LM2902 [DIODES]

DUAL AND QUAD OPERATIONAL AMPLIFIERS;
LM2902
型号: LM2902
厂家: DIODES INCORPORATED    DIODES INCORPORATED
描述:

DUAL AND QUAD OPERATIONAL AMPLIFIERS

放大器 光电二极管
文件: 总16页 (文件大小:791K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM2902/LM2904  
DUAL AND QUAD OPERATIONAL AMPLIFIERS  
Description  
Pin Assignments  
The LM2902/LM2904 series amplifiers consist of four and two  
independent high-gain operational amplifiers with very low input offset  
voltage specification. They have been designed to operate from a  
single power supply over a wide range of voltages; however operation  
from split power supplies is also possible. They offer low power  
supply current independent of the magnitude of the power supply  
voltage.  
(Top View)  
V
CC  
1OUT  
1IN-  
1
2
3
4
8
7
6
5
-
2OUT  
2IN-  
1
-
1IN+  
GND  
2
2IN+  
The LM2902/LM2904 series are characterized for operation from  
-40to +125and the dual devices are available in SO-8, MSOP-8,  
SO-8/TSSOP-8/MSOP-8  
TSSOP-8 and the quad devices available in SO-14 and TSSOP-14  
with industry standard pin-outs. Both use green mold compound as  
standard.  
LM2904/LM2904A  
(Top View)  
Features  
4OUT  
4IN-  
1OUT  
1IN-  
1
2
3
4
5
14  
13  
12  
Wide Power Supply Voltage Range:  
-
-
1
2
4
3
.
.
Single Supply: 3V to 36V  
1IN+  
4IN+  
Dual Supplies: ±1.5V to ±18V  
11 GND  
Very Low Supply Current Drain  
V
CC  
.
.
LM2904 500µA Independent of Supply Voltage  
LM2902 700µA Independent of Supply Voltage  
3IN+  
3IN-  
2IN+  
2IN-  
10  
9
-
-
6
7
Low Input Bias Current: 20nA  
Low Input Offset Voltage:  
2OUT  
8
3OUT  
A Version: 1mV Typ  
Non-A Version: 2mV Typ  
SO-14/TSSOP-14  
Large DC Voltage Gain: 100dB  
LM2902/LM2902A  
Wide Bandwidth (Unity Gain): 700kHz (Temperature  
Compensated)  
Internally Compensated with Unity Gain  
Input Common-Mode Voltage Range Includes Ground  
Differential Input Voltage Range Equal to the Power Supply  
Voltage  
Large Output Voltage Swing: 0V to VCC -1.5V  
SO-8, MSOP-8, TSSOP-8 (Duals) and SO-14, TSSOP-14  
(Quads) Packages Available  
Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)  
Halogen and Antimony Free. “Green” Device (Note 3)  
An Automotive-Compliant Part is Available Under Separate  
Datasheet (LM2902Q_LM2904Q)  
Notes:  
1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.  
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated’s definitions of Halogen- and Antimony-free, "Green" and  
Lead-free.  
3. Halogen- and Antimony-free "Green” products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and  
<1000ppm antimony compounds.  
1 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
Functional Block Diagram  
VCC  
6A  
4A  
100A  
Q5  
Q6  
Q2  
Q3  
Cc  
Q7  
-
Q4  
Q1  
Rsc  
OUTPUT  
INPUTS  
+
Q11  
Q13  
Q10  
Q12  
50A  
Q8  
Q9  
Each Amplifier  
Pin Descriptions  
LM2902, LM2902A  
Pin Name  
1OUT  
1IN-  
Pin Number  
Function  
1
2
Channel 1 Output  
Channel 1 Inverting Input  
Channel 1 Non-Inverting Input  
Chip Supply Voltage  
1IN+  
3
4
VCC  
2IN+  
5
Channel 2 Non-Inverting Input  
Channel 2 Inverting Input  
Channel 2 Output  
2IN-  
6
2OUT  
3OUT  
3IN-  
7
8
Channel 3 Output  
9
Channel 3 Inverting Input  
Channel 3 Non-Inverting Input  
Ground  
3IN+  
10  
11  
12  
13  
14  
GND  
4IN+  
Channel 4 Non-Inverting Input  
Channel 4 Inverting Input  
Channel 4 Output  
4IN-  
4OUT  
LM2904, LM2904A  
1OUT  
1IN-  
1
2
3
4
5
6
7
8
Channel 1 Output  
Channel 1 Inverting Input  
Channel 1 Non-Inverting Input  
Ground  
1IN+  
GND  
2IN+  
Channel 2 Non-Inverting Input  
Channel 2 Inverting Input  
Channel 2 Output  
2IN-  
2OUT  
VCC  
Chip Supply Voltage  
2 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
Absolute Maximum Ratings (Note 4) (@TA = +25°C, unless otherwise specified.)  
Symbol  
VCC  
Parameter  
Rating  
±18 or 36  
36  
Unit  
V
Supply Voltage  
Differential Input Voltage  
Input Voltage  
V
VID  
-0.3 to +36  
TBD  
V
VIN  
SO-8  
MSOP-8  
TBD  
Package Thermal Impedance  
(Note 5)  
TSSOP-8  
SO-14  
TBD  
°C/W  
θJA  
TBD  
TSSOP-14  
SO-8  
TBD  
TBD  
MSOP-8  
TSSOP-8  
SO-14  
TBD  
Package Thermal Impedance  
(Note 6)  
TBD  
°C/W  
θJC  
TBD  
TSSOP-14  
TBD  
Output Short-Circuit to GND  
(One Amplifier) (Note 7)  
Continuous  
VCC ≤ 15V and TA = +25℃  
Operating Temperature Range  
Operating Junction Temperature  
Storage Temperature Range  
-40 to +125  
+150  
°C  
°C  
°C  
TA  
TJ  
-65 to +150  
300  
TST  
Human Body Mode ESD Protection (Note 8)  
Machine Mode ESD Protection  
ESD  
V
150  
Notes:  
4. Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only; functional  
operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to  
absolute-maximum-rated conditions for extended periods may affect device reliability.  
5. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is  
PD = (TJ(max) TA)/θJA. Operating at the absolute maximum TJ of +150°C can affect reliability.  
6. Maximum power dissipation is a function of TJ(max), θJC, and TA. The maximum allowable power dissipation at any allowable ambient temperature is  
PD = (TJ(max) TA)/θJA. Operating at the absolute maximum TJ of +150°C can affect reliability.  
7. Short circuits from outputs to VCC or ground can cause excessive heating and eventual destruction.  
8. Human body model, 1.5kΩ in series with 100pF.  
3 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
Electrical Characteristics (Notes 12 & 13) (@ VCC = +5.0V, TA = +25°C, unless otherwise specified.)  
LM2902, LM2902A  
Parameter  
Conditions  
Min  
Typ  
2
Max  
7
Unit  
TA  
TA = +25°C  
Full Range  
TA = +25°C  
Full Range  
VIC = VCMR Min,  
Non-A Device  
1
10  
2
VO = 1.4V,  
Input Offset Voltage  
mV  
VIO  
VCC = 5V to Max,  
RS = 0Ω  
A-Suffix Device  
4
Input Offset Voltage Temperature  
Drift  
Full Range  
7
VIO/T  
RS = 0Ω  
µV/℃  
-20  
2
-200  
-500  
50  
TA = +25°C  
Full Range  
TA = +25°C  
Full Range  
IIN+ or IIN− with OUT in Linear Range,  
VCMR = 0V (Note 9)  
Input Bias Current  
Input Offset Current  
nA  
IB  
nA  
IIO  
IIN+ - IIN−, VCM = 0V  
150  
Input Offset Current Temperature  
Drift  
Full Range  
TA = +25°C  
Full Range  
10  
IIO/T  
pA/℃  
0 to  
VCC -1.5  
0 to  
Input Common-Mode Voltage  
Range  
V
VCMR  
VCC = 30V (Note 10)  
VCC -2.0  
Full Range  
Full Range  
1.0  
0.7  
100  
3.0  
1.2  
VO = 0.5VCC, No Load VCC = 30V  
VO = 0.5VCC, No Load VCC = 5V  
Supply Current  
(Four Amplifiers)  
mA  
ICC  
25  
15  
60  
70  
TA = +25°C  
Full Range  
TA = +25°C  
TA = +25°C  
VCC = 15V, VOUT = 1V to 11V,  
Voltage Gain  
V/mV  
AV  
RL 2kΩ  
CMRR Common Mode Rejection Ratio  
PSRR Power Supply Rejection Ratio  
70  
dB  
dB  
DC, VCMR = 0V to VCC-1.5V  
VCC = 5V to 30V  
100  
f = 1kHz to 20kHz (Input Referred)  
(Note 11)  
VIN- = 1V, VIN+ = 0V, VCC = 15V,  
Amplifier to Amplifier Coupling  
-120  
50  
dB  
µA  
TA = +25°C  
TA = +25°C  
12  
VO = 200mV  
Sink  
ISINK  
VIN- = 1V, VIN+ = 0V, VCC = 15V,  
VO = 15V  
VIN+ = 1V, VIN- = 0V, VCC = 15V,  
10  
5
20  
TA = +25°C  
Full Range  
TA = +25°C  
Full Range  
TA = +25°C  
TA = +25°C  
Output Current  
mA  
-20  
-10  
-40  
-60  
Source  
ISOURCE  
ISC  
VO = 0V  
Short-Circuit to Ground  
±40  
±60  
mA  
V
VCC = 5V, GND = -5V, VO = 0V  
26  
27  
RL = 10kΩ  
VCC-1.5  
High-Level Output Voltage Swing  
Low-Level Output Voltage Swing  
VOH  
RL = 2kΩ  
VCC = 30V  
Full Range  
Full Range  
28  
5
RL 10kΩ  
20  
mV  
VOL  
RL 10kΩ  
AC Electrical Characteristics (Notes 12 & 13) (@ VCC = ±15.0V, TA = +25°C, unless otherwise specified.)  
LM2902, LM2902A  
Parameter  
Conditions  
RL = 1M, CL = 30pF, VI = ±10V  
RL = 1M, CL = 20pF  
Typ  
0.3  
0.7  
40  
Unit  
SR  
B1  
Vn  
Slew Rate at Unity Gain  
Unity Gain Bandwidth  
Equivalent Input Noise Voltage  
V/µs  
MHz  
nV/√Hz  
RS = 100, VI = 0V, f = 1kHz  
Notes:  
9. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the  
output so no loading change exists on the input lines.  
10. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (@ +25°C). The upper end of the  
common-mode voltage range is VCC -1.5V (@ +25°C), but either or both inputs can go to +36V without damage, independent of the magnitude of VCC  
11. Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can  
be detected as this type of capacitance increases at higher frequencies.  
.
12. Typical values are all at TA = +25°C conditions and represent the most likely parametric norm as determined at the time of characterization. Actual  
typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed  
on shipped production material.  
13. All limits are guaranteed by testing or statistical analysis. Limits over the full temperature are guaranteed by design, but not tested in production.  
4 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
Electrical Characteristics (Cont.) (Notes 12 & 13) (@ VCC = +5.0V, TA = +25°C, unless otherwise specified.)  
LM2904, LM2904A  
Parameter  
Unit  
Conditions  
Min  
Typ  
2
Max  
7
TA  
TA = +25°C  
Full Range  
TA = +25°C  
Full Range  
VIC = VCMR Min,  
Non-A Device  
1
10  
2
VO = 1.4V,  
Input Offset Voltage  
mV  
VIO  
VCC = 5V to Max  
RS = 0Ω  
A-Suffix Device  
4
Input Offset Voltage Temperature  
Drift  
Full Range  
7
VIO/T  
RS = 0Ω  
µV/℃  
-20  
2
-250  
-500  
50  
TA = +25°C  
Full Range  
TA = +25°C  
Full Range  
IIN+ or IIN− with OUT in Linear Range,  
VCMR = 0V (Note 9)  
Input Bias Current  
Input Offset Current  
nA  
IB  
nA  
IIO  
IIN+ - IIN−, VCM = 0V  
150  
Input Offset Current Temperature  
Drift  
Full Range  
TA = +25°C  
Full Range  
10  
IIO/T  
pA/℃  
0 to  
VCC -1.5  
0 to  
Input Common-Mode Voltage  
Range  
V
VCMR  
VCC = 30V (Note 10)  
VCC -2.0  
Full Range  
Full Range  
25  
15  
60  
70  
0.7  
0.5  
100  
2.0  
1.2  
VO = 0.5VCC, No Load  
VO = 0.5VCC, No Load  
VCC = 30V  
VCC = 5V  
Supply Current  
(Two Amplifiers)  
mA  
ICC  
TA = +25°C  
Full Range  
TA = +25°C  
TA = +25°C  
TA = +25°C  
VCC = 15V, VOUT = 1V to 11V,  
Voltage Gain  
V/mV  
AV  
RL 2kΩ  
CMRR Common Mode Rejection Ratio  
PSRR Power Supply Rejection Ratio  
70  
dB  
dB  
dB  
DC, VCMR = 0V to VCC-1.5V  
VCC = 5V to 30V  
100  
120  
Amplifier to Amplifier Coupling  
f = 1kHz to 20kHz (Note 11)  
VIN- = 1V, VIN+ = 0V, VCC = 15V,  
12  
50  
µA  
TA = +25°C  
VO = 200mV  
Sink  
ISINK  
10  
5
20  
TA = +25°C  
Full Range  
TA = +25°C  
Full Range  
TA = +25°C  
Output Current  
VIN- = 1V, VIN+ = 0V, VCC = 15V, VO = 15V  
VIN+ = 1V, VIN- = 0V, VCC = 15V, VO = 0V  
mA  
-20  
-10  
-40  
-60  
Source  
ISOURCE  
ISC  
Short-Circuit to Ground  
±4 0  
±6 0  
mA  
V
VCC = 5V, GND = -5V, VO = 0V  
RL = 10kΩ  
TA = +25°C VCC-1.5  
High-Level Output Voltage Swing  
26  
Full Range  
27  
VOH  
RL = 2kΩ  
VCC = 30V  
28  
5
RL 10kΩ  
Low-Lever Output Voltage Swing RL 10kΩ  
Full Range  
20  
mV  
VOL  
AC Electrical Characteristics (Notes 12 & 13) (@ VCC = ±15.0V, TA = +25°C, unless otherwise specified.)  
LM2904, LM2904A  
Parameter  
Conditions  
RL = 1M, CL = 30pF, VI = ±10V  
RL = 1M, CL = 20pF  
Typ  
0.3  
0.7  
40  
Unit  
SR  
B1  
Vn  
Slew Rate at Unity Gain  
Unity Gain Bandwidth  
Equivalent Input Noise Voltage  
V/µs  
MHz  
nV/√Hz  
RS = 100, VI = 0V, f = 1kHz  
Notes:  
9. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the  
output so no loading change exists on the input lines.  
10. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (@ +25°C). The upper end of the  
common-mode voltage range is VCC -1.5V (@ +25°C), but either or both inputs can go to +36V without damage, independent of the magnitude of VCC  
11. Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can  
be detected as this type of capacitance increases at higher frequencies.  
.
12. Typical values are all at TA = +25°C conditions and represent the most likely parametric norm as determined at the time of characterization. Actual  
typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed  
on shipped production material.  
13. All limits are guaranteed by testing or statistical analysis. Limits over the full temperature are guaranteed by design, but not tested in production.  
5 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
Performance Characteristics  
Input Voltage Range  
Input Current  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature (oC)  
Supply Current vs. Supply Voltage (LM2904/LM2904A)  
Supply Current vs. Supply Voltage (LM2902/LM2902A)  
0.7  
1.00  
Quad OPAs  
Dual OPAs  
0.95  
TA=-40OC  
0.6  
0.5  
0.4  
0.90  
TA=25OC  
0.85  
TA=85OC  
0.80  
TA=125OC  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
TA=-40OC  
TA=25OC  
TA=85OC  
TA=125OC  
0.3  
0.2  
0.1  
3
6
9
12  
15  
18  
21  
24  
27  
30  
33  
36  
3
6
9
12  
15  
18  
21  
24  
27  
30  
33  
36  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Current vs. Temperature (LM2904/LM2904A)  
Supply Current vs. Temperature (LM2902/LM2902A)  
1.2  
0.8  
Quad OPAs  
1.1  
Dual OPAs  
0.7  
VCC=5.0V  
VCC=15V  
VCC=30V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.6  
VCC=5.0V  
VCC=15V  
0.5  
VCC=30V  
0.4  
0.3  
0.2  
0.1  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature (OC)  
Temperature (OC)  
6 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
Performance Characteristics (Cont.)  
Voltage Gain  
Open Loop Frequency Response  
Power Supply Voltage (V)  
Current Limit  
Large Signal Frequency Response  
20  
VCC=15V,VEE=0  
RL=2k  
15  
10  
5
0
1k  
10k  
100k  
1M  
Frequency (kHz)  
Temperature ()  
Output Characteristics: Current Sourcing  
Output Characteristics: Current Sinking  
VCC  
VCC/2  
VO  
IO  
7 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
Performance Characteristics (Cont.)  
Voltage Follower Pulse Response  
Voltage Follower Pulse Response (Small Signal)  
4
3
2
1
800  
700  
600  
500  
400  
300  
200  
0
3
2
1
0
100  
0
4
8
12 16 20 24 28 32 36 40  
0
4
8
12  
16  
20  
Time (s)  
Time (s)  
8 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
Application Information  
General Information  
The LM2902/LM2904 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the  
linear mode with an input common-mode voltage of 0VDC. These amplifiers operate over a wide range of power supply voltage with little change in  
performance characteristics. At +25°C amplifier operation is possible down to a minimum supply voltage of 2.3VDC  
.
Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not  
inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause  
fusing of the internal conductors and result in a destroyed unit.  
Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input  
currents result from large differential input voltages. The differential input voltage may be larger than V+ without damaging the device. Protection  
should be provided to prevent the input voltages from going negative more than -0.3VDC (@ +25°C). An input clamp diode with a resistor to the IC  
input terminal can be used.  
To reduce the power supply current drain, the amplifiers have a Class A output stage for small signal levels which converts to Class B in a large  
signal mode. These allow the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost  
transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above  
ground to bias the on-chip vertical PNP transistor for output current sinking applications.  
For AC applications, where the load is capacitive coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier  
to ground to increase the Class A bias current and prevent crossover distortion. Where the load is directly coupled, as in DC applications, there is  
no crossover distortion.  
Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50pF can be accommodated  
using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance  
must be driven by the amplifier.  
The bias network of the LM2902/LM2904 series establishes a quiescent current which is independent of the magnitude of the power supply  
voltage over the range of 3VDC to 30VDC  
.
Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the  
short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to  
excessive function temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to  
destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger  
value of output source current which is available at +25°C provides a larger output current capability at elevated temperatures (see Performance  
Characteristics) than a standard IC op amp.  
The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power  
supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of VCC/2)  
will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the  
wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to  
ground can easily be accommodated.  
9 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
Application Information (Cont.)  
Power Supply Bypassing and Layout  
The LM2902/LM2904 operate both single supply voltage range 3V to 36V or dual supply voltage ±1.5V to ±18V.  
As with any operation amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. For single supply  
operation system, a minimum 0.1µF bypass capacitor should be recommended to place as close as possible between the VCC Pin and GND. For  
dual supply operation, both the positive supply pin and negative supply pin should be bypassed to ground with a separate 0.1µF ceramic capacitor.  
2.2µF tantalum capacitor can be added for better performance. Keep the length of leads and traces that connect capacitors between the  
LM2902/LM2904 power supply pin and ground as short as possible.  
LM2902/04  
Ordering Information (Note 14)  
LM290X X XXX - 13  
Packing  
Channel  
Package  
Blank : Normal T14 : TSSOP-14  
Grade  
2: Quad  
4: Dual  
13 : Tape & Reel  
S14 : SO-14  
S : SO-8  
A : Low VIO  
M8: MSOP-8  
TH: TSSOP-8  
13” Tape and Reel  
Part Number  
Package Code  
Packaging  
Quantity  
Part Number Suffix  
LM2902T14-13  
LM2902AT14-13  
LM2902S14-13  
LM2902AS14-13  
LM2904S-13  
T14  
T14  
S14  
S14  
S
TSSOP-14  
TSSOP-14  
SO-14  
2,500/Tape & Reel  
2,500/Tape & Reel  
2,500/Tape & Reel  
2,500/Tape & Reel  
2,500/Tape & Reel  
2,500/Tape & Reel  
2,500/Tape & Reel  
2,500/Tape & Reel  
2,500/Tape & Reel  
2,500/Tape & Reel  
-13  
-13  
-13  
-13  
-13  
-13  
-13  
-13  
-13  
-13  
SO-14  
SO-8  
LM2904AS-13  
LM2904AM8-13  
LM2904M8-13  
LM2904ATH-13  
LM2904TH-13  
S
SO-8  
M8  
M8  
TH  
TH  
MSOP-8  
MSOP-8  
TSSOP-8  
TSSOP-8  
Note:  
14. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.  
10 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
Marking Information  
(1) TSSOP-14 and SO-14  
( Top View )  
8
7
14  
X : Grade : Blank: Normal  
Logo  
Part Number  
A : Low VIO  
YY : Year : 12, 13,14~  
WW : Week : 01~52; 52  
represents 52 and 53 week  
X X : Internal Code  
LM2902X  
YY WW XX  
1
(2) SO-8  
(Top View)  
8
1
7
6
5
4
Logo  
Part Number  
X : Grade : Blank: Normal  
A : Low VIO  
YY : Year : 12, 13,14~  
WW : Week : 01~52; 52  
represents 52 and 53 week  
XX : Internal Code  
LM2904X  
YY WW XX  
2
3
(3) MSOP-8 and TSSOP-8  
( Top View )  
8
7
6
5
Y : Year : 0 to 9  
W : Week : A to Z : 1 to 26 week;  
a to z : 27 to 52 week; z represents  
52 and 53 week  
X : Internal Code  
X : Grade : Blank : Normal  
Logo  
Part Number  
Y W X  
LM2904X  
A : Low VIO  
2
3
4
1
11 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
Package Outline Dimensions  
Please see http://www.diodes.com/package-outlines.html for the latest version.  
(1) Package Type: SO-8  
SO-8  
Dim Min  
Max  
1.50  
0.20  
0.50  
0.25  
4.95  
6.10  
3.90  
3.95  
--  
Typ  
1.45  
0.15  
0.40  
0.20  
4.90  
6.00  
3.85  
3.90  
1.27  
0.35  
0.72  
0.65  
A
A1  
b
c
D
1.40  
0.10  
0.30  
0.15  
4.85  
5.90  
3.80  
3.85  
--  
E
1
E
E1  
E0  
e
b
E1  
h
-
--  
0.82  
0.70  
L
Q  
0.62  
0.60  
h
)
Q
sides  
All  
(
7°  
All Dimensions in mm  
9°  
c
4°± 3°  
A
Gauge Plane  
Seating Plane  
L
A1  
e
E0  
D
(2) Package Type: TSSOP-8  
D
TSSOP-8  
Dim  
a
A
A1  
A2  
b
c
D
e
E
Min  
0.09  
Max  
1.20  
0.15  
Typ  
See Detail C  
E
0.05  
E1  
0.825 1.025 0.925  
0.19  
0.09  
2.90  
4.30  
0.30  
0.20  
3.10  
4.50  
3.025  
0.65  
6.40  
4.425  
0.60  
e
c
b
E1  
L
Gauge plane  
0.45  
0.75  
a
A2  
A1  
A
All Dimensions in mm  
L
D
Detail C  
12 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
Package Outline Dimensions (Cont.)  
Please see http://www.diodes.com/package-outlines.html for the latest version.  
(3) Package Type:MSOP-8  
D
MSOP-8  
Dim Min Max Typ  
1.10  
A
-
-
A1 0.05 0.15 0.10  
A2 0.75 0.95 0.86  
A3 0.29 0.49 0.39  
0.25  
E
Gauge Plane  
Seating Plane  
x
b
c
0.22 0.38 0.30  
0.08 0.23 0.15  
2.90 3.10 3.00  
4.70 5.10 4.90  
2.90 3.10 3.00  
D
E
y
L
4X  
10  
°
E1  
E3 2.85 3.05 2.95  
Detail C  
e
L
a
x
y
-
-
0.65  
1
b
0.40 0.80 0.60  
0°  
-
E3  
8°  
-
-
4°  
0.750  
0.750  
A3  
A2  
A1  
-
A
All Dimensions in mm  
e
E1  
c
See Detail C  
(4) Package Type: SO-14  
SO-14  
Dim  
A
A1  
A2  
B
Min  
1.47  
0.10  
Max  
1.73  
0.25  
1.45 Typ  
0.33  
8.53  
3.80  
0.51  
8.74  
3.99  
D
E
e
1.27 Typ  
H
L
  
5.80  
0.38  
0  
6.20  
1.27  
8  
All Dimensions in mm  
(5) Package Type: TSSOP-14  
TSSOP-14  
Dim  
a1  
a2  
A
B
C
Min  
Max  
7° (4X)  
8°  
0  
4.9  
4.30  
-  
5.10  
4.50  
1.2  
D
0.8  
1.05  
F
1.00 Typ  
F1  
G
0.45  
0.65 Typ  
0.75  
K
0.19  
0.30  
L
6.40 Typ  
All Dimensions in mm  
13 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
Suggested Pad Layout  
Please see http://www.diodes.com/package-outlines.html for the latest version.  
(1) Package Type: SO-8  
X1  
Dimensions Value (in mm)  
C
X
X1  
Y
1.27  
0.802  
4.612  
1.505  
6.50  
Y1  
Y1  
Y
C
X
(2) Package Type: TSSOP-8  
Y
Dimensions Value (in mm)  
X
Y
C1  
C2  
C3  
G
0.45  
1.78  
7.72  
0.65  
4.16  
0.20  
X
C3  
C1  
C2  
G
(3) Package Type:MSOP-8  
X
C
Y
Value  
Dimensions  
(in mm)  
0.650  
0.450  
1.350  
5.300  
C
X
Y
Y1  
Y1  
14 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
Suggested Pad Layout (Cont.)  
Please see http://www.diodes.com/package-outlines.html for the latest version.  
(4) Package Type: SO-14  
X
Dimensions Value (in mm)  
X
Y
C1  
C2  
0.60  
1.50  
5.4  
C1  
1.27  
C2  
Y
(5) Package Type: TSSOP-14  
X
Dimensions Value (in mm)  
X
Y
C1  
C2  
0.45  
1.45  
5.9  
C1  
0.65  
C2  
Y
15 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  
LM2902/LM2904  
IMPORTANT NOTICE  
DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT,  
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE  
(AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).  
Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes  
without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the  
application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or  
trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume  
all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated  
website, harmless against all damages.  
Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.  
Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and  
hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or  
indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.  
Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings  
noted herein may also be covered by one or more United States, international or foreign trademarks.  
This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the  
final and determinative format released by Diodes Incorporated.  
LIFE SUPPORT  
Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express  
written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:  
A. Life support devices or systems are devices or systems which:  
1. are intended to implant into the body, or  
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the  
labeling can be reasonably expected to result in significant injury to the user.  
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the  
failure of the life support device or to affect its safety or effectiveness.  
Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any  
use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related  
information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its  
representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.  
Copyright © 2018, Diodes Incorporated  
www.diodes.com  
16 of 16  
www.diodes.com  
August 2018  
© Diodes Incorporated  
LM2902/LM2904  
Document number: DS36780 Rev. 4 - 2  

相关型号:

LM2902-EP

QUADRUPLE OPERATIONAL AMPLIFIER
TI

LM2902-N

Low-Power, Quad-Operational Amplifiers
TI

LM2902-Q1

QUADRUPLE OPERATIONAL AMPLIFIER
TI

LM2902-SR

1.2MHz, Low-Power 36V Op Amps
3PEAK

LM2902-TR

1.2MHz, Low-Power 36V Op Amps
3PEAK

LM29021

Amplifiers and Comparators
MOTOROLA

LM2902A

DUAL AND QUAD OPERATIONAL AMPLIFIERS
DIODES

LM2902A

36V General Purpose Op Amps
3PEAK

LM2902A-SR

36V General Purpose Op Amps
3PEAK

LM2902A-TR

36V General Purpose Op Amps
3PEAK

LM2902AL1-SR

36V General Purpose Op Amps
3PEAK

LM2902AMX

四路运算放大器
ONSEMI