inv macrocell Output options  
From 0 %, 0.4 % to 99.6 %,100 % Duty cycle for 8-bit resolution.  
13.1 8-BIT/7-BIT PWM CONFIGURATIONS  
When configured as PWM, this macrocell has an 8-bit resolution. It is also possible to select 7-bit PWM resolution if the higher  
PWM frequency is needed.  
The PWM block consists of two 8-bit counters. First one, named PWM Period CNT, is used to create PWM period and the  
second one, named PWM Duty Cycle CNT, is used to set PWM Duty Cycle and to make dynamic changes in PWM functionality.  
There is an ability to change the Duty Cycle from 0 % to 100 %. The PWM duty cycle step is 0.4 % for 8-bit resolution and 0.8 %  
for 7-bit resolution mode. This step is constant in the whole range. Both 0 % and 100 % are included.  
13.2 PWM INPUTS  
Duty Cycle CNT Up/Down is the signal for defining the direction of duty cycle change.  
If Duty Cycle CNT Up/Down = 1, the duty cycle increases from current value up to 255.  
If Duty Cycle CNT Up/Down = 0, the duty cycle decreases from current value down to 0.  
Duty Cycle CNT Keep/Stop.  
When Keep function is selected (register [1461] = 0 for PWM0 and register [1479] = 0 for PWM1) HIGH logic level on this  
input disables the change of Duty Cycle CNT (clock for Duty Cycle CNT is blocked). However, PWM block still generates  
PWM output with a constant duty cycle.  
When Stop function is selected (register [1461] = 1 for PWM0 and register [1479] = 1 for PWM1) HIGH logic level on this  
input disables the change of both Duty Cycle CNT and PWM Period CNT. Consequently, if Stop signal is active (logic  
HIGH) the output of PWM block remains constant.  
Note that if no other macrocells except PWM block use the internal OSC, the logic HIGH on Stop input disables the work of  
internal OSC that is used as a clock source for PWM Period CNT. For this case, logic LOW on this input enables OSC  
again.  
Duty Cycle CNT CLK is the clock signal for incrementing/decrementing duty cycle value. Keep in mind that the actual duty  
cycle value will be updated during the next PWM period.  
Power-down (PD) is an active high-level signal for updating Duty Cycle to default user-defined value. Keep in mind, that user  
can change the default Duty Cycle value via I2C. The PD signal will apply right away when Sync Off (register [1301] = 1 for  
PWM0 and register [1475] = 1 for PWM1) and after PWM period is completed when Sync On (register [1301] = 0 for PWM0  
and register [1475] = 0 for PWM1, (Note )). HIGH logic level on PD input disables the change of all PWM internal counters  
and stops the internal oscillator (if internal OSC isn't used by other macrocells) (see Section 13.10 Sync On/Off setting for  
Power-down signal). This function is individual for each PWM block.  
Note that for async mode a minimal time duration for HIGH level at PD input is 100 ns, which guarantee PWM response. A  
pulse shorter than 100 ns might be ignored. An input pulse will be extended internally to this minimal required time to power  
down the PWM block.  
Ext PWM Period CNT CLK is clock input for PWM Period CNT. The clock at this input defines PWM signal frequency. PWM  
Period CNT CLK comes from the internal predefined clock or from the matrix for the high flexibility of PWM frequency.  
Note: First PWM period will be 2-3 clocks longer after PD signal is released.  
13.3 PWM OUTPUTS  
OUT+: PWM positive output  
OUT-: PWM negative output  
Datasheet  
31-Aug-2021  
Revision 3.4  
133 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
PWM_PERIOD: PWM start period pulse (the duration of the high level is equal to one period of the PERIOD CNT CLK)  
13.4 I2C/MATRIX/AUTO DYNAMICALLY CHANGEABLE DUTY CYCLE AND PERIOD  
Duty Cycle in PWM macrocell can be changed in two ways:  
1. PWM Duty Cycle CNT block has two parameters: Counter Data and Current Counter Value. The Current Counter Value  
defines PWM Duty Cycle. Counter Data of PWM Duty Cycle CNT can be changed by I2C commands with a reload into Current  
Counter Value. In this case, I2C Master can change PWM Duty Cycle by I2C. Therefore, Counter Data of PWM Duty Cycle CNT  
must support change via I2C.  
2. Matrix changeable Duty Cycle. In this case "Duty Cycle CNT CLK" and "Duty Cycle CNT Up/Down" inputs are used. Rising  
edge at "Duty Cycle CNT CLK" changes Current Counter Value corresponding to "Duty Cycle CNT Up/Down" input state: if  
"Duty Cycle CNT Up/Down" is LOW then Current Counter Value decreases and vice versa.  
PWM period (frequency) can be changed only by changing PWM Period CNT Clock source. There are several different clock  
options available for user selection. Therefore, for PWM frequency flexibility an OSC-integrated CNT divider can be used.  
13.5 I2C PWM DUTY CYCLE READ/WRITE  
The master I2C should be able to reliably read and write duty cycle value into PWM block. Synchro Buffer is used for correct I2C  
reading of actual PWM duty cycle. The I2C command has some time duration. Synchro Buffer captures actual PWM duty cycle  
for read command and I2C Master can read this data without errors.  
The I2C Master can change PWM duty cycle via I2C write command. The newly written PWM duty cycle value will be loaded (but  
not applied) to the PWM block as the default value. The load will happen when I2C "stop" command is issued. To apply a default  
value to PWM block user must set the "I2C Trigger" bit to 1 via I2C interface. Note, that this value will be applied after the current  
PWM period.  
If the user wants to change both PWM blocks simultaneously, I2C sequential write command must be used.  
Note: Avoid the change of PD signal during I2C read, since it causes the buffer value to update.  
13.6 FLEXIBLE OSC-INTEGRATED DIVIDER  
The OSC-integrated divider is built into 25 MHz OSC to configure the PWM period. This divider can be used for other chip  
resources. There is 8-bit Counter with the source from OSC pre-divider and output to the matrix or directly to CNT/DLY block as  
one possible selection. In many cases, for all PWM macrocells, the same clock frequency is used. It is possible to use this  
Flexible OSC divider for fine frequency tuning of PWM cells.  
The counter in flexible divider can be enabled/disabled by the register bit [741] only. When the counter in flexible divider is  
enabled it will start to count down from the counter data till 0. That is why the frequency division is counter data + 1. Minimum  
frequency after Flexible OSC-integrated Divider is at least twice smaller than input Flexible OSC-integrated Divider frequency.  
Counter won‘t count with 0b00000000 counter data. There is a separate register bit selection to enable the flexible divider output  
to the connection matrix.  
Counter flexible divider resets with POR or RESET signal.  
13.7 INVERTED OUTPUT OPTION  
By default, PWM output begins from HIGH logic level and after reaching duty cycle value, output changes to LOW logic level.  
Optionally the user can invert outputs of PWM block.  
Each PWM macrocell Outputs has an inverter option enabled by registers. It is necessary for simple driving of different LED  
types (common Anode/common Cathode), and others. Each OUT+ and OUT- outputs has one separate register to select its  
inverted/non-inverted output option.  
13.8 CHANGEABLE DEAD BAND OPTION FOR OUT+ AND OUT-  
Dead band parameter is needed to drive external power FETs. The dead band helps to avoid short through for high power FETs.  
Dead band parameter is configurable for driving different external transistor. It is possible to select no dead band time or dead  
band equal to one, two or three PWM Period clock cycles.  
Datasheet  
31-Aug-2021  
Revision 3.4  
134 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
HVDD  
HV_GPOx  
DeadBand  
PWR-GND  
PWM OUT +  
Output Polarity selection  
register = 0  
NMOS_H  
V1  
HV_GPO  
R_pdown3  
t
PWM OUT -  
(Inverted)  
Rload  
Output Polarity selection  
PWM  
register = 1  
Out +  
Out -  
t
DeadBand  
NMOS_L  
V2  
HV_GPO  
R_pdown4  
PWM period  
Figure 98: PWM Output Waveforms and Test Circuit Example for Driving NMOS FETs  
DeadBand  
R_pup  
PWM OUT +  
V
1
HV_GP  
O
PMOS  
(Inverted)  
Output Polarity selection  
register = 1  
t
t
Rload  
PWM  
Out+  
Out-  
PWM OUT -  
(Inverted)  
Output Polarity selection  
register = 1  
NMO  
S
V
2
HV_GP  
O
DeadBand  
PWM period  
R_pdow  
n
Figure 99: PWM Output Waveforms and Test Circuit Example for Driving NMOS and PMOS FETs  
Note that external FETs must have Pull-up/Pull-down resistors between Gate and Source terminals to avoid unpredictable  
behavior of FETs when output pins of SLG47105 are in Hi-Z state (Sleep Mode).  
The waveforms for Phase Correct PWM Mode are shown in Figure 100. Note that in Phase Correct PWM mode dead band  
delay is applied after phase correction, Figure 106.  
Datasheet  
31-Aug-2021  
Revision 3.4  
135 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
DeadBand  
PWM OUT +  
t
t
PWM OUT -  
(Inverted)  
DeadBand  
PWM period  
PWM period  
PWM period  
PWM period  
Figure 100: PWM Output Waveforms for Phase Correct PWM Mode  
13.9 INITIAL PWM VALUE  
Initial PWM duty cycle value is selected by Counter Data of PWM Duty Cycle CNT for regular mode. If Preset Registers Mode is  
selected, the initial value of PWM Duty Cycle CNT (Counter Data) is the preset registers address. Please refer to Section 13.11.  
13.10 SYNC ON/OFF SETTING FOR POWER-DOWN SIGNAL  
"SYNC On/Off" registers define the behavior of Power-down signal. This is the individual setting for each PWM macrocell. If this  
option is disabled (register [1301] for PWM0 = 1 and register [1475] = 1 for PWM0), the PWM output goes low right away by  
active Power-down, Figure 101. If this option is enabled (register [1301] for PWM0 = 0 and register [1475] = 0 for PWM0), the  
PWM block will finish the current PWM period and then will go low, Figure 104.  
SYNC On/Off has no effect on duty cycle change via I2C. In the case of duty cycle change via I2C interface, new duty cycle  
value will be applied to PWM macrocell only after finishing the current PWM period.  
Datasheet  
31-Aug-2021  
Revision 3.4  
136 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Dead Band = 0 clk  
Sync On/Off = 1  
(Asynchronous Power-Down)  
200  
default value  
200  
default value  
Counter Data of  
Duty Cycle CNT  
t
200  
201  
202  
200  
200  
201  
200  
200  
201  
202  
200  
default value  
Duty Cycle CNT  
Duty Cycle  
t
t
t
t
t
t
t
200  
default value  
200  
201  
201  
200  
201  
DUTY_CYCLE_CLK  
(PWM block input)  
T
T*  
T
T + dT  
T*  
T + dT  
T*  
PERIOD_CNT_CLK  
(From internal OSC)  
dT  
dT  
OUT+  
(PWM block output)  
78.4%  
78.4%  
X%  
78.4%  
X%  
78.4%  
X%  
OUT-  
(PWM block output)  
UP/DOWN  
(PWM block input)  
POWER_DOWN  
(PWM block input)  
t
t
OSC enable  
(Internal signal)  
Figure 101: Power-Down with SYNC On/Off = 1 and Dead Band = 0 CLK  
Datasheet  
31-Aug-2021  
Revision 3.4  
137 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Dead Band = 1...3 clk (Rising edges of OUT+ and OUT- are delayed on DB time)  
Sync On/Off = 1 (Asynchronous Power-Down)  
200  
default value  
200  
default value  
Counter Data of  
Duty Cycle CNT  
t
t
t
t
t
t
t
t
200  
201  
202  
200  
201  
202  
201  
200  
200  
201  
200  
default value  
Duty Cycle CNT  
Duty Cycle  
200  
default value  
201  
200  
200  
201  
200  
DUTY_CYCLE_CLK  
(PWM block input)  
T*  
T
T
T + dT  
78.4%  
T*  
T + dT  
T*  
PERIOD_CNT_CLK  
(From internal OSC)  
dT  
dT  
OUT+  
(PWM block output)  
78.4%  
X%  
78.4%  
X%  
78.4%  
X%  
OUT-  
(PWM block output)  
DB  
DB  
DB  
UP/DOWN  
(PWM block input)  
POWER_DOWN  
(PWM block input)  
t
t
OSC enable  
(Internal signal)  
DB  
DB  
DB  
Figure 102: Power-Down with SYNC On/Off = 1 and Dead Band = 1 to 3 CLK  
In Figure 101 to Figure 104:  
dT = 2-3 CLK and it is the additional number of clock pulses, that make first PWM period longer, after releasing PD signal;  
DB - user selected Dead Band time between OUT+ and OUT-;  
T* means the short period of x % duty cycle (T* < 255 PERIOD_CNT_CLK), that is finished at the moment of PD signal com-  
ing.  
Datasheet  
31-Aug-2021  
Revision 3.4  
138 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Dead Band = 0 clk  
Sync On/Off = 0  
(Synchronous Power-Down)  
200 def. value  
200 def. value  
Counter Data of  
Duty Cycle CNT  
t
t
t
t
t
t
t
t
t
t
200  
202  
201  
202  
201  
200  
201  
202 200  
201  
200  
default value  
Duty Cycle CNT  
Duty Cycle  
200  
default value  
200  
200  
200  
201  
200  
201  
DUTY_CYCLE_CLK  
(PWM block input)  
T
T
T
T + dT  
78.4%  
T
T
T
PERIOD_CNT_CLK  
(From internal OSC)  
dT  
OUT+  
(PWM block output)  
78.4%  
78.4%  
78.8%  
78.8%  
78.4%  
78.8%  
OUT-  
(PWM block output)  
UP/DOWN  
(PWM block input)  
POWER_DOWN  
(PWM block input)  
OSC enable  
(Internal signal)  
Figure 103: Power-Down with SYNC On/Off = 0 and Dead Band = 0 CLK  
Datasheet  
31-Aug-2021  
Revision 3.4  
139 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Dead Band = 1...3 clk (Rising edges of OUT+ and OUT- are delayed on DB time)  
Sync On/Off = 0 (Synchronous Power-Down)  
200  
default value  
200  
default value  
Counter Data of  
Duty Cycle CNT  
t
t
t
t
t
t
t
t
t
t
200  
202  
201  
202  
200  
201  
202  
200  
201  
200  
default value  
Duty Cycle CNT  
Duty Cycle  
200  
default value  
200  
201  
200  
201  
200  
201  
200  
DUTY_CYCLE_CLK  
(PWM block input)  
T
T
T
T + dT  
T
T
T
PERIOD_CNT_CLK  
(From internal OSC)  
dT  
OUT+  
(PWM block output)  
78.4%  
78.4%  
78.8%  
78.4%  
78.8%  
78.4%  
78.8%  
OUT-  
(PWM block output)  
DB  
DB  
DB  
UP/DOWN  
(PWM block input)  
POWER_DOWN  
(PWM block input)  
OSC enable  
(Internal signal)  
Figure 104: Power-Down with SYNC On/Off = 0 and Dead Band = 1 to 3 CLK  
13.11 REGULAR/PRESET REGISTERS MODE  
In Regular Mode the value of duty cycle is changed every rising edge on Duty Cycle CNT CLK input. In Preset Registers Mode  
the duty cycle is changed according to 16 predefined values, named Reg File, every rising edge on Duty Cycle CNT CLK input.  
Selectable Preset registers are reserved to determine 16 different PWM Duty Cycle values. In Preset Registers mode the "Up/  
Down" input and "Duty Cycle CNT CLK input" change the address of Preset Register, that will be applied to PWM block at the  
rising edge on "Duty Cycle CNT CLK input".  
Datasheet  
31-Aug-2021  
Revision 3.4  
140 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
One 16-byte Preset Register is shared between two PWM macrocells.  
Each PWM block can select Reg File as Duty Cycle source. When the Reg File is selected as a source, there are three options:  
use all 16 bytes, use less significant 8 bytes, or use most significant 8 bytes. In this case, 4-bits (when using 16-Bytes Reg File)  
or 3-bits (when using any of 8 bytes Reg File) LSB Current Value of PWM Duty Cycle CNT is used to select data address inside  
the Reg File. The counter data of the Duty Cycle CNT will define the initial starting point in the Reg file. So, each PWM block has  
its own initial position in the Reg File.  
Table 69: Regular/Preset Mode Registers  
Register Name  
Mode of Operation  
Register Definition  
Regular Mode  
00: from PWM Duty Cycle CNT  
01: 8-byte MSB of RegFile  
10: 8-byte LSB of RegFile  
11: 16-byte RegFile  
PWMx: Duty Cycle source  
Preset Registers Mode  
For more detailed description see Table 71 and Table 72.  
13.12 PWM CONTINUOUS/AUTOSTOP MODE  
“Continuous/Autostop mode” register enables Autostop mode. This mode can be used with both Preset Registers or Regular  
Mode.  
If PWM block works in Continuous Mode (register [1302] = 0 for PWM0 or register [1476] = 0 for PWM1), PWM Duty Cycle CNT  
will overflow when it reaches boundaries. For example, for PWM Duty Cycle Counter counts up: 254th → 255th → 0th → 1st, and  
for PWM Duty Cycle Counter counts down: 1st → 0th → 255th → 254th  
Or in Preset Registers Mode, when Continuous Mode is selected (register [1302] = 0 for PWM0 or register [1476] = 0 for PWM1):  
counting up 14th → 15th → 0th → 1st, and counting down 1st → 0th → 15th → 14th  
If Autostop mode is active (register [1302] = 1 for PWM0 or register [1476] = 1 for PWM1), PWM duty cycle counter will stop when  
it reaches boundaries. The conditions of Autostop are the next:  
PWM Duty Cycle reaches the value 0 in Regular Mode or Least Significant Byte of Preset registers in Preset Registers Mode,  
and Up/Down is LOW logic level (counting Down).  
PWM Duty Cycle reaches the value 255 (127 in 7-bit submode) in Regular Mode or Most Significant Byte of Preset registers  
in Preset Registers Mode and Up/Down is HIGH logic level (counting Up).  
13.13 INTERNAL OSCILLATOR AUTO DISABLE MODE  
There is an OSC Auto Disable/Enable control, in which internal OSC is enabled only when it is required for PWM block. This  
Auto Disable Mode will operate only if user selects internal oscillator as a clock source for PWM Period Clock Counter ("PWM0  
Period Clock Source selection" registers have a value from b0000 to b1001).  
If the user selected PWM Period CNT overflow event as a clock source for Duty Cycle Counter (registers [1469:1468] = 01, or  
registers [1469:1468] = 10, or registers [1469:1468] = 11 for PWM0 and registers [1485:1484] = 01, or registers [1485:1484] =  
10, or registers [1485:1484] = 11 for PWM1), then no clocks will be on Duty Cycle Counter Clock input when PWM enters to  
Autostop State (see Table 70).  
The conditions, in which internal OSC will be automatically disabled, are shown in Table 70.  
Table 70: Conditions for Disabling/Enabling an Internal Oscillator  
N0  
Disable Condition  
Delay before OSC in disabled  
Enable Condition  
Disable OSC immediately if SYNC  
On/Off register [1301] = 1 for PWM0  
and register [1475] = 1 for PWM1  
1
PD signal goes HIGH  
PD signal goes LOW  
Disable OSC after current duty cycle  
period if SYNC On/Off register [1301]  
= 0 for PWM0 and register [1475] = 0  
for PWM1  
Datasheet  
31-Aug-2021  
Revision 3.4  
141 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 70: Conditions for Disabling/Enabling an Internal Oscillator (Continued)  
N0  
Disable Condition  
Delay before OSC in disabled  
Enable Condition  
2
Stop signal goes HIGH  
Disable OSC immediately  
Stop signal goes LOW  
Up/Down is logic HIGH (counting up)  
and actual PWM value is 255 (127 for  
7-bit submode), "PWM boundary  
OSC automatically disable" (register  
[1303]=1forPWM0orregister[1477]  
= 1 for PWM1)  
"Continuous/Autostopmode"(register  
[1302]=1forPWM0orregister[1476]  
= 1 for PWM1) Figure 105  
Disable OSC after one full PWM peri- Up/Down signal changes its level to  
od. logic LOW (count down) Figure 105  
3
4
Up/Down is logic LOW (counting  
down) and actual PWM value is 0,  
"PWM boundary OSC automatically  
disable"(register [1303] = 1 for PWM0 Disable OSC after one full PWM peri- Up/Down signal changes its level to  
or register [1477] = 1 for PWM1) and od.  
"Continuous/Autostopmode"(register  
[1302]=1forPWM0orregister[1476]  
= 1 for PWM1)  
logic HIGH (count up)  
Note 1 If PWM boundary OSC automatically disable register [1303] = 1 for PWM0 or register [1477] = 1 for PWM1 and PWM  
works with Preset Registers (registers [1467:1466] = 01 or registers [1467:1466] = 10, or registers [1467:1466] = 11 for PWM0  
and registers [1483:1482] = 01 or registers [1483:1482] = 10, or registers [1483:1482] = 11 for PWM1), internal OSC will stop if  
Preset Registers Index = 15 (7 when LSByte mode of Preset Registers is used) the Preset Register Index remains unchanged  
until Up/Down signal changes. The same behavior has zero Preset Register Index (8 when MSByte mode of Preset Registers is  
used). When this index will be reached and OSC Auto Disable Mode is active the Preset Register Index remains unchanged until  
Up/Down signal changes.  
Note 2 Other macrocells that use OSC, can start it or keep it enabled even if OSC Auto Disable Mode is active and condition for  
disabling OSC occurs.  
Note 3 If dead band is different from 0, then OSC will be disabled for Dead Band Time later.  
Datasheet  
31-Aug-2021  
Revision 3.4  
142 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
VDD  
t
t
t
POR  
default value  
254  
255  
254  
254  
254  
255  
254  
253  
253  
Duty Cycle CNT  
default value  
253  
254  
254  
253  
254  
255  
255  
Duty Cycle  
(actual PWM output)  
t
Duty Cycle Clk  
t
(External signal)  
T
T
T
T
T
T
T
T
T
Period CNT Clk  
(Internal OSC)  
T = 256 Period CNT Clk  
t
UP/DOWN  
(PWM block input)  
t
OSC enable  
(Internal signal)  
t
6)  
4)  
5)  
1)  
2)  
3)  
Figure 105: Example of PWM Auto Oscillator Control  
In the example in Figure 105, Duty Cycle CLK is external to PWM block signal, Period CNT CLK is a signal from internal OSC.  
"PWM boundary OSC automatically disable" register [1303] = 1 for PWM0 or register [1477] = 1 for PWM1. Autostop Mode is  
active too ("Continuous/Autostop mode" register [1302] = 1 for PWM0 or register [1476] = 1 for PWM1). The key events of  
Autostop are the next:  
Event 1) after chip start-up, OSC is enabled. The clock from internal OSC is used to generate PWM period. Duty Cycle CNT  
counts up since Up/Down input of PWM macrocell is logic HIGH. Note that first OSC pulse is delayed when OSC becomes  
enabled (see Table 24).  
Event 2) the value of Duty Cycle CNT is updated every rising edge at Duty Cycle CLK input. This value becomes valid at the  
beginning of every PWM period.  
When the Duty Cycle value of 100 % is reached and Up/Down input is logic HIGH, PWM macrocell disables internal OSC  
after one full PWM period.  
Event 3) internal OSC starts working because Up/Down signal becomes LOW and Duty Cycle = 100 %. This is the scenario  
for starting OSC after it was automatically disabled.  
Event 4) the Up/Down signal changes the direction of Duty Cycle counting because at the moment of signals rising edge on  
Duty Cycle CLK input, the level of Up/Down input is logic HIGH.  
Event 5) OSC is disabled because the value of Duty Cycle is 100 % and at the beginning of the next PWM period the Up/  
Down input is logic HIGH.  
Event 6) Since Up/Down goes low and Duty Cycle is equal to 100 %, this is the scenario for starting up the OSC.  
Datasheet  
31-Aug-2021  
Revision 3.4  
143 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
13.14 PHASE CORRECT PWM MODE  
In normal mode, PWM output is HIGH, then LOW for each PWM period. When Phase correct PWM (also called Center Align)  
register is active (register [1460] = 1 for PWM0 or register [1478] = 1 for PWM1), the PWM output is HIGH, then LOW for the first  
period, then LOW again and HIGH for the second period. So, there are less edges (or less output switches) for the Phase  
correct PWM mode.  
PWM OUT+  
Phase Correct Mode register = 0  
PWM OUT+  
Phase Correct Mode register = 1  
PWM Period  
PWM Period  
PWM Period  
PWM Period  
Figure 106: Phase Correct PWM Mode  
13.15 PWM PERIOD OUTPUT  
PWM_PERIOD output indicates the start of the new PWM period at PWM_OUT+. This output doesn't depend on the PWM duty  
cycle. The duration of the high level is equal to one period of the PERIOD_CNT_CLK.  
PWM Period  
PWM OUT+  
PWM PERIOD  
Figure 107: PWM Period Waveform  
Datasheet  
31-Aug-2021  
Revision 3.4  
144 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
13.16 PWM BLOCK DIAGRAMS  
8-bit, 7-bit resolution: register [1298]  
OUT+ Output Polarity selection: register [1299]  
OUT- Output Polarity selection: register [1300]  
Sync Off/On: register [1301]  
Continuous/Autostop mode: register [1302]  
Boundary OSC disable:register [1303]  
Phase Correct mode: register [1460]  
I2C initial value: registers [1295:1288]  
Deadband selection: registers [1465:1464]  
Duty Cycle Source selection: registers [1467:1466]  
Keep/Stop: register [1461]  
I2C trigger: register [1296]  
from Connection Matrix Output [76]  
from Connection Matrix Output [77]  
from Connection Matrix Output [80]  
CNT Data  
UP/DOWN  
Duty  
Cycle  
KEEP/STOP  
Reg. File  
Power-Down  
DUTY_CYCLE_CLK  
Coutner  
(16 bytes)  
Reg. File  
to PWM1  
from Connection Matrix Output [78]  
PWM Period CNT  
overflow  
0
1
I2C current duty cycle value  
registers [1319:1312]  
/2  
/8  
Synchro  
Buffer  
Duty Cycle CNT  
CLK source  
registers [1469:1468]  
Digital  
CMP  
CNT_OVF  
CLK_OSC0  
Period  
Counter  
CLK_OSC0/4  
to Connection Matrix Input [40]  
to Connection Matrix Input [41]  
OUT+  
OUT-  
CLK_OSC1  
. . .  
. . .  
PERIOD_  
CNT_CLK  
CLK_OSC1/262144  
from Flexible Divider  
PWM_PERIOD  
to Connection Matrix Input [58]  
from Connection Matrix Output [79]  
external_CLK  
PWM Period CNT  
CLK source  
registers [1459:1456]  
PWM0  
Figure 108: PWM0 Functional Diagram  
Datasheet  
31-Aug-2021  
Revision 3.4  
145 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
8-bit, 7-bit resolution: register [1472]  
OUT+ Output Polarity selection: register [1473]  
OUT- Output Polarity selection: register [1474]  
Sync Off/On: register [1475]  
Continuous/Autostop mode: register [1476]  
Boundary OSC disable: register [1477]  
Phase Correct mode: register [1478]  
Deadband selection: registers [1481:1480]  
I2C initial value: registers [1311:1304]  
Duty Cycle Source selection: registers [1483:1482]  
Keep/Stop: register [1479]  
I2C trigger: register [1297]  
CNT Data  
Duty  
Cycle  
Coutner  
from Connection Matrix Output [81]  
from Connection Matrix Output [82]  
UP/DOWN  
KEEP/STOP  
from Connection Matrix Output [85]  
Power-Down  
DUTY_CYCLE_CLK  
from Connection Matrix Output [83]  
from Reg. File  
PWM Period CNT  
overflow  
I2C current duty cycle value  
registers [1327:1320]  
0
1
/2  
/8  
Synchro  
Buffer  
Duty Cycle CNT  
CLK source  
registers [1485:1484 ]  
Digital  
CMP  
CNT_OVF  
CLK_OSC0  
Period  
Counter  
CLK_OSC0/4  
to Connection Matrix Input [42]  
to Connection Matrix Input [43]  
OUT+  
OUT-  
CLK_OSC1  
. . .  
. . .  
PERIOD_  
CNT_CLK  
CLK_OSC1/262144  
from Flexible Divider  
PWM_PERIOD  
to Connection Matrix Input [59]  
from Connection Matrix Output [84]  
external_CLK  
PWM Period CNT CLK source  
Registers [1491:1488]  
PWM1  
Figure 109: PWM1 Functional Diagram  
13.17 PWM REGISTER SETTINGS  
Table 71: PWM0 Register Settings  
Signal Function  
Register Bit Address Register Definition  
0: 8-bit PWM0  
1 bit [1298] register  
PWM0: 8-bit or 7-bit resolution  
PWM0: OUT+ polarity selection  
PWM0: OUT- polarity selection  
PWM0: SYNC On/Off  
1: 7-bit PWM0  
0: Non-Inverted Output  
1 bit [1299] register  
1: Inverted Output  
0: Non-Inverted Output  
1 bit [1300] register  
1: Inverted Output  
0: Synchronous Power-Down  
1 bit [1301] register  
1: Asynchronous Power-Down  
0: Continuous mode  
1 bit [1302] register  
PWM0: Continuous/Autostop mode  
PWM0: Boundary OSC disable  
PWM0: Phase Correct mode  
1: PWM Duty Cycle Counter Autostop at 0 % or 100 %  
0: OSC is always enabled at boundaries  
1: Automatically Disable OSC  
1 bit [1303] register  
1 bit [1460] register  
0: Disable  
1: Enable  
Datasheet  
31-Aug-2021  
Revision 3.4  
146 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 71: PWM0 Register Settings (Continued)  
Signal Function  
Register Bit Address Register Definition  
00: No Deadband  
2 bits  
[1465:1464] registers  
01: 1 PWM0 clock cycles  
10: 2 PWM0 clock cycles  
11: 3 PWM0 clock cycles  
PWM0: Deadband selection  
0: Keep  
1: Stop  
PWM0: Keep/Stop selection  
PWM0: I2C trigger  
1 bit [1461] register  
1 bit [1296] register  
0: Don't update duty cycle value  
1: Update duty cycle value  
00: from PWM Duty Cycle CNT (Regular Mode)  
01: 8-byte MSB of RegFile (Preset Registers Mode)  
10: 8-byte LSB of RegFile (Preset Registers Mode)  
11: 16-byte RegFile (Preset Registers Mode)  
2 bits  
[1467:1466] registers  
PWM0: Duty Cycle source  
0000: CLK_OSC0  
0001: CLK_OSC0/4  
0010: CLK_OSC1  
0011: CLK_OSC1/8  
0100: CLK_OSC1/64  
0101: CLK_OSC1/512  
0110: CLK_OSC1/4096  
0111: CLK_OSC1/32768  
1000: CLK_OSC1/262144  
1001: From Flexible Divider  
1010: Reserved  
PWM0 Period Counter Clock Source  
selection  
4 bits  
[1459:1456] registers  
1011: Matrix OUT [79] (external clock)  
00: Matrix output  
PWM0: Duty Cycle Counter Clock  
Source selection  
2 bits  
[1469:1468] registers  
01: PWM Period CNT overflow  
10: every 2nd pulse of PWM Period CNT overflow  
11: every 8th pulse of PWM Period CNT overflow  
PWM0: Preset 16-byte Registers  
byte [0...15]  
16 bytes  
[1455:1328] registers  
Preset 16 bytes Duty Cycle values  
Initial PWM0 Duty Cycle value  
8 bits  
[1295:1288] registers  
PWM0: Initial value  
8 bits  
[1319:1312] registers  
PWM0: Current duty cycle value  
Current PWM0 duty cycle value for I2C read  
Table 72: PWM1 Register Settings  
Signal Function  
Register Bit Address Register Definition  
8 bits  
[1311:1304] registers  
PWM1: Initial value  
Initial PWM1 Duty Cycle value  
8 bits  
[1327:1320] registers  
PWM1: Current duty cycle value  
PWM1: 8-bit or 7-bit resolution  
PWM1: OUT+ output polarity selection  
PWM1: OUT- polarity selection  
PWM1: SYNC On/Off  
Current PWM1 duty cycle value for I2C read  
0: 8-bit PWM1  
1: 7-bit PWM1  
1 bit [1472] register  
1 bit [1473] register  
1 bit [1474] register  
1 bit [1475] register  
1 bit [1476] register  
0: Non-Inverted Output  
1: Inverted Output  
0: Non-Inverted Output  
1: Inverted Output  
0: Synchronous Power-Down  
1: Asynchronous Power-Down  
0: Continuous mode  
1: PWM Duty Cycle Counter Autostop at 0 % or 100 %  
PWM1: Continuous/Autostop mode  
Datasheet  
31-Aug-2021  
Revision 3.4  
147 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 72: PWM1 Register Settings (Continued)  
Signal Function  
Register Bit Address Register Definition  
0: OSC is always enabled at boundaries  
1: Automatically Disable OSC  
PWM1: Boundary OSC disable  
1 bit [1477] register  
1 bit [1478] register  
0: Disable  
1: Enable  
PWM1: Phase Correct mode  
PWM1: Deadband selection  
00: No Deadband  
2 bits  
[1481:1480] registers  
01: 1 PWM1 clock cycles  
10: 2 PWM1 clock cycles  
11: 3 PWM1 clock cycles  
0: Keep  
1: Stop  
PWM1: Keep/Stop Selection  
PWM1: I2C trigger  
1 bit [1479] register  
1 bit [1297] register  
0: Don't update duty cycle value  
1: Update duty cycle value  
00: from PWM Duty Cycle CNT (Regular Mode)  
01: 8-byte MSB of RegFile (Preset Registers Mode)  
10: 8-byte LSB of RegFile (Preset Registers Mode)  
11: 16-byte RegFile (Preset Registers Mode)  
2 bits  
[1483:1482] registers  
PWM1: Duty Cycle source  
0000: CLK_OSC0  
0001: CLK_OSC0/4  
0010: CLK_OSC1  
0011: CLK_OSC1/8  
0100: CLK_OSC1/64  
0101: CLK_OSC1/512  
0110: CLK_OSC1/4096  
0111: CLK_OSC1/32768  
1000: CLK_OSC1/262144  
1001: From Flexible Divider  
1010: Reserved  
PWM1 Period Counter Clock Source  
selection  
4 bits  
[1491:1488] registers  
1011: Matrix OUT [84] (external clock)  
00: Matrix output  
PWM1: Duty Cycle Counter Clock Source 2 bits  
selection [1485:1484] registers  
01: PWM Period CNT overflow  
10: every 2nd pulse of PWM Period CNT overflow  
11: every 8th pulse of PWM Period CNT overflow  
"Keep/Stop" register defines which function will be performed by "Duty Cycle CNT Keep/Stop" input. Keep/Stop signal is active  
HIGH level.  
"PWM Period Clock Source selection" registers define clock source for "PWM Period CNT CLK" input: from the matrix, from  
OSCx and OSCx dividers, from the flexible OSC-integrated divider. Also, there is an option to select counter overflow condition  
as a source for PWM Period Clock.  
"PWM: Duty Cycle Source selection" defines the clock source for changing the duty cycle. It can be:  
clock source from the connection matrix;  
clock pulse that is generated after the end of PWM cycle period (PWM Period Counter overflow). This pulse is generated  
every 255 (for 8-bit option) or 127 (for 7-bit option) PWM Period Clocks;  
clock pulse that is generated once per 2 PWM period, or every 510 (for 8-bit option) or 254 (for 7-bit option) PWM Period  
Clocks;  
clock pulse that is generated once per 8 PWM period, or every 2040 (for 8-bit option) or 1016 (for 7-bit option) PWM Period  
Clocks.  
"I2C Trigger" register allows to update duty cycle value via I2C command:  
When I2C_Trigger = 0, PWM duty cycle isn't updated;  
When I2C_Trigger = 1, PWM duty cycle is updated from register at I2C stop pulse after the current PWM period is completed.  
The I2C_Trigger bit will be automatically cleared after the I2C stop pulse.  
"SYNC On/Off" registers define the Power-down signal behavior on PWM block. This is the individual setting for each PWM  
macrocell. If this option is disabled (register [1301] = 1 for PWM0 or register [1475] = 1 for PWM1), then PWM output is changed  
right away by active Power-down. If this option is enabled (register [1301] = 0 for PWM0 or register [1475] = 0 for PWM1), the  
Datasheet  
31-Aug-2021  
Revision 3.4  
148 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
PWM block will finish the current PWM period and then will react to Power-down signal.  
"Continuous/Autostop mode" register enables Autostop mode. This mode can be used with both Preset Registers or Regular  
Mode. If PWM block works in Continuous Mode (register [1302] = 0 for PWM0 or register [1476] = 0 for PWM1), PWM Duty  
Cycle CNT will overflow when it reaches boundaries. For example, for PWM Duty Cycle Counter counts up: 254th → 255th →  
0th → 1st, and for PWM Duty Cycle Counter counts down: 1st → 0th → 255th → 254th … If Autostop mode is active (register  
[1302] = 1 for PWM0 or register [1476] = 1 for PWM1), PWM duty cycle counter will stop when it reaches boundaries. Please  
refer to Section 13.12.  
"PWMx boundary OSC disable" is the function, that allows disabling internal oscillator when there is no need for PWM to be  
clocked (boundary is reached in Autostop Mode only). This feature is useful for energy saving, but the user can optionally  
disable it and keeps the oscillator always enabled.  
"Phase Correct mode". In normal mode, PWM output is HIGH, then LOW for each PWM period. When Phase correct PWM (also  
called Center Align) register is active (register [1460] = 1 for PWM0 or register [1478] = 1 for PWM1), then PWM output is HIGH,  
then LOW for the first period, then LOW again, and HIGH for the second period. So, there are less edges (or less output  
switches) for the Phase correct PWM mode.  
"Duty Cycle source" (registers [1467:1466] for PWM0 or registers [1483:1482] for PWM1) defines the Regular Mode of  
operation (registers [1467:1466] = 00 for PWM0 or registers [1483:1482] = 00 for PWM1) or Preset Registers Mode (registers  
[1467:1466] = 01, registers [1467:1466] = 10, registers [1467:1466] = 11 for PWM0 or registers [1483:1482] = 01, registers  
[1483:1482] = 10, registers [1483:1482] = 11 for PWM1). In Regular Mode, the value of duty cycle is changed every rising edge  
on Duty Cycle CNT CLK input. In Preset Registers Mode the duty cycle is changed according to values, saved in 8-byte MSB of  
RegFile (registers [1467:1466] = 01 for PWM0 or registers [1483:1482] = 01 for PWM1), 8-byte LSB of RegFile (registers  
[1467:1466] = 10 for PWM0 or registers [1483:1482] = 10 for PWM1) or 16-byte of RegFile (registers [1467:1466] = 11 for  
PWM0 or registers [1483:1482] = 11 for PWM1). The address of RegFile value, that is applied to PWM block, is changed every  
rising edge on Duty Cycle CNT CLK input.  
"OUT+ polarity selection" registers enable/disable inverted option for Output+ of PWM macrocell.  
"OUT- polarity selection" registers enable/disable inverted option for Output- of PWM macrocell.  
"Deadband selection" registers [1465:1464] for PWM0 and registers [1481:1480] for PWM1 chose dead band time between  
OUT+ and OUT- signals. It is 0, 1, 2, or 3 clock period of PWM Period CNT CLK signal.  
"8-bit/7-bit PWM resolution". It is possible to select 7-bit instead of default 8-bit resolution for the PWM to increase the PWM  
speed. If the 7-bit resolution is selected, the maximum value of the duty cycle counter is 127.  
Datasheet  
31-Aug-2021  
Revision 3.4  
149 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
14  
Analog Comparators  
There are two Rail-to-Rail General Purpose Analog Comparators (ACMP) macrocells in the SLG47105. In order for the ACMP  
cells to be used in a GreenPAK design, the power-up signals (ACMP0H_nPD, ACMP1H_nPD) need to be active. By connecting  
to signals coming from the Connection Matrix, it is possible to have each ACMP be on continuously, off continuously, or switched  
on periodically, based on a digital signal coming from the Connection Matrix. When ACMP is powered down, the output is low  
(the output remains its state while sleeping).  
The General-Purpose Rail-to-Rail Analog Comparators are optimized for high-speed operation (ACMP0H and ACMP1H).  
Each of the ACMP cells has a positive input signal that can be provided by a variety of external sources and can also have a  
selectable gain stage before connection to the analog comparator. Each of the ACMP cells has a negative input signal that is  
either created from an internal Vref or provided by a way of the external sources.  
Power-Up = 1 => ACMP is powered up.  
Power-Up = 0 => ACMP is powered down.  
During power-up, the ACMP output will remain LOW, and then becomes valid after power up signal goes high for ACMP0H and  
ACMP1H (see parameter tstart in Table 27). Input bias current < 1 nA (typ). The Gain divider is unbuffered and consists of 2 MΩ  
resistors. IN- voltage range: 0 - 2.016 V.  
Each cell also has a hysteresis selection, to offer hysteresis of (0, 32, 64, 192) mV. The hysteresis option is available when using  
an internal Vref only.  
The ESD resistors should be taken into consideration when using pull-up/pull-down resistors. It may affect VIH and VIL. See  
sections 6.6 to 6.9.  
ACMP0H IN+ options are GPIO5, VDD  
ACMP1H IN+ options are GPIO6, ACMP0H IN+ MUX output, Temp Sensor OUT  
Datasheet  
31-Aug-2021  
Revision 3.4  
150 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
14.1 ACMP0H BLOCK DIAGRAM  
to ACMP1H, MUX input  
registers [652:651]  
Hysteresis  
Selection  
registers [681:680]  
GPIO5: ACMP0H(+)  
ACMP  
Ready  
0
1
Selectable  
Gain  
+
-
To Connection  
Matrix Input [46]  
0
1
Internal VDD 2.3V - 5.5 V  
Vref  
Power-Up  
LATCH  
HighSpeed  
ACMP  
ACMP0_H IN+ Selection: register [655]  
register [672]  
W/S Control  
Off after  
1us  
Internal  
Vref  
000000-  
111110  
From Connection  
Matrix Output [86]  
Ext. Vref0 (GPI)  
111111  
registers [687:682]  
Figure 110: ACMP0H Block Diagram  
Datasheet  
31-Aug-2021  
Revision 3.4  
151 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
14.2 ACMP1H BLOCK DIAGRAM  
registers [661:660]  
Hysteresis  
Selection  
registers [689:688]  
GPIO6: ACMP1H(+)  
ACMP  
Ready  
00  
01  
10  
ACMP0H IN+ MUX Output  
Temp sensor  
Selectable  
Gain  
+
-
To Connection  
Matrix Input [47]  
0
1
Vref  
Power-Up  
LATCH  
HighSpeed  
ACMP  
ACMP1_H IN+ Selection: registers [656:657]  
register [673]  
W/S Control  
Off after  
1us  
Internal  
Vref  
000000-  
111110  
From Connection  
Matrix Output [87]  
Ext. Vref1 (GPIO4)  
111111  
registers [695:690]  
Figure 111: ACMP1H Block Diagram  
Datasheet  
31-Aug-2021  
Revision 3.4  
152 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
14.3 ACMP TYPICAL PERFORMANCE  
10  
8
6
Upper Limit  
4
Lower Limit  
2
0
0
512  
1024  
1536  
-2  
-4  
-6  
-8  
-10  
Vref (mV)  
Figure 112: ACMPxH Input Offset Voltage vs. Vref at VDD = 2.3 V to 5.5 V, T = -40 °C to 85 °C  
3
2.5  
2
1.5  
1
High To Low, Overdrive = 10 mV  
Low to High, Overdrive = 10 mV  
High to Low, Overdrive = 100 mV  
Low to High, Overdrive = 100 mV  
0.5  
0
0
512  
1024  
1536  
Vref (mV)  
Figure 113: Propagation Delay vs. Vref for ACMPxH at T = 25 °C, at VDD = 2.3 V to 5.5 V, Gain = 1, Hysteresis = 0  
Datasheet  
31-Aug-2021  
Revision 3.4  
153 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
24  
22  
20  
18  
16  
14  
12  
T = -40 °C  
T = 25 °C  
T = 85 °C  
2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
VDD (V)  
Figure 114: ACMPxH Power-On Delay vs. VDD  
39  
37  
35  
33  
31  
29  
27  
25  
Tj = 150 °C  
Tj = 85 °C  
Tj = 25 °C  
Tj = -40 °C  
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
VDD (V)  
Figure 115: ACMPxH Current Consumption vs. VDD at Vref = 32 mV  
Datasheet  
31-Aug-2021  
Revision 3.4  
154 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
Tj = 150 °C  
Tj = 85 °C  
Tj = 25 °C  
Tj = -40 °C  
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
VDD (V)  
Figure 116: ACMPxH Current Consumption vs. VDD at Vref = 1024 mV  
49  
47  
45  
43  
41  
39  
37  
35  
Tj = 150 °C  
Tj = 85 °C  
Tj = 25 °C  
Tj = -40 °C  
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
VDD (V)  
Figure 117: ACMPxH Current Consumption vs. VDD at Vref = 2016 mV  
Datasheet  
31-Aug-2021  
Revision 3.4  
155 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
15 Programmable Delay/Edge Detector  
The SLG47105 has a programmable time delay logic cell that can generate a delay that is selectable from one of four timings  
(time2) configured in the GreenPAK Designer. The programmable time delay cell can generate one of four different delay patterns,  
rising edge detection, falling edge detection, both edge detection, and both edge delay. These four patterns can be further  
modified with the addition of delayed edge detection, which adds an extra unit of delay, as well as glitch rejection during the delay  
period. See Figure 118 for further information.  
Note The input signal must be longer than the delay, otherwise it will be filtered out.  
registers [1237:1236]  
Delay Value Selection  
registers [1239:1238]  
Edge Mode Selection  
To Connection  
Matrix Input [15]  
Programmable  
From Connection Matrix Output [89]  
IN  
OUT  
Delay  
Figure 118: Programmable Delay  
15.1 PROGRAMMABLE DELAY TIMING DIAGRAM - EDGE DETECTOR OUTPUT  
width  
width  
IN  
time1  
Rising Edge Detector  
time1  
Falling Edge Detector  
Edge Detector  
Output  
Both Edge Detector  
Both Edge Delay  
time2  
time2  
time1 is a fixed value  
time2 delay value is selected via register  
Figure 119: Edge Detector Output  
Please refer to Table 16.  
Datasheet  
31-Aug-2021  
Revision 3.4  
156 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
16 Additional Logic Function. Deglitch Filter  
The SLG47105 has one Deglitch Filter macrocell with inverter function that is connected directly to the Connection Matrix inputs  
and outputs. In addition, this macrocell can be configured as an Edge Detector, with the following settings:  
Rising Edge Detector  
Falling Edge Detector  
Both Edge Detector  
Both Edge Delay  
Filter  
R
From Connection Matrix  
Output [88]  
0
1
C
0
1
To Connection Matrix  
Input [52]  
Edge  
Detector  
Logic  
register [1232]  
registers [1235:1234]  
register [1233]  
Figure 120: Deglitch Filter/Edge Detector  
Datasheet  
31-Aug-2021  
Revision 3.4  
157 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
17 Voltage Reference  
17.1 VOLTAGE REFERENCE OVERVIEW  
The SLG47105 has a Voltage Reference (Vref) macrocell to provide references to the four analog comparators. This macrocell  
can supply a user selection of fixed voltage references, or temperature sensor output. The macrocell also has the option to output  
reference voltages on GPIO0. See Table 73 for the available selections for each analog comparator.  
Also, see Figure 73, which shows the reference output structure.  
17.2 VREF SELECTION TABLE  
Table 73: Vref Selection Table  
SEL  
0
SEL[5:0]  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
Vref  
0.032  
0.064  
0.096  
0.128  
0.16  
SEL  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
SEL[5:0]  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Vref  
1.056  
1.088  
1.12  
1
2
3
1.152  
1.184  
1.216  
1.248  
1.28  
4
5
0.192  
0.224  
0.256  
0.288  
0.32  
6
7
8
1.312  
1.344  
1.376  
1.408  
1.44  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0.352  
0.384  
0.416  
0.448  
0.48  
1.472  
1.504  
1.536  
1.568  
1.6  
0.512  
0.544  
0.576  
0.608  
0.64  
1.632  
1.664  
1.696  
1.728  
1.76  
0.672  
0.704  
0.736  
0.768  
0.8  
1.792  
1.824  
1.856  
1.888  
1.92  
0.832  
0.864  
0.896  
0.928  
0.96  
1.952  
1.984  
2.016  
External  
0.992  
1.024  
Datasheet  
31-Aug-2021  
Revision 3.4  
158 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
17.3 MODE SELECTION  
Table 74: Mode Selection Table  
Conditions  
M[2]  
0
M[1]  
0
M[0]  
0
Mode  
Analog Power-down  
0
0
1
Analog Power-down  
0
1
0
Vref_OUT to ACMP only  
Vref_OUT to ACMP only  
Analog Power-down  
GPIO0 isn't config-  
ured as Analog IO  
(registers[756:755]  
≠ 11) OR GPIO0  
OE is HIGH  
0
1
1
1
0
0
1
0
1
Vts_OUT to ACMP only  
Vts_OUT to ACMP only  
Analog Power-down  
1
1
0
1
1
1
0
0
0
Analog Power-down  
0
0
1
Vref_OUT to GPIO0 only  
Vref_OUT to ACMP only  
Vref_OUT to GPIO0 and ACMP  
Vts_OUT to GPIO0 only  
Vts_OUT to ACMP only  
Vts_OUT to GPIO0 and ACMP  
Vref_OUT to GPIO0 bypass analog buffer  
0
1
0
GPIO0 is config-  
ured as Analog IO  
(registers[756:755]  
= 11) AND GPIO0  
OE is LOW  
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Note:VoltageReference canbeoutputtedto GPIO0according toM[2:0] statewhenthis GPIO is configured asAnalogIO (registers  
[756:755] = 11) AND GPIO0 OE is LOW.  
Datasheet  
31-Aug-2021  
Revision 3.4  
159 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
17.4 VREF BLOCK DIAGRAM  
2.016  
PwrUp  
1.984  
Bandgap  
Vref  
0.064  
ACMP0_H ref  
selection  
0.032  
to ACMP0_H  
inverting input  
Ext Vref0 input  
reg_vref_sel[647:646]  
reg_ts_range_sel[650]  
Vref0  
111111  
2.016  
111110  
111101  
1.984  
Vref1  
Vts  
GPIO0  
0.064  
0.032  
000001  
000000  
Vref OUT  
To ACMP  
GPIO0_OE  
Vref Logic and  
Buffer  
M[2]  
M[1]  
M[0]  
registers [687:682]  
reg_pdb[643]  
0
1
PDb  
ACMP1_H ref  
selection  
Ext Vref1 input  
matrix_pdb[92]  
resetb  
111111  
reg_load_range_sel  
[645]  
2.016  
1.984  
111110  
111101  
reg_pd_sel[644]  
to ACMP1_H  
inverting input  
0.064  
0.032  
000001  
000000  
registers [695:690]  
Temp  
Sensor  
Figure 121: Voltage Reference Block Diagram  
Note 1: reg_ts_range_sel register, that defines voltage range of Vref Block Output, is valid for Temp Sensor source only.  
Note 2: reg_load_range_sel register should be set to 1 for better stability when the load resistance at GPIO0 is more than  
100 kΩ. This option affects consumption current.  
Datasheet  
31-Aug-2021  
Revision 3.4  
160 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
17.5 VREF LOAD REGULATION  
Note It is not recommended to use Vref connected to external pin without buffer.  
350  
300  
250  
VDD = 5 V  
200  
150  
100  
50  
VDD = 3.3 V  
VDD = 2.5 V  
0
0
5
10  
15  
20  
25  
30  
I, mA  
Figure 122: Typical Load Regulation, Vref = 320 mV, T = -40 °C to +85 °C, Buffer - Enabled  
.
700  
600  
500  
400  
300  
200  
100  
0
VDD = 5 V  
VDD = 3.3 V  
VDD = 2.5 V  
0
5
10  
15  
20  
25  
30  
I, mA  
Figure 123: Typical Load Regulation, Vref = 640 mV, T = -40 °C to +85 °C, Buffer - Enabled  
Datasheet  
31-Aug-2021  
Revision 3.4  
161 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
.
1400  
1200  
1000  
VDD = 5 V  
800  
600  
400  
200  
0
VDD = 3.3 V  
VDD = 2.5 V  
0
5
10  
15  
20  
25  
30  
I, mA  
Figure 124: Typical Load Regulation, Vref = 1280 mV, T = -40 °C to +85 °C, Buffer - Enabled  
.
2100  
1800  
1500  
1200  
900  
600  
300  
0
VDD = 5 V  
VDD = 3.3 V  
VDD = 2.5 V  
0
5
10  
15  
20  
25  
30  
I, mA  
Figure 125: Typical Load Regulation, Vref = 2016 mV, T = -40 °C to +85 °C, Buffer - Enabled  
Datasheet  
31-Aug-2021  
Revision 3.4  
162 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
18 Clocking  
18.1 OSC GENERAL DESCRIPTION  
The SLG47105 has two internal oscillators to support a variety of applications:  
Oscillator0 (2.048 kHz)  
Oscillator1 (25 MHz).  
There are two divider stages for each oscillator that gives the user flexibility for introducing clock signals to the connection matrix,  
as well as various other macrocells. The Pre-divider (first stage) for Oscillator allows the selection of /1, /2, /4 or /8, and /12 in  
Oscillator1(25 MHz) to divide down frequency from the fundamental. The second stage divider has an input of frequency from  
the Pre-divider, and outputs one of eight different frequencies divided by /1, /2, /3, /4, /8, /12, /24, or /64 on Connection Matrix  
Input lines [53], [54], [55], and [56]. Please see Figure 126 for more details on the SLG47105 clock scheme.  
Oscillator1 (25 MHz) has an additional function of 100 ns delayed startup, which can be enabled/disabled by register [722]. This  
function is recommended to use when analog blocks are used along with the Oscillator.  
The Matrix Power-down/Force On function allows switching off or force on the oscillator using an external pin. The Matrix Power-  
down/Force-On (Connection Matrix Output [90], [91]) signal has the highest priority. The OSC operates according to the following  
table:  
Table 75: Oscillator Operation Mode Configuration Settings  
OSC Enable  
Signal from  
CNT/DLY  
Register:  
Power-Down  
or Force On by  
Matrix Input  
OSC  
Operation  
Mode  
Signal From  
Connection  
Matrix  
Register: Auto  
Power-On or  
Force On  
External Clock  
Selection  
POR  
Macrocells  
0
1
X
1
X
X
X
X
X
X
X
X
OFF  
Internal OSC is  
OFF, logic is ON  
1
1
1
0
0
0
1
1
0
0
1
X
X
1
X
X
X
OFF  
ON  
ON  
ON  
X
CNT/DLY re-  
quires OSC  
1
1
0
0
0
0
X
X
0
0
CNT/DLY does  
not require OSC  
OFF  
Note The OSC will run only when any macrocell that uses OSC is powered on.  
Datasheet  
31-Aug-2021  
Revision 3.4  
163 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
18.2 OSCILLATOR0 (2.048 KHZ)  
from Connection Matrix  
Output [90]  
Power-Down/Force On  
Matrix Output control register [724]  
2.048 kHz Pre-divider Clock  
OSC Power Mode  
register [723]  
Power-Down/  
Force On  
to PWMs and CNT/DLYs Clock Scheme  
registers [729:728 ]  
OSC0  
(2.048 kHz)  
Auto Power-On  
Force Power-On  
OUT  
0
1
0
1
0
DIV/1 /2 /4/8  
Ext. Clock  
/2  
/4  
1
2
Predivider  
OSC0 matrix OUT0 Enable  
register [726]  
Ext. CLK Sel  
register [725]  
to Connection Matrix  
Input [55]  
/3  
3
4
5
6
7
OUT0  
OUT1  
/8  
to Connection Matrix  
Input [56]  
/12  
/24  
/64  
OSC0 matrix OUT1 Enable  
register [739]  
registers  
[732:730]  
registers  
[738:736]  
Second Stage Divider  
Figure 126: Oscillator0 Block Diagram  
18.3 OSCILLATOR1 (25 MHZ)  
from Connection Matrix  
Output [91]  
Power-Down/Force On  
Matrix Output control register [713]  
to HV GPO Charge Pumps  
OSC Power Mode  
register [712]  
Power-Down/  
Force On  
25 MHz Pre-divider Clock  
registers [716:714]  
OSC1  
(25 MHz)  
to PWMs and CNT/DLYs Clock Scheme  
Auto Power-On  
Force Power-On  
OUT  
0
1
0
1
Startup delay  
0
DIV /1 /2 /4 /8 /12  
register [722]  
/2  
/4  
1
2
3
4
5
6
Predivider  
Ext. Clock  
OSC1 Matrix OUT Enable register [721]  
Ext. CLK Sel  
register [720]  
/3  
to Connection Matrix  
Input [53]  
/8  
/12  
/24  
/64  
7
OSC1 Matrix OUT Enable for  
flexible divider register [740]  
registers  
[719:717]  
Flexible Divider  
OUT  
CLK  
OSC1 CLK Enable for  
Flexible Divider reg [741]  
to Flex-Divider out Connection  
Matrix Input [54]  
CNT  
Data  
Second Stage  
Divider  
To PWMx Period  
Counter Clock  
registers [751:744]  
Figure 127: Oscillator1 Block Diagram  
The OSC-integrated divider is built into 25 MHz OSC for saving chip resources. Actually, this divider is created especially for  
PWM, but it can be used for other chip resources thanks to its output to the matrix. There is 8-bit Counter with the source from  
Datasheet  
31-Aug-2021  
Revision 3.4  
164 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
OSC pre-divider and output to the matrix. In many cases for all PWM macrocells, the same frequency is a need. In these cases,  
it is possible to use this PWM divider for fine frequency tuning of PWM cells by I2C or from NVM.  
18.4 CNT/DLY CLOCK SCHEME  
Each CNT/DLY within Multi-Function macrocell has its own additional clock divider connected to oscillators pre-divider. Available  
dividers are:  
OSC0/1, OSC0/8, OSC0/64, OSC0/512, OSC0/4096, OSC0/32768, OSC0/262144  
OSC1/1, OSC1/4  
It is possible also to connect input from CNT(x-1) overflow or from Connection Matrix OUT.  
Clock source sel [3:0]  
0
1
25 MHz Pre-divided clock  
Div4  
2
3
Div8  
CNT/DLY/  
ONESHOT/  
FREQ_DET/  
2.048 kHz Pre-divided clock  
Div64  
Div512  
4
5
6
7
8
9
DLY_EDGE_DET  
Div4096  
Div32768  
Div262144  
CNT (x) overflow  
CNT (x-1) overflow  
10  
From Connection Matrix Out  
(separate for each CNT/DLY macrocell)  
CNT0/CNT1/CNT2/CNT3/CNT4  
Figure 128: Clock Scheme  
18.5 PWM CLOCK SCHEME  
Each PWM macrocell has its own additional clock divider connected to oscillators pre-divider. Available dividers are:  
OSC1/1, OSC1/8, OSC1/64, OSC1/512, OSC1/4096, OSC1/32768, OSC1/262144  
OSC0/1, OSC0/4  
It is possible also to connect input from Flexible Divider (OSC1 clock divider) or from Connection Matrix OUT.  
Clock source sel[3:0]  
0
1
2.048 kHz Pre-divided clock  
Div4  
2
3
Div8  
25 MHz Pre-divided clock  
Div64  
Div512  
4
5
PWM  
Div4096  
Div32768  
Div262144  
6
7
8
9
from Flexible Divider  
10  
From Connection Matrix OUT (separate  
for each PWM macrocell)  
PWM0/PWM1  
Figure 129: PWM Clock Scheme  
Datasheet  
31-Aug-2021  
Revision 3.4  
165 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
18.6 EXTERNAL CLOCKING  
The SLG47105 supports several ways to use an external, higher accuracy clock as a reference source for internal operations.  
Note that the Low Voltage Digital Input pin type can only support up to 1 MHz.  
18.6.1 GPIO1 Source for Oscillator0 (2.048 kHz)  
When register [725] is set to 1, an external clocking signal on GPIO1 will be routed in place of the internal oscillator derived 2.048  
kHz clock source. See Figure 126. The low and high limits for external frequency that can be selected are 0 MHz and 10 MHz.  
18.6.2 GPIO4 Source for Oscillator 1 (25 MHz)  
When register [720] is set to 1, an external clocking signal on GPIO4 will be routed in place of the internal oscillator derived 25  
MHz clock source. See Figure 127. The external frequency range is 0 MHz to 20 MHz at VDD = 2.3 V, 30 MHz at VDD = 3.3 V, 50  
MHz at VDD = 5.0 V. When an external clock is selected for OSC1, the oscillator's output signal will be inverted with respect to  
the GPIO4 input signal.  
Datasheet  
31-Aug-2021  
Revision 3.4  
166 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
18.7 OSCILLATORS POWER-ON DELAY  
OSC enable  
Power-On  
Delay  
CLK  
Figure 130: Oscillator Startup Diagram  
Note 1 OSC power mode: “Auto Power-On”.  
Note 2 “OSC enable” signal appears when any macrocell that uses OSC is powered on.  
750  
700  
650  
600  
550  
500  
450  
400  
VDD (V)  
Figure 131: Oscillator0 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2.048 kHz  
Datasheet  
31-Aug-2021  
Revision 3.4  
167 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
160  
140  
120  
100  
80  
Start with Delay  
Normal Start  
60  
40  
20  
0
VDD (V)  
Figure 132: Oscillator1 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 25 MHz  
18.8 OSCILLATORS ACCURACY  
Note: OSC power setting: Force Power-On; Clock to matrix input - enable; Bandgap: turn on by register - enable..  
2.2  
Fmax @ VDD = 2.5 V to 5 V  
2.15  
Ftyp @ VDD = 3.3 V  
Fmin @ VDD = 2.5 V to 5 V  
2.1  
2.05  
2
1.95  
1.9  
T (°C)  
Figure 133: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz  
Datasheet  
31-Aug-2021  
Revision 3.4  
168 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
26.2  
25.8  
25.4  
25  
Fmax @ VDD = 2.5 V to 5 V  
Ftyp @ VDD = 3.3 V  
Fmin @ VDD = 2.5 V to 5 V  
24.6  
24.2  
23.8  
T (°C)  
Figure 134: Oscillator1 Frequency vs. Temperature, OSC1 = 25 MHz  
7
6
5
4
3
2
1
2.048 kHz Total Error @ VDD = 2.3 V to 5.5 V  
25 MHz Total Error @ VDD = 2.3 V to 5.5 V  
T (°C)  
Figure 135: Oscillators Total Error vs. Temperature  
Note For more information see section 3.12.  
Datasheet  
31-Aug-2021  
Revision 3.4  
169 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
18.9 OSCILLATORS SETTLING TIME  
490  
485  
480  
475  
470  
465  
460  
455  
450  
445  
440  
0
1
2
3
4
Period  
Figure 136: Oscillator0 Settling Time, VDD = 3.3 V, T = 25 °C, OSC0 = 2 kHz  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2
4
6
8
10  
12  
Period  
Figure 137: Oscillator1 Settling Time, VDD = 3.3 V, T = 25 °C, OSC1 = 25 MHz (Normal Start)  
14  
16  
18  
20  
22  
24  
26  
Datasheet  
31-Aug-2021  
Revision 3.4  
170 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
130  
110  
90  
70  
50  
30  
10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Period  
Figure 138: Oscillator1 Settling Time, VDD = 3.3 V, T = 25 °C, OSC1 = 25 MHz (Start with Delay)  
18.10 OSCILLATORS CURRENT CONSUMPTION  
3.2  
2.7  
2.2  
1.7  
1.2  
0.7  
0.2  
Tj = 150 °C  
Tj = 85 °C  
Tj = 25 °C  
Tj = -40 °C  
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
VDD (V)  
Figure 139: OSC0 Current Consumption vs. VDD (All Pre-Dividers)  
Datasheet  
31-Aug-2021  
Revision 3.4  
171 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
150  
140  
130  
120  
110  
100  
90  
Tj = 150 °C  
Tj = 85 °C  
Tj = 25 °C  
Tj = -40 °C  
80  
70  
60  
50  
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
VDD (V)  
Figure 140: OSC1 Current Consumption vs. VDD (Pre-Divider = 1)  
120  
110  
100  
90  
80  
70  
Tj = 150 °C  
Tj = 85 °C  
Tj = 25 °C  
Tj = -40 °C  
60  
50  
40  
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
VDD (V)  
Figure 141: OSC1 Current Consumption vs. VDD (Pre-Divider = 2)  
Datasheet  
31-Aug-2021  
Revision 3.4  
172 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
100  
90  
80  
70  
60  
50  
40  
30  
Tj = 150 °C  
Tj = 85 °C  
Tj = 25 °C  
Tj = -40 °C  
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
VDD (V)  
Figure 142: OSC1 Current Consumption vs. VDD (Pre-Divider = 4)  
90  
80  
70  
60  
50  
40  
30  
Tj = 150 °C  
Tj = 85 °C  
Tj = 25 °C  
Tj = -40 °C  
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
VDD (V)  
Figure 143: OSC1 Current Consumption vs. VDD (Pre-Divider = 8)  
Datasheet  
31-Aug-2021  
Revision 3.4  
173 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
90  
80  
70  
60  
50  
40  
30  
Tj = 150 °C  
Tj = 85 °C  
Tj = 25 °C  
Tj = -40 °C  
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
VDD (V)  
Figure 144: OSC1 Current Consumption vs. VDD (Pre-Divider = 12)  
Datasheet  
31-Aug-2021  
Revision 3.4  
174 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
19 Low Power Bandgap (LP_BG)  
Low Power Bandgap is the analog part, that is used by analog macrocells in HV PAK, such as 25 MHz OSC1, ACMPs, HV  
GPOs, UVLO, and others. The high efficiency low power Bangap consumes just 510 nA. However, it requires about 2 ms Start  
Up Time for stable functionality. For these reasons, it is recommended to keep LP_BG always on.  
It is still possible to turn off the LP_BG through the connection matrix when no analog blocks are used.  
Please note that OSC0 (2.048 kHz) does not use LP_BG.  
Datasheet  
31-Aug-2021  
Revision 3.4  
175 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
20 Power-On Reset  
The SLG47105 has a Power-On Reset (POR) macrocell to ensure correct device initialization and operation of all macrocells in  
the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the VDD power is first  
ramping to the device, and also while the VDD is falling during Power-down. To accomplish this goal, the POR drives a defined  
sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of  
the IOs.  
20.1 GENERAL OPERATION  
The SLG47105 is guaranteed to be powered down and non-operational when the VDD voltage (voltage on Pin 1) is less than  
Power-Off Threshold (see in Table 7), but not less than -0.6 V. Another essential condition for the chip to be powered down is that  
no voltage higher (Note ) than the VDD voltage is applied to any other PIN. For example, if VDD voltage is 0.3 V, applying a voltage  
higher than 0.3 V to any other pin is incorrect, and can lead to incorrect or unexpected device behavior.  
Note There is a 0.6 V margin due to forward drop voltage of the ESD protection diodes.  
To start the POR sequence in the SLG47105, the voltage applied on the VDD should be higher than the Power-On Threshold  
(Note ). The full operational VDD range for the SLG47105 is 2.3 V to 5.5 V. This means that the VDD voltage must ramp up to the  
operational voltage value, but the POR sequence will start earlier, as soon as the VDD voltage rises to the Power-On threshold.  
After the POR sequence is started, the SLG47105 will have a typical period of time to go through all the steps in the sequence  
(noted in the datasheet for that device) and will be ready and completely operational after the POR sequence is complete.  
Note The Power-On Threshold is defined in Table 7.  
To power-down the chip the VDD voltage should be lower than the operational and to guarantee that chip is powered down it  
should be less than Power-Off Threshold.  
All Pins are in high impedance state when the chip is powered down and while the POR sequence is taking place. The last step  
in the POR sequence releases the IO structures from the high impedance state, at which time the device is operational. The pin  
configuration at this point in time is defined by the design programmed into the chip. Also, as it was mentioned before the voltage  
on Pins can’t be bigger than the VDD, this rule also applies to the case when the chip is powered on.  
Datasheet  
31-Aug-2021  
Revision 3.4  
176 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
20.2 POR SEQUENCE  
The POR system generates a sequence of signals that enable certain macrocells. The sequence is shown in Figure 145.  
VDD  
t
POR_NVM  
(reset for NVM)  
t
t
t
t
t
t
t
NVM_ready_out  
POR_GPI  
(reset for input enable)  
POR_LUT  
(reset for LUT/FILTER)  
POR_CORE  
(reset for DLY/RCO/DFF/LATCH/  
Pipe DLY/ACMP/  
Edge Detector in Filter)  
POR_OUT  
(generate low to high to matrix)  
POR_GPO  
(reset for output enable)  
Figure 145: POR Sequence  
As can be seen from Figure 145 after the VDD has started ramping up and crosses the Power-On threshold, first, the on-chip NVM  
memory is reset. Next, the chip reads the data from NVM and transfers this information to a CMOS LATCH, that serves to configure  
each macrocell, and the Connection Matrix, which routes signals between macrocells. The third stage causes the reset of the  
input pins, and then enables them. After that, the LUTs are reset and become active. After LUTs, the Delay cells, OSCs, DFFs,  
LATCHES, and Pipe Delay are initialized. Only after all macrocells are initialized internal POR signal (POR macrocell output) goes  
from LOW to HIGH. The last portion of the device to be initialized are the output pins, which transition from high impedance to  
active at this point.  
The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many  
environmental factors, such as: slew rate, VDD value, temperature, and even will vary from chip to chip (process influence).  
Datasheet  
31-Aug-2021  
Revision 3.4  
177 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
20.3 MACROCELLS OUTPUT STATES DURING POR SEQUENCE  
To have a full picture of SLG47105 operation during powering and POR sequence, review the overview the macrocell output  
states during the POR sequence (Figure 146 describes the output signals states).  
First, before the NVM has been reset, all macrocells have their output set to logic LOW (except the output pins which are in high  
impedance state). On the next step, some of the macrocells start initialization: input pins output state becomes LOW; LUTs also  
output LOW. Only P_DLY macrocell configured as edge detector becomes active at this time. After that input pins are enabled.  
Next, only LUTs are configured. Next, all other macrocells are initialized. After macrocells are initialized, internal POR matrix signal  
switches from LOW to HIGH. The last are output pins that become active and determined by the input signals.  
VDD  
Guaranteed HIGH before POR_GPI  
t
VDD _out  
to matrix  
Unpredictable  
t
Input Pin_out  
Unpredictable  
Unpredictable  
Unpredictable  
Determined by External Signal  
Determined by Input signals  
to matrix  
t
LUT/FILTER_out  
to matrix  
Determined by input signals  
OUT = IN without Delay  
t
t
t
t
t
t
Programmable Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
Determined by initial state  
DFF/LATCH/ACMP/  
Edge Detector in  
Filter_out to matrix  
Unpredictable  
Unpredictable  
Unpredictable  
Determined by Input signals  
Determined by input signals  
OUT = IN without Delay  
Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
POR_out  
to matrix  
Ext. GPO  
Tri-state  
Determined by input signals  
Output State Unpredictable  
Figure 146: Internal Macrocell States During POR Sequence  
Datasheet  
31-Aug-2021  
Revision 3.4  
178 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
20.3.1 Initialization  
All internal macrocells by default have initial low level. Starting from indicated power-up time of 1.80 V to 2.16 V, macrocells in  
SLG47105 are powered on while forced to the reset state. All outputs are in Hi-Z and chip starts loading data from NVM. Then  
the reset signal is released for internal macrocells and they start to initialize according to the following sequence:  
Input pins, ACMP, Pull-up/down.  
LUTs.  
DFFs, Delays/Counters, Pipe Delay.  
POR output to matrix.  
Output pin corresponds to the internal logic.  
The Vref output pin driving signal can precede POR output signal going high by 3 µs to 5 µs. The POR signal going high indicates  
the mentioned power-up sequence is complete.  
Note: The maximum voltage applied to any pin should not be higher than the VDD level. There are ESD Diodes between pin →  
VDD and pin → GND on each pin. So, if the input signal applied to pin is higher than VDD, then current will sink through the diode  
to VDD. Exceeding VDD results in leakage current on the input pin, and VDD will be pulled up, following the voltage on the input  
pin.There is no effect from input pin when input voltage is applied at the same time as VDD  
.
20.3.2 Power-Down  
VDD (V)  
2 V  
1.83 V  
1.33 V  
1 V Vref Out Signal  
1 V  
Time  
Not guaranteed output state  
Figure 147: Power-Down  
During Power-down, macrocells in SLG47105 are powered off after VDD falling down below Power-Off Threshold. Please note  
that during a slow rampdown, outputs can possibly switch state during this time.  
Datasheet  
31-Aug-2021  
Revision 3.4  
179 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
21 I2C Serial Communications Macrocell  
21.1 I2C SERIAL COMMUNICATIONS MACROCELL OVERVIEW  
In the standard use case for the GreenPAK devices, the configuration choices made by the user are stored as bit settings in the  
Non-Volatile Memory (NVM), and this information is transferred at startup time to volatile RAM registers that enable the  
configuration of the macrocells. Other RAM registers in the device are responsible for setting the connections in the Connection  
Matrix to route signals in the manner most appropriate for the user’s application.  
The I2C Serial Communications Macrocell in this device allows an I2C bus Master to read and write this information via a serial  
channel directly to the RAM registers, allowing the remote re-configuration of macrocells and remote changes to signal chains  
within the device.  
The I2C bus Master is also able to read and write other register bits that are not associated with NVM memory. As an example,  
the input lines to the Connection Matrix can be read as digital register bits. These are the signal outputs of each of the  
macrocells in the device, giving the I2C bus Master the capability to remotely read the current value of any macrocell.  
The user has the flexibility to control read access and write access via registers bits registers [1967:1965]. See Section 21.5.1  
for more details on I2C read/write memory protection.  
Normally, when VDD is not applied, the external I2C Pull-up resistors can be connected to the I2C pins of the SLG47105. It does  
not affect the chip functionality and doesn't increase its current consumption.  
21.2 I2C SERIAL COMMUNICATIONS DEVICE ADDRESSING  
Each command to the I2C Serial Communications macrocell begins with a Control Byte. The bits inside this Control Byte are  
shown in Figure 148. After the Start bit, the first four bits are a control code. Each bit in a control code can be sourced  
independently from the register or by value defined externally by GPI, GPIO6, GPIO4, and GPIO1. The LSB of the control code  
is defined by the value of GPI, while the MSB is defined by the value of GPIO1. The address source (either register bit or Pin for  
each bit in the control code is defined by registers [2027:2024]. This gives the user flexibility on the chip level addressing of this  
device and other devices on the same I2C bus. The Block Address is the next three bits (A10, A9, A8), which will define the most  
significant bits in the addressing of the data to be read or written by the command. The last bit in the Control Byte is the R/W bit,  
which selects whether a read command or write command is requested, with a “1” selecting for a Read command, and a “0”  
selecting for a Write command. This Control Byte will be followed by an Acknowledge bit (ACK), which is sent by this device to  
indicate successful communication of the Control Byte data.  
In the I2C-bus specification and user manual, there are two groups of eight addresses (0000 xxx and 1111 xxx) that are  
reserved for the special functions, such as a system General Call address. If the user of this device choses to set the Control  
Code to either “1111” or “0000” in a system with other slave device, please consult the I2C-bus specification and user manual to  
understand the addressing and implementation of these special functions, to ensure reliable operation.  
In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of  
information, resulting in a total address space of 2K bytes. Of this 2K byte address space, the valid addresses accessible to the  
I2C Macrocell on the SLG47105 are in the range from 0 (0x00) to 255 (0xFF). The MSB address bits (A10, A9, and A8) will be  
“0” for all commands to the SLG47105.  
With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word  
Address. Figure 148 shows this basic command structure.  
Datasheet  
31-Aug-2021  
Revision 3.4  
180 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Start  
bit  
Acknowledge  
bit  
Control Byte  
Word Address  
A
10  
A
9
A
8
A
7
A
0
S
X
X
X
X
R/W ACK  
Control  
Code  
Block  
Address  
Not used, set to  
0
Read/Write bit  
(1 = Read, 0 = Write)  
Figure 148: Basic Command Structure  
21.3 I2C SERIAL GENERAL TIMING  
General timing characteristics for the I2C Serial Communications macrocell are shown in Figure 149. Timing specifications can  
be found in the AC Characteristics section.  
tHIGH  
tF  
tR  
tLOW  
SCL  
tSU STA  
tHD DAT  
tHD STA  
tSU DAT  
tSU STO  
SDA IN  
tBUF  
tAA  
tDH  
SDA OUT  
Figure 149: I2C General Timing Characteristics  
21.4 I2C SERIAL COMMUNICATIONS COMMANDS  
21.4.1 Byte Write Command  
Following the Start condition from the Master, the Control Code [4 bits], the Block Address [3 bits], and the R/W bit (set to “0”)  
are placed onto the I2C bus by the Master. After the SLG47105 sends an Acknowledge bit (ACK), the next byte transmitted by  
the Master is the Word Address. The Block Address (A10, A9, A8), combined with the Word Address (A7 through A0), together  
set the internal address pointer in the SLG47105, where the data byte is to be written. After the SLG47105 sends another  
Acknowledge bit, the Master will transmit the data byte to be written into the addressed memory location. The SLG47105 again  
provides an Acknowledge bit and then the Master generates a Stop condition. The internal write cycle for the data will take place  
at the time that the SLG47105 generates the Acknowledge bit.  
Datasheet  
31-Aug-2021  
Revision 3.4  
181 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
It is possible to LATCH all IOs during I2C write command, register [1961] = 1 - Enable. It means that IOs will remain their state  
until the write command is done.  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
Stop  
bit  
Not used,  
set to 0  
R/W bit = 0  
Figure 150: Byte Write Command, R/W = 0  
21.4.2 Sequential Write Command  
The write Control Byte, Word Address, and the first data byte are transmitted to the SLG47105 in the same way as in a Byte Write  
command. However, instead of generating a Stop condition, the Bus Master continues to transmit data bytes to the SLG47105.  
Each subsequent data byte will increment the internal address counter, and will be written into the next higher byte in the command  
addressing. As in the case of the Byte Write command, the internal write cycle will take place at the time that the SLG47105  
generates the Acknowledge bit.  
Acknowledge  
Acknowledge  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n + 1)  
Data (n + x)  
Control Byte  
Word Address (n)  
Data (n)  
A
10  
A
8
A
9
ACK  
ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set to 0  
Write bit  
Figure 151: Sequential Write Command  
21.4.3 Current Address Read Command  
The Current Address Read Command reads from the current pointer address location. The address pointer is incremented at the  
first STOP bit following any write control byte. For example, if a Sequential Read command (which contains a write control byte)  
reads data up to address n, the address pointer would get incremented to n + 1 upon the STOP of that command. Subsequently,  
a Current Address Read that follows would start reading data at n + 1. The Current Address Read Command contains the Control  
Byte sent by the Master, with the R/W bit = “1”. The SLG47105 will issue an Acknowledge bit, and then transmit eight data bits  
for the requested byte. The Master will not issue an Acknowledge bit, and follow immediately with a Stop condition.  
Datasheet  
31-Aug-2021  
Revision 3.4  
182 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Start  
bit  
Acknowledge  
bit  
Stop  
bit  
Bus Activity  
Control Byte  
Data (n)  
A
10  
A
9
A
8
S
X
X
X
X
R
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
No Ack  
bit  
Not used, set to 0  
R/W bit = 1  
Figure 152: Current Address Read Command, R/W = 1  
21.4.4 Random Read Command  
The Random Read command starts with a Control Byte (with R/W bit set to “0”, indicating a write command) and Word Address  
to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the same as the Byte Write  
command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address  
counter in preparation for the second half of the command. After the Start bit, the Bus Master issues a second control byte with  
the R/W bit set to “1”, after which the SLG47105 issues an Acknowledge bit, followed by the requested eight data bits.  
Acknowledge  
Stop  
bit  
Start  
bit  
bit  
Bus Activity  
SDA LINE  
Not used, s  
Data (n)  
Control Byte  
Word Address (n)  
Control Byte  
A
A
9
A
8
A
A
9
A
8
R
ACK  
P
S
ACK  
X
X
X
X
W
ACK  
S
X
X
X
X
10  
10  
Control  
Code  
Block  
Address  
Control  
Code  
Block  
Address  
No Ack  
bit  
et to 0  
Write bit  
Read bit  
Figure 153: Random Read Command  
21.4.5 Sequential Read Command  
The Sequential Read command is initiated in the same way as a Random Read command, except that, once the SLG47105  
transmits the first data byte, the Bus Master issues an Acknowledge bit as opposed to a Stop condition in a random read. The  
Bus Master can continue reading sequential bytes of data, and will terminate the command with a Stop condition.  
Acknowledge  
Start  
bit  
bit  
Bus Activity  
Data (n + 2)  
Data (n + x)  
Control Byte  
Data (n)  
Data (n + 1)  
A
10  
A
9
A
8
ACK  
P
SDA LINE  
S
X
X
X
X
R
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
No Ack  
bit  
Read bit  
Figure 154: Sequential Read Command  
Datasheet  
31-Aug-2021  
Revision 3.4  
183 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
21.5 I2C SERIAL COMMAND REGISTER MAP  
21.5.1 Register Read/Write Protection  
There are seven read/write protect modes for the design sequence from being corrupted or copied. See Table 76 for details.  
Table 76: Read/Write Protection Options  
Protection Modes Configuration  
Partly  
Partly  
Lock  
Partly  
Lock  
Lock  
Read/  
Write  
Data  
Output  
From  
Lock  
Read2/  
Write  
Lock  
Read  
Lock  
Write  
Register  
Address  
Configurations  
Unlocked  
Read1  
Read2  
(Mode 0) (Mode1) (Mode2) (Mode3) (Mode4) (Mode5) (Mode 6)  
I2C Byte Write Bit  
Masking  
R/W  
R/W  
R/W  
R/W  
W
R
-
Memory  
F6  
(section 21.5.5)  
I2C Serial Reset  
Command  
(section 21.5.2)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
W
W
R
R
R
-
-
-
Memory  
Memory  
Macrocell  
F5,b'0  
F5,b'1  
4C  
Outputs LATCHing  
During I2C Write  
Connection Matrix  
Virtual Inputs  
(section 10.3)  
ConfigurationBits for  
All Macrocells  
(IO Pins, ACMPs,  
Combination  
FunctionMacrocells,  
and others)  
R/W  
R/W  
R/W  
W
W
W
-
-
W
W
R
R
-
-
Memory  
Memory  
Macrocells Inputs  
Configuration  
(Connection Matrix  
Outputs, section  
10.2)  
0~47  
Protection Mode  
Enable  
R
R
R
R
R
R
R
R
R
R
R
R
R
Memory  
Memory  
F5,b'4  
Protection Mode  
Selection  
R/W  
F5,b'7~5  
Macrocells Output  
Values (Connection  
MatrixInputs,section  
10.1)  
48~4B;  
4D~4F  
R
R
R
R
-
R
-
Macrocell  
Macrocell  
Counter Current  
Value  
(for 16-bit CNT)  
R
R
R
R
R
R
R
R
-
-
R
R
-
-
89, 8A  
Counter Current  
Value  
Macrocell 8B, A4, A5  
(for 8-bit CNT)  
I2C Control Code  
(section 21.2)  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Memory  
Memory  
FD,b'3~0  
FD,b'7~4  
Pin Slave Address  
Select  
Datasheet  
31-Aug-2021  
Revision 3.4  
184 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 76: Read/Write Protection Options(Continued)  
Protection Modes Configuration  
Partly  
Partly  
Lock  
Partly  
Lock  
Lock  
Read/  
Write  
Data  
Output  
From  
Lock  
Read2/  
Write  
Lock  
Read  
Lock  
Write  
Register  
Address  
Configurations  
Unlocked  
Read1  
Read2  
(Mode 0) (Mode1) (Mode2) (Mode3) (Mode4) (Mode5) (Mode 6)  
I2C Disable/Enable  
R
R
R
R
R
R
R
Memory  
FE,b'0  
R/W  
W
R
Allow Read and Write Data  
Allow Write Data Only  
Allow Read Data Only  
-
The Data is protected for Read and Write  
It is possible to read some data from macrocells, such as counter current value, connection matrix, and connection matrix virtual  
inputs. The I2C write will not have any impact on data in case data comes from macrocell output, except Connection Matrix Virtual  
Inputs. The silicon identification service bits allows identifying silicon family, its revision, and others.  
See Section 23 for detailed information on all registers.  
21.5.2 I2C Serial Reset Command  
If I2C serial communication is established with the device, it is possible to reset the device to initial power up conditions, including  
configuration of all macrocells, and all connections provided by the Connection Matrix. This is implemented by setting register  
[1960] I2C reset bit to “1”, which causes the device to re-enable the Power-On Reset (POR) sequence, including the reload of all  
register data from NVM. During the POR sequence, the outputs of the device will be in tri-state. After the reset has taken place,  
the contents of register [1960] will be set to “0” automatically. Figure 155 illustrates the sequence of events for this reset function  
.
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Internal Reset bit  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set to  
0
Write bit  
by I2C Stop Signal  
Reset-bit register output  
DFF output gated by stop signal  
Internal POR for core only  
Figure 155: Reset Command Timing  
Datasheet  
31-Aug-2021  
Revision 3.4  
185 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
21.5.3 I2C Additional Options  
When Output latching during I2C write, register [1961] = 1 allows all Pins output value to be latched until I2C write is done. It will  
protect the output change due to configuration process during I2C write in case multiple register bytes are changed. Inputs and  
internal macrocells retain their status during I2C write.  
If the user sets GPIO3 and GPIO2 function to a selection other than SDA and SCL, all access via I2C will be disabled.  
Note: Any write commands that come to the device via I2C that are not blocked, based on the protection bits, will change the  
contents of the RAM register bits that mirror the NVM bits. These write commands will not change the NVM bits themselves, and  
a POR event will restore the register bits to original programmed contents of the NVM.  
See Section 23 for detailed information on all registers.  
21.5.4 Reading Current Counter Data via I2C  
The current counter value in two counters in the device can be read via I2C. The counters that have this additional functionality  
are 16-bit CNT0 and 8-bit CNT4.  
21.5.5 I2C Byte Write Bit Masking  
The I2C macrocell inside SLG47105 supports masking of individual bits within a byte that is written to the RAM memory space.  
This function is supported across the entire RAM memory space. To implement this function, the user performs a Byte Write  
Command (see Section 21.4.1 for details) on the I2C Byte Write Mask Register (address 0xF6) with the desired bit mask pattern.  
This sets a bit mask pattern for the target memory location that will take effect on the next Byte Write Command to this register  
byte. Any bit in the mask that is set to “1” in the I2C Byte Write Mask Register will mask the effect of changing that particular bit  
in the target register, during the next Byte Write Command. The contents of the I2C Byte Write Mask Register are reset (set to  
00h) after valid Byte Write Command. If the next command received by the device is not a Byte Write Command, the effect of the  
Datasheet  
31-Aug-2021  
Revision 3.4  
186 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
bit masking function will be aborted, and the I2C Byte Write Mask Register will be reset with no effect. Figure 156 shows an  
example of this function.  
User Actions  
Byte Write Command, Address = F6h, Data = 11110000b [sets mask bits]  
Byte Write Command, Address = 74h, Data = 10101010b [writes data with mask]  
Memory Address 74h (original contents)  
Mask to choose bit from new  
write command  
1
1
1
1
0
0
1
1
0
0
0
0
Mask to choose bit from  
original register contents  
Memory Address 74h (new data in write command)  
0 1  
1
0
1
0
Bit from new write command  
Memory Address F6h (mask register)  
1
1
1
0
0
0
Bit from original register  
contents  
Memory Address 74h (new contents after write command)  
1
1
0
0
1
0
1
0
Figure 156: Example of I2C Byte Write Bit Masking  
Datasheet  
31-Aug-2021  
Revision 3.4  
187 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
22 Analog Temperature Sensor  
The SLG47105 has an Analog Temperature sensor (TS) with an output voltage linearly-proportional to the Centigrade tempera-  
ture. The TS cell shares buffer with Vref0, so it is impossible to use both cells simultaneously, its output can be connected directly  
to the ACMP1_H positive input. The TS is rated to operate over a -40 °C to 150 °C junction temperature range. The error in the  
whole temperature range does not exceed ±2 %. For more details refer to Section 3.16.  
The equation below calculates the typical analog voltage passed from the TS to the ACMPs' IN+ source input. It is important to  
note that there will be a chip to chip variation of about ±2 °C.  
VTS1 = -2.4 x T + 912.3  
VTS2 = -2.9 x T + 1101.3  
where:  
VTS1 (mV) - TS Output Voltage, range 1  
VTS2 (mV) - TS Output Voltage, range 2  
T (°C) - Temperature  
Temperature hysteresis can be setup by enabling the GreenPAK's internal ACMP hysteresis.  
TS  
Power-Down Source  
register [649]  
VDD  
register[648]  
0
1
Power-  
Down  
from Connection  
Matrix Output [92]  
reg_vref_sel[646:647]  
reg_ts_range_sel[650]  
Vref0  
Vref1  
Vts  
ACMP0H Vref  
ACMP1H Vref  
GPIO0  
Vref Out  
To ACMP  
GPIO0_OE  
Vref Logic and  
Buffer  
M[2]  
M[1]  
M[0]  
reg_pdb[643]  
0
1
PDb  
nRESET  
matrix_pdb[92]  
reg_pd_sel[644]  
reg_load_range_sel  
[645]  
Figure 157: Analog Temperature Sensor Structure Diagram  
Datasheet  
31-Aug-2021  
Revision 3.4  
188 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
1.22  
1.17  
1.12  
1.07  
1.02  
0.97  
0.92  
0.87  
0.82  
0.77  
0.72  
0.67  
0.62  
0.57  
0.52  
Range 2  
Range 1  
T (°C)  
Figure 158: TS Output vs. Temperature, VDD = 2.3 V to 5.5 V  
Datasheet  
31-Aug-2021  
Revision 3.4  
189 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
23 Register Definitions  
23.1 REGISTER MAP  
Table 77: Register Map  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
Matrix Output  
0
0
5:0  
Matrix OUT0  
Matrix OUT1  
GPIO0 Digital Output  
11:6  
GPIO0 Digital Output OE  
1
1
17:12  
Matrix OUT2  
GPIO1 Digital Output  
2
2
23:18  
29:24  
Matrix OUT3  
Matrix OUT4  
GPIO1 Digital Output OE  
GPIO2 Digital Output  
3
3
35:30  
41:36  
Matrix OUT5  
Matrix OUT6  
GPIO3 Digital Output  
GPIO4 Digital Output  
4
4
5
5
47:42  
53:48  
Matrix OUT7  
Matrix OUT8  
GPIO4 Digital Output OE  
GPIO5 Digital Output  
6
6
59:54  
65:60  
Matrix OUT9  
Matrix OUT10  
GPIO5 Digital Output OE  
GPIO6 Digital Output  
7
7
8
8
71:66  
77:72  
Matrix OUT11  
Matrix OUT12  
GPIO6 Digital Output OE  
HV GPO0 Digital Output  
9
9
83:78  
89:84  
Matrix OUT13  
Matrix OUT14  
HV GPO0 Digital Output OE  
HV GPO1 Digital Output  
A
A
B
B
C
C
D
D
E
E
F
F
10  
10  
11  
95:90  
Matrix OUT15  
Matrix OUT16  
HV GPO1 Digital Output OE  
HV GPO2 Digital Output  
101:96  
107:102  
113:108  
Matrix OUT17  
Matrix OUT18  
HV GPO2 Digital Output OE  
HV GPO3 Digital Output  
119:114  
125:120  
Matrix OUT19  
Matrix OUT20  
HV GPO3 Digital Output OE  
Reserved  
131:126  
137:132  
Matrix OUT21  
Matrix OUT22  
Reserved  
Reserved  
Datasheet  
31-Aug-2021  
Revision 3.4  
190 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
HV GPO0 SLEEP or Power-up Current Sense  
Comparator A  
11  
12  
143:138  
149:144  
Matrix OUT23  
Matrix OUT24  
HV GPO1 SLEEP or Power-up Current Sense  
Comparator A  
12  
13  
13  
14  
14  
15  
15  
16  
16  
17  
17  
18  
18  
19  
19  
1A  
1A  
1B  
1B  
1C  
1C  
1D  
HV GPO2 SLEEP or Power-up Current Sense  
Comparator B  
155:150  
161:156  
Matrix OUT25  
Matrix OUT26  
HV GPO3 SLEEP or Power-up Current Sense  
Comparator B  
167:162  
173:168  
Matrix OUT27  
Matrix OUT28  
IN0 of LUT2_0 or Clock Input of DFF0  
IN1 of LUT2_0 or Data Input of DFF0  
179:174  
185:180  
Matrix OUT29  
Matrix OUT30  
IN0 of LUT2_3 or Clock Input of PGen  
IN1 of LUT2_3 or nRST of PGen  
191:186  
197:192  
Matrix OUT31  
Matrix OUT32  
IN0 of LUT2_1 or Clock Input of DFF1  
IN1 of LUT2_1 or Data Input of DFF1  
203:198  
209:204  
Matrix OUT33  
Matrix OUT34  
IN0 of LUT2_2 or Clock Input of DFF2  
IN1 of LUT2_2 or Data Input of DFF2  
215:210  
221:216  
Matrix OUT35  
Matrix OUT36  
IN0 of LUT3_0 or Clock Input of DFF3  
IN1 of LUT3_0 or Data Input of DFF3  
227:222  
233:228  
Matrix OUT37  
Matrix OUT38  
IN2 of LUT3_0 or nRST(nSET) of DFF3  
IN0 of LUT3_1 or Clock Input of DFF4  
or Blanking of Chopper0  
IN1 of LUT3_1 or Data Input of DFF4  
or Chop of Chopper0  
1D  
1E  
239:234  
245:240  
Matrix OUT39  
Matrix OUT40  
IN2 of LUT3_1 or nRST(nSET) of DFF4 of PWM of  
Chopper0  
1E  
1F  
1F  
20  
IN0 of LUT3_2 or Clock Input of DFF5  
or Blanking of Chopper1  
251:246  
257:252  
Matrix OUT41  
Matrix OUT42  
IN1 of LUT3_2 or Data Input of DFF5  
or Chop of Chopper1  
IN2 of LUT3_2 or nRST(nSET) of DFF5 of PWM of  
Chopper1  
20  
263:258  
269:264  
Matrix OUT43  
Matrix OUT44  
21  
21  
22  
IN0 of LUT3_3 or Clock Input of DFF6  
275:270  
Matrix OUT45  
IN1 of LUT3_3 or Data Input of DFF6  
Datasheet  
31-Aug-2021  
Revision 3.4  
191 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
22  
281:276  
23  
Matrix OUT46  
IN2 of LUT3_3 or nRST(nSET) of DFF6  
23  
24  
24  
25  
25  
26  
26  
27  
27  
28  
28  
29  
29  
2A  
2A  
2B  
2B  
2C  
2C  
287:282  
293:288  
Matrix OUT47  
Matrix OUT48  
IN0 of LUT3_4 or Clock Input of DFF7  
IN1 of LUT3_4 or Data Input of DFF7  
299:294  
305:300  
Matrix OUT49  
Matrix OUT50  
IN2 of LUT3_4 or nRST(nSET) of DFF7  
IN0 of LUT3_5 or Clock Input of DFF8  
311:306  
317:312  
Matrix OUT51  
Matrix OUT52  
IN1 of LUT3_5 or Data Input of DFF8  
IN2 of LUT3_5 or nRST(nSET) of DFF8  
IN0 of LUT3_6 or Input of Pipe Delay or UP Signal of  
RIPP CNT  
323:318  
329:324  
Matrix OUT53  
Matrix OUT54  
IN1 of LUT3_6 or nRST of Pipe Delay or nSET of RIPP  
CNT  
335:330  
341:336  
Matrix OUT55  
Matrix OUT56  
IN2 of LUT3_6 or Clock of Pipe Delay/RIPP_CNT  
IN0 of LUT4_0 or Clock Input of DFF9  
347:342  
Matrix OUT57  
IN1 of LUT4_0 or Data Input of DFF9  
353:348  
359:354  
Matrix OUT58  
Matrix OUT59  
IN2 of LUT4_0 or nRST(nSET) of DFF9  
IN3 of LUT4_0  
MULTFUNC_8BIT_1: IN0 of LUT3_7 or Clock Input of  
DFF10;  
Delay1 Input (or Counter1 nRST input)  
2D  
2D  
2E  
365:360  
Matrix OUT60  
MULTFUNC_8BIT_1: IN1 of LUT3_7 or nRST (nSET) of  
DFF10;  
Delay1 Input (or Counter1 nRST Input) or Delay/  
Counter1 External Clock Source  
371:366  
Matrix OUT61  
2E  
2F  
MULTFUNC_8BIT_1: IN2 of LUT3_7 or Data Input of  
DFF10;  
Delay1 Input (or Counter1 nRST Input)  
377:372  
383:378  
Matrix OUT62  
Matrix OUT63  
MULTFUNC_8BIT_2: IN0 of LUT3_8 or Clock Input of  
DFF11;  
Delay2 Input (or Counter2 nRST Input)  
2F  
30  
MULTFUNC_8BIT_2: IN1 of LUT3_8 or nRST (nSET) of  
DFF11;  
Delay2 Input (or Counter2 nRST Input) or Delay/  
Counter2 External Clock Source  
389:384  
Matrix OUT64  
MULTFUNC_8BIT_2: IN2 of LUT3_8 or Data Input of  
DFF11;  
Delay2 Input (or Counter2 nRST Input)  
30  
31  
Matrix OUT65  
Matrix OUT66  
395:390  
401:396  
MULTFUNC_8BIT_3: IN0 of LUT3_9 or Clock Input of  
DFF12;  
Delay3 Input (or Counter3 nRST Input)  
31  
Datasheet  
31-Aug-2021  
Revision 3.4  
192 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
MULTFUNC_8BIT_3: IN1 of LUT3_9 or nRST (nSET) of  
DFF12;  
Delay3 Input (or Counter3 nRST Input) or Delay/  
Matrix OUT67  
32  
33  
407:402  
Counter3 External Clock Source  
MULTFUNC_8BIT_3: IN2 of LUT3_9 or Data Input of  
DFF12;  
Delay3 Input (or Counter3 nRST Input)  
Matrix OUT68  
Matrix OUT69  
413:408  
419:414  
MULTFUNC_8BIT_4: IN0 of LUT3_10 or Clock Input of  
DFF13;  
Delay4 Input (or Counter4 nRST Input)  
33  
34  
34  
MULTFUNC_8BIT_4: IN1 of LUT3_10 or nRST (nSET)  
of DFF13;  
Delay4 Input (or Counter4 nRST Input) or Delay/  
Counter4 External Clock Source  
Matrix OUT70  
425:420  
35  
35  
MULTFUNC_8BIT_4: IN2 of LUT3_10 or Data Input of  
DFF13;  
Delay4 Input (or Counter4 nRST Input)  
Matrix OUT71  
Matrix OUT72  
431:426  
437:432  
MULTFUNC_16BIT_0: IN0 of LUT4_1 or Clock Input of  
DFF14;  
Delay0 Input (or Counter0 RST/SET Input)  
36  
MULTFUNC_16BIT_0: IN1 of LUT4_1 or nRST of  
DFF14;  
Delay0 Input (or Counter0 nRST Input) or Delay/  
Counter0 External Clock Source  
36  
37  
Matrix OUT73  
Matrix OUT74  
Matrix OUT75  
443:438  
449:444  
455:450  
MULTFUNC_16BIT_0: IN2 of LUT4_1 or nSET of  
DFF14 or KEEP Input of FSM0 or External Clock Input  
of Delay0 (or Counter0)  
37  
38  
MULTFUNC_16BIT_0: IN3 of LUT4_1 or Data Input of  
DFF14;  
Delay0 Input (or Counter0 nRST Input) or UP Input of  
FSM0  
38  
Matrix OUT76  
Matrix OUT77  
PWM0_UP/DOWN  
39  
39  
3A  
3A  
3B  
3B  
3C  
3C  
3D  
3D  
3E  
3E  
3F  
3F  
40  
461:456  
467:462  
PWM0_KEEP/STOP  
Matrix OUT78  
PWM0_DUTY_CYCLE_CNT  
473:468  
Matrix OUT79  
Matrix OUT80  
PWM0_EXT_CLK  
479:474  
485:480  
PWM0_Power-down  
Matrix OUT81  
Matrix OUT82  
PWM1_UP/DOWN  
PWM1_KEEP/STOP  
491:486  
497:492  
Matrix OUT83  
Matrix OUT84  
PWM1_ DUTY_CYCLE_CNT  
PWM1_EXT_CLK  
503:498  
509:504  
Matrix OUT85  
PWM1_Power-down  
515:510  
Datasheet  
31-Aug-2021  
Revision 3.4  
193 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
40  
Matrix OUT86  
nPD of ACMP0H from the matrix  
521:516  
41  
Matrix OUT87  
Matrix OUT88  
nPD of ACMP1H from the matrix  
Filter/Edge detect input  
41  
42  
42  
43  
43  
44  
44  
45  
45  
46  
46  
47  
47  
527:522  
533:528  
Matrix OUT89  
Matrix OUT90  
Programmable delay/edge detect input  
OSC0 Enable from matrix  
539:534  
545:540  
Matrix OUT91  
Matrix OUT92  
OSC1 Enable from matrix  
551:546  
557:552  
Vref Output and Temp sensor nPD from matrix  
Matrix OUT93  
BG Power-down from the matrix  
563:558  
Matrix OUT94  
Matrix OUT95  
Diff_Amp_Integrator_En  
Reserved  
569:564  
575:570  
Matrix Input  
Matrix Input 0  
Matrix Input 1  
Matrix Input 2  
Matrix Input 3  
Matrix Input 4  
Matrix Input 5  
Matrix Input 6  
Matrix Input 7  
Matrix Input 8  
Matrix Input 9  
Matrix Input 10  
Matrix Input 11  
Matrix Input 12  
Matrix Input 13  
Matrix Input 14  
Matrix Input 15  
GND  
576  
LUT2_0/DFF0 output  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
LUT2_1/DFF1 output  
LUT2_2/DFF2 output  
48  
LUT2_3/PGen output  
LUT3_0/DFF3 output  
LUT3_1/DFF4/Chopper0 output  
LUT3_2/DFF5/Chopper1 output  
LUT3_3/DFF6 output  
LUT3_4/DFF7 output  
LUT3_5/DFF8 output  
LUT4_0/DFF9 output  
49  
LUT3_6/PD/RIPP CNT output0  
LUT3_6/PD/RIPP CNT output1  
LUT3_6/PD/RIPP CNT output2  
PROG_DLY_EDET_OUT  
Datasheet  
31-Aug-2021  
Revision 3.4  
194 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
Matrix Input 16  
Matrix Input 17  
Matrix Input 18  
Matrix Input 19  
Matrix Input 20  
Matrix Input 21  
Matrix Input 22  
Matrix Input 23  
Matrix Input 24  
Matrix Input 25  
Matrix Input 26  
Matrix Input 27  
Matrix Input 28  
Matrix Input 29  
Matrix Input 30  
Matrix Input 31  
Matrix Input 32  
MULTFUNC_8BIT_1: DLY_CNT_OUT  
MULTFUNC_8BIT_2: DLY_CNT_OUT  
MULTFUNC_8BIT_3: DLY_CNT_OUT  
MULTFUNC_8BIT_4: DLY_CNT_OUT  
MULTFUNC_8BIT_1: LUT3_DFF_OUT  
MULTFUNC_8BIT_2: LUT3_DFF_OUT  
MULTFUNC_8BIT_3: LUT3_DFF_OUT  
MULTFUNC_8BIT_4: LUT3_DFF_OUT  
MULTFUNC_16BIT_0: DLY_CNT_OUT  
MULTFUNC_16BIT_0: LUT4_DFF_OUT  
GPIO0 Digital Input  
592  
593  
594  
595  
4A  
596  
597  
598  
599  
600  
601  
602  
GPI Digital Input  
603  
4B  
GPIO1 Digital Input  
604  
GPIO4 Digital Input  
605  
606  
607  
608  
609  
GPIO5 Digital Input  
GPIO6 Digital Input  
GPIO2 digital input or I2C_virtual_0 Input  
GPIO3 digital input or I2C_virtual_1 Input  
I2C_virtual_2 Input  
Matrix Input 33  
Matrix Input 34  
Matrix Input 35  
Matrix Input 36  
Matrix Input 37  
Matrix Input 38  
610  
I2C_virtual_3 Input  
611  
4C  
I2C_virtual_4 Input  
612  
I2C_virtual_5 Input  
613  
I2C_virtual_6 Input  
614  
615  
616  
617  
618  
I2C_virtual_7 Input  
PWM0_OUT+  
Matrix Input 39  
Matrix Input 40  
Matrix Input 41  
Matrix Input 42  
Matrix Input 43  
Matrix Input 44  
Matrix Input 45  
Matrix Input 46  
Matrix Input 47  
PWM0_OUT-  
PWM1_OUT+  
PWM1_OUT-  
619  
4D  
Diff. Amp +Integrator UPWARD  
Diff. Amp +Integrator EQUAL  
ACMP0H_OUT  
620  
621  
622  
623  
ACMP1H_OUT  
Datasheet  
31-Aug-2021  
Revision 3.4  
195 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
Matrix Input 48  
Matrix Input 49  
Matrix Input 50  
Matrix Input 51  
Matrix Input 52  
Matrix Input 53  
Matrix Input 54  
Matrix Input 55  
Matrix Input 56  
Matrix Input 57  
Matrix Input 58  
Matrix Input 59  
Matrix Input 60  
Matrix Input 61  
Matrix Input 62  
Matrix Input 63  
CurrentSenseComp0_OUT  
CurrentSenseComp1_OUT  
Fault_A  
624  
625  
626  
Fault_B  
627  
4E  
EDET_FILTER_OUT  
Oscillator1(Ring_osc) output  
Flex-Divider output  
Oscillator0(LF_OSC) output 0  
Oscillator0(LF_OSC) output 1  
POR OUT  
628  
629  
630  
631  
632  
633  
634  
PWM0_PERIOD  
PWM1_PERIOD  
OCP_FAULT_A  
635  
4F  
636  
OCP_FAULT_B  
637  
638  
639  
TSD_FAULT  
VDD  
Datasheet  
31-Aug-2021  
Revision 3.4  
196 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
ACMP Vref  
1. With registers [756:755] ≠ 11 or GPIO0 OE = 1:  
000: Analog Power-down  
001: Analog Power-down  
010: Vref_OUT to ACMP only by analog buffer  
011: Vref_OUT to ACMP only by analog buffer  
100: Analog Power-down  
101: Vts_OUT to ACMP only by analog buffer  
110: Vts_OUT to ACMP only by analog buffer  
111: Analog Power-down.  
642:640  
Vref OUT (to GPIO0) Mode Selection  
2. With registers [756:755] = 11 and GPIO0 OE = 0:  
000: Analog Power-down;  
001: Vref_OUT to GPIO0 only by analog buffer  
010: Vref_OUT to ACMP only by analog buffer  
011: Vref_OUT to GPIO0 and ACMP by analog buffer  
100: Vts_OUT to GPIO0 only by analog buffer  
101: Vts_OUT to ACMP only by analog buffer  
110: Vts_OUT to GPIO0 and ACMP by analog buffer  
111: Vref_OUT to GPIO0 bypass analog buffer  
50  
1: On  
0: Off  
643  
644  
645  
Vref OUT (to GPIO0) register Power-On/Off  
Vref OUT (to GPIO0) Power-down selection  
Vref OUT Buffer sink current selection  
0: Come from register [643]  
1: Come from Matrix OUT 92  
0: 2 uA  
1: 12 uA  
00: None;  
01: ACMP0_H Vref,  
10: ACMP1_H Vref;  
11: Temp sensor  
646:647  
Vref OUT (to GPIO0) input selection  
0: Power-down  
1: Power-On  
648  
649  
650  
Temp sensor register Power-down control  
Temp sensor register Power-down select  
Temp sensor range select  
0: Come from register [648]  
1: Come Matrix OUT 92  
0: 0.62V ~ 0.99V (TYP),  
1: 0.75V ~ 1.2V (TYP)  
00: 0 mV  
51  
01: 32 mV  
10: 64 mV  
11: 192 mV  
652:651  
ACMP0_H hysteresis  
653  
654  
Reserved  
Reserved  
0: Disable  
1: Enable  
ACMP0_H input tie to VDD enable  
655  
Datasheet  
31-Aug-2021  
Revision 3.4  
197 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
ACMP1_H input come from Temp sensor  
output enable  
0: Disable  
1: Enable  
656  
ACMP1_H positive input come from  
ACMP0_H's input mux output enable  
0: Disable  
1: Enable  
657  
658  
Reserved  
Reserved  
52  
659  
00: 0 mV  
01: 32 mV  
10: 64 mV  
11: 192 mV  
661:660  
663:662  
ACMP1_H hysteresis  
Reserved  
Integrator Vref select:  
000000: 32 mV ~ 111110: 2.016 V  
step = 32 mV  
669:664  
Integrator Vref select  
53  
54  
111111: External Vref  
671:670  
672  
Reserved  
0: Disable  
1: Enable  
ACMP0_H Wake/sleep enable  
0: Disable  
1: Enable  
673  
674  
ACMP1_H Wake/sleep enable  
ACMP wake/sleep time selection  
0: Short time  
1: Normal WS  
675  
676  
Reserved  
Reserved  
Reserved  
679:677  
00: 1x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
681:680  
687:682  
689:688  
695:690  
ACMP0_H Gain divider select  
ACMP0_H Vref select  
55  
000000: 32 mV ~ 111110: 2.016 V/  
step = 32 mV;  
111111: External Vref  
00: 1x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
ACMP1_H Gain divider select  
ACMP1_H Vref select  
56  
000000: 32 mV ~ 111110: 2.016 V/  
step = 32 mV;  
111111: External Vref  
Datasheet  
31-Aug-2021  
Revision 3.4  
198 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
000000: 32 mV ~ 111110: 2.016 V/  
step = 32 mV;  
701:696  
Current Sense A Vref select  
111111: External Vref  
57  
0: Select static from current sense A Vref registers  
[701:696]  
Current Sense A Vref registers [5:0] source  
selection  
702  
1: Select dynamic from PWM0  
703  
Reserved  
000000: 32 mV ~ 111110: 2.016 V/ step = 32 mV;  
111111: External Vref  
709:704  
Current Sense B Vref select  
0: Select static from Current Sense A Vref registers  
[709:704]  
58  
Current Sense B Vref registers [5:0] source  
selection  
710  
1: Select dynamic from PWM1  
711  
Reserved  
OSC1 (25 MHz)  
When matrix output enable/PD control signal = 0:  
0: Auto on by delay cells  
712  
Turn on by register  
1: Always on  
0: Matrix down  
1: Matrix on  
713  
59  
Matrix Power-down/on select  
000: div 1  
001: div 2  
010: div 4  
011: div 8  
100: div 12  
716:714  
Pre-divider ratio control  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
719:717  
720  
Second stage divider ratio control  
0: Internal OSC1  
1: External clock from GPIO4  
External clock source enable  
Matrix OUT enable  
0: Disable  
1: Enable  
5A  
721  
722  
0: Enable  
1: Disable  
Startup delay with 100ns  
OSC0 (2.048 kHz)  
Datasheet  
31-Aug-2021  
Revision 3.4  
199 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
When matrix output enable/pd control signal = 0:  
0: Auto on by delay cells  
723  
Turn on by register  
1: Always on  
0: Matrix down  
1: Matrix on  
724  
Matrix Power-down/on select  
External clock source enable  
5A  
0: Internal OSC0  
1: External clock from GPIO1  
725  
0: Disable  
1: Enable  
726  
727  
Matrix OUT enable  
Reserved  
00: div 1  
01: div 2  
10: div 4  
11: div 8  
729:728  
Pre-divider ratio control  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
5B  
732:730  
Second stage divider ratio control  
735:733  
Reserved  
OSC0 second Output control  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
738:736  
Matrix divider ratio control  
5C  
0: Disable  
1: Enable  
739  
Second output to matrix enable  
OSC1 matrix OUT enable for flexible divider  
0: Disable  
1: Enable  
740  
OSC1 Matrix OUT enable for flexible divider  
5C  
0: Disable  
1: Enable  
741  
OSC1 Enable for flexible divider  
Reserved  
743:742  
Flexible divider for OSC1  
Data[7:0]  
5D  
751:744  
Flexible divider for OSC1 (8-b counter)  
Equation: divider number = Data[7:0] + 1 (exclude  
Data[7:0] = 0000 0000)  
HV_GPO_HD Common  
Datasheet  
31-Aug-2021  
Revision 3.4  
200 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
752  
Reserved  
Differential amplifier with integrator output  
duty cycle vs input duty cycle of Full Bridge  
drivers: invert_UPWARD  
5E  
0: IN → OUT  
1: IN → nOUT  
753  
IO Common  
0: Disable  
1: Enable  
IO fast Pull-up/down enable at VDD start  
5E  
754  
GPIO0  
00: Digital without Schmitt trigger  
01: Digital with Schmitt trigger  
10: Low voltage digital in  
11: Analog IO  
756:755  
758:757  
760:759  
Input mode configuration  
5E  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain 1x  
11: Open-Drain 2x  
Output mode configuration  
Pull-up/down resistance selection  
5E  
5F  
00: Floating  
01: 10 k  
10: 100 k  
11: 1 M  
0: Pull-down  
1: Pull-up  
761  
762  
Pull-up/down selection  
Reserved  
5F  
GPI  
00: Digital without Schmitt trigger  
01: Digital with Schmitt trigger  
10: Low voltage digital in  
11: Analog IO  
764:763  
Input mode configuration  
00: Floating  
01: 10 k  
10: 100 k  
11: 1 M.  
5F  
766:765  
767  
Pull-up/down resistance selection  
0: Pull-down  
1: Pull-up  
Pull-up/down selection  
Reserved  
Reserved  
60  
775:768  
HV_GPO0_HD  
Datasheet  
31-Aug-2021  
Revision 3.4  
201 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
00: Hi-Z  
01: NMOS Open-Drain LOW side on  
10: NMOS HIGH side on  
777:776  
Output mode configuration  
11: NMOS HIGH side and LOW side on  
000: Delay 492 us  
001: Delay 656 us  
010: Delay 824 us  
011: Delay 988 us  
100: Delay 1152 us  
101: Delay 1316 us  
110: Delay 1480 us  
111: Delay 1640 us  
780:778  
61  
Control delay of OCP0 retry  
0: Slow slew rate for motor driver  
1: Fast slew rate for pre-driver mode  
781  
782  
HV_GPO0/HV_GPO1 Slew rate control  
HV_GPO0/HV_GPO1 Full Bridge/Half Bridge 0: Half Bridge mode  
mode select  
1: Full Bridge.  
783  
Reserved  
HV_GPO1_HD  
00: Hi-Z  
01: NMOS Open-Drain LOW side on  
10: NMOS HIGH side on  
11: NMOS HIGH side and LOW side on  
785:784  
Output mode configuration  
Control delay of OCP1 retry  
000: Delay 492 us  
001: Delay 656 us  
010: Delay 824 us  
011: Delay 988 us  
100: Delay 1152 us  
101: Delay 1316 us  
110: Delay 1480 us  
111: Delay 1640 us  
62  
788:786  
789  
Reserved  
Reserved  
Reserved  
62  
790  
791  
HV_GPO2_HD  
Datasheet  
31-Aug-2021  
Revision 3.4  
202 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
00: Hi-Z  
01: NMOS Open-Drain LOW side on  
10: NMOS HIGH side on  
793:792  
Output mode configuration  
11: NMOS HIGH side and LOW side on  
000: Delay 492 us  
001: Delay 656 us  
010: Delay 824 us  
011: Delay 988 us  
100: Delay 1152 us  
101: Delay 1316 us  
110: Delay 1480 us  
111: Delay 1640 us  
796:794  
63  
Control delay of OCP2 retry  
0: Slow slew rate for motor driver  
1: Fast slew rate for pre-driver mode.  
797  
798  
HV_GPO2/HV_GPO3 slew rate control  
HV_GPO2/HV_GPO3 Full Bridge/Half Bridge 0: Half Bridge mode  
mode select  
1: Full Bridge mode  
799  
Reserved  
HV_GPO3_HD  
00: Hi-Z  
01: NMOS Open-Drain LOW side on  
10: NMOS HIGH side on  
11: NMOS HIGH side and LOW side on  
801:800  
Output mode configuration  
Control delay of OCP3 retry  
000: Delay 492 us  
001: Delay 656 us  
010: Delay 824 us  
011: Delay 988 us  
100: Delay 1152 us  
101: Delay 1316 us  
110: Delay 1480 us  
111: Delay 1640 us  
64  
804:802  
807:805  
Reserved  
Reserved  
Reserved  
65  
815:808  
Datasheet  
31-Aug-2021  
Revision 3.4  
203 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
GPIO1 (LED)  
00: Digital without Schmitt trigger  
01: Digital with Schmitt trigger  
10: Low voltage digital in  
11: Analog IO  
817:816  
Input mode configuration  
Output mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain 1x  
11: Open-Drain 2x  
819:818  
66  
00: Floating  
01: 10 k  
10: 100 k  
11: 1 M  
821:820  
Pull-up/down resistance selection  
Pull-up/down selection  
0: Pull-down  
1: Pull-up  
822  
823  
Reserved  
Reserved  
67  
824  
GPIO2/SCL  
00: Digital without Schmitt trigger  
01: Digital with Schmitt trigger  
10: Low voltage digital in  
11: Reserved  
826:825  
Input mode configuration  
00: Floating  
01: 10 k  
10: 100 k  
11: 1 M  
828:827  
Pull-up/down resistance selection  
Pull-up/down selection  
67  
0: Pull-down  
1: Pull-up  
829  
830  
831  
0: I2C Fast Mode +  
1: I2C Standard/Fast Mode.  
I2C mode selection (only GPIO3 SDA)  
0: Disable  
1: Enable (3.2x)  
Open-Drain output enable (3.2x drivability)  
GPIO3/SDA  
00: Digital without Schmitt trigger  
01: Digital with Schmitt trigger  
10: Low voltage digital in  
11: Reserved  
833:832  
Input mode configuration  
00: Floating  
01: 10 k  
10: 100 k  
11: 1 M  
835:834  
836  
Pull-up/down resistance selection  
Pull-up/down selection  
68  
0: Pull-down  
1: Pull-up  
0: Disable  
1: Enable (3.2x)  
837  
838  
Open-Drain output enable (3.2x drivability)  
Reserved  
Datasheet  
31-Aug-2021  
Revision 3.4  
204 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
68  
839  
Reserved  
GPIO4  
00: Digital without Schmitt trigger  
01: Digital with Schmitt trigger  
10: Low voltage digital in  
11: Analog IO  
841:840  
Input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain 1x  
11: Open-Drain 2x  
843:842  
845:844  
Output mode configuration  
Pull-up/down resistance selection  
69  
00: Floating  
01: 10 k  
10: 100 k  
11: 1 M  
0: Pull-down  
1: Pull-up  
846  
847  
Pull-up/down selection  
Reserved  
GPIO5 (LED)  
00: Digital without Schmitt trigger  
01: Digital with Schmitt trigger  
10: Low voltage digital in  
11: Analog IO  
849:848  
Input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain 1x  
11: Open-Drain 2x  
851:850  
853:852  
Output mode configuration  
Pull-up/down resistance selection  
6A  
00: Floating  
01: 10 k  
10: 100 k  
11: 1 M  
0: Pull-down  
1: Pull-up  
854  
855  
Pull-up/down selection  
Reserved  
GPIO6  
00: Digital without Schmitt trigger  
01: Digital with Schmitt trigger  
10: Low voltage digital in  
11: Analog IO  
857:856  
859:858  
861:860  
Input mode configuration  
Output mode configuration  
Pull-up/down selection  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain 1x  
11: Open-Drain 2x  
6B  
00: Floating  
01: 10 k  
10: 100 k  
11: 1 M  
Datasheet  
31-Aug-2021  
Revision 3.4  
205 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
0: Pull-down  
1: Pull-up  
862  
6B  
Pull-up/down selection  
Reserved  
863  
0: Disable  
1: Enable  
V
V
DD2_A UVLO0 register enable/disable  
DD2_B UVLO1 register enable/disable  
864  
0: Disable  
1: Enable  
865  
866  
0: x8  
1: x4  
Current sense A amplifier gain selection  
Current sense comparator A output polarity  
Current sense B amplifier gain selection  
Current sense comparator B output polarity  
Current sense A register enable/disable  
0: OUT  
867  
1: Inverted OUT  
6C  
0: x8  
1: x4  
868  
0: OUT  
869  
870  
871  
1: Inverted OUT  
0: Disable  
1: Enable  
0: Disable  
1: Enable  
Current sense B register enable/disable  
Reserved  
6D  
872  
Mode control for HV GPO0/1  
0: Without deglitch time  
1: With deglitch time  
873  
874  
OCP deglitch time enable for HV GPO0/1  
Control selection for HV_GPO0/1  
6D  
0: IN-IN mode  
1: PH-EN mode  
Mode control for HV GPO2/3  
0: Without deglitch time  
1: With deglitch time  
875  
OCP deglitch time enable for HV GPO2/3  
6D  
0: IN-IN mode  
876  
877  
Control selection for HV_GPO2/3  
Reserved  
1: PH-EN mode  
Reserved  
6D  
6E  
6F  
879:878  
887:880  
895:888  
Reserved  
Reserved  
Reserved  
Datasheet  
31-Aug-2021  
Revision 3.4  
206 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
Multifunction0 (LUT4_DFF)  
0000000:  
Matrix A - In3  
Matrix B - In2  
Matrix C - In1  
Matrix D - In0  
DLY_IN - LOW  
Single 4-bit LUT  
0010000:  
Matrix A - D  
Matrix B - nSET  
Matrix C - nRST  
Matrix D - CLK  
DLY_IN - LOW  
Single DFF nRST and SET  
0000001:  
Matrix A - UP (CNT)  
Matrix B - KEEP (CNT)  
Matrix C - EXT_CLK (CNT)  
Matrix D - DLY_IN (CNT)  
DLY_OUT connected to LUT/DFF  
Single CNT/DLY  
70  
902:896  
0000010:  
Matrix A - DLY_IN  
Matrix B - In2  
CNT/DLY → LUT  
Matrix C - In1  
Matrix D - In0  
DLY_OUT connected to In3  
0010010:  
Matrix A - DLY_IN  
Matrix B - nSET  
Matrix C - nRST  
Matrix D - CLK  
CNT/DLY → DFF  
DLY_OUT connected to D  
Datasheet  
31-Aug-2021  
Revision 3.4  
207 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
0100010:  
Matrix A - DLY_IN  
Matrix B - EXT_CLK (CNT)  
Matrix C - In1  
CNT/DLY → LUT  
Matrix D - In0  
DLY_OUT connected to In3,  
In2 tied LOW  
0110010:  
Matrix A - DLY_IN  
Matrix B - EXT_CLK (CNT)  
Matrix C - nRST  
Matrix D - CLK  
DLY_OUT connected to D,  
nSET tied HIGH  
CNT/DLY → DFF  
CNT/DLY → LUT  
1000010:  
Matrix A - DLY_IN  
Matrix B - In2  
Matrix C - EXT_CLK (CNT)  
Matrix D - In0  
70  
902:896  
DLY_OUT connected to In3,  
In1 tied LOW  
1010010:  
Matrix A - DLY_IN  
Matrix B - nSET  
CNT/DLY → DFF  
CNT/DLY → LUT  
Matrix C - EXT_CLK (CNT)  
Matrix D - CLK  
DLY_OUT connected to D,  
nRST tied HIGH  
0000110:  
Matrix A - In3  
Matrix B - DLY_IN  
Matrix C - In1  
Matrix D - In0  
DLY_OUT connected to In2  
Datasheet  
31-Aug-2021  
Revision 3.4  
208 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
0010110:  
Matrix A - D  
Matrix B - DLY_IN  
Matrix C - nRST  
Matrix D - CLK  
CNT/DLY → DFF  
DLY_OUT connected to nSET  
1000110:  
Matrix A - In3  
Matrix B - DLY_IN  
Matrix C - EXT_CLK (CNT)  
Matrix D - In0  
DLY_OUT connected to In2,  
In1 tied LOW  
CNT/DLY → LUT  
CNT/DLY → DFF  
1010110:  
Matrix A - D  
Matrix B - DLY_IN  
Matrix C - EXT_CLK (CNT)  
Matrix D - CLK  
DLY_OUT connected to nSET,  
nRST tied HIGH  
0001010:  
Matrix A - In3  
Matrix B - In2  
Matrix C - DLY_IN  
Matrix D - In0  
70  
902:896  
CNT/DLY → LUT  
CNT/DLY → DFF  
DLY_OUT connected to In1  
0011010:  
Matrix A - D  
Matrix B - nSET  
Matrix C - DLY_IN  
Matrix D - CLK  
DLY_OUT connected to nRST  
0101010:  
Matrix A - In3  
Matrix B - EXT_CLK (CNT)  
Matrix C - DLY_IN  
Matrix D - In0  
DLY_OUT connected to In1,  
In2 tied LOW  
CNT/DLY → LUT  
CNT/DLY → DFF  
0111010:  
Matrix A - D  
Matrix B - EXT_CLK (CNT)  
Matrix C - DLY_IN  
Matrix D - CLK  
DLY_OUT connected to nRST,  
nSET tied HIGH  
Datasheet  
31-Aug-2021  
Revision 3.4  
209 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
0001110:  
Matrix A - In3  
Matrix B - In2  
Matrix C - In1  
CNT/DLY → LUT  
Matrix D - DLY_IN  
DLY_OUT connected to In0  
0011110:  
Matrix A - D  
Matrix B - nSET  
Matrix C - nRST  
Matrix D - DLY_IN  
DLY_OUT connected to CLK  
CNT/DLY → DFF  
CNT/DLY → LUT  
0101110:  
Matrix A - In3  
Matrix B - EXT_CLK (CNT)  
Matrix C - In1  
Matrix D - DLY_IN  
DLY_OUT connected to In0,  
In2 tied LOW  
0111110:  
Matrix A - D  
Matrix B - EXT_CLK (CNT)  
Matrix C - nRST  
Matrix D - DLY_IN  
DLY_OUT connected to CLK,  
nSET tied HIGH  
CNT/DLY → DFF  
CNT/DLY → LUT  
70  
902:896  
1001110:  
Matrix A - In3  
Matrix B - In2  
Matrix C - EXT_CLK (CNT)  
Matrix D - DLY_IN  
DLY_OUT connected to In0,  
In1 tied LOW  
1011110:  
Matrix A - D  
Matrix B - nSET  
CNT/DLY → DFF  
LUT → CNT/DLY  
Matrix C - EXT_CLK (CNT)  
Matrix D - DLY_IN  
DLY_OUT connected to CLK,  
nRST tied HIGH  
0000011:  
Matrix A - In3  
Matrix B - In2  
Matrix C - In1  
Matrix D - In0  
LUT_OUT connected to DLY_IN  
Datasheet  
31-Aug-2021  
Revision 3.4  
210 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
0010011:  
Matrix A - D  
Matrix B - nSET  
Matrix C - nRST  
Matrix D - CLK  
DFF → CNT/DLY  
DFF_OUT connected to DLY_IN  
0100011:  
Matrix A - In3  
Matrix B - EXT_CLK (CNT)  
Matrix C - In1  
LUT → CNT/DLY  
DFF → CNT/DLY  
LUT → CNT/DLY  
Matrix D - In0  
LUT_OUT connected to DLY_IN,  
In2 tied LOW  
0110011:  
Matrix A - D  
Matrix B - EXT_CLK (CNT)  
Matrix C - nRST  
70  
902:896  
Matrix D - CLK  
DFF_OUT connected to DLY_IN,  
nSET tied LOW  
1000011:  
Matrix A - In3  
Matrix B - In2  
Matrix C - EXT_CLK (CNT)  
Matrix D - In0  
LUT_OUT connected to DLY_IN,  
In1 tied LOW  
1010011:  
Matrix A - D  
Matrix B - nSET  
DFF → CNT/DLY  
Matrix C - EXT_CLK (CNT)  
Matrix D - CLK  
DFF_OUT connected to DLY_IN,  
nRST tied HIGH  
70  
71  
00: DLY  
01: One Shoot  
904:903  
DLY/CNT0 Mode Selection  
10: Frequency Detection  
11: CNT register [912] = 0  
Datasheet  
31-Aug-2021  
Revision 3.4  
211 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
00: Both edge  
01: Falling edge  
10: Rising edge;  
906:905  
DLY/CNT0 Edge Mode Selection  
11: HIGH Level Reset (only in CNT mode)  
Clock source sel[3:0]  
0000: 25 MHz(OSC1)  
0001: 25 MHz/4  
0010: Not used  
0011: Not used  
0100: Not used  
0101: Not used  
0110: 2.048 kHz(OSC0)  
0111: 2.048 kHz/8  
1000: 2.048 kHz/64  
1001: 2.048 kHz/512  
1010: 2.048 kHz/4096  
1011: 2.048 kHz/32768  
1100: 2.048 kHz/262144  
1101: CNT4_END  
1110: External  
71  
910:907  
DLY/CNT0 Clock Source Select  
1111: Not used  
0: Reset to 0  
1: Set to data  
911  
912  
FSM0 SET/RST Selection  
0: Normal  
CNT0 DLY EDET FUNCTION Selection  
1: DLY function edge detection (registers [904:903] =  
00)  
0: Bypass  
913  
914  
UP signal SYNC selection  
Keep signal SYNC selection  
1: After two DFF  
0: Bypass  
1: After two DFF  
00: Bypass the initial  
01: Initial 0  
72  
916:915  
CNT0 initial value selection  
10: Initial 1  
11: Initial 1  
0: LOW  
1: HIGH  
917  
918  
Wake/sleep Power-down state selection  
Wake/sleep mode selection  
0: Default Mode  
1: Wake/Sleep Mode  
(registers [904:903] = 11)  
0: Default Output  
1: Inverted Output  
919  
920  
CNT0 output polarity selection  
0: Bypass  
73  
CNT0 CNT mode SYNC selection  
1: After two DFF  
Multifunction1  
Datasheet  
31-Aug-2021  
Revision 3.4  
212 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
00000:  
Matrix A - In2  
Matrix B - In1  
Matrix C - In0  
DLY_IN - LOW  
Single 3-bit LUT  
10000:  
Matrix A - D  
Single DFF with nRST/nSET  
Single CNT/DLY  
Matrix B - nSET/nRST  
Matrix C - CLK  
DLY_IN - LOW  
00001:  
Matrix A - DLY_IN (CNT)  
Matrix B - EXT_CLK (CNT)  
Matrix C - NC  
DLY_OUT connected to LUT/DFF  
00010:  
Matrix A - DLY_IN  
Matrix B - In1  
CNT/DLY → LUT  
CNT/DLY → DFF  
CNT/DLY → LUT  
CNT/DLY → DFF  
CNT/DLY → LUT  
Matrix C - In0  
DLY_OUT connected to In2  
73  
925:921  
10010:  
Matrix A - DLY_IN  
Matrix B - nSET/nRST  
Matrix C - CLK  
DLY_OUT connected to D  
00110:  
Matrix A - In2  
Matrix B - DLY_IN  
Matrix C - In0  
DLY_OUT connected to In1  
10110:  
Matrix A - D  
Matrix B - DLY_IN  
Matrix C - CLK  
DLY_OUT connected to nSET/nRST  
01010:  
Matrix A - In2  
Matrix B - In1  
Matrix C - DLY_IN  
DLY_OUT connected to In0  
Datasheet  
31-Aug-2021  
Revision 3.4  
213 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
11010:  
Matrix A - D  
CNT/DLY → DFF  
Matrix B - nSET/nRST  
Matrix C - DLY_IN  
DLY_OUT connected to CLK  
00011:  
Matrix A - In2  
73  
925:921  
LUT → CNT/DLY  
DFF → CNT/DLY  
Matrix B - In1  
Matrix C - In0  
LUT_OUT connected to DLY_IN  
10011:  
Matrix A - D  
Matrix B - nSET/nRST  
Matrix C - CLK  
DLY_OUT connected to DLY_IN  
0000: Both edge Delay  
0001: Falling edge delay  
0010: Rising edge delay  
0011: Both edge One Shot  
0100: Falling edge One Shot  
0101: Rising edge One Shot  
0110: Both edge freq detect  
0111: Falling edge freq. detect  
1000: Rising edge freq. detect  
1001: Both edge detect  
73  
74  
929:926  
CNT1 function and edge mode selection  
1010: Falling edge detect  
1011: Rising edge detect  
1100: Both edge reset CNT  
1101: Falling edge reset CNT  
1110: Rising edge reset CNT  
1111: HIGH level reset CNT  
00: Bypass the initial  
01: Initial 0  
74  
931:930  
CNT1 initial value selection  
10: Initial 1  
11: Initial 1  
Datasheet  
31-Aug-2021  
Revision 3.4  
214 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
Clock source sel[3:0]  
0000: 25 MHz(OSC1)  
0001: 25 MHz/4  
0010: Not used  
0011: Not used  
0100: Not used  
0101: Not used  
0110: 2.048 kHz(OSC0)  
0111: 2.048 kHz/8  
1000: 2.048 kHz/64  
1001: 2.048 kHz/512  
1010: 2.048 kHz/4096  
1011: 2.048 kHz/32768  
1100: 2.048 kHz/262144  
1101: CNT0_END  
1110: External  
74  
935:932  
DLY/CNT1 Clock Source Select  
1111: Not used  
0: Default Output  
1: Inverted Output  
936  
937  
CNT1 output polarity selection  
0: Bypass  
CNT1 CNT mode SYNC selection  
75  
1: After two DFF  
0: Normal  
938  
CNT1 DLY EDET FUNCTION Selection  
1: DLY function edge detection  
(registers [929:926] = 0000/0001/0010)  
Multifunction2  
00000:  
Matrix A - In2  
Matrix B - In1  
Matrix C - In0  
DLY_IN - LOW  
Single 3-bit LUT  
10000:  
Matrix A - D  
Single DFF w RST and SET  
Single CNT/DLY  
Matrix B - nSET/nRST  
Matrix C - CLK  
DLY_IN - LOW  
75  
943:939  
00001:  
Matrix A - DLY_IN (CNT)  
Matrix B - EXT_CLK (CNT)  
Matrix C - NC  
DLY_OUT connected to LUT/DFF  
00010:  
Matrix A - DLY_IN  
Matrix B - In1  
CNT/DLY → LUT  
Matrix C - In0  
DLY_OUT connected to In2  
Datasheet  
31-Aug-2021  
Revision 3.4  
215 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
10010:  
Matrix A - DLY_IN  
Matrix B - nSET/nRST  
Matrix C - CLK  
CNT/DLY → DFF  
DLY_OUT connected to D  
00110:  
Matrix A - In2  
CNT/DLY → LUT  
CNT/DLY → DFF  
CNT/DLY → LUT  
CNT/DLY → DFF  
LUT → CNT/DLY  
Matrix B - DLY_IN  
Matrix C - In0  
DLY_OUT connected to In1  
10110:  
Matrix A - D  
Matrix B - DLY_IN  
Matrix C - CLK  
DLY_OUT connected to nSET/nRST  
01010:  
Matrix A - In2  
Matrix B - In1  
75  
943:939  
Matrix C - DLY_IN  
DLY_OUT connected to In0  
11010:  
Matrix A - D  
Matrix B - nSET/nRST  
Matrix C - DLY_IN  
DLY_OUT connected to CLK  
00011:  
Matrix A - In2  
Matrix B - In1  
Matrix C - In0  
LUT_OUT connected to DLY_IN  
10011:  
Matrix A - D  
DFF → CNT/DLY  
Matrix B - nSET/nRST  
Matrix C - CLK  
DFF_OUT connected to DLY_IN  
00: Bypass the initial  
01: Initial 0  
CNT2 initial value selection  
76  
945:944  
10: Initial 1  
11: Initial 1  
0000: Both edge Delay  
0001: Falling edge delay  
0010: Rising edge delay  
0011: Both edge One Shot  
0100: Falling edge One Shot  
0101: Rising edge One Shot  
0110: Both edge freq detect  
0111: Falling edge freq detect  
1000: Rising edge freq detect  
1001: Both edge detect  
CNT2 function and edge mode selection  
76  
949:946  
1010: Falling edge detect  
1011: Rising edge detect  
1100: Both edge reset CNT  
1101: Falling edge reset CNT  
1110: Rising edge reset CNT  
1111: HIGH level reset CNT  
Datasheet  
31-Aug-2021  
Revision 3.4  
216 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
Clock source sel[3:0]  
0000: 25 MHz(OSC1)  
0001: 25 MHz/4  
76  
0010: Not used  
0011: Not used  
0100: Not used  
0101: Not used  
0110: 2.048 kHz(OSC0)  
0111: 2.048 kHz/8  
1000: 2.048 kHz/64  
1001: 2.048 kHz/512  
1010: 2.048 kHz/4096  
1011: 2.048 kHz/32768  
1100: 2.048 kHz/262144  
1101: CNT1_END  
1110: External  
DLY/CNT2 Clock Source Select  
953:950  
77  
1111: Not used  
0: Default Output  
1: Inverted Output  
CNT2 output polarity selection  
954  
955  
0: Bypass  
1: After two DFF  
CNT2 CNT mode SYNC selection  
0: Normal  
1: DLY function edge detection  
(registers [949:946] = 0000/0001/0010)  
CNT2 DLY EDET Function Selection  
956  
Multifunction3  
00: Bypass the initial  
01: Initial 0  
10: Initial 1  
CNT3 initial value selection  
Multi3 register configuration  
958:957  
77  
11: Initial 1  
Refer table in register [967:964]  
959  
0000: Both edge Delay  
0001: Falling edge delay  
0010: Rising edge delay  
0011: Both edge One Shot  
0100: Falling edge One Shot  
0101: Rising edge One Shot  
0110: Both edge freq detect  
0111: Falling edge freq detect  
1000: Rising edge freq detect  
1001: Both edge detect  
CNT3 function and edge mode selection  
78  
963:960  
1010: Falling edge detect  
1011: Rising edge detect  
1100: Both edge reset CNT  
1101: Falling edge reset CNT  
1110: Rising edge reset CNT  
1111: HIGH level reset CNT  
Datasheet  
31-Aug-2021  
Revision 3.4  
217 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
00000:  
Matrix A - In2  
Matrix B - In1  
Matrix C - In0  
DLY_IN - LOW  
Single 3-bit LUT  
10000:  
Matrix A - D  
Single DFF w RST and SET  
Single CNT/DLY  
Matrix B - nSET/nRST  
Matrix C - CLK  
DLY_IN - LOW  
00100:  
Matrix A - DLY_IN (CNT)  
Matrix B - EXT_CLK (CNT)  
Matrix C - NC  
DLY_OUT connected to LUT/DFF  
01000:  
Matrix A - DLY_IN  
CNT/DLY → LUT  
CNT/DLY → DFF  
CNT/DLY → LUT  
CNT/DLY → DFF  
CNT/DLY → LUT  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
Matrix B - In1  
Matrix C - In0  
DLY_OUT connected to In2  
11000:  
Matrix A - DLY_IN  
Matrix B - nSET/nRST  
Matrix C - CLK  
DLY_OUT connected to D  
01001:  
Matrix A - In2  
959  
78  
Matrix B - DLY_IN  
Matrix C - In0  
967:964  
DLY_OUT connected to In1  
11001:  
Matrix A - D  
Matrix B - DLY_IN  
Matrix C - CLK  
DLY_OUT connected to nSET/nRST  
01010:  
Matrix A - In2  
Matrix B - In1  
Matrix C - DLY_IN  
DLY_OUT connected to In0  
11010:  
Matrix A - D  
Matrix B - nSET/nRST  
Matrix C - DLY_IN  
DLY_OUT connected to CLK  
01100:  
Matrix A - In2  
Matrix B - In1  
Matrix C - In0  
LUT_OUT connected to DLY_IN  
11100:  
Matrix A - D  
Matrix B - nSET/nRST  
Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
Datasheet  
31-Aug-2021  
Revision 3.4  
218 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
Clock source sel[3:0]  
0000: 25 MHz(OSC1)  
0001: 25 MHz/4  
0010: Not used  
0011: Not used  
0100: Not used  
0101: Not used  
0110: 2.048 kHz(OSC0)  
0111: 2.048 kHz/8  
1000: 2.048 kHz/64  
1001: 2.048 kHz/512  
1010: 2.048 kHz/4096  
1011: 2.048 kHz/32768  
1100: 2.048 kHz/262144  
1101: CNT2_END  
1110: External  
DLY/CNT3 Clock Source Select  
971:968  
79  
1111: Not used  
0: Default Output  
1: Inverted Output  
CNT3 output polarity selection  
972  
973  
0: Bypass  
1: After two DFF  
CNT3 CNT mode SYNC selection  
0: normal  
CNT3 DLY EDET FUNCTION Selection  
1: DLY function edge detection  
(registers [963:960] = 0000/0001/0010)  
974  
Multifunction4  
0: Bypass  
1: After two DFF  
CNT4 CNT mode SYNC selection  
CNT4 initial value selection  
79  
975  
00: bypass the initial  
01: Initial 0  
10: Initial 1  
977:976  
11: Initial 1  
0: Normal  
1: DLY function edge detection  
(registers [991:988] = 0000/0001/0010)  
CNT4 DLY EDET FUNCTION Selection  
Single 3-bit LUT  
978  
00000:  
7A  
Matrix A - In2  
Matrix B - In1  
Matrix C - In0  
DLY_IN - LOW  
979  
10000:  
983:980  
Matrix A - D  
Single DFF with RST and SET  
Matrix B - nSET/nRST  
Matrix C - CLK  
DLY_IN - LOW  
Datasheet  
31-Aug-2021  
Revision 3.4  
219 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
00001:  
Matrix A - DLY_IN (CNT)  
Matrix B - EXT_CLK (CNT)  
Matrix C - NC  
Single CNT/DLY  
DLY_OUT connected to LUT/DFF  
00010:  
Matrix A - DLY_IN  
Matrix B - In1  
CNT/DLY → LUT  
CNT/DLY → DFF  
CNT/DLY → LUT  
CNT/DLY → DFF  
CNT/DLY → LUT  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
Matrix C - In0  
DLY_OUT connected to In2  
10010:  
Matrix A - DLY_IN  
Matrix B - nSET/nRST  
Matrix C - CLK  
DLY_OUT connected to D  
00110:  
Matrix A - In2  
Matrix B - DLY_IN  
Matrix C - In0  
DLY_OUT connected to In1  
10110:  
Matrix A - D  
979  
7A  
Matrix B - DLY_IN  
Matrix C - CLK  
983:980  
DLY_OUT connected to nSET/nRST  
01010:  
Matrix A - In2  
Matrix B - In1  
Matrix C - DLY_IN  
DLY_OUT connected to In0  
11010:  
Matrix A - D  
Matrix B - nSET/nRST  
Matrix C - DLY_IN  
DLY_OUT connected to CLK  
00011:  
Matrix A - In2  
Matrix B - In1  
Matrix C - In0  
LUT_OUT connected to DLY_IN  
10011:  
Matrix A - D  
Matrix B - nSET/nRST  
Matrix C - CLK  
DFF_OUT connected to DLY_IN  
Datasheet  
31-Aug-2021  
Revision 3.4  
220 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
Clock source sel[3:0]  
0000: 25 MHz(OSC1)  
0001: 25 MHz/4  
0010: Not used  
0011: Not used  
0100: Not used  
0101: Not used  
0110: 2.048 kHz(OSC0)  
0111: 2.048 kHz/8  
1000: 2.048 kHz/64  
1001: 2.048 kHz/512  
1010: 2.048 kHz/4096  
1011: 2.048 kHz/32768  
1100: 2.048 kHz/262144  
1101: CNT3_END  
1110: External  
DLY/CNT4 Clock Source Select  
987:984  
1111: Not used  
7B  
0000: Both edge Delay  
0001: Falling edge delay  
0010: Rising edge delay:  
0011: Both edge One Shot  
0100: Falling edge One Shot  
0101: Rising edge One Shot  
0110: Both edge freq detect  
0111: Falling edge freq detect  
1000: Rising edge freq detect  
1001: Both edge detect  
CNT4 function and edge mode selection  
991:988  
1010: Falling edge detect  
1011: Rising edge detect  
1100: Both edge Reset CNT  
1101: Falling edge Reset CNT  
1110: Rising edge Reset CNT  
1111: HIGH level Reset CNT  
0: Default Output  
1: Inverted Output  
CNT4 output polarity selection  
Reserved  
992  
7C  
999:993  
[15]:LUT4_1 [15]/DFF14 or LATCH Select  
0: DFF function  
7D  
1: LATCH function  
[14]:LUT4_1 [14]/DFF14 Output Select  
0: Q output  
1: nQ output  
[13]:LUT4_1 [13] /DFF14 Initial Polarity Select  
0: LOW  
1: HIGH  
[12:0]:LUT4_1 [12:0]  
Multi0_LUT4_DFF setting  
REG_CNT0_D [15:0]  
1015:1000  
7E  
7F  
Data[15:0]  
1031:1016  
80  
Datasheet  
31-Aug-2021  
Revision 3.4  
221 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
[7]:LUT3_7 [7]/DFF10 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]:LUT3_7 [6]/DFF10 Output Select  
0: Q output  
1: nQ output  
Multi1_LUT3_DFF setting  
REG_CNT1_D[7:0]  
[5]:LUT3_7 [5]/DFF10  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[4]:LUT3_7 [4]/DFF10 Initial Polarity Select  
0: LOW  
1: HIGH  
[3:0]:LUT3_7 [3:0]  
81  
82  
1039:1032  
1047:1040  
Data[7:0]  
[7]:LUT3_8 [7]/DFF11 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]:LUT3_8 [6]/DFF11 Output Select  
0: Q output  
1: nQ output  
[5]:LUT3_8 [5]/DFF11  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[4]:LUT3_8 [4]/DFF11 Initial Polarity Select  
0: LOW  
83  
84  
1055:1048 Multi2_LUT3_DFF setting  
1: HIGH  
[3:0]:LUT3_8 [3:0]  
1063:1056 REG_CNT2_D [7:0]  
Data [7:0]  
[7]:LUT3_9 [7]/DFF12 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]:LUT3_9[6]/DFF12 Output Select  
0: Q output  
1: nQ output  
85  
86  
1071:1064 Multi3_LUT3_DFF setting  
[5]:LUT3_9 [5]/DFF12  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[4]:LUT3_9 [4]/DFF12 Initial Polarity Select  
0: LOW  
1: HIGH  
[3:0]:LUT3_9 [3:0]  
1079:1072 REG_CNT3_D [7:0]  
Data[7:0]  
Datasheet  
31-Aug-2021  
Revision 3.4  
222 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
[7]: LUT3_10 [7]/DFF13 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]:LUT3_10[6]/DFF13 Output Select  
0: Q output  
1: nQ output  
87  
1087:1080 Multi4_LUT3_DFF setting  
[5]:LUT3_10 [5]/DFF13  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[4]:LUT3_10 [4]/DFF13 Initial Polarity Select  
0: LOW  
1: HIGH  
[3:0]:LUT3_10 [3:0]  
88  
89  
8A  
8B  
8C  
8D  
1095:1088 REG_CNT4_D [7:0]  
Data[7:0]  
1111:1096 CNT0 (16bits) Counted Value  
Virtual Input  
Virtual Input  
1119:1112 CNT4 (8bits) Counted Value  
1127:1120 Reserved  
1135:1128 Reserved  
Combinational Logic  
[7]:LUT3_1 [7]/DFF4 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]:LUT3_1 [6]/DFF4 Output Select  
0: Q output  
1: nQ output  
[5]:LUT3_1 [5]/DFF4 Initial Polarity Select  
0: LOW  
1: HIGH  
8E  
1143:1136 LUT3_1_DFF4 or Chopper0 setting  
[4]:LUT3_1 [4]/DFF4  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[3]:LUT3_1 [3]/DFF4 Active level selection for RST/SET  
0: Active LOW-level reset/set  
1: Active HIGH-level reset/set  
[2:0]: LUT3_1 [2:0]  
Datasheet  
31-Aug-2021  
Revision 3.4  
223 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
[7]:LUT3_2 [7]/DFF5 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]:LUT3_2 [6]/DFF5 Output Select  
0: Q output  
1: nQ output  
[5]:LUT3_2 [5]/DFF5 Initial Polarity Select  
0: LOW  
1: HIGH  
8F  
1151:1144 LUT3_2_DFF5 or Chopper1 setting  
[4]:LUT3_2 [4]/DFF5  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[3]:LUT3_2 [3]/DFF5 Active level selection for RST/SET  
0: Active LOW-level reset/set  
1: Active HIGH level reset/set  
[2:0]: LUT3_2 [2:0]  
[7]:LUT3_3 [7]/DFF6 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]:LUT3_3 [6]/DFF6 Output Select  
0: Q output  
1: nQ output  
[5]:LUT3_3 [5]/DFF6 Initial Polarity Select  
0: LOW  
1: HIGH  
90 1159:1152  
LUT3_3_DFF6 setting  
[4]:LUT3_3 [4]/DFF6  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[3]:LUT3_3 [3]/DFF6 Active level selection for RST/SET  
0: Active LOW-level reset/set  
1: Active HIGH level reset/set  
[2:0]: LUT3_3 [2:0]  
[7]:LUT3_4 [7]/DFF7 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]:LUT3_4 [6]/DFF7 Output Select  
0: Q output  
1: nQ output  
[5]:LUT3_4 [5]/DFF7 Initial Polarity Select  
0: LOW  
1: HIGH  
91 1167:1160  
LUT3_4_DFF7 setting  
[4]:LUT3_4 [4]/DFF7  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[3]:LUT3_4 [3]/DFF7 Active level selection for RST/SET  
0: Active LOW-Level reset/set  
1: Active HIGH-Level reset/set  
[2:0]: LUT3_4 [2:0]  
Datasheet  
31-Aug-2021  
Revision 3.4  
224 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
1171:1168 LUT2_3 value or PGen Size  
LUT2_3[3:0] or PGen pattern size[3:0]  
LUT3_1 or DFF4 Select  
1172  
0: LUT3_1  
1: DFF4  
or Chopper 0 registers [1265:1264]  
LUT3_2 or DFF5 Select  
1173  
0: LUT3_2  
1: DFF5  
92  
or Chopper 1 registers [1267:1266]  
0: LUT3_3  
1: DFF6  
1174  
1175  
LUT3_3 or DFF6 Select  
LUT3_4 or DFF7 Select  
0: LUT3_4  
1: DFF7  
93  
94  
1191:1176  
PGen data  
PGen Data[15:0]  
0: LUT2_3  
1: PGen  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
LUT2_3 or PGen Select  
LUT2_3 or PGen Active level selection for  
RST/SET  
0: Active LOW-Level reset/set  
1: Active HIGH-Level reset/set  
LUT3_6 or Pipe Delay/RIPP CNT Active level 0: Active LOW-Level reset/set  
selection for RST/SET  
1: Active HIGH-Level reset/set  
OUT of LUT3_6 or Out0 of Pipe Delay/RIPP  
CNT Select  
0: LUT3_6  
1: OUT0 of Pipe Delay or RIPP CNT  
95  
0: Pipe delay mode selection  
1: Ripple Counter mode selection  
Pipe Delay or RIPP CNT Selection  
Pipe Delay OUT1 Polarity Select  
LUT4_0 or DFF9 Select  
0: Non-inverted  
1: Inverted  
0: LUT4_0  
1: DFF9  
0: LUT3_0  
1: DFF3  
LUT3_0 or DFF3 Select  
[7:4]: LUT3_6 [7:4]/REG_S1[3:0] Pipe Delay OUT1 sel  
[3:0]: LUT3_6 [3:0]/REG_S0[3:0] Pipe Delay OUT0 sel  
at RIPP CNT mode:  
bits[1202:1200] is the nSET value.  
bits[1205:1203] is the END value.  
bit[1206] is the range control:  
LUT value or Pipe Delay OUT sel or nSET/  
END value  
96  
1207:1200  
0: Full cycle  
1: Range cycle  
bit[1207]: Not used  
Datasheet  
31-Aug-2021  
Revision 3.4  
225 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
97  
[15]:LUT4_0 [15]/DFF9 or LATCH Select  
0: DFF function  
1: LATCH function  
[14]:LUT4_0 [14]/DFF9 Output Select  
0: Q output  
1: nQ output  
[13]:LUT4_0 [13]/DFF9 Initial Polarity Select  
0: LOW  
1: HIGH  
[12]:LUT4_0 [12]/DFF9 stage selection  
0: Q of first DFF  
1223:1208  
98  
LUT4_0_DFF9 setting  
1: Q of second DFF  
[11]:LUT4_0 [11]/DFF9  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[10]:LUT4_0 [10]/DFF9 Active level selection for RST/  
SET  
0: Active LOW-Level reset/set  
1: Active HIGH-Level reset/set  
[9:0]: LUT4_0 [9:0]  
[7]:LUT3_0 [7]/DFF3 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]:LUT3_0 [6]/DFF3 Output Select  
0: Q output  
1: nQ output  
[5]:LUT3_0 [5]/DFF3 Initial Polarity Select  
0: LOW  
1: HIGH  
[4]:LUT3_0 [4]/DFF3stage selection  
0: Q of first DFF  
99 1231:1224  
LUT3_0_DFF3 setting  
1: Q of second DFF  
[3]:LUT3_0 [3]/DFF3  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[2]:LUT3_0 [2]/DFF3 Active level selection for RST/SET  
0: Active LOW-Level reset/set  
1: Active HIGH-Level reset/set  
[1:0]: LUT3_0 [1:0]  
Datasheet  
31-Aug-2021  
Revision 3.4  
226 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
0: Filter  
1: Edge Det.  
1232  
Filter or Edge Detector selection  
0: Non-inverted output  
1: Inverted output  
1233  
Filter or Edge Detector Output Polarity Select  
00: Rising Edges Det.  
01: Falling Edge Det.  
10: Both Edge Det.  
11: Both Edge Delay  
1235:1234 Filter or Edge Detector Select the edge mode  
9A  
00: 125 ns  
01: 250 ns  
10: 375 ns  
11: 500 ns  
Delay Value Select for Programmable Delay  
or Edge Detector  
1237:1236  
00: Rising Edge Detector  
01: Falling Edge Detector  
10: Both Edge Detector  
11: Both Edge Delay  
Select the Edge Mode of Programmable  
1239:1238  
Delay or Edge Detector  
[7]:LUT3_5 [7]/DFF8 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]:LUT3_5 [6]/DFF8 Output Select  
0: Q output  
1: nQ output  
[5]:LUT3_5 [5]/DFF8 Initial Polarity Select  
0: LOW  
9B  
1247:1240 LUT3_5_DFF8 setting  
1: HIGH  
[4]:LUT3_5 [4]/DFF8  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[3]:LUT3_5 [3]/DFF8 Active level selection for RST/SET  
0: Active LOW level reset/set  
1: Active HIGH level reset/set  
[2:0]: LUT3_5 [2:0]  
Datasheet  
31-Aug-2021  
Revision 3.4  
227 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
[3]:LUT2_0 [3]/DFF0 or LATCH Select  
0: DFF function  
1: LATCH function  
[2]:LUT2_0 [2]/DFF0 Output Select  
0: Q output  
1: nQ output  
[1]:LUT2_0 [1]/DFF0 Initial Polarity Select  
0: LOW  
1: HIGH  
1251:1248 LUT2_0/DFF0 setting  
1255:1252 LUT2_1/DFF1 setting  
1259:1256 LUT2_2/DFF2 setting  
[0]:LUT2_0 [0]  
9C  
[3]:LUT2_1 [3]/DFF1 or LATCH Select  
0: DFF function  
1: LATCH function  
[2]:LUT2_1 [2]/DFF1 Output Select  
0: Q output  
1: nQ output  
[1]:LUT2_1 [1]/DFF1 Initial Polarity Select  
0: LOW  
1: HIGH  
[0]:LUT2_1 [0]  
[3]:LUT2_2 [3]/DFF2 or LATCH Select  
0: DFF function  
1: LATCH function  
[2]:LUT2_2 [2]/DFF2 Output Select  
0: Q output  
1: nQ output  
[1]:LUT2_2 [1]/DFF2 Initial Polarity Select  
0: LOW  
1: HIGH  
[0]:LUT2_2 [0]  
9D  
0: LUT2_0  
1: DFF0  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
LUT2_0 or DFF0 Select  
0: LUT2_1  
1: DFF1  
LUT2_1 or DFF1 Select  
0: LUT2_2  
1: DFF2  
LUT2_2 or DFF2 Select  
0: LUT3_5  
1: DFF8  
LUT3_5 or DFF8 Select  
0: LUT3_1/DFF_4  
1: Chopper 0  
LUT3_1/DFF4 or Chopper0 Select  
Chopper0 polarity Select  
LUT3_2/DFF5 or Chopper1 Select  
Chopper1 polarity Select  
0: Q  
1: nQ  
9E  
0: LUT3_2/DFF_5  
1: Chopper 1  
0: Q  
1: nQ  
1271:1268 Reserved  
1272 Reserved  
1279:1273 Reserved  
9F  
9F  
Datasheet  
31-Aug-2021  
Revision 3.4  
228 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
PWM Macrocell  
A0  
A1  
1287:1280 Reserved  
1295:1288 Initial PWM0 Duty Cycle value  
PWM0 Initial Duty Cycle value [7:0]  
0: Don't update duty cycle value  
1: Update duty cycle value  
I2C trigger for PWM0  
1296  
0: Don't update duty cycle value  
1: Update duty cycle value  
I2C trigger for PWM1  
1297  
0: 8-bit PWM0  
1: 7-bit PWM0  
PWM0 8-bit or 7-bit resolution  
1298  
A2  
0: Non-Inverted Output  
1: Inverted Output  
PWM0 OUT+ output polarity selection  
1299  
0: Non-Inverted Output  
1: Inverted Output  
PWM0 OUT- output polarity selection  
1300  
0: Synchronous Power-Down  
1: Asynchronous Power-Down  
PWM0 SYNC On/Off for PWM0  
1301  
0: Continuous mode  
1: PWM Duty Cycle Counter Autostop at 0 % or 100 %  
PWM0 Continuous/Autostop mode  
1302  
A2  
0: OSC is always enabled at boundaries  
1: Automatically Disable OSC  
1303  
PWM0 Boundary OSC disable  
A3  
A4  
1311:1304 Initial PWM1 Duty Cycle value  
1319:1312  
PWM1 Initial Duty Cycle value [7:0]  
Current PWM0 Duty Cycle value for I2C read PWM0 Current Duty Cycle value for I2C read [7:0]  
A5  
A6  
1327:1320 Current PWM1 Duty Cycle value for I2C read PWM1 Current Duty Cycle value for I2C read [7:0]  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
1335:1328  
1343:1336  
1351:1344  
1359:1352  
1367:1360  
1375:1368  
1383:1376  
1391:1384  
1399:1392  
1407:1400  
1415:1408  
Byte0 [7:0]  
Vref values → byte0  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values → byte1  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
Byte1 [15:8]  
Byte2 [23:16]  
Byte3 [31:24]  
Byte4 [39:32]  
Byte5 [47:40]  
Byte6 [55:48]  
Byte7 [63:56]  
Byte8 [71:64]  
Byte9 [79:72]  
Byte10 [87:80]  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values → byte2  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values → byte3  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values → byte4  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values → byte5  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values → byte6  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values → byte7  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values → byte8  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values → byte9  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values → byte10  
Datasheet  
31-Aug-2021  
Revision 3.4  
229 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values → byte11  
B1  
B2  
B3  
B4  
B5  
1423:1416  
1431:1424  
1439:1432  
1447:1440  
1455:1448  
Byte11 [95:88]  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values→ byte12  
Byte12 [103:96]  
Byte13 [111:104]  
Byte14 [119:112]  
Byte15 [127:120]  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values → byte13  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values → byte14  
PWM0 Preset 16 bytes Duty Cycle/CCMP  
Vref values → byte15  
0000: CLK_OSC0  
0001: CLK_OSC0/4  
0010: CLK_OSC1  
0011: CLK_OSC1/8  
0100: CLK_OSC1/64  
0101: CLK_OSC1/512  
0110: CLK_OSC1/4096  
0111: CLK_OSC1/32768  
1000: CLK_OSC1/262144  
1001: From Flexible Divider  
1010: Reserved  
1459:1456 PWM0 Period Counter Clock Source selection  
B6  
1011: External clock through matrix (Matrix OUT [79])  
0: Disable  
1: Enable  
PWM0 Phase Correct mode  
1460  
0: Keep  
1: Stop  
PWM0 Keep/Stop selection  
1461  
1463:1462 Reserved  
Datasheet  
31-Aug-2021  
Revision 3.4  
230 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
00: No Deadband  
01: 1PWM0 clock cycles  
10: 2PWM0 clock cycles  
11: 3PWM0 clock cycles  
1465:1464 PWM0 Deadband selection  
1467:1466 PWM0 Duty Cycle source  
Regular Mode:  
00: from PWM Duty Cycle CNT  
Preset Registers Modes:  
01: 8-byte MSB of RegFile  
10: 8-byte LSB of RegFile  
11: 16-byte RegFile  
B7  
00: Matrix output  
01: PWM Period CNT overflow  
PWM0 Duty Cycle Counter Clock Source  
selection  
1469:1468  
10: Every 2nd pulse of PWM Period CNT overflow  
11: Every 8th pulse of PWM Period CNT overflow  
1471:1470 Reserved  
0: 8-bit PWM1  
1: 7-bit PWM1  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
PWM1 8-bit or 7-bit resolution  
0: Non-Inverted Output  
1: Inverted Output  
PWM1 OUT+ output polarity selection  
PWM1 OUT- output polarity selection  
PWM1 SYNC On/Off  
0: Non-Inverted Output  
1: Inverted Output  
B8  
0: Synchronous Power-Down  
1: Asynchronous Power-Down  
0: Continuous mode  
1: PWM Duty Cycle Counter Autostop at 0 % or 100 %  
PWM1 Continuous/Autostop mode  
PWM1 Boundary OSC disable  
PWM1 Phase Correct mode  
0: OSC is always enabled at boundaries  
1: Automatically Disable OSC  
0: Disable  
1: Enable  
B8  
0: Keep  
1: Stop  
PWM1 Keep/Stop selection  
Datasheet  
31-Aug-2021  
Revision 3.4  
231 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
00: No Deadband  
01: 1PWM1 clock cycles  
10: 2PWM1 clock cycles  
11: 3PWM1 clock cycles  
1481:1480 PWM1 Deadband selection  
1483:1482 PWM1 Duty Cycle source  
Regular Mode:  
00: from PWM Duty Cycle CNT  
Preset Registers Modes:  
01: 8-byte MSB of RegFile  
10: 8-byte LSB of RegFile  
11: 16-byte RegFile  
B9  
00: Matrix output  
01: PWM Period CNT overflow  
PWM1 Duty Cycle Counter Clock Source  
selection  
1485:1484  
10: Every 2nd pulse of PWM Period CNT overflow  
11: Every 8th pulse of PWM Period CNT overflow  
1487:1486 Reserved  
0000: CLK_OSC0  
0001: CLK_OSC0/4  
0010: CLK_OSC1  
0011: CLK_OSC1/8  
0100: CLK_OSC1/64  
0101: CLK_OSC1/512  
0110: CLK_OSC1/4096  
0111: CLK_OSC1/32768  
1000: CLK_OSC1/262144  
1001: From Flexible Divider  
1010: Reserved  
1491:1488 PWM1 Period Counter Clock Source selection  
BA  
1011: External clock through matrix (Matrix OUT [84])  
1495:1492 Reserved  
1503:1496 Reserved  
1511:1504 Reserved  
1519:1512 Reserved  
BB  
BC  
BD  
Reserved  
1520  
1521  
1522  
1523  
Reserved  
Reserved  
Reserved  
Reserved  
BE  
BE  
BF  
1527:1524 Reserved  
1531:1528 Reserved  
1532  
1533  
Reserved  
Reserved  
1535:1534 Reserved  
Datasheet  
31-Aug-2021  
Revision 3.4  
232 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
1539:1536 Reserved  
1540  
Reserved  
Reserved  
С0  
1541  
1543:1542 Reserved  
1551:1544 Reserved  
1559:1552 Reserved  
1567:1560 Reserved  
1575:1568 Reserved  
1583:1576 Reserved  
1591:1584 Reserved  
1599:1592 Reserved  
1607:1600 Reserved  
1615:1608 Reserved  
1623:1616 Reserved  
1631:1624 Reserved  
1639:1632 Reserved  
1647:1640 Reserved  
1655:1648 Reserved  
1663:1656 Reserved  
1671:1664 Reserved  
1679:1672 Reserved  
1687:1680 Reserved  
1695:1688 Reserved  
1703:1696 Reserved  
1711:1704 Reserved  
1719:1712 Reserved  
1727:1720 Reserved  
1735:1728 Reserved  
1743:1736 Reserved  
1751:1744 Reserved  
1759:1752 Reserved  
1767:1760 Reserved  
1775:1768 Reserved  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
Reserved  
1776  
1777  
1778  
1779  
1780  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DE  
Datasheet  
31-Aug-2021  
Revision 3.4  
233 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
1781  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DE  
DF  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
E0  
E1  
E2  
Datasheet  
31-Aug-2021  
Revision 3.4  
234 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
1816  
1817  
1818  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1819  
E3  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
E4  
1828  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
E5  
1836  
1837  
1838  
1839  
1840  
1841  
1842  
E6  
E6  
1843  
1844  
1845  
1846  
1847  
Datasheet  
31-Aug-2021  
Revision 3.4  
235 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
1848  
1849  
1850  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1851  
E7  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
E8  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
E9  
1868  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
EA  
1876  
1877  
1878  
1879  
Datasheet  
31-Aug-2021  
Revision 3.4  
236 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
1880  
1881  
1882  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1883  
EB  
1884  
1885  
1886  
1887  
1888  
1889  
1890  
1891  
EC  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
ED  
1899  
1900  
1902:1901 Reserved  
1903  
1904  
1905  
1906  
1907  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
EE  
1910:1908 Reserved  
1911  
1912  
1913  
1914  
1915  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
EF  
1918:1916 Reserved  
1919 Reserved  
Datasheet  
31-Aug-2021  
Revision 3.4  
237 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
1920  
1921  
Reserved  
Reserved  
Reserved  
Reserved  
1922  
F0  
1923  
1926:1924 Reserved  
1927  
1928  
1929  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1930  
F1  
1931  
1934:1932 Reserved  
1935  
1936  
1937  
1938  
1939  
1940  
1941  
1942  
1943  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
F2  
1947:1944 Reserved  
F3  
F4  
1948  
Reserved  
1951:1949 Reserved  
1952  
1953  
1954  
1955  
Reserved  
Reserved  
Reserved  
Reserved  
1958:1956 Reserved  
1959 Reserved  
Datasheet  
31-Aug-2021  
Revision 3.4  
238 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
I2C reset bit with reloading NVM into Data  
register (soft reset)  
0: Keep existing condition  
1: Reset execution  
1960  
0: Disable  
1: Enable  
IO Latching Enable During I2C Write Interface  
1961  
1963:1962 Reserved  
0: Disable  
1: Enable  
1964  
Protect mode enable  
F5  
000: All open read/write (mode 0)  
001: Partly lock read (mode 1)  
010: Partly lock read2 (mode 2)  
011: Partly lock read2/write (mode 3)  
100: All lock read (mode 4)  
1965  
Register protection mode bit 0  
101: All lock write (mode 5)  
1966  
1967  
Register protection mode bit 1  
Register protection mode bit 2  
110: All lock read/write (mode 6)  
1: Mask  
0: Overwrite  
I2C write mask bits  
F6  
1975:1968  
F7  
F8  
F9  
1983:1976 Reserved  
1991:1984 Reserved  
1992  
1993  
Reserved  
Reserved  
F9  
1995:1994 Reserved  
1999:1996 Reserved  
2007:2000 Reserved  
FA  
FB  
FC  
2015:2008 Reserved  
2023:2016 Reserved  
2027:2024  
I2C slave address  
0: From register [2024]  
1: From GPI  
2028  
2029  
2030  
2031  
Slave address selection bit0  
Slave address selection bit1  
Slave address selection bit2  
Slave address selection bit3  
0: From register [2025]  
1: From GPIO1  
FD  
0: From register [2026]  
1: From GPIO4  
0: From register [2027]  
1: From GPIO6  
Datasheet  
31-Aug-2021  
Revision 3.4  
239 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Table 77: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte Register Bit  
0: I2C operation enable; matrix in 32/33 select  
I2C_virtual_0/1 Input  
1: I2C operation disable; matrix in 32/33 select GPIO2/3  
digital input  
I2C operation disable bit  
2032  
FE  
2033  
Reserved  
Reserved  
2034  
2039:2035 Reserved  
2047:2040 Reserved  
FF  
Datasheet  
31-Aug-2021  
Revision 3.4  
240 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
24 Package Top Marking Definitions  
24.1 STQFN 20L 2 MM X 3 MM 0.4P FCD GREEN  
PPPPP Part Code  
WWNNN  
ARR  
Date Code + S/N Code  
Pin 1 Identifier  
Assembly House Code +  
Revision Code  
Datasheet  
31-Aug-2021  
Revision 3.4  
241 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
25 Package Information  
25.1 PACKAGE OUTLINES FOR STQFN 20L 2 MM X 3 MM 0.4P FCD GREEN PACKAGE  
Side View  
Top View  
Notes:  
1. All dimensions are in millimeters.  
2. Dimension “b” applies to metalized terminal and is  
measured between 0.15 mm and 0.30 mm from the  
terminal tip. If the terminal has the optional radius on the  
other end of the terminal, the dimension “b” should not  
be measured in that radius area.  
3. Bilateral co-planarity zone applies to the exposed  
heat sink slug as well as the terminal.  
Controlling dimension: mm  
Bottom View  
“A1” max lead co-planarity 0.05 mm  
Standard tolerance: ±0.05  
Figure 159: STQFN 20L 2x3mm 0.4P FCD Package  
Datasheet  
31-Aug-2021  
Revision 3.4  
242 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
25.2 MOISTURE SENSITIVITY LEVEL  
The Moisture Sensitivity Level (MSL) is an indicator for the maximum allowable time period (floor lifetime) in which a moisture  
sensitive plastic device, once removed from the dry bag, can be exposed to an environment with a specified maximum  
temperature and a maximum relative humidity before the solder reflow process. The MSL classification is defined in Table 78.  
For detailed information on MSL levels refer to the IPC/JEDEC standard J-STD-020, which can be downloaded from  
http://www.jedec.org.  
The [PACKAGE_NAME] package is qualified for MSL [n].  
Table 78: MSL Classification  
MSL Level  
MSL 4  
Floor Lifetime  
72 hours  
168 hours  
4 weeks  
Conditions  
30 °C / 60 % RH  
30 °C / 60 % RH  
30 °C / 60 % RH  
30 °C / 60 % RH  
30 °C / 60 % RH  
MSL 3  
MSL 2A  
MSL 2  
1 year  
MSL 1  
Unlimited  
25.3 SOLDERING INFORMATION  
Refer to the IPC/JEDEC standard J-STD-020 for relevant soldering information. This document can be downloaded from  
www.jedec.org.  
26 Ordering Information  
Table 79: Ordering Information  
Part Number  
SLG47105V  
Type  
20-pin STQFN  
SLG47105VTR  
20-pin STQFN - Tape and Reel (3k units)  
26.1 TAPE AND REEL SPECIFICATIONS  
Max Units  
Leader (min)  
Length  
Trailer (min)  
Nominal  
# of  
Pins  
Reel &  
Hub Size  
(mm)  
Tape Part  
Width Pitch  
(mm) (mm)  
Package Type  
Package Size  
(mm)  
Length  
(mm)  
per Reel per Box  
Pockets  
Pockets  
(mm)  
STQFN 20L  
2 mm x 3 mm  
0.4P FCD Green  
20  
2.0x3.0x0.55  
3000  
3000  
178/60  
100  
400  
100  
400  
8
4
26.2 CARRIER TAPE DRAWING AND DIMENSIONS  
Index Hole Index Hole  
PocketBTMPocketBTM Pocket Index Hole Pocket Index Hole  
to Tape  
Edge  
(mm)  
to Pocket Tape Width  
Center  
(mm)  
Length  
(mm)  
Width  
(mm)  
Depth  
(mm)  
Pitch  
(mm)  
Pitch Diameter  
(mm)  
Package Type  
(mm)  
P1  
(mm)  
D0  
A0  
B0  
K0  
P0  
E
F
W
STQFN 20L  
2 mm x 3 mm  
0.4P FCD Green  
2.2  
3.15  
0.76  
4
4
1.5  
1.75  
3.5  
8
Datasheet  
31-Aug-2021  
Revision 3.4  
243 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Datasheet  
31-Aug-2021  
Revision 3.4  
244 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
27 Thermal Guidelines  
Actual thermal characteristics will depend on number and position of vias, PCB type, copper layers, and other factors. Operating  
temperature range is from -40 °C to 85 °C. To guarantee reliable operation, the junction temperature of the SLG47105 must not  
exceed 150 °C.  
To avoid overheating of the power MOSFETs (as shown in Figure 109), a good thermal design of the PCB layout must be  
implemented, especially when device operates near its maximum thermal limits. Refer to Section 3.4 to find max value of  
Thermal Resistance.  
Figure 160: Die Temperature when HV OUTs are Active  
Datasheet  
31-Aug-2021  
Revision 3.4  
245 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
28 Layout consideration  
PCB should have enough ground plane to dissipate heat. SLG47105 has two additional pads which provide enhanced thermal  
dissipation. Thermal vias are used to transfer heat from chip to other layers of the PCB.  
The sense resistors and power capacitors should be placed as close as possible to the chip for reducing parasitic parameters.  
Typical Application Circuit is shown in Figure 161.  
Figure 161: Typical Application Circuit  
Datasheet  
31-Aug-2021  
Revision 3.4  
246 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Figure 162: PCB Layout Example  
Datasheet  
31-Aug-2021  
Revision 3.4  
247 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
29 Layout Guidelines  
29.1 STQFN 20L 2 MM X 3.0 MM X 0.55 MM 0.4P FCD PACKAGE  
It’s highly recommended to place low-ESR capacitor between VDD2_A, VDD2_B, and GND pin to keep input voltage stable and  
reduce ripple. This capacitor should be placed as close to the pins as possible. Also, the capacitor must have the low input  
impedance at the switching frequency. The recommended value of this capacitor is 1-10 µF for most applications. Motors with  
larger armature inductors require larger input capacitors.  
Also, it's highly recommended to place 0.1 µF ceramic capacitor between VDD and GND.  
Datasheet  
31-Aug-2021  
Revision 3.4  
248 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Glossary  
A
ACK  
Acknowledge bit  
ACMP  
ACMPH  
Analog Comparator  
Analog Comparator High Speed  
B
BG  
Bandgap  
C
CCMP  
CLK  
CMO  
CNT  
Current Sense Comparator  
Clock  
Connection matrix output  
Counter  
D
DFF  
DLY  
D Flip-Flop  
Delay  
E
ESD  
EV  
Electrostatic discharge  
End Value  
F
FSM  
Finite State Machine  
G
GPI  
GPIO  
GPO  
General Purpose Input  
General Purpose Input/Output  
General Purpose Output  
H
HV  
High Voltage  
I
IN  
IO  
Input  
Input/Output  
Datasheet  
31-Aug-2021  
Revision 3.4  
249 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
L
LP_BG  
LPF  
LS  
Low Power Bandgap  
Low Pass Filter  
Level Shifter  
LSB  
LUT  
LV  
Least Significant Bit  
Look Up Table  
Low Voltage  
M
MSB  
MUX  
Most Significant Bit  
Multiplexer  
N
NPR  
nRST  
NVM  
Non-Volatile Memory Read/Write/Erase Protection  
Reset  
Non-Volatile Memory  
O
OCP  
OD  
Overcurrent Protection  
Open-Drain  
OE  
Output Enable  
Oscillator  
OSC  
OTP  
OUT  
One Time Programmable  
Output  
P
PD  
Power-Down  
PGen  
POR  
PP  
Pattern Generator  
Power-On Reset  
Push-Pull  
PWM  
PWR  
P DLY  
Pulse Width Modulator  
Power  
Programmable Delay  
R
R/W  
Read/Write  
Datasheet  
31-Aug-2021  
Revision 3.4  
250 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
S
SCL  
SDA  
SLA  
SMT  
SV  
I2C Clock Input  
I2C Data Input/Output  
Slave Address  
With Schmitt Trigger  
nSET Value  
T
TSD  
TS  
Thermal Shutdown  
Temperature Sensor  
U
UVLO  
Under-Voltage-Lockout  
Voltage Reference  
V
Vref  
W
WOSMT  
WS  
Without Schmitt Trigger  
Wake and Sleep Controller  
Datasheet  
31-Aug-2021  
Revision 3.4  
251 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Revision History  
Revision  
Date  
Description  
Updated section Analog Comparators  
Updated table ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless  
Otherwise Noted  
Updated table EC at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Updated figure GPIO Matrix OE IO Structure Diagram  
Updated figure GPIO with I2C Mode Structure Diagram  
Updated figure GPI Structure Diagram  
3.4  
31-Aug-2021  
Added subsection ESD Protection  
Updated section GPIO4 Source for Oscillator 1 (25 MHz)  
Updated table Typical Current Estimated for Each Macrocell  
Fixed typos  
3.3  
3.2  
18-Jun-2021  
11-Jun-2021  
Updated section Package Information  
Corrected Wake and Sleep Controller Block Diagram  
Updated table Absolute Maximum Ratings  
Fixed typos  
3.1  
3.0  
12-Apr-2021  
15-Feb-2021  
Updated parameter VOL in EC table  
Final version  
Datasheet  
31-Aug-2021  
Revision 3.4  
252 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG47105  
GreenPAK Programmable Mixed-Signal Matrix with High  
Voltage Features  
Status Definitions  
Revision Datasheet Status  
Product Status  
Definition  
1.<n>  
Target  
Development  
This datasheet contains the design specifications for product development. Specifications may  
change in any manner without notice.  
2.<n>  
Preliminary  
Qualification  
Production  
This datasheet contains the specifications and preliminary characterization data for products in  
pre-production. Specifications may be changed at any time without notice in order to improve the  
design.  
3.<n>  
4.<n>  
Final  
This datasheet contains the final specifications for products in volume production. The  
specifications may be changed at any time in order to improve the design, manufacturing and  
supply. Major specification changes are communicated via Customer Product Notifications.  
Datasheet changes are communicated via www.dialog-semiconductor.com.  
Obsolete  
Archived  
This datasheet contains the specifications for discontinued products. The information is provided  
for reference only.  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or  
warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a  
Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage.  
Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such  
equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or  
implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this  
document if provided by any information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the  
design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device,  
Dialog Semiconductor reserves the right to change the information published in this document, including, without limitation, the specification and the design of the  
related semiconductor products, software and applications, in accordance with its standard automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or  
warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise  
agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this  
document. Such license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor’s Standard Terms and  
Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are  
the property of their respective owners.  
© 2021 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the  
restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Hong Kong  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
China (Shenzhen)  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
194  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
31-Aug-2021  
Revision 3.4  
253 of 253  
© 2021 Dialog Semiconductor  
CFR0011-120-00  

相关型号:

SLG47105VTR

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features
DIALOG

SLG47502

Low Voltage GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG47502V

Low Voltage GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG47502VTR

Low Voltage GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG47503

Low Voltage GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG47503M

Low Voltage GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG47503MTR

Low Voltage GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG4X42522-A

GreenPAK ™ Voltage Monitor
DIALOG

SLG4X42522-AG

GreenPAK ™ Voltage Monitor
DIALOG

SLG4X42522-AGTR

GreenPAK ™ Voltage Monitor
DIALOG

SLG55021-200010

GreenFETTM High Voltage Gate Driver
DIALOG

SLG55021-200010V

Controlled Load Discharge Rate
DIALOG