CMT2150AW-ESR [ETC]

240 – 480 MHz OOK Stand-Alone Transmitter with Encoder;
CMT2150AW-ESR
型号: CMT2150AW-ESR
厂家: ETC    ETC
描述:

240 – 480 MHz OOK Stand-Alone Transmitter with Encoder

文件: 总31页 (文件大小:916K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMT2150AW  
240 – 480 MHz OOK Stand-Alone Transmitter with Encoder  
Features  
Applications  
Embedded EEPROM  
Low-Cost Consumer Electronics Applications  
Home and Building Automation  
Remote Fan Controllers  
Very Easy Development with RFPDK  
All Features Programmable  
Frequency Range: 240 to 480 MHz  
Symbol Rate: 0.5 to 40 ksps  
Infrared Transmitter Replacements  
Industrial Monitoring and Controls  
Remote Lighting Control  
Output Power: -10 to +13 dBm  
Current Consumption: 8.5 mA @ +10 dBm  
Sleep Current: < 20 nA  
Wireless Alarm and Security Systems  
Remote Keyless Entry (RKE)  
Stand-Alone, No External MCU Control Required  
Embedded 1920, 1527 and 2262 Data Encoder  
Up to 7 Configurable Data Pins for Push Buttons  
LED Indicator for Low Battery Detection and Transmission  
Sync ID Auto-Study with CMOSTEK Receiver  
FCC / ETSI Compliant  
Ordering Information  
Package  
Option  
T&R  
Part Number  
Frequency  
MOQ  
RoHS Compliant  
CMT2150AW-ESR  
CMT2150AW-ESB  
433.92 MHz  
433.92 MHz  
2,500 pcs  
1,000 pcs  
14-pin SOP Package  
Tube  
More Ordering Info: See Page 26  
Descriptions  
The CMT2150AW is a true single-chip, highly flexible, high  
performance, OOK RF transmitter with embedded data  
encoder ideal for 240 to 480 MHz wireless applications.  
The device integrates a data encoder that is not only  
compatible with the most common used encoding format of  
1527 and 2262, but also a more efficient, flexible and  
powerful format of 1920 designed by CMOSTEK. Up to 7  
configurable push buttons are supported in multiple button  
modes. When pairing the device to CMOSTEK receiver,  
the synchronization ID can be programmed into both of the  
transmitter and receiver during the manufacturing phase,  
or studied by the receiver from the transmitter remotely by  
end customers. An embedded EEPROM allows the RF and  
encoder parameters to be programmed into the chip using  
the CMOSTEK USB Programmer and the RFPDK.  
Alternatively, in stock product of 433.92 MHz is available  
for immediate demands without the need of EEPROM  
programming. The CMT2150AW is part of the CMOSTEK  
NextGenRFTM family, together with CMT225x series  
receivers, they enable ultra low cost, low power  
consumption RF links.  
SOP14  
LED  
VDD  
GND  
RFO  
K7  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
XTAL  
CLK  
DATA  
K1  
K2  
K3  
K6  
8
K4  
K5  
CMT2150AW  
Rev 0.8 | Page 1/31  
www.hoperf.com  
Copyright © By CMOSTEK  
CMT2150AW  
Typical Application  
CMT2150AW  
X1  
D1  
VDD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
ANT  
J1  
1
XTAL  
VDD  
CLK  
DATA  
LED  
VDD  
CLK  
CLK  
L1  
C0  
2
3
4
DATA  
DATA  
GND  
RFO  
K7  
C1  
L2  
SW1  
SW2  
SW3  
SW4  
K1  
K2  
U1  
SW7  
SW6  
K6  
C2  
K3  
K4  
Note: Connector J1 is for  
EEPROM Programming  
8
SW5  
K5  
Figure 1. CMT2150AW Typical Application Schematic  
Table 1. BOM of 315/433.92 MHz Typical Application  
Value  
Unit  
Manufacturer  
Designator  
Descriptions  
315 MHz  
433.92 MHz  
CMT2150AW, 240 – 480 MHz OOK stand-alone  
transmitter with encoder  
U1  
-
-
CMOSTEK  
X1  
C0  
±20 ppm, SMD32*25 mm crystal  
±20%, 0402 X7R, 25 V  
26  
MHz  
uF  
pF  
pF  
nH  
nH  
-
EPSON  
Murata GRM15  
Murata GRM15  
Murata GRM15  
Murata LQG18  
Murata LQG18  
-
0.1  
C1  
±5%, 0402 NP0, 50 V  
82  
9.1  
180  
39  
82  
9.1  
180  
22  
C2  
±5%, 0402 NP0, 50 V  
L1  
±5%, 0603 multi-layer chip inductor  
±5%, 0603 multi-layer chip inductor  
D0603, red LED  
L2  
D1  
-
-
SW[7:1]  
Push buttons  
-
-
Rev 0.8 | Page 2/31  
www.hoperf.com  
CMT2150AW  
Abbreviations  
Abbreviations used in this data sheet are described below  
AN  
Application Notes  
Bill of Materials  
OOK  
PA  
On-Off Keying  
BOM  
BSC  
BW  
Power Amplifier  
Basic Spacing between Centers  
Bandwidth  
PC  
Personal Computer  
Printed Circuit Board  
Phase Lock Loop  
Phase Noise  
PCB  
PLL  
DC  
Direct Current  
EEPROM  
Electrically Erasable Programmable Read-Only PN  
Memory  
RBW  
Resolution Bandwidth  
Reference Clock  
Radio Frequency  
ESD  
ESR  
GUI  
Electro-Static Discharge  
Equivalent Series Resistance  
Graphical User Interface  
Integrated Circuit  
Low Drop-Out  
RCLK  
RF  
RFPDK  
RoHS  
Rx  
RF Product Development Kit  
Restriction of Hazardous Substances  
Receiving, Receiver  
Small-Outline Transistor  
To Be Determined  
IC  
LDO  
Max  
MCU  
Min  
Maximum  
SOT  
Microcontroller Unit  
Minimum  
TBD  
Tx  
Transmission, Transmitter  
Typical  
MOQ  
NP0  
OBW  
Minimum Order Quantity  
Negative-Positive-Zero  
Occupied Bandwidth  
Typ  
XO/XOSC  
XTAL  
Crystal Oscillator  
Crystal  
Rev 0.8 | Page 3/31  
www.hoperf.com  
CMT2150AW  
Table of Contents  
1. Electrical Characteristics............................................................................................................................................ 5  
1.1 Recommended Operating Conditions ................................................................................................................... 5  
1.2 Absolute Maximum Ratings................................................................................................................................... 5  
1.3 Transmitter Specifications..................................................................................................................................... 6  
1.4 Crystal Oscillator................................................................................................................................................... 7  
2. Pin Descriptions .......................................................................................................................................................... 8  
3. Typical Performance Characteristics......................................................................................................................... 9  
4. Typical Application Schematics ............................................................................................................................... 10  
4.1 Low-Cost Application Schematic......................................................................................................................... 10  
4.2 FCC/ETSI Compliant Application Schematic....................................................................................................... 11  
5. Functional Descriptions............................................................................................................................................ 12  
5.1 Overview............................................................................................................................................................. 12  
5.2 Modulation, Frequency and Symbol Rate ........................................................................................................... 12  
5.3 Embedded EEPROM and RFPDK ...................................................................................................................... 13  
5.4 Power Amplifier................................................................................................................................................... 15  
5.5 PA Ramping........................................................................................................................................................ 15  
5.6 Working States.................................................................................................................................................... 16  
5.7 The Encoder........................................................................................................................................................ 17  
5.7.1 1920 Packet Structure............................................................................................................................................17  
5.7.2 1527 Packet Structure............................................................................................................................................18  
5.7.3 2262 Packet Structure............................................................................................................................................19  
5.8 ID Study .............................................................................................................................................................. 20  
5.9 Button Modes...................................................................................................................................................... 20  
5.9.1 Normal......................................................................................................................................................................20  
5.9.2 Matrix........................................................................................................................................................................21  
5.9.3 Toggle.......................................................................................................................................................................22  
5.9.4 PWM.........................................................................................................................................................................23  
5.10 LED Driving Capability ........................................................................................................................................ 24  
5.11 Low Battery Detection (LBD)............................................................................................................................... 24  
5.12 Crystal Oscillator and RCLK................................................................................................................................ 24  
6. Ordering Information................................................................................................................................................. 26  
7. Package Outline......................................................................................................................................................... 27  
8. Top Marking ............................................................................................................................................................... 28  
8.1 CMT2150AW Top Marking.................................................................................................................................. 28  
9. Other Documentations.............................................................................................................................................. 29  
10. Document Change List.............................................................................................................................................. 30  
11. Contact Information .................................................................................................................................................. 31  
Rev 0.8 | Page 4/31  
www.hoperf.com  
CMT2150AW  
1. Electrical Characteristics  
VDD = 3.3 V, TOP = 25 , FRF = 433.92 MHz, output power is +10 dBm terminated in a matched 50 Ω impedance, unless  
otherwise noted.  
1.1 Recommended Operating Conditions  
Table 2. Recommended Operation Conditions  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Operation Voltage Supply  
Operation Temperature  
Supply Voltage Slew Rate  
VDD  
TOP  
1.8  
-40  
1
3.6  
85  
V
mV/us  
1.2 Absolute Maximum Ratings  
Table 3. Absolute Maximum Ratings[1]  
Parameter  
Supply Voltage  
Symbol  
Conditions  
Min  
Max  
Unit  
VDD  
VIN  
-0.3  
-0.3  
-40  
-50  
3.6  
VDD + 0.3  
125  
V
V
Interface Voltage  
Junction Temperature  
Storage Temperature  
Soldering Temperature  
ESD Rating  
TJ  
kV  
mA  
TSTG  
TSDR  
150  
Lasts at least 30 seconds  
Human Body Model (HBM)  
@ 85 ℃  
255  
-2  
2
Latch-up Current  
Note:  
-100  
100  
[1]. Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating  
conditions for extended periods may affect device reliability.  
Caution! ESD sensitive device. Precaution should be used when handling the device in order  
to prevent permanent damage.  
Rev 0.8 | Page 5/31  
www.hoperf.com  
 
 
 
CMT2150AW  
1.3 Transmitter Specifications  
Table 4. Transmitter Specifications  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Frequency Range[1]  
FRF  
240  
480  
MHz  
Synthesizer Frequency  
Resolution  
FRES  
198  
Hz  
Maximum Output Power  
Minimum Output Power  
Output Power Step Size  
PA Ramping Time[2]  
POUT(Max)  
POUT(Min)  
PSTEP  
+13  
-10  
1
dBm  
dBm  
dB  
tRAMP  
0
1024  
us  
0 dBm  
5.9  
8.1  
8.8  
6
mA  
mA  
mA  
mA  
mA  
mA  
nA  
Current Consumption[3]  
@ 315 MHz  
IDD-315  
+10 dBm  
+13 dBm  
0 dBm,  
Current Consumption [3]  
@ 433.92 MHz  
IDD-433.92  
+10 dBm  
+13 dBm  
8.5  
10.2  
20  
Sleep Current  
Symbol Rate  
ISLEEP  
SR  
0.5  
40  
ksps  
From XO stable to ready to transmit,  
include the frequency calibration  
Frequency Tune Time  
tTUNE  
370  
us  
100 kHz offset from FRF  
-80  
-81  
-91  
-96  
-108  
-60  
-65  
-52  
-57  
60  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBm  
200 kHz offset from FRF  
Phase Noise  
PN  
400 kHz offset from FRF  
600 kHz offset from FRF  
1.2 MHz offset from FRF  
H2315  
H3315  
2nd harm @ 630 MHz, +13 dBm POUT  
3rd harm @ 945 MHz, +13 dBm POUT  
2nd harm @ 867.84 MHz, +13 dBm POUT  
3rd harm @ 1301.76 MHz, +13 dBm POUT  
Harmonics Output for 315  
MHz[4]  
dBm  
H2433.92  
H3433.92  
dBm  
Harmonics Output for  
433.92 MHz[4]  
dBm  
OOK Extinction Ration  
dB  
Occupied Bandwidth @  
315 MHz  
Measured @ -20 dBc, RBW = 1 kHz, SR =  
1.2 ksps, tRAMP = 256 us  
FOBW315  
6
7
kHz  
kHz  
Occupied Bandwidth @  
433.92 MHz  
Measured @ -20 dBc, RBW = 1 kHz, SR =  
1.2 ksps, tRAMP = 256 us  
FOBW433.92  
Notes:  
[1]. The frequency range is continuous over the specified range.  
[2]. 0 and 2n us, n = 0 to 10, when set to “0”, the PA output power will ramp to its configured value in the shortest possible  
time.  
[3]. The working currents are tested with: 1527 packet format/Normal button mode/ 4 push buttons/Sync ID = 0/No LED.  
[4]. The harmonics output is measured with the application shown as Figure 10.  
Rev 0.8 | Page 6/31  
www.hoperf.com  
 
CMT2150AW  
1.4 Crystal Oscillator  
Table 5. Crystal Oscillator Specifications  
Parameter  
Crystal Frequency[1]  
Crystal Tolerance[2]  
Load Capacitance[3]  
Crystal ESR  
Symbol  
Conditions  
Min  
Typ  
26  
Max  
Unit  
MHz  
ppm  
pF  
FXTAL  
26  
26  
±20  
CLOAD  
Rm  
12  
20  
60  
Ω
XTAL Startup Time[4]  
tXTAL  
400  
us  
Notes:  
[1]. The CMT2150AW can directly work with external 26 MHz reference clock input to XTAL pin (a coupling capacitor is  
required) with amplitude 0.3 to 0.7 Vpp.  
[2]. This is the total tolerance including (1) initial tolerance, (2) crystal loading, (3) aging, and (4) temperature dependence.  
The acceptable crystal tolerance depends on RF frequency and channel spacing/bandwidth.  
[3]. The required crystal load capacitance is integrated on-chip to minimize the number of external components.  
[4]. This parameter is to a large degree crystal dependent.  
Rev 0.8 | Page 7/31  
www.hoperf.com  
 
CMT2150AW  
2. Pin Descriptions  
LED  
VDD  
GND  
RFO  
K7  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
XTAL  
CLK  
DATA  
K1  
K2  
K3  
K6  
8
K4  
K5  
Figure 2. CMT2150AW Pin Assignments  
Table 6. CMT2150AW Pin Descriptions  
Pin Number  
Name  
I/O  
Descriptions  
1
2
LED  
VDD  
GND  
RFO  
K[7:1]  
DATA  
CLK  
O
I
LED driver, active low  
Power supply input  
Ground  
3
I
4
O
I
Power amplifier output  
Push button 7 to 1  
5 - 11  
12  
13  
IO  
I
Data pin to access the embedded EEPROM, internally pulled up to VDD  
Clock pin to access the embedded EEPROM, internally pulled up to VDD  
26 MHz single-ended crystal oscillator input or  
14  
XTAL  
I
External 26 MHz reference clock input  
Rev 0.8 | Page 8/31  
www.hoperf.com  
 
CMT2150AW  
3. Typical Performance Characteristics  
Harmonics of 433.92 MHz  
Phase Noise  
20  
10  
0
20  
13.6 dBm  
@ 433.92 MHz  
3rd Harmonic  
13.4dBm  
@ 433.92 MHz  
-50  
-60  
-70  
-80  
-90  
-57 dBm  
@1301.76  
MHz  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
1301.72  
1301.75  
1301.78  
1301.81  
Freq (MHz) (RBW=1 kHz)  
-52.0 dBm  
@ 867.84 MHz  
-56.8 dBm  
@ 435.12 MHz  
250  
365  
480  
595  
710  
825  
940  
1055  
1170  
1285  
1400  
432.42 432.72 433.02 433.32 433.62 433.92 434.22 434.52 434.82 435.12 435.42  
Frequency (MHz) (RBW = 10 kHz)  
Frequency (MHz)  
Figure 3. Phase Noise, FRF = 433.92 MHz,  
OUT = +13 dBm, RBW = 10 kHz, Un-encoded  
Figure 4. Harmonics of 433.92 MHz,  
OUT = +13 dBm  
P
P
Spectrum of Various PA Ramping Options  
OOK Spectrum  
10  
0
20  
128 us  
64 us  
32 us  
16 us  
8 us  
10  
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
4 us  
-60  
433.17  
433.37  
433.57  
433.77  
433.97  
434.17  
434.37  
434.57  
432.92 433.12 433.32 433.52 433.72 433.92 434.12 434.32 434.52 434.72 434.92  
Frequency (MHz)  
Frequency (MHz)  
Figure 5. OOK Spectrum,  
Figure 6. Spectrum of PA Ramping,  
SR = 9.6 ksps, POUT = +10 dBm  
POUT = +10 dBm, tRAMP = 32 us  
Spectrum of Various PA Ramping Options  
POUT vs. VDD  
10  
16  
1024 us  
512 us  
256 us  
128 us  
64 us  
32 us  
14  
12  
10  
8
0
SR = 1.2 ksps  
-10  
-20  
13 dBm  
10 dBm  
0 dBm  
6
4
-30  
-40  
-50  
2
0
-2  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
433.17  
433.37  
433.57  
433.77  
433.97  
434.17  
434.37  
434.57  
Supply Voltage (V)  
Frequency (MHz)  
Figure 8. Spectrum of PA Ramping,  
SR = 1.2 ksps, POUT = +10 dBm  
Figure 7. Output Power vs. Supply  
Voltages, FRF = 433.92 MHz  
Rev 0.8 | Page 9/31  
www.hoperf.com  
 
CMT2150AW  
4. Typical Application Schematics  
4.1 Low-Cost Application Schematic  
CMT2150AW  
X1  
D1  
VDD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
ANT  
J1  
1
XTAL  
VDD  
CLK  
DATA  
LED  
VDD  
CLK  
CLK  
L1  
C0  
2
3
4
DATA  
DATA  
GND  
RFO  
K7  
C1  
L2  
SW1  
SW2  
SW3  
SW4  
K1  
K2  
U1  
SW7  
SW6  
SW5  
K6  
C2  
K3  
K4  
Note: Connector J1 is for  
EEPROM Programming  
8
K5  
Figure 9. Low-Cost Application Schematic  
Notes:  
1. Connector J1 is a must for the CMT2150AW EEPROM access during development or manufacture phase.  
2. The general layout guidelines are listed below. For more design details, please refer to “AN111 CMT215x Schematic and  
PCB Layout Design Guideline”  
Use as much continuous ground plane metallization as possible.  
Use as many grounding vias (especially near to the GND pins) as possible to minimize series parasitic inductance  
between the ground pour and the GND pins.  
Avoid using long and/or thin transmission lines to connect the components.  
Avoid placing the nearby inductors in the same orientation to reduce the coupling between them.  
Place C0 as close to the CMT2150AW as possible for better filtering.  
3. The table below shows the BOM of 315/433.92 MHz Low-Cost Application. For the BOM of more applications, please  
refer to “AN111 CMT215x Schematic and PCB Layout Design Guideline”.  
Table 7. BOM of 315/433.92 MHz Low-Cost Application  
Value  
315 MHz 433.92 MHz  
Unit  
Manufacturer  
Designator  
Descriptions  
CMT2150AW, 240 – 480 MHz OOK stand-alone  
transmitter with encoder  
U1  
-
-
CMOSTEK  
X1  
C0  
±20 ppm, SMD32*25 mm crystal  
±20%, 0402 X7R, 25 V  
26  
MHz  
EPSON  
Murata GRM15  
Murata GRM15  
Murata GRM15  
Murata LQG18  
Murata LQG18  
-
0.1  
uF  
pF  
pF  
nH  
nH  
-
C1  
±5%, 0402 NP0, 50 V  
82  
9.1  
180  
39  
82  
9.1  
180  
22  
C2  
±5%, 0402 NP0, 50 V  
L1  
±5%, 0603 multi-layer chip inductor  
±5%, 0603 multi-layer chip inductor  
D0603, red LED  
L2  
D1  
-
-
SW[7:1]  
Push buttons  
-
-
Rev 0.8 | Page 10/31  
www.hoperf.com  
 
 
CMT2150AW  
4.2 FCC/ETSI Compliant Application Schematic  
CMT2150AW  
X1  
D1  
VDD  
J1  
1
VDD  
CLK  
DATA  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
ANT  
XTAL  
LED  
VDD  
CLK  
CLK  
2
3
4
L1  
C0  
DATA  
DATA  
GND  
RFO  
K7  
C1  
L2  
L3  
SW1  
SW2  
SW3  
SW4  
K1  
K2  
U1  
SW7  
SW6  
SW5  
Note: Connector J1 is for  
EEPROM Programming  
K6  
C3  
C2  
K3  
K4  
8
K5  
Figure 10. FCC/ETSI Compliant Application Schematic  
Notes:  
1. Connector J1 is a must for the CMT2150AW EEPROM access during development or manufacture phase.  
2. The general layout guidelines are listed below. For more design details, please refer to “AN111 CMT215x Schematic and  
PCB Layout Design Guideline”.  
Use as much continuous ground plane metallization as possible.  
Use as many grounding vias (especially near to the GND pins) as possible to minimize series parasitic inductance  
between the ground pour and the GND pins.  
Avoid using long and/or thin transmission lines to connect the components.  
Avoid placing the nearby inductors in the same orientation to reduce the coupling between them.  
Place C0 as close to the CMT2150AW as possible for better filtering.  
3. The table below shows the BOM of 315/433.92 MHz FCC/ETSI Compliant Application. For the BOM of more application,  
please refer to “AN111 CMT215x Schematic and PCB Layout Design Guideline”.  
Table 8. BOM of 315/433.92 MHz FCC/ETSI Compliant Application  
Value  
315 MHz 433.92 MHz  
Unit  
Manufacturer  
Designator  
Descriptions  
CMT2150AW, 240 – 480 MHz OOK stand-alone  
transmitter with encoder  
-
U1  
CMOSTEK  
X1  
C0  
±20 ppm, SMD32*25 mm crystal  
±20%, 0402 X7R, 25 V  
26  
MHz  
EPSON  
Murata GRM15  
Murata GRM15  
Murata GRM15  
Murata GRM15  
Murata LQG18  
Murata LQG18  
Murata LQG18  
-
0.1  
uF  
pF  
pF  
pF  
nH  
nH  
nH  
-
C1  
±5%, 0402 NP0, 50 V  
68  
18  
68  
15  
C2  
±5%, 0402 NP0, 50 V  
C3  
±5%, 0402 NP0, 50 V  
15  
15  
L1  
±5%, 0603 multi-layer chip inductor  
±5%, 0603 multi-layer chip inductor  
±5%, 0603 multi-layer chip inductor  
D0603, red LED  
180  
51  
180  
36  
L2  
L3  
27  
18  
D1  
-
-
SW[7:1]  
Push buttons  
-
-
Rev 0.8 | Page 11/31  
www.hoperf.com  
 
 
CMT2150AW  
5. Functional Descriptions  
VDD  
LDOs  
GND  
LED  
RFO  
POR  
Bandgap  
VCO  
LED Driver  
XOSC  
XTAL  
Loop  
Filter  
PFD/CP  
PA  
Frac-N DIV  
Modulator  
Encoder  
EEPROM  
Ramp-control  
K[7:1]  
DATA  
CLK  
Interface & Control Logics  
Figure 11. CMT2150AW Functional Block Diagram  
5.1 Overview  
The CMT2150AW is a true single-chip, highly flexible, high performance, OOK RF transmitter with embedded data encoder  
ideal for 240 to 480 MHz wireless applications. It is part of the CMOSTEK NextGenRFTM family, which includes a complete line  
of transmitters, receivers and transceivers. The device integrates a data encoder that is not only compatible with the most  
common used encoding format of 1527 and 2262, but also a more efficient, flexible and powerful format of 1920 designed by  
CMOSTEK. Up to 7 configurable push buttons are supported in multiple button modes. The device is optimized for the low  
system cost, low power consumption, battery powered application with its highly integrated and low power design.  
The functional block diagram of the CMT2150AW is shown in figure above. The CMT2150AW is based on direct synthesis of  
the RF frequency by means of a fully integrated low-noise fractional-N frequency synthesizer. It uses a 1-pin crystal oscillator  
circuit with the required crystal load capacitance integrated on-chip to minimize the number of external components. Every  
analog block is calibrated on each Power-on Reset (POR) to an internal reference voltage source. The calibration can help the  
chip to finely work under different temperatures and supply voltages. The transmission is triggered by pressing the push  
button(s). The data is modulated and sent out by a highly efficient PA which output power can be configured from -10 to +13  
dBm in 1 dB step size. RF Frequency, PA output power and other product features can be programmed into the embedded  
EEPROM by the RFPDK and USB Programmer. This saves the cost and simplifies the product development and  
manufacturing effort. Alternatively, in stock product of 433.92 MHz is available for immediate demands without the need of  
EEPROM programming. The CMT2150AW operates from 1.8 to 3.6 V so that it can finely work with most batteries to their  
useful power limits. It only consumes 8.5 mA when transmitting +10 dBm power at 433.92 MHz under 3.3 V supply voltage.  
5.2 Modulation, Frequency and Symbol Rate  
The CMT2150AW supports OOK modulation with the symbol rate up to 40 ksps. It continuously covers the frequency range  
from 240 to 480 MHz, including the license free ISM frequency band around 315 MHz and 433.92 MHz. The device contains a  
high spectrum purity low power fractional-N frequency synthesizer with output frequency resolution better than 198 Hz. See  
Table 9 for the modulation, frequency and symbol rate specifications.  
Rev 0.8 | Page 12/31  
www.hoperf.com  
 
 
 
CMT2150AW  
Table 9. Modulation, Frequency and Symbol Rate  
Parameter  
Modulation  
Value  
OOK  
Unit  
-
MHz  
Hz  
Frequency  
240 to 480  
198  
Frequency Resolution  
Symbol Rate  
ksps  
0.5 to 40  
5.3 Embedded EEPROM and RFPDK  
The RFPDK (RF Products Development Kit) is a very user-friendly software tool delivered for the user configuring the  
CMT2150AW in the most intuitional way. The user only needs to fill in/select the proper value of each parameter and click the  
“Burn” button to complete the chip configuration. No register access and control is required in the application program. See  
figure below for the accessing of the EEPROM and Table 10 for the summary of all the configurable parameters of the  
CMT2150AW on the RFPDK.  
CMT2150AW  
RFPDK  
EEPROM  
CLK  
CMOSTEK USB  
Programmer  
Interface  
DATA  
Figure 12. Accessing Embedded EEPROM  
For more details of the CMOSTEK USB Programmer and the RFPDK, please refer to “AN113 CMT2150A/2250(1)A One-Way  
RF Link Development Kits User’s Guide”. For the detail of CMT2150AW configurations with the RFPDK, please refer to  
“AN112 CMT2150A Configuration Guideline”.  
Table 10. Configurable Parameters in RFPDK  
Category  
Parameters  
Descriptions  
Default  
Mode  
To input a desired transmitting radio frequency in  
the range from 240 to 480 MHz. The step size is  
0.001 MHz.  
Basic  
Frequency  
433.92 MHz  
Advanced  
To select a proper transmitting output power from  
-10 dBm to +14 dBm, 1 dBm margin is given  
above +13 dBm.  
Basic  
Tx Power  
+13 dBm  
Advanced  
On-chip XOSC load capacitance options: from 10  
to 22 pF.  
Basic  
Advanced  
Basic  
Xtal Cload  
Symbol Rate  
PA Ramping  
15.00 pF  
4.8  
RF Settings  
To determines the symbol rate of the transmitted  
data: from 0.5 to 40 ksps.  
Advanced  
To control PA output power ramp up/down time,  
options are 0 and 2n us (n from 0 to 10).  
This defines the driving current of the LED pin.  
The options are: Disable, 5, 10, 15 or 20 mA.  
0 us  
Advanced  
Advanced  
LED Driving  
Capability  
5 mA  
Rev 0.8 | Page 13/31  
www.hoperf.com  
 
 
 
CMT2150AW  
Category  
Parameters  
Descriptions  
Default  
Mode  
This defines the Low Battery Detection threshold.  
The options are: Disable, 1.7, 1.8, 1.9, 2.0, 2.1,  
2.2, 2.3, 2.4, 2.5, 2.6, 2.7 or 2.8 V.  
LBD  
2.4 V  
Advanced  
Threshold  
Select the packet encoding format, the options  
are: 1920, 1527 and 2262. See Table 13, Table 14  
and Table 15 for the configurable parameters in  
each packet.  
Basic  
Encoder  
1527  
Advanced  
This tells the device how many symbols are used  
to construct a single bit in the 1920 mode. The  
options are: 3, 4, 5 or 6 sym/bit. The Bit Format is  
fixed at 4 sym/bit in 1527 mode and 8 sym/bit in  
2262 mode. It is only available in 1920 mode.  
This defines the minimum number of packet(s)  
being transmitted during each button pressing  
action. It also defines the number of packet(s)  
being transmitted during each periodic  
Basic  
Bit Format  
3
Advanced  
Encoder  
Settings  
Number of  
Packets  
1
Advanced  
transmission. The range is from 1 to 256.  
This defines the time interval amount two  
consecutive transmitted packets. The unit is in  
symbol, the range is from 0 to 255 symbols of  
zero.  
Packet  
Interval  
0 symbols of  
zero  
Basic  
Advanced  
Select the button encoding mode, the options are:  
Normal, Matrix, Toggle and PWM. For 1920 and  
1527 format, all these button modes are  
supported; For 2262 format, only Normal button  
mode is supported.  
Basic  
Button Mode  
Normal  
Advanced  
Select the numbers of on/off button for Toggle and  
PWM button modes, the options are: Single or  
Separated.  
On/Off  
Basic  
Single  
4
Button(s)  
Advanced  
This option is only available in Normal Button  
Mode, and Encoder is set to 1920 and 1527. It  
defines the number of activated button(s) to be  
used in the application. The range is from 1 to 7.  
Allow the user to select whether or not to inverse  
the transmitted data bits values in the Normal and  
Toggle Button Mode. The options are: No or Yes.  
Turn on/off the periodic transmission mode of the  
Number of  
Button(s)  
Basic  
Advanced  
Push Button  
Settings  
Data  
No  
Off  
Advanced  
Advanced  
Inversion  
Periodic  
Transmission device. The options are: On or Off.  
This parameter is only available when Periodic  
Transmission is turned on. It defines the periodic  
time for transmitting a fixed set of data. The range  
is from 2 to 7683.512 s, accurate to 3 decimal  
points. It is only available when Periodic  
Transmission is on.  
Periodic Time  
1.000 s  
Advanced  
Advanced  
Turn on/off the Sync ID study function, the options  
are: On or Off. The ID Study is only supported in  
1920 and 1527 mode.  
Study Settings  
ID Study  
Off  
Rev 0.8 | Page 14/31  
www.hoperf.com  
CMT2150AW  
Category  
Parameters  
Descriptions  
Default  
Mode  
This parameter is only available when ID Study is  
turned on. It defines the time from the instance of  
pressing the study button to the instance at which  
the device starts to transmit the study packets.  
The range is from 1 to 15 second(s).  
Study Trigger  
Time  
5 s  
Advanced  
Advanced  
This parameter is only available when ID Study is  
turned on. It defines which button is used to trigger  
the transmission of the study packets. The options  
are the current buttons used in the Push Button  
Settings.  
Study Button  
Study Power  
Pin 11 (K1)  
This parameter is only available when ID Study is  
turned on. It defines the PA power when the  
device is transmitting the study packets. The  
range is from –10 to +14 dBm.  
Basic  
-6 dBm  
Advanced  
5.4 Power Amplifier  
A highly efficient single-ended Power Amplifier (PA) is integrated in the CMT2150AW to transmit the modulated signal out.  
Depending on the application, the user can design a matching network for the PA to exhibit optimum efficiency at the desired  
output power for a wide range of antennas, such as loop or monopole antenna. Typical application schematics and the  
required BOM are shown in “Chapter 4 Typical Application Schematic”. For the schematic, layout guideline and the other  
detailed information please refer to “AN111 CMT215x Schematic and PCB Layout Design Guideline”.  
The output power of the PA can be configured by the user within the range from -10 dBm to +13 dBm in 1 dB step size using  
the CMOSTEK USB Programmer and RFPDK.  
5.5 PA Ramping  
When the PA is switched on or off quickly, its changing input impedance momentarily disturbs the VCO output frequency. This  
phenomenon is called VCO pulling, and it manifests as spectral splatter or spurs in the output spectrum around the desired  
carrier frequency. By gradually ramping the PA on and off, PA transient spurs are minimized. The CMT2150AW has built-in PA  
ramping configurability with options of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 us, as shown in Figure 13. When the  
option is set to “0”, the PA output power will ramp up to its configured value in the shortest possible time. The ramp down time  
is identical to the ramp up time in the same configuration.  
CMOSTEK recommends that the maximum symbol rate should be no higher than 1/2 of the PA ramping “rate”, as shown in the  
formula below:  
1
tRAMP  
)
SRMax 0.5 * (  
In which the PA ramping “rate” is given by (1/tRAMP). In other words, by knowing the maximum symbol rate in the application,  
the PA ramping time can be calculated by:  
1
tRAMP 0.5 * (  
)
SRMAX  
The user can select one of the values of the tRAMP in the available options that meet the above requirement. If somehow the  
tRAMP is set to be longer than “0.5 * (1/SRMax)”, it will possibly bring additional challenges to the OOK demodulation of the Rx  
device. For more detail of calculating tRAMP, please refer to “AN112 CMT2150A Configuration Guideline”.  
Rev 0.8 | Page 15/31  
www.hoperf.com  
 
 
CMT2150AW  
0 us  
1 us  
2 us  
4 us  
8 us  
512 us  
1024 us  
Time  
Time  
Logic 1  
Logic 0  
Figure 13. PA Ramping Time  
5.6 Working States  
The CMT2150AW has following 4 different working states: SLEEP, XO-STARTUP, TUNE and TRANSMIT. The device stays in  
the SLEEP state when no transmission is performed. Once the button(s) is/are pressed, the device goes through the sequence  
of SLEEP XO-STARTUP TUNE TRANSMIT to transmit the data. After the transmission the device goes back to the  
SLEEP state. When the device works in the periodic transmission mode, the device periodically wakes up from the SLEEP  
state, goes the same sequence, performs the transmission and goes back to the SLEEP state. All the details of push button(s)  
function and periodic transmission can be referred to “AN112 CMT2150A Configuration Guideline”.  
SLEEP  
When the CMT2150AW is in the SLEEP state, all the internal blocks are turned off and the current consumption is minimized to  
20 nA typically.  
XO-STARTUP  
Once the CMT2150AW detects the valid button-pressing event, it will go into the XO-STARTUP state, and the internal XO  
starts to work. The tXTAL is the time for the XO to get stable, it is to a large degree crystal dependent. A typical value of tXTAL is  
provided in the Table 11.  
TUNE  
The frequency synthesizer will tune the CMT2150AW to the desired frequency in the time tTUNE. The PA can be turned on to  
transmit the data generated by the embedded encoder only after the TUNE state is done.  
TRANSMIT  
The CMT2150AW starts to modulate and transmit the data. The data packets being transmitted are generated by the  
embedded encoder, and they are determined by the encoder selected, the button mode and the button being pressed.  
Table 11. Main Timing Spec in Different Working States  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
XTAL Startup Time [1]  
Time to Tune to Desired Frequency[2]  
tXTAL  
tTUNE  
400  
370  
us  
us  
Notes:  
[1]. This parameter is to a large degree crystal dependent.  
[2]. From XO stable to ready to transmit.  
Rev 0.8 | Page 16/31  
www.hoperf.com  
 
 
 
CMT2150AW  
5.7 The Encoder  
The device supports 3 types of encoding formats: 1920, 1527 and 2262. The packets of these 3 modes have different  
structures which will be introduced in below sub-sections. The table below summarizes the major features of the 3 encoding  
formats.  
Table 12. Feature Summary of the 3 Encoding Formats  
Bit Format  
Sync ID Length  
(bits)  
Data Length  
(bits)  
Format  
CRC  
ID Study  
Button Modes[1]  
(sym/bit)  
1920  
1527  
3/4/5/6  
1 – 32  
1 – 7  
Support  
NA  
Support  
Support  
All  
All  
4
8
20  
1 – 7  
2262  
6 – 11  
1 – 6  
NA  
Not Support  
Normal Mode  
Note:  
[1]. Button Modes include Normal Mode, Matrix Mode, Toggle Mode and PWM Mode.  
All the details of these 3 types of encoding formats are given in the document “AN112 CMT2150A Configuration Guideline”. The  
following sections only give the abstracts of these formats. In the below explanations, some elements in the packet are measured  
in the unit of “symbol”, while some of them are measured in the unit of “bit”. For those which have the unit of “bit”, one “bit” is  
constructed (encoded) by several “symbols”. In the figures, “SYM” represents the word “symbol”.  
5.7.1 1920 Packet Structure  
Two types of packet structures are supported for 1920 format: Normal Packet and Study Packet. The following configurable  
parameters are shared by the two structures.  
Table 13. Configurable Parameters in 1920 Packet  
Parameter  
Descriptions  
Default  
Mode  
The size of the valid preamble, the options are: None or  
16-symbol.  
Basic  
Advanced  
Basic  
Preamble  
None  
Address (Sync ID)  
Length  
The range of the Sync ID Length is from 1 to 32 bits.  
32-bit  
0
Advanced  
Basic  
Address (Sync ID)  
Value  
The value of the Sync ID has the range from 0 to 2Length-1.  
Advanced  
Normal Packet  
The normal packet is used to control the data pins of the CMOSTEK receiver CMT2250AW or PWM output of the  
CMT2251AW. It contains a 16-symbol Preamble, a 32-symbol Head_N (which indicates that the current packet is a normal  
packet rather than a study packet), a Sync ID, a Configurable Data Field and an 8-symbol CRC.  
Preamble  
Head_N  
Address (Sync ID)  
D0  
D1  
D2  
D3  
CRC  
16 symbols  
32 symbols  
configurable 1-32 bits  
1 bit 1 bit 1 bit 1 bit  
8 symbols  
Figure 14. 1920 Normal Packet Structure  
Study Packet  
The study packet is used for the CMT2250/51AW to learn the Sync ID from the CMT2150AW in order to pair the two devices. It  
contains an optional Preamble, a 32-symbol Head_S, a Sync ID and an 8-symbol CRC.  
Rev 0.8 | Page 17/31  
www.hoperf.com  
 
 
 
CMT2150AW  
Preamble  
(Optional)  
16-symbol  
Head_S  
32-symbol  
Address (Sync ID)  
configurable 1-32 bits  
CRC  
8-symbol  
Figure 15. 1920 Study Packet Structure  
Bit Format  
In 1920 packet, a single bit can be constructed (encoded) by 3, 4, 5 or 6 symbols. The user can select the desired value of the  
“Bit Format” parameter on the RFPDK. Please note that only the Sync ID field and the D0, D1, D2, D3, D4, D5, D6 have the  
unit of “bit”.  
1 SYM  
2 SYM  
Bit 1  
2 SYM  
Bit 0  
1 SYM  
3 Symbols/Bit  
4 Symbols/Bit  
3 SYM  
Bit 1  
1 SYM  
3 SYM  
1 SYM  
3 SYM  
Bit 0  
2 SYM  
3 SYM  
2 SYM  
5 Symbols/Bit  
Bit 1  
Bit 0  
1 SYM 1 SYM  
2 SYM  
Bit 1  
2 SYM  
1 SYM 1 SYM 1 SYM  
Bit 0  
3 SYM  
6 Symbols/Bit  
Figure 16. 1920 Bit Format Options  
5.7.2 1527 Packet Structure  
Two types of packet structures are supported for 1527 format: Normal Packet and Study Packet. The following configurable  
parameter is shared by the two structures.  
Table 14. Configurable Parameters in 1527 Packet  
Parameter  
Descriptions  
Default  
Mode  
Address (Sync ID)  
Value  
The range of the Sync ID value is from 0 to 220-1. This is  
because the Sync ID Length is fixed at 20 for 1527.  
Basic  
0
Advanced  
In the traditional 1527 format, 8 OSC clocks are equal to 1 LCK, 4 LCK are equal to 1 symbol. By using the CMT2250AW  
pairing with CMT2150AW, the user does not need to adjust the OSC to determine the symbol rate, because the symbol rate is  
directly programmed. The Bit Format is fixed at 4 symbols (16 LCK) per bit.  
Normal Packet  
The traditional 1527 packet contains a 32-symbol Sync, a 20-bit Address (Sync ID) and 4-bit Data. CMOSTEK define a 1527  
Study Packet to support the ID study in 1527 mode. The traditional packet introduced here is called the “Normal Packet”.  
Sync  
32 symbols  
Address (Sync ID)  
configurable 20 bits  
D0  
D1  
D2  
D3  
1 bit 1 bit 1 bit 1 bit  
Figure 17. 1527 Normal Packet Structure  
Rev 0.8 | Page 18/31  
www.hoperf.com  
 
 
CMT2150AW  
Study Packet  
The 1527 Study packet contains a 32-symbol Head_S and a 20-bit Address (Sync ID), as shown below.  
Head_S  
32-symbol  
Address (Sync ID)  
20 bits  
Figure 18. 1527 Study Packet Structure  
Bit Format  
In 1527 packet, a single bit is constructed by 4 symbols, as shown below. The user can select the desired value of the “Bit  
Format” parameter on the RFPDK. Please note that only the Sync ID field and the D0, D1, D2, D3, D4, D5, D6 field have the  
unit of “bit”.  
3 SYM  
Bit 1  
1 SYM  
1 SYM  
3 SYM  
Bit 0  
Figure 19. 1527 Bit Format Options  
5.7.3 2262 Packet Structure  
ID Study is not supported in 2262 mode. Only one packet structure is supported.  
Table 15. Configurable Parameters in 2262 Packet  
Descriptions  
Parameter  
Default  
Mode  
This is the range of the Sync ID Length. The range is from  
6 to 11 bits. This parameter also defines the number of  
data bits, because the total number of Sync ID and Data  
bits is fixed at 12.  
Address (Sync ID)  
Length  
Basic  
8-bit  
Advanced  
Address (Sync ID)  
Value  
The value of each bit of the Sync ID can only be  
represented by 0, 1 or f.  
Basic  
00000000  
Advanced  
In the traditional 2262 format, 4 OSC clocks (1 OSC clock cycle is notated as 1 α) are equal to 1 symbol. By using the  
CMOSTEK products, the user does not need to adjust the OSC to define the symbol rate, because the symbol rate is directly  
programmed. The Bit Format is fixed at 8 symbols per bit.  
Normal Packet  
The traditional 2262 packet contains an 8 to 11-bit Address (Sync ID), a 1 to 4-bit Data, and a 32-symbol Sync.  
Address (Sync ID)  
Data  
Sync  
configurable 8-11 bits  
4-1 bit(s)  
32 symbols  
Figure 20. 2262 Packet Structure  
Bit Format  
In 2262 packet, a single bit is constructed by 8 symbols, as shown below. Please note that only the Address (Sync ID) field and  
the Data field have the unit of “bit”. In the below diagram, 1 OSC clock cycle is notated as 1 α referring to the original 2262  
timing descriptions.  
Rev 0.8 | Page 19/31  
www.hoperf.com  
 
 
CMT2150AW  
3 SYM  
1 SYM  
3 SYM  
1 SYM  
1 SYM  
3 SYM  
1 SYM  
3 SYM  
(12 α)  
(4 α)  
(12 α)  
(4 α)  
(4 α)  
(12 α)  
(4 α)  
(12 α)  
Bit 1  
Bit 0  
1 SYM  
3 SYM  
3 SYM  
1 SYM  
(4 α)  
(12 α)  
(12 α)  
(4 α)  
Bit f  
Figure 21. 2262 Bit Format Options  
5.8 ID Study  
The ID Study function, which is supported in 1920 and 1527 modes, allows the CMT2250/51AW to receive the Sync ID sent by  
the CMT2150AW and burns it into the local EEPROM automatically. Since then, the CMT2250/51AW’s Sync ID is identical to  
that of the CMT2150AW and therefore two devices are paired. The lengths of the Sync ID are different in the different packet  
formats. In 1920 format, it is from 1 to 32 bits. In 1527 format, it is fixed at 20 bits.  
The ID Study is initialized by the CMT2150AW. It is done by executing the following steps:  
1.  
2.  
3.  
Press the Study Button on the CMT2150AW and hold it over the time defined by the “Study Trigger Time”.  
CMT2150AW starts to transmit the Study Packets, wait 1-2 seconds then release the Study Button.  
Try to press a certain button on the CMT2150AW to check if the CMT2250/51AW react correctly.  
The figure below shows the timing characteristic after pressing down a study button. The Study Power is always independently  
configured from the TX Power. In this example, the Study Power is set smaller than the TX Power.  
One Normal  
Packet  
Packet  
Interval  
TX Power = 0 dBm  
One Study  
Packet  
Packet  
Interval  
Study Power = -6 dBm  
time  
Study Time  
(Default is 5 s)  
Study Button  
Pressed  
Study Button  
Released  
Figure 22. Timing of Study Button Pressing Event  
More information about the ID Study can be found in the document “AN112 CMT2150A Configuration Guideline”.  
5.9 Button Modes  
The button modes define the functions of the input pins K1 – K7. The CMT2150AW supports 4 different button modes: Normal,  
Matrix, Toggle and PWM, which are configured on the RFPDK. The following sections give the abstract of each button mode.  
All the details of the button modes are given in the document “AN112 CMT2150A Configuration Guideline”.  
5.9.1 Normal  
The Normal Button Mode is supported in 1920, 1527 and 2262 format. In this mode, the buttons are directly mapped to the  
data field of the packet. Multiple buttons can be pressed at the same time. For 1920 and 1527, the largest number of buttons is  
7 which are defined by the parameter “Number of Button(s)”. For 2262, the largest number of buttons is 6, which is determined  
by the Sync ID Length. The figure below gives an example which 4 push button keys are selected.  
Rev 0.8 | Page 20/31  
www.hoperf.com  
 
 
 
CMT2150AW  
LED  
VDD  
GND  
RFO  
NC  
LED  
VDD  
GND  
RFO  
K7  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
XTAL  
CLK  
K0  
XTAL  
CLK  
NC  
D0  
×
×
×
×
K1  
K2  
D1  
NC  
K6  
K3  
D2  
NC  
K5  
8
K4  
D3  
Figure 23. Normal Button Mode  
In normal button mode, the number of button(s) to be used determines the number of data bits in the packet. The table below  
shows an example that 4 buttons are used and the pins K1 – K4 are mapped to the data D0 – D3, “1” in the Push Buttons  
section means the corresponding button(s) is/are pressed down, while the “1” in the Data Bits section means a logic “1” to be  
transmitted.  
Table 16. Mapping from K1-K4 to D0-D3 in Normal Button Mode  
Push Buttons  
The Data Bits  
K1  
K2  
K3  
K4  
D0  
D1  
D2  
D3  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
5.9.2 Matrix  
The Matrix Button Mode is supported in 1920 and 1527 format. In the Matrix Button Mode, the number of buttons is fixed at 5.  
On the RFPDK, it can be seen that the 5 buttons are assigned to pin 11 (K1) – pin 7 (K5). In this mode, at most two buttons can  
be pressed at the same time. The figure below gives an example of Matrix mode push button arrangement.  
Rev 0.8 | Page 21/31  
www.hoperf.com  
 
CMT2150AW  
LED  
VDD  
GND  
RFO  
NC  
LED  
VDD  
GND  
RFO  
K7  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
XTAL  
CLK  
K0  
XTAL  
CLK  
NC  
B0  
×
×
×
K1  
K2  
B1  
NC  
K6  
K3  
B2  
B4  
K5  
8
K4  
B3  
Figure 24. Matrix Button Mode (Button B)  
The user is able to use the 5 buttons K1(B0) – K5(B4) to generate different combinations of the data D0 – D3 to be transmitted.  
The number of data bits to be transmitted is fixed at 4. The table below shows the matrix. For the K1 – K5 buttons, “1” in the  
Push Buttons section means the corresponding button(s) is/are pressed down, while the “1” in the Data Bits section means a  
logic “1” to be transmitted.  
Table 17. Mapping from K1-K5 to D0-D3 in Matrix Button Mode  
Push Buttons  
K3  
The Data Bits  
K1  
K2  
K4  
K5  
D0  
D1  
D2  
D3  
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
1
1
0
0
0
0
0
1
0
0
0
1
0
0
1
0
0
1
1
0
0
0
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
0
1
0
0
0
1
0
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
5.9.3 Toggle  
The Toggle Button Mode is supported in 1920 and 1527. In this mode, 5 or 6 buttons are used. Four buttons directly mapped to  
the data D0 – D3 are used to control the data. Besides, a single button or two separated buttons used to turn on/off the data  
can be chosen by the parameter “On/Off Button(s)”. In this mode, only one button can be pressed at the same time. Pin 12 (K0)  
and Pin 5 (K7) are never used in this mode. The figure below gives examples of the pin functions in Toggle mode.  
Rev 0.8 | Page 22/31  
www.hoperf.com  
 
CMT2150AW  
LED  
VDD  
GND  
RFO  
NC  
LED  
VDD  
GND  
RFO  
K7  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
XTAL  
CLK  
K0  
XTAL  
CLK  
NC  
LED  
VDD  
GND  
RFO  
NC  
LED  
VDD  
GND  
RFO  
K7  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
XTAL  
CLK  
K0  
XTAL  
CLK  
NC  
×
×
×
×
×
K1  
ON/OFF  
NC  
K1  
ON  
K2  
K2  
OFF  
D0  
D3  
K6  
K3  
D0  
D3  
K6  
K3  
D2  
K5  
8
K4  
D1  
D2  
K5  
8
K4  
D1  
Figure 25. Toggle Button Mode with Single (left) and Separated (right) ON/OFF Button(s)  
For the 4 data buttons mapped to D0 – D3, every time a button is pressed, the generated data bit toggles. For example, if the  
default value of D1 is 0, press K4 down, the D1 is set to 1 in the current transmission, release the K4 and press it down again,  
the D1 is set to 0 in the current transmission, and so on. This is what it means by “Toggle”. See the table below for the  
examples of toggle button mode.  
Table 18. Examples of the Toggle Button Mode  
On/Off Button(s)  
Pressed Button (Times)  
D0  
D1  
D2  
D3  
Press K4 (D1) – 1st Time  
Press K4 (D1) – 2nd Time  
Press K4 (D1) – 3rd Time  
Press K1 – 1st Time (On)  
Press K1 – 2nd Time (Off)  
Press K1 – 3rd Time (On)  
Press K4 (D1) – 1st Time  
Press K4 (D1) – 2nd Time  
Press K4 (D1) – 3rd Time  
Press K1 (On)  
0
0
0
1
0
1
0
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
0
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
1
Single  
(K1 is On/Off)  
Separated  
(K1 is On  
K2 is Off)  
Press K2 (Off)  
Press K1 (On)  
5.9.4 PWM  
The PWM Button Mode is only supported for 1920 and 1527 encoding format. In this mode, 2 buttons are used to send out  
commands to increase or decrease the duty ratio of the PWM output of the CMT2251AW. A single on/off button, or two  
separated on/off buttons can be chosen by the parameter “On/Off Button(s)”. The “On” command sets the PWM output of the  
CMT2251AW to 100% of duty ratio, while the “Off” command sets the PWM output to 0% of duty ratio. In this mode, only one  
button can be pressed at the same time. Pin 12 (K0), Pin 9 (K3), Pin 6 (K6) and Pin 5 (K7) are never used in this mode. The  
commands of On, Off, Increase and Decrease are represented by D0 – D3. The figure below gives examples of the pin  
functions in PWM mode.  
Rev 0.8 | Page 23/31  
www.hoperf.com  
 
CMT2150AW  
LED  
VDD  
GND  
RFO  
NC  
LED  
VDD  
GND  
RFO  
K7  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
XTAL  
CLK  
K0  
XTAL  
CLK  
NC  
LED  
VDD  
GND  
RFO  
NC  
LED  
VDD  
GND  
RFO  
K7  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
XTAL  
CLK  
K0  
XTAL  
CLK  
NC  
×
×
×
×
×
×
×
×
×
K1  
ON/OFF  
NC  
K1  
ON/OFF  
OFF  
NC  
K2  
K2  
NC  
K6  
K3  
NC  
NC  
K6  
K3  
DEC  
K5  
8
K4  
INC  
DEC  
K5  
8
K4  
INC  
Figure 26. PWM Button Mode with Single (left) and Separated (right) ON/OFF Button(s)  
If K1 is used as the On/Off Button, press it down once, the “On” command is transmitted, release and press it down again, the  
“Off” command is transmitted, and so on. In this case, K1 is a “Toggle” button. If the K1 is used as the On Button and K2 is  
used as the Off Button, pressing K1, the “On” command is transmitted; pressing K2, the “Off” command is transmitted.  
5.10 LED Driving Capability  
This defines the maximum current driving capacity on the LED pin. Once the LED pin is enabled, it will light up or flash to  
indicate two events:  
When the chip is transmitting data, the LED will light up until the transmission is finished to notify the user the chip is  
working, when the LBD is disabled, or LBD is enabled but there is no low battery detected.  
When the LBD is enabled and there is valid low battery detection on the button(s) pressing, the LED will flash at least  
5 times at the frequency of 6 Hz to notify the user the battery is running out.  
5.11 Low Battery Detection (LBD)  
This defines the Low Battery Detection threshold. Once the LBD is enabled, the chip will automatically check the battery status  
before each transmission. Once the chip finds that the battery output is less than the detection threshold, the LED will flash at  
least 5 times at the frequency of 6 Hz to notify the user. Once the LED flashes, the performance of the transmission is not  
guaranteed. The user should change the batteries to new ones.  
5.12 Crystal Oscillator and RCLK  
The CMT2150AW uses a 1-pin crystal oscillator circuit with the required crystal load capacitance integrated on-chip. Figure 27  
shows the configuration of the XTAL circuitry and the crystal model. The recommended specification for the crystal is 26 MHz  
with ±20 ppm, ESR (Rm) < 60 Ω, load capacitance CLOAD ranging from 12 to 20 pF. To save the external load capacitors, a set  
of variable load capacitors CL is built inside the CMT2150AW to support the oscillation of the crystal.  
The value of load capacitors is configurable with the CMOSTEK USB Programmer and RFPDK. To achieve the best  
performance, the user only needs to input the desired value of the XTAL load capacitance CLOAD of the crystal (can be found in  
the datasheet of the crystal) to the RFPDK, then finely tune the required XO load capacitance according to the actual XO  
frequency. Please refer to “AN113 CMT2150A/2250(1)A One-Way RF Link Development Kits User’s Guide” for the method of  
choosing the right value of CL.  
Rev 0.8 | Page 24/31  
www.hoperf.com  
 
 
 
CMT2150AW  
Crystal Model  
CMT2150AW  
CMT2150AW  
Cc  
XTAL  
XTAL  
RCLK  
26 MHz  
Rm  
0. 3 0. 7 Vpp  
Cm  
Lm  
C0  
C
L
CL  
Figure 28. RCLK Circuitry  
Figure 27. XTAL Circuitry and Crystal Model  
If a 26 MHz RCLK (reference clock) is available in the system, the user can directly use it to drive the CMT2150AW by feeding  
the clock into the chip via the XTAL pin. This further saves the system cost due to the removal of the crystal. A coupling  
capacitor is required if the RCLK is used. The recommended amplitude of the RCLK is 0.3 to 0.7 Vpp on the XTAL pin. Also,  
the user should set the internal load capacitor CL to its minimum value. See Figure 28 for the RCLK circuitry.  
Rev 0.8 | Page 25/31  
www.hoperf.com  
 
 
CMT2150AW  
6. Ordering Information  
Table 19. CMT2150AW Ordering Information  
Package  
Type  
Package  
Option  
Operating  
Condition  
MOQ /  
Part Number  
Descriptions  
Multiple  
240 – 480 MHz OOK  
CMT2150AW-ESR[1] Stand-Alone Transmitter  
1.8 to 3.6 V,  
SOP14  
SOP14  
Tape & Reel  
Tube  
2,500  
1,000  
-40 to 85   
with Encoder  
240 – 480 MHz OOK  
1.8 to 3.6 V,  
CMT2150AW-ESB[1] Stand-Alone Transmitter  
with Encoder  
-40 to 85 ℃  
Note:  
[1]. “E” stands for extended industrial product grade, which supports the temperature range from -40 to +85 .  
“S” stands for the package type of SOP14.  
“R” stands for the tape and reel package option, the minimum order quantity (MOQ) for this option is 2,500 pcs. “B”  
stands for the tube package option, with the MOQ of 1,000 pcs.  
The default frequency for CMT2150AW is 433.92 MHz, for the other settings, please refer to the Table 10 of Page 13.  
Visit www.cmostek.com/products to know more about the product and product line.  
Contact sales@cmostek.com or your local sales representatives for more information.  
Rev 0.8 | Page 26/31  
www.hoperf.com  
 
CMT2150AW  
7. Package Outline  
D
h
A3  
A1  
0.25  
A
A2  
c
θ
L
L1  
E
E1  
e
b
Figure 29. 14-Pin SOP Package  
Table 20. 14-Pin SOP Package Dimensions  
Size (millimeters)  
Symbol  
Min  
Typ  
Max  
A
A1  
A2  
A3  
b
-
-
1.75  
0.225  
1.50  
0.70  
0.48  
0.26  
8.85  
6.20  
4.10  
0.05  
1.30  
0.60  
0.39  
0.21  
8.45  
5.80  
3.70  
-
1.40  
0.65  
-
C
-
D
8.65  
E
6.00  
E1  
e
3.90  
1.27 BSC  
h
0.25  
0.30  
-
0.50  
0.60  
L
-
L1  
θ
1.05 BSC  
-
0
8°  
Rev 0.8 | Page 27/31  
www.hoperf.com  
 
CMT2150AW  
8. Top Marking  
8.1 CMT2150AW Top Marking  
C M T 2 1 5 0 A  
Y Y W W  
①②③④  
⑤⑥  
Figure 30. CMT2150AW Top Marking  
Table 21. CMT2150AW Top Marking Explanation  
Mark Method :  
Pin 1 Mark :  
Laser  
Circle’s diameter = 1 mm  
Font Size :  
0.35 mm, right-justified  
Line 1 Marking :  
CMT2150A, represents part number CMT2150AW  
YYWW is the Date code assigned by the assembly house. YY represents the last two digits of  
the mold year and WW represents the workweek  
Line 2 Marking :  
①②③④⑤⑥ is the internal tracking number  
Rev 0.8 | Page 28/31  
www.hoperf.com  
 
 
CMT2150AW  
9. Other Documentations  
Table 22. Other Documentations for CMT2150AW  
Brief  
Name  
Descriptions  
Details of CMT2150/57AW PCB schematic and layout  
design rules, RF matching network and other application  
layout design related issues.  
CMT215x Schematic and PCB Layout  
Design Guideline  
AN111  
AN112  
AN113  
AN115  
CMT2150A Configuration Guideline  
Details of configuring CMT2150AW features on the RFPDK.  
User’s Guides for CMT2150AW/2250(1)AW Development  
Kits, including Evaluation Board and Evaluation Module,  
CMOSTEK USB Programmer and RFPDK.  
CMT2150A/2250(1)A One-Way RF Link  
Development Kits User’s Guide  
Provide quick guideline in how to pair the CMT2150/57AW  
with CMT2250/51AW.  
Pairing CMT215x and CMT225x  
Rev 0.8 | Page 29/31  
www.hoperf.com  
 
CMT2150AW  
10.Document Change List  
Table 23. Document Change List  
Rev. No.  
Chapter  
Description of Changes  
Initial released version  
Date  
0.8  
All  
2015-02-11  
Rev 0.8 | Page 30/31  
www.hoperf.com  
 
CMT2150AW  
11.Contact Information  
Hope Microelectronics Co., Ltd  
Address: 2/F,Building3,Pingshan Private Enterprise science and Technology Park,Xili Town,Nanshan District,Shenzhen,China  
Tel: +86-755-82973805  
Fax: +86-755-82973550  
Email: sales@hoperf.com  
hoperf@gmail.com  
Website: http://www.hoperf.com  
http://www.hoperf.cn  
Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.  
The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for  
inaccuracies and specifications within this document are subject to change without notice. The material contained herein is  
the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior  
written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support  
devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of  
CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.  
Rev 0.8 | Page 31/31  
www.hoperf.com  
 

相关型号:

CMT2157AW-ESB

240 – 960 MHz (G)FSK/OOK Stand-Alone Transmitter with Encoder
ETC

CMT2157AW-ESR

240 – 960 MHz (G)FSK/OOK Stand-Alone Transmitter with Encoder
ETC

CMT2180AW-ESR

240 – 960 MHz SoC OOK/(G)FSK Transmitter
ETC

CMT2189AW-ESR

240 – 960 MHz SoC OOK/(G)FSK Transmitter
ETC

CMT2210AW-EQR

Low-Cost 300 – 960 MHz OOK Stand-Alone RF Receiver
ETC

CMT2210AW-ESR

Low-Cost 300 – 960 MHz OOK Stand-Alone RF Receiver
ETC

CMT2210LW

Low-Cost 315/433.92 MHz OOK Stand-Alone Receiver
ETC

CMT2210LW-ESB

Low-Cost 315/433.92 MHz OOK Stand-Alone Receiver
ETC

CMT2210LW-ESR

Low-Cost 315/433.92 MHz OOK Stand-Alone Receiver
ETC

CMT2217AW-EQR

Low-Cost 300 – 960 MHz OOK Stand-Alone RF Receiver
ETC

CMT2250AW-EDB

300 – 480 MHz OOK Receiver with Decoder
ETC

CMT2250AW-EQR

300 – 480 MHz OOK Receiver with Decoder
ETC