EDJ5308AASE-AG-E [ELPIDA]

DDR DRAM, 64MX8, CMOS, PBGA78, ROHS COMPLIANT, MICRO, BGA-78;
EDJ5308AASE-AG-E
型号: EDJ5308AASE-AG-E
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

DDR DRAM, 64MX8, CMOS, PBGA78, ROHS COMPLIANT, MICRO, BGA-78

存储 内存集成电路 动态存储器 双倍数据速率 时钟
文件: 总130页 (文件大小:1562K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
512M bits DDR3 SDRAM  
EDJ5304BASE (128M words × 4 bits)  
EDJ5308BASE (64M words × 8 bits)  
EDJ5316BASE (32M words × 16 bits)  
Features  
pecifications  
Dsity: 5
Organiza
16M wonks (EDJ5304BASE)  
8M words anks (5308BASE)  
4M words × 16 ts × 8 ba(EDJ5316BASE)  
Package  
Double-data-rate architecture; two data transfers per  
clock cycle  
The high-speed data transfer is realized by the 8 bits  
prefetch pipelined architecture  
Bi-directional differential data strobe (DQS and /DQS)  
is transmitted/received with data for capturing data at  
the receiver  
78-ball FBGA (EDJ5/5308BASE)  
96-ball FBGA (EDJ531ASE)  
Lead-free (RoHS complia
Power supply: VDD, VDDQ = 1.5V 0.075V  
Data rate  
1333Mbps/1066Mbps/800Mbps (max
1KB page size (EDJ5304/5308BASE)  
Row address: A0 to A12  
DQS is edge-aligned with data for READs; center-  
aligned with data for WRITEs  
Differential clock inputs (CK and /CK)  
DLL aligns DQ and DQS transitions with CK  
transitions  
Commands entered on each positive CK edge; data  
and data mask referenced to both edges of DQS  
Data mask (DM) for write data  
ted /CAS by programmable additive latency for  
better command and data bus efficiency  
Column address: A0 to A9, A11 (EDJ5304BASE)  
A0 to A9 (EDJ5308BASE)  
On-Termination (ODT) for better signal quality  
us ODT  
DT  
nous ODT  
Multi Purpose r (MP) for temperature read  
out  
2KB page size (EDJ5316BASE)  
Row address: A0 to A11  
Column address: A0 to A9  
Eight internal banks for concurrent operation  
Interface: SSTL_15  
Burst lengths (BL): 8 and 4 with Burst Chop (BC)  
Burst type (BT):  
Sequential (8, 4 with BC)  
ZQ calibrae and ODT  
ProgrammaArray lf-Refresh (PASR)  
/RESET pin for wer-up uence and reset  
function  
Interleave (8, 4 with BC)  
/CAS Latency (CL): 5, 6, 7, 8, 9, 10  
/CAS Write Latency (CWL): 5, 6, 7, 8  
Precharge: auto precharge option for each burst  
access  
SRT range:  
Normal/extended  
Auto/manual self-refresh  
Programmable Output driver impence cont
Driver strength: RZQ/7, RZQ/6 (RZQ = 240Ω)  
Refresh: auto-refresh, self-refresh  
Refresh cycles  
Average refresh period  
7.8μs at 0°C TC ≤ +85°C  
3.9μs at +85°C < TC ≤ +95°C  
Operating case temperature range  
TC = 0°C to +95°C  
Document No. E0966E60 (Ver. 6.0) This product became EOL in September, 2010.  
Date Published July 2007 (K) Japan  
Printed in Japan  
URL: http://www.elpida.com  
©Elpida Memory, Inc. 2006-2007  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Ordering Information  
Mask  
version  
Organization  
(words × bits)  
Internal  
banks  
JEDEC speed bin  
(CL-tRCD-tRP)  
Part number  
Package  
EDJ5304BASE-DG-E  
EDJ5304BASE-DJ-E  
EDJ5304BASE-AC-E  
EDJ53ASE-AE-E  
EDJBE-AG-E  
E04BASA-E  
J4BASE-E  
DDR3-1333G (8-8-8)  
DDR3-1333H (9-9-9)  
DDR3-1066E (6-6-6)  
DDR3-1066F (7-7-7)  
DDR3-1066G (8-8-8)  
DDR3-800D (5-5-5)  
DDR3-800E (6-6-6)  
A
128M × 4  
8
78-ball FBGA  
EDJ53ASE-DG-E  
EDJ5308BSE-DJ-E  
J5308BASE-A
E308BAS
EDJ508BA
EDJ5308BA
EDJ5308BA
DDR3-1333G (8-8-8)  
DDR3-1333H (9-9-9)  
DDR3-1066E (6-6-6)  
DDR3-1066F (7-7-7)  
DDR3-1066G (8-8-8)  
DDR3-800D (5-5-5)  
DDR3-800E (6-6-6)  
64M × 8  
EDJ5316BAS
EDJ5316BASE-
EDJ5316BASE-AC-E  
EDJ5316BASE-AE-E  
EDJ5316BASE-AG-E  
EDJ5316BASE-8A-E  
EDJ5316BASE-8C-E  
DDR3-1333G (8-8-8)  
DDR3-1333H (9-9-9)  
DDR3-1066E (6-6-6)  
DDR3-1066F (7-7-7)  
DDR3-1066G (8-8-8)  
DDR3-800D (5-5-5)  
DDR3-800E (6-6-6)  
32M × 16  
96-ball FBGA  
Part Number  
E D J 53 04 B A SE - DG - E  
Elpida Memory  
Type  
D: Monolithic Device  
Environment code  
E: Lead Free  
Product Family  
J: DDR3  
(RoHS compliant)  
peed  
Density / Bank  
53: 512M / 8-bank  
G: R3-1333G (8-8-8)  
DR3-1333H (9-9-9)  
DDR3-1066E (6-6-6)  
E: DD-1066F (7-7-7)  
AG: D1066G (8-8-8)  
8A: R3-800D (5-5-5)  
8DR3-800E 6-6-6)  
Organization  
04: x4  
08: x8  
16: x16  
Pac
SE: GA  
Power Supply, Interface  
B: 1.5V, SSTL_15  
Die Rev
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
2
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Pin Configurations (×4, ×8 configuration)  
/xxx indicates active low signal.  
78-ball FBGA (×4 configuration)  
78-ball FBGA (×8 configuration)  
1
2
3
7
8
9
1
2
3
7
8
9
A
A
B
V
VDD  
NC  
NC  
VSS  
VDD  
VSS  
VDD  
NC  
NU/(/TDQS) VSS  
VDD  
VSS VQ DQ0  
DM VSSQ VDDQ  
VSS VSSQ DQ0  
VDDQ  
DM/TDQS VSSQ VDDQ  
C
D
C
D
VQ  
VSSQ  
DQ2 DQS  
DQ1  
VDD  
NC  
DQ3 VSSQ  
VSSQ  
NC VDDQ  
NC  
VDD CKE  
DQ2 DQS  
DQ1  
VDD  
DQ7  
DQ3 VSSQ  
VSSQ  
VSS  
VSSQ DQ6 /DQS  
VSS  
DQ5  
E
F
G
H
J
E
F
G
H
J
DQ4  
VREF
NC
ODT VDD /CAS  
VREFDQ VDDQ  
VDDQ  
NC  
/CK  
VSS  
NC  
VSS /RAS  
CK  
/CK  
VSS  
ODT VDD /CAS  
VDD CKE  
A10(AP)  
A10(AP)  
NC  
/CS  
/WE  
ZQ  
NC  
NC  
/CS  
/WE  
ZQ  
NC  
VSS  
VDD  
VSS  
VDD  
VSS  
BA0  
A3  
BA2  
A0  
NC VREFCA VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
BA0  
A3  
BA2  
A0  
NC VREFCA VSS  
K
L
K
L
12(/BC) BA1  
V
VDD  
VSS  
A12(/BC) BA1  
VDD  
VSS  
VDD  
VSS  
A5  
A2  
A1  
A11  
NC  
A4  
6  
A8  
A5  
A2  
A1  
A11  
NC  
A4  
A6  
A8  
M
N
M
N
A7  
A9  
A7  
A9  
/RESET NC  
/RESET NC  
(Top view)  
(Top view)  
Pin name  
Function  
Address inputs  
A10 (AP): Auto precharge  
A12(/BC): Burst chop  
P
/RES
Function  
A0 to A12*3  
Active low asynchronous reset  
BA0 to BA2*3  
DQ0 to DQ7  
DQS, /DQS  
TDQS, /TDQS  
/CS*3  
Bank select  
VDD  
ly voltage for internal circuit  
Ground or internal circuit  
Supoltage for DQ circuit  
und for DQ cuit  
erence age for DQ  
Referevoltag
Data input/output  
Differential data strobe  
Termination data strobe  
Chip select  
VSS  
VDDQ  
VSSQ  
VREFDQ  
VREFCA  
ZQ  
NC*1  
NU*2  
/RAS, /CAS, /WE*3  
CKE*3  
Command input  
Clock enable  
Reference pin ZQ caliion  
No connectio
CK, /CK  
Differential clock input  
Write data mask  
ODT control  
DM  
ODT*3  
Not usable  
Notes: 1. Not internally connected with die.  
2. Don’t connect. Internally connected.  
3. Input only pins (address, command, CKE, ODT and /RESET) do not supply termination.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
3
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Pin Configurations (×16 configuration)  
/xxx indicates active low signal.  
96-ball FBGA  
3
1
2
7
8
9
A
B
C
D
E
VDDQ DQU5 DQU7  
VSSQ VDD VSS  
DQU4 VDDQ VSS  
/DQSU DQU6 VSSQ  
DQSU DQU2 VDDQ  
DQU0 VSSQ VDD  
VDDQ  
DQU3 DQU1  
VSSQ VDDQ DMU  
VSS VSSQ DQL0  
DML VSSQ VDDQ  
DQL1 DQL3 VSSQ  
F
G
H
J
VDDQ DQL2 DQSL  
VSSQ DQL6 /DQSL  
VREFDQ VDDQ DQL4  
VDD  
VSS VSSQ  
DQL7 DQL5 VDDQ  
NC  
VSS S  
CK  
VSS  
VDD  
NC  
CKE  
NC  
K
L
/CK  
ODT
N
/CS  
BA2  
A10(AP) ZQ  
M
N
P
R
T
VSS  
BA0  
NC VREFCA VSS  
VDD  
VSS  
VDD  
A3  
A5  
A7  
A
A2  
A9  
A12(/BC) BA1  
VDD  
VSS  
VDD  
NC  
A8  
VSS /RESET NC  
(Top view)  
Pin name  
A0 to A11*2  
Function  
Address inputs  
Pin name  
ODT*2  
Functio
Ocontrol  
A10(AP): Auto precharge  
A12(/BC) *2  
BA0 to BA2  
Burst chop  
/RESET*2  
VDD  
ive low chronous reset  
Supplage for l circuit  
Bank select  
DQU0 to DQU7  
DQL0 to DQL7  
Data input/output  
VSS  
Ground for inal circuit  
DQSU, /DQSU  
DQSL, /DQSL  
Differential data strobe  
VDDQ  
Supply voltage DQ circuit  
/CS*2  
/RAS, /CAS, /WE*2  
CKE*2  
Chip select  
VSSQ  
VREFDQ  
VREFCA  
ZQ  
Ground for DQ circuit  
Reference voltage for DQ  
Reference voltage  
Command input  
Clock enable  
CK, /CK  
Differential clock input  
Write data mask  
Reference pin for ZQ calibration  
No connection  
DMU, DML  
NC*  
Note: 1. Not internally connected with die.  
2. Input only pins (address, command, CKE, ODT and /RESET) do not supply termination.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
4
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
CONTENTS  
Specifications.................................................................................................................................................1  
Features.........................................................................................................................................................1  
Ordering Information......................................................................................................................................2  
Part Number ..................................................................................................................................................2  
Pin nfrations (×4, ×8 configuration)......................................................................................................3  
onfiguions (×16 configuration)..........................................................................................................4  
Electrl Conditions......................................................................................................................................7  
Absolute ximum Ratings .......................................................................................................................... 7  
Orature Condition ................................................................................................................ 7  
Operating Conditions (TC = 0°C to +85°C, VDD, VDDQ = 1.5V 0.075V)................... 8  
Measument Levels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V 0.075V)....................... 8  
Diffeput Loevels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V 0.075V)..................................... 8  
AC and DC OutMeasurement Levels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V 0.075V).................. 11  
AC Overshoondershoot Specification..................................................................................................... 13  
Output Driver Impance......................................................................................................................... 14  
On-Die Termination (ODT) Levels anacteristics ......................................................................... 16  
ODT Timing Definitions.................................................................................................... 18  
IDD Measurement Conditions C = 0°C °C, VDD, VDDQ = 1.5V 0.075V)................................... 22  
Electrical Specifications...........................................................................................................................33  
DC Characteristics 1 (TC = 0°C to +85°C, VDDD1.5V 0.075V) ................................................. 33  
DC Characteristics 2 (TC = 0°C to +85°C, D, VDDQ = 5V 0.075V) ................................................. 34  
Pin Capacitance (TC = 25°C, VDD, VDDQ = 1.5V ............................................................. 34  
Standard Speed Bins............................................................................................................ 35  
AC Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 10.0S, VSQ = 0V)....................... 38  
Block Diagram ......................................................................................................................50  
Pin Function..............................................................................................................................51  
Command Operation ........................................................................................................................53  
Command Truth Table....................................................................................................................... 53  
CKE Truth Table............................................................................................................................... 57  
Simplified State Diagram............................................................................................................58  
RESET and Initialization Procedure...................................................................................................59  
Power-Up and Initialization Sequence..................................................................................................
Reset and Initialization with Stable Power ............................................................................................ 60  
Programming the Mode Register............................................................................................................61  
Mode Register Set Command Cycle Time (tMRD) ..................................................................................... 61  
MRS Command to Non-MRS Command Delay (tMOD) ............................................................................. 61  
DDR3 SDRAM Mode Register 0 [MR0] ...................................................................................................... 62  
DDR3 SDRAM Mode Register 1 [MR1] ...................................................................................................... 63  
DDR3 SDRAM Mode Register 2 [MR2] ...................................................................................................... 64  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
5
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
DDR3 SDRAM Mode Register 3 [MR3] ...................................................................................................... 65  
Burst Length (MR0) .................................................................................................................................... 66  
Burst Type (MR0) ....................................................................................................................................... 66  
DLL Enable (MR1)...................................................................................................................................... 67  
DLL Disable (MR1) ..................................................................................................................................... 67  
dditive Latency (MR1)............................................................................................................................... 70  
WriLeveling (MR1) .................................................................................................................................. 71  
TDQS, /TDQS function (MR1) .................................................................................................................... 74  
Extenperature Usage (MR2)......................................................................................................... 75  
Mister (MR3)..................................................................................................................... 76  
Operation RAM..................................................................................................................84  
Rnition........................................................................................................................... 84  
Read tion .................................................................................................................................... 86  
Write Timing Dtion................................................................................................................................ 92  
Write Operatio......................................................................................................................................... 93  
Write Timing Violans .......................................................................................................................... 99  
Write Data Mask .................................................................................................................... 100  
Precharge ..................................................................................................................... 101  
Auto Precharge Operation ............................................................................................................... 102  
Auto-Refresh....................................................................................................................................... 103  
Self-Refresh........................................................................................................................................ 104  
Power-Down Mode ....................................................................................................................... 105  
Input Clock Frequency Change during Precharge P........................................................... 112  
On-Die Termination (ODT).................................................................................................... 113  
ZQ Calibration..................................................................................................................... 125  
Package Drawing ..............................................................................................................126  
Recommended Soldering Conditions.......................................................................................128  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
6
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Electrical Conditions  
All voltages are referenced to VSS (GND)  
Execute power-up and Initialization sequence before proper device operation is achieved.  
Absolute Maximum Ratings  
Parame
Symbol  
VDD  
Rating  
Unit  
V
Notes  
1, 3  
1, 3  
1
Poupvoltage  
supply vge for output  
Input vge  
0.4 to +1.975  
0.4 to +1.975  
0.4 to +1.975  
0.4 to +1.975  
0.4 to 0.6 × VDD  
0.4 to 0.6 × VDDQ  
55 to +100  
1.0  
VDDQ  
VIN  
V
V
utput voltage  
VOUT  
VREFCA  
VREFDQ  
Tstg  
V
1
Rence volt
Reference v
Storage tem
Power dissipa
V
3
V
3
°C  
W
mA  
1, 2  
1
PD  
Short circuit output t  
IOUT  
50  
1
Notes: 1. Stresses greatean those listed under Absolute Maximum Ratings may cause permanent damage to  
the device. s is a stress rating only and functional operation of the device at these or any other  
conditions abothose indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximm rating conditions foxtended periods may affect reliability.  
2. Storage temperature s the case surfarature on the center/top side of the DRAM.  
3. VDD and VDDQ must be within 3other at all times; and VREF must be no greater than  
0.6 × VDDQ, When VDD and V500mV; VREF may be equal to or less than 300mV.  
Caution  
Exposing the device to stress above those listed n Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to rated under conditions outside the limits  
described in the operational section of this spcation. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect devireliability.  
Operating Temperature Condition  
Parameter  
Symbol  
TC  
Rating  
Unit  
Notes  
1, 2, 3  
Operating case temperature  
0 to +95  
°C  
Notes: 1. Operating temperature is the case surface temperature on the e of the DRAM.  
2. The Normal Temperature Range specifies the temperatures whll DRspecifications will be  
supported. During operation, the DRAM case temperature must bmaintabetween 0°C to +85°C  
under all operating conditions.  
3. Some applications require operation of the DRAM in the Extended Tempature Re between +85°C  
and +95°C case temperature. Full specifications are guaranteed in this range, e following additional  
conditions apply:  
a)  
Refresh commands must be doubled in frequency, therefore reducing the refreinterval EFI to  
3.9μs. (This double refresh requirement may not apply for some devices.)  
b)  
If Self-refresh operation is required in the Extended Temperature Range, then it andato
either use the Manual Self-Refresh mode with Extended Temperature Range capability (bit  
[A6, A7] = [0, 1]) or enable the optional Auto Self-Refresh mode (MR2 bit [A6, A7] = [1, 0]
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
7
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Recommended DC Operating Conditions (TC = 0°C to +85°C, VDD, VDDQ = 1.5V 0.075V)  
Parameter  
Symbol  
VDD  
min.  
typ.  
1.5  
1.5  
max.  
Unit  
V
Notes  
1, 2  
Supply voltage  
1.425  
1.425  
1.575  
1.575  
Supply voltage for DQ  
Input reference voltage  
VDDQ  
V
1, 2  
VREFCA (DC) 0.49 × VDDQ  
0.50 × VDDQ 0.51 × VDDQ  
0.50 × VDDQ 0.51 × VDDQ  
V
3, 4  
Input e voltage for DQ VREFDQ (DC) 0.49 × VDDQ  
Tation vge VTT VDDQ/2 – TBD  
V
3, 4  
TBD  
VDDQ/2 + TBD  
V
otes. Under all conditions VDDQ must be less than or equal to VDD.  
2VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
3. The oise on VREF may not allow VREF to deviate from VREF(DC) by more than 1% VDD (for  
re15 mV).  
4. ox. VDD/2 15 mV.  
AC and DC ment Lvels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V 0.075V)  
Parameter  
Sol  
H (DC)  
VIL (DC)  
VIH (AC)  
(AC)  
VIHdiff  
min.  
typ.  
max.  
Unit  
V
Notes  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
Differential input logic high  
Differential input logic low  
VREF + 0.1  
TBD  
1
1
TBD  
VREF – 0.1  
V
1, 2  
1, 2  
VREF + 0.175  
V
VREF – 0.175  
V
+
V
VILdiff  
–0.200  
V
Notes: 1 For DQ and DM: VREF = VRDQ. Fonly pins except /RESET; VREF = VREFCA  
2. See Overshoot and Undershoot Specifications secon.  
Differential Input Logic Levels (TC = 0°C to +85°C, VDVDD= 1.5V 0.075V)  
Parameter  
Symbol  
min.  
TBD  
max.  
Unit  
V
Note  
1
AC differential input voltage  
VID (AC)  
VDDQ + 0.6  
Differential input cross point voltage  
relative to VDD/2  
VIX  
150  
150  
mV  
V
AC differential cross point voltage  
VOX (AC)  
TBD  
Note: 1. To guarantee tight setup and hold times as well as output swith respect to clock and  
strobe, each cross point voltage of differential input signals DQS, /DQS) must meet the  
requirements in table above.  
The differential input cross point voltage VIX is measured from e actucross point of true and  
complement signal to the midlevel between of VDD and VSS.  
VDD  
CK, DQS  
VIX  
VDD/2  
VIX  
VIX  
/CK, /DQS  
VSS  
VIX Definition  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
8
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Input Slew Rate Definitions  
Setup (tIS and tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
VREF and the first crossing of VIH (AC) min. Setup (tIS and tDS) nominal slew rate for a falling signal is defined as  
the slew rate between the last crossing of VREF and the first crossing of VIL (AC) max.  
Hold (tIH, tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL (DC)  
max ahe first crossing of VREF. Hold (tIH and tDH) nominal slew rate for a falling signal is defined as the slew  
rattwethe last crossing of VIH (DC) min and the first crossing of VREF.  
e-ended put Slew Rate Definition]  
Measured  
scription  
From  
To  
Defined by  
VIH (AC) (min.) – VREF  
Applicable for  
Inpuew rat
VREF  
VIH (AC) (min.)  
Setup (tIS, tDS)  
ΔTRS  
VREF – VIL (AC) (max.)  
ΔTFS  
VREF – VIL (DC) (max.)  
ΔTRH  
Input slew raVREF  
Input slew rate foe  
VIL (AC) (max.)  
VC) (max.) VREF  
Hold (tIH, tDH)  
VIH (DC) (min.) – VREF  
ΔTFH  
Input slew rate for falling edgVIH (DC) (min.) VREF  
Note: This nominal slew e applies for linear signal waveforms.  
Setup  
VDDQ  
VIH (AC) min.  
VIH (DC) min.  
VREF  
VIL (DC) max.  
max.  
VREF  
VIL (AC) max.  
Falling slew =  
ing sle=  
ΔTFS  
ΔTFS  
ΔTRS  
VIH (AC) min.  
VREF  
Hold  
ΔTRS  
VDDQ  
VIH (AC) m
VIH (DC) min.  
VREF  
VIL (DC) max.  
VIL (AC) max.  
VC) max.  
REF  
VSSQ  
Falling slew =  
Rising slew =  
ΔTFH  
ΔTFH  
ΔTRH  
VREF  
DC) m
ΔTRH  
Input Nominal Slew Rate Definition for Single-Ended Signals  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
9
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
[Differential Input Slew Rate Definition]  
Measured  
From  
Description  
To  
Defined by  
Applicable for  
Note  
Differential input slew rate for  
rising edge  
(CK - /CK and DQS - /DQS)  
VIHdiff (min.) – VILdiff (max.)  
VILdiff (max.)  
VIHdiff (min.)  
VIHdiff (min.)  
ΔTRdiff  
Differenput slew rate for  
fallige  
(CK and S - /DQS)  
VIHdiff (min.). – VILdiff max.  
VILdiff (max.)  
ΔTFdiff  
ote: he differential signal (i.e. CK, /CK and DQS, /DQS) must be linear between these thresholds.  
VIHdiff(min.)  
0
VILdiff (max.)  
ΔTRdiff  
ΔTFdiff  
VIHdiff (min.)  
VILd
VIHdiff (min.)  
VILdiff (max.)  
Falling slew =  
Rising slew =  
ΔTFdiff  
ΔTRdiff  
Differential Inpuew Ration for DQS, /DQS and CK, /CK  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
10  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
AC and DC Output Measurement Levels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V 0.075V)  
Parameter  
Symbol  
Specification  
Unit  
V
Notes  
DC output high measurement level  
(for IV curve linearity)  
VOH (DC)  
0.8 × VDDQ  
DC output middle measurement level  
(for IV cve linearity)  
V
V
VOM (DC)  
VOL (DC)  
VOH (AC)  
VOL (AC)  
VOHdiff  
0.5 × VDDQ  
DC ow measurement level  
(focurve earity)  
0.2 × VDDQ  
put high asurement level  
for out slew rate)  
VTT + 0.1 × VDDQ  
VTT 0.1 × VDDQ  
0.2 × VDDQ  
V
V
V
V
1
1
2
2
AC outpuw measurement level  
r output slew rat
Afferential surement  
level for out
AC differentement  
level (for ou
VOLdiff  
0.2 × VDDQ  
Notes: 1. T.1 × VQ is based on approximately 50% of the static single-ended output high or low  
swing driver edance of 34Ω and an effective test load of 25Ω to VTT = VDDQ/2 at each of the  
differential outpu
2. The swing of 2 × VDDQ is based on approximately 50% of the static single-ended output high or low  
swing with a der impedance of 34Ω and an effective test load of 25Ω to VTT = VDDQ/2 at each of the  
differential outpu
Output Slew Rate Definitions  
[Single-Ended Output Slew Rate Definn]  
Measured  
Description  
From  
To  
Defined by  
VOH (AC) – VOL (AC)  
ΔTRse  
VOH (AC) – VOL (AC)  
ΔTFse  
Output slew rate for rising edge VOL (AC)  
Output slew rate for falling edge VOH (AC)  
VOH (A
VOL (AC)  
C)  
TT  
VO)  
ΔTRse  
ΔTFse  
VOH (AC)  
VOL (AC)  
VOH (AC)  
VOL (AC)  
Falling slew =  
Rising slew =  
ΔTFse  
ΔTRse  
Input Slew Rate Definition for Single-Ended Signals  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
11  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
[Differential Output Slew Rate Definition]  
Measured  
From  
Description  
To  
Defined by  
VOHdiff(AC) – VOLdiff (AC)  
ΔTRdiff  
VOHdiff (AC) – VOLdiff (AC)  
ΔTFdiff  
Differential output slew rate for  
rising edge  
VOLdiff (AC)  
VOHdiff (AC)  
VOHdiff (AC)  
Differentl output slew rate for  
falling
VOLdiff (AC)  
VOHdiff (AC)  
0
VOLdiff (AC)  
ΔTRdiff  
Fdiff  
VOHdiff (AC)  
VOLdiff (AC)  
VOHdiff (AC)  
VOLdiff (AC)  
Falling =  
Rising slew =  
ΔTFdiff  
ΔTRdiff  
Diffntial Input Slew Rate Definition for DQS, /DQS and CK, /CK  
Output Slew Rate (RON = RZQ/7 setting)  
Parameter  
Symbol  
SRQse  
Spe
n.  
2.5  
max.  
5
Unit  
Notes  
D3-800  
DDR3-1066  
DDR3-1333  
Output slew rate  
(Single-ended)  
V/ns  
DDR3-800  
DDR3-1066  
DDR3-1333  
Output slew rate  
(Differential)  
SRQdiff  
5
10  
V/ns  
Remark: SR = slew rate. se = single-ended signals. diff = diffels. Q = Query output  
Reference Load for AC Timing and Output Slew Rate  
Measurement point  
DQ  
VTT = 0.5 ×
RT =25Ω  
Reference Output Load  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
12  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
AC Overshoot/Undershoot Specification  
Parameter  
Pins  
Specification  
0.4V  
Command, Address,  
CKE, ODT  
Maximum peak amplitude allowed for overshoot  
Maximum peak amplitude allowed for undershoot  
0.4V  
Maximvershoot area above VDD  
D1
0.4V-ns  
R3-1066  
DD800  
0.5V-ns  
0.67V-ns  
Maximum dershoot area below VSS  
DDR3-1333  
0.4V-ns  
R3-1066  
0.5V-ns  
0.67V-ns  
0.4V  
DDR3-80
Maximum pd for overshoot  
Maximum peawed foershoot  
CK, /CK  
0.4V  
Maximum overshoot area above
DDR3-1333  
0.15V-ns  
DDR3-1066  
DDR3-800  
0.19 V-ns  
0.25V-ns  
Maximum undershoot area below S  
DDR3-1333  
0.15V-ns  
DDR3-1066  
0.19 V-ns  
0.25V-ns  
0.4V  
DDR3-800  
Maximum peak amplitude allowed for overshoot  
Maximum peak amplitude allowed for undershoot  
DQ, DQS, /DQS, DM  
0.4V  
Maximum overshoot area above VDDQ  
DDR3-1333  
0.15V-ns  
DDR3-1066  
DDR3-800  
0.19 V-ns  
0.25V-ns  
Maximum undershoot area below VSSQ  
DDR3-1333  
0.15V-ns  
DDR3-1066  
DDR3-800  
-ns  
Maximum ame  
Ovoot area  
VDD, VDDQ  
Volts (V)  
VSS, VSSQ  
Undershoot are
Time (ns)  
Overshoot/Undershoot Definition  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
13  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Output Driver Impedance  
Assuming RZQ will be 240Ω (nom), DDR3 SDRAM data output driver impedance will be RON = RZQ/7 (nom.)  
RON will be achieved by the DDR3 SDRAM after proper I/O calibration. Tolerance and linearity requirements are  
referred to the Output Driver DC Electrical Characteristics table.  
A funcnal representation of the output buffer is shown in the figure Output Driver: Definition of Voltages and  
Cur.  
is definby the value of the external reference resistor RZQ as follows:  
RO0 = RZQ / 6  
RON3RZQ / 7  
e individual ppull-down resistors (RONPu and RONPd) are defined as follows:  
Parameter  
Symbol  
RONPu  
Definition  
VDDQ VOUT  
Conditions  
Output drive
RONPd is turned off  
IOUT⏐  
VOUT  
IOUT⏐  
Output driver pull-dmpedanc
RONPd  
RONPu is turned off  
Chip in Drive Mode  
Output Driver  
VDDQ  
To  
other  
circu
lik
RCV,  
...  
DQ  
IOut  
RONPd  
IPd  
VOut  
VSSQ  
Output Driver: Definition of VCurrents  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
14  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Output Driver DC Electrical Characteristics  
(RZQ = 240Ω, entire operating temperature range; after proper ZQ calibration)  
RONnom Resistor  
VOUT  
min.  
nom.  
max.  
Unit  
Notes  
1, 2, 3  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
40Ω  
RON40Pd  
R40Pu  
RON34Pd  
RZQ/6  
RZQ/6  
RZQ/7  
1, 2, 3  
1, 2, 3  
34Ω  
RZQ/7  
%
1, 2, 3  
1, 2, 4  
Mismatch bpull do, MMPuPd  
VOM (DC)  
10  
10  
Notes: 1. The limits specified after calibration with stable voltage and temperature.  
For the behavior he tolerance limits if temperature or voltage changes after calibration, see following  
section on voland temperature sensitivity.  
2. The tolerance its are specified under the condition that VDDQ = VDD and that VSSQ = VSS.  
3. Pull-down and pup output driver impences are recommended to be calibrated at 0.5 × VDDQ. Other  
calibration schemes ay be used to e the linearity spec shown above, e.g. calibration at 0.2 ×  
VDDQ and 0.8 × VDDQ.  
4. Measurement definition for mism-up and pull-down, MMPuPd:  
Measure RONPu and RONPdth at 0Q:  
RONPu -RONPd  
MMPuPd =  
× 100  
RONnom  
Output Driver Temperature and Voltage Sensitivity  
If temperature and/or voltage change after calibration, he tolerans widen according to the table Output Driver  
Sensitivity Definition and Output Driver Voltage and Temperatu.  
ΔT = T T (@calibration); ΔV= VDDQ VDDQ (@calibration)Q  
Note: dRONdT and dRONdV are not subject to production test but are verifieign acharacterization.  
[Output Driver Sensitivity Definition]  
min  
max  
unit  
RONPu@VOH (DC) 0.6 dRONdTH × |ΔT| dRONdVH × |ΔV|  
1.1 + dRONdTΔT| + ddVH × |ΔV|  
1.1 + dRONdTM × |ΔTRONdVM |ΔV|  
1.1 + dRONdTL × |ΔTdRONd|ΔV|  
RZQ/7  
RZQ/7  
RZQ/7  
RON@ VOM (DC)  
RONPd@VOL (DC)  
0.9 dRONdTM × |ΔT| dRONdVM × |ΔV|  
0.6 dRONdTL × |ΔT| dRONdVL × |ΔV|  
[Output Driver Voltage and Temperature Sensitivity]  
min.  
0
max.  
Unit  
dRONdTM  
dRONdVM  
dRONdTL  
dRONdVL  
dRONdTH  
dRONdVH  
1.5  
%/°C  
%/mV  
%/°C  
%/mV  
%/°C  
%/mV  
0
0.15  
1.5  
0
0
TBD  
1.5  
0
0
TBD  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
15  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
On-Die Termination (ODT) Levels and I-V Characteristics  
On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of the MR1 Register.  
ODT is applied to the DQ, DM, DQS, /DQS and TDQS, /TDQS (×8 devices only) pins.  
A functional representation of the on-die termination is shown in the figure On-Die Termination: Definition of Voltages  
and Currents.  
The indual pull-up and pull-down resistors (RTTPu and RTTPd) are defined as follows:  
eter  
Symbol  
RTTPu  
Definition  
Conditions  
VDDQ VOUT  
IOUT⏐  
ODT puresistance  
RTTPd is turned off  
VOUT  
IOUT⏐  
pull-down rTTPd  
RTTPu is turned off  
Chip in Termination Mode  
ODT  
VDDQ  
IPu  
I
Out = IPd - IPu  
To  
RTTPu  
other  
circuitry  
like  
RCV,  
...  
DQ  
IOut  
VOut  
VSSQ  
On-Die Termination: Definitif Voltages and Currents  
Assuming RZQ will be 240Ω (nom), the value of the tination resistor can be set via MRS command to RTT60 =  
RZQ/4 (nom) or RTT120 = RZQ/2 (nom).  
RTT60 or RTT120 will be achieved by the DDR3 SDRAer IO calibration has been performed.  
Tolerances requirements are referred to the ODT DC Electricacs table.  
Measurement Definition for RTT  
Apply VIH (AC) to pin under test and measure current I(VIH(AC)), then aptn under test and measure  
current I(VIL(AC)) respectively.  
VIH(AC) VIL(AC)  
RTT =  
I(VIH(AC)) I(VIL(AC))  
Measurement Definition for ΔVM  
Measure voltage (VM) at test pin (midpoint) with no load.  
2× VM  
ΔVM = ⎜  
-1×100  
VDDQ  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
16  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
ODT DC Electrical Characteristics  
(RZQ = 240Ω, entire operating temperature range; after proper ZQ calibration)  
MR1  
[A9, A6, A2] RTT  
Resistor  
VOUT  
min.  
nom.  
max.  
Unit  
Notes  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
[0, 1, 0]  
120Ω RTT120Pd240  
RZQ  
1, 2, 3, 4  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.4  
1.1  
1.1  
RTT120Pu240  
0  
RZQ  
1, 2, 3, 4  
VIL (AC) to VIH (AC)  
0.9  
1.0  
1.6  
RZQ/2 1, 2, 5  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
[0, 0, 1]  
[0, 1.1]  
[1, 0, 1]  
[1, 0, 0]  
40Ω  
30Ω  
20Ω  
0  
RZQ/2 1, 2, 3, 4  
Pu120  
RTT60  
RZQ/2 1, 2, 3, 4  
RZQ/4 1, 2, 5  
VIL (AC) to VIH (AC)  
0.9  
1.0  
1.6  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (D
VOH )  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
RTT40P0  
RZQ/3 1, 2, 3, 4  
RTT40Pu80  
RTT40  
RZQ/3 1, 2, 3, 4  
RZQ/6 1, 2, 5  
VIL C) to VI
0.9  
1.0  
1.6  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
6  
0.9  
0.9  
0.9  
0
1.0  
1.0  
1.0  
1.0  
.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
RTT30Pd60  
RZQ/4 1, 2, 3, 4  
RTT30Pu60  
RTT30  
RZQ/4 1, 2, 3, 4  
RZQ/8 1, 2, 5  
VIL (AC) to VIH (AC)  
0
1.6  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.
1.
1.0  
1.1  
1
4  
1.4  
1.1  
RTT20Pd40  
RZQ/6 1, 2, 3, 4  
RTT20Pu40  
RTT20  
RZQ/6 1, 2, 3, 4  
RZQ/12 1, 2, 5  
VIL (AC) to VIH (AC)  
0.9  
1.0  
.6  
5
Deviation of VM w.r.t. VDDQ/2, ΔVM  
5  
%
1, 2, 5, 6  
Notes: 1. The tolerance limits are specified after calibration with stable voltage and tempee.  
For the behavior of the tolerance limits if temperature or voltage changes after calibrn, see owing  
section on voltage and temperature sensitivity.  
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ VSS.  
3. Pull-down and pull-up output resistors are recommended to be calibrated at 0.5 × VDDQ. Other calibon  
schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 × VDDQ d 0.8  
× VDDQ.  
4. Not a specification requirement, but a design guide line.  
5. Measurement Definition for RTT:  
Apply VIH (AC) to pin under test and measure current I(VIH(AC)), then apply VIL(AC) to pin under test  
and measure current I(VIL(AC)) respectively.  
VIH(AC) VIL(AC)  
RTT =  
I(VIH(AC)) I(VIL(AC))  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
17  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
6. Measurement Definition for VM and ΔVM:  
Measure voltage (VM) at test pin (midpoint) with no load:  
2× VM  
ΔVM = ⎜  
-1×100  
VDDQ  
ODT Temperature and Voltage Sensitivity  
If temature and/or voltage change after calibration, the tolerance limits widen according to the table ODT  
Sentefinition and ODT Voltage and Temperature Sensitivity.  
ΔT T (alibration); ΔV= VDDQ VDDQ (@calibration); VDD = VDDQ  
Note: dRdT and dRTTdV are not subject to production test but are verified by design and characterization.  
[ODSensi
max.  
Unit  
RTT  
|ΔT| - RTTdV × |ΔV|  
1.6 + dRTTdT×|ΔT| + dRTTdV × |ΔV|  
RZQ/2, 4, 6, 8, 12  
[ODT Voltage and Tempere Sensitivity]  
min.  
max.  
1.5  
Unit  
dRTTdT  
dRTTdV  
0
%/°C  
%/mV  
.15  
ODT Timing Definitions  
Test Load for ODT Timings  
Different than for timing measurements, the reference loDT timings are defined in ODT Timing Reference  
Load.  
VDDQ  
DUT  
DQ, DM  
CK, /CK  
DQS, /DQS  
TDQS, /TDQS  
RT
= 25
VSSQ  
Timing Reference Points  
ODT Timing Reference Load  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
18  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
ODT Measurement Definitions  
Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in the following table and subsequent figures.  
Symbol  
Begin Point Definition  
End Point Definition  
Figure  
Rising edge of CK - /CK defined by the end  
point of ODTLon  
tAON  
Extrapolated point at VSSQ  
Figure a)  
Rising edge of CK - /CK with ODT being first  
registered high  
tAON
Extrapolated point at VSSQ  
Figure b)  
Rising edge of CK - /CK defined by the end  
point of ODTLoff  
End point: Extrapolated point at VRTT_Nom Figure c)  
End point: Extrapolated point at VRTT_Nom Figure d)  
Rising edge of CK - /CK with ODT being first  
regered low  
tAOFPD  
tA
of CK - /CK defined by the end  
cnw, ODTLcwn4 or ODTLcwn8  
End point: Extrapolated point at VRTT_WR  
Figure e)  
and VRTT_Nom respectively  
Reference T TimiMeasurements  
Measurement reference settare provided in the following Table.  
Measured Parameter RTTm Setting  
RTT_WR Setting  
VSW1 [V]  
VSW2 [V]  
0.10  
Note  
tAON  
RZQ
N/A  
N/A  
N/A  
N
/A  
N/A  
N/A  
N/A  
RZQ/2  
0.05  
RZQ/12  
RZQ/4  
0.10  
0.20  
tAONPD  
tAOF  
0.05  
0.10  
RZQ/12  
RZQ/4  
0.10  
0.20  
0.05  
0.10  
RZQ/12  
RZQ/4  
0.10  
0.20  
tAOFPD  
tADC  
5  
0.10  
RZQ/12  
RZQ/12  
0.10  
0.20  
0.
0.30  
Begin point: Rising edge of CK - /CK  
defined by the end point of ODTLon  
CK  
VTT  
/CK  
tAON  
tSW2  
tSW1  
DQ, DM  
DQS, /DQS  
TDQS, /TDQS  
VSW2  
VSW1  
VSSQ  
VSSQ  
End point: Extrapolated point at VSSQ  
a) Definition of tAON  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
19  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Begin point: Rising edge of CK - /CK with  
ODT being first registered high  
CK  
VTT  
/CK  
tAONPD  
tSW2  
tSW1  
DQ, DM  
DQS  
DQS  
VSW2  
VSW1  
VSSQ  
VSSQ  
End point: Extrapolated point at VSSQ  
b) Definition of tAONPD  
Begin point: Rising edge of CK - /CK  
defined by the end point of ODTLoff  
CK  
VTT  
/CK  
tAOF  
End poitrapolated point at VRTT_Nom  
VRTT_Nom  
VSW2  
t
tSW1  
DQ, DM  
DQS, /DQS  
TDQS, /TDQS  
VSW1  
VSSQ  
c) Definition of tAO
Begin point: Rising edge of CK - /CK with  
ODT being first registered low  
CK  
T  
/CK  
tAOFPD  
End point: Extrapolated point at VRTT_Nom  
VRTT_Nom  
VSW2  
tSW2  
tSW1  
DQ, DM  
DQS, /DQS  
TDQS, /TDQS  
VSW1  
VSSQ  
d) Definition of tAOFPD  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
20  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Begin point: Rising edge of CK - /CK  
defined by the end point of ODTLcnw  
Begin point: Rising edge of CK - /CK defined by  
the end point of ODTLcwn4 or ODTLcwn8  
CK  
VTT  
K  
tADC  
tADC  
VRTT_Nom  
TSW21  
VRTT_Nom  
point:  
lated  
RTT_Nom  
DQ, DM  
DQS, /
TDQ
TSW22  
TSW12  
TSW11  
VSW1  
VSW2  
VRTT_Wr  
End point: Extrapolated point at VRTT_Wr  
VSSQ  
e) Definition of tADC  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
21  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
IDD Measurement Conditions (TC = 0°C to +85°C, VDD, VDDQ = 1.5V 0.075V)  
Within the tables about IDD measurement conditions, the following definitions are used:  
L: VIN VIL (AC)(max.)  
H: VIN VIH (AC)(min.);  
STA: inputs are stable at H or L level  
FTI: inputs are VREF = VDDQ / 2  
TCHINDescribed in the following Definition of SWITCHING table.  
N/A: ot available  
Definition of SWITCHING]  
Sals  
Definitions  
ot otherwise mentioned the inputs are stable at H or L during 4 clocks and change then to the  
osite value  
Address (ro
g. Ax Ax Ax Ax /Ax /Ax /Ax /Ax Ax Ax Ax Ax .....  
Please each IDDx definition for details  
If nerwise mentioned the bank addresses should be switched like the row/column  
esses - please see each IDDx definition for details  
Bank address  
efine D = {/CS, /RAS, /CAS, /WE } := {H, L, L, L}  
Define /D = {/CS, /RAS, /CAS, /WE } := {H, H, H, H}  
Command  
DeCommand Backgroattern = D D /D /D D D /D /D D D /D /D ...  
(/CS, /RAS, /CAS, /WE)  
If other commands . ACT for IDD0 or Read for IDD4R) the Background Pattern  
Command is subed tive /CS, /RAS, /CAS, /WE levels of the necessary command.  
See each IDDx finition foand figures of Example of IDD1, IDD2N/IDD3N, IDD4R.  
Data DQ is changing between H and L every other data transfer (once per clock) for DQ signals,  
which means that data DQ is stable g one clock;  
Data (DQ)  
see each IDDx definition for exces frhis rule and for further details.  
See figures of Example of IDDD2N/IDD3N, IDD4R.  
Data Masking (DM)  
NO Switching; DM must be driven L all the
AC Timing for IDD Test Conditions  
For purposes of IDD testing, the following parameters are to be utilized.  
DDR3-1333  
DDR3-1066  
6-6-6  
6
DR3-80
5-5-5  
5
Parameter  
8-8-8  
8
9-9-9  
9
7-7-7  
7
8-8-8  
8
6-6-6  
6
Unit  
tCK  
ns  
CL (IDD)  
tCK min.(IDD)  
tRCD min. (IDD)  
tRC min. (IDD)  
tRAS min.(IDD)  
tRP min. (IDD)  
tFAW (IDD)-×4/×8  
tFAW (IDD)-×16  
tRRD (IDD)-×4/×8  
tRRD (IDD)-×16  
tRFC (IDD)  
1.5  
12  
1.5  
13.5  
49.5  
36  
1.875  
11.25  
48.75  
37.5  
11.25  
37.5  
50  
1.875  
13.13  
50.63  
37.5  
13.13  
37.5  
50  
1.875  
15  
2.5  
.5  
15  
12.5  
50  
n
48  
52.50  
37.5  
15  
52
37.5  
15  
ns  
36  
37.5  
12.5  
40  
ns  
12  
13.5  
30  
ns  
30  
37.5  
50  
40  
45  
45  
50  
50  
ns  
6.0  
7.5  
90  
6.0  
7.5  
90  
7.5  
7.5  
7.5  
10  
10  
ns  
10  
10  
10  
10  
10  
ns  
90  
90  
90  
90  
90  
ns  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
22  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
The following conditions apply:  
IDD specifications are tested after the device is properly initialized.  
Input slew rate is specified by AC Parametric test conditions.  
IDD parameters are specified with ODT and output buffer disabled (MR1 bit A12 = 1).  
IDD Measurement Conditions for IDD0 and IDD1  
Symbol  
IDD0  
IDD1  
Operating Current 1  
-> One Bank Activate  
-> Read  
Operating Current 0  
-> One Bank Activate  
-> Precharge  
-> Precharge  
easurement Condi
TiDiagra
Figure IDD1 Example  
CKE  
H
External Clo
tCK  
on  
tCK mD)  
tRn (IDD)  
AS min (IDD)  
N/A  
tCK min (IDD)  
tRC min (IDD)  
tRAS min (IDD)  
tRCD min (IDD)  
N/A  
tRC  
tRAS  
tRCD  
tRRD  
CL  
N
N/A  
CL(IDD)  
AL  
N/A  
0
/CS  
H between. Actand ommands H between Activate, Read and Precharge  
SWITCHING (see Definition of SWITCHING  
table); only exceptions are Activate a
SWITCHING (see Definition of SWITCHING  
table); only exceptions are Activate, Read and  
Precharge commands; example of tern: Precharge commands; example of IDD1 pattern:  
A0 D /D /D D D /D /D D D /D/D /D P0 A0 D /D /D D R0 /D /D D D /D/D D D /D P0  
(DDR3-800: tRAS = 37.5ns been (A)ctivate (DDR3-800 -555: tRCD = 12.5ns between  
Command inputs  
(/CS, /RAS, /CAS, /WE)  
and (P)recharge to bank 0;  
tivate and (R)ead to bank 0;  
Definition of D and /D: see Definition of  
SWITCHING table  
tion of D and /D: see Definition of  
TCHING table  
Row addresses SWITCHING (see Definition oRow aSWITHING (see Definition of  
SWITCHING table); A10 must be L all the time! SWe)must be L all the time!  
Row, column addresses  
Bank addresses  
Bank address is fixed (bank 0)  
Bad (bank 0)  
Reaut data witches every clock,  
which methat Rdata is stable during one  
clock cycle.  
SWITCHING (see Definition of SWITCHING  
table)  
Data I/O  
To achieve IOU0mA the ut buffer should  
be switched off MR1 bi2 set to “1”.  
When there is no read burst frRAM the  
DQ I/O should be FLOTING.  
Output Buffer DQ, DQS  
/ MR1 bit A12  
off / 1  
off / 1  
disabled  
/ [0,0]  
disabled  
/ [0,0]  
ODT  
/ MR1 bits [A6, A2]  
Burst length  
Active banks  
Idle banks  
N/A  
8 fixed / MR0 bits [A1, A0] = {0,0}  
one  
one  
ACT-PRE loop  
ACT-READ-PRE loop  
all other  
all other  
Precharge Power-down  
Mode / MR0 bit A12  
N/A  
N/A  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
23  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10 T11 T12  
T13  
T14 T15 T16  
T17  
T18  
CK  
/CK  
BA 0 to 2  
0
Address  
3FF  
000  
000  
3FF  
0 0 0  
3FF  
11  
(A0 to
ess  
A10)  
Add
(A11 to A
11  
00  
00  
00  
0 0  
/CS  
/RAS  
/CAS  
/WE  
Command  
DQ  
ACT  
D
/D  
D
READ  
/D  
D
D
/D  
0
/D  
1
D
0
D
/D  
PRE  
D
D
/D  
/D  
0
1
0
1
1
asurement loop  
DM  
IDD1 Example* (DDR3-0-555, 512Mb ×8)  
Note: Data DQ is shown but the output buffer should bitcheoff (per MR1 bit A12 = 1) to achieve IOUT = 0mA.  
Address inputs are split into 3 parts.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
24  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
IDD Measurement Conditions for IDD2N, IDD2P (1), IDD2P (0) and IDD2Q  
Symbol  
IDD2N  
IDD2P (1)*1  
IDD2P (0)*1  
IDD2Q  
Precharge power-down Precharge power-down  
current  
current  
Precharge standby  
current  
Precharge quiet  
standby current  
Name  
(fast exit  
(slow exit  
MR0 bit A12= 1)  
MR0 bit A12= 0)  
Meaent Condition  
g DiagrExample  
Figure IDD2N/IDD3N  
Example  
CKE  
H
L
L
H
External Clock  
t
on  
on  
on  
on  
tCK min (IDD)  
tCK min (IDD)  
N/A  
tCK min (IDD)  
N/A  
tCK min (IDD)  
tRC  
/A  
N/A  
N/A  
N
/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
H
tRAS  
tRCD  
tRRD  
CL  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
AL  
N/A  
N/A  
/CS  
SABLE  
STABLE  
Bank address,  
STCHING (see  
row address and command  
inputs  
Definition of SWITCH
table)  
STABLE  
STABLE  
Data inputs  
SWITCHING  
G  
FLOATING  
off / 1  
FLOATING  
off / 1  
Output buffer DQ, DQS  
/ MR1 bit A12  
off / 1  
off / 1  
disabled  
/ [0,0]  
disable
/ [0,
disabled  
/ [0,0]  
disabled  
/ [0,0]  
ODT  
/ MR1 bits [A6, A2]  
Burst length  
Active banks  
Idle banks  
N/A  
none  
all  
N/A  
none  
all  
N/A  
ne  
N/A  
none  
all  
Slow e0  
Fast exit / 1  
Sl
Precharge Power-down  
Mode / MR0 bit A12  
N/A  
N/A  
(any valid command  
after tXP*2)  
(
satisfy  
t
Notes: 1. In DDR3 the MR0 bit A12 defines DLL-on/off behaviors only for prarge pr-down. There are two  
different precharge power-down states possible: one with DLL-on (fast ebit A12 = 1) and one with  
DLL-off (slow exit, bit A12 = 0).  
2. Because it is an exit after precharge power-down the valid commands arbanctivate (ACT), auto-  
refresh (REF), mode register set (MRS), self-refresh (SELF).  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
25  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK  
/CK  
BA  
0 to 2  
7
0
0
Address  
(A0 to A12)  
1FFF  
0 0 0 0  
0000  
H
/CS  
/RAS  
Comm
/D  
/D  
D
D
/D  
/D  
D
D
/D  
/D  
D
DQ  
FF 00 00 FF FF 000 00 FF FF 00 00 FF FF 00 00 FF FF 00 00  
0 to 7  
2N/ IDD3N measurement loop  
DM  
IDD2N/IDD3N Example (D-800-555, 512Mb ×8)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
26  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
IDD Measurement Conditions for IDD3N, IDD3P (fast exit)  
Symbol  
IDD3N  
IDD3P (1)  
Active power-down current*  
(always fast exit)  
Name  
Active standby current  
Measurement Condition  
Timinagram Example  
Figure IDD2N/IDD3N Example  
C
H
L
al Clock  
tCK  
on  
on  
tCK min (IDD)  
tCK min (IDD)  
N/A  
RC  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
H
t
tRCD  
tRRD  
CL  
N/A  
N/A  
N/A  
N/A  
AL  
N/A  
/CS  
STABLE  
SWITCHIN  
(see Definition of SWITCHING table)  
Address and command inp
Data inputs  
STABLE  
FLOATING  
off / 1  
SWITCHIN
(see DeWITCHING table)  
Output buffer DQ, DQS  
/ MR1 bit A12  
off
abled  
/ [0,0]  
disabled  
/ [0,0]  
ODT  
/ MR1 bits [A6, A2]  
Burst length  
Active banks  
Idle banks  
N/A  
none  
all  
N/A  
none  
all  
Precharge Power-down  
Mode / MR0 bit A12  
N/A (Active Power-down  
N/A  
Mode is always “Fast Exit” with DLL-on)  
Note: DDR3 will offer only one active power-down mode with ast exit). MR0 bit A12 will not be used for  
active power-down. Instead bit A12 will be used to swittweeifferenprecharge power-down  
modes.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
27  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
IDD Measurement Conditions for IDD4R, IDD4W and IDD7  
Symbol  
IDD4R  
IDD4W  
IDD7  
Operating current  
(Burst read operating)  
Operating current  
(Burst write operating)  
Name  
All bank interleave read current  
Measurement Condition  
Timing gram Example  
IDD4R Example  
CK
H
H
H
al Clock  
tCK  
on  
on  
on  
tCK min (IDD)  
tCK min (IDD)  
tCK min (IDD)  
tRC min. (IDD)  
tRAS min. (IDD)  
tRCD min. (IDD)  
tRRD min. (IDD)  
CL (IDD)  
C  
N/A  
N/A  
tR
tRCD  
tRRD  
CL  
/A  
N/A  
N/A  
A  
N/A  
CL (ID
CL (IDD)  
AL  
0
0
tRCD min. 1tCK  
H between valid commands  
/CS  
etween valid commands  
H between valid commands  
SWITCHING (see Definition of  
WITCHING table);  
SWITCHING (see Definition of  
SWITCHING table);  
onxceptions are read  
comands -> IDD4R pa
only exceptions are write  
commands -> IDD4W pattern:  
Command inputs  
For patterns see pattern in IDD7  
Timing Patterns section  
R0 D /D /D R1 D /D /D /D /D W1 D /D /D W2 D /D  
/D R3 D /D /D R4
(/CS, /RAS, /CAS, /WE)  
W3 D /D /D W4...  
Rx = Read from k x;  
Definition of D and /D: see  
= Write to bank x;  
Definition of D and /D: see  
Definition of SWITCHING table Defion of SWITCHING table  
Column addresses SWITCHING dresses SWITCHING  
(see Definition of SWITCHING  
table);  
ee Defnition of SWITCHING  
table);  
Row, column addresses  
Bank addresses  
STABLE during DESELECTs  
A10 must be L all the time!  
A10 muhe time!  
bank address cycling  
(0 -> 1 -> 2 -> 3 ...), see pattern  
in IDD7 Timing Patterns section  
bank address cycling  
(0 -> 1 -> 2 -> 3 ...)  
bank
(0 ->
Seamless read data burst (BL8):  
output data switches every  
clock, which means that Read  
data is stable during one clock  
cycle.  
Rdata (BL8): output data  
Seamless write daches every clock, which  
input data switcheeans that Read data is stable  
which means that w
stable during one clock c
durinone clock cycle.  
Data I/O  
achieve IOUT = 0mA the  
utput buffould be switched  
ff by Mit A12 set to “1”.  
To achieve IOUT = 0mA the  
output buffer should be switched  
off by MR1 bit A12 set to “1”.  
DM is low all the time  
Output Buffer DQ, DQS  
/ MR1 bit A12  
off / 1  
off / 1  
off /
disabled  
/ [0,0]  
disabled  
/ [0,0]  
disabled  
/ [0,0]  
ODT  
/ MR1 bits [A6, A2]  
8 fixed / MR0 bits [A1, A0] =  
{0,0}  
8 fixed / MR0 bi1, A0]
{0,0}  
Burst length  
8 fixed / MR0 [A1, A0] = {0,0}  
Active banks  
Idle banks  
all  
all  
all, rotational  
none  
none  
none  
Precharge Power-down  
Mode / MR0 bit A12  
N/A  
N/A  
N/A  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
28  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10 T11 T12  
CK  
/CK  
BA  
1
2
3
0
0 to 2  
ddress  
(AA9)  
3FF  
000  
3FF  
0 0 0  
Address  
(A10)  
L
Addr
(A11 t
11  
00  
11  
0 0  
/RAS  
/CAS  
/WE  
Command  
0 to 2  
READ  
D
/D  
/D  
READ  
D
/D  
/D  
READ  
D
/D  
/D  
READ  
D
DQ  
00 00 FF F 00 00 FF FF 00 00 FF FF 00 00 FF FF  
0 to 7  
Start of measurement loop  
DM  
IDD4R Example* (DDR3-800-5512M
Note: Data DQ is shown but the output buffer should be switched off (pe1) to achieve IOUT = 0mA.  
Address inputs are split into 3 parts.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
29  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
IDD7 Timing Patterns  
The detailed timings are shown in the IDD7 Timing Patterns for 8 Banks tables.  
tFAW tFAW tRRD tRRD  
Speed bins  
Bin  
Organization (ns)  
(tCK) (ns)  
(tCK) Timing Patterns  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D A4  
RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D  
DDR3-800  
all  
×4/×8  
×16  
40  
16  
10  
4
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D  
D A4 RA4 D D A5 RA5 D D A6 RA6 DD A7 RA7 D D D D  
D D  
all  
all  
all  
50  
20  
10  
4
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 DD D D D  
D A4 RA4 D D A5 RA5 D D A6 RA6 DD A7 RA7 D D D D  
D D  
DDR3-6  
DDR3-1333  
×4/×8  
37.5  
50  
20  
27  
20  
30  
7.5  
10  
6
4
6
4
5
A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D DD D A3  
RA3 D D D D D D D A4 RA4 D D D D A5 RA5 D D D D A6  
RA6 D D D D A7 RA7 D D D DD D D  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D  
D A4 RA4 D D A5 RA5 D D A6 RA6 DD A7 RA7 D D D D  
D D  
×16  
30  
A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D  
D D D D D D D D D D D A4 RA4 D D DA5 RA5 D D D A6  
RA6 D D D A7 RA7 D D D DD D D D D D D D D  
45  
7.5  
Remark: Ax = Active cmand for bank x.  
RAx = Read with to precharge command from bank x.  
ex. RA0 = READA mmand from ban
Notes: 1. All banks are being interleaved at m(IDD) without violating tRRD (IDD) and tFAW (IDD) using  
a burst length = 8.  
2. Control and address bus inpue STng DESELECTs.  
3. IOUT = 0mA.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
30  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
IDD Measurement Conditions for IDD5B  
Symbol  
IDD5B  
Name  
Burst refresh current  
Measurement Condition  
Timing Diagram Example  
CKE  
H
nal Clo
on  
CK  
tCK min. (IDD)  
tRC  
N/A  
AS  
N/A  
tRC
N/A  
tRRD  
N/A  
tRFC  
tRFC min. (IDD)  
N/A  
CL  
AL  
N/A  
/CS  
H between valid commands  
SWITCHING  
SING  
Address and command inpu
Data inputs  
Output buffer DQ, DQS  
/ MR1 bit A12  
d
/ [0,0
ODT  
/ MR1 bits [A6, A2]  
Burst length  
Active banks  
Idle banks  
N/A  
Refresh cand ery tRFC = tRFC (min.)  
none  
Precharge Power-down  
Mode / MR0 bit A12  
N/A  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
31  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
IDD Measurement Conditions for IDD6 and IDD6ET  
Symbol  
IDD6  
IDD6ET  
Self-refresh current extended temperature  
range  
Self-refresh current normal temperature range  
Name  
TC = 0 to +85°C  
TC = 0 to +95°C  
Measurement Condition  
Tem
TC = +85°C  
TC = +95°C  
Aelf-refre(ASR) /  
R2 A6  
Disabled / 0  
Disabled / 0  
Self-Refh Temperature Range  
SRT) / MR2 bit A7  
Disabled / 0  
Enabled / 1  
C
L
L
External Clo
tCK  
OFF; CK and /CK at L  
OFF; CK and /CK at L  
N/A  
N/A  
tRC  
N
N/A  
tRAS  
tRCD  
tRRD  
CL  
A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
AL  
/A  
N/A  
/CS  
FLOATING  
FLOATING  
Command inputs  
/RAS, /CAS, /WE)  
FLOATIN
FLOATING  
Row, column addresses  
Bank addresses  
Data I/O  
FLOATING  
FLOATING  
FLOATING  
FLOATING  
FLOATING  
FLOATING  
Output Buffer DQ, DQS  
/ MR1 bit A12  
off / 1  
off / 1  
disabled  
/ [0,0]  
sabled  
[0,0]  
ODT  
/ MR1 bits [A6, A2]  
Burst length  
Active banks  
Idle banks  
8 fixed / MR0 bits [A1, A0] = {0,0}  
all during self-refresh actions  
all between self-refresh actions  
8 fi0 bits A1, A0] = {0,0}  
-sh actions  
lf-refresh actions  
Precharge Power-down  
Mode / MR0 bit A12  
N/A  
N/A  
IDD6 Current Definition  
Parameter  
Symbol  
Parameter/Condition  
CKE 0.2V; external clock off, CK and /CK at 0V; Other conand adds  
inputs are FLOATING; Data Bus inputs are FLOATING, PASdisabled.  
Applicable for MR2 settings A6 = 0 and A7 = 0.  
Normal temperature range self-  
refresh current  
IDD6  
CKE 0.2V; external clock off, CK and /CK at 0V; Other control and addre
inputs are FLOATING; Data Bus inputs are FLOATING, PASR disabled.  
Applicable for MR2 settings A6 = 0 and A7 = 1  
Extended temperature range  
self-refresh current  
IDD6ET  
IDD6TC  
CKE 0.2V; external clock off, CK and /CK at 0V; Other control and address  
inputs are FLOATING; Data Bus inputs are FLOATING, PASR disabled.  
Applicable when ASR is enabled by MR2 settings A6 = 1 and A7 = 0.  
Auto self-refresh current  
.
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
32  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Electrical Specifications  
DC Characteristics 1 (TC = 0°C to +85°C, VDD, VDDQ = 1.5V 0.075V)  
× 4  
× 8  
× 16  
Parameter  
Symbol  
IDD0  
Data rate (Mbps) max.  
max.  
max.  
Unit  
mA  
Notes  
1333  
1066  
800  
125  
110  
105  
125  
110  
105  
145  
125  
120  
Operrrent  
(ARE)  
1333  
1066  
800  
140  
135  
125  
140  
135  
125  
175  
165  
150  
peracurrent  
(ACT-REPRE)  
IDD1  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
m
mA  
1333  
1066  
800  
45  
40  
35  
45  
40  
35  
45  
40  
35  
2PF  
2PS  
ID
Fast PD Exit  
Slow PD Exit  
Precharge p
standby cur
1333  
1066  
800  
12  
11  
10  
12  
11  
10  
12  
11  
10  
1333  
1066  
800  
75  
65  
55  
75  
65  
55  
75  
65  
55  
Precharge quiet standby  
current  
1333  
1066  
800  
80  
70  
0  
80  
70  
60  
80  
70  
60  
Precharge standby current IN  
1333  
1066  
800  
50  
45  
35  
50  
45  
35  
Active power-down current  
IDD3P  
(Always fast exit)  
13
1066  
800  
85  
70  
100  
85  
70  
110  
95  
80  
Active standby current  
IDD3N  
IDD4R  
IDD4W  
IDD5B  
IDD7R  
1333  
1066  
800  
190  
1
5  
10  
175  
140  
325  
270  
220  
Operating current  
(Burst read operating)  
1333  
1066  
800  
205  
170  
135  
315  
260  
205  
Operating current  
(Burst write operating)  
1333  
1066  
800  
305  
295  
280  
2
280  
305  
Burst refresh current  
1333  
1066  
800  
350  
290  
265  
365  
300  
270  
3
All bank interleave read  
current  
Self-Refresh Current (TC = 0°C to +85°C, VDD, VDDQ = 1.5V 0.075V)  
× 4  
× 8  
× 16  
Parameter  
Symbol  
IDD6S  
Grade max.  
max.  
max.  
Unit  
mA  
Notes  
Self-refresh current  
normal temperature range  
8
8
8
Self-refresh current  
extended temperature  
range  
IDD6ET  
IDD6TC  
16  
16  
16  
16  
16  
16  
mA  
mA  
Auto self-refresh current  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
33  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
DC Characteristics 2 (TC = 0°C to +85°C, VDD, VDDQ = 1.5V 0.075V)  
Parameter  
Symbol  
ILI⏐  
Value  
TBD  
TBD  
Unit  
μA  
Notes  
Input leakage current  
Output leakage current  
VDD VIN VSS  
VDDQ VOUT VSS  
ILO⏐  
μA  
Pin pacnce (TC = 25°C, VDD, VDDQ = 1.5V 0.075V)  
raer  
Symbol  
CCK  
Pins  
min.  
TBD  
TBD  
max.  
Unit  
pF  
Notes  
1, 2, 4  
1, 2, 4  
Input pin pacitance, CK and /CK  
DDR3-1333  
CK, /CK  
TBD  
1.6  
R3-1066,
CCK  
pF  
Delta input pnd  
/CK  
CDCK  
TBD  
TBD  
pF  
1, 2, 3  
DDR3-133
DDR3-1066
CK  
0
0.15  
TBD  
1.5  
pF  
pF  
pF  
pF  
1, 2, 3  
Input pin capacitanntrol pin
DDR3-1333  
CIN_CTRL  
CIN_CTRL  
CIN_ADD_CMD  
/CS, CKE, ODT  
TBD  
TBD  
TBD  
1
1
1
DDR3-1066, 800  
Input pin capacitance, addreand  
command pins  
/RAS, /CAS, /WE,  
ddress  
1.5  
Delta input pin capacitance, contro
pins  
CDIN_CTRL  
CDIN_L  
CDIN_ADD_CMD  
CDIN_ADD_CMD  
CIO  
E, ODT  
TBD  
0.5  
TBD  
0.5  
TBD  
0.3  
pF  
pF  
pF  
pF  
pF  
1, 5  
1, 5  
1, 6  
1, 6  
1, 7  
DDR3-1333  
DDR3-1066, 800  
Delta input pin capacitance, address  
and command pins  
DDR3-1333  
/RAS, /CAS, /WE,  
Addres
TBD  
0.5  
DDR3-1066, 800  
D, DQS, /DQ
TDQS, /TD
DM  
Input/output pin capacitance  
DDR3-1333  
2.5  
DDR3-1066, 800  
CIO  
3.0  
pF  
pF  
pF  
1, 7  
Delta input/output pin capacitance  
DDR3-1333  
CDIO  
CDIO  
TBD  
TBD  
1, 8, 9  
1, 8, 9  
DDR3-1066, 800  
Notes: 1. VDD, VDDQ, VSS, VSSQ applied and all other pins (except the est) floting.  
VDD = VDDQ =1.5V, VBIAS=VDD/2  
2. This parameter is Non-stacked (monolith) DDR3 SDRAM spec. Stacked des pin parsitics are TBD.  
3. Absolute value of CCK(CK-pin) CCK(/CK-pin)  
4. CCK (min.) will be equal to CIN (min.)  
5. CDIN_CTRL = CIN_CTRL 0.5 × (CCK(CK-pin) + CCK(/CK-pin))  
6. CDIN_ADD_CMD = CIN_ADD_CMD 0.5 × (CCK(CK-pin) + CCK(/CK-pin))  
7. TDQS/TDQS are not necessarily input function, but since TDQS is sharing DM pin nd the para
characterization of TDQS/TDQS should be close as much as possible, CIO and CDIO uiremes  
applied.  
8. DQ should be in high impedance state.  
9. CDIO = CIO (DQ) 0.5 × (CIO(DQS-pin) + CIO(/DQS-pin)).  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
34  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Standard Speed Bins  
[DDR3-1333 Speed Bins]  
Speed Bin  
DDR3-1333G  
DDR3-1333H  
9-9-9  
CL-tRCD-tRP  
8-8-8  
/CAS write  
Symb
latency  
min.  
max.  
min.  
max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
Notes  
tA
12  
20  
13.5  
20  
CD  
12  
13.5  
tRP  
12  
13.5  
48.0  
49.5  
tRA
36  
9 × tREFI  
3.3  
36  
9 × tREFI  
Reserved  
Reserved  
3.3  
8
tCK (avg)@
6, 7  
L = 5  
CWL =
CW7  
CW5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5, 6  
CWL= 7  
2.5  
Reserved  
Reserved  
2.5  
1, 2, 3, 4, 7  
eserved  
2.5  
Reserved  
3.3  
4
tCK (avg)@CL=
tCK (avg)@CL=7  
tCK (avg)@CL=8  
1, 2, 3, 7  
Reserved  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
< 2.5  
1, 2, 3, 4, 7  
4
4
1, 2, 3, 4, 7  
Reserved  
Reserve
1.875  
d  
1, 2, 3, 4  
4
1, 2, 3, 7  
1.5  
< 1.875  
Reserv
< 1
Reserved  
< 1.875  
Optional  
Reserved  
Reserved  
< 1.5  
Reserved  
Reserved  
< 1.875  
Reserved  
< 1.875  
Optional  
1, 2, 3, 4  
tCK (avg)@CL=9  
tCK (avg)@CL=10  
Reserved  
1.5  
4
1, 2, 3, 4  
CWL = 5, 6  
CWL= 7  
Reserved  
1.5  
d  
4
1, 2, 3  
5
CWL= 7  
Optional  
5, 6, 7, 8, 9, 10  
9, 10  
Supported CL settings  
Supported CWL  
settings  
5, 6, 7  
5, 6, 7  
nCK  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
35  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
[DDR3-1066 Speed Bins]  
Speed Bin  
DDR3-1066E  
6-6-6  
DDR3-1066F  
7-7-7  
DDR3-1066G  
8-8-8  
CL-tRCD-tRP  
/CAS write  
Symbol  
latency  
min.  
max.  
min.  
max.  
min.  
15  
max.  
Unit  
ns  
Notes  
tAA  
11.25  
11.25  
11.25  
48.75  
37.5  
20  
13.125  
13.125  
13.125  
50.625  
37.5  
20  
20  
tRC
15  
ns  
15  
ns  
tRC  
52.50  
37.5  
ns  
RAS  
9 × tREFI  
9 × tREFI  
9 × tREFI  
ns  
8
1, 2, 3,  
4, 6  
tCvg)@CL
2.5  
3.3  
Reserved Reserved Reserved Reserved ns  
tCK (avg)@
Reserved Reserved Reserved Reserved Reserved Reserved ns  
4
2.5  
3.3  
2.5  
3.3  
2.5  
3.3  
ns  
1, 2, 3, 6  
1, 2, 3, 4  
4
1
< 2.5  
Reserved Reserved Reserved Reserved ns  
tCK (avg)@CL=7 CWL = 5  
CWL =
eserved Reserved Reserved Reserved Reserved Reserved ns  
1.875 < 2.5 1.875 < 2.5 Reserved Reserved ns  
Reserved Reserved Reserved Reserved Reserved Reserved ns  
1, 2, 3, 4  
4
tCK (avg)@CL=8 CWL =
CWL = 6  
875  
< 2.5  
875  
< 2.5  
1.875  
6, 8  
< 2.5  
ns  
1, 2, 3  
Supported CL  
settings  
5, 6, 7, 8  
nCK  
Supported CWL  
settings  
5, 6  
5, 6  
nCK  
[DDR3-800 Speed Bins]  
Speed Bin  
DDR3-800F  
5-5-5  
DDR3-800E  
CL-tRCD-tRP  
/CAS write  
Symbol  
latency  
min.  
12.5  
12.5  
12.5  
50  
max.  
max.  
0  
Unit  
ns  
ns  
ns  
ns  
ns  
s  
Notes  
tAA  
20  
tRCD  
15  
tRP  
15  
tRC  
52.5  
37.5  
Reserved  
2.5  
tRAS  
37.5  
2.5  
9 × tREFI  
3.3  
9 × tRE
Resed  
3.3  
8
tCK (avg)@CL=5  
tCK (avg)@CL=6  
Supported CL settings  
Supported CWL settings  
CWL = 5  
CWL = 5  
1, 2, 3, 4  
1, 2, 3  
2.5  
3.3  
5, 6  
5
6
nC
n
5
Notes: 1 The CL setting and CWL setting result in tCK (avg) (min.) and tCK (avg) (max.) rerements. W
making a selection of tCK (avg), both need to be fulfilled: Requirements from CL seas we
requirements from CWL setting.  
2. tCK (avg) (min.) limits: Since /CAS latency is not purely analog - data and strobe output are synonized  
by the DLL - all possible intermediate frequencies may not be guaranteed. An application should se the  
next smaller JEDEC standard tCK (avg) value (2.5, 1.875, 1.5, or 1.25ns) when calculating  
CL (ntCK) = tAA(ns) / tCK(avg)(ns), rounding up to the next ‘Supported CL’.  
3. tCK (avg) (max.) limits: Calculate tCK (avg) + tAA (max.)/CLselected and round the resulting tCK (avg)  
down to the next valid speed bin limit (i.e. 3.3ns or 2.5ns or 1.875ns or 1.25ns). This result is tCK (avg)  
(max.) corresponding to CLselected.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
36  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
4. ‘Reserved’ settings are not allowed. User must program a different value.  
5. 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a  
mandatory feature.  
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table  
DDR3-1066 Speed Bins which are not subject to production tests but verified by design/characterization.  
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table  
DDR3-1333 Speed Bins which is not subject to production tests but verified by design/characterization.  
. EFI depends on operating case temperature (TC).  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
37  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
AC Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.5V 0.075V, VSS, VSSQ = 0V)  
AC Characteristics [DDR3-1333]  
-DG, -DJ  
1333  
Data rate (Mbps)  
Parame
Symbol  
min.  
max.  
3333  
Unit  
ps  
Notes  
6
Avclocycle time  
tCK (avg)  
1500  
m clock le time  
DLL-mode)  
tCK (DLL-off)  
8
ns  
Average high-level width  
rage CK low
tCH (avg)  
tCL (avg)  
0.47  
0.47  
0.53  
0.53  
tCK (avg)  
tCK (avg)  
12 (DG)  
13.5 (DJ)  
Active to readelay  
Precharge c
tRCD  
tRP  
ns  
ns  
ns  
26  
26  
26  
12 (DG)  
13.5 (DJ)  
48 (DG)  
49.5 (DJ)  
Active to active/ah commtime  
tRC  
Active to precharge comman
tRAS  
tRRD  
tRRD  
t
36  
6
9 × tREFI  
ns  
26  
Active bank A to active bancommand period  
ns  
26, 27  
26, 27  
26, 27  
26, 27  
(x4/x8)  
4
nCK  
ns  
Active bank A to active bank B comand period  
(x16)  
7.5  
4
nCK  
Four active window  
(x4/x8)  
tF
30  
ns  
ns  
ps  
26  
(x16)  
tFAW  
45  
26  
Address and control input hold time  
(VIH/VIL (DC) levels)  
tIH (base)  
T
16, 23  
Address and control input setup time  
(VIH/VIL (AC) levels)  
tIS (bae)  
tDH (base)  
tDS (base)  
TB
T
ps  
ps  
ps  
16, 23  
17, 25  
17, 25  
DQ and DM input hold time  
(VIH/VIL (DC) levels)  
DQ and DM input setup time  
(VIH/VIL (AC) levels)  
Control and Address input pulse width for each input tIPW  
0.6  
tCK (avg)  
tCK (avg)  
ps  
DQ and DM input pulse width for each input  
DQ high-impedance time  
tDIPW  
0.35  
tHZ (DQ)  
tLZ (DQ)  
250  
12, 13, 14  
12, 13, 14  
DQ low-impedance time  
500  
ps  
DQS, /DQS high-impedance time  
(RL + BL/2 reference)  
tHZ (DQS)  
tLZ (DQS)  
250  
250  
ps  
12, 13, 14  
DQS, /DQS low-impedance time  
(RL 1 reference)  
500  
113, 14  
12,
DQS, /DQS to DQ skew, per group, per access  
tDQSQ  
tCCD  
tQH  
125  
p
/CAS to /CAS command delay  
4
nC
DQ output hold time from DQS, /DQS  
0.36  
tCK (avg) 12, 1
ps 13  
DQS, /DQS rising edge output access time from  
rising CK, /CK  
tDQSCK  
tDQSS  
225  
225  
DQS latching rising transitions to associated clock  
edges  
0.25  
0.25  
tCK (avg) 24  
DQS falling edge hold time from rising CK  
DQS falling edge setup time to rising CK  
DQS input high pulse width  
tDSH  
0.2  
0.2  
0.4  
0.4  
tCK (avg) 24  
tCK (avg) 24  
tCK (avg)  
tDSS  
tDQSH  
tDQSL  
0.6  
0.6  
DQS input low pulse width  
tCK (avg)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
38  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
-DG, -DJ  
1333  
Data rate (Mbps)  
Parameter  
Symbol  
tQSH  
min.  
0.38  
0.38  
4
max.  
Unit  
Notes  
DQS output high time  
tCK (avg) 12, 13  
tCK (avg) 12, 13  
nCK  
DQS output low time  
tQSL  
Mode er set command cycle time  
Megisteet command update delay  
tMRD  
tMOD  
tMOD  
tRPRE  
tRPST  
tWPRE  
tWPST  
tWR  
15  
ns  
27  
27  
12  
nCK  
Read preble  
ad postamble  
Wrireamb
Write posta
Write recove
0.9  
0.3  
0.9  
0.4  
15  
tCK (avg) 1, 19  
tCK (avg) 11, 12, 13  
tCK (avg)  
tCK (avg)  
ns  
1
1
26  
WR + RU  
Auto precharge ry + prrge time  
tDAL  
tRTW  
tRTW  
nCK  
(tRP/tCK (avg))  
Read to write command delay  
(BC4MRS, BC4OTF)  
RL + tCCD/2 +  
2nCK WL  
RL + tCCD + 2nCK  
WL  
(BL8MRS, BL8OTF)  
Internal write to read command de
tW
tRTP  
7.5  
ns  
18, 26, 27  
18, 26, 27  
26, 27  
4
nCK  
ns  
Internal read to precharge command delay  
7.5  
4
nCK  
26, 27  
Minimum CKE low width for self-refresh entry to exit  
timing  
tCKESR  
CKE (min.)+1nCK ⎯  
Valid clock requirement after self-refresh entry or  
power-down entry  
tCKSR
tCKSRE  
tCKSRX  
tCKSRX  
tXS  
10  
ns  
27  
27  
27  
27  
27  
27  
5
nCK  
ns  
Valid clock requirement before self-refresh exit or  
power-down exit  
7.8  
3.9  
5
nCK  
ns  
Exit self-refresh to commands not requiring  
a locked DLL  
tRFC (min.)
tXS  
5
nCK  
nCK  
n
Exit self-refresh to commands requiring a locked  
DLL  
tXSDLL  
tRFC  
tDLLK (min.)  
Auto-refresh to active/auto-refresh command time  
90  
Average periodic refresh interval  
(0°C TC +85°C)  
tREFI  
s  
(+85°C < TC +95°C)  
tREFI  
μs  
CKE minimum pulse width  
(high and low pulse width)  
tCKE  
5.625  
ns  
27  
tCKE  
tXPR  
tXPR  
tDLLK  
tPD  
3
nCK  
ns  
27  
27  
27  
Exit reset from CKE high to a valid command  
tRFC (min.)+10  
5
nCK  
nCK  
DLL locking time  
512  
Power-down entry to exit time  
tCKE (min.)  
9 × tREFI  
15  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
39  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
-DG, -DJ  
1333  
Data rate (Mbps)  
Parameter  
Symbol  
tXPDLL  
tXPDLL  
min.  
24  
max.  
Unit  
ns  
Notes  
Exit precharge power-down with DLL frozen to  
commans requiring a locked DLL  
2
2
10  
nCK  
Ewer-dowith DLL on to any valid command;  
t charge per- down with DLL frozen to  
commanot requiring a locked DLL  
tXP  
6
ns  
27  
27  
tXP  
3
1
1
1
nCK  
nCK  
nCK  
nCK  
Cmand pass delay  
tCPDED  
tACTPDEN  
tPRPDEN  
Timing of lasower-down entry  
Timing of laower-down entry  
20  
20  
Timing of last mmanpower-  
down entry  
tRDPDEN  
tWRPDEN  
tWRPDEN  
RL + 4 + 1  
nCK  
nCK  
nCK  
Timing of last WRIT command to er-down entry  
(BL8MRS, BL8OTF, BC4OTF
WL + 4 +  
tWR/tCK (avg)  
9
9
WL + 2 +  
tWR/tCK (avg)  
(BC4MRS)  
Timing of last WRITA command power-down  
entry  
(BL8MRS, BL8OTF, BC4OTF)  
tWN  
WL + 4 + WR + 1  
nCK  
10  
(BC4MRS)  
tR
WL + 2 + WR + 1  
nCK  
nCK  
10  
Timing of last REF command to power-down y  
1
20, 21  
Timing of last MRS command to power-down entry tMRSPDEN  
tMOD (min.)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
40  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
ODT AC Electrical Characteristics [DDR3-1333]  
-DG, -DJ  
1333  
Data rate (Mbps)  
Parameter  
Symbol  
tAON  
min.  
max.  
250  
Unit  
ps  
Notes  
7, 12  
RTT turn-on  
250  
Asyncus RTT turn-on delay  
(podowith DLL frozen)  
tAONPD  
tAOF  
1
9
ns  
om and T_WR turn-off time  
om TLoff reference  
0.3  
0.7  
9
tCK (avg) 8, 12  
Asynchrous RTT turn-off delay  
ower-down with Den)  
tAOFPD  
tANPD  
1
ns  
Oto power-
laten
WL – 1.0  
nCK  
ODT turn-o
ODT turn-off
ODTLon  
TLoff  
WL – 2.0  
WL – 2.0  
WL – 2.0  
WL – 2.0  
nCK  
nCK  
ODT Latency for rom  
RTT_Nom to RTT_WR  
ODTLcnw  
WL – 2.0  
WL – 2.0  
nCK  
nCK  
ODT Latency for change from  
RTT_WR to RTT_Nom  
(BC4)  
ODTLcwn4  
4 + ODTLoff  
ODT Latency for change from  
RTT_WR to RTT_Nom  
(BL8)  
ODTLcwn8  
ODTH4  
6 + ODTLoff  
nCK  
ODT high time without WRIT  
command or with WRIT command  
and BC4  
6
nCK  
nCK  
ODT high time with WRIT command  
and BL8  
ODTH8  
tADC  
RTT dynamic change skew  
0.
0.7  
tCK (avg) 12  
nCK  
Power-up and reset calibration time tZQinit  
Normal operation full calibration time tZQoper  
2  
256  
nCK  
Normal operation short calibration  
time  
tZQCS  
TBD  
nCK  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
41  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
AC Characteristics [DDR3-1066, 800]  
-AC, -AE, -AG  
1066  
-8A, -8C  
800  
Data rate (Mbps)  
Parameter  
Symbol  
min.  
max.  
3333  
min.  
max.  
3333  
Unit  
ps  
Notes  
6
Clock cycle time Average CL = X  
tCK(avg)  
1875  
2500  
Minimck cycle time  
(Dmo
tCK(DLL-off)  
8
8
ns  
e duty chigh-level  
Averagty cycle low-level  
tCH (avg)  
tCL (avg)  
0.47  
0.47  
0.53  
0.53  
0.47  
0.47  
0.53  
0.53  
tCK (avg)  
tCK (avg)  
11.25 (AC)  
13.1 (AE)  
15 (AG)  
12.5 (8A)  
15 (8C)  
ve to read or nd delay tRCD  
ns  
ns  
ns  
26  
26  
26  
11.25 (AC)  
13.1 (AE)  
15 (AG)  
12.5 (8A)  
15 (8C)  
Precharge c
tRP  
tRC  
48.75 (AC)  
50.6 (AE)  
52.5 (AG)  
Active to active/acomm
time  
50 (8A)  
52.5 (8C)  
Active to precharge comma
tRAS  
37.5  
7.5  
9 × tREFI 37.5  
9 × tREFI ns  
26  
Active bank A to active bank
command period  
tRRD  
tRRD  
10  
4
ns  
26, 27  
26, 27  
26, 27  
26, 27  
26  
(x4/x8)  
nCK  
ns  
Active bank A to active bank B  
command period  
tRRD  
tRRD  
10  
4
(x16)  
4
nCK  
ns  
Four active window  
(x4/x8)  
tFAW  
tFAW  
tIH (base)  
37.5  
50  
40  
50  
275  
(x16)  
ns  
26  
Address and control input hold time  
(VIH/VIL (DC) levels)  
200  
ps  
16, 23  
Address and control input setup time  
(VIH/VIL (AC) levels)  
tIS (base)  
tDH (base)  
tDS (base)  
tIPW  
125  
100  
25  
00  
150  
ps  
16, 23  
17, 25  
17, 25  
DQ and DM input hold time  
(VIH/VIL (DC) levels)  
ps  
DQ and DM input setup time  
(VIH/VIL (AC) levels)  
ps  
Control and Address input pulse width  
for each input  
0.6  
0.35  
0.35  
tCK (avg)  
DQ and DM input pulse width for each  
input  
tDIPW  
tCK (avg)  
12, 13,  
14  
DQ high-impedance time  
DQ low-impedance time  
tHZ (DQ)  
tLZ (DQ)  
tHZ (DQS)  
tLZ (DQS)  
300  
300  
300  
300  
150  
400  
40
400  
400  
200  
ps  
s  
ps  
ps  
12, 13,  
14  
600  
800  
DQS, /DQS high-impedance time  
(RL + BL/2 reference)  
12, 13,  
14  
DQS, /DQS low-impedance time  
(RL 1 reference)  
DQS, /DQS -DQ skew, per group, per  
access  
3,  
600  
800  
tDQSQ  
tCCD  
ps  
12, 13  
/CAS to /CAS command delay  
4
4
nCK  
DQ output hold time from DQS, /DQS tQH  
DQS, /DQS rising edge output access  
time from rising CK, /CK  
0.36  
0.36  
tCK (avg) 12, 13  
ps 12, 13  
tCK (avg) 24  
tDQSCK  
265  
+265  
350  
+350  
DQS latching rising transitions to  
associated clock edges  
tDQSS  
0.25  
0.25  
0.25  
0.25  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
42  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
-AC, -AE, -AG  
1066  
-8A, -8C  
800  
Data rate (Mbps)  
Parameter  
Symbol  
tDSH  
min.  
max.  
min.  
max.  
Unit  
Notes  
DQS falling edge hold time from rising  
CK  
0.2  
0.2  
0.2  
0.2  
tCK (avg) 24  
tCK (avg) 24  
DQS falling edge setup time to rising  
CK  
tDSS  
Dput hpulse width  
S put low pe width  
DQS outhigh time  
tDQSH  
tDQSL  
tQSH  
0.4  
0.4  
0.38  
0.38  
4
0.6  
0.6  
0.4  
0.4  
0.38  
0.38  
4
0.6  
0.6  
tCK (avg)  
tCK (avg)  
tCK (avg) 12, 13  
tCK (avg) 12, 13  
nCK  
QS output low ti
tQSL  
Moegister e time tMRD  
Mode registte  
delay  
tMOD  
15  
15  
ns  
27  
27  
OD  
12  
12  
nCK  
Read preamble  
Read postamble  
tRPRE  
tRPST  
0.9  
0.9  
tCK (avg) 1, 19  
11, 12,  
13  
0.3  
0.3  
tCK (avg)  
Write preamble  
tWPRE  
tWPST  
tWR  
0.9  
0.4  
0.9  
0.4  
15  
tCK (avg)  
tCK (avg)  
ns  
1
Write postamble  
Write recovery time  
1
26  
Auto precharge write recovery +  
precharge time  
))  
WR + RU  
(tRP/tCK (avg))  
tDAL  
tRTW  
tRTW  
nCK  
Read to write command delay  
(BC4MRS, BC4OTF)  
RL 2 +  
2nCK WL  
RL + tCCD
2nCK W
RL + tCCD/2 +  
2nCK WL  
RL + tCCD +  
2nCK WL  
(BL8MRS, BL8OTF)  
18, 26,  
27  
Internal write to read command delay tWTR  
tWTR  
7.5  
7.5  
ns  
18, 26,  
27  
4
nCK  
Internal read to precharge command  
delay  
tRTP  
7.5  
4
7.5  
ns  
26, 27  
26, 27  
tRTP  
nCK  
Minimum CKE low width for self-  
refresh entry to exit timing  
tCKE (min.)  
+1nCK  
tCKESR  
Valid clock requirement after self-  
refresh entry or power-down entry  
tCKSRE  
tCKSRE  
tCKSRX  
tCKSRX  
tXS  
10  
5
10  
5
ns  
27  
27  
27  
27  
27  
2
nCK  
ns  
Valid clock requirement before self-  
refresh exit or power-down exit  
10  
10  
5
5
CK  
ns  
Exit self-refresh to commands not  
requiring a locked DLL  
tRFC (min.) +  
10  
tRFC (min.) +  
10  
tXS  
5
5
tCK  
Exit self-refresh to commands  
requiring a locked DLL  
tXSDLL  
tDLLK (min.)  
tDLLK (min.)  
Auto-refresh to active/auto-refresh  
command time  
tRFC  
90  
90  
ns  
Average periodic refresh interval  
(0°C TC +85°C)  
tREFI  
tREFI  
7.8  
3.9  
7.8  
3.9  
μs  
μs  
(+85°C < TC +95°C)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
43  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
-AC, -AE, -AG  
1066  
-8A, -8C  
800  
Data rate (Mbps)  
Parameter  
Symbol  
tCKE  
min.  
max.  
min.  
max.  
Unit  
ns  
Notes  
27  
CKE minimum pulse width  
(high anlow pulse width)  
5.625  
3
7.5  
3
tCKE  
nCK  
ns  
27  
Eset from KE high to a valid  
mnd  
tXPR  
tRFC(min.)+10 ⎯  
tRFC(min.)+10 ⎯  
27  
tXPR  
tDLLK  
tPD  
5
5
nCK  
nCK  
27  
LL locking time  
512  
512  
Po-down e
tCKE (min.)  
9 × tREFI tCKE (min.)  
9 × tREFI  
15  
2
Exit precharDLL  
frozen to coocked tXPDLL  
DLL  
24  
24  
ns  
XPDLL  
10  
10  
nCK  
ns  
2
Fast exit/active precharge powern  
to any command  
tXP  
7.5  
7.5  
27  
27  
tXP  
3
1
3
1
nCK  
nCK  
Command pass disable/enabllay tCPDED  
Timing of last ACT command to  
tACTPDEN  
1
1
nCK  
nCK  
nCK  
20  
20  
power-down entry  
Timing of last PRE command to  
power-down entry  
tPRPDE
tRDPDEN  
1
Timing of last READ/READA  
command to power-down entry  
RL + 4 1  
RL + 4 + 1  
Timing of last WRIT command to  
power-down entry  
(BL8MRS, BL8OTF, BC4OTF)  
WL + 4 +  
tWR/tCK g)  
WL + 4 +  
tWR/tCK (avg)  
tWRPDEN  
tWRPDEN  
tWRAPDEN  
nCK  
nCK  
nCK  
9
WL + 2 +  
tWR/tCK (avg)  
WL + 2 +  
WR/tCK (avg)  
(BC4MRS)  
9
Timing of last WRITA command to  
power-down entry  
(BL8MRS, BL8OTF, BC4OTF)  
WL + 4 + WR +  
1
L + 4 +  
WR + 1  
10  
WL + 2 + WR +  
1
W+  
(BC4MRS)  
tWRAPDEN  
tREFPDEN  
nCK  
nCK  
10  
Timing of last REF command to  
power-down entry  
1
20, 21  
Timing of last MRS command to  
power-down entry  
tMRSPDEN tMOD (min.)  
tMOD in.)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
44  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
ODT AC Electrical Characteristics [DDR3-1066, 800]  
-AC, -AE, -AG  
-8A, -8C  
800  
Data rate (Mbps)  
Parameter  
1066  
Symbol  
tAON  
min.  
max.  
300  
min.  
max.  
400  
Unit  
ps  
Notes  
7, 12  
RTT turn-on  
–300  
–400  
Asyncus RTT turn-on delay  
(podowith DLL frozen)  
tAONPD  
tAOF  
1
9
1
9
ns  
om and T_WR turn-off  
me fODTLoff reference  
0.3  
0.7  
9
0.3  
0.7  
9
tCK (avg) 8, 12  
ODT turn(power-down mode) tAOFPD  
1
1
ns  
T to power-doit  
tANPD  
laty  
WL – 1.0  
WL – 1.0  
nCK  
ODT turn-on
ODT turn-of
ODTLon  
ODTLoff  
WL – 2.0  
WL – 2.0  
WL – 2.0  
WL – 2.0  
WL – 2.0  
WL – 2.0  
WL – 2.0  
WL – 2.0  
nCK  
nCK  
ODT Latency
RTT_Nom to RT
Lcnw  
WL – 2.0  
WL – 2.0  
WL – 2.0  
WL – 2.0  
nCK  
nCK  
ODT Latency for change from  
RTT_WR to RTT_Nom  
(BC4)  
ODTLcwn4  
4 + ODTLoff  
4 + ODTLoff  
ODT Latency for change from  
RTT_WR to RTT_Nom  
(BL8)  
ODTLcwn8  
6 + ODTLoff  
6 + ODTLoff  
nCK  
ODT high time without WRIT  
command or with WRIT command ODTH4  
and BC4  
6
4
6
nCK  
nCK  
ODT high time with WRIT  
ODTH8  
command and BL8  
RTT dynamic change skew  
tADC  
0.3  
0.3  
0.7  
tCK (avg) 12  
nCK  
Power-up and reset calibration time tZQinit  
512  
512  
Normal operation full calibration  
time  
tZQoper  
tZQCS  
256  
6  
nCK  
nCK  
Normal operation short calibration  
time  
TBD  
Write Leveling Characteristics  
Parameter  
Symbol  
tWLMRD  
min.  
Unit  
CK  
Notes  
3
First DQS pulse rising edge after write  
leveling mode is programmed  
40  
DQS, /DQS delay after write leveling  
mode is programmed  
tWLDQSEN  
tWLS  
25  
nCK  
3
Write leveling setup time from rising CK,  
/CK crossing to rising DQS, /DQS crossing  
0.15  
0.15  
(avg)  
Write leveling hold time from rising DQS,  
/DQS crossing to rising CK, /CK crossing  
tWLH  
tCK (a
Write leveling output delay  
Write leveling output error  
tWLO  
0
0
9
2
ns  
ns  
tWLOE  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
45  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Notes for AC Electrical Characteristics  
Notes: 1. Actual value dependent upon measurement level definitions that are TBD.  
2. Commands requiring locked DLL are: READ (and READA) and synchronous ODT commands.  
3. The max values are system dependent.  
4. WR as programmed in mode register.  
Value must be rounded-up to next integer value.  
. here is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.  
7. Oturn on time (min.) is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT urn on time (max.) is when the ODT resistance is fully on. Both are measured from ODTLon.  
ODT turn-off time (min.) is when the device starts to turn-off ODT resistance. ODT turn-off time (max.) is  
when ths is in high impedance. Both are measured from ODTLoff.  
9. tWns, for calculation of tWRPDEN it is necessary to round up tWR/tCK to the next integer.  
10. as programmed in MR0.  
11. amble is bound by tHZDQS(max.)  
12. atings re relative to the SDRAM input clock. When the device is operated with input  
cloparamneeds to be derated by TBD.  
13. Value is only valid RON34.  
14. Single ended sl parameter. Refer to the section of tLZ (DQS), tLZ (DQ), tHZ (DQS), tHZ (DQ) Notes  
for definition measurement method.  
15. tREFI depends operating case temperature (TC).  
16. tIS(base) and tIH(be) values are for s command/address single-ended slew rate and 2V/ns CK,  
/CK differential slew rate. Note for Dsignals, VREF(DC) = VREFDQ(DC). For input only pins  
except /RESET, VREF(DC) = VRAddress / Command Setup, Hold and Derating section  
17. tDS(base) and tDH(base) vaars DQ single-ended slew rate and 2V/ns DQS, /DQS  
differential slew rate. Note for Q and DM als, VREF(DC) = VREFDQ(DC). For input only pins except  
/RESET, VREF(DC) = VREFCA(DC). See Data Seup, Hold and Slew Rate Derating section.  
18. Start of internal write transaction is definited as
For BL8 (fixed by MRS and on- the-flRising clock edge 4 clock cycles after WL.  
For BC4 (on-the-fly): Rising clock ede 4 clock cafter WL.  
For BC4 (fixed by MRS): Rising clock edge 2 after WL.  
19. The maximum preamble is bound by tLZDQS(max.
20. CKE is allowed to be registered low while operations w activation, precharge, auto precharge or  
refresh are in progress, but power-down IDD spec will not be applinishithose operations.  
21. Although CKE is allowed to be registered low after a refresh coFPDEN(min.) is satisfied,  
there are cases where additional time such as tXPDLL(min.) ed. See Figure Power-Down  
Entry/Exit Clarifications - Case 2.  
22. tJIT(duty) = { 0.07 × tCK(avg) – [(0.5 - (min (tCH(avg), tCL(avg))) × K(avg
For example, if tCH/tCL was 0.48/0.52, tJIT(duty) would calculate out to 1s for DD-800.  
The tCH(avg) and tCL(avg) values listed must not be exceeded.  
23. These parameters are measured from a command/address signal (CKE, /CSS, /CAWE, ODT,  
BA0, A0, A1, etc.) transition edge to its respective clock signal (CK, /CK) crossg. Thec ves are  
not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the up and ld are  
relative to the clock signal crossing that latches the command/address. That is, these arameters shol
be met whether clock jitter is present or not.  
24 These parameters are measured from a data strobe signal ((L/U/T)DQS, /DQS) crossing to its restive  
clock signal (CK, /CK) crossing. The spec values are not affected by the amount of clock jitter apd (i.e.  
tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these pameters  
should be met whether clock jitter is present or not.  
25. These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge  
to its respective data strobe signal ((L/U/T)DQS/DQS) crossing.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
46  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
26. For these parameters, the DDR3 SDRAM device is characterized and verified to support  
tnPARAM [nCK] = RU{tPARAM [ns] / tCK(avg)}, which is in clock cycles, assuming all input clock jitter  
specifications are satisfied.  
For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock  
jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the device will  
support tnRP =RU{tRP / tCK(avg)} = 6, i.e. as long as the input clock jitter specifications are met, prechar  
ge command at Tm and active command at Tm+6 is valid even if (Tm+6 Tm) is less than 15ns due to  
nput clock jitter.  
27. se parameters should be the larger of the two values, analog (ns) and number of clocks (nCK).  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
47  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Clock Jitter [DDR3-1333]  
-DG, -DJ  
1333  
Data rate (Mbps)  
Parameter  
Symbol  
min.  
max.  
3333  
Unit  
ps  
Notes  
Average clock period  
tCK (avg)  
1500  
1
tCK(avg)min +  
tJIT(per)min  
tCK(avg)max+  
tJIT(per)max  
Absck period  
tCK (abs)  
tJIT (per)  
ps  
ps  
ps  
ps  
ps  
2
6
6
7
7
period jitt
80  
70  
80  
Clock pod jitter during DLL locking  
period  
tJIT (per, lck)  
tJIT (cc)  
70  
le to cycle pe
160  
140  
Cyco cycle
during DLL l
tJIT (cc, lck)  
Cumulative
Cumulative eres  
Cumulative error ac4 cycles  
Cumulative error across 5 cy
tERR (2per)  
tERR (3per)  
tERR (4per)  
tERR (5per)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ps  
ps  
ps  
ps  
8
8
8
8
8
Cumulative error across  
n = 6, 7, 8, 9, 10 cycles  
tERR (6-10per)  
TBD  
TBD  
TBD  
ps  
ps  
Cumulative error across  
n = 11, 12,…49, 50 cycles  
8
tERR (11-50pBD  
Average high pulse width  
Average low pulse width  
Duty cycle jitter  
tCH (avg
tCL (
tJIT (duty)  
0  
0.53  
0.53  
60  
tCK (avg)  
tCK (avg)  
ps  
3
4
5
Clock Jitter [DDR3-1066, 800]  
-AC, -AE, G  
-8A, -8C  
Data rate (Mbps)  
Parameter  
1066  
min.  
Symbol  
max
3333  
.  
max.  
3333  
Unit  
ps  
Notes  
1
Average clock period  
tCK (avg)  
1875  
2500  
tCK(avg)min + tCK(avg)max+ tCtCg)max+  
tJIT(per)min tJIT(per)max t(per)max  
Absolute clock period  
tCK (abs)  
ps  
ps  
ps  
ps  
ps  
2
6
6
7
7
Clock period jitter  
tJIT (per)  
90  
80  
90  
90  
100  
Clock period jitter during  
DLL locking period  
tJIT  
(per, lck)  
80  
90  
Cycle to cycle period jitter  
tJIT (cc)  
180  
160  
0  
180  
Cycle to cycle clock period jitter  
during DLL locking period  
tJIT (cc, lck)  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
tERR (2per) TBD  
tERR (3per) TBD  
tERR (4per) TBD  
tERR (5per) TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
s  
ps  
ps  
8
8
8
8
Cumulative error across  
n=6,7,8,9,10 cycles  
tERR  
(6-10per)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ps  
ps  
Cumulative error across  
n=11, 12,…49,50 cycles  
tERR  
(11-50per)  
8
TBD  
Average high pulse width  
Average low pulse width  
Duty cycle jitter  
tCH (avg)  
tCL (avg)  
tJIT (duty)  
0.47  
0.47  
75  
0.53  
0.53  
75  
0.47  
0.47  
100  
0.53  
0.53  
100  
tCK (avg)  
tCK (avg)  
ps  
3
4
5
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
48  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Notes: 1. tCK (avg) is calculated as the average clock period across any consecutive 200cycle window, where each  
clock period is calculated from rising edge to rising edge.  
N
tCK  
N
j
Σ
j = 1  
N = 200  
CK (abs) is the absolute clock period, as measured from one rising edge to the next consecutive rising  
ee. tCK (abs) is not subject to production test.  
3. tCH vg) is defined as the average high pulse width, as calculated across any consecutive 200 high  
pulses.  
N
(N × t  
)
tCH  
CK(avg)  
j
Σ
j = 1  
N = 200  
4. tCed as average low pulse width, as calculated across any consecutive 200 low pulses.  
N
tCL  
(N × t  
)
j
CK(avg)  
Σ
j = 1  
N = 200  
5. tJIT (duty) is defines the cumulative tCH jitter and tCL jitter. tCH jitter is the largest deviation of  
any single tCH from tCH (avg). tthe largest deviation of any single tCL from tCL (avg).  
tJIT (duty) is not subject to produc
tJIT (duty) = Min./Max. of {tJIT ), tJhere:  
tJIT (CH) = {tCHj- tCH (avg) where j = 1 to 200}  
tJIT (CL) = {tCLj- tCL (avg) where j = 1 to 200}  
6. tJIT (per) is defined as the largest deviation of sintCK from tCK (avg).  
tJIT (per) = Min./Max. of { tCKj tCK (avg) re j = 1 to 200}  
tJIT (per) defines the single period jitter when the Dady locked. tJIT (per, lck) uses the same  
definition for single period jitter, during the DLL locnly. tJIT (per) and tJIT (per, lck) are not  
subject to production test.  
7. tJIT (cc) is defined as the absolute difference in clock tween two consecutive clock cycles:  
tJIT (cc) = Max. of {tCKj+1 - tCKj}  
tJIT (cc) is defines the cycle when the DLL is already locked. ses the same definition for  
cycle to cycle jitter, during the DLL locking period only. tJIT T (cc, lck) are not subject to  
production test.  
8. tERR (nper) is defined as the cumulative error across n multiple conscutive es from tCK (avg).  
tERR (nper) is not subject to production test.  
9. These parameters are specified per their average values, however it is nderstthat the following  
relationship between the average timing and the absolute instantaneous timing at all ti
(minimum and maximum of spec values are to be used for calculations in the table belo
Parameter  
Symbol  
min.  
max.  
nit  
Absolute clock period  
tCK (abs) tCK (avg), min. + tJIT (per),min. tCK (avg), max. + tJIT (ax. ps  
Absolute clock high pulse  
width  
tCH (avg), min. × tCK (avg),min. tCH (avg), max. × tCK (avg),max.  
tCH (abs)  
tCL (abs)  
+ tJIT (duty),min.  
tCL (avg), min. × tCK (avg),min. tCL (avg), max. × tCK (avg),max.  
+ tJIT (duty),min. + tJIT (duty),max.  
+ tJIT (duty),max.  
Absolute clock low pulse  
width  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
49  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Block Diagram  
CK  
/CK  
CKE  
Bank 7  
Bank 6  
Bank 5  
Bank 4  
Bank 3  
Bank 2  
Bank 1  
A0 tA12,  
BA0, BA1, B
Row  
address  
Memory cell array  
Bank 0  
buffer  
and  
refresh  
counter  
Mode  
reg
Sense amp.  
Column decoder  
ddr
buffer  
and  
/CS  
/RAS  
/CAS  
/WE  
burst  
counter  
Data control circuit  
h circuit  
DQS, /DQS  
TDQS, /TDQS  
CK, /CK  
DLL  
Input &
ODT  
DM  
DQ  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
50  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Pin Function  
CK, /CK (input pins)  
CK and /CK are differential clock inputs. All address and control input signals are sampled on the crossing of the  
positive edge of CK and negative edge of /CK. Output (read) data is referenced to the crossings of CK and /CK  
(both directions of crossing).  
/CS uin)  
mmanare masked when /CS is registered high. /CS provides for external rank selection on systems with  
ultiranks. CS is considered part of the command code.  
AS, /CAS, /Wpins)  
/R, /CAS with /CS) define the command being entered.  
A0 to A12
Provided thfor actcommands and the column address for read/write commands to select one  
location out of ory arin the respective bank. (A10(AP) and A12(/BC) have additional functions, see  
below) The address inputs arovide the op-code during mode register set commands.  
[Address Pins Table]  
Address (A0 to A12)  
Notes  
Part number  
age size  
1KB  
Raddress (RA)  
12  
Column address (CA)  
AY0 to AY9, AY11  
AY0 to AY9  
EDJ5304BASE  
EDJ5308BASE  
EDJ5316BASE  
2  
2KB  
11  
AY0 to AY9  
A10(AP) (input pin)  
A10 is sampled during read/write commands to detene whether auto precharge should be performed to the  
accessed bank after the read/write operation. (high: ao precharge; w: no auto precharge)  
A10 is sampled during a precharge command to determine whecharge applies to one bank (A10 = low)  
or all banks (A10 = high). If only one bank is to be prechargedelected by bank addresses (BA).  
A12(/BC) (input pin)  
A12 is sampled during read and write commands to determine if burst cho) be performed.  
(A12 = high: no burst chop, A12 = low: burst chopped.) See command tetails.  
BA0 to BA2 (input pins)  
BA0, BA1 and BA2 define to which bank an active, read, write or precharge commis being plied. BA0 and  
BA1 also determine which mode register (MR0 to MR3) is to be accessed during a Mcycle.  
[Bank Select Signal Table]  
BA0  
L
BA1  
L
BA2  
L
Bank 0  
Bank 1  
H
L
L
L
Bank 2  
H
H
L
L
Bank 3  
H
L
L
Bank 4  
H
H
H
H
Bank 5  
H
L
L
Bank 6  
H
H
Bank 7  
H
Remark: H: VIH. L: VIL.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
51  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
CKE (input pin)  
CKE high activates, and CKE low deactivates, internal clock signals and device input buffers and output drivers.  
Taking CKE low provides precharge power-down and self-refresh operation (all banks idle), or active power-down  
(row active in any bank). CKE is asynchronous for self-refresh exit. After VREF has become stable during the  
power-on and initialization sequence, it must be maintained for proper operation of the CKE receiver. For proper  
self-refresh entry and exit, VREF must be maintained to this input. CKE must be maintained high throughout read  
and write accesses. Input buffers, excluding CK, /CK, ODT and CKE are disabled during power-down. Input buffers,  
excluKE, are disabled during self-refresh.  
MU, DMinput pins)  
DM is nput mask signal for write data. Input data is masked when DM is sampled high coincident with that input  
ata during a write access. DM is sampled on both edges of DQS. For ×8 configuration, the function of DM or  
QS, /TDQS y mode register A11 setting in MR1.  
DQ, DQU, pins)  
Bi-direction
DQS, /DQS, DQSU, /DQSU, SL, /DQSL (input/output pins)  
Output with read data, inpith write data. Edge-aligned with read data, center-aligned with write data.  
The data strobe DQS is red with differential signal /DQS to provide differential pair signaling to the system during  
READs and WRITEs.  
TDQS, /TDQS (output pins)  
TDQS and /TDQS is applicable for ×8 confighen enabled via mode register A11 = 1 in MR1, DRAM  
will enable the same termination resistancnS, /TDQS as is applied to DQS, /DQS. When disabled  
via mode register A11 = 0 in MR1, DM/TS will pe data mask function and /TDQS is not used.  
In ×4/×16 configuration, the TDQS function must be disabled via mode register A11 = 0 in MR1.  
/RESET (input pin)  
/RESET is a CMOS rail to rail signal with DC high aow at 80% and 20% of VDD (1.20V for DC high and 0.30V  
for DC low).  
It is negative active signal (active low) and is referred to GNDermination required on this signal. It will  
be heavily loaded across multiple chips. /RESET is destructivents.  
ODT (input pins)  
ODT (registered high) enables termination resistance internal to the DDhen enabled, ODT is only  
applied to each DQ, DQS, /DQS, DM/TDQS, NU(/TDQS) (when TDQS is mode register A11 = 1 in MR1)  
signal for ×4/×8 configuration. For ×16 configuration ODT is applied to each DQSDQSU, DQSL, /DQSL,  
DMU, and DML signal. The ODT pin will be ignored if the mode register (MR1) iprograed to disable ODT.  
ZQ (supply)  
Reference pin for ZQ calibration.  
VDD, VSS, VDDQ, VSSQ (power supply)  
VDD and VSS are power supply pins for internal circuits. VDDQ and VSSQ are power supply s fr the ou
buffers.  
VREFCA, VREFDQ (power supply)  
Reference voltage  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
52  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Command Operation  
Command Truth Table  
The DDR3 SDRAM recognizes the following commands specified by the /CS, /RAS, /CAS, /WE and address pins.  
CKE  
Previous Current  
BA0 to A12  
A10  
(AP)  
Address  
Fun
Symbol cycle  
cycle  
/CS /RAS /CAS /WE BA2  
(/BC)  
Notes  
register
uto-rsh  
MRS  
REF  
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
BA  
V
op-code  
H
H
V
V
V
V
V
V
Self-refresentry  
SELF  
V
6, 8, 11  
6, 7, 8,  
11  
Sefresh ex
SREX  
L
H
H
V
V
V
V
V
V
V
L
H
H
H
H
H
H
H
L
L
L
L
L
L
H
L
H
H
H
H
L
H
L
L
H
L
L
L
V
V
V
L
V
V
V
Single bank
Precharge all b
Bank activate  
RE  
H
H
H
H
H
H
BA  
V
V
PALL  
A
L
V
H
L
BA  
BA  
BA  
BA  
RA  
V
12  
Write (Fixed BL)  
RIT  
WRS4  
S8  
H
H
H
L
L
L
CA  
CA  
CA  
Write (BC4, on the fly)  
Write (BL8, on the fly)  
L
L
L
H
Write with auto precharge  
(Fixed BL)  
WRITA  
WRAS4  
WRAS8  
H
H
H
H
H
H
L
H
H
H
L
L
L
L
L
L
BA  
BA  
BA  
V
L
H
H
H
CA  
CA  
CA  
Write with auto precharge  
(BC4, on the fly)  
Write with auto precharge  
(BL8, on the fly)  
H
Read (Fixed BL)  
READ  
RDS4  
RDS8  
H
H
H
H
H
H
L
L
H
H
L
H
H
BA  
BA  
BA  
V
L
L
L
L
CA  
CA  
CA  
Read (BC4, on the fly)  
Read (BL8, on the fly)  
H
Read with auto precharge  
(Fixed BL)  
READA  
RDAS4  
RDAS8  
H
H
H
H
H
H
L
L
L
H
H
H
L
H
H
BA  
V
L
H
H
H
CA  
CA  
CA  
Read with auto precharge  
(BC4, on the fly)  
Read with auto precharge  
(BL8, on the fly)  
No operation  
NOP  
H
H
H
H
L
H
H
L
L
H
H
L
H
×
H
×
H
×
×
V
×
V
×
V
×
9
Device deselect  
DESL  
PDEN  
10  
Power-down mode entry  
V
H
V
H
H
H
V
H
V
H
H
H
V
H
V
H
L
V
V
V
V
×
V
V
×
V
V
V
H
L
V
V
V
×
5, 11  
L
Power-down mode exit  
PDEX  
H
H
H
H
H
L
5, 11  
L
ZQ calibration long  
ZQ calibration short  
ZQCL  
ZQCS  
H
H
L
L
L
×
×
×
Remark: H = VIH. L = VIL. × = VIH or VIL. V = Valid  
BA = Bank addresses. RA = Row Address. CA = Column Address.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
53  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Notes: 1. All DDR3 commands are defined by states of /CS, /RAS, /CAS, /WE and CKE at the rising edge of the  
clock. The most significant bit (MSB) of BA, RA, and CA are device density and configuration dependent.  
2. /RESET is an active low asynchronous signal that must be driven high during normal operation  
3. Bank Addresses (BA) determine which bank is to be operated upon. For MRS, BA selects an mode  
register.  
4. Burst READs or WRITEs cannot be terminated or interrupted and fixed/on the fly BL will be defined by  
MRS.  
. he power-down mode does not perform any refresh operations.  
6. Tstate of ODT does not affect the states described in this table. The ODT function is not available  
durinself-refresh.  
7Self-refresh exit is asynchronous.  
8. VREF REFDQ and VREFCA) must be maintained during self-refresh operation.  
9. Tcommand (NOP) should be used in cases when the DDR3 SDRAM is in an idle or a  
rpose of the NOP command is to prevent the DDR3 SDRAM from registering any  
ds between operations. A NOP command will not terminate a previous operation that is  
h as a burst read or write cycle.  
10. Thmand orms the same function as a NOP command.  
11. Refer to the CKE h Table for more detail with CKE transition.  
12. No more than anks may be activated in a rolling tFAW window. Converting to clocks is done by  
dividing tFAs) by tCK (ns) and rounding up to next integer value. As an example of the rolling  
window, if (tFACK) rounds up to 10 clocks, and an activate command is issued in clock N, no more  
than three further vate commands me issued in clock N+1 through N+9.  
No Operation Command [NOP]  
The No Operation command (NOP) should be used ases when the DDR3 SDRAM is in an idle or a wait state.  
The purpose of the NOP command is to prevent the DDRSDRAM from registering any unwanted commands  
between operations. A NOP command will not terminate us operation that is still executing, such as a burst  
read or write cycle.  
The no operation (NOP) command is used to instruct the selecDRAM to perform a NOP (/CS low, /RAS,  
/CAS, /WE high). This prevents unwanted commands from bd during idle or wait states. Operations  
already in progress are not affected.  
Device Deselect Command [DESL]  
The deselect function (/CS high) prevents new commands from being exDDR3 SDRAM. The DDR3  
SDRAM is effectively deselected. Operations already in progress are not a
Mode Register Set Command [MR0 to MR3]  
The mode registers are loaded via row address inputs. See mode register descrons in tProgramming the  
Mode Register section. The mode register set command can only be issued wheall nks are idle, and a  
subsequent executable command cannot be issued until tMRD is met.  
Bank Activate Command [ACT]  
This command is used to open (or activate) a row in a particular bank for a subsequent access. Tlues on
BA inputs select the bank, and the address provided on row address inputs selects the row. This row remains tive  
(or open) for accesses until a precharge command is issued to that bank. A precharge command must ssued  
before opening a different row in the same bank.  
Note: No more than 4 banks may be activated in a rolling tFAW window. Converting to clocks is done by dividing  
tFAW (ns) by tCK (ns) and rounding up to next integer value. As an example of the rolling window, if  
(tFAW/tCK) rounds up to 10 clocks, and an activate command is issued in clock N, no more than three further  
activate commands may be issued in clock N+1 through N+9.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
54  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Read Command [READ, RDS4, RDS8, READA, RDAS4, RDAS8]  
The read command is used to initiate a burst read access to an active row. The values on the BA inputs select the  
bank, and the address provided on column address inputs selects the starting column location. The value on input  
A10 determines whether or not auto precharge is used. If auto precharge is selected, the row being accessed will be  
precharged at the end of the read burst; if auto precharge is not selected, the row will remain open for subsequent  
accesses.  
Writmand [WRIT, WRS4, WRS8, WRITA, WRAS4, WRAS8]  
Trite comand is used to initiate a burst write access to an active row. The values on the BA inputs select the  
nnd the dress provided on column address inputs selects the starting column location. The value on input  
A10 demines whether or not auto precharge is used. If auto precharge is selected, the row being accessed will be  
recharged at the end of the write burst; if auto precharge is not selected, the row will remain open for subsequent  
esses. Inpearing on the DQ is written to the memory array subject to the DM input logic level  
appring ce data. If a given DM signal is registered low, the corresponding data will be written to  
memory; if egistered high, the corresponding data inputs will be ignored, and a write will not be  
executed tlocation.  
Precharge CoPRE, PL]  
The precharge command is ed to deactivate the open row in a particular bank or the open row in all banks. The  
bank(s) will be available subsequent row access a specified time (tRP) after the precharge command is issued.  
Input A10 determines wher one or all banks are to be precharged, and in the case where only one bank is to be  
precharged, inputs BA set the bank. Otherwise BA are treated as "Don't Care." Once a bank has been  
precharged, it is in the idle se and must be acd prior to any read or write commands being issued to that  
bank. A precharge command will be treated if there is no open row in that bank (idle state), or if the  
previously open row is already in the process
Auto precharge Command [READA, WRITA]  
Before a new row in an active bank can be opened, the actibank must be precharged using either the precharge  
command or the auto precharge function. When a read ocommand is given to the DDR3 SDRAM, the /CAS  
timing accepts one extra address, column address A10allow the active bank to automatically begin precharge at  
the earliest possible moment during the burst read orite cycle. I10 is low when the read or write command is  
issued, then normal read or write burst operation is executed k remains active at the completion of the  
burst sequence. If A10 is high when the read or write comed, then the auto precharge function is  
engaged. During auto precharge, a read command will execl with the exception that the active bank  
will begin to precharge on the rising edge which is /CAS latencck cycles before the end of the read burst.  
(This timing is equal to the rising edge which is (AL* + BL/2) cycles lthe d with auto precharge  
command.)  
Auto precharge can also be implemented during write commands. The eration engaged by the Auto  
precharge command will not begin until the last data of the burst write sepropestored in the memory  
array.  
This feature allows the precharge operation to be partially or completely hidden durinurst read cles (dependent  
upon /CAS latency) thus improving system performance for random data access. ThRAS lout circuit internally  
delays the Precharge operation until the array restore operation has been completeso the auto precharge  
command may be issued with any read or write command.  
Note: AL (Additive Latency), refer to Posted /CAS description in the Register Definition section.  
Auto-Refresh Command [REF]  
Auto-refresh is used during normal operation of the DDR3 SDRAM and is analogous to /CAS-before-/R(CBR)  
refresh in FPM/EDO DRAM. This command is nonpersistent, so it must be issued each time a refresh is requed.  
The addressing is generated by the internal refresh controller. This makes the address bits a "Don't Care" during an  
auto-refresh command.  
A maximum of eight auto-refresh commands can be posted to any given DDR3, meaning that the maximum absolute  
interval between any auto-refresh command and the next auto-refresh command is 9 × tREFI. This maximum  
absolute interval is to allow DDR3 output drivers and internal terminators to automatically recalibrate compensating  
for voltage and temperature changes.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
55  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Self-Refresh Command [SELF]  
The self-refresh command can be used to retain data in the DDR3, even if the rest of the system is powered down.  
When in the self-refresh mode, the DDR3 retains data without external clocking. The self-refresh command is  
initiated like an auto-refresh command except CKE is disabled (low). The DLL is automatically disabled upon  
entering self-refresh and is automatically enabled and reset upon exiting self-refresh. The active termination is also  
disabled upon entering self-refresh and enabled upon exiting self-refresh. (512 clock cycles must then occur before  
a read command can be issued). Input signals except CKE are "Don't Care" during self-refresh. The procedure for  
exitin-refresh requires a sequence of commands. First, CK and /CK must be stable prior to CKE going back  
higOncKE is high, the DDR3 must have NOP commands issued for tXSDLL because time is required for the  
etion of y internal refresh in progress. A simple algorithm for meeting both refresh, DLL requirements and  
ut-palibration is to apply NOPs for 512 clock cycles before applying any other command to allow the DLL to lock  
and the put drivers to recalibrate.  
ZQ libratiZQCL, ZQCS]  
ZQ calibrart or long) is used to calibrate DRAM RON and ODT values over PVT.  
ZQ Calibr) command is used to perform the initial calibration during power-up initialization  
sequence.  
ZQ Calibration QCS) cmand is used to perform periodic calibrations to account for VT variations.  
All banks must be prechargnd tRP met before ZQCL or ZQCS commands are issued by the controller.  
ZQ calibration commandn also be issued in parallel to DLL lock time when coming out of self-refresh.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
56  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
CKE Truth Table  
CKE  
Previous  
Current  
Command (n)*3  
Current state*2  
Power-down  
cycle (n-1)*1 cycle (n)*1  
/CS, /RAS, /CAS, /WE Operation (n)*3  
Notes  
L
L
H
L
H
L
L
L
L
L
L
×
Maintain power-down  
14, 15  
L
DESL or NOP  
×
Power-down exit  
11, 14  
Seresh  
L
Maintain self-refresh  
Self-refresh exit  
15, 16  
L
DESL or NOP  
DESL or NOP  
DESL or NOP  
DESL or NOP  
DESL or NOP  
DESL or NOP  
DESL or NOP  
REFRESH  
8, 12, 16  
11, 13, 14  
Bank Ac
ading  
H
H
Active power-down entry  
Power-down entry  
11, 13, 14, 17  
11, 13, 14, 17  
Wri
Power-down entry  
11, 13, 14, 17  
Precharging  
Refreshing  
All banks idle  
Power-down entry  
Precharge power-down entry  
Precharge power-down entry  
Self-refresh entry  
11  
11, 13, 14, 18  
9, 13, 18  
Any state other than  
listed above  
H
H
Refer to the Command Truth Table  
10  
Remark: H = VIH. L = VIL. = Don’t care  
Notes: 1. CKE (n) is the logitate of CKE at cdge n; CKE (n1) is the state of CKE at the previous clock  
edge.  
2. Current state is the state of the Dmediately prior to clock edge n.  
3. Command (n) is the commangisterk edge n, and operation (n) is a result of Command (n).  
ODT is not included here.  
4. All states and sequences not shown are illegal eserved unless explicitly described elsewhere in this  
document.  
5. The state of ODT does not affect the stateescribed in this table. The ODT function is not available  
during self-refresh.  
6. CKE must be registered with the same value on tCsecutive positive clock edges. CKE must  
remain at the valid input level the entire time it tae the tCKE (min.) clocks of registration.  
Thus, after any CKE transition, CKE may not transivalid level during the time period of tIS +  
tCKE (min.) + tIH.  
7. DESL and NOP are defined in the Command Truth Table.  
8. On self-refresh exit, DESL or NOP commands must be issuek edge occurring during the  
tXS period. Read or ODT command may be issued only after tXtisfied.  
9. Self-refresh mode can only be entered from the all banks idle state.  
10. Must be a legal command as defined in the Command Truth Table.  
11. Valid commands for power-down entry and exit are NOP and DESL only.  
12. Valid commands for self-refresh exit are NOP and DESL only.  
13. Self-refresh can not be entered while read or write operations, (extended) mode egistet opeions or  
precharge operations are in progress. See section Power-Down and self-refresh Comnd for a tailed  
list of restrictions.  
14. The power-down does not perform any refresh operations.  
15. “×” means “don’t care” (including floating around VREF) in self-refresh and power-down. It also aps to  
address pins.  
16. VREF (Both VREFDQ and VREFCA) must be maintained during self-refresh operation.  
17. If all banks are closed at the conclusion of the read, write or precharge command, the precharge power-  
down is entered, otherwise active power-down is entered.  
18. Idle state means that all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress. CKE  
is high and all timings from previous operation are satisfied (tMRD, tMOD, tRFC, tZQinit, tZQoper, tZQCS,  
etc.) as well as all self-refresh exit and power-down exit parameters are satisfied (tXS, tXP, tXPDLL, etc).  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
57  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Simplified State Diagram  
CKE_L  
MRS, MPR,  
WRITE  
LEVELING  
POWER  
SELF  
REFRESH  
APPLIED  
POWER  
ON  
RESET  
PROCEDURE  
INITIALIZATION  
SELF  
MRS  
SELFX  
ZQCL  
ZQCS  
FM ANY  
STA
RESET  
REF  
ZQ  
REFRESHING  
IDLE  
CALIBRATION  
PDEN  
ACT  
PDEX  
ACTIVE  
POWER  
DOWN  
ACTIVATING  
PRECHARGE  
POWER  
DOWN  
CKE_L  
PDEX  
CKE_L  
PDEN  
WR
BANK  
ACTIVE  
READ  
WRIT  
READ  
READA  
WRI
WRIT  
READ  
WRITING  
READING  
READA  
WRITA  
WRITA  
A  
PRE, PALL  
WRITING  
ING  
PRE, PALL  
PR
PRECHARGING  
Autoic sequence  
mand sequence  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
58  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
RESET and Initialization Procedure  
Power-Up and Initialization Sequence  
1. Apply power (/RESET is recommended to be maintained below 0.2 × VDD, (all other inputs may be undefined). )  
/RESET needs to be maintained for minimum 200μs with stable power. CKE is pulled low anytime before  
/RESET being de-asserted (min. time 10ns). The power voltage ramp time between 300mV to VDD (min.) must  
breater than 200ms; and during the ramp, VDD > VDDQ and (VDD VDDQ) < 0.3V.  
and DQ are driven from a single power converter output  
AND  
The vage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD  
on one ide and must be larger than or equal to VSSQ and VSS on the other side. In addition, VTT is limited to  
.95V max oamp is finished,  
AN
VREF tra
OR  
Apply VDD without any sreversal before or at the same time as VDDQ.  
Apply VDDQ without slope reversal before or at the same time as VTT and VREF.  
The voltage levels on all s other than VDD, VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD  
on one side and must be lar than or equal to VQ and VSS on the other side.  
2. After /RESET is de-asserted, wait for anothuntil CKE become active. During this time, the DRAM will  
start internal state initialization; this will be dently of external clocks.  
3. Clocks (CK, /CK) need to be started astat least 10ns or 5tCK (which is larger) before CKE goes  
active. Since CKE is a synchronous snal, the onding set up time to clock (tIS) must be met. Also a NOP  
or DESL command must be registered (with tIS set up tme to clock) before CKE goes active. Once the CKE  
registered “high” after Reset, CKE needs to be continly registered high until the initialization sequence is  
finished, including expiration of tDLLK and tZQinit.  
4. The DDR3 SDRAM will keep its on-die terminatin high-impedance state during /RESET being asserted at  
least until CKE being registered high. Therefore, the ODT sibe in undefined state until tIS before CKE  
being registered high. After that, the ODT signal must be (low) until the power-up and initialization  
sequence is finished, including expiration of tDLLK and tZQ
5. After CKE being registered high, wait minimum of tXPR, bing the first MRS command to load mode  
register. (tXPR = max. (tXS ; 5 × tCK)  
6. Issue MRS command to load MR2 with all application settings. (To issnd for MR2, provide low to  
BA0 and BA2, high to BA1.)  
7. Issue MRS command to load MR3 with all application settings. (To issue mmanor MR3, provide low to  
BA2, high to BA0 and BA1.)  
8. Issue MRS command to load MR1 with all application settings and DLL ened. (To ue DLL Enable  
command, provide low to A0, high to BA0 and low to BA1 and BA2).  
9. Issue MRS command to load MR0 with all application settings and DLL reset. (To isDLL reset command,  
provide high to A8 and low to BA0 to BA2).  
10.Issue ZQCL command to start ZQ calibration.  
11.Wait for both tDLLK and tZQinit completed.  
12.The DDR3 SDRAM is now ready for normal operation.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
59  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
CK, /CK  
VDD, VDDQ  
ESET  
max. (10 ns; 5tCK)  
200μs  
500μs  
tIS  
10ns  
CK
2
*
tDLLK  
ZQcal  
tXPR  
tIS  
tMRD  
tMRD  
MRS  
MR3  
tMRD  
tMOD  
tZQinit  
Comma
1
MRS  
MR2  
MRS  
MR1  
MRS  
MR0  
*
tIS  
O
DRAM_RTT  
Notes: 1. From time pod" until "Tk", NOP or DESL commands must be  
applied betweMRS and ZQcal commands.  
2. tXPR = max. (tXtCK)  
: VIH or VIL  
Ret and Initializatiequence at Power-On Ramping  
Reset and Initialization with Stable Power  
The following sequence is required for /RET at interruption initialization.  
1. Assert /RESET below 0.2 × VDD anytime when reset is needed (all other inputs may be undefined). /RESET  
needs to be maintained for minimum 100ns. CKE is pullow before /RESET being de-asserted (minimum time  
10ns).  
2. Follow Power-Up Initialization Sequence steps 2 t.  
3. The reset sequence is now completed; DDR3 SDRAM is reamal operation.  
Ta  
Tb  
Tc  
Td  
Te  
Th  
Ti  
Tj  
Tk  
CK, /CK  
VDD, VDDQ  
/RESET  
max. (10 ns; 5tCK)  
100ns  
500μs  
tIS  
10ns  
CKE  
2
*
tDLL
ZQCL  
tXPR  
tIS  
tMRD  
tMRD  
MRS  
MR3  
tMRD  
tMOD  
tZt  
Command  
BA  
1
MRS  
MR2  
MRS  
MR1  
MRS  
MR0  
*
tIS  
ODT  
DRAM_RTT  
Notes: 1. From time point "Td" until"Tk", NOP or DESL commands must be  
applied between MRS and ZQCL commands.  
2. tXPR = max. (tXS; 5tCK)  
: VIH or VIL  
Reset Procedure at Power Stable Condition  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
60  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Programming the Mode Register  
For application flexibility, various functions, features and modes are programmable in four mode registers, provided  
by the DDR3 SDRAM, as user defined variables, and they must be programmed via a Mode Register Set (MRS)  
command. As the default values of the Mode Registers (MR#) are not defined, content of mode registers must be  
fully initialized and/or re-initialized, i.e. written, after Power-up and/or reset for proper operation. Also the contents of  
the mode registers can be altered by re-executing the MRS command during normal operation. When programming  
the megisters, even if the user chooses to modify only a sub-set of the MRS fields, all address fields within the  
aced de register must be redefined when the MRS command is issued. MRS command and DLL Reset  
not affearray contents, which means these commands can be executed any time after power-up without  
ffectthe array contents.  
The modregister set command cycle time, tMRD is required to complete the write operation to the mode register  
d is the minimrequired between two MRS commands. The MRS command to non-MRS command delay,  
tMD, is reqRAM to update the features except DLL reset and is the minimum time required from an  
MRS commS command excluding NOP and DESL. The mode register contents can be changed  
using the stiming requirements during normal operation as long as the DRAM is in idle state, i.e.  
all banks aed state with tRP satisfied, all data bursts are completed and CKE is already high prior  
to writing intgister. e mode registers are divided into various fields depending on the functionality  
and/or modes.  
Mode Register Set Comd Cycle Time (tMRD)  
tMRD is the minimum tirequired from an MRS command to the next MRS command. As DLL enable and DLL  
reset are both MRS commas, tMRD is applicable etween MRS to MR1 for DLL enable and MRS to MR0 for DLL  
reset, and not tMOD.  
/CK  
CK  
Command  
MRS  
NOP  
MRS  
NOP  
tMRD  
tMRD Timi
MRS Command to Non-MRS Command Delay (tMOD)  
tMOD is the minimum time required from an MRS command to a non-MRnd luding NOP and DESL.  
Note that additional restrictions may apply, for example, MRS to MR0 for d by read.  
/CK  
CK  
Command  
MRS  
NOP  
non-MRS  
NOP  
tMOD  
Old  
setting  
Updating  
New Settin
tMOD Timing  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
61  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
DDR3 SDRAM Mode Register 0 [MR0]  
The mode register MR0 stores the data for controlling various operating modes of DDR3 SDRAM.  
It controls burst length, read burst type, /CAS latency, test mode, DLL reset, WR and DLL control for precharge  
power-down, which include various vendor specific options to make DDR3 SDRAM useful for various applications.  
The mode register is written by asserting low on /CS, /RAS, /CAS, /WE, BA0 and BA1, while controlling the states of  
address pins according to the table below.  
BA2 BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address field  
0*1  
0
0
PPD  
WR  
DLL TM /CAS latency RBT CL  
BL  
Mode register 0  
Burst length  
set  
A7  
0
Mode  
Normal  
Test  
A3 Read burst type  
A1  
0
BL  
8 (Fixed)  
A0  
0
0
1
Nibble sequential  
Interleave  
1
0
4 or 8 (on the fly)  
4 (Fixed)  
1
BA1 BA0  
1
0
0
0
1
1
0
1
0
1
1
Reserved  
1
Write recovery for autoprecharge  
/CAS latency  
MR
A11 A10 A9  
WR  
A6  
0
A5  
0
A4  
0
A2  
Latency  
MR2  
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
0
1
Reserved  
0
0
0
0
0
0
0
0
Reserved  
MR3  
2
5*  
6*  
7*  
0
0
1
5
2
2
2
0
1
0
6
A12 DLL Control for Prece PD  
0
1
1
7
0
1
Slow exit (DLL off)  
Fast exit (DLL on)  
1
0
0
8
1
0
1
9
10  
1
1
0
rved  
1
1
1
Reserved  
Notes: 1. BA2 is reserved for future use and must be programmed tduring MRS.  
2. WR (min.) (Write Recovery for autoprecharge) is deterK (max.) and WR (max.) is determined by tCK (min.).  
WR in clock cycles is calculated by dividing tWR (in y tCK (in ns) and rounding up to the next integer  
(WR (min.) [cycles] = roundup tWR (ns) / tCK (ns
(The WR value in the mode register must be programmed to be ger than WR (min.)  
This is also used with tRP to determine tDAL.  
MR0 Program
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
62  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
DDR3 SDRAM Mode Register 1 [MR1]  
The Mode Register MR1 stores the data for enabling or disabling the DLL, output driver strength, RTT_Nom  
impedance, additive latency, write leveling enable, TDQS enable and Qoff. The Mode Register 1 is written by  
asserting low on /CS, /RAS, /CAS, /WE, high on BA0 and low on BA1, while controlling the states of address pins  
according to the table below  
A2 BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address field  
0*1  
1
0*1  
0*1 Level Rtt_Nom D.I.C  
AL  
D.I.C DLL  
Mode register 1  
Rtt_Nom  
Rtt_Nom  
Qoff  
TDQS  
TDQS enable  
RTT_Nom*5  
ODT Disabled  
RZQ/4  
A9 A6 A2  
Disabled  
Enaled  
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
A0  
DLL enable  
Enable  
0
1
RZQ/2  
Disable  
RZQ/6  
4
RZQ/12  
*
Write eling enable  
Diled  
A7  
4
RZQ/8  
*
0
1
Reserved  
Reserved  
Enabled  
Output driver  
Qoff  
Output buffers enabled  
A12  
0
A5  
0
A1  
0
impedance control  
Reserved for RZQ/6  
RZQ/7  
A3  
0
A4  
0
Adve Latency  
AL abled)  
CL-1  
2
Output buffers disabled  
*
1
0
1
1
0
1
0
RZQ/TBD  
0
1
1
1
RZQ/TBD  
1
1
R
Notes: 1. BA2, A8 and A10 are reserved for future use (RFUd mugramed to 0 during MRS.  
2. Outputs disabled - DQ, DQS, /DQS.  
3. RZQ = 240Ω  
4. If RTT_Nom is used during writes, only the values RZQ/2d RAQ/6 are allowed.  
5. In Write leveling Mode (MR1[bit7] = 1) with MR1[bit12]=1, all Nom sngs are allowed;  
in Write Leveling Mode (MR1[bit7] =1) with MR1[bit12]=0, only RTT_Nsettings of RZQ/2,  
RZQ/4 and RZQ/6 are allowed  
MR1 Programming  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
63  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
DDR3 SDRAM Mode Register 2 [MR2]  
The Mode Register MR2 stores the data for controlling refresh related features, RTT_WR impedance and /CAS write  
latency (CWL). The Mode Register 2 is written by asserting low on /CS, /RAS, /CAS, /WE, high on BA1 and low on  
BA0, while con-trolling the states of address pins according to the table below.  
Address field  
BA2 BA1 BA0 A12 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0*1  
1
0
Mode register 2  
0*1  
Rtt_WR  
0*1 SRT ASR  
CWL  
PASR* 2  
A7  
Self-refresh range  
Normal self-refresh  
Partial array self-refresh  
A2 A1 A0  
Refresh array  
xtend temperture  
self-refresh  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Full  
(Optional)  
(BA [2:0]  
(BA [2:0]  
(BA [2:0]  
(BA [2:0]  
(BA [2:0]  
(BA [2:0]  
(BA [2:0]  
=
=
=
=
=
=
=
000, 001, 010, 011)  
000, 001)  
Half  
: Bank 0 to Bank 3  
Quarter: Bank 0 and Bank 1  
000)  
1/8  
3/4  
Half  
: Bank 0  
A6 Aelf-refresh method  
010, 011, 100, 101,110 ,111)  
100, 101, 110, 111)  
110, 111)  
: Bank 2 to Bank 7  
: Bank 4 to Bank 7  
anual SR reference  
0
(SRT)  
ASR enable  
Quarter: Bank 6 and Bank 7  
1/8 : Bank 7  
(Optional)  
111)  
A5  
0
A4  
0
A3  
CAS write Latency (CWL)  
5 (tCK 2.5ns)  
A10 A9  
Rtt_WR  
0
0
Dynamic ODT off (write dos not  
affect Rtt value)  
0
0
(2.5ns > tCK 1.875ns)  
875ns > tCK 1.5ns)  
5ns > tCK 1.25ns)  
Reserved  
0
0
1
1
1
0
1
RZQ/4  
RZQ/2  
0
0
Reserved  
1
0
1
Reserved  
1
1
0
Reserved  
1
1
1
rved  
Notes: 1. BA2 is RFU and must be programmed to 0 during MRS.  
2. Optiona in DDR3 SDRAM: If PASR (Partial Array Self-Refreshlocated in areas of the array beyond  
the specified address range will be lost if self-refresh is enterell be maintained if tREF conditions are  
met and no self-refresh command is issued.  
MR2 Programm
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
64  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
DDR3 SDRAM Mode Register 3 [MR3]  
The Mode Register MR3 controls Multi Purpose Registers (MPR). The Mode Register 3 is written by asserting low  
on /CS, /RAS, /CAS, /WE, high on BA1 and BA0, while controlling the states of address pins according to the table  
below.  
Address field  
BA2 BA1 BA0 A12 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Mode register 3  
0*1  
0
1
MPR MPR Loc  
MPR Address  
A1 A0  
MPR location  
2
MPR Operation  
A2  
0
0
1
1
0
1
0
1
Predefined pattern*  
MPR  
RFU  
RFU  
RFU  
3
Normal operation  
*
0
1
Data flow from MPR  
Notes : 1. BA2,oA12 are reserved for future use (RFU) and must be programmed to 0 during MRS.  
2. The predned pattern will be used for read synchronization.  
3 . When MPR ntrol is set for normaeration, MR3 A[2]=0, MR3 A[1:0] will be ignored.  
ramming  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
65  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Burst Length (MR0)  
Read and write accesses to the DDR3 are burst oriented, with the burst length being programmable, as shown in the  
figure MR0 Programming. The burst length determines the maximum number of column locations that can be  
accessed for a given read or write command. Burst length options include fixed BC4, fixed BL8, and on the fly which  
allows BC4 or BL8 to be selected coincident with the registration of a read on write command Via A12 (/BC).  
Reserved states should not be used, as unknown operation or incompatibility with future versions may result.  
Chop  
n casf burst length being fixed to 4 by MR0 setting, the internal write operation starts two clock cycles earlier than  
for the Bmode. This means that the starting point for tWR and tWTR will be pulled in by two clocks. In case of  
rst length beined on the fly via A12(/BC), the internal write operation starts at the same point in time like a  
buof 8 wrhis means that during on-the-fly control, the starting point for tWR and tWTR will not be  
pulled in by
Burst Type
[Burst Length and Sequen
Starting address  
(A2, A1, A0)  
Sequential addressing  
(decimal)  
Interleave addressing  
(decimal)  
Burst length  
Operat
READ  
4 (burst chop)  
000  
001  
010  
0
100  
101  
110  
111  
0VV  
1VV  
000  
001  
010  
011  
100  
101  
110  
111  
VVV  
0, 1, 2, 3, T, T, T, T  
1, 2, 3, 0, T, T, T, T  
2, 3, 0, 1, T, T, T, T  
3, 0, 1, 2, T, T, T, T  
4, 5, 6, 7, T, T, T, T  
5, 6, 7, 4, T, T, T, T  
64, 5, T, T, T, T  
7, 4, 5, 6, T, T, T, T  
X, X, X  
, X, X  
5, 6, 7  
1, 2, 3, 0, 5, 6
2, 3, 0, 1, 6
3, 0, 1, 2, 7,
4, 5, 6, 7, 0, 1, 2,
5, 6, 7, 4, 1, 2, 3, 0  
6, 7, 4, 5, 2, 3, 0, 1  
7, 4, 5, 6, 3, 0, 1, 2  
0, 1, 2, 3, 4, 5, 6, 7  
0, 1, 2, 3, T, T, T, T  
1, 0, 3, 2, T, T, T, T  
2, 3, 0, 1, T, T, T, T  
3, 2, 1, 0, T, T, T, T  
4, 5, 6, 7, T, T, T, T  
5, 4, 7, 6, T, T, T, T  
6, 7, 4, 5, T, T, T, T  
7, 6, 5, 4, T, T, T, T  
0, 1, 2, 3, X, X, X, X  
4, 5, 6, 7, X, X, X, X  
0, 1, 2, 3, 4, 5, 6, 7  
0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, , 1, 0, 7, 6, 5, 4  
5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 0, 3, 2  
6, 7, , 2, 3, 0, 1  
5, 4, 3
0, 1, 2, 5, 6, 7  
WRITE  
READ  
8
WRITE  
Remark: T: Output driver for data and strobes are in high impedance.  
V: a valid logic level (0 or 1), but respective buffer input ignores level on input pins.  
X: Don’t Care.  
Notes: 1. Page length is a function of I/O organization and column addressing  
2. 0...7 bit number is value of CA [2:0] that causes this bit to be the first read during a burst.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
66  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
DLL Enable (MR1)  
The DLL must be enabled for normal operation. DLL enable is required during power-up initialization, and upon  
returning to normal operation after having the DLL disabled. The DLL is automatically disabled when entering self-  
refresh operation and is automatically re-enabled upon exit of self-refresh operation. Any time the DLL is enabled  
and subsequently reset, tDLLK clock cycles must occur before a read or synchronous ODT command can be issued  
to allow time for the internal clock to be synchronized with the external clock. Failing to wait for synchronization to  
occur result in a violation of the tDQSCK, tAON or tAOF parameters. During tDLLK, CKE must continuously be  
regred h.  
DDR3 RAM does not require DLL for any write operation. DDR3 does not require DLL to be locked prior to any  
write opetion. DDR3 requires DLL to be locked only for read operation and to achieve synchronous ODT timing.  
DDisable
DDR3 DLLd by setting MR1 bit A0 to 1; this will disable the DLL for subsequent operations until  
A0 bit set A0 bit for DLL control can be switched either during initialization or later.  
The DLL-off s listeelow are an optional feature for DDR3. The maximum clock frequency for DLL-  
off mode is 12re is ninimum frequency limit besides the need to satisfy the refresh interval, tREFI.  
Due to latency counter and ng restrictions, only one value of /CAS Latency (CL) in MR0 and CAS Write Latency  
(CWL) in MR2 are suppoThe DLL-off mode is only required to support setting of both CL = 6 and CWL = 6.  
DLL-off mode will affect Read data Clock to Data Strobe relationship (tDQSCK) but not the Data Strobe to Data  
relationship (tDQSQ, tQH, HS). Special attention is needed to line up Read data to controller time domain.  
Comparing with DLL-on modwhere tDQSCK srom the rising clock edge (AL + CL) cycles after the Read  
command, the DLL-off mode tDQSCK starts (Acycles after the read command. Another difference is that  
tDQSCK may not be small compared to tCK e larger than tCK) and the difference between tDQSCK  
(min.). and tDQSCK (max.) is significantly er -on mode.  
The timing relations on DLL-off mode READ operatioshown at following Timing Diagram (CL = 6, BL8):  
T0  
T1  
T2  
T3  
T5  
T6  
T7  
T8  
T9  
CK, /CK  
Command  
READ  
A
BA  
DQSdiff_DLL-on  
RL = AL + CL = 6 (CL = 6, AL = 0)  
CL = 6  
DQ_DLL-on  
A0 CA1 2 CA3 CA4 CA5 CA6 CA7  
RL (DLL-off) = AL + (CL - 1) = 5  
tDQSCK(DLLf)_m
DQSdiff_DLL-off  
DQ_DLL-off  
CA0 CA1 CA2 CA3 CA4 5 CA6 CA7  
tDQSCK(DLL-off)_max  
DQSdiff_DLL-off  
DQ_DLL-off  
CA0 CA1 CA2 CA3 CA4 CA5 CA6 CA7  
DLL-Off Mode Read Timing Operation  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
67  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Switch from DLL “on” to DLL “off” and Required Frequency Change During Self-Refresh  
1. Starting from Idle state (all banks pre-charged, all timings fulfilled, and DRAMs On-die Termination resistors,  
RTT, must be in high impedance state before MRS to MR1 to disable the DLL.)  
2. Set MR1 Bit A0 to “1” to disable the DLL.  
3. Wait tMOD.  
4. Eelf-Refresh Mode; wait until (tCKSRE) satisfied.  
5ange quency, in guidance with Input Clock Frequency Change during Precharge Power-Down section.  
t until a table clock is available for at least (tCKSRX) at DRAM inputs. After stable clock, wait tCKSRX  
befissuing SRX commnad.  
. Starting with tSelf-refresh exit command, ODT must continuously be registered low and CKE must  
ontinuoused high until all tMOD timings from any MRS command are satisfied.  
8. ait tXRegisters with appropriate values (especially an update of CL, CWL and WR may be  
necessand may also be issued after tXS).  
9. Wait for M is ready for next command.  
Tb  
Tc Tc+1Tc+2  
Td  
Te  
Tf Tf+1 Tf+2  
Tg Tg+1  
Th  
CK  
/CK  
tMOD  
tCKSRE  
tCKSRX  
tXS  
tMOD  
MRS  
SRE N
SRX  
MRS  
Valid  
Command  
CKE  
KESR  
ODT  
Cange Frequ
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
68  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Switch from DLL “off” to DLL “on” (with required frequency change) During Self-Refresh  
1. Starting from Idle state (all banks pre-charged, all timings fulfilled and DRAMs On-die Termination resistors (RTT)  
must be in high impedance state before Self-Refresh mode is entered.)  
2. Enter Self-refresh Mode, wait until tCKSRE satisfied.  
3. Change frequency, in guidance with Input Clock Frequency Change during Precharge Power-Down section.  
4. Wil a stable clock is available for at least (tCKSRX) at DRAM inputs.  
5arting th the self-refresh exit command, ODT must continuously be registered low and CKE must  
tinuousbe registered high until all tDLLK timing from subsequent DLL Reset command is satisfied.  
6. WaS, then set MR1 bit A0 to “0” to enable the DLL.  
. Wait tMRD, thet MR0 bit A8 to “1” to start DLL Reset.  
8Wait tMRMode Registers with appropriate values (especially an update of CL, CWL and WR may  
bneceD is satisfied from any proceeding MRS command, a ZQCL command may also be  
issued K.)  
9. Wait foDRAM is ready for next command (remember to wait tDLLK after DLL Reset before  
applying uiring cked DLL!). In addition, wait also for tZQoper in case a ZQCL command was  
issued.  
Ta  
Tc Tc+1Tc+2  
Td  
Te  
Tf Tf+1Tf+2  
Tg  
CK  
/CK  
tCKSRE  
tCKSRX  
tDLLK  
MRS  
tXS  
tMRD tMRD  
SRE N
SRX  
MRS  
MRS  
Valid  
Command  
CKE  
ODTLoff + 1x
ODT  
Change Freque
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
69  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Additive Latency (MR1)  
A posted /CAS read or write command when issued is held for the time of the Additive Latency (AL) before it is  
issued inside the device. The read or write posted /CAS command may be issued with or without auto precharge.  
The Read Latency (RL) is controlled by the sum of AL and the /CAS latency (CL).  
The value of AL is also added to compute the overall Write Latency (WL).  
MR) bA4 and A3 are used to enable Additive latency.  
A4  
A3  
0
AL*  
0 (posted CAS disabled)  
CL 1  
0
1
1
0
CL 2  
1
1
Reserved  
Note: AL haL 1 oL 2 as per the CL value programmed in the /CAS latency MRS setting.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
70  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Write Leveling (MR1)  
For better signal integrity, DDR3 memory module adopts fly by topology for the commands, addresses, control  
signals and clocks. The fly by topology has benefits for reducing number of stubs and their length but in other  
aspect, causes flight time skew between clock and strobe at every DRAM on DIMM. It makes Controller hard to  
maintain tDQSS, tDSS and tDSH specification. Therefore, the controller should support ’write leveling’ in DDR3  
SDRAM to compensate the skew.  
Wlevelis a scheme to adjust DQS to CK relationship by the controller, with a simple feedback provided by the  
. The mory controller involved in the leveling must have adjustable delay setting on DQS to align the rising  
edge QS with that of the clock at the DRAM pin. DRAM asynchronously feeds back CK, sampled with the rising  
edge of S, through the DQ bus. The controller repeatedly delays DQS until a transition from 0 to 1 is detected.  
e DQS delay ed through this exercise would ensure tDQSS, tDSS and tDSH specification. A conceptual  
timof this wn as below.  
Destination  
diock  
iff_DQS  
DQ  
X
0
Push DQS to  
capture 0-1 transition  
DQ  
X
1
Wrig concept  
DQS, /DQS driven by the controller during leveling mode must be terminated by the DRAM, based on the ranks  
populated. Similarly, the DQ bus driven by the DRAM muso be terminated at the controller.  
One or more data bits should carry the leveling feedbto the controller across the DRAM configurations ×4, ×8  
and ×16. On a ×16 device, both byte lanes should e levelized independently. Therefore, a separate feedback  
mechanism should be available for each byte lane. The upper should provide the feedback of the upper  
diff_DQS (diff_DQSU) to clock relationship whereas the its would indicate the lower diff_DQS  
(diff_DQSL) to clock relationship.  
DRAM Setting for Write Leveling and DRAM Termination Function in
DRAM enters into Write leveling mode if A7 in MR1 set 1. And after ing, DRAM exits from write  
leveling mode if A7 in MR1 set 0 (MR1 Setting Involved in the Leveling Proe).  
Note that in write leveling mode, only DQS/DQS terminations are activated adeactid via ODT pin, not like  
normal operation (refer to the DRAM Termination Function in The Leveling Mode table
[MR1 Setting Involved in the Leveling Procedure]  
Function  
MR1 bit  
A7  
Enable  
Disable  
e  
1
Write leveling enable  
Output buffer mode (Qoff)  
1
0
0
1
A12  
Note: 1. Output buffer mode definition is consistent with DDR2  
[DRAM Termination Function in The Leveling Mode]  
ODT pin@DRAM  
De-asserted  
Asserted  
DQS, /DQS termination  
DQs termination  
Off  
On  
Off  
Off  
Note: In Write Leveling Mode with its output buffer disabled (MR1 [bit7] = 1 with MR1 [bit12] = 1) all RTT_Nom  
settings are allowed; in Write Leveling Mode with its output buffer enabled (MR1 [bit7] = 1 with MR1 [bit12] =  
0) only RTT_Nom settings of RZQ/2, RZQ/4 and RZQ/6 are allowed.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
71  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Write Leveling Procedure  
Memory controller initiates Leveling mode of all DRAMs by setting bit 7 of MR1 to 1. Since the controller levelizes  
rank at a time, the output of other rank must be disabled by setting MR1 bit A12 to 1. Controller may assert ODT  
after tMOD, time at which DRAM is ready to accept the ODT signal.  
Controller may drive DQS low and /DQS high after a delay of tWLDQSEN, at which time DRAM has applied on-die  
terminn on these signals. After tWLMRD, controller provides a single DQS, /DQS edge which is used by the  
DRto ple CK driven from controller. tWLMRD timing is controller dependent.  
samplCK status with rising edge of DQS and provides feedback on all the DQ bits asynchronously after  
WLO ming. There is a DQ output uncertainty of tWLOE defined to allow mismatch on DQ bits; there are no read  
strobes QS, /DQS) needed for these DQs. Controller samples incoming DQ and decides to increment or  
crement DQS setting and launches the next DQS, /DQS pulse after some time, which is controller  
dndent.  
Once a 0 tetected, the controller locks DQS delay setting and write leveling is achieved for the  
device. Thcribes detailed timing diagram for overall procedure and the timing parameters are  
shown in b
T2  
T1  
tWLS  
tWLS  
tWLH  
tWLH  
NOP  
5
*
CK  
/CK  
2
3
4
2
3
*
*
*
Command MRS  
NO
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tMOD  
6
*
ODT  
tDQSH (min.)  
tDH (min.) tDQSL (min.)  
tWLDQSEN  
diff_DQS*4  
tWLOE  
tW
tWLMRD  
tWLO  
All DQs,  
Prime DQ*1  
Remaining  
DQs  
Notes:1. DRAM has the option to drive leveling feedback on a prime all Dback idriven only on one DQ,  
the remaining DQs must be driven low as shown in above Figure, and at state through out  
the leveling procedure.  
2. MRS : Load MR1 to enter write leveling mode.  
3. NOP : NOP or deselec  
4. diff_DQS is the differential data strobe (DQS, /DQS). Timing reference poire the crossing. DQS is  
shown with solid line, /DQS is shown with dotted line.  
5. CK, /CK : CK is shown with solid dark line, where as /CK is drawn with dotted line
6. DQS needs to fulfill minimum pulse width requirements tDQSH (min.) and tDQSL n.) as ded for regular  
writes; the max pulse width is system dependent.  
Timing Details Write leveling Sequence  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
72  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Write Leveling Mode Exit  
The following sequence describes how Write Leveling Mode should be exited:  
1. After the last rising strobe (see T111) edge stop driving the strobe signals (see ~T128). Note: From now on, DQ  
pins are in undefined driving mode, and will remain undefined, until tMOD after the respective MR command  
(T145).  
2. Drive ODT pin low (tIS must be satisfied) and keep it low (see T128).  
3. Ae RTT is switched off: disable Write Level Mode via MR command (see T132).  
4. er tMis satisfied (T145), any valid commands may be registered. (MR commands may already be issued  
er tMRD 136).  
T111  
T112  
T116  
T117  
T128 T131  
T132  
T136  
T145  
CK, /CK  
Com
WL_off  
1
MRS  
Valid  
tMOD  
Valid  
VVaalidlid  
tIS  
tMRD  
ODT  
tODTL_off  
RTT_DQS-/DQS  
DQS-/DQS  
RTT_DQ  
tWLO + tWLOE  
DQ  
Result = 1  
Timing Details ite leeling Exit  
[Related Parameters]  
Symbol  
Parameter  
min.  
40  
max.  
Unit  
First DQS pulse rising edge after write leveling mode i
programmed  
1
1
tWLMRD  
tWLDQSEN  
tWLS  
*
*
tCK  
tCK  
tCK  
DQS, /DQS delay after write leveling mode is programmed  
Write leveling setup time from rising CK, /CK crossing to rising  
DQS, /DQS crossing  
Write leveling hold time from rising DQS, /DQS crossing to rising  
CK, /CK crossing  
tWLH  
0.15  
*
tCK  
tWLO  
Write leveling output delay  
Write leveling output error  
0
10  
2
ns  
ns  
tWLOE  
Note: 1. The max values are system dependent.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
73  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
TDQS, /TDQS function (MR1)  
TDQS (Termination Data Strobe) is a feature of ×8 DDR3 SDRAM that provides additional termination resistance  
outputs that may be useful in some system configurations.  
TDQS is not supported in ×4 or ×16 configurations. When enabled via the mode register, the same termination  
resistance function is applied to the TDQS and /TDQS pins that are applied to the DQS and /DQS pins.  
In contst to the RDQS function of DDR2 SDRAM, TDQS provides the termination resistance function only. The  
data function of RDQS is not provided by TDQS.  
TDQS DM functions share the same pin. When the TDQS function is enabled via the mode register, the DM  
ncn is not pported. When the TDQS function is disabled, the DM function is provided and the /TDQS pin is  
not useSee Table TDQS, /TDQS function for details.  
he TDQS function is available in ×8 DDR3 SDRAM only and must be disabled via the mode register A11 = 0 in  
1 for ×4 anurations.  
[TDQS, /TD
A11@MR1  
TDQS enable  
Disable  
0
1
Enable  
Notes: 1. If TDQS is enabthe DM function is disabled.  
2. When not usTDQS function can be disabled to save termination power  
3. TDQS function nly available for ×8 DRAM and must be disabled for ×4 and ×16  
[Function matrix]  
A11@MR1 (TDQS enable)  
DM/T
D
NU/ /TDQS  
High-Z  
0
1
DQS  
/TDQS  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
74  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Extended Temperature Usage (MR2)  
[Mode Register Description]  
Field Bits Description  
Description  
Auto self-refresh (ASR) (Optional)  
when enabled, DDR3 SDRAM automatically  
provides self-refresh power management functions  
for all supported operating temperature values. If  
not enabled, the SRT bit must be programmed to  
indicate TC during subsequent self-refresh  
operation  
0
Manual SR Reference (SRT)  
ASR enable (optional)  
ASR  
SR
6  
A7  
Self-Refresh Temperature (SRT) Range  
If ASR = 0, the SRT bit must be programmed to  
indicate TC during subsequent self-refresh  
operation  
0
l operating temperature range  
d (optional) operating temperature range  
If ASR = 1, SRT bit must be set to 0  
Auto Self-Re- ASR de (optional)  
DDR3 SDRAM provides an o Self-Refresh mode (ASR) for application ease. ASR mode is enabled by setting  
MR2 bit A6 = 1 and MR2 A7 = 0. The DRAM will manage self-refresh entry in either the Normal or Extended  
(optional) Temperature ges. In this mode, the DRAM will also manage self-refresh power consumption when the  
DRAM operating temperae changes, lower at low temperatures and higher at high temperatures.  
If the ASR option is not suppd by the DRAM, Mbit A6 must be set to 0.  
If the ASR mode is not enabled (MR2 bit A6 = RT bit (MR2 A7) must be manually programmed with the  
operating temperature range required during ration.  
Support of the ASR option does not automallort of the Extended Temperature Range.  
Self- Refresh Temperature Range - SRT (optional)  
If ASR = 0, the Self-Refresh Temperature (SRT) Range mbe programmed to guarantee proper self-refresh  
operation. If SRT = 0, then the DRAM will set an appriate refresh rate for self-refresh operation in the Normal  
Temperature Range. If SRT = 1 then the DRAM wiset an appte, potentially different, refresh rate to allow  
self-refresh operation in either the Normal or Extended Tempges. The value of the SRT bit can effect  
self-refresh power consumption, please refer to the IDD table
For parts that do not support the Extended Temperature Rang7 must be set to 0 and the DRAM should  
not be operated outside the Normal Temperature Range.  
[Self-Refresh Mode Summary]  
MR2  
ed openg temperature range  
A6  
0
A7  
0
Self-refresh operation  
r self-reh mode  
Self-refresh rate appropriate for the Normal Temperature Range  
Norm°C to +85
Self-refresh rate appropriate for either the Normal or Extended  
Temperature Ranges. The DRAM must support Extended  
Temperature Range. The value of the SRT bit can effect self-  
refresh power consumption, please refer to the Self- refresh  
Current for details.  
0
1
1
0
Normal and tended to 5°C)  
ASR enabled (for devices supporting ASR and Normal  
Temperature Range). Self-refresh power consumption is  
temperature dependent  
Normal (0°C to +85°C)  
ASR enabled (for devices supporting ASR and Extended  
Temperature Range). Self-refresh power consumption is  
temperature dependent  
1
1
0
1
Normal and Extended (0°C to +°C)  
Illegal  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
75  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Multi Purpose Register (MR3)  
The Multi Purpose Register (MPR) function is used to read out predefined system timing calibration bit sequence.  
ConceptuaBlock Diof Multi Purpose Register  
To enable the MPR, a mode register set (MRS) commamuse issued to MR3 register with bit A2 = 1. Prior to  
issuing the MRS command, all banks must be in the state (all banks precharged and tRP/tRPA met). Once the  
MPR is enabled, any subsequent READ or READA commands edirected to the multi purpose register. The  
resulting operation when a READ or READA command is issd by MR3 bits [A1: A0] when the MPR is  
enabled. When the MPR is enabled, only READ or REAs are allowed until a subsequent MRS  
command is issued with the MPR disabled (MR3 bit A2=0). mode, self-refresh, and any other non-  
READ/READA command are not allowed during MPR enable moe /REunction is supported during MPR  
enable mode.  
[Functional Description of MR3 Bits for MPR]  
MR3  
A2  
A [1:0]  
MPR  
MPR-Loc  
Function  
Notes  
Normal operation, no MPR transaction.  
Don’t care  
(0 or 1)  
0
All subsequent reads will come from DRAM array.  
All subsequent WRITEs will go to DRAM array.  
Enable MPR mode, subsequent READ/READA commands defined by MR3 1:0]  
bits.  
1
MR3 A [1:0]  
1
Note: 1. See Available Data Locations and Burst Order Bit Mapping for Multi Purpose Register table  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
76  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
One bit wide logical interface via all DQ pins during READ operation  
Register Read on ×4:  
DQ [0] drives information from MPR.  
DQ [3:1] either drive the same information as DQ [0], or they drive 0.  
Register Read on ×8:  
DQ [0] drives information from MPR.  
DQ [7:1] either drive the same information as DQ [0], or they drive 0.  
Rr Read on ×16:  
L [0d DQU [0] drive information from MPR.  
QL [7:1] d DQU [7:1] either drive the same information as DQL [0], or they drive 0.  
Note: standardization of which DQ is used by DDR3 SDRAM for MPR reads is strongly recommended to ensure  
futionality also for AMB2 on DDR3 FB-DIMM.  
Aessinrpose Register reads for all MPR agents:  
BA [2:0
A [1:0]: ual to ‘00’b. Data read burst order in nibble is fixed  
A [2]:  
For BL8, A t be eqto 0.  
Burst order is fixed to [,3,4,5,6,7] *1  
For Burst Chop 4 cathe burst order is switched on nibble base  
A [2] = 0, Burst or0,1,2,3 *1  
A [2] = 1, Burst orde,5,6,7 *1  
A [9:3]: don’t care  
A10(AP): don’t care  
A12(/BC): Selects burst chop mode on-twithin MR0  
A11: don’t care  
Regular interface functionality during register reads:  
Support two burst ordering which are switched with Ad A :0] = 00.  
Support of read burst chop (MRS and on-the-fly vi12(/BC).  
All other address bits (remaining column address bits including Ank address bits) will be ignored by the  
DDR3 SDRAM.  
Regular read latencies and AC timings apply.  
DLL must be locked prior to MPR Reads.  
Note: Burst order bit 0 is assigned to LSB and burst order bit 7 is assigned the ected MPR agent.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
77  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Functional Block Diagrams  
Figures below provide functional block diagrams for the multi purpose register in ×4, ×8 and ×16 DDR3 SDRAM.  
Memory Array  
4×8  
DQ[3:0]  
Read Path  
DQS  
MPR  
/DQS  
DM  
NibbleLane  
Functional Block Dim opose Register in ×4 DDR3 SDRAM  
Memory Array  
8×8  
8×8  
64  
Copy to  
DQ[7:0]  
DQ[7:0]  
8
Q
Read Path  
DQS  
MPR  
/DQS  
M  
ByteLane  
Functional Block Diagram of Multi Purpose Register in ×8 DDR3 SDRAM  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
78  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Memory Array  
DQU[7:0]  
Read Path  
DQSU  
/DQSU  
8×8  
8×8  
64  
DMU  
ByteLaneUpper  
8×8  
8×
64  
Copy to  
DQL[7:0]  
DQL[7:0]  
8
Q
Read Path  
DQSL  
MPR  
/DQSL  
DML  
ByteLaneLower  
Functional Block Diagram of Multi Purpon ×16 DDR3 SDRAM  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
79  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Register Address Table  
The table below provides an overview of the available data locations, how they are addressed by MR3 A [1:0] during  
a MR0 to MR3, and how their individual bits are mapped into the burst order bits during a multi purpose register  
read.  
[Availale Data Locations and Burst Order Bit Mapping for Multi Purpose Register]  
Read  
MR
A
3  
A [
Burst  
Length  
Function  
Address Burst Order and Data Pattern  
A [2:0]  
Notes  
Burst order 0,1,2,3,4,5,6,7  
000  
BL8  
BC4  
BC4  
1
1
1
Pre-defined pattern [0,1,0,1,0,1,0,1]  
Read predefined  
for  
Burst order 0,1,2,3,  
000  
00  
Pre-defined pattern [0,1,0,1]  
Burst order 4,5,6,7  
100  
Pre-defined pattern [0,1,0,1]  
BL8  
C4  
BC4  
BL8  
BC4  
BC4  
BL8  
BC4  
BC4  
000  
000  
100  
000  
000  
100  
0
100  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3  
1
1
1
1
1
1
1
1
1
1
1
1
01  
10  
11  
RFU  
RFU  
Burst order 4,5,6,7  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3  
Burst order 4,5,6,7  
st order 0,1,2,3,4,5,6,7  
order 0,1,2,3,  
order 4,5,6,7  
Note: 1. Burst order bit 0 is assigned to LSB and burst order bit 7 is assigned to MSB of the selected MPR agent.  
Relevant Timing Parameters  
The following AC timing parameters are important for operating i Purpose Register: tRP, tMRD, tMOD and  
tMPRR.  
Besides these timings, all other timing parameters needed fration of the DDR3 SDRAM need to be  
observed.  
[MPR Recovery Time tMPRR]  
Symbol  
tMPRR  
Description  
Multi Purpose Register Recovery Time, defined between enMPR burst and MRS which  
reloads MPR or disables MPR function  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
80  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Protocol Examples  
Protocol Example: Read Out Predetermined Read-Calibration Pattern  
Multiple reads from Multi Purpose Register, in order to do system level read timing calibration based on  
predetermined and standardized pattern.  
Protteps:  
harge l  
Wuntil tRP s satisfied  
MRS 3, op-code “A2 = 1 “ and “A[1:0] = 00“  
Redirect all suent reads into the Multi Purpose Register, and load Pre-defined pattern into MPR.  
it until tare satisfied (Multi Purpose Register is then ready to be read). During the period  
MR3 A2 peration is allowed.  
Read:  
A [1:0] = t order fixed starting at nibble, always 00 here)  
A [2] = ‘0’ burst ois fixed as 0,1,2,3,4,5,6,7)  
A12(/BC) = 1 (use regularst length of 8)  
All other address pins cluding BA [2:0] and A10(AP)): don’t care.  
After RL = AL + CL, DRM bursts out the predefined Read Calibration Pattern.  
Memory controller repeats ese calibration reads ntil read data capture at memory controller is optimized.  
After end of last MPR read but wait until tMPRtisfied.  
MRS MR3, op-code “A2 = 0“ and “A[1:0] = alue are don’t care“  
All subsequent read and write accessel EADs and WRITEs from/to the DRAM array.  
Wait until tMRD and tMOD are satisfied  
Continue with “regular” DRAM commands, like activate a mmory bank for regular read or write access,  
T0  
T4 T5  
T9  
T17 T18 T19 T21 T23 T24 T25 T26 T27 T28 T29 T30 T31  
T39  
CK  
/CK  
tMRD  
tMOD  
1
*
Command  
PALL  
MRS  
READ  
MRS  
tMPRR  
NOP  
tRP  
NOP  
NOP  
tMOD  
3
0
Valid  
3
BA  
2
*
0
0
id  
A[1:0]  
2
*
1
0
A[2]  
00  
Valid  
Valid  
Valid  
A[9:3]  
1
0
0
0
0
0
0
0
A10(AP)  
A[11]  
1
*
A12(/BC)  
A[15:13]  
Valid  
Valid  
DQS, /DQS  
DQ  
RL  
Notes: 1. READ with BL8 either by MRS or OTF  
2. Memory Control must drive 0 on A[2:0]  
VIH or VIL  
MPR Readout of Predefined Pattern, BL8 fixed Burst Order, Single Readout  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
81  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T4 T5  
T9  
T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31  
T43  
CK  
/CK  
tMRD  
tMOD  
MRS  
tMPRR  
1
1
*
*
Command  
PALL NOP MRS  
tRP  
NOP  
READ  
NOP  
READ  
NOP  
NOP  
tMOD  
tCCD  
3
3
Valid  
Valid  
2
2
*
*
*
*
[1:0]  
[2]  
0
1
0
0
0
0
Valid  
0
2
2
00  
00  
0
A[9:
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0
0
A10, AP  
A[11]  
0
0
0
1
1
*
*
A12(/BC)  
A[15:13]  
Valid  
Valid  
Valid  
Valid  
DQS, /DQS  
RL  
RL  
DQ  
Notes: 1. READ with BL8 either by MRS or OTF  
2. Memory Control must drive 0 on A[2:0]  
VIH or VIL  
T43  
MPR Readout of Predefinexed Burst Order, Back-to-Back Readout  
T0  
T4 T5  
T9  
T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31  
CK  
/CK  
tMRD  
tMOD  
1
1
*
*
Command  
PALL NOP MRS  
tRP  
NOP  
READ  
NO
READ  
MRS  
tMPRR  
NOP  
NOP  
tMOD  
tCCD  
3
0
3
Valid  
0
BA  
A[1:0]  
Valid  
Va
2
*
*
0
0
0
1
3
4
*
1
A[2]  
00  
00  
0
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
A[9:3]  
1
0
0
0
0
A10(AP)  
A[11]  
0
0
1
1
*
*
A12(/BC)  
A[15:13]  
Valid  
Valid  
Valid  
Valid  
DQS, /DQS  
DQ  
RL  
RL  
VIr VIL  
Notes:1. READ with BC4 either by MRS or OTF  
2. Memory Control must drive 0 on A[1:0]  
3. A[2] = 0 selects lower 4 nibble bits 0 ... 3  
4. A[2] = 1 selects upper 4 nibble bits 4 ... 7  
MPR Readout Predefined Pattern, BC4, Lower Nibble Then Upper Nibble  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
82  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T4 T5  
T9  
T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31  
T43  
CK, /CK  
tMRD  
tMOD  
1
1
*
*
Command  
PALL NOP MRS  
tRP  
NOP  
READ  
NOP  
READ  
MRS  
tMPRR  
NOP  
NOP  
tMOD  
tCCD  
3
0
3
Valid  
0
[1:0]  
Valid  
Valid  
2
2
*
*
*
0
1
0
0
4
3
*
1
[2]  
00  
00  
0
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
A[9
0
A10, AP  
A[11]  
0
0
0
1
1
*
*
A12(/BC)  
A[15:13]  
Valid  
Valid  
Valid  
Valid  
DQS, /DQS  
DQ  
RL  
RL  
Notes:1. READ with BC4 either by MRS or OTF  
2. Memory Control must drive 0 on A[1:0]  
3. A[2] = 0 selects lower 4 nibble bits 0 .
4. A[2] = 1 selects upper 4 nibble bits 7  
VIH or VIL  
MPR Readout of Predefined Pattern, BC4, Upper Nibble Then Lower Nibble  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
83  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Operation of the DDR3 SDRAM  
Read Timing Definition  
CK, /CK crossing to DQS, /DQS crossing  
tDQSK; rising edges only of CK and DQS  
tQrg edges of DQS to falling edges of DQS  
L; risindges of / DQS to falling edges of /DQS  
tLZ QS), tHZ (DQS) for preamble/postamble (see tHZ (DQS), tLZ (DQS)  
RL Measured to this point  
CK  
/C
tDQmin.)  
tDQSCK(min.)  
tDQSCK(min.)  
tDQSCK(min.)  
tLZ(DQS)(min.)  
tQSL  
tQSH  
tRPRE  
tRPST  
DQS, /DQS  
Early strobe  
Bit0  
Bit
3  
Bit4  
Bit5  
Bit6  
Bit7  
tDQS(max.)  
tmax.)  
tQSL  
tDQSCK(max.) tDQSCK(max.)  
tLZ(DQS)(max.)  
tHZ(DQS)(max.)  
tQSH  
tRPRE  
tRPST  
DQS, /DQS  
Late strobe  
Bit0  
Bit1  
Bit2  
Bit5  
Bit6  
Bit7  
Notes: Within a burst, rising strobe edge is not necessarily fixed to be always at tDQSCK(mK(m
Instead, rising strobe edge can vary between tDQSCK(min.) or tDQSCK(max.) wit
Likewise tLZ(DQS)(min.) and tHZ(DQS)(min.) are not tied to tDQSCK(min.) (earl
tLZ(DQS)(max.) and tHZ(DQS)(max.) are not tied to tDQSCK(max.) (late strobe c
The minimum pulse width of read preamble is defined by tRPRE(min.).  
The minimum pulse width of read preamble is defined by tRPST(min.).  
DDR3 Clock to Data Strobe Relationship  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
84  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
DQS, /DQS crossing to Data Output  
tDQSQ; both rising/falling edges of DQS, no tAC defined  
T0  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
/CK  
CK  
mand*3  
READ  
NOP  
RL = AL + CL  
Bank  
Coln  
Address
tRPRE  
tQH  
tQH  
tRPST  
DQS, /D
tDQSQ(max.)  
tDQSQ(max.)  
tLZ(DQ)(max.)  
tHZ(DQ)(max.)  
Dout Dout  
n+1  
Dout Dout  
n+2 n+3  
Dout Dout Dout Dout  
n+4 n+5 n+6 n+7  
DQ*2  
n
tLZ(DQ)(min.)  
(Last data valid)  
Dout Dout  
n+1  
Dout Dout  
n+2 n+3  
Dout Dout Dout Dout  
n+4 n+5 n+6 n+7  
DQ*2  
n
(First data no longer valid)  
D
t  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
All DQS collectively  
Data valid  
VIH or VIL  
Notes: 1. BL8, RL = 5(AL = 0, CL = 5).  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of ation; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, [0, 0] and A12 during READ command at T0.  
5. Output timings are referenced to VDDQ/2, and DLL o
6. tDQSQ defines the skew between DQS, /DQS to define DQS, /DQS to clock.  
7. Early data transitions may not always happen at th
Data transitions of a DQ can vary(either early or la
DDR3 Data Strobe to Datship  
tLZ (DQS), tLZ (DQ), tHZ (DQS), tHZ (DQ) Notes  
tHZ and tLZ transitions occur in the same access time as valid data transitionsese paeters are referenced to  
a specific voltage level which specifies when the device output is no longer drivig tHZ(S) and tHZ(DQ), or begins  
driving tLZ(DQS), tLZ(DQ). The figure below shows a method to calculate the point wn device o longer driving  
tHZ(DQS) and tHZ(DQ), or begins driving tLZ(DQS), tLZ(DQ) by measuring the signt two rent voltages. The  
actual voltage measurement points are not critical as long as the calculation is cont. The parameters  
tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) are defined as singled ended.  
VTT + 2x mV  
VTT + x mV  
VOH x mV  
VOH 2x mV  
tLZ (DQS), tLZ (DQ
tHZ (DQS), tHZ (DQ)  
VTT x mV  
VOL + 2x mV  
VOL + x mV  
T2  
T1  
VTT 2x mV  
T1  
T2  
tHZ (DQS), tHZ (DQ) end point = 2 × T1 - T2  
tLZ (DQS), tLZ (DQ) begin point = 2 × T1 - T2  
Method for Calculating Transitions and Endpoints  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
85  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Read Operation  
During read or write command DDR3 will support BC4 and BL8 on the fly using address A12 during the READ or  
WRITE (auto precharge can be enabled or disabled).  
A12 = 0, BC4 (BC4 = burst chop, tCCD = 4)  
A12 = 1, BL8  
A12 wile used only for burst length control, not a column address.  
urst Rcommand is initiated by having /CS and /CAS low while holding /RAS and /WE high at the rising  
dge the clok. The address inputs determine the starting column address for the burst. The delay from the start  
of the cmand to when the data from the first cell appears on the outputs is equal to the value of the read latency  
RL). The data strooutput (DQS) is driven low 1 clock cycle before valid data (DQ) is driven onto the data bus.  
Tfirst bit osynchronized with the rising edge of the data strobe (DQS). Each subsequent data-out  
apprs on se with the DQS signal in a source synchronous manner.  
The RL is latency (AL) plus /CAS latency (CL). The CL is defined by the mode register 0 (MR0),  
similar to thd DDR-I SDRAMs. The AL is defined by the mode register 1  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
Command*3  
Address*4  
READ  
NOP  
Bank  
Col n  
tRPST  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout  
n+5 n+6 n+7  
Dout  
n
CL = 5  
RL = AL + CL  
VIH or VIL  
Notes: 1. BL8, AL = 0, RL = 5, CL = 5  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid ase times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A11 durEAD command at T0.  
Burst Read Operation, RL = 5  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
86  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
A4  
READ  
NOP  
Bank  
Col n  
tRPST  
tRPRE  
DQS, /S*2  
D
Dout Dout Dout Dout Dout Dout Dout Dout  
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
n
AL = 4  
CL = 5  
RL = AL + CL  
VIH or VIL  
Notes: 1. BL8, RL = 9, (CL 1), CL = 5  
2. Dout n = dat from column n.  
3. NOP commanre shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activaby either MR0 bit [A1, A[0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0.  
Buration, RL = 9  
T0  
T3  
T
T5  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
READ  
READ  
NOP  
NOP  
tCCD  
Address*4  
Bank  
Col n  
Bank  
Col b  
tRPST  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout Dout Dout Dout Dout Dout DDout Dout Dout Dout Dout  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
b+1 b+2 b+b+5 b+6 b+7  
RL = 5  
RL = 5  
VIr VIL  
Notes: 1. BL8, RL = 5 (CL = 5, AL = 0).  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at TT4.  
READ (BL8) to READ (BL8)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
87  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
Ass*
READ  
READ  
NOP  
NOP  
tCCD  
Bank  
Col b  
Bank  
Col n  
tRPST  
tRPST  
tRPRE  
tRPRE  
DQS, /D
DQ*
Dout Dout Dout Dout  
Dout Dout Dout Dout  
b+1 b+2 b+3  
n
n+1 n+2 n+3  
b
RL = 5  
RL = 5  
VIH or VIL  
Notes: 1. BC4, RL = 5 (C, AL = 0).  
2. Dout n (or bta-out from column n (or column b).  
3. NOP commanre shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activby MR0 bit [A1, A0] = [1, 0or MR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T0 and T4.  
READ (BC4)  
T0  
T3  
T4  
T5  
T6  
T7  
8  
T9  
T10  
T11  
T12  
T13 T14 T15  
CK  
/CK  
Command*3  
READ  
WRIT  
NOP  
NOP  
tWR  
READ to WRIT command delay = RL + tCCD + 2tCK WL  
tBL = 4 clocks  
tWTR  
Address*4  
Bank  
Col n  
Bank  
Col b  
tRPRE  
tRPST  
tWPST  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout Dout Dout Dout Dout  
Din Din Din  
Din DDin  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
b+b+3 b+4 6 b+7  
RL = 5  
WL = 5  
VIH IL  
Notes: 1. BL8, RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0).  
2. Dout n = data-out from column n, Din b= data-in from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0 and IT comm6.  
READ (BL8) to WRITE (BL8)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
88  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14 T15  
CK  
/CK  
Command*3  
READ  
WRIT  
NOP  
NOP  
tWR  
READ to WRIT Command delay = RL + tCCD/2 + 2tCK WL  
tBL = 4 clocks  
tWTR  
Bank  
Col n  
Bank  
Col b  
Ass*
tRPRE  
tRPST  
tWPRE  
tWPST  
DQS, /D
DQ*2  
Dout Dout Dout Dout  
n+1 n+2 n+3  
Din Din Din Din  
b+1 b+2 b+3  
n
b
5  
WL = 5  
VIH or VIL  
Notes: 1. BC4, RL = 5 (CL = 5, AL = L = 5 (CWL = 5, AL = 0).  
2. Dout n = data-out from cn n, Din b= data-in from column b.  
3. NOP commands are for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activatMR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T0 and WRIT command T4.  
READ (BCo WRITE (BC4) OTF  
T0  
T4  
T5  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
READ  
READ  
NOP  
NOP  
tCCD  
Bank  
Col n  
Bank  
Col b  
Address*4  
tRPST  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout Dout Dout Dout Dout ut  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
b+3  
RL = 5  
RL = 5  
IH or VIL  
Notes: 1. RL = 5 (CL = 5, AL = 0).  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T4.  
BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0.  
READ (BL8) to READ (BC4) OTF  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
89  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
As*
READ  
READ  
NOP  
NOP  
tCCD  
Bank  
Col n  
Bank  
Col b  
tRPST  
tRPRE  
tRPRE  
tRPST  
DQS, /D
DQ*
Dout Dout Dout Dout  
Dout Dout Dout Dout Dout Dout Dout Dout  
b+1 b+2 b+3 b+4 b+5 b+6 b+7  
n
n+1 n+2 n+3  
b
RL = 5  
RL = 5  
VIH or VIL  
Notes: 1. RL = 5 (CL = 5, 0).  
2. Dout n (or bta-out from column n (or column b).  
3. NOP commanre shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activd by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T0.  
BL8 setting activatey MR0 bit [A1, A0] = [0nd A12 = 1 during READ command at T4.  
READ (BL8) OTF  
T0  
T3  
T4  
T5  
T6  
7  
T8  
T9  
T10  
T11  
T12  
T13 T14 T15  
CK  
/CK  
Command*3  
READ  
WRIT  
NOP  
NOP  
tWR  
tBL = 4 clocks  
READ to WRIT command delay = RL + tCCD/2 + 2tCK WL  
tWTR  
Address*4  
Bank  
Col n  
Bank  
Col b  
tRPST  
tWPST  
tWPRE  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout  
n+1 n+2 n+3  
Din Din Din Din  
Din D
Din  
n
b
b+1 b+2 b+3 b+4 6 b+7  
RL = 5  
WL = 5  
or VIL  
Notes: 1. RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0).  
2. Dout n = data-out from column n , Din b= data-in from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T0.  
BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T4.  
READ (BC4) to WRITE (BL8) OTF  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
90  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14 T15  
CK  
/CK  
Command*3  
READ  
WRIT  
NOP  
NOP  
tWR  
READ to WRIT command delay = RL + tCCD + 2tCK WL  
tBL = 4 clocks  
tWTR  
Bank  
Col n  
Bank  
Col b  
As*
tRPRE  
tRPST  
tWPRE  
tWPST  
DQS, /D
DQ*2  
Dout Dout Dout Dout Dout Dout Dout Dout  
Din Din Din Din  
b+1 b+2 b+3  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
5  
WL = 5  
VIH or VIL  
Notes: 1. RL = 5 (CL = 5, AL = 0), W(CWL = 5, AL = 0).  
2. Dout n = data-out from n n, n Din b= data-in from column b.  
3. NOP commands are n for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activateMR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0.  
BC4 setting activated MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T6.  
READ (WRITE (BC4) OTF  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
91  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Write Timing Definition  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
1
/CK*  
CK  
3
WRIT  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command*  
WL = AL + CWL  
k,  
4
ress*  
tDQSS tDSH  
tDSH  
tDSH  
tDSH  
tWPRE (min)  
tWPST (min)  
tDQSS(min)  
D, /DQS  
tDQSH  
tDQSL tDQSL  
tDQSH  
tDQSH  
tDQSH  
tDQSL  
tDQSH (min)  
tDQSL  
tDQSL (min)  
tDSS  
tDSS  
tDSS  
tDSS  
tDSS  
Din  
Din  
Din  
Din  
Din  
Din  
Din  
Din  
n
2
DQ*  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
tDSH  
tDSH  
tDSH  
tDSH  
tWPRE (min)  
tWPST (min)  
tDQSL (min)  
DQS, /DQS  
tDQSH  
tDQSH  
tDQSH  
tDQSH  
tDQSL  
tDQSL  
tDQSL  
tDQSL  
S  
tDSS  
tDSS  
tDSS  
tDSS  
Din  
Din  
Din  
Din  
Din  
Din  
Din  
Din  
n
2
DQ*  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
QSS  
tDSH  
tWPRE (min)  
tDSH  
tDSH  
tDSH  
tDQSS(max)  
tWPST (min)  
DQS, /DQS  
tD
QSH  
tDQSH  
tDQSH  
tDQSL  
tDQSL  
tDQSL (min)  
tDQSH (min)  
tDSS  
tDSS  
tDSS  
DS
Din  
n
Din  
D
Din  
Din  
2
DQ*  
n + 1 n 5 n + 6 n + 7  
Notes: 1.  
BL8, WL = 5 (AL = 0, CWL = 5)  
Din n = data-in from column n.  
VIH or VIL  
2.  
3.  
NOP commands are shown for ease of illustration; other commands may be valid at se times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 duriRIT command at T0.  
5. tDQSS must be met at each rising clock edge.  
Write Timing Definition  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
92  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Write Operation  
During read or write command DDR3 will support BC4 and BL8 on the fly using address A12 during the READ or  
WRITE (auto precharge can be enabled or disabled).  
A12 = 0, BC4 (BC4 = burst chop, tCCD = 4)  
A12 = 1, BL8  
A12 wie used only for burst length control, not a column address.  
urst Wrcommand is initiated by having /CS, /CAS and /WE low while holding /RAS high at the rising edge of  
e ck. The address inputs determine the starting column address. Write latency (WL) is equal to (AL + CWL). A  
data stre signal (DQS) should be driven low (preamble) one clock prior to the WL. The first data bit of the burst  
ycle must be apto the DQ pins at the first rising edge of the DQS following the preamble. The tDQSS  
sification ed for write cycles. The subsequent burst bit data are issued on successive edges of the  
DQuntil t4 is completed. When the burst has finished, any additional data supplied to the DQ  
pins will bQ Signal is ignored after the burst write operation is complete. The time from the  
completion o bank precharge is the write recovery time (tWR).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
Address*4  
NOP  
WRIT  
WL = AL + CWL  
Bank  
Col n  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din  
n+1 n+2 +7  
n
VIH or VIL  
Notes: 1. BL8, WL = 5 (AL = 0, CWL = 5)  
2. Din n = data-in from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid these ti
4. BL8 setting activated by either MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A1 during WIT command at T0.  
Burst Write Operation, WL = 5  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
93  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
Add
NOP  
WRIT  
Bank  
Col n  
tWPST  
tWPRE  
DQS, /S  
DQ*2  
Din Din Din Din Din Din Din Din  
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
n
AL = 4  
CWL = 5  
WL = AL + CWL  
VIH or VIL  
Notes: 1. BL8, WL = 9 = (CL 1), CL = 5, CWL = 5)  
2. Din n = data-in m column n.  
3. NOP commands shown for ease of illustrati; other commands may be valid at these times.  
4. BL8 setting activateMR0 bit [A1, A0] = [MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRITcommand at T0.  
Bursration, WL = 9  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
Tn Tn+1 Tn+2  
CK  
/CK  
Command*3  
Address*4  
NOP  
WRIT  
READ  
tWTR*5  
Bank  
Col n  
Bank  
Cob  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din  
n
Din Din Din  
n+1 n+2 n+3  
WL = 5  
= 5  
Notes: 1. BC4, WL = 5, RL = 5.  
2. Din n = data-in from column n; Dout b = data-out from column b.  
VIH or
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [1, 0] during WRIT command at T0 and READ command at
5. tWTR controls the write to read delay to the same device and starts with the first rising clock edge after th
last write data shown at T7.  
Write to Read Operation  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
94  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
Tn Tn+1 Tn+2  
CK  
/CK  
Command*3  
ess*4  
WRIT  
PRE  
NOP  
tWR*5  
Bank  
Col n  
tWPRE  
tWPST  
DQS, /DQS  
DQ*
Din  
n
Din Din Din  
n+1 n+2 n+3  
W= 5  
VIH or VIL  
Notes: 1. BC4, WL = 5= 5.  
2. Din n = dafrom column n.  
3. NOP comds are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting vated by MR0 bit [A1, A0] = [1, 0] during WRIT command at T0.  
5. The write recotime (tWR) referenced frthe first rising clock edge after the last write data shown at T7.  
tWR specifies the t burst write cycle urecharge command can be issued to the same bank .  
Wrirge Operation  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
Address*4  
WRIT  
NOP  
WRIT  
NOP  
tCCD  
tWR  
tBL = 4 clocks  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din Din Din Din Din Din Din Din Din Din Din  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
1 b+2 bb+5 b+6 b+7  
WL = 5  
WL = 5  
Notes: 1. BL8, WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
IL  
4. BL8 setting activated by either MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT cmand at T0 d T4.  
WRITE (BL8) to WRITE (BL8)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
95  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
ress*4  
NOP  
tCCD  
NOP  
WRIT  
WRIT  
tWR  
tBL = 4 clocks  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
tWPRE  
tWPST  
S, /DQS  
DQ
Din Din Din Din  
n+1 n+2 n+3  
Din Din Din Din  
b+1 b+2 b+3  
n
b
WL = 5  
WL = 5  
Notes: 1. BC4, WL = 5 L = 5, AL = 0)  
2. Din n (or bata-in from column n (or column b).  
VIH or VIL  
3. NOP comds are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting ated by either MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T0 and T4.  
WRITE 4) to WRITE (BC4)  
T0  
T1  
T2  
T3  
T7  
T8  
T9  
T10  
T11 T12  
T13  
T14  
CK  
/CK  
Command*3  
Address*4  
WRIT  
READ  
OP  
NOP  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
PST  
DQS, /DQS  
DQ*2  
Din Din Din Din Din Din Din Din  
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
n
WL = 5  
RL = 5  
Notes: 1. RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0)  
2. Din n = data-in from column n; DOUT b = data-out from column b.  
VIH or VIL  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT cond at T0.  
READ command at T13 can be either BC4 or BL8 depending on MR0 bit [A1, A0] and A12 status at T13.  
WRITE (BL8) to READ (BC4/BL8)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
96  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
T14  
CK  
/CK  
Command*3  
As*4  
WRIT  
READ  
NOP  
tBL = 4 clocks  
NOP  
tWTR  
Bank  
Col b  
Bank  
Col n  
tWPRE  
tWPST  
DQS, /D
DQ*2  
Din Din Din Din  
n+1 n+2 n+3  
n
RL = 5  
WL = 5  
Notes: 1. CL = 5, 0), WL = 5 (CWL = 5, AL = 0)  
2. Din n = data-in fromn n; Dout b = data-out from column b.  
VIH or VIL  
3. NOP commands hown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting aed by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T0.  
READ comat T13 can be either BC4 or BL8 depending on MR0 bit [A1, A0] and A12 status at T13.  
WRITE (BC4) to READ (BC4/BL8)  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T9  
T10  
T11 T12  
T13  
T14  
CK  
/CK  
Command*3  
Address*4  
WRIT  
WRIT  
NOP  
tCCD  
NOP  
tBL = 4 clocks  
tWR  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din Din Din Din Di
n
n+1 n+2 n+3 n+4 n+5 n+6 n+
WL = 5  
WL = 5  
Notes: 1. WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n (or column b).  
VIH or VIL  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T0.  
BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T4.  
WRITE (BL8) to WRITE (BC4)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
97  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
T14  
CK  
/CK  
Command*3  
As*4  
NOP  
tCCD  
NOP  
tBL = 4 clocks  
WRIT  
WRIT  
tWR  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
tWPRE  
tWPST  
DQS, /D
DQ*2  
Din Din Din Din  
Din Din Din Din Din Din Din Din  
b+1 b+2 b+3 b+4 b+5 b+6 b+7  
n
n+1 n+2 n+3  
b
WL = 5  
WL = 5  
Notes: 1. = 5, AL
2. Din n (or b) = data-m column n (or column b).  
VIH or VIL  
3. NOP commands hown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting aed by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T0.  
BL8 setting ated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T4.  
WRITE (BC4) to WRITE (BL8)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
98  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Write Timing Violations  
Motivation  
Generally, if timing parameters are violated, a complete reset/initialization procedure has to be initiated to make sure  
the DRAM works properly.  
However it is desirable for certain minor violations, that the DRAM is guaranteed not to "hang up" and error to be  
limited hat particular operation.  
Fofoling it will be assumed that there are no timing violations w.r.t to the write command itself (including  
etc.) anat it does satisfy all timing requirements not mentioned below.  
Data Sp and Hold Violations  
hould the data to be timing requirements (tDS, tDH) be violated, for any of the strobe edges associated with a  
we burst, thmight be written to the memory location addressed with this write command.  
In thexamTiming Parameters) the relevant strobe edges for write burst A are associated with the  
clock edge.5, T7, T7.5, T8, T8.5.  
Subsequenlocation might result in unpredictable read data, however the DRAM will work properly  
otherwise.  
Strobe to Strobe and StrobClock Violations  
Should the strobe timing uirements (tDQSH, tDQSL, tWPRE, tWPST) or the strobe to clock timing requirements  
(tDSS, tDSH tDQSS) blated for any of the strobe edges associated with a write burst, then wrong data might be  
written to the memory locn addressed with the offending write command. Subsequent reads from that location  
might result in unpredictable d data, however thRAM will work properly otherwise.  
In the example (Figure Write Timing Parametervant strobe edges for write burst A are associated with the  
clock edges: T4, T4.5, T5, T5.5, T6, T6.5, T5 and T9. Any timing requirements starting and ending  
on one of these strobe edges are T8, T8.5, 10.5, T11, T11.5, T12, T12.5 and T13. Some edges are  
associated with both bursts.  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
WRIT  
A
WRIT  
B
NOP  
NOP  
Address*4  
/CS  
ODTL  
BL/2 + 2 ODTL  
WL  
tDQSS  
tDSS  
tDSH  
tDQSL  
PST  
tWPRE  
tDQSH  
DQS, /DQS  
DQ*2  
tDH  
tDS  
VIH or VIL  
Write Timing Parameters  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
99  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Write Data Mask  
One write data mask (DM) pin for each 8 data bits (DQ) will be supported on DDR3 SDRAMs, Consistent with the  
implementation on DDR-I SDRAMs. It has identical timings on write operations as the data bits, and though used in  
a uni-directional manner, is internally loaded identically to data bits to ensure matched system timing. DM is not  
used during read cycles.  
T1  
in  
T2  
T3  
in  
T4  
in  
T5  
in  
T6  
QS  
/DQS  
in  
in  
in  
in  
Write mask latency = 0  
Data Mask Timing  
/CK  
CK  
[tDQSS(min.)]  
tWR  
WRIT  
Command  
NOP  
WL  
tDQSS  
DQS, /DQS  
DQ  
in0  
DM  
WL  
tDQSS  
[tDQSS(max.)]  
DQS, /DQS  
DQ  
in0  
in2 in3  
DM  
Data Mask Function, WL = 5, AL = 0 shown  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
100  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Precharge  
The precharge command is used to precharge or close a bank that has been activated. The precharge command is  
triggered when /CS, /RAS and /WE are low and /CAS is high at the rising edge of the clock. The precharge  
command can be used to precharge each bank independently or all banks simultaneously. Four address bits A10,  
BA0, BA1 and BA2 are used to define which bank to precharge when the command is issued.  
[Bank lection for Precharge by Address Bits]  
A1
BA0  
L
BA1  
L
BA2  
L
Precharged Bank(s)  
Bank 0 only  
L
H
L
L
L
Bank 1 only  
L
H
H
L
L
Bank 2 only  
L
L
Bank 3 only  
L
H
H
H
H
×
Bank 4 only  
L
L
Bank 5 only  
L
H
H
×
Bank 6 only  
L
H
×
Bank 7 only  
H
All banks 0 to 7  
Remark: H: VIH, L: VILVIH or VIL  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
101  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Auto Precharge Operation  
Before a new row in an active bank can be opened, the active bank must be precharged using either the precharge  
command or the auto precharge function. When a read or a write command is given to the DDR3 SDRAM, the /CAS  
timing accepts one extra address, column address A10, to allow the active bank to automatically begin precharge at  
the earliest possible moment during the burst read or write cycle. If A10 is low when the read or write Command is  
issued, then normal read or write burst operation is executed and the bank remains active at the completion of the  
burst ence. If A10 is high when the Read or Write Command is issued, then the auto precharge function is  
end. ring auto precharge, a read Command will execute as normal with the exception that the active bank  
gin to pharge on the rising edge which is /CAS latency (CL) clock cycles before the end of the read burst.  
Auto charge can also be implemented during Write commands. The precharge operation engaged by the Auto  
prechargcommand will not begin until the last data of the burst write sequence is properly stored in the memory  
ray.  
Theature arge operation to be partially or completely hidden during burst read cycles (dependent  
upon /CAS oving system performance for random data access. The /RAS lockout circuit internally  
delays the on until the array restore operation has been completed so that the auto precharge  
command h any rad or write command.  
Burst Read witPrecha
If A10 is high when a Reaommand is issued, the Read with Auto precharge function is engaged. The DDR3  
SDRAM starts an auto parge operation on the rising edge which is (AL + BL/2) cycles later from the read with  
AP command when tR(min.) is satisfied. If tRAS (min.) is not satisfied at the edge, the start point of auto  
precharge operation will belayed until tRAS (min.) is satisfied. A new bank active (command) may be issued to  
the same bank if the following o conditions are sed simultaneously.  
(1) The /RAS precharge time (tRP) has been sathe clock at which the auto precharge begins.  
(2) The /RAS cycle time (tRC) from the prevon has been satisfied.  
Burst Write with Auto precharge  
If A10 is high when a write command is issued, the Write with auto precharge function is engaged. The DDR3  
SDRAM automatically begins precharge operation after thmpletion of the burst writes plus write recovery time  
(tWR). The bank undergoing auto precharge from thompltion of the write burst may be reactivated if the  
following two conditions are satisfied.  
(1) The data-in to bank activate delay time (tWR + tRP) has bee.  
(2) The /RAS cycle time (tRC) from the previous bank activatioatisfied.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
102  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Auto-Refresh  
When /CS, /RAS and /CAS are held low and /WE high at the rising edge of the clock, the chip enters the automatic  
refresh mode (REF). All banks of the DDR3 SDRAM must be precharged and idle for a minimum of the precharge  
time (tRP) before the auto-refresh command (REF) can be applied. An address counter, internal to the device,  
supplies the bank address during the refresh cycle. No control of the external address bus is required once this  
cycle has started.  
Wheefresh cycle has completed, all banks of the DDR3 SDRAM will be in the precharged (idle) state. A delay  
been thauto-refresh command (REF) and the next activate command or subsequent auto-refresh command  
be greathan or equal to the auto-refresh cycle time (tRFC).  
To allfor improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh  
interval irovided. A maximum of 8 refresh commands can be posted to any given DDR3 SDRAM, meaning that  
maximum aerval between any refresh command and the next Refresh command is 9 × tREFI.  
T1  
T2  
T3  
RP  
tRFC  
tRFC  
CK
Any  
Command  
NOP  
REF  
REF  
NOP  
Command  
o-Refresh  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
103  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Self-Refresh  
The self-refresh command can be used to retain data in the DDR3 SDRAM, even if the rest of the system is powered  
down. When in the self-refresh mode, the DDR3 SDRAM retains data without external clocking. The DDR3 SDRAM  
device has a built-in timer to accommodate self-refresh operation. The Self-Refresh Entry (SELF) command is  
defined by having /CS, /RAS, /CAS and CKE held low with /WE high at the rising edge of the clock.  
Before ssuing the self-refresh entry command, the DDR3 SDRAM must be idle with all bank precharge state with  
tRP d. Also, on-die termination must be turned off before issuing Self-refresh entry command, by either  
rering T pin low “ODTL + 0.5tCK” prior to the self-refresh entry command or using MRS to MR1 command.  
the selfresh entry command is registered, CKE must be held low to keep the device in self-refresh mode.  
The Dis automatically disabled upon entering Self-refresh and is automatically enabled (including a DLL-Reset)  
upon exig self-refresh.  
Whthe Ds entered self-refresh mode all of the external control signals, except CKE and /RESET,  
are “don’t elf-refresh operation, all power supply and reference pins (VDD, VDDQ, VSS, VSSQ,  
VREFCA at be at valid levels. The DRAM initiates a minimum of one refresh command internally  
within tCKEt enterself-refresh mode.  
The clock is isablering self-refresh operation to save power. The minimum time that the DDR3  
SDRAM must remain in self-sh mode is tCKESR. The user may change the external clock frequency or halt the  
external clock tCKSRE clcycles after self-refresh entry is registered, however, the clock must be restarted and  
stable tCKSRX clock cs before the device can exit self-refresh operation. To protect DRAM internal delay on  
CKE line to block the inpugnals, one NOP (or DESL) command is needed after self-refresh entry.  
The procedure for exiting self-refresh requires a of events. First, the clock must be stable tCKSRX prior to  
CKE going back high. Once a Self-Refresh EREX, combination of CKE going high and either NOP or  
DESL on command bus) is registered, a domust be satisfied before a valid command not requiring  
a locked DLL can be issued to the devto alloy internal refresh in progress. Before a command which  
requires a locked DLL can be applied, a delay of at least tXSDLL and applicable ZQCAL function requirements  
(TBD) must be satisfied.  
CKE must remain high for the entire self-refresh eperiod tXSDLL for proper operation except for self-refresh  
reentry. Upon exit from self-refresh, the DDR3 SDRAM can be nto Self-refresh mode after waiting at least  
tXS period and issuing one refresh command (refresh period oor DESL commands must be registered  
on each positive clock edge during the self-refresh exit intervast be turned off during tXSDLL.  
The use of Self-refresh mode introduces the possibility that an timed refresh event can be missed when  
CKE is raised for exit from self-refresh mode. Upon exit from self-refresh, thSDRrequires a minimum of  
one extra refresh command before it is put back into self-refresh mode.  
Ta  
Tb  
Tc Tc+1Tc+2  
Td  
Te  
Tf
Tg Tg+1  
Th Th+1  
CK, /CK  
tCKSRE  
tCKSRX  
DLL  
tRP  
tXS  
4
2
3
*
*
1
*
Command  
Valid alid  
d Valid  
PALL  
SELF NOP  
SREX  
tCKESR  
CKE  
ODT  
ODTLoff + 0.5 x tCK  
Notes: 1. Only NOP or DESL commands.  
2. Valid commands not requiring a locked DLL.  
3. Valid commands requiring a locked DLL.  
4. One NOP or DESL commands.  
VIH or VIL  
Self-Refresh Entry and Exit Timing  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
104  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Power-Down Mode  
Power-down is synchronously entered when CKE is registered low (along with NOP or DESL command). CKE is not  
allowed to go low while mode register set command, MPR operations, ZQCAL operations, DLL locking or read / write  
operation are in progress. CKE is allowed to go low while any of other operations such as row activation, precharge  
or auto precharge and refresh are in progress, but power-down IDD spec will not be applied until finishing those  
operations.  
TLL shld be in a locked state when power-down is entered for fastest power-down exit timing. If the DLL is  
ked durpower-down entry, the DLL must be reset after exiting power-down mode for proper read operation  
and shronous ODT operation. DRAM design provides all AC and DC timing and voltage specification as well  
proper DL operation with any CKE intensive operations as long as DRAM controller complies with DRAM  
ecifications.  
During poks are closed after any in-progress commands are completed, the device will be in  
precharge ; if any bank is open after in-progress commands are completed, the device will be in  
active powe
Entering poweeactivathe input and output buffers, excluding CK, /CK, ODT, CKE and /RESET. To  
protect DRAM internal delay CKE line to block the input signals, multiple NOP or DESL commands are needed  
during the CKE switch ond cycle(s) after this timing period are defined as tCPDED. CKE_low will result in  
deactivation of commannd address receivers after tCPDED has expired.  
[Power-Down Entry Definns]  
Status of DRAM  
MR0 bit 2  
DLL  
On  
Exit  
Relevant Parameters  
Active  
(A bank or more Open)  
Don’t Care  
tXP to any valid command  
tXP to any valid command. Since it is in  
precharge state, commands here will be ACT,  
AR, MRS, PRE or PALL .  
Precharged  
(All banks Precharged)  
0
1
Off  
On  
Slow  
ast  
tXPDLL to commands who need DLL to operate,  
such as READ, READA or ODT control line.  
Precharged  
(All Banks Precharged)  
XP to any valid command  
Also the DLL is disabled upon entering precharge power-doexit mode, but the DLL is kept enabled  
during precharge power-down for fast exit mode or active powerpoweown mode, CKE low, RESET high  
and a stable clock signal must be maintained at the inputs of the DDR3 SDODhould be in a valid state  
but all other input signals are “Don’t Care” (If RESET goes low during DRAM will be out of PD  
mode and into reset state). CKE low must be maintained until tPD has beower-down duration is limited  
by 9 times tREFI of the device.  
The power-down state is synchronously exited when CKE is registered high (alg with OP or DESL command).  
CKE high must be maintained until tCKE has been satisfied. A valid, executable mand cabe applied with  
power-down exit latency, tXP and/or tXPDLL after CKE goes high. Power-down it latenis defined at AC  
Characteristics table of this data sheet.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
105  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Timing Diagrams for Proposed CKE with Power-Down Entry, Power-Down Exit  
T0  
T1  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
Tx  
Tx+1  
/CK  
CK  
Command  
READ  
Valid  
NOP  
NOP  
BA  
tCPDED  
tRDPDEN  
tIS  
VIH  
CKE  
RL = CL + AL = 5 (AL = 0)  
tPD  
out out out out out out out out  
DQ(BL
DQ
0
1
2
3
4
5
6
7
out out out out  
0
1
2
3
ower-Dn Entry after Read and Read with Auto Precharge  
T0  
T1  
2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10 T14 T15  
T16 T17 T18 Tn  
CK  
/CK  
Command  
NOP  
NOP  
NOP  
WRITA  
Valid  
BA  
tCPDED  
tIS  
CKE  
tWRAPDE
WL=5  
tWR*  
tPD  
in in in in in in
DQ(BL8)  
DQ(BC4)  
0
1
2
3
4
5
in in in in  
0
1
2
3
Ial  
ge  
Note: tWR is programmed through MRS.  
Power-Down Entry After Write with Auto e  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
106  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10 Tx Tx+1 Tx+2 Tx+3  
CK  
/CK  
Command  
WRITE  
Valid  
NOP  
NOP  
BA  
tCPDED  
tIS  
CKE  
tWRPDEN  
WL=5  
tWR  
tPD  
in in in in in in in in  
DQ(BL8)  
DQ(BC4)  
0
1
2
3
4
5
6
7
in in in in  
0
1
2
3
Power-Down Entry after Write  
T0  
Tn Tn+1  
Tx  
Ty  
CK  
/CK  
tIH  
tIH  
CKE  
tIS  
tCPDED  
Valid NOP NOP  
CKE (min.)  
Command  
NOP OP NOP Valid NOP NOP NOP NOP  
N
Enter power-down mode  
Exit pdown  
Note: Valid command at T0 is ACT, NOP, DESL or precharge with still ng open after completion of  
precharge command.  
Active Power-Down Entry and Exit Timing Dim  
T0  
T1  
Tn Tn+1  
T
Ty  
CK  
/CK  
tPD  
tIH  
tIH  
CKE  
tIS  
tCPDED  
tIS  
tCKE (min.)  
Command  
NOP NOP  
NOP NOP NOP NOP NOP Valid NOP NOP NOP1NOP N  
tXP  
Enter power-down mode  
Exit power-down  
Precharge Power-Down (Fast Exit Mode) Entry and Exit  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
107  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T1  
Tn Tn+1  
Tx  
Ty  
CK  
/CK  
tIH  
tIH  
CKE  
tIS  
tIS  
tPD  
tCPDED  
tCKE (min.)  
NOP NOP NOP NOP NOP NOP Valid NOP Valid NOP NO  
tXP  
Comman
NOP NOP NOP  
tXPDLL  
Exit power-down  
Enter r-down mode  
Parge Power-Down (Slow Exit Mode) Entry and Exit  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
Command  
REF  
NOP  
NOP  
tRPDEN  
tIS  
CKE  
Refresh Command to PoEntry  
T0  
T1  
T2  
T3  
T4  
Tn  
Tn+1 Tn
End  
CK  
/CK  
Command  
NOP  
NOP  
ACT  
tCPDED  
tPD  
tACTPDEN  
tIS  
CKE  
Active Command to Power-Down Entry  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
108  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
End  
CK  
/CK  
PRE/  
PALL  
Command  
NOP  
NOP  
tCPDED  
tPREPDEN  
tIS  
C
echarge/Precharge All Command to Power-Down Entry  
T1  
T2  
T3  
Tn  
Tn+1  
NOP  
Tn+2  
NOP  
Tn+3 Tn+4 Tn+5  
Tn+6 Tn+7  
CK  
/CK  
Command  
S  
NOP  
NOP  
NOP  
tCPDED  
tMR
tIS  
CKE  
MRS CommanPower-Down Entry  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
109  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Timing Values tXXXPDEN Parameters  
Status of DRAM  
Idle or Active  
Idle or Active  
Active  
Last Command before CKE_low  
Parameter  
tACTPDEN  
tPRPDEN  
Parameter Value  
Unit  
nCK  
nCK  
nCK  
Activate  
1
Precharge  
1
READ/READA  
tRDPDEN  
tWRPDEN  
tWRPDEN  
tWRAPDEN  
tWRAPDEN  
tREFPDEN  
tMRSPDEN  
RL + 4 + 1  
Active  
WRIT for BL8MRS, BL8OTF, BC4OTF  
WRIT for BC4MRS  
WRITA for BL8MRS, BL8OTF, BC4OTF  
WRITA for BC4MRS  
sh  
WL + 4 + (tWR/tCK (avg)) *1 nCK  
WL + 2 + (tWR/tCK (avg))*1 nCK  
WL + 4 + WR*2 + 1  
A
tiv
nCK  
nCK  
nCK  
Active  
WL + 2 + WR*2 + 1  
1
Idle  
gister Set  
tMOD  
Notes: 1. s, for calculation of tWRPDEN, it is necessary to round up tWR / tCK to next integer.  
2. as programmed in mode register.  
Power-Down Exit Cfication  
Case 1:  
When CKE registered lor power-down entry, tPD must be satisfied before CKE can be registered hight as  
power-down exit.  
Case 1a:  
After power-down exit, tCKE must be satisfied an be registered low again.  
T0  
T1  
Tn  
Tn+1  
Tx  
Ty  
CK  
/CK  
tIH  
tIH  
CKE  
tIS  
tPD  
tCPDED  
NOP NOP NOP  
t
NOP NOP NOP NOP P NOP NOP NOP  
N
Command  
Exit power-down  
Enter power-down  
Power-Down Entry/Exit Clarifications (1)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
110  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Case 2:  
For certain CKE intensive operations, for example, repeated "PD Exit - Refresh - PD Entry" sequence, the number of  
clock cycles between PD Exit and PD Entry may be insufficient to keep the DLL updated. Therefore the following  
conditions must be met in addition to tPD in order to maintain proper DRAM operation when Refresh commands is  
issued in between PD Exit and PD Entry.  
Power-down mode can be used in conjunction with Refresh command if the following conditions are met:  
1. tXP ust be satisfied before issuing the command  
2. Lmust be satisfied (referenced to registration of PD exit) before next power-down can be entered.  
T0 T1  
Tn Tn+1  
tIH  
Tx  
Ty  
K  
/CK  
tIH  
CK
tIS  
DED  
tIS  
tXPDLL (min.)  
tCKE (min.)  
tPD  
Command  
NOP NOP  
N
NOP  
tXP  
REF NOP NOP NOP NOP NOP NOP NOP  
er-down  
Enter power-d
Power-Down Eny/Exit Clarifications (2)  
Case 3:  
If an early PD Entry is issued after Refresh command, oPD xit is issued, NOP or DESL with CKE high must be  
issued until tRFC from the refresh command is satisfThis means CKE cannot be de-asserted twice within tRFC  
window.  
T0  
T1  
Tn  
Tx  
Ty  
CK  
/CK  
tIH  
tIH  
CKE  
tIS  
tIS  
tPD  
tXPDLL  
tCPDED  
REF NOP NOP  
tCKE (min.)  
Command  
NOP NOP NOP NOP NOP NOP NOP NONOP Vali
N
tRFC (min.)  
Exit power-down  
Enter power-down  
Note: * Synchronous ODT Timing starts at the end of tXPDLL (min.)  
Power-Down Entry/Exit Clarifications (3)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
111  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Input Clock Frequency Change during Precharge Power-Down  
Once the DDR3 SDRAM is initialized, the DDR3 SDRAM requires the clock to be “stable” during almost all states of  
normal operation. This means once the clock frequency has been set and is to be in the “stable state”, the clock  
period is not allowed to deviate except for what is allowed for by the clock jitter and SSC (Spread Spectrum  
Clocking) specifications.  
The input clock frequency can be changed from one stable clock rate to another stable clock rate under two  
cond(1) self-refresh mode and (2) precharge power-down mode. Outside of these two modes, it is illegal to  
che the ock frequency. For the first condition, once the DDR3 SDRAM has been successfully placed in to Self-  
sh modnd tCKSRE has been satisfied, the state of the clock becomes a don’t care. Once a don’t care,  
hangthe clock frequency is permissible, provided the new clock frequency is stable prior to tCKSRX. When  
entering d exiting Self-Refresh mode for the sole purpose of changing the clock frequency, the self-refresh entry  
d exit specificust still be met as outlined in Self-Refresh section.  
Thecond n the DDR3 SDRAM is in Precharge Power-down mode (either fast exit mode or slow  
exit mode.) logic low ensuring RTT is in an off state prior to entering Precharge Power-down mode  
and CKE mow. A minimum of tCKSRE must occur after CKE goes low before the clock frequency  
may changRAM inut clock frequency is allowed to change only within the minimum and maximum  
operating frefied foe particular speed grade. During the input clock frequency change, ODT and  
CKE must be het stable levels. Once the input clock frequency is changed, stable new clocks must be  
provided to the DRAM tCKbefore Precharge Power-down may be exited; after Precharge Power-down is exited  
and tXP has expired, thLL must be RESET via MRS. Depending on the new clock frequency additional MRS  
commands may need to issued to appropriately set the WR, CL, and CWL with CKE continuously registered high.  
During DLL re-lock period, T must remain low. After the DLL lock time, the DRAM is ready to operate with new  
clock frequency. This process depicted in the figlock Frequency Change in Precharge Power-Down Mode.  
Previous clock frequ
New clock frequency  
T0  
T1  
tIS  
Ta  
Tc  
Tc+1 Td  
Td+1  
Te  
Te+1  
/CK  
CK  
tIH  
tCKSRE  
SR
CKE  
tCPDED  
NOP  
NOP  
NOP  
P  
Command  
Address  
MRS  
NOP  
Valid  
Valid  
tAOFPD/tAOF  
ODT  
tD
High-Z  
High-Z  
DQS, /DQS  
DQ  
DM  
Enter precharge  
power-down mode  
Exit precharge  
power-down mode  
Frequency  
change  
Notes: 1. Applicable for both slow exit and fast exit precharge power-down.  
2. tCKSRE and tCKSRX are self-refresh mode specifications but the values  
they represent are applicable here.  
3. tAOFPD and tAOF must be satisfied and outputs high-z prior to T1;  
refer to ODT timing for exact requirements.  
Clock Frequency Change in Precharge Power-Down Mode  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
112  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
On-Die Termination (ODT)  
ODT (On-Die Termination) is a feature of the DDR3 SDRAM that allows the DRAM to turn on/off termination  
resistance for each DQ, DQS, /DQS and DM for ×4 and ×8 configuration (and TDQS, /TDQS for ×8 configuration,  
when enabled via A11=1 in MR1) via the ODT control pin. For ×16 configuration ODT is applied to each DQU, DQL,  
DQSU, /DQSU, DQSL, /DQSL, DMU and DML signal via the ODT control pin. The ODT feature is designed to  
improve signal integrity of the memory channel by allowing the DRAM controller to independently turn on/off  
termiresistance for any or all DRAM devices.  
DT featuis turned off and not supported in Self-Refresh mode.  
A simpunctional representation of the DRAM ODT feature is shown in figure Functional Representation of ODT.  
ODT  
VDDQ/2  
r  
y  
RTT  
CV, ...  
Switch  
DQ, DQS, DM, TDQS  
Functisentation of ODT  
The switch is enabled by the internal Owhich uses the external ODT pin and other control  
information, see below. The value of T is ed by the settings of Mode Register bits (see MR1  
programming figure in the section Programming the Mode Register). The ODT pin will be ignored if the Mode  
Register MR1 is programmed to disable ODT and in self-refrh mode.  
ODT Mode Register and ODT Truth Table  
The ODT Mode is enabled if either of MR1 bits A2 or A6 or n-zero. In this case the value of RTT is  
determined by the settings of those bits .  
Application: Controller sends WRIT command together with O
One possible application: The rank that is being written to providinatio
DRAM turns ON termination if it sees ODT asserted (except ODT is disa
DRAM does not use any write or read command decode information  
The Termination Truth Table is shown in the Termination Truth Table  
[Termination Truth Table]  
ODT pin  
DRAM Termination State  
0
1
OFF  
ON, (OFF, if disabled by MR1 bits A2, A6 and A9 in general)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
113  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Synchronous ODT Mode  
Synchronous ODT mode is selected whenever the DLL is turned on and locked. Based on the power-down  
definition, these modes are:  
Active mode  
Idle mode with CKE high  
Active power-down mode (regardless of MR0 bit A12)  
Pree power-down mode if DLL is enabled during precharge power-down by MR0 bit A12.  
shronous ODT mode, RTT will be turned on or off ODTLon clock cycles after ODT is sampled high by a rising  
clock ee and turned off ODTLoff clock cycles after ODT is registered low by a rising clock edge. The ODT latency  
s tied to te write latency (WL) by: ODTLon = WL – 2; ODTLoff = WL – 2.  
ODT LatenDT  
In Synchrohe Additive Latency (AL) programmed into the Mode Register (MR1) also applies to the  
ODT signanal ODT signal is delayed for a number of clock cycles defined by the Additive Latency  
(AL) relative ODT al.  
ODTLon = CWL + 2; ODff = CWL + AL 2. For details, refer to DDR3 SDRAM latency definitions.  
[ODT Latency Table]  
Parameter  
Symbol  
ODTLon  
ODTLoff  
Value  
Unit  
nCK  
nCK  
ODT turn-on Latency  
ODT turn-off Latency  
– 2 = CWL + AL – 2  
= CWL + AL – 2  
Synchronous ODT Timing Parameters  
In synchronous ODT mode, the following timing parameterapply (see Synchronous ODT Timing Examples (1)):  
ODTL, tAON,(min.),max, tAOF,(min.),(max.) Minimum Ron time (tAON min) is the point in time when the  
device leaves high impedance and ODT resistance beto turn on. Maximum RTT turn-on time (tAON max) is the  
point in time when the ODT resistance is fully on. Botre measured rom ODTLon.  
Minimum RTT turn-off time (tAOF min ) is the point in time whestarts to turn-off the ODT resistance.  
Maximum RTT turn-off time (tAOF max) is the point in te on-die termination has reached high  
impedance. Both are measured from ODTLoff.  
When ODT is asserted, it must remain high until ODTH4 is sd. If a command is registered by the  
SDRAM with ODT high, then ODT must remain high until ODTH4 (BC4) BLafter the Write command  
(see figure Synchronous ODT Timing Examples (2)). ODTH4 and ODTHfrom ODT registered high  
to ODT registered low or from the registration of a Write command until Oed low.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
114  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0 T1 T2 T3 T4 T5 T6 T7  
T8 T9 T10 T11 T12 T13 T14 T15 END  
CK  
/CK  
CKE  
ODTH4 (min.)  
AL = 3  
DT  
AL = 3  
tODT  
ODTLon = CWL + AL 2  
ODTLoff = CWL + AL 2  
CWL 2  
tAON (max.)  
tAOF (max.)  
tAOF (min.)  
tAON (min.)  
RT
RTT  
Syronous ODT Timing Examples (1): AL=3, CWL = 5;  
TLon = AL + CWL - 2 = 6; ODTLoff = AL + CWL - 2 = 6  
T0 TT2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18  
CK  
/CK  
CKE  
Command  
ODTH4  
ODTH4  
ODH4  
ODT  
ODT= WL 2  
ODTLon =
ODTLoff = WL 2  
ODTLon = WL 2  
tAON (max.)  
tAON (min.)  
tA)  
tAOF (max.)  
tAOF (min.)  
DRAM_RTT  
RTT  
T  
tAmax.)  
tAON (m
Synchronous ODT Timing Examples (2)*: BC4, WL =
ODT must be held high for at least ODTH4 after assertion (T1); ODT must be kept high ODTHBC4) or DTH8  
(BL8) after write command (T7). ODTH is measured from ODT first registered high to ODT firsegistered ow, or  
from registration of write command with ODT high to ODT registered low. Note that although ODTis satisfied f
ODT registered high at T6 ODT must not go low before T11 as ODTH4 must also be satisfied from the registratof  
the write command at T7.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
115  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
ODT during Reads  
As the DDR3 SDRAM cannot terminate and drive at the same time, RTT must be disabled at least half a clock cycle  
before the read preamble by driving the ODT pin low appropriately. RTT may nominally not be enabled until one  
clock cycle after the end of the post-amble as shown in the example in the figure below.  
Note that ODT may be disabled earlier before the Read and enabled later after the Read than shown in this example  
in the figure below.  
ODT mt be disabled externally during Reads by driving ODT low.  
(exeL = 6; AL = CL - 1 = 5; RL = AL + CL = 11; CWL = 5; ODTLon = CWL + AL -2 = 8;  
Ooff = CL + AL - 2 = 8)  
T0 T1 T2 T3 T4 T5 T6 T7  
T8 T9 T10 T11 T12 T13 T14 T15 T16 End  
K  
/C
mmand  
Address  
RL = AL + CL  
ODT  
TLoff = WL 2 = CWL + AL 2  
ODTLon = WL 2 = CWL + AL 2  
tAOF (max.)  
tAOF (min.)  
tAON (min.)  
tAON (max.)  
RTT  
RTT  
DRAM_RTT  
DQS, /DQS  
out out out out out out out out  
DQ  
0
1
2
3
4
5
6
7
Example of T during Reads  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
116  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Dynamic ODT  
In certain application cases and to further enhance signal integrity on the data bus, it is desirable that the termination  
strength of the DDR3 SDRAM can be changed without issuing an MRS command. This requirement is supported by  
the “Dynamic ODT” feature as described as follows:  
Functional Description:  
The Dynamic ODT mode is enabled if bit A9 or A10 of MR2 is set to ’1’. The function and is described as follows:  
Twvalues are available: RTT_Nom and RTT_WR.  
e valfor RTT_Nom is pre-selected via bits A[9,6,2] in MR1  
e value fRTT_WR is pre-selected via bits A[10,9] in MR2  
Durinperation without write commands, the termination is controlled as follows:  
Nominal terminn strength RTT_Nom is selected.  
erminatiog is controlled via ODT pin and latencies ODTLon and ODTLoff.  
When a wRIT, WRITA, WRS4, WRS8, WRAS4, WRAS8) is registered, and if Dynamic ODT is  
enabled, ontrolled as follows:  
A latenthe wrte command, termination strength RTT_WR is selected.  
A latency for BLxed by MRS or selected OTF) or ODTLcwn4 (for BC4, fixed by MRS or selected  
OTF) after the e comm, termination strength RTT_Nom is selected.  
Termination on/off timicontrolled via ODT pin and ODTLon, ODTLoff.  
Table Latencies and Tig Parameters Relevant for Dynamic ODT shows latencies and timing parameters, which  
are relevant for the on-die rmination control in Dynamic ODT mode:  
When ODT is asserted, it muemain high until O4 is satisfied. If a write command is registered by the SDRAM  
with ODT high, then ODT must remain high unt(BC4) or ODTH8 (BL8) after the write command (see the  
figure Synchronous ODT Timing Examples (nd ODTH8 are measured from ODT registered high to  
ODT registered low or from the registration nd until ODT is registered low.  
[Latencies and Timing Parameters Relant for ic ODT]  
Definition for all DDR3  
Parameters  
Symbols  
ODTLon  
Defined from  
efined to  
speed bins  
Unit  
nCK  
Registering extl  
ODT signal
ODT turn-on Latency  
Turning termination on  
ODTLon = WL – 2.0  
Registering external  
ODT signal low  
ODT turn-off Latency  
ODTLoff  
ation off  
ODTLoff = WL – 2.0  
ODTLcnw = WL – 2.0  
nCK  
nCK  
ODT latency for changing  
from RTT_Nom to RTT_WR  
Registering external rength from  
write command RTT_WR  
ODTLcnw  
ODT latency for change  
from RTT_WR to RTT_Nom  
(BC4)  
Registering external Change RTT sOcwn4 =  
write command RTT_WR to ODTLoff  
ODTLcwn4  
ODTLcwn8  
nCK  
nCK  
ODT latency for change  
from RTT_WR to RTT_Nom  
(BL8)  
Registering external Change RTT m ODTwn8 =  
write command  
RTT_WR to RTT_
6 TLoff  
Minimum ODT high time after  
ODT assertion  
ODTH4  
ODTH4  
ODTH8  
tADC  
registering ODT high ODT registered low  
DTH4 (m= 4  
ODmin.) =
ODTH8 (m= 6  
0.3ns to 0.7n
nCK  
Minimum ODT high time after  
Write (BC4)  
registering Write with  
ODT registered low  
ODT high  
nCK  
Minimum ODT high time after  
Write (BL8)  
registering Write with  
ODT registered low  
ODT high  
CK  
ODTLcnw  
RTT valid  
ODTLcwn  
RTT change skew  
tCK
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
117  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Mode Register Settings for Dynamic ODT Mode:  
The table Mode Register for RTT Selection shows the Mode Register bits to select RTT_Nom and RTT_WR values.  
[Mode Register for RTT Selection]  
MR1  
MR2  
RTT_Nom  
(RZQ)  
RTT_Nom  
(Ω)  
RTT_WR  
(RZQ)  
RTT_WR*1  
(Ω)  
A9  
0
6  
0
A2  
0
A10  
0
A9  
0
Dynamic ODT OFF: Write does not  
affect RTT value  
off  
off  
0
1
1
1
1
0
1
0
0
1
1
0
RZQ/4  
60  
0
1
RZQ/4  
RZQ/2  
Reserved  
60  
RZQ/2  
120  
1
0
120  
Q/6  
40  
1
1
Reserved  
2*2  
ed  
served  
20  
30  
Reserved  
Reserved  
Notes: 1. RZQ = 240Ω.  
2. If RTT_Nom is ed during WRITEs, only the values RZQ/2, RZQ/4 and RZQ/6 are allowed.  
ODT Timing Diagrams  
T0 T1 T2 T3 T4 T5 T6 9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19  
CK  
/CK  
ODTLcnw  
WRS4  
Command  
ODTH4  
ODTH4  
ODT  
RTT  
ODTLon  
ODTLoff  
m  
tADC .)  
tAON (min.)  
RTT_Nom  
tADC (min.)  
RTT_WR  
tAOF (min.)  
tAOF (max.)  
tAON (max.)  
tADC (max.)  
ODTLcwn4  
DQS, /DQS  
DQ  
in in in in  
0
1
2
3
WL  
Dynamic ODT: Behavior with ODT Being Asserted Before and after the Write
Note: Example for BC4 (via MRS or OTF), AL = 0, CWL = 5. ODTH4 applies to first registering ODT high anthe  
registration of the write command. In this example ODTH4 would be satisfied if ODT is low at T8 clocks  
after the write command).  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
118  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
Command  
ODTH4  
ODT  
ODTLon  
ODTLoff  
tAON (min.)  
tAOF (min.)  
tAOF (max.)  
RTT_Nom  
T  
tAON (max.)  
DQS, /DQ
namic T*: Behavior without Write Command; AL = 0, CWL = 5  
Note: ODTH4 is defined frODT registered high to ODT registered low, so in this example ODTH4 is satisfied;  
ODT registered loT5 would also be legal.  
T0  
T1  
T
T3  
T4  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
ODTLcnw  
ODTLon  
Command  
ODT  
WRS8  
ODTH8  
ODTLoff  
tAON (min.)  
tAOF (min.)  
tAOF (max.)  
RTT_W
RTT  
tADC (max.)  
ODTLcwn8  
DQS, /DQS  
DQ  
in  
0
in  
in  
in  
in  
in  
n  
in  
1
2
3
4
5
WL  
Dynamic ODT*: Behavior with ODT Pin Being Asserted Together with Write Coand  
for Duration of 6 Clock Cycles  
Note: Example for BL8 (via MRS or OTF), AL = 0, CWL = 5. In this example ODTH8 = 6 is exactly satisfied.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
119  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
ODTLcnw  
WRS4  
Command  
ODTH4  
RTT  
ODTLon  
ODTLoff  
tAON (min.)  
tAOF (min.)  
tAOF (max.)  
tADC (min.)  
RTT_Nom  
RTT_WR  
tADC (max.)  
tADC (max.)  
ODTLcwn4  
DQS, /DQS  
DQ  
in  
in  
in  
2
in  
0
1
3
WL  
Dynamic ODT*: havior with ODT eing Asserted Together with Write Command  
for a Duration of 6 Clock Cycles, for BC4 (via MRS or OTF), AL = 0, CWL = 5.  
Note: ODTH4 is defined from ODT registregistered low, so in this example ODTH4 is satisfied;  
ODT registered low at T5 would abe le
T0  
T1  
T2  
T3  
T4  
T
T6  
T7  
T8  
T9  
CK  
/CK  
ODTLcnw  
ODTH4  
Command  
ODT  
WRS4  
ODTLon  
tAON (min.)  
tAOF (min.)  
tmax.)  
RTT_WR  
RTT  
tADC (max.)  
ODTLcwn4  
DQS, /DQS  
DQ  
in  
0
in  
1
in  
in  
2
3
WL  
Dynamic ODT*: Behavior with ODT Pin Being Asserted Together with Write Command  
for Duration of 4 Clock Cycles  
Note: Example for BC4 (via MRS or OTF), AL = 0, CWL = 5. In this example ODTH4 = 4 is exactly satisfied.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
120  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Asynchronous ODT Mode  
Asynchronous ODT mode is selected when DRAM runs in DLL-on mode, but DLL is temporarily disabled (i.e. frozen)  
in precharge power-down (by MR0 bit A12).  
Precharge power-down mode if DLL is disabled during precharge power-down by MR0 bit A12.  
In asynchronous ODT timing mode, internal ODT command is not delayed by Additive Latency (AL) relative to the  
external ODT command.  
In asonous ODT mode, the following timing parameters apply (see figure Asynchronous ODT Timings):  
tAD (.), (max.), tAOFPD (min.),(max.)  
um RTT rn-on time (tAONPD (min.)) is the point in time when the device termination circuit leaves high  
mpedce state and ODT resistance begins to turn on. Maximum RTT turn-on time (tAONPD (max.)) is the point in  
time whethe ODT resistance is fully on. tAONPD (min.) and tAONPD (max.) are measured from ODT being  
mpled high.  
Mium RTtAOFPD (min.)) is the point in time when the devices termination circuit starts to turn off  
the ODT rm ODT turn-off time (tAOFPD (max.)) is the point in time when the on-die termination  
has reachetAOFPD (min.) and tAOFPD (max.) are measured from ODT being sampled low.  
CK  
/CK  
CKE  
tIH  
tIH  
tIS  
tIS  
ODT  
tAOFPD (min.)  
RTT  
DRAM_RTT  
tAONPD (min.)  
tAOFPD (max.)  
Asynchronous ODT Timings on DDR3 SDwFast ODT Transition: AL is Ignored  
In precharge power-down, ODT receiver remains ac, however no read or write command can be issued, as the  
respective address/command receivers may be disabled.  
[Asynchronous ODT Timing Parameters for All Speed Bin
Symbol  
tAONPD  
tAOFPD  
Parameters  
min.  
1
max.  
Unit  
ns  
Asynchronous RTT turn-on delay (power-down with DLL fr
Asynchronous RTT turn-off delay (power-down with DLL
9
9
ns  
[ODT for Power-Down (with DLL Frozen) Entry and Exit Transition Period]  
Description  
min.  
max.  
ODT to RTT turn-on delay  
min {ODTLon × tCK + tAON(min.);  
max {ODTLon × tCK tAON(.);  
tAONPD(min.) }  
tAONPD(max.) }  
min { (WL 2.0) × tCK + tAON(min.); max {(WL 2.0) × tCK + tAON(m
tAONPD(min.) }  
tAONPD(max.) }  
min { ODTLoff × tCK +tAOF(min.);  
tAOFPD(min.) }  
max { ODTLoff × tCK + tAOF(ma
tAOFPD(max.) }  
ODT to RTT turn-off delay  
tANPD  
min { (WL 2.0) × tCK +tAOF(min.); max {(WL 2.0) × tCK + tAOF(max.);  
tAOFPD(min.) }  
tAOFPD(max.) }  
WL 1.0  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
121  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Synchronous to Asynchronous ODT Mode Transition during Power-Down Entry  
If DLL is selected to be frozen in precharge power-down mode by the setting of bit A12 in MR0 to 0 there is a  
transition period around power-down entry, where the DDR3 SDRAM may show either synchronous or  
asynchronous ODT behavior.  
This transition period ends when CKE is first registered low and starts tANPD before that. If there is a Refresh  
command in progress while CKE goes low, then the transition period ends tRFC after the refresh command. tANPD  
is equao (WL 1.0) and is counted (backwards) from the clock cycle where CKE is first registered low.  
ODT on during the transition period may result in an RTT change as early as the smaller of tAONPD(min.)  
aODTL× tCK + tAON(min.)) and as late as the larger of tAONPD(max.) and (ODTLon × tCK + tAON(max.)).  
e-assertn during the transition period may result in an RTT change as early as the smaller of tAOFPD(min.)  
and (OLoff × tCK + tAOF(min.)) and as late as the larger of tAOFPD(max.) and (ODTLoff × tCK + tAOF(max.)).  
Note thatf AL has a large value, the range where RTT is uncertain becomes quite large.  
figure bele three different cases: ODT_A, synchronous behavior before tANPD; ODT_B has a state  
chae duriperiod; ODT_C shows a state change after the transition period.  
REF  
NOP NOP  
Co
CKE  
PD entry transition period  
tANPD  
ODT  
tRFC  
ODT_A_sync  
Oo
F (max.)  
AOF (min.)  
RTT  
DRAM_RTT_A_sync  
ODT_B_tran  
ODTLoff + tAOFPD (max.)  
tAOFPD (max.)  
ODTLoff + tAOFPD (min.)  
tAOFPD (min.)  
DRAM_RTT_B_tran  
ODT_C_async  
tAOFPD (max.)  
tAOFPD (min.)  
RTT  
DRAM_RTT_C_async  
Synchronous to Asynchronous Transition During Precharge Power-Down (DLL Frozen) Entry  
(AL = 0; CWL = 5; tANPD = WL 1 = 4)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
122  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Asynchronous to Synchronous ODT Mode Transition during Power-Down Exit  
If DLL is selected to be frozen in precharge power-down mode by the setting of bit A12 in MR0 to 0, there is also a  
transition period around power-down exit, where either synchronous or asynchronous response to a change in ODT  
must be expected from the DDR3 SDRAM.  
This transition period starts tANPD before CKE is first registered high, and ends tXPDLL after CKE is first registered  
high. tANPD is equal to (WL 1.0) and is counted backward from the clock cycle where CKE is first registered high.  
ODT aertion during the transition period may result in an RTT change as early as the smaller of tAONPD(min.)  
and n × tCK + tAON(min.)) and as late as the larger of tAONPD(max.) and (ODTLon × tCK + tAON(max.)).  
Ode-assion during the transition period may result in an RTT change as early as the smaller of tAOFPD(min.)  
d DTLoff CK + tAOF(min.)) and as late as the larger of tAOFPD(max.) and (ODTLoff × tCK + tAOF(max.)).  
See Ofor Power-Down (with DLL Frozen) Entry and Exit Transition Period table.  
Note that, if AL has a large value, the range where RTT is uncertain becomes quite large. The figure below shows  
tthree differDT_C, asynchronous response before tANPD; ODT_B has a state change of ODT during  
the nsitioshows a state change of ODT after the transition period with synchronous response.  
T5 T7 T9 T11 T13 T15 T17 T19 T21 T23 T25 T27 T29 T31 T33 T35  
Com
NOP NOP  
CKE  
PD exit transition period  
tANPD  
tXPDLL  
ODT_C_async  
tAOFPD
tAOFPD (
DRAM_RTT_C_async  
ODT_B_tran  
RTT  
tAOFPD (min.)  
ODTLoff + tAOF (min.)  
DTLoff + tAOF (max.)  
)  
DRAM_RTT_B_tran  
ODT_A_sync  
ODf  
tAOF (max.)  
tAOF (min.)  
RTT  
DRAM_RTT_A_sync  
Asynchronous to Synchronous Transition during Precharge Power-Down (with DLL zen) E
(CL = 6; AL = CL - 1; CWL = 5; tANPD= WL 1 = 9)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
123  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Asynchronous to Synchronous ODT Mode during Short CKE high and Short CKE Low Periods  
If the total time in precharge power-down state or idle state is very short, the transition periods for power-down entry  
and power-down exit may overlap. In this case the response of the DDR3 SDRAM RTT to a change in ODT state at  
the input may be synchronous OR asynchronous from the start of the power-down entry transition period to the end  
of the PD exit transition period (even if the entry period ends later than the exit period).  
If the total time in idle state is very short, the transition periods for power-down exit and power-down entry may  
overlapIn this case the response of the DDR3 SDRAM RTT to a change in ODT state at the input may be  
syncs OR asynchronous from the start of the power-down exit transition period to the end of the power-down  
enransiperiod.  
tat in thootom part of figure below it is assumed that there was no refresh command in progress when idle  
state wentered.  
CK  
/CK  
Comand  
NOP NOP  
NOP NOP  
CKE  
ANPD  
tRFC  
PD entry transition period  
PD exit transition period  
tXPDLL  
tANPD  
hort CKE low transition period  
CKE  
tA
tXPDLL  
tXPDLL  
tANPD  
short CKE h transition period  
Transition Period for Short CKE Cycwith Entry and Exit Period Overlapping  
(AL = 0, WL = tANPD = WL 1 = 4)  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
124  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
ZQ Calibration  
ZQ calibration command is used to calibrate DRAM RON and ODT values over PVT. DDR3 SDRAM needs longer  
time to calibrate RON and ODT at initialization and relatively smaller time to perform periodic calibrations.  
ZQCL command is used to perform the initial calibration during power-up initialization sequence. This command may  
be issued at any time by the controller depending on the system environment. ZQCL command triggers the  
calibratin engine inside the DRAM and once calibration is achieved the calibrated values are transferred from  
calibengine to DRAM I/O which gets reflected as updated RON and ODT values.  
Trst ZQcommand issued after reset is allowed a timing period of tZQinit to perform the full calibration and the  
r of vals. All other ZQCL commands except the first ZQCL command issued after RESET is allowed a  
timing riod of tZQoper.  
ZQCS comand is used to perform periodic calibrations to account for VT variations. A shorter timing window is  
vided to peribration and transfer of values as defined by timing parameter tZQCS.  
No er acerformed on the DRAM channel by the controller for the duration of tZQinit, tZQoper or  
tZQCS. ThDRAM channel helps in accurate calibration of RON and ODT. Once DRAM calibration  
is achieved disable ZQ current consumption path to reduce power.  
All banks med and P met before ZQCL or ZQCS commands are issued by the controller.  
ZQ calibration cds can be issued in parallel to DLL lock time when coming out of self-refresh. Upon self-  
refresh exit, DDR3 SDRAM ll not perform an IO calibration without an explicit ZQ calibration command. The  
earliest possible time for Calibration command (short or long) after self-refresh exit is tXS.  
In dual rank systems tshare the ZQ resistor between devices, the controller must not allow any overlap of  
tZQoper or tZQinit or tZQCetween ranks.  
CK  
Valid  
Command  
A10  
ZQCL  
NOPL  
ZQCS  
NOP/DESL  
A10 = H  
X
A10 = L  
X
Address  
CKE  
tZQinit or tZQ oper  
Hi-Z  
tZQCS  
H
DQ Bus*2  
Activities  
Activities  
Notes: 1. ODT must be disabled via ODT signal or MRS during calibration p
2. All device connected to DQ bus should be High impedance during calib.  
ZQ Calibration  
ZQ External Resistor Value and Tolerance  
DDR3 SDRAM has a 240Ω, 1% tolerance external resistor connecting from the DDR3 SDZQ piground.  
The resister can be used as single DRAM per resistor.  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
125  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Package Drawing  
78-ball FBGA  
Solder ball: Lead free (Sn-Ag-Cu)  
Unit: mm  
9.8 ± 0.1  
0.2 S B  
INDEX MARK  
0.2 S A  
0.2  
1.20 max.  
S
.05  
0.1  
S
A
78-φ0.45 ± 0.05  
B
A
INDEX MARK  
1.6 0.8  
6.4  
ECA-TS2-0159-01  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
126  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
96-ball FBGA  
Solder ball: Lead free (Sn-Ag-Cu)  
Unit: mm  
9.8 ± 0.1  
0.2 S B  
INDEX MARK  
0.2 S A  
S
1.20 max.  
S
0.35 ± 0.05  
0.1  
S
M
S A B  
96-φ0.4
0.12  
B
A
INDEX MARK  
1.6 0.8  
6.4  
ECA-TS2-0166-01  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
127  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
Recommended Soldering Conditions  
Please consult with our sales offices for soldering conditions of the EDJ5304BASE, EDJ5308BASE, EDJ5316BASE.  
Type of Surface Mount Device  
EDJ53BASE, EDJ5308BASE: 78-ball FBGA < Lead free (Sn-Ag-Cu) >  
ED16BE: 96-ball FBGA < Lead free (Sn-Ag-Cu) >  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
128  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR MOS DEVICES  
Exposing the MOS devices to a strong electric field can cause destruction of the gate  
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it, when once  
has occurred. Environmental control must be adequate. When it is dry, humidifier  
shld be used. It is recommended to avoid using insulators that easily build static  
electity. MOS devices must be stored and transported in an anti-static container,  
static shielding bag or conductive material. All test and measurement tools including  
rk bench and floor should be grounded. The operator should be grounded using  
wrist strOS devices must not be touched with bare hands. Similar precautions  
need for PW boards with semiconductor MOS devices on it.  
2
HASED INPUT PINS FOR CMOS DEVICES  
No r CMS devices input pins can be a cause of malfunction. If no  
connrovideo the input pins, it is possible that an internal input level may be  
generated due to oise, etc., hence causing malfunction. CMOS devices behave  
differently than olar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by ng a pull-up or pull-down circuitry. Each unused pin should be connected  
to VDD or GND h a resistor, if it is considered to have a possibility of being an output  
pin. The unused s must be handin accordance with the related specifications.  
3
STATUS BEFORE INITIALIZATIOVICES  
Power-on does not necessadefistatus of MOS devices. Production process  
of MOS does not define the initial operation status of the device. Immediately after the  
power source is turned ON, the MOS devis with reset function have not yet been  
initialized. Hence, power-on does not grane output pin levels, I/O settings or  
contents of registers. MOS devices are ot initialized until the reset signal is received.  
Reset operation must be executed immediately aower-on for MOS devices having  
reset function.  
CME0107  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
129  
EDJ5304BASE, EDJ5308BASE, EDJ5316BASE  
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
expess, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rif Elpida Memory, Inc. or others.  
escripns of circuits, software and other related information in this document are provided for  
strative urposes in semiconductor product operation and application examples. The incorporation of  
the circuits, software and information in the design of the customer's equipment shall be done under  
the l responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by cumers or third parties arising from the use of these circuits, software and information.  
Product ]  
e awact is for use in typical electronic equipment for general-purpose applications.  
Elpida es every attempt to ensure that its products are of high quality and reliability.  
Howevtructed to contact Elpida Memory's sales office before using the product in  
aerosp, nuclar power, combustion control, transportation, traffic, safety equipment,  
medical or life pport, or other such application in which especially high quality and  
reliability is ded or ere its failure or malfunction may directly threaten human life or cause risk  
of bodily injury.  
[Product usage]  
Design your applicn so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., cluding the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installatconditions and otrelated characteristics. Elpida Memory, Inc. bears no  
responsibility for failure damage wheroduct is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed conditions, consider normally foreseeable failure  
rates or failure modes in semiconductemploy systemic measures such as fail-safes, so  
that the equipment incorporating ElpMeproducts does not cause bodily injury, fire or other  
consequential damage due to the oation oida Memory, Inc. product.  
[Usage environment]  
Usage in environments with special characteristics abelow was not considered in the design.  
Accordingly, our company assumes no responsibifor los of a customer or a third party when used in  
environments with the special characteristics lisbelow.  
Example:  
1) Usage in liquids, including water, oils, chemicals anents.  
2) Usage in exposure to direct sunlight or the outdoorslaces.  
3) Usage involving exposure to significant amounts of cas, including sea air, CL2, H2S, NH3,  
SO2, and NO .  
x
4) Usage in environments with static electricity, or strong electromes radiation.  
5) Usage in places where dew forms.  
6) Usage in environments with mechanical vibration, impact, or str
7) Usage near heating elements, igniters, or flammable items.  
If you export the products or technology described in this document that are rolled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary cedures accordance  
with the relevant laws and regulations of Japan. Also, if you export productechnolcontrolled by  
U.S. export control regulations, or another country's export control laws or regutioyou must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third pis graed  
license to use these products, that third party must be made aware that they are ponsiblor  
compliance with the relevant laws and regulations.  
M016  
Preliminary Data Sheet E0966E60 (Ver. 6.0)  
130  

相关型号:

EDJ5308AASE-DG-E

DDR DRAM, 64MX8, CMOS, PBGA78, ROHS COMPLIANT, MICRO, BGA-78
ELPIDA

EDJ5308AASE-DJ-E

DDR DRAM, 64MX8, CMOS, PBGA78, ROHS COMPLIANT, MICRO, BGA-78
ELPIDA

EDJ5308BASE-8A-E

512M bits DDR3 SDRAM
ELPIDA

EDJ5308BASE-8C-E

512M bits DDR3 SDRAM
ELPIDA

EDJ5308BASE-AC-E

512M bits DDR3 SDRAM
ELPIDA

EDJ5308BASE-AE-E

512M bits DDR3 SDRAM
ELPIDA

EDJ5308BASE-AG-E

512M bits DDR3 SDRAM
ELPIDA

EDJ5308BASE-DG-E

512M bits DDR3 SDRAM
ELPIDA

EDJ5308BASE-DJ-E

512M bits DDR3 SDRAM
ELPIDA

EDJ5308BBBG-AE-F

DDR DRAM, 64MX8, 20ns, CMOS, PBGA78, ROHS COMPLIANT, FBGA-78
ELPIDA

EDJ5308BBBG-DG-F

DDR DRAM, 64MX8, 20ns, CMOS, PBGA78, ROHS COMPLIANT, FBGA-78
ELPIDA

EDJ5308BBBG-DJ-F

DDR DRAM, 64MX8, 20ns, CMOS, PBGA78, ROHS COMPLIANT, FBGA-78
ELPIDA