EL2126CS-T7 [ELANTEC]

Operational Amplifier, 1 Func, 2000uV Offset-Max, BIPolar, PDSO8, SO-8;
EL2126CS-T7
型号: EL2126CS-T7
厂家: ELANTEC SEMICONDUCTOR    ELANTEC SEMICONDUCTOR
描述:

Operational Amplifier, 1 Func, 2000uV Offset-Max, BIPolar, PDSO8, SO-8

光电二极管
文件: 总16页 (文件大小:223K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
Features  
General Description  
Voltage noise of only 1.3nV/Hz  
• Current noise of only 1.2pA/Hz  
• 200µV offset voltage  
The EL2126C is an ultra-low noise, wideband amplifier that runs on  
half the supply current of competitive parts. It is intended for use in  
systems such as ultrasound imaging where a very small signal needs to  
be amplified by a large amount without adding significant noise. Its  
low power dissipation enables it to be packaged in the tiny SOT23  
package, which further helps systems where many input channels cre-  
ate both space and power dissipation problems.  
• 100MHz -3dB BW for A =10  
V
Very low supply current - 4.7mA  
• SOT23 package  
2.5V to 15V operation  
The EL2126C is stable for gains of 10 and greater and uses traditional  
voltage feedback. This allows the use of reactive elements in the feed-  
back loop, a common requirement for many filter topologies. It  
operates from 2.5V to 15V supplies and is available in 5-pin SOT23  
and 8-pin SO packages.  
Applications  
• Ultrasound input amplifiers  
• Wideband instrumentation  
• Communication equipment  
• AGC & PLL active filters  
• Wideband sensors  
The EL2126C is fabricated in Elantec’s proprietary complementary  
bipolar process, and is specified for operation over the full -40°C to  
+85°C temperature range.  
Ordering Information  
Tape &  
Part No  
EL2126CW-T7  
EL2126CW-T13  
EL2126CS  
Package  
5-Pin SOT23  
5-Pin SOT23  
8-Pin SO  
Reel  
Outline #  
MDP0038  
MDP0038  
MDP0027  
MDP0027  
MDP0027  
7”  
13”  
-
Connection Diagrams  
EL2126CS-T7  
EL2126CS-T13  
8-Pin SO  
7”  
8-Pin SO  
13”  
NC  
IN-  
IN+  
VS-  
1
2
3
4
8
7
6
5
NC  
OUT  
VS-  
IN+  
1
2
3
5
4
VS+  
IN-  
VS+  
OUT  
NC  
-
+
+
-
EL2126C  
(5-Pin SOT23)  
EL2126C  
(8-Pin SO)  
Note: All information contained in this data sheet has been carefully checked and is believed to be accurate as of the date of publication; however, this data sheet cannot be a “controlled document”. Current revisions, if any, to these  
specifications are maintained at the factory and are available upon your request. We recommend checking the revision level before finalization of your design documentation.  
© 2002 Elantec Semiconductor, Inc.  
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
Absolute Maximum Ratings (T = 25°C)  
A
VS+ to VS-  
33V  
40mA  
Operating Temperature  
-40°C to +85°C  
-60°C to +150°C  
+150°C  
Continuous Output Current  
Any Input  
Storage Temperature  
VS+ - 0.3V to VS- + 0.3V  
See Curves  
Maximum Die Junction Temperature  
Power Dissipation  
Important Note:  
All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the  
specified temperature and are pulsed tests, therefore: TJ = TC = TA  
Electrical Characteristics  
VS+ = +5V, VS- = -5V, TA = 25°C, RF = 180, RG = 20, RL = 500unless otherwise specified.  
Parameter  
DC Performance  
VOS  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Input Offset Voltage (SO8)  
Input Offset Voltage (SOT23-5)  
Offset Voltage Temperature Coefficient  
Input Bias Current  
0.2  
2
3
mV  
mV  
µV/°C  
µA  
µA  
µA/°C  
pF  
TCVOS  
IB  
17  
-7  
-10  
IOS  
Input Bias Current Offset  
Input Bias Current Temperature Coefficient  
Input Capacitance  
0.06  
0.013  
2.2  
0.6  
TCIB  
CIN  
AVOL  
PSRR  
CMRR  
CMIR  
VOUTH  
VOUTL  
VOUTH2  
VOUTL2  
IOUT  
Open Loop Gain  
VO = -2.5V to +2.5V  
80  
80  
87  
dB  
[1]  
Power Supply Rejection Ratio  
100  
106  
dB  
Common Mode Rejection Ratio  
Common Mode Input Range  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
at CMIR  
75  
dB  
-4.6  
3.8  
3.8  
-3.9  
-3.2  
5.5  
V
No load, RF = 1kΩ  
No load, RF = 1kΩ  
RL = 100Ω  
3.8  
-4  
V
V
3.2  
80  
3.45  
-3.5  
100  
4.7  
V
RL = 100Ω  
V
[2]  
Output Short Circuit Current  
mA  
mA  
ISY  
Supply Current  
AC Performance - RG = 20, CL = 3pF  
BW  
-3dB Bandwidth, RL = 500Ω  
0.1dB Bandwidth, RL = 500Ω  
1dB Bandwidth, RL = 500Ω  
Peaking, RL = 500Ω  
100  
17  
MHz  
MHz  
MHz  
dB  
BW 0.1dB  
BW 1dB  
Peaking  
SR  
80  
0.6  
110  
2.8  
-7  
Slew Rate  
V
OUT = 2VPP, measured at 20% to 80%  
80  
V/µs  
%
OS  
Overshoot, 4Vpk-pk Output Square Wave  
Positive  
Negative  
%
tS  
Settling Time to 0.1% of 1V Pulse  
Voltage Noise Spectral Density  
Current Noise Spectral Density  
51  
ns  
VN  
IN  
1.3  
1.2  
-70  
-70  
nV/Hz  
pA/Hz  
dBc  
[3]  
HD2  
HD3  
2nd Harmonic Distortion  
[3]  
3rd Harmonic Distortion  
dBc  
1. Measured by moving the supplies from 4V to 6V  
2. Pulse test only and using a 10load  
3. Frequency = 1MHz, VOUT = 2Vpk-pk, into 500and 5pF load  
2
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
Electrical Characteristics  
VS+ = +15V, VS- = -15V, TA = 25°C, RF = 180, RG = 20, RL = 500unless otherwise specified.  
Parameter  
DC Performance  
VOS  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Input Offset Voltage (SO8)  
Input Offset Voltage (SOT23-5)  
Offset Voltage Temperature Coefficient  
Input Bias Current  
0.5  
3
3
mV  
mV  
µV/°C  
µA  
µA  
µA/°C  
pF  
TCVOS  
IB  
4.5  
-7  
-10  
IOS  
Input Bias Current Offset  
Input Bias Current Temperature Coefficient  
Input Capacitance  
0.12  
0.016  
2.2  
90  
0.7  
TCIB  
CIN  
AVOL  
PSRR  
CMRR  
CMIR  
VOUTH  
VOUTL  
VOUTH2  
VOUTL2  
IOUT  
Open Loop Gain  
80  
65  
dB  
[1]  
Power Supply Rejection Ratio  
80  
dB  
Common Mode Rejection Ratio  
Common Mode Input Range  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
at CMIR  
70  
85  
dB  
-14.6  
13.6  
13.8  
-13.7  
-9.5  
6
V
No load, RF = 1kΩ  
No load, RF = 1kΩ  
RL = 100, RF = 1kΩ  
RL = 100, RF = 1kΩ  
13.7  
-13.8  
11.2  
-10.3  
220  
5
V
V
10.2  
140  
V
V
[2]  
Output Short Circuit Current  
mA  
mA  
ISY  
Supply Current  
AC Performance - RG = 20, CL = 3pF  
BW  
-3dB Bandwidth, RL = 500Ω  
0.1dB Bandwidth, RL = 500Ω  
1dB Bandwidth, RL = 500Ω  
Peaking, RL = 500Ω  
135  
26  
MHz  
MHz  
MHz  
dB  
BW 0.1dB  
BW 1dB  
Peaking  
SR  
60  
2.1  
150  
Slew Rate ( 2.5V Square Wave, Measured  
25%-75%)  
130  
V/µS  
OS  
Overshoot, 4Vpk-pk Output Square Wave  
Positive  
1.6  
-4.4  
48  
%
%
Negative  
TS  
Settling Time to 0.1% of 1V Pulse  
Voltage Noise Spectral Density  
Current Noise Spectral Density  
ns  
VN  
1.4  
1.1  
-72  
-73  
nV/Hz  
pA/Hz  
dBc  
IN  
[3]  
HD2  
HD3  
2nd Harmonic Distortion  
[3]  
3rd Harmonic Distortion  
dBc  
1. Measured by moving the supplies from 13.5V to 16.5V  
2. Pulse test only and using a 10load  
3. Frequency = 1MHz, VOUT = 2Vpk-pk, into 500and 5pF load  
3
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
Typical Performance Curves  
Non-Inverting Frequency Response for Various R  
Non-Inverting Frequency Response for Various R  
F
F
10  
6
10  
6
V = 5V  
V
V = 15V  
S
V
C =5pF  
L
R =500  
L
S
R =1kΩ  
F
A =10  
A =10  
R =1kΩ  
F
C =5pF  
L
R =500Ω  
L
R =500Ω  
F
R =500Ω  
F
2
2
-2  
-6  
-10  
-2  
-6  
-10  
R =180Ω  
R =180Ω  
F
F
R =100Ω  
F
R =100Ω  
F
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
Inverting Frequency Response for Various R  
Inverting Frequency Response for Various R  
F
F
8
4
8
4
R =1kΩ  
F
V = 5V  
S
V = 15V  
S
R =500Ω  
R =1kΩ  
F
F
A =-10  
A =-10  
V
V
R =500Ω  
C =5pF  
L
C =5pF  
L
F
R =500Ω  
R =500Ω  
L
L
R =350Ω  
F
R =350Ω  
F
0
0
R =200Ω  
F
R =200Ω  
F
-4  
-8  
-12  
-4  
-8  
-12  
R =100Ω  
F
R =100Ω  
F
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
Non-Inverting Frequency Response for Various Gain  
Non-Inverting Frequency Response for Various Gain  
10  
6
10  
6
V = 5V  
G
V = 15V  
S
G
S
R =20Ω  
R =20Ω  
R =500Ω  
R =500Ω  
L
L
C =5pF  
C =5pF  
L
L
A =10  
V
2
2
A =10  
V
A =20  
V
A =20  
V
-2  
-6  
-10  
-2  
-6  
-10  
A =50  
V
A =50  
V
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
4
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
Typical Performance Curves  
Inverting Frequency Response for Various Gain  
Inverting Frequency Response for Various R  
F
8
8
4
V = 5V  
L
R =35Ω  
G
V = 15V  
S
L
R =20Ω  
G
S
C =5pF  
C =5pF  
4
0
0
A =-10  
V
A =-10  
V
-4  
-4  
-8  
-12  
A =-50  
V
A =-50  
V
A =-20  
V
A =-20  
V
-8  
-12  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Non-Inverting Frequency Response for Various Output  
Signal Levels  
Non-Inverting Frequency Response for Various Output  
Signal Levels  
8
4
10  
6
V = 5V  
V = 15V  
S
S
C =5pF  
C =5pF  
L
R =180Ω  
F
A =10  
V
L
L
V =30mV  
PP  
R =500Ω  
R =500Ω  
O
L
R =180Ω  
F
V =500mV  
O
PP  
A =10  
V
V =500mV  
V =30mV  
O PP  
0
2
O
PP  
V =1V  
O
PP  
-4  
-8  
-12  
-2  
-6  
-10  
V =5V  
V =10V  
O PP  
O
PP  
V =2.5V  
V =5V  
O PP  
O
PP  
V =1V  
O
V =2.5V  
O PP  
PP  
1M  
10M  
100M  
1M  
10M  
Frequency (Hz)  
100M  
Frequency (Hz)  
Inverting Frequency Response for Various Output Signal  
Levels  
Inverting Frequency Response for Various Output Signal  
Levels  
8
4
8
4
V = 5V  
S
V = 15V  
S
V =500mV  
V =500mV  
O PP  
C =5pF  
L
C =5pF  
L
O
PP  
R =500Ω  
R =500Ω  
L
L
V =30mV  
O
V =30mV  
O
PP  
PP  
R =350Ω  
R =200Ω  
F
F
V =1V  
O
PP  
V =1V  
O
PP  
A =10  
A =10  
V
V
0
0
V =3.4V  
V =3.4V  
O PP  
O
PP  
-4  
-8  
-12  
-4  
-8  
-12  
V =2.5V  
O
V =2.5V  
O
PP  
PP  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
5
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
Typical Performance Curves  
Non-Inverting Frequency Response for Various C  
Non-Inverting Frequency Response for Various C  
L
L
10  
6
10  
6
V = 5V  
F
V = 15V  
S
F
S
R =150Ω  
R =180Ω  
C =28pF  
C =11pF  
L
L
A =10  
A =10  
V
V
C =28pF  
L
R =500Ω  
R =500Ω  
L
L
C =16pF  
L
C =11pF  
L
C =16pF  
L
2
2
C =5pF  
C =5pF  
L
L
-2  
-6  
-10  
-2  
-6  
-10  
C =1.2pF  
L
C =1pF  
L
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
Inverting Frequency Response for Various C  
Inverting Frequency Response for Various C  
L
L
8
4
8
4
V = 5V  
S
V = 15V  
S
C =28pF  
L
C =28pF  
L
R =350Ω  
R =200Ω  
F
F
R =500Ω  
R =500Ω  
L
L
C =16pF  
L
C =16pF  
L
A =-10  
A =-10  
V
V
0
0
C =11pF  
L
C =11pF  
L
-4  
-8  
-4  
-8  
-12  
C =5pF  
L
C =5pF  
L
C =1.2pF  
L
C =1.2pF  
L
-12  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
Open Loop Gain/Phase  
Supply Current vs Supply Voltage  
100  
80  
60  
40  
20  
0
250  
150  
Gain  
Phase  
50  
0.6/div  
-50  
-150  
-250  
V = 5V  
S
0
10k  
100k  
1M  
10M  
100M  
1G  
0
1.5/div  
Frequency (Hz)  
Supply Voltage (V)  
6
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
Typical Performance Curves  
Bandwidth vs V  
Peaking vs V  
s
s
160  
140  
120  
100  
80  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V = 5V  
S
G
V = 5V  
S
G
A =-10  
R =20Ω  
R =20Ω  
V
R =500Ω  
R =500Ω  
L
L
C =5pF  
C =5pF  
L
L
A =10  
V
A =10  
V
A =-20  
V
60  
40  
A =-20  
V
A =-10  
V
A =-50  
V
20  
A =50  
V
0
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
V
S
(V)  
Supply Voltage (V)  
Small Signal Step Response  
Large Signal Step Response  
R =180V = 5V  
F
S
R =20Ω  
G
V =2V  
O PP  
20mV/div  
0.5V/div  
R =180Ω  
F
R =20Ω  
G
V = 5V  
S
V =100mV  
O
PP  
10ns/div  
10ns/div  
1MHz Harmonic Distortion vs Output Swing  
1MHz Harmonic Distortion vs Output Swing  
-40  
-50  
-30  
V = 5V  
V = 5V  
S
O P-P  
S
V =2V  
V =2V  
O
P-P  
-40  
-50  
R =180Ω  
R =180Ω  
F
F
2nd HD  
A =10  
A =10  
V
V
2nd HD  
3rd HD  
R =500Ω  
R =500Ω  
L
L
-60  
-60  
-70  
-70  
-80  
-80  
3rd HD  
-90  
-90  
-100  
-100  
0
1
2
3
4
5
6
7
8
0
5
10  
15  
)
20  
25  
V
(V  
OUT P-P  
)
V
(V  
OUT P-P  
7
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
Typical Performance Curves  
Total Harmonic Distortion vs Frequency  
Noise vs Frequency  
-20  
10  
V = 5V  
S
V =2V  
O
P-P  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I , V = 5V  
N
S
V , V = 15V  
N
S
V , V = 5V  
N
S
I , V = 15V  
N
S
1
10  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
Frequency (Hz)  
10k  
100k  
400M  
200M  
Frequency (Hz)  
Settling Time vs Accuracy  
Group Delay vs Frequency  
70  
60  
50  
40  
30  
20  
10  
0
16  
12  
8
V = 5V  
R =500Ω  
L
S
A =10  
V
S
O
P
-
P
4
A =-10  
V
0
-4  
1M  
0.1  
1.0  
Accuracy (%)  
10.0  
10M  
Frequency (Hz)  
100M  
CMRR vs Frequency  
PSRR vs Frequency  
-10  
-30  
110  
90  
70  
50  
30  
10  
V = 5V  
S
PSRR-  
-50  
-70  
PSRR+  
-90  
-110  
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
8
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
Typical Performance Curves  
Closed Loop Output Impedance vs Frequency  
Bandwidth and Peaking vs Temperature  
120  
100  
80  
60  
40  
20  
0
3.5  
3
100 V = 5V  
S
V = 5V  
S
2.5  
2
10  
1
Bandwidth  
1.5  
1
Peaking  
0.5  
0
0.1  
0.01  
10k  
-0.5  
100k  
1M  
10M  
100M  
-40  
0
40  
80  
120  
160  
Frequency (Hz)  
Temperature  
Slew Rate vs Swing  
Supply Current vs Temperature  
220  
200  
180  
160  
140  
120  
100  
80  
5.2  
5.1  
5
15V  
-
SR  
V = 15V  
S
15V  
+
SR  
5V  
SR  
-
V = 5V  
S
4.9  
4.8  
5V  
SR  
+
60  
-1  
1
3
5
7
9
11  
13  
15  
-50  
0
50  
100  
150  
V
Swing (V  
)
PP  
Die Temperature (°C)  
OUT  
Offset Voltage vs Temperature  
CMRR vs Temperature  
1
0
120  
110  
100  
90  
V = 5V  
S
V = 5V  
S
V = 15V  
S
-1  
-2  
80  
-50  
-50  
0
50  
100  
150  
0
50  
100  
150  
Die Temperature (°C)  
Die Temperature (°C)  
9
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
Typical Performance Curves  
PSRR vs Temperature  
Positive Output Swing vs Temperature  
110  
4.05  
4
106  
V = 5V  
S
102  
98  
94  
90  
86  
82  
3.95  
3.9  
3.85  
3.8  
V = 5V  
S
V = 15V  
S
-50  
0
50  
100  
100  
100  
150  
150  
150  
-50  
0
50  
Die Temperature (°C)  
100  
100  
100  
150  
150  
150  
Die Temperature (°C)  
Positive Output Swing vs Temperature  
Negative Output Swing vs Temperature  
13.85  
13.8  
-3.9  
-3.95  
-4  
V = 15V  
S
13.75  
13.7  
V = 5V  
S
-4.05  
-4.1  
-4.15  
-4.2  
13.65  
13.6  
-50  
-4.25  
0
50  
-50  
0
50  
Die Temperature (°C)  
Die Temperature (°C)  
Negative Output Swing vs Temperature  
Slew Rate vs Temperature  
-13.76  
-13.78  
-13.8  
102  
100  
98  
V = 5V  
S
96  
V = 15V  
S
94  
92  
90  
-13.82  
88  
-50  
-50  
0
50  
0
50  
Die Temperature (°C)  
Die Temperature (°C)  
10  
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
Typical Performance Curves  
Slew Rate vs Temperature  
Positive Loaded Output Swing vs Temperature  
155  
3.52  
150  
3.5  
V = 5V  
S
V = 15V  
S
145  
140  
135  
3.48  
3.46  
3.44  
V =2V  
O
PP  
-50  
0
50  
Die Temperature (°C)  
100  
150  
150  
150  
-50  
0
50  
Die Temperature (°C)  
100  
150  
Positive Loaded Output Swing vs Temperature  
Negative Loaded Output Swing vs Temperature  
11.8  
11.6  
11.4  
11.2  
11  
-3.35  
-3.4  
V = 15V  
S
-3.45  
-3.5  
V = 5V  
S
3.55  
10.8  
10.6  
-50  
-3.6  
-50  
0
50  
Die Temperature (°C)  
100  
0
50  
100  
150  
Die Temperature (°C)  
18 Negative Loaded Output Swing vs Temperature  
Package Power Dissipation vs Ambient Temperature  
JEDEC JESD51-3 Low Effective Thermal Conductivity Test Board  
-9.4  
1.2  
1
-9.6  
781mW  
488mW  
-9.8  
-10  
V = 15V  
S
0.8  
0.6  
0.4  
0.2  
0
-10.2  
-10.4  
-10.6  
-50  
0
50  
Die Temperature (°C)  
100  
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
11  
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
Typical Performance Curves  
Package Power Dissipation vs Ambient Temperature  
JEDEC JESD51-7 High Effective Thermal Conductivity Test Board  
1.8  
1.6  
1.4  
1.136W  
1.2  
1
0.8  
543mW  
0.6  
0.4  
0.2  
0
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
12  
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
Pin Descriptions  
EL2126CW  
EL2126CS  
(5-Pin SOT23)  
(8-Pin SO)  
Pin Name  
Pin Function  
Equivalent Circuit  
1
6
VOUT  
Output  
V +  
S
V
OUT  
Circuit 1  
2
3
4
3
VS-  
Supply  
Input  
VINA+  
V +  
S
V
+
V -  
IN  
IN  
V -  
S
Circuit 2  
4
5
2
7
VINA-  
VS+  
Input  
Reference Circuit 2  
Supply  
13  
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
Applications Information  
optimum performance. If a large value of RF must be  
used, a small capacitor in the few pF range in parallel  
with RF can help to reduce this ringing and peaking at  
the expense of reducing the bandwidth. Frequency  
response curves for various RF values are shown in the  
typical performance curves section of this data sheet.  
Product Description  
The EL2126C is an ultra-low noise, wideband mono-  
lithic operational amplifier built on Elantec's proprietary  
high speed complementary bipolar process. It features  
1.3nV/Hz input voltage noise, 200µV typical offset  
voltage, and 73dB THD. It is intended for use in systems  
such as ultrasound imaging where very small signals are  
needed to be amplified. The EL2126C also has excellent  
Noise Calculations  
The primary application for the EL2126C is to amplify  
very small signals. To maintain the proper signal-to-  
noise ratio, it is essential to minimize noise contribution  
from the amplifier. Figure 2 below shows all the noise  
sources for all the components around the amplifier.  
DC specifications: 200µV V , 22µA IB, 0.4µA I  
,
OS  
OS  
and 106dB CMRR. These specifications allow the  
EL2126C to be used in DC-sensitive applications such  
as difference amplifiers.  
Gain-Bandwidth Product  
R
3
V
V
V
N
IN  
R3  
The EL2126C has a gain-bandwidth product of 650MHz  
at 5V. For gains less than 20, higher-order poles in the  
amplifier's transfer function contribute to even higher  
closed-loop bandwidths. For example, the EL2126C has  
a -3dB bandwidth of 100MHz at a gain of 10 and  
decreases to 33MHz at gain of 20. It is important to note  
that the extra bandwidth at lower gain does not come at  
the expenses of stability. Even though the EL2126C is  
designed for gain 10. With external compensation, the  
device can also operate at lower gain settings. The RC  
network shown in Figure 1 reduces the feedback gain at  
high frequency and thus maintains the amplifier stabil-  
ity. R values must be less than RF divided by 9 and 1  
+
-
I +  
V
ON  
N
V
R1  
R
1
I -  
N
V
R2  
R
2
Figure 2.  
divided by 2 RC must be less than 200MHz.  
π
R
F
R
-
V
OUT  
C
+
V
IN  
Figure 1.  
Choice of Feedback Resistor, RF  
V
=
4kTRx  
RX  
The feedback resistor forms a pole with the input capac-  
itance. As this pole becomes larger, phase margin is  
reduced. This increases ringing in the time domain and  
peaking in the frequency domain. Therefore, RF has  
some maximum value which should not be exceeded for  
14  
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
The total noise due to the amplifier seen at the output of  
the amplifier can be calculated by using the following  
equation:  
2
2
2
2
R
R
R
R
1
2
2
2
2
2
1
1
1
------  
------  
------  
------  
V
=
BW × VN  
×
1 +  
+ IN- × R + IN+ × R  
×
1 +  
+ 4 × K × T × R + 4 × K × T × R  
×
+ 4 × K × T × R ×  
3
1 +  
ON  
1
3
1
2
R
2
R
2
R
2
R
2
As the above equation shows, to keep noise at a mini-  
mum, small resistor values should be used. At higher  
Ground plane construction is highly recommended.  
Lead lengths should be kept as short as possible. The  
power supply pins must be closely bypassed to reduce  
the risk of oscillation. The combination of a 4.7µF tanta-  
lum capacitor in parallel with 0.1µF ceramic capacitor  
has been proven to work well when placed at each sup-  
amplifier gain configuration where R is reduced, the  
2
noise due to IN-, R , and R decreases and the noise  
2
1
caused by IN+, VN, and R starts to dominate. Because  
3
noise is summed in a root-mean-squares method, noise  
sources smaller than 25% of the largest noise source can  
be ignored. This can greatly simplify the formula and  
make noise calculation much easier to calculate.  
ply pin. For single supply operation, where pin 4 (V -) is  
S
connected to the ground plane, a single 4.7µF tantalum  
capacitor in parallel with a 0.1µF ceramic capacitor  
across pins 7 (V +) and pin 4 (V -) will suffice.  
S
S
Output Drive Capability  
For good AC performance, parasitic capacitance should  
be kept to a minimum. Ground plane construction again  
should be used. Small chip resistors are recommended to  
minimize series inductance. Use of sockets should be  
avoided since they add parasitic inductance and capaci-  
tance which will result in additional peaking and  
overshoot.  
The EL2126C is designed to drive low impedance load.  
It can easily drive 6V  
signal into a 100load. This  
P-P  
high output drive capability makes the EL2126C an  
ideal choice for RF, IF, and video applications. Further-  
more, the EL2126C is current-limited at the output,  
allowing it to withstand momentary short to ground.  
However, the power dissipation with output-shorted  
cannot exceed the power dissipation capability of the  
package.  
Supply Voltage Range and Single Supply  
Operation  
The EL2126C has been designed to operate with supply  
voltage range of 2.5V to 15V. With a single supply,  
the EL2126C will operate from +5V to +30V. Pins 4 and  
7 are the power supply pins. The positive power supply  
is connected to pin 7. When used in single supply mode,  
pin 4 is connected to ground. When used in dual supply  
mode, the negative power supply is connected to pin 4.  
Driving Cables and Capacitive Loads  
Although the EL2126C is designed to drive low imped-  
ance load, capacitive loads will decreases the amplifier's  
phase margin. As shown in the performance curves,  
capacitive load can result in peaking, overshoot and pos-  
sible oscillation. For optimum AC performance,  
capacitive loads should be reduced as much as possible  
or isolated with a series resistor between 5to 20.  
When driving coaxial cables, double termination is  
always recommended for reflection-free performance.  
When properly terminated, the capacitance of the coax-  
ial cable will not add to the capacitive load seen by the  
amplifier.  
As the power supply voltage decreases from +30V to  
+5V, it becomes necessary to pay special attention to the  
input voltage range. The EL2126C has an input voltage  
range of 0.4V from the negative supply to 1.2V from the  
positive supply. So, for example, on a single +5V sup-  
ply, the EL2126C has an input voltage range which  
spans from 0.4V to 3.8V. The output range of the  
EL2126C is also quite large, on a +5V supply, it swings  
from 0.4V to 3.8V.  
Power Supply Bypassing And Printed Circuit  
Board Layout  
As with any high frequency devices, good printed circuit  
board layout is essential for optimum performance.  
15  
EL2126C  
Ultra-Low Noise, Low Power, Wideband Amplifier  
General Disclaimer  
Specifications contained in this data sheet are in effect as of the publication date shown. Elantec, Inc. reserves the right to make changes in the cir-  
cuitry or specifications contained herein at any time without notice. Elantec, Inc. assumes no responsibility for the use of any circuits described  
herein and makes no representations that they are free from patent infringement.  
WARNING - Life Support Policy  
Elantec, Inc. products are not authorized for and should not be used  
within Life Support Systems without the specific written consent of  
Elantec, Inc. Life Support systems are equipment intended to sup-  
port or sustain life and whose failure to perform when properly used  
in accordance with instructions provided can be reasonably  
Elantec Semiconductor, Inc.  
675 Trade Zone Blvd.  
Milpitas, CA 95035  
Telephone: (408) 945-1323  
(888) ELANTEC  
expected to result in significant personal injury or death. Users con-  
templating application of Elantec, Inc. Products in Life Support  
Systems are requested to contact Elantec, Inc. factory headquarters  
to establish suitable terms & conditions for these applications. Elan-  
tec, Inc.’s warranty is limited to replacement of defective  
components and does not cover injury to persons or property or  
other consequential damages.  
Fax:  
(408) 945-9305  
European Office: +44-118-977-6020  
Japan Technical Center: +81-45-682-5820  
Printed in U.S.A.  
16  

相关型号:

EL2126CSZ

Ultra-Low Noise, Low Power, Wideband Amplifier
INTERSIL

EL2126CSZ

OP-AMP, 2000uV OFFSET-MAX, 80MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, SOIC-8
RENESAS

EL2126CSZ-T13

Ultra-Low Noise, Low Power, Wideband Amplifier
INTERSIL

EL2126CSZ-T13

OP-AMP, 2000uV OFFSET-MAX, 80MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, SOIC-8
RENESAS

EL2126CSZ-T7

Ultra-Low Noise, Low Power, Wideband Amplifier
INTERSIL

EL2126CSZ-T7

OP-AMP, 2000uV OFFSET-MAX, 80MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, SOIC-8
RENESAS

EL2126CW

Ultra-low Noise, Low Power, Wideband Amplifier
ELANTEC

EL2126CW-T13

Amplifier. Other
ETC

EL2126CW-T7

Ultra-Low Noise, Low Power, Wideband Amplifier
INTERSIL

EL2126CW-T7A

Ultra-Low Noise, Low Power, Wideband Amplifier
INTERSIL

EL2126CW-T7A

OP-AMP, 3000uV OFFSET-MAX, 80MHz BAND WIDTH, PDSO5, PLASTIC, SOT-23, 5 PIN
RENESAS

EL2126CWZ-T7

Ultra-Low Noise, Low Power, Wideband Amplifier
INTERSIL