DSP56305VF100 [ETC]

DSP|24-BIT|CMOS|BGA|252PIN|PLASTIC ;
DSP56305VF100
型号: DSP56305VF100
厂家: ETC    ETC
描述:

DSP|24-BIT|CMOS|BGA|252PIN|PLASTIC

外围集成电路 时钟
文件: 总120页 (文件大小:2200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Technical Data  
DSP56305/D  
Rev. 3, 1/2002  
24-Bit Digital Signal  
Processor  
51  
6
6
3
Memory Expansion Area  
Program  
Y Memory  
X Memory*  
Memory*  
RAM  
2 K × 24  
RAM  
6.5 K × 24  
ROM  
6 K × 24  
Timer Host ESSI  
SCI  
FCOP VCOP CCOP  
RAM  
3.75 K × 24  
ROM  
3 K × 24  
*default  
*default  
Peripheral  
Expansion Area  
Motorola designed  
the DSP56305 to  
deliver the high  
performancerequired  
to support Global  
System for Mobile  
(GSM)  
YAB  
External  
24  
Address  
Generation  
Unit  
XAB  
PAB  
DAB  
Address  
Bus  
Address  
Switch  
Six Channel  
DMA Unit  
External  
Bus  
24-Bit  
15  
Interface  
&
DSP56300  
Core  
I-Cache  
Control  
Control  
DDB  
YDB  
XDB  
PDB  
GDB  
communications  
applications that use  
digital signal  
24  
Internal  
Data  
External  
Data Bus  
Switch  
Bus  
Data  
Switch  
processingto perform  
channel equalization,  
channel coding, and  
speech coding.  
Power  
EXTAL  
XTAL  
Mngmnt  
Clock  
5
Data ALU  
Generator  
Program  
Program  
Decode  
Program  
Address  
Generator  
+
56-bit MAC  
24 × 24 56  
JTAG  
Interrupt  
Two 56-bit Accumulators  
56-bit Barrel Shifter  
PLL  
Controller  
Controller  
OnCE™  
DE  
MODA/IRQA  
MODB/IRQB  
MODC/IRQC  
MODD/IRQD  
2
RESET  
PINIT/NMI  
Figure 1. DSP56305 Block Diagram  
By combining three dedicated on-chip  
hardware coprocessors (filter, Viterbi, and  
cyclic code) with a DSP56300 core, the  
DSP56305 performs all the complex signal  
processing required by a single radio  
frequency (RF) carrier in one chip, satisfying  
the demand for high integration cost  
effectively. The DSP56300 core includes an  
on-chip PLL, a Data ALU, an instruction  
cache, on-chip debugging modules, on-chip  
program and data memory, six DMA  
channels, and an external memory expansion  
port. In addition to the coprocessors, the  
DSP56305 provides two types of serial ports, a  
PCI/Universal bus 32-bit host interface, and  
timers (see Figure 1). The DSP56305 provides  
an industry-leading performance rate of 100  
MIPS at 3.3 V.  
Table of Contents  
DSP56305 Features............................................................................................................................................ iii  
Product Documentation........................................................................................................................................v  
Product Documentation........................................................................................................................................v  
Chapter 1  
Signal/ Connection Descriptions  
1.1 Signal Groupings.............................................................................................................................................. 1-1  
1.2 Power................................................................................................................................................................ 1-4  
1.3 Ground.............................................................................................................................................................. 1-4  
1.4 Clock ................................................................................................................................................................ 1-4  
1.5 Phase Lock Loop (PLL)................................................................................................................................... 1-5  
1.6 External Memory Expansion Port (Port A)...................................................................................................... 1-5  
1.7 Interrupt and Mode Control ............................................................................................................................. 1-8  
1.8 Host Interface (HI32)..................................................................................................................................... 1-10  
1.9 Enhanced Synchronous Serial Interface 0 (ESSI0)........................................................................................ 1-18  
1.10 Enhanced Synchronous Serial Interface 1 (ESSI1)........................................................................................ 1-20  
1.11 Serial Communication Interface (SCI)........................................................................................................... 1-22  
1.12 Timers............................................................................................................................................................. 1-23  
1.13 JTAG/OnCE Interface.................................................................................................................................... 1-24  
Chapter 2  
Specifications  
2.1 Introduction...................................................................................................................................................... 2-1  
2.2 Maximum Ratings............................................................................................................................................ 2-1  
2.4 Thermal Characteristics ................................................................................................................................... 2-2  
2.5 DC Electrical Characteristics........................................................................................................................... 2-3  
2.6 AC Electrical Characteristics........................................................................................................................... 2-4  
Chapter 3  
Chapter 4  
Packaging  
3.1 Pin-Out and Package Information.................................................................................................................... 3-1  
3.2 MAP-BGA Package Description ..................................................................................................................... 3-2  
3.3 MAP-BGA Package Mechanical Drawing .................................................................................................... 3-13  
Design Considerations  
4.1 Thermal Design Considerations....................................................................................................................... 4-1  
4.2 Electrical Design Considerations..................................................................................................................... 4-2  
4.3 Power Consumption Considerations................................................................................................................ 4-3  
4.4 PLL Performance Issues .................................................................................................................................. 4-4  
4.5 Input (EXTAL) Jitter Requirements................................................................................................................. 4-5  
Appendix A  
Index  
Power Consumption Benchmark  
Data Sheet Conventions  
OVERBAR  
Used to indicate a signal that is active when pulled low (For example, the RESET pin is active when  
low.)  
“asserted”  
“deasserted”  
Examples:  
Means that a high true (active high) signal is high or that a low true (active low) signal is low  
Means that a high true (active high) signal is low or that a low true (active low) signal is high  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
Voltage  
V /V  
PIN  
PIN  
PIN  
PIN  
IL OL  
False  
Deasserted  
Asserted  
V
V
/V  
IH OH  
True  
/V  
IH OH  
False  
Deasserted  
V /V  
IL OL  
Note: Values for V , V , V , and V are defined by individual product specifications.  
IL  
OL  
IH  
OH  
ii  
DSP56305 Features  
High-Performance DSP56300 Core  
• 80/100 million instructions per second (MIPS) with a 80/100 MHz clock at 3.0–3.6 V  
• Object code compatible with the DSP56000 core with highly parallel instruction set  
• Data Arithmetic Logic Unit (Data ALU) with fully pipelined 24 × 24-bit parallel  
Multiplier-Accumulator (MAC), 56-bit parallel barrel shifter (fast shift and normalization; bit stream  
generation and parsing), conditional ALU instructions, and 24-bit or 16-bit arithmetic support under  
software control  
• Program Control Unit (PCU) with Position Independent Code (PIC) support, addressing modes  
optimized for DSP applications (including immediate offsets), on-chip instruction cache controller,  
on-chip memory-expandable hardware stack, nested hardware DO loops, and fast auto-return interrupts  
• Direct Memory Access (DMA) with six DMA channels supporting internal and external accesses;  
one-, two-, and three-dimensional transfers (including circular buffering); end-of-block-transfer  
interrupts; and triggering from interrupt lines and all peripherals  
• Phase Lock Loop (PLL) allows change of low-power Divide Factor (DF) without loss of lock and  
output clock with skew elimination  
• Hardware debugging support including On-Chip Emulation (OnCE ) module, Joint Test Action  
Group (JTAG) Test Access Port (TAP)  
On-Chip Coprocessors  
• The Filter Coprocessor (FCOP) implements a wide variety of convolution and correlation filtering  
algorithms. In GSM applications, the FCOP cross-correlates between the received training sequence  
and a known midamble sequence to estimate the channel impulse response, and then performs match  
filtering of received data symbols using coefficients derived from that estimated channel.  
• The Viterbi Coprocessor (VCOP) implements a Maximum Likelihood Sequential Estimation (MLSE)  
algorithm for channel decoding and equalization (uplink) and channel convolution coding (downlink).  
The VCOP supports constraint lengths (k) of 4, 5, 6, or 7 with number of states 8, 16, 32, or 64,  
respectively; code rates of 1/2, 1/3, 1/4, or 1/6; and trace-back Trellis depth of 36.  
• The Cyclic-code Coprocessor (CCOP) executes cyclic code calculations for data ciphering and  
deciphering, as well as parity code generation and check. The CCOP is fully programmable and not  
dedicated to a specific algorithm, but it is well suited for GSM A5.1 and A5.2 data ciphering  
algorithms. The CCOP can generate mask sequences for data ciphering, and supports Fire encode and  
decode for burst error correction, as well as generation of Cyclic Redundancy Code (CRC) syndrome  
for any polynomial of any degree up to 48.  
On-Chip Peripherals  
• 32-bit parallel PCI/Universal Host Interface (HI32), PCI Rev. 2.1 compliant with glueless interface to  
other DSP563xx buses or ISA interface requiring only 74LS45-style buffers  
• Two enhanced synchronous serial interfaces (ESSI), each with one receiver and three transmitters  
(allows six-channel home theater)  
• Serial communications interface (SCI) with baud rate generator  
• Triple timer module  
• Up to forty-two programmable general-purpose input/output (GPIO) pins, depending on which  
peripherals are enabled  
iii  
On-Chip Memories  
• 192 K × 24-bit bootstrap ROM  
• 6144 K × 24-bit program ROM  
• 3072 K × 24-bit Y data ROM  
• Program RAM, Instruction Cache, X data RAM, and Y data RAM sizes are programmable:  
ProgramRAM Instruction Cache  
Instruction  
Cache  
Switch  
Mode  
X Data RAM Size Y Data RAM Size  
Size  
Size  
6656 × 24 bits  
5632 × 24 bits  
7680 × 24 bits  
6656 × 24 bits  
0
3840 × 24 bits  
3840 × 24 bits  
2816 × 24 bits  
2816 × 24 bits  
2048 × 24 bits  
2048 × 24 bits  
2048 × 24 bits  
2048 × 24 bits  
disabled  
enabled  
disabled  
enabled  
disabled  
disabled  
enabled  
enabled  
1024 × 24 bits  
0
1024 × 24 bits  
Off-Chip Memory Expansion  
• Data memory expansion to two 16 M × 24-bit word memory spaces in 24-Bit mode or two 64 K ×  
16-bit memory spaces in 16-Bit Compatibility mode  
• Program memory expansion to one 16 M × 24-bit words memory space in 24-Bit mode or 64 K ×  
16-bit in 16-Bit Compatibility mode  
• External memory expansion port  
• Chip Select Logic for glueless interface to SRAMs  
• On-chip DRAM Controller for glueless interface to dynamic random access memory (DRAMs)  
Reduced Power Dissipation  
• Very low-power CMOS design  
• Wait and Stop low-power standby modes  
• Fully static design specified to operate down to 0 Hz (dc)  
• Optimized power management circuitry (instruction-dependent, peripheral-dependent, and  
mode-dependent)  
Packaging  
The DSP56305 is available in a 252-pin molded array process-ball grid array (MAP-BGA) package.  
iv  
Product Documentation  
The three documents listed in the following table are required for a complete description of the  
DSP56305 and are necessary to design properly with the part. Documentation is available from the  
following sources. (See the back cover for detailed information.)  
• A local Motorola distributor  
• A Motorola semiconductor sales office  
• A Motorola Literature Distribution Center  
• The World Wide Web (WWW)  
Table 1. DSP56305 Documentation  
Name  
Description  
Order Number  
DSP56300 Family  
Manual  
Detailed description of the DSP56300 family processor core and  
instruction set  
DSP56300FM/AD  
DSP56305 User’s  
Manual  
Detailed functional description of the DSP56305 memory  
configuration, operation, and register programming  
DSP56305UM/D  
DSP56305/D  
DSP56305  
Technical Data  
DSP56305 features list and physical, electrical, timing, and  
package specifications  
v
vi  
Chapter 1  
Signal/  
Connection  
Descriptions  
1.1 Signal Groupings  
The DSP56305 input and output signals are organized into functional groups, as shown in Table 1-1 and  
illustrated in Figure 1-1. The DSP56305 operates from a 3 V supply; however, some of the inputs can  
tolerate 5 V. A special notice for this feature is added to the signal descriptions of those inputs.  
Table 1-1. DSP56305 Functional Signal Groupings  
Number of  
Detailed  
Functional Group  
Signals  
Description  
Power (V  
)
45  
38  
2
Table 1-2  
Table 1-3  
Table 1-4  
Table 1-5  
Table 1-6  
Table 1-7  
Table 1-8  
Table 1-9  
Table 1-11  
CC  
Ground (GND)  
Clock  
PLL  
3
Address Bus  
Data Bus  
Bus Control  
24  
24  
15  
5
1
Port A  
Interrupt and Mode Control  
2
Host Interface (HI32)  
Port B  
52  
12  
3
Enhanced Synchronous Serial Interface (ESSI)  
Ports C and D  
Table 1-12 and  
Table 1-13  
4
Serial Communication Interface (SCI)  
Timer  
Port E  
3
3
6
Table 1-14  
Table 1-15  
Table 1-16  
JTAG/OnCE Port  
Notes: 1. Port A signals define the external memory interface port, including the external address bus, data  
bus, and control signals.  
2. Port B signals are the HI32 port signals multiplexed with the GPIO signals.  
3. Port C and D signals are the two ESSI port signals multiplexed with the GPIO signals.  
4. Port E signals are the SCI port signals multiplexed with the GPIO signals.  
5. Each device also includes twenty no connect (NC) pins. Do not connect any line, component, trace,  
or via to these pins. See Chapter 3 for details.  
1-1  
Signal Groupings  
DSP56305  
MODA/IRQA  
MODB/IRQB  
MODC/IRQC  
MODD/IRQD  
RESET  
Interrupt  
/Mode  
Control  
Power Inputs:  
V
V
PLL  
Internal V  
plane  
CCP  
44  
CC  
CC  
Universal  
Bus  
Port B  
GPIO  
PCI Bus  
Host  
52  
See Figure 1-2 for a listing of the Host  
Interface/Port B Signals  
Grounds:  
PLL  
PLL  
Interface  
1
GND  
GND  
GND  
P
(HI32) Port  
P1  
36  
Internal GND  
plane  
Port C GPIO  
PC[0-2]  
PC3  
3
Extended Synchronous  
Serial Interface Port 0  
SC[00-02]  
SCK0  
SRD0  
EXTAL  
XTAL  
Clock  
2
(ESSI0)  
PC4  
STD0  
PC5  
CLKOUT  
PCAP  
PINIT/NMI  
PLL  
Port D GPIO  
PD[0-2]  
PD3  
PD4  
PD5  
3
Extended  
Synchronous Serial  
Interface Port 1  
SC[10-12]  
SCK1  
SRD1  
Port A  
External  
Address Bus  
2
(ESSI1)  
STD1  
24  
24  
A[0-23]  
D[0-23]  
External  
Data Bus  
Port E GPIO  
PE0  
PE1  
Serial  
RXD  
TXD  
SCLK  
Communications  
2
Interface (SCI) Port  
AA[0–3]  
RAS[0–3]  
RD  
4
PE2  
External  
Bus  
WR  
BS  
TA  
BR  
Timer GPIO  
TIO0  
TIO1  
Control  
TIO0  
TIO1  
TIO2  
3
Timers  
TIO2  
BG  
BB  
BL  
CAS  
BCLK  
BCLK  
TCK  
TDI  
TDO  
TMS  
TRST  
DE  
JTAG/OnCE  
Port  
Notes: 1. The HI32 port supports PCI and non-PCI bus configurations. Twenty-four HI32 signals can also be  
configured as GPIO signals (PB[0–23]).  
2. The ESSI0, ESSI1, and SCI signals are multiplexed with the Port C GPIO signals (PC[0–5]), Port D  
GPIO signals (PD[0–5]), and Port E GPIO signals (PE[0–2]), respectively.  
3. TIO[0–2] can be configured as GPIO signals.  
Figure 1-1. Signals Identified by Functional Group  
1-2  
Signal Groupings  
Host Port (HP)  
DSP56301  
PCI Bus  
HAD0  
Universal Bus  
HA3  
Port B GPIO  
PB0  
Reference  
HP0  
HAD1  
HA4  
PB1  
HP1  
HAD2  
HA5  
PB2  
HP2  
HAD3  
HA6  
PB3  
HP3  
HAD4  
HA7  
PB4  
HP4  
HAD5  
HA8  
PB5  
HP5  
HAD6  
HA9  
PB6  
HP6  
HAD7  
HAD8  
HA10  
HD0  
PB7  
PB8  
HP7  
HP8  
HAD9  
HD1  
PB9  
HP9  
HAD10  
HAD11  
HAD12  
HAD13  
HAD14  
HAD15  
HC0/HBE0  
HC1/HBE1  
HC2/HBE2  
HC3/HBE3  
HD2  
HD3  
HD4  
HD5  
HD6  
HD7  
HA0  
HA1  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
PB16  
PB17  
PB18  
PB19  
PB20  
PB21  
PB22  
PB23  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Internal disconnect  
Leave unconnected  
HP10  
HP11  
HP12  
HP13  
HP14  
HP15  
HP16  
HP17  
HP18  
HP19  
HP20  
HP21  
HP22  
HP23  
HP24  
HP25  
HP26  
HP27  
HP28  
HP29  
HP30  
HP31  
HP32  
HP33  
HP34  
HP35  
HP36  
HP37  
HP38  
HP39  
HP40  
HP41  
HP42  
HP43  
HP44  
HP45  
HP46  
HP47  
HP48  
HP49  
HP50  
PVCL  
HA2  
Tie to pull-up or V  
HDBEN  
HDBDR  
HSAK  
HBS  
HDAK  
HDRQ  
HAEN  
HTA  
HIRQ  
HWR/HRW  
HRD/HDS  
Tie to pull-up or V  
Tie to pull-up or V  
HD8  
HD9  
HD10  
HD11  
HD12  
HD13  
HD14  
HD15  
HD16  
HD17  
HD18  
HD19  
HD20  
HD21  
HD22  
HD23  
HRST  
HINTA  
Leave unconnected  
CC  
Host Interface (HI32)/ HTRDY  
HIRDY  
HDEVSEL  
HLOCK  
HPAR  
HPERR  
HGNT  
Port B Signals  
HREQ  
HSERR  
HSTOP  
HIDSEL  
HFRAME  
HCLK  
CC  
CC  
HAD16  
HAD17  
HAD18  
HAD19  
HAD20  
HAD21  
HAD22  
HAD23  
HAD24  
HAD25  
HAD26  
HAD27  
HAD28  
HAD29  
HAD30  
HAD31  
HRST  
HINTA  
PVCL  
Note:  
HPxx is a reference only and is not a signal name. GPIO references formerly designated as HIOxx have been  
renamed PBxx for consistency with other Motorola DSPs.  
Figure 1-2. Host Interface/Port B Detail Signal Diagram  
1-3  
Power  
1.2 Power  
Table 1-2. Power Inputs  
Power  
Name  
Description  
V
V
PLL Power  
Isolated power for the Phase Lock Loop (PLL). The voltage should be well-regulated and the input  
CCP  
should be provided with an extremely low impedance path to the V power rail.  
CC  
Quiet Power  
CC  
Isolated power for the internal processing logic. This input is tied externally to all other chip power  
inputs except V  
. The user must provide adequate external decoupling capacitors.  
CCP  
1.3 Ground  
Table 1-3. Grounds  
Ground  
Name  
Description  
GND  
PLL Ground  
P
Ground dedicated for PLL use. The connection should be provided with an extremely  
low-impedance path to ground. V should be bypassed to GND by a 0.47 µF capacitor located  
CCP  
P
as close as possible to the chip package.  
GND  
GND  
PLL Ground 1  
P1  
Ground dedicated for PLL use. The connection should be provided with an extremely  
low-impedance path to ground.  
Quiet Ground  
Isolated ground for the internal processing logic. This connection is tied internally to all other chip  
ground connections, except GND and GND . The user must provide adequate external  
P
P1  
decoupling capacitors.  
1.4 Clock  
Table 1-4. Clock Signals  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
EXTAL  
Input  
Input  
External Clock/Crystal Input  
Interfaces the internal crystal oscillator input to an external  
crystal or an external clock.  
XTAL  
Output  
Chip-driven  
Crystal Output  
Connects the internal crystal oscillator output to an external  
crystal. If an external clock is used, leave XTAL unconnected.  
1-4  
Phase Lock Loop (PLL)  
1.5 Phase Lock Loop (PLL)  
Table 1-5. Phase Lock Loop Signals  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
CLKOUT  
Output  
Chip-driven  
Clock Output  
Provides an output clock synchronized to the internal core clock  
phase.  
If the PLL is enabled and both the multiplication and division  
factors equal one, then CLKOUT is also synchronized to EXTAL.  
If the PLL is disabled, the CLKOUT frequency is half the  
frequency of EXTAL.  
PCAP  
Input  
Input  
Input  
Input  
PLL Capacitor  
Connects an off-chip capacitor to the PLL filter. Connect one  
capacitor terminal to PCAP and the other terminal to V  
.
CCP  
If the PLL is not used, PCAP can be tied to V , GND, or left  
floating.  
CC  
PINIT/NMI  
PLL Initial/Non-Maskable Interrupt  
During assertion of RESET, the value of PINIT/NMI is written into  
the PLL Enable (PEN) bit of the PLL control register, determining  
whether the PLL is enabled or disabled. After RESET  
deassertion and during normal instruction processing, the  
PINIT/NMI Schmitt-trigger input is a negative-edge-triggered  
Non-Maskable Interrupt (NMI) request internally synchronized to  
CLKOUT.  
PINIT/NMI can tolerate 5 V.  
1.6 External Memory Expansion Port (Port A)  
Note: When the DSP56305 enters a low-power stand-by mode (Stop or Wait), it releases bus  
mastership and tri-states the relevant Port A signals: A[0–23], D[0–23], AA0/RAS0AA3/RAS3,  
RD, WR, BB, CAS, BCLK, and BCLK. If hardware refresh of external DRAM is enabled, Port A  
exits the Wait mode to allow the refresh to occur and then returns to the Wait mode.  
1.6.1 External Address Bus  
Table 1-6. External Address Bus Signals  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
A[0–23]  
Output  
Tri-stated  
Address Bus  
When the DSP is the bus master, A[0–23] specify the address  
for external program and data memory accesses. Otherwise, the  
signals are tri-stated. To minimize power dissipation, A[0–23] do  
not change state when external memory spaces are not being  
accessed.  
1-5  
External Memory Expansion Port (Port A)  
1.6.2 External Data Bus  
Table 1-7. External Data Bus Signals  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
D[0–23]  
Input/Output  
Tri-stated  
Data Bus  
When the DSP is the bus master, D[0–23] provide the  
bidirectional data bus for external program and data memory  
accesses. Otherwise, D[0–23] are tri-stated.  
1.6.3 External Bus Control  
Table 1-8. External Bus Control Signals  
State  
During  
Reset  
Signal  
Type  
Signal Description  
Name  
AA0/RAS0–  
AA3/RAS3  
Output  
Tri-stated  
Address Attribute or Row Address Strobe  
As AA, these signals function as chip selects or additional  
address lines. Unlike address lines, however, the AA lines do not  
hold their state after a read or write operation. As RAS, these  
signals can be used for Dynamic Random Access Memory  
(DRAM) interface. These signals have programmable polarity.  
RD  
Output  
Output  
Tri-stated  
Tri-stated  
Read Enable  
When the DSP is the bus master, RD is asserted to read external  
memory on the data bus (D[0–23]). Otherwise, RD is tri-stated.  
WR  
Write Enable  
When the DSP is the bus master, WR is asserted to write  
external memory on the data bus (D[0–23]). Otherwise, WR is  
tri-stated.  
TA  
Input  
Ignored Input  
Transfer Acknowledge  
If the DSP56305 is the bus master and there is no external bus  
activity, or the DSP56305 is not the bus master, the TA input is  
ignored. The TA input is a Data Transfer Acknowledge (DTACK)  
function that can extend an external bus cycle indefinitely. Any  
number of wait states (1, 2,..., infinity) can be added to the wait  
states inserted by the BCR by keeping TA deasserted. In typical  
operation, TA is deasserted at the start of a bus cycle, asserted  
to enable completion of the bus cycle, and deasserted before the  
next bus cycle. The current bus cycle completes one clock  
period after TA is asserted synchronous to CLKOUT. The  
number of wait states is determined by the TA input or by the  
Bus Control Register (BCR), whichever is longer. The BCR can  
set the minimum number of wait states in external bus cycles.  
To use the TA functionality, the BCR must be programmed to at  
least one wait state. A zero wait state access cannot be  
extended by TA deassertion; otherwise improper operation may  
result. TA can operate synchronously or asynchronously,  
depending on the setting of the TAS bit in the Operating Mode  
Register (OMR).  
TA functionality cannot be used during DRAM-type accesses;  
otherwise improper operation may result.  
1-6  
External Memory Expansion Port (Port A)  
Table 1-8. External Bus Control Signals (Continued)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
BR  
Output  
Output  
Bus Request  
(deasserted)  
Asserted when the DSP requests bus mastership and  
deasserted when the DSP no longer needs the bus. BR can be  
asserted or deasserted independently of whether the DSP56305  
is a bus master or a bus slave. Bus “parking” allows BR to be  
deasserted even though the DSP56305 is the bus master (see  
the description of bus “parking” in the BB signal description). The  
Bus Request Hole (BRH) bit in the BCR allows BR to be  
asserted under software control, even though the DSP does not  
need the bus. BR is typically sent to an external bus arbitrator  
that controls the priority, parking and tenure of each master on  
the same external bus. BR is affected only by DSP requests for  
the external bus, never for the internal bus. During hardware  
reset, BR is deasserted and the arbitration is reset to the bus  
slave state.  
BG  
Input  
Ignored Input  
Bus Grant  
Must be asserted/deasserted synchronous to CLKOUT for  
proper operation. An external bus arbitration circuit asserts BG  
when the DSP56305 becomes the next bus master. When BG is  
asserted, the DSP56305 must wait until BB is deasserted before  
taking bus mastership. When BG is deasserted, bus mastership  
is typically given up at the end of the current bus cycle. This may  
occur in the middle of an instruction that requires more than one  
external bus cycle for execution.  
BB  
Input/  
Input  
Bus Busy  
Output  
Indicates that the bus is active and must be asserted and  
deasserted synchronous to CLKOUT. Only after BB is  
deasserted can the pending bus master become the bus master  
(and then assert the signal again). The bus master can keep BB  
asserted after ceasing bus activity, regardless of whether BR is  
asserted or deasserted. This is called “bus parking” and allows  
the current bus master to reuse the bus without re-arbitration  
until another device requires the bus. BB is deasserted by an  
“active pull-up” method (that is, BB is driven high and then  
released and held high by an external pull-up resistor).  
BB requires an external pull-up resistor.  
BL  
Output  
Driven high  
(deasserted)  
Bus Lock—BL is asserted at the start of an external divisible  
Read-Modify-Write (RMW) bus cycle, remains asserted between  
the read and write cycles, and is deasserted at the end of the  
write bus cycle. This provides an “early bus start” signal for the  
bus controller. BL may be used to “resource lock” an external  
multi-port memory for secure semaphore updates. Early  
deassertion provides an “early bus end” signal useful for external  
bus control. If the external bus is not used during an instruction  
cycle, BL remains deasserted until the next external indivisible  
RMW cycle. The only instructions that assert BL automatically  
are the BSET, CLR, and BCHG instructions when they are used  
to modify external memory. An operation can also assert BL by  
setting the BLH bit in the Bus Control Register.  
1-7  
Interrupt and Mode Control  
Table 1-8. External Bus Control Signals (Continued)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
CAS  
Output  
Tri-stated  
Tri-stated  
Tri-stated  
Column Address Strobe  
When the DSP is the bus master, DRAM uses CAS to strobe the  
column address. Otherwise, if the Bus Mastership Enable (BME)  
bit in the DRAM Control Register is cleared, the signal is  
tri-stated.  
BCLK  
BCLK  
Output  
Output  
Bus Clock  
When the DSP is the bus master, BCLK is active when the  
OMR[ATE] is set. When BCLK is active and synchronized to  
CLKOUT by the internal PLL, BCLK precedes CLKOUT by  
one-fourth of a clock cycle.  
Bus Clock Not  
When the DSP is the bus master, BCLK is the inverse of the  
BCLK signal. Otherwise, the signal is tri-stated.  
1.7 Interrupt and Mode Control  
The interrupt and mode control signals select the chip’s operating mode as it comes out of hardware reset.  
After RESET is deasserted, these inputs are hardware interrupt request lines.  
Table 1-9. Interrupt and Mode Control  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
MODA  
Input  
Input  
Mode Select A  
Selects the initial chip operating mode during hardware reset  
and becomes a level-sensitive or negative-edge-triggered,  
maskable interrupt request input IRQA during normal instruction  
processing. MODA, MODB, MODC, and MODD select one of  
sixteen initial chip operating modes, latched into the OMR when  
the RESET signal is deasserted.  
Input  
IRQA  
External Interrupt Request A  
Internally synchronized to CLKOUT. If IRQA is asserted  
synchronous to CLKOUT, multiple processors can be  
re-synchronized using the WAIT instruction and asserting IRQA  
to exit the Wait state. If the processor is in the Stop stand-by  
state and IRQA is asserted, the processor exits the Stop state.  
These inputs are 5 V tolerant.  
1-8  
Interrupt and Mode Control  
Table 1-9. Interrupt and Mode Control (Continued)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
MODB  
Input  
Input  
Mode Select B  
Selects the initial chip operating mode during hardware reset  
and becomes a level-sensitive or negative-edge-triggered,  
maskable interrupt request input IRQB during normal instruction  
processing. MODA, MODB, MODC, and MODD select one of  
sixteen initial chip operating modes, latched into the OMR when  
the RESET signal is deasserted.  
IRQB  
Input  
External Interrupt Request B  
Internally synchronized to CLKOUT. If IRQB is asserted  
synchronous to CLKOUT, multiple processors can be  
re-synchronized using the WAIT instruction and asserting IRQB  
to exit the Wait state. If the processor is in the Stop stand-by  
state and IRQC is asserted, the processor will exit the Stop  
state.  
These inputs are 5 V tolerant.  
MODC  
Input  
Input  
Mode Select C  
Selects the initial chip operating mode during hardware reset  
and becomes a level-sensitive or negative-edge-triggered,  
maskable interrupt request input IRQC during normal instruction  
processing. MODA, MODB, MODC, and MODD select one of  
sixteen initial chip operating modes, latched into the OMR when  
the RESET signal is deasserted.  
IRQC  
Input  
External Interrupt Request C  
Internally synchronized to CLKOUT. If IRQC is asserted  
synchronous to CLKOUT, multiple processors can be  
re-synchronized using the WAIT instruction and asserting IRQC  
to exit the Wait state. If the processor is in the Stop stand-by  
state and IRQC is asserted, the processor exits the Stop state.  
These inputs are 5 V tolerant.  
MODD  
Input  
Input  
Mode Select D  
Selects the initial chip operating mode during hardware reset  
and becomes a level-sensitive or negative-edge-triggered,  
maskable interrupt request input IRQD during normal instruction  
processing. MODA, MODB, MODC, and MODD select one of  
sixteen initial chip operating modes, latched into the OMR when  
the RESET signal is deasserted.  
IRQD  
Input  
External Interrupt Request D  
Internally synchronized to CLKOUT. If IRQD is asserted  
synchronous to CLKOUT, multiple processors can be  
re-synchronized using the WAIT instruction and asserting IRQD  
to exit the Wait state. If the processor is in the Stop stand-by  
state and IRQD is asserted, the processor exits the Stop state.  
These inputs are 5 V tolerant.  
1-9  
Host Interface (HI32)  
Table 1-9. Interrupt and Mode Control (Continued)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
RESET  
Input  
Input  
Reset  
Deassertion of RESET is internally synchronized to the clock out  
(CLKOUT). When asserted, the chip is placed in the Reset state  
and the internal phase generator is reset. The Schmitt-trigger  
input allows a slowly rising input (such as a capacitor charging)  
to reset the chip reliably. If RESET is deasserted synchronous to  
CLKOUT, exact start-up timing is guaranteed, allowing multiple  
processors to start synchronously and operate together in  
“lock-step.” When the RESET signal is deasserted, the initial  
chip operating mode is latched from the MODA, MODB, MODC,  
and MODD inputs. The RESET signal must be asserted after  
power-up.  
This input is 5 V tolerant.  
1.8 Host Interface (HI32)  
The Host Interface (HI32) provides fast parallel data to a 32-bit port directly connected to the host bus.  
The HI32 supports a variety of standard buses and directly connects to a PCI bus and a number of  
industry-standard microcomputers, microprocessors, DSPs, and DMA hardware.  
1.8.4 Host Port Usage Considerations  
Careful synchronization is required when the system reads multiple-bit registers that are written by  
another asynchronous system. This is a common problem when two asynchronous systems are connected  
(as they are in the Host port). The considerations for proper operation are discussed in Table 1-10.  
Table 1-10. Host Port Usage Considerations  
Action  
Description  
Asynchronous read of  
receive byte registers  
When reading the receive byte registers, Receive register High (RXH), Receive register  
Middle (RXM), or Receive register Low (RXL), use interrupts or poll the Receive register  
Data Full (RXDF) flag that indicates data is available. This assures that the data in the  
receive byte registers is valid.  
Asynchronous write to  
transmit byte registers  
Do not write to the transmit byte registers, Transmit register High (TXH), Transmit  
register Middle (TXM), or Transmit register Low (TXL), unless the Transmit register Data  
Empty (TXDE) bit is set, indicating that the transmit byte registers are empty. This  
guarantees that the transmit byte registers transfer valid data to the Host Receive (HRX)  
register.  
Asynchronous write to  
host vector  
Change the Host Vector (HV) register only when the Host Command bit (HC) is clear.  
This practice guarantees that the DSP interrupt control logic receives a stable vector.  
1-10  
Host Interface (HI32)  
1.8.5 Host Port Configuration  
HI32 signal functions vary according to the programmed configuration of the interface as determined by  
the 24-bit DSP Control Register (DCTR). Refer to the DSP56305 Users Manual for details on HI32  
configuration registers.  
Table 1-11. Host Interface  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
HAD[0–7]  
Input/Output  
Tri-stated  
Host Address/Data 0–7  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, these signals are lines 0–7 of the  
Address/Data bus.  
HA[3–10]  
PB[0–7]  
Input  
Host Address 3–10  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, these signals are lines 3–10  
of the Address bus.  
Input or  
Output  
Port B 0–7  
When the HI32 is configured as GPIO through the DCTR, these  
signals are individually programmed through the HI32 Data  
Direction Register (DIRH).  
These inputs are 5 V tolerant.  
HAD[8–15]  
HD[0–7]  
Input/Output  
Input/Output  
Tri-stated  
Host Address/Data 8–15  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, these signals are lines 8–15 of the  
Address/Data bus.  
Host Data 0–7  
When HI32 is programmed to interface with a universal non-PCI  
bus and the HI function is selected, these signals are lines 0–7 of  
the Data bus.  
PB[8–15]  
Input or  
Output  
Port B 8–15  
When the HI32 is configured as GPIO through the DCTR, these  
signals are individually programmed through the HI32 DIRH.  
These inputs are 5 V tolerant.  
1-11  
Host Interface (HI32)  
Table 1-11. Host Interface (Continued)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
HC[0–3]/  
HBE[0–3]  
Input/Output  
Tri-stated  
Command 0–3/Byte Enable 0–3  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, these signals are lines 0–7 of the  
Address/Data bus.  
HA[0–2]  
Input  
Host Address 0–2  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, these signals are lines 0–2 of  
the Address bus.  
The fourth signal in this set should connect to a pull-up resistor  
or directly to V when a non-PCI bus is used.  
CC  
PB[16–19]  
Input or  
Output  
Port B 16–19  
When the HI32 is configured as GPIO through the DCTR, these  
signals are individually programmed through the HI32 DIRH.  
These inputs are 5 V tolerant.  
HTRDY  
HDBEN  
Input/  
Output  
Tri-stated  
Host Target Ready  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, this is the Host Target Ready signal.  
Output  
Host Data Bus Enable  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, this is the Host Data Bus  
Enable signal.  
PB20  
Input or  
Output  
Port B 20  
When the HI32 is configured as GPIO through the DCTR, this  
signal is individually programmed through the HI32 DIRH.  
This input is 5 V tolerant.  
HIRDY  
Input/  
Tri-stated  
Host Initiator Ready  
Output  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, this is the Host Initiator Ready signal.  
HDBDR  
Output  
Host Data Bus Direction  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, this is the Host Data Bus  
Direction signal.  
PB21  
Input or  
Output  
Port B 21  
When the HI32 is configured as GPIO through the DCTR, this  
signal is individually programmed through the HI32 DIRH.  
This input is 5 V tolerant.  
1-12  
Host Interface (HI32)  
Table 1-11. Host Interface (Continued)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
HDEVSEL  
HSAK  
Input/  
Output  
Tri-stated  
Tri-stated  
Tri-stated  
Host Device Select  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, this is the Host Device Select signal.  
Output  
Host Select Acknowledge  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, this is the Host Select  
Acknowledge signal.  
PB22  
Input or  
Output  
Port B 22  
When the HI32 is configured as GPIO through the DCTR, this  
signal is individually programmed through the HI32 DIRH.  
This input is 5 V tolerant.  
HLOCK  
HBS  
Input  
Input  
Host Lock  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, this is the Host Lock signal.  
Host Bus Strobe  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, this is the Host Bus Strobe  
Schmitt-trigger signal.  
PB23  
Input or  
Output  
Port B 23  
When the HI32 is configured as GPIO through the DCTR, this  
signal is individually programmed through the HI32 DIRH.  
This input is 5 V tolerant.  
HPAR  
HDAK  
Input/  
Output  
Host Parity  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, this is the Host Parity signal.  
Input  
Host DMA Acknowledge  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, this is the Host DMA  
Acknowledge Schmitt-trigger signal.  
Port B  
When the HI32 is configured as GPIO through the DCTR, this  
signal is internally disconnected.  
This input is 5 V tolerant.  
1-13  
Host Interface (HI32)  
Table 1-11. Host Interface (Continued)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
HPERR  
Input/  
Tri-stated  
Host Parity Error  
Output  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, this is the Host Parity Error signal.  
HDRQ  
Output  
Host DMA Request  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, this is the Host DMA  
Request output.  
Port B  
When the HI32 is configured as GPIO through the DCTR, this  
signal is internally disconnected.  
This input is 5 V tolerant.  
HGNT  
HAEN  
Input  
Input  
Input  
Host Bus Grant  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, this is the Host Bus Grant signal.  
Host Address Enable  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, this is the Host Address  
Enable output signal.  
Port B  
When the HI32 is configured as GPIO through the DCTR, this  
signal is internally disconnected.  
This input is 5 V tolerant.  
HREQ  
HTA  
Output  
Output  
Tri-stated  
Host Bus Request  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, this is the Host Bus Request signal.  
Host Transfer Acknowledge—When HI32 is programmed to  
interface with a universal, non-PCI bus and the HI function is  
selected, this is the Host Data Bus Enable signal. HTA can be  
programmed as active high or active low.  
Port B  
When the HI32 is configured as GPIO through the DCTR, this  
signal is internally disconnected.  
This input is 5 V tolerant.  
1-14  
Host Interface (HI32)  
Table 1-11. Host Interface (Continued)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
HSERR  
Output, open  
drain  
Tri-stated  
Tri-stated  
Input  
Host System Error  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, this is the Host System Error signal.  
HIRQ  
Output, open  
drain  
Host Interrupt Request  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, this is the Host Interrupt  
Request signal.  
Port B  
When the HI32 is configured as GPIO through the DCTR, this  
signal is internally disconnected.  
This input is 5 V tolerant.  
HSTOP  
Input/  
Output  
Host Stop  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, this is the Host Stop signal.  
HWR/HRW  
Input  
Host Write/Host Read-Write  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, this is the Host Write/Host  
Read-Write Schmitt-trigger signal.  
Port B  
When the HI32 is configured as GPIO through the DCTR, this  
signal is internally disconnected.  
This input is 5 V tolerant.  
HIDSEL  
Input  
Input  
Host Initialization Device Select  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, this is the Host Initialization Device  
Select signal.  
HRD/HDS  
Host Read/Host Data Strobe  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, this is the Host Data  
Read/Host Data Strobe Schmitt-trigger signal.  
Port B  
When the HI32 is configured as GPIO through the DCTR, this  
signal is internally disconnected.  
This input is 5 V tolerant.  
1-15  
Host Interface (HI32)  
Table 1-11. Host Interface (Continued)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
HFRAME  
Input/  
Output  
Tri-stated  
Host Frame  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, this is the Host cycle Frame signal.  
Non-PCI bus  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, this signal must be  
connected to a pull-up resistor or directly to V  
.
CC  
Port B  
When the HI32 is configured as GPIO through the DCTR, this  
signal is internally disconnected.  
This input is 5 V tolerant.  
HCLK  
Input  
Input  
Host Clock  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, this is the Host Bus Clock input.  
Non-PCI bus  
When HI32 is programmed to interface a universal non-PCI bus  
and the HI function is selected, this signal must be connected to  
a pull-up resistor or directly to V  
.
CC  
Port B  
When the HI32 is configured as GPIO through the DCTR, this  
signal is internally disconnected.  
This input is 5 V tolerant.  
HAD[16–31]  
HD[8–23]  
Input/Output  
Input/Output  
Tri-stated  
Host Address/Data 16–31  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, these signals are lines 16–31 of the  
Address/Data bus.  
Host Data 8–23  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, these signals are lines 8–23  
of the Data bus.  
Port B  
When the HI32 is configured as GPIO through the DCTR, these  
signals are internally disconnected.  
These inputs are 5 V tolerant.  
1-16  
Host Interface (HI32)  
Table 1-11. Host Interface (Continued)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
HRST  
Input  
Tri-stated  
Hardware Reset  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected, this is the Hardware Reset input.  
HRST  
Input  
Hardware Reset  
When HI32 is programmed to interface with a universal, non-PCI  
bus and the HI function is selected, this is the Hardware Reset  
Schmitt-trigger signal.  
Port B  
When the HI32 is configured as GPIO through the DCTR, this  
signal is internally disconnected.  
This input is 5 V tolerant.  
HINTA  
Output, open  
drain  
Tri-stated  
Host Interrupt A  
When the HI function is selected, this signal is the Interrupt A  
open-drain output.  
Port B  
When the HI32 is configured as GPIO through the DCTR, this  
signal is internally disconnected.  
This input is 5 V tolerant.  
PVCL  
Input  
Input  
PCI Voltage Clamp  
When the HI32 is programmed to interface with a PCI bus and  
the HI function is selected and the PCI bus uses a 3 V signal  
environment, connect this pin to V (3.3 V) to enable the high  
CC  
voltage clamping required by the PCI specifications. In all other  
cases, including a 5 V PCI signal environment, leave the input  
unconnected.  
1-17  
Enhanced Synchronous Serial Interface 0 (ESSI0)  
1.9 Enhanced Synchronous Serial Interface 0 (ESSI0)  
Two synchronous serial interfaces (ESSI0 and ESSI1) provide a full-duplex serial port for serial  
communication with a variety of serial devices, including one or more industry-standard CODECs, other  
DSPs, microprocessors, and peripherals that implement the Motorola Serial Peripheral Interface (SPI).  
Table 1-12. Enhanced Synchronous Serial Interface 0 (ESSI0)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
SC00  
Input or  
Input  
Serial Control 0  
Output  
Functions in either Synchronous or Asynchronous mode. For  
Asynchronous mode, this signal is the receive clock I/O  
(Schmitt-trigger input). For Synchronous mode, this signal is  
either for Transmitter 1 output or Serial I/O Flag 0.  
PC0  
Port C 0  
The default configuration following reset is GPIO. For PC0,  
signal direction is controlled through the Port Directions Register  
(PRR0). The signal can be configured as ESSI signal SC00  
through the Port Control Register (PCR0).  
This input is 5 V tolerant.  
SC01  
PC1  
Input/Output  
Input  
Serial Control 1  
Functions in either Synchronous or Asynchronous mode. For  
Asynchronous mode, this signal is the receiver frame sync I/O.  
For Synchronous mode, this signal is either Transmitter 2 output  
or Serial I/O Flag 1.  
Input or  
Output  
Port C 1  
The default configuration following reset is GPIO. For PC1,  
signal direction is controlled through PRR0. The signal can be  
configured as an ESSI signal SC01 through PCR0.  
This input is 5 V tolerant.  
SC02  
Input/Output  
Input  
Serial Control Signal 2  
The frame sync for both the transmitter and receiver in  
Synchronous mode, and for the transmitter only in Asynchronous  
mode. When configured as an output, this signal is the internally  
generated frame sync signal. When configured as an input, this  
signal receives an external frame sync signal for the transmitter  
(and the receiver in synchronous operation).  
PC2  
Input or  
Output  
Port C 2  
The default configuration following reset is GPIO. For PC2,  
signal direction is controlled through PRR0. The signal can be  
configured as an ESSI signal SC02 through PCR0.  
This input is 5 V tolerant.  
1-18  
Enhanced Synchronous Serial Interface 0 (ESSI0)  
Table 1-12. Enhanced Synchronous Serial Interface 0 (ESSI0) (Continued)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
SCK0  
Input/Output  
Input  
Serial Clock  
Provides the serial bit rate clock for the ESSI interface for both  
the transmitter and receiver in Synchronous modes, or the  
transmitter only in Asynchronous modes.  
Although an external serial clock can be independent of and  
asynchronous to the DSP system clock, it must exceed the  
minimum clock cycle time of 6 T (that is, the system clock  
frequency must be at least three times the external ESSI clock  
frequency). The ESSI needs at least three DSP phases inside  
each half of the serial clock.  
PC3  
Input or  
Output  
Port C 3  
The default configuration following reset is GPIO. For PC3,  
signal direction is controlled through PRR0. The signal can be  
configured as an ESSI signal SCK0 through PCR0.  
This input is 5 V tolerant.  
SRD0  
PC4  
Input/Output  
Input  
Serial Receive Data  
Receives serial data and transfers the data to the ESSI receive  
shift register. SRD0 is an input when data is being received.  
Input or  
Output  
Port C 4  
The default configuration following reset is GPIO. For PC4,  
signal direction is controlled through PRR0. The signal can be  
configured as an ESSI signal SRD0 through PCR0.  
This input is 5 V tolerant.  
STD0  
PC5  
Input/Output  
Input  
Serial Transmit Data  
Transmits data from the serial transmit shift register. STD0 is an  
output when data is being transmitted.  
Input or  
Output  
Port C 5  
The default configuration following reset is GPIO. For PC5,  
signal direction is controlled through PRR0. The signal can be  
configured as an ESSI signal STD0 through PCR0.  
This input is 5 V tolerant.  
1-19  
Enhanced Synchronous Serial Interface 1 (ESSI1)  
1.10 Enhanced Synchronous Serial Interface 1 (ESSI1)  
Table 1-13. Enhanced Synchronous Serial Interface 1 (ESSI1)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
SC10  
Input or  
Input  
Serial Control 0  
Output  
Selection of Synchronous or Asynchronous mode determines  
function. For Asynchronous mode, this signal is the receive clock  
I/O (Schmitt-trigger input). For Synchronous mode, this signal is  
either Transmitter 1 output or Serial I/O Flag 0.  
Port D 0  
PD0  
The default configuration following reset is GPIO. For PD0,  
signal direction is controlled through the Port Directions Register  
(PRR1). The signal can be configured as an ESSI signal SC10  
through the Port Control Register (PCR1).  
This input is 5 V tolerant.  
SC11  
PD1  
Input/Output  
Input  
Serial Control 1  
Selection of Synchronous or Asynchronous mode determines  
function. For Asynchronous mode, this signal is the receiver  
frame sync I/O. For Synchronous mode, this signal is either  
Transmitter 2 output or Serial I/O Flag 1.  
Input or  
Output  
Port D 1  
The default configuration following reset is GPIO. For PD1,  
signal direction is controlled through PRR1. The signal can be  
configured as an ESSI signal SC11 through PCR1.  
This input is 5 V tolerant.  
SC12  
Input/Output  
Input  
Serial Control Signal 2  
Frame sync for both the transmitter and receiver in Synchronous  
mode, for the transmitter only in Asynchronous mode. When  
configured as an output, this signal is the internally generated  
frame sync signal. When configured as an input, this signal  
receives an external frame sync signal for the transmitter (and  
the receiver in Synchronous operation).  
PD2  
Input or  
Output  
Port D 2  
The default configuration following reset is GPIO. For PD2,  
signal direction is controlled through PRR1. The signal can be  
configured as an ESSI signal SC12 through PCR1.  
This input is 5 V tolerant.  
1-20  
Enhanced Synchronous Serial Interface 1 (ESSI1)  
Table 1-13. Enhanced Synchronous Serial Interface 1 (ESSI1) (Continued)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
SCK1  
Input/Output  
Input  
Serial Clock  
Provides the serial bit rate clock for the ESSI interface. Clock  
input or output can be used by the transmitter and receiver in  
Synchronous modes, by the transmitter only in Asynchronous  
modes.  
Although an external serial clock can be independent of and  
asynchronous to the DSP system clock, it must exceed the  
minimum clock cycle time of 6T (that is, the system clock  
frequency must be at least three times the external ESSI clock  
frequency). The ESSI needs at least three DSP phases inside  
each half of the serial clock.  
PD3  
Input or  
Output  
Port D 3  
The default configuration following reset is GPIO. For PD3,  
signal direction is controlled through PRR1. The signal can be  
configured as an ESSI signal SCK1 through PCR1.  
This input is 5 V tolerant.  
SRD1  
PD4  
Input/Output  
Input  
Serial Receive Data  
Receives serial data and transfers it to the ESSI receive shift  
register. SRD1 is an input when data is being received.  
Input or  
Output  
Port D 4  
The default configuration following reset is GPIO. For PD4,  
signal direction is controlled through PRR1. The signal can be  
configured as an ESSI signal SRD1 through PCR1.  
This input is 5 V tolerant.  
STD1  
PD5  
Input/Output  
Input  
Serial Transmit Data  
Transmits data from the serial transmit shift register. STD1 is an  
output when data is being transmitted.  
Input or  
Output  
Port D 5  
The default configuration following reset is GPIO. For PD5,  
signal direction is controlled through PRR1. The signal can be  
configured as an ESSI signal STD1 through PCR1.  
This input is 5 V tolerant.  
1-21  
Serial Communication Interface (SCI)  
1.11 Serial Communication Interface (SCI)  
The Serial Communication interface (SCI) provides a full duplex port for serial communication with  
other DSPs, microprocessors, or peripherals such as modems.  
Table 1-14. Serial Communication Interface (SCI)  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
RXD  
Input  
Input  
Serial Receive Data  
Receives byte-oriented serial data and transfers it to the SCI  
receive shift register.  
PE0  
Input or  
Output  
Port E 0  
The default configuration following reset is GPIO. When  
configured as PE0, signal direction is controlled through the SCI  
Port Directions Register (PRR). The signal can be configured as  
an SCI signal RXD through the SCI Port Control Register (PCR).  
This input is 5 V tolerant.  
TXD  
PE1  
Output  
Input  
Serial Transmit Data  
Transmits data from SCI transmit data register.  
Input or  
Output  
Port E 1  
The default configuration following reset is GPIO. When  
configured as PE1, signal direction is controlled through the SCI  
PRR. The signal can be configured as an SCI signal TXD  
through the SCI PCR.  
This input is 5 V tolerant.  
SCLK  
PE2  
Input/Output  
Input  
Serial Clock  
Provides the input or output clock used by the transmitter and/or  
the receiver.  
Input or  
Output  
Port E 2  
The default configuration following reset is GPIO. For PE2,  
signal direction is controlled through the SCI PRR. The signal  
can be configured as an SCI signal SCLK through the SCI PCR.  
This input is 5 V tolerant.  
1-22  
Timers  
1.12 Timers  
The DSP56305 has three identical and independent timers. Each can use internal or external clocking,  
interrupt the DSP56305 after a specified number of events (clocks), or signal an external device after  
counting a specific number of internal events.  
Table 1-15. Triple Timer Signals  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
TIO0  
Input or  
Output  
Input  
Timer 0 Schmitt-Trigger Input/Output  
As an external event counter or in Measurement mode, TIO0 is  
input. In Watchdog, Timer, or Pulse Modulation mode, TIO0 is  
output.  
The default mode after reset is GPIO input. This can be changed  
to output or configured as a Timer Input/Output through the  
Timer 0 Control/Status Register (TCSR0).  
This input is 5 V tolerant.  
TIO1  
Input or  
Output  
Input  
Timer 1 Schmitt-Trigger Input/Output  
As an external event counter or in Measurement mode, TIO1 is  
input. In Watchdog, Timer, or Pulse Modulation mode, TIO1 is  
output.  
The default mode after reset is GPIO input. This can be changed  
to output or configured as a Timer Input/Output through the  
Timer 1 Control/Status Register (TCSR1).  
This input is 5 V tolerant.  
TIO2  
Input or  
Output  
Input  
Timer 2 Schmitt-Trigger Input/Output  
As an external event counter or in Measurement mode, TIO2 is  
input. In Watchdog, Timer, or Pulse Modulation mode, TIO2 is  
output.  
The default mode after reset is GPIO input. This can be changed  
to output or configured as a Timer Input/Output through the  
Timer 2 Control/Status Register (TCSR2).  
This input is 5 V tolerant.  
1-23  
JTAG/OnCE Interface  
1.13 JTAG/OnCE Interface  
Table 1-16. JTAG/OnCE Interface  
State  
During  
Reset  
Signal  
Type  
Signal Description  
Name  
TCK  
Input  
Input  
Input  
Test Clock  
A test clock signal for synchronizing JTAG test logic.  
This input is 5 V tolerant.  
TDI  
Input  
Test Data Input  
A test data serial signal for test instructions and data. TDI is  
sampled on the rising edge of TCK and has an internal pull-up  
resistor.  
This input is 5 V tolerant.  
TDO  
Output  
Tri-stated  
Test Data Output  
A test data serial signal for test instructions and data. TDO can  
be tri-stated. The signal is actively driven in the shift-IR and  
shift-DR controller states and changes on the falling edge of  
TCK.  
This input is 5 V tolerant.  
TMS  
TRST  
DE  
Input  
Input  
Input  
Input  
Test Mode Select  
Sequences the test controller’s state machine, is sampled on the  
rising edge of TCK, and has an internal pull-up resistor.  
This input is 5 V tolerant.  
Input  
Test Reset  
Asynchronously initializes the test controller, has an internal  
pull-up resistor, and must be asserted after power up.  
This input is 5 V tolerant.  
Input/Output  
Debug Event  
Provides a way to enter Debug mode from an external command  
controller (as input) or to acknowledge that the chip has entered  
Debug mode (as output). When asserted as an input, DE causes  
the DSP56300 core to finish the current instruction, save the  
instruction pipeline information, enter Debug mode, and wait for  
commands from the debug serial input line. When a debug  
request or a breakpoint condition causes the chip to enter Debug  
mode, DE is asserted as an output for three clock cycles. DE has  
an internal pull-up resistor.  
DE is not a standard part of the JTAG Test Access Port (TAP)  
Controller. It connects to the OnCE module to initiate Debug  
mode directly or to provide a direct external indication that the  
chip has entered the Debug mode. All other interface with the  
OnCE module must occur through the JTAG port.  
This input is 5 V tolerant.  
1-24  
Chapter 2  
Specifications  
2.1 Introduction  
The DSP56305 is fabricated in high-density CMOS with Transistor-Transistor Logic (TTL) compatible  
inputs and outputs.  
2.2 Maximum Ratings  
CAUTION  
This device contains circuitry protecting  
against damage due to high static voltage or  
electrical fields; however, normal precautions  
should be taken to avoid exceeding maximum  
voltage ratings. Reliability is enhanced if  
unused inputs are tied to an appropriate logic  
voltage level (for example, either GND or V ).  
CC  
Note: In the calculation of timing requirements, adding a maximum value of one specification to a  
minimum value of another specification does not yield a reasonable sum. A maximum  
specification is calculated using a worst case variation of process parameter values in one  
direction. The minimum specification is calculated using the worst case for the same parameters  
in the opposite direction. Therefore, a “maximum” value for a specification never occurs in the  
same device that has a “minimum” value for another specification; adding a maximum to a  
minimum represents a condition that can never exist.  
2-1  
Absolute Maximum Ratings  
2.3 Absolute Maximum Ratings  
Table 2-1. Maximum Ratings  
Rating1  
Symbol  
Value1, 2  
Unit  
Supply Voltage  
V
0.3 to +4.0  
V
V
CC  
3
All input voltages excluding “5 V tolerant” inputs  
V
GND 0.3 to V + 0.3  
IN  
CC  
3
All “5 V tolerant” input voltages  
V
GND 0.3 to V + 3.95  
V
IN5  
CC  
Current drain per pin excluding V and GND  
I
10  
mA  
°C  
°C  
CC  
Operating temperature range  
T
40 to +100  
55 to +150  
J
Storage temperature  
T
STG  
Notes: 1. GND = 0 V, V = 3.3 V ± 0.3 V, T = –40°C to +100°C, CL = 50 pF  
CC  
J
2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not  
guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent  
damage to the device.  
3. CAUTION: All “5 V Tolerant” input voltages cannot be more than 3.95 V greater than the supply  
voltage; this restriction applies to “power on,” as well as during normal operation. In any case, the  
input voltages must not be higher than 5.75 V. “5 V Tolerant” inputs are inputs that tolerate 5 V.  
2.4 Thermal Characteristics  
Table 2-2. Thermal Characteristics  
PBGA3  
Value  
PBGA4  
Value  
Characteristic  
Symbol  
Unit  
1
Junction-to-ambient thermal resistance  
R
or θ  
or θ  
48.4  
9
25.2  
°C/W  
°C/W  
°C/W  
θJA  
JA  
JC  
2
Junction-to-case thermal resistance  
R
θJC  
Thermal characterization parameter  
Ψ
5
JT  
Notes: 1. Junction-to-ambient thermal resistance is based on measurements on a horizontal single-sided  
printed circuit board per JEDEC Specification JESD51-3.  
2. Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88,  
with the exception that the cold plate temperature is used for the case temperature.  
3. These are simulated values. See note 1 for test board conditions.  
4. These are simulated values. The test board has two 2-ounce signal layers and two 1-ounce solid  
ground planes internal to the test board.  
2-2  
DC Electrical Characteristics  
2.5 DC Electrical Characteristics  
Table 2-3. DC Electrical Characteristics6  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Supply voltage  
Input high voltage  
V
3.0  
3.3  
3.6  
V
CC  
D[0–23], BG, BB, TA  
V
2.0  
2.0  
V
5.25  
V
V
IH  
CC  
1
1
MOD /IRQ , RESET, PINIT/NMI and all  
JTAG/ESSI/SCI/Timer/HI32 pins  
V
IHP  
8
EXTAL  
V
0.8 × V  
V
CC  
V
IHX  
CC  
Input low voltage  
1
1
D[0–23], BG, BB, TA, MOD /IRQ , RESET,  
V
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.2 × V  
V
V
V
IL  
PINIT  
V
V
ILP  
ILX  
All JTAG/ESSI/SCI/Timer/HI32 pins  
EXTAL  
CC  
8
Input leakage current  
I
–10  
–10  
10  
10  
µA  
µA  
IN  
High impedance (off-state) input current (@ 2.4  
V / 0.4 V)  
I
TSI  
Output high voltage  
V
OH  
5,7  
TTL (I  
CMOS (I = –10 µA)  
= –0.4 mA)  
2.4  
– 0.01  
CC  
V
V
OH  
5
V
OH  
Output low voltage  
V
OL  
TTL (I = 1.6 mA, open-drain pins I = 6.7  
0.4  
0.01  
V
V
OL  
5,7  
OL  
mA)  
5
CMOS (I = 10 µA)  
OL  
2
Internal supply current :  
80 MHz 100 MHz  
In Normal mode  
I
102  
6
100  
127  
7.5  
100  
mA  
mA  
µA  
CCI  
3
In Wait mode  
I
CCW  
4
In Stop mode  
I
CCS  
PLL supply current  
1
2.5  
10  
mA  
pF  
5
Input capacitance  
C
IN  
Notes: 1. Refers to MODA/IRQA, MODB/IRQB, MODC/IRQC, and MODD/IRQD pins.  
2. Power Consumption Considerations on page 4-3 provides a formula to compute the estimated  
current requirements in Normal mode. To obtain these results, all inputs must be terminated (that is,  
not allowed to float). Measurements are based on synthetic intensive DSP benchmarks (see  
Appendix A). The power consumption numbers in this specification are 90 percent of the measured  
results of this benchmark. This reflects typical DSP applications. Typical internal supply current is  
measured with V = 3.0 V at T = 100°C.  
CC  
J
3. To obtain these results, all inputs must be terminated (that is, not allowed to float).  
4. To obtain these results, all inputs that are not disconnected at Stop mode must be terminated (that is,  
not allowed to float). PLL and XTAL signals are disabled during Stop state.  
5. Periodically sampled and not 100 percent tested.  
6.  
7. This characteristic does not apply to XTAL and PCAP.  
8. Driving EXTAL to the low V or the high V value may cause additional power consumption (DC  
V
= 3.3 V ± 0.3 V; T = –40°C to +100 °C, C = 50 pF  
CC J L  
IHX  
ILX  
current). To minimize power consumption, the minimum V  
should be no lower than  
IHX  
0.9 × V and the maximum V should be no higher than 0.1 × V .  
CC  
CC  
ILX  
2-3  
AC Electrical Characteristics  
2.6 AC Electrical Characteristics  
The timing waveforms shown in the AC electrical characteristics section are tested with a VIL maximum  
of 0.3 V and a VIH minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels  
shown in Note 6 of Table 2-3. AC timing specifications, which are referenced to a device input signal,  
are measured in production with respect to the 50 percent point of the respective input signal’s transition.  
Note: Although the minimum value for the frequency of EXTAL is 0 MHz, the device AC test  
conditions are 15 MHz and rated speed.  
All specifications for the high impedance state are guaranteed by design.  
2.6.1 Internal Clocks  
Table 2-4. Internal Clocks, CLKOUT  
Expression1, 2  
Typ  
Characteristics  
Symbol  
Min  
Max  
Internal operation frequency and CLKOUT with PLL  
enabled  
f
(Ef × MF)/  
(PDF × DF)  
Internal operation frequency and CLKOUT with PLL  
disabled  
f
Ef/2  
Internal clock and CLKOUT high period  
With PLL disabled  
With PLL enabled and MF 4  
T
ET  
H
C
0.49 × ET  
×
0.51 × ET ×  
C
C
PDF × DF/MF  
PDF × DF/MF  
0.53 × ET  
With PLL enabled and MF > 4  
0.47 × ET  
×
×
C
C
PDF × DF/MF  
PDF × DF/MF  
Internal clock and CLKOUT low period  
With PLL disabled  
With PLL enabled and MF 4  
T
ET  
L
C
0.49 × ET  
×
0.51 × ET ×  
C
C
PDF × DF/MF  
PDF × DF/MF  
0.53 × ET  
With PLL enabled and MF > 4  
0.47 × ET  
×
×
C
C
PDF × DF/MF  
PDF × DF/MF  
Internal clock and CLKOUT cycle time with PLL enabled  
T
T
ET  
PDF ×  
DF/MF  
×
C
C
C
Internal clock and CLKOUT cycle time with PLL disabled  
Instruction cycle time  
2 × ET  
C
I
T
CYC  
C
Notes: 1. DF = Division Factor; Ef = External frequency; ET = External clock cycle = 1/Ef;  
C
MF = Multiplication Factor; PDF = Predivision Factor; T = Internal clock cycle  
C
2. See the PLL and Clock Generator section in the DSP56300 Family Manual for details on the PLL.  
2-4  
AC Electrical Characteristics  
2.6.2 External Clock Operation  
The DSP56305 system clock is derived from the on-chip oscillator or it is externally supplied. To use the  
on-chip oscillator, connect a crystal and associated resistor/capacitor components to EXTAL and XTAL;  
examples are shown in Figure 2-1.  
EXTAL  
XTAL  
EXTAL  
XTAL  
R
R1  
R2  
Note: Make sure that in  
Note: Make sure that in  
the PCTL Register:  
the PCTL Register:  
XTLD (bit 16) = 0  
If f 200 kHz,  
XTLR (bit 15) = 1  
XTLD (bit 16) = 0  
If f > 200 kHz,  
XTLR (bit 15) = 0  
OSC  
OSC  
C
C
C
XTAL1  
C
XTAL1  
Fundamental Frequency  
Fork Crystal Oscillator  
Fundamental Frequency  
Crystal Oscillator  
Suggested Component Values:  
= 4 MHz  
Suggested Component Values:  
= 32.768 kHz  
R1 = 3.9 MΩ ± 10%  
C = 22 pF ± 20%  
f
f
OSC  
f
= 20 MHz  
OSC  
OSC  
R = 680 kΩ ± 10%  
C = 56 pF ± 20%  
R = 680 kΩ ± 10%  
C = 22 pF ± 20%  
R2 = 200 kΩ ± 10%  
Calculations were done for a 4/20 MHz crystal  
with the following parameters:  
Calculations were done for a 32.768 kHz crystal  
with the following parameters:  
C of 30/20 pF,  
L
C
of 7/6 pF,  
load capacitance (C ) of 12.5 pF,  
0
L
series resistance of 100/20 , and  
drive level of 2 mW.  
shunt capacitance (C ) of 1.8 pF,  
0
series resistance of 40 k, and  
drive level of 1 µW.  
Figure 2-1. Crystal Oscillator Circuits  
If an externally supplied square wave voltage source is used, disable the internal oscillator circuit during  
bootup by setting XTLD (PCTL Register bit 16 = 1—see the DSP56301 Users Manual). The external  
square wave source connects to EXTAL; XTAL is not physically connected to the board or socket. Figure  
2-2 shows the relationship between the EXTAL input and the internal clock and CLKOUT.  
V
Midpoint  
IHX  
EXTAL  
ET  
ET  
H
V
L
Note:  
The midpoint is  
0.5 (V + V ).  
ILX  
2
3
IHX  
ILX  
4
ET  
C
5
5
CLKOUT with  
PLL disabled  
7
CLKOUT with  
PLL enabled  
7
6a  
6b  
Figure 2-2. External Clock Timing  
2-5  
AC Electrical Characteristics  
Table 2-5. Clock Operation  
80 MHz  
100 MHz  
No.  
Characteristics  
Symbol  
Min  
Max  
Min  
Max  
1
2
Frequency of EXTAL (EXTAL Pin Frequency)  
The rise and fall time of this external clock should be 3 ns maximum.  
Ef  
0
80.0 MHz  
0
100.0  
MHz  
1, 2  
EXTAL input high  
6
With PLL disabled (46.7%–53.3% duty cycle )  
With PLL enabled (42.5%–57.5% duty cycle )  
ET  
5.84 ns  
5.31 ns  
4.67 ns  
4.25 ns  
H
6
157.0 µs  
157.0 µs  
1, 2  
3
4
EXTAL input low  
6
With PLL disabled (46.7%–53.3% duty cycle )  
With PLL enabled (42.5%–57.5% duty cycle )  
ET  
5.84 ns  
5.31 ns  
4.67 ns  
4.25 ns  
L
6
157.0 µs  
157.0 µs  
2
EXTAL cycle time  
With PLL disabled  
With PLL enabled  
ET  
12.50 ns  
12.50 ns  
10.00 ns  
10.00 ns  
C
273.1 µs  
273.1 µs  
5
6
CLKOUT change from EXTAL fall with PLL disabled  
4.3 ns  
0.0 ns  
11.0 ns  
1.8 ns  
4.3 ns  
0.0 ns  
11.0 ns  
1.8 ns  
a. CLKOUT rising edge from EXTAL rising edge with PLL enabled  
3,5  
(MF = 1 or 2 or 4, PDF = 1, Ef > 15 MHz)  
b. CLKOUT falling edge from EXTAL falling edge with PLL enabled  
(MF 4, PDF 1, Ef / PDF > 15 MHz)  
0.0 ns  
1.8 ns  
0.0 ns  
1.8 ns  
3,5  
4
7
Instruction cycle time = I  
= T  
CYC C  
(see Table 2-4) (46.7%–53.3% duty cycle)  
With PLL disabled  
With PLL enabled  
I
25.0 ns  
12.50 ns  
20.0 ns  
10.00 ns  
CYC  
8.53 µs  
8.53 µs  
Notes: 1. Measured at 50 percent of the input transition  
2. The maximum value for PLL enabled is given for minimum VCO frequency (see Table 2-6) and maximum MF.  
3. Periodically sampled and not 100 percent tested  
4. The maximum value for PLL enabled is given for minimum VCO frequency and maximum DF.  
5. The skew is not guaranteed for any other MF value.  
6. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low  
time required for correction operation, however, remains the same at lower operating frequencies; therefore, when a  
lower clock frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high  
time and low time requirements are met.  
2.6.3 Phase Lock Loop (PLL) Characteristics  
Table 2-6. PLL Characteristics  
80 MHz  
100 MHz  
Characteristics  
Unit  
Min  
Max  
Min  
Max  
Voltage Controlled Oscillator (VCO) frequency when  
30  
160  
30  
200  
MHz  
PLL enabled (MF × E × 2/PDF)  
f
)
PLL external capacitor (PCAP pin to V  
) (C  
PCAP  
CCP  
@ MF 4  
(MF × 580) (MF × 780) (MF × 580) 100 (MF × 780) 140 pF  
100  
140  
@ MF > 4  
MF × 830  
MF × 1470  
MF × 830  
). The recommended value in pF for  
CCP  
MF × 1470  
pF  
Note:  
C
C
is the value of the PLL capacitor (connected between the PCAP pin and V  
can be computed from one of the following equations:  
PCAP  
PCAP  
(680 × MF) – 120, for MF 4, or  
1100 × MF, for MF > 4.  
2-6  
AC Electrical Characteristics  
2.6.4 Reset, Stop, Mode Select, and Interrupt Timing  
Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing6  
80 MHz  
100 MHz  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
Min  
Max  
3
8
Delay from RESET assertion to all pins at reset value  
26.0  
26.0  
ns  
4
9
Required RESET duration  
Power on, external clock generator, PLL disabled  
Power on, external clock generator, PLL enabled  
Power on, internal oscillator  
During STOP, XTAL disabled (PCTL Bit 16 = 0)  
During STOP, XTAL enabled (PCTL Bit 16 = 1)  
During normal operation  
50 × ET  
1000 × ET  
75000 × ET  
75000 × ET  
625.0  
12.5  
1.0  
1.0  
31.3  
31.3  
500.0  
10.0  
0.75  
0.75  
25.0  
25.0  
ns  
µs  
ms  
ms  
ns  
C
C
C
C
2.5 × T  
2.5 × T  
C
C
ns  
10 Delay from asynchronous RESET deassertion to first external  
5
address output (internal reset deassertion)  
Minimum  
Maximum  
3.25 × T + 2.0  
42.6  
263.1  
34.5  
212.5  
ns  
ns  
C
20.25 T + 10.0  
C
11 Synchronous reset setup time from RESET deassertion to  
CLKOUT Transition 1  
T
C
Minimum  
Maximum  
7.4  
12.5  
5.9  
10.0  
ns  
ns  
12 Synchronous reset deasserted, delay time from the CLKOUT  
Transition 1 to the first external address output  
Minimum  
Maximum  
3.25 × T + 1.0  
41.6  
258.1  
33.5  
207.5  
ns  
ns  
C
20.25 × T + 1.0  
C
13 Mode select setup time  
30.0  
0.0  
30.0  
0.0  
ns  
ns  
14  
Mode select hold time  
15  
16  
17  
Minimum edge-triggered interrupt request assertion width  
Minimum edge-triggered interrupt request deassertion width  
8.25  
6.6  
ns  
8.25  
7.1  
ns  
Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external  
memory access address out valid  
Caused by first interrupt instruction fetch  
Caused by first interrupt instruction execution  
4.25 × T + 2.0  
7.25 × T + 2.0  
C
55.1  
92.6  
44.5  
74.5  
ns  
ns  
C
18  
19  
Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to  
general-purpose transfer output valid caused by first interrupt  
instruction execution  
10 × T + 5.0  
130.0  
105.0  
ns  
C
Delay from address output valid caused by first interrupt  
instruction execute to interrupt request deassertion for level  
80 MHz:  
Note 8  
ns  
3.75 × T + WS × T – 12.4  
C
C
1
sensitive fast interrupts  
100 MHz:  
Note 8 ns  
ns  
3.75 × T + WS × T – 10.94  
C
C
20  
Delay from RD assertion to interrupt request deassertion for  
80 MHz:  
Note 8  
1
level sensitive fast interrupts  
3.25 × T + WS × T – 12.4  
C
C
100 MHz:  
3.25 × T + WS × T – 10.94  
Note 8 ns  
C
C
2-7  
AC Electrical Characteristics  
Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing6 (Continued)  
80 MHz  
100 MHz  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
Min  
Max  
21 Delay from WR assertion to interrupt request deassertion for  
1
level sensitive fast interrupts  
7
DRAM for all WS  
SRAM WS = 1  
SRAM WS = 2, 3  
SRAM WS 4  
80 MHz:  
Note 8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(WS + 3.5) × T – 12.4  
C
100 MHz:  
Note 8  
Note 8  
Note 8  
Note 8  
(WS + 3.5) × T – 10.94  
C
80 MHz:  
Note 8  
Note 8  
Note 8  
(WS + 3.5) × T – 12.4  
C
100 MHz:  
(WS + 3.5) × T – 10.94  
C
80 MHz:  
(WS + 3) × T – 12.4  
C
100 MHz:  
(WS + 3) × T – 10.94  
C
80 MHz:  
(WS + 2.5) × T – 12.4  
C
100 MHz:  
(WS + 2.5) × T – 10.94  
C
22 Synchronous interrupt setup time from IRQA, IRQB, IRQC,  
IRQD, NMI assertion to the CLKOUT Transition 2  
7.4  
T
5.9  
T
ns  
C
C
23 Synchronous interrupt delay time from the CLKOUT Transition  
2 to the first external address output valid caused by the first  
instruction fetch after coming out of Wait Processing state  
Minimum  
Maximum  
8.25 × T + 1.0  
116.6  
314.4  
83.5  
252.5  
ns  
ns  
C
24.75 × T + 5.0  
C
24 Duration for IRQA assertion to recover from Stop state  
7.4  
5.9  
ns  
25 Delay from IRQA assertion to fetch of first instruction (when  
2, 3  
exiting Stop)  
PLL is not active during Stop (PCTL Bit 17 = 0) and Stop  
delay is enabled (Operating Mode Register Bit 6 = 0)  
PLC × ET × PDF + (128 K −  
1.6  
17.0  
1.3  
13.6  
ms  
C
PLC/2) × T  
C
PLL is not active during Stop (PCTL Bit 17 = 0) and Stop  
delay is not enabled (Operating Mode Register Bit 6 = 1)  
PLC × ET × PDF + (23.75 ± 290.6 ns 15.4 ms 232.5  
12.3  
ms  
C
0.5) × T  
ns  
C
PLL is active during Stop (PCTL Bit 17 = 1) (Implies No Stop  
Delay)  
(9.25 ± 0.5) × TC  
109.4  
121.9  
87.5  
97.5  
ns  
26 Duration of level sensitive IRQA assertion to ensure interrupt  
2, 3  
service (when exiting Stop)  
PLL is not active during Stop (PCTL Bit 17 = 0) and Stop  
delay is enabled (Operating Mode Register Bit 6 = 0)  
PLC × ET × PDF + (128K −  
17.0  
15.4  
68.8  
13.6  
12.3  
55.0  
ms  
ms  
ns  
C
PLC/2) × T  
C
PLL is not active during Stop (PCTL Bit 17 = 0) and Stop  
delay is not enabled (Operating Mode Register Bit 6 = 1)  
PLC × ET × PDF +  
C
(20.5 ± 0.5) × T  
C
PLL is active during Stop (PCTL Bit 17 = 1) (implies no Stop  
delay)  
5.5 × T  
C
27 Interrupt Request Rate  
HI32, ESSI, SCI, Timer  
DMA  
IRQ, NMI (edge trigger)  
IRQ, NMI (level trigger)  
12 × T  
150.0  
100.0  
100.0  
150.0  
120.0  
80.0  
80.0  
ns  
ns  
ns  
ns  
C
8 × T  
8 × T  
C
C
12 × T  
120.0  
C
2-8  
AC Electrical Characteristics  
Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing6 (Continued)  
80 MHz  
100 MHz  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
Min  
Max  
28 DMA Request Rate  
Data read from HI32, ESSI, SCI  
Data write to HI32, ESSI, SCI  
Timer  
6 × T  
7 × T  
2 × T  
3 × T  
75.0  
87.5  
25.0  
37.5  
60.0  
70.0  
20.0  
30.0  
ns  
ns  
ns  
ns  
C
C
C
C
IRQ, NMI (edge trigger)  
29 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external  
memory (DMA source) access address out valid  
4.25 × T + 2.0  
55.1  
44.5  
ns  
C
Notes: 1. When using fast interrupts and IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply to prevent  
multiple interrupt service. To avoid these timing restrictions, the deasserted Edge-triggered mode is recommended when using fast  
interrupts. Long interrupts are recommended when using Level-sensitive mode.  
2. This timing depends on several settings:  
• For PLL disable, using internal oscillator (PLL Control Register (PCTL) Bit 16 = 0) and oscillator disabled during Stop (PCTL Bit 17  
= 0), a stabilization delay is required to assure that the oscillator is stable before programs are executed. Resetting the Stop delay  
(Operating Mode Register Bit 6 = 0) provides the proper delay. While Operating Mode Register Bit 6 = 1 can be set, it is not  
recommended, and these specifications do not guarantee timings for that case.  
• For PLL disable, using internal oscillator (PCTL Bit 16 = 0) and oscillator enabled during Stop (PCTL Bit 17=1), no stabilization  
delay is required and recovery is minimal (Operating Mode Register Bit 6 setting is ignored).  
• For PLL disable, using external clock (PCTL Bit 16 = 1), no stabilization delay is required and recovery time is defined by the PCTL  
Bit 17 and Operating Mode Register Bit 6 settings.  
• For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during Stop. Recovering from Stop requires the PLL to get locked. The  
PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 0 to 1000 cycles. This procedure occurs in parallel with  
the stop delay counter, and stop recovery ends when the last of these two events occurs. The stop delay counter completes countor  
PLL lock procedure completion.  
• PLC value for PLL disable is 0.  
• The maximum value for ET is 4096 (maximum MF) divided by the desired internal frequency (that is, for 66 MHz it is 4096/66 MHz  
C
= 62 µs). During the stabilization period, T , T and T is not constant, and their width may vary, so timing may vary as well.  
C
H,  
L
3. Periodically sampled and not 100 percent tested.  
4. Value depends on clock source:  
• For an external clock generator, RESET duration is measured while RESET is asserted, V is valid, and the EXTAL input is active  
CC  
and valid.  
• For an internal oscillator, RESET duration is measured while RESET is asserted and V is valid. The specified timing reflects the  
CC  
crystal oscillator stabilization time after power-up. This number is affected both by the specifications of the crystal and other  
components connected to the oscillator and reflects worst case conditions.  
• When the V is valid, but the other “required RESET duration” conditions (as specified above) have not been yet met, the device  
CC  
circuitry is in an uninitialized state that can result in significant power consumption and heat-up. Designs should minimize this state to  
the shortest possible duration.  
5. If PLL does not lose lock.  
6.  
V
= 3.3 V ± 0.3 V; T = –40°C to +100°C, C = 50 pF.  
CC J L  
7. WS = number of wait states (measured in clock cycles, number of T ).  
C
8. Use the expression to compute a maximum value.  
RESET  
V
IH  
9
10  
8
All Pins  
Reset Value  
First Fetch  
A[0–23]  
Figure 2-3. Reset Timing  
2-9  
AC Electrical Characteristics  
CLKOUT  
RESET  
11  
12  
A[0–23]  
Figure 2-4. Synchronous Reset Timing  
First Interrupt Instruction  
Execution/Fetch  
A[0–23]  
RD  
20  
21  
WR  
17  
19  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O  
18  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
b) General-Purpose I/O  
Figure 2-5. External Fast Interrupt Timing  
2-10  
AC Electrical Characteristics  
IRQA, IRQB,  
IRQC, IRQD, NMI  
15  
16  
IRQA, IRQB,  
IRQC, IRQD, NMI  
Figure 2-6. External Interrupt Timing (Negative Edge-Triggered)  
CLKOUT  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
22  
23  
A[0–23]  
Figure 2-7. Synchronous Interrupt from Wait State Timing  
V
IH  
RESET  
13  
14  
V
V
IH  
IH  
MODA, MODB,  
MODC, MODD,  
PINIT  
IRQA, IRQB,  
IRQC, IRQD, NMI  
V
V
IL  
IL  
Figure 2-8. Operating Mode Select Timing  
2-11  
AC Electrical Characteristics  
24  
IRQA  
25  
First Instruction Fetch  
A[0–23]  
Figure 2-9. Recovery from Stop State Using IRQA  
26  
IRQA  
25  
First IRQA Interrupt  
Instruction Fetch  
A[0–23]  
Figure 2-10. Recovery from Stop State Using IRQA Interrupt Service  
DMA Source Address  
A[0–23]  
RD  
WR  
29  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
First Interrupt Instruction Execution  
Figure 2-11. External Memory Access (DMA Source) Timing  
2-12  
AC Electrical Characteristics  
2.6.5 External Memory Expansion Port (Port A)  
2.6.5.1 SRAM Timing  
Table 2-8. SRAM Read and Write Accesses3,6  
80 MHz  
100 MHz  
Min Max  
No.  
Characteristics  
Symbol  
Expression1  
Unit  
Min  
Max  
100 Address valid and AA  
t
, t  
(WS + 1) × T 4.0 [1 WS 3] 21.0  
16.0  
56.0  
106.0  
ns  
ns  
ns  
RC WC  
C
2
assertion pulse width  
(WS + 2) × T 4.0 [4 WS 7] 71.0  
C
(WS + 3) × T 4.0 [WS 8]  
133.5  
C
101 Address and AA valid  
to WR assertion  
t
0.25 × T 2.0 [WS = 1]  
1.1  
7.4  
13.6  
0.5  
5.5  
10.5  
ns  
ns  
ns  
AS  
C
0.75 × T 2.0 [2 WS 3]  
C
1.25 × T 2.0 [WS 4]  
C
102 WR assertion pulse  
width  
t
1.5 × T 4.0 [WS = 1]  
14.8  
21.0  
39.8  
11.0  
16.0  
31.0  
ns  
ns  
ns  
WP  
WR  
C
WS × T 4.0 [2 WS 3]  
C
(WS 0.5) × T 4.0 [WS 4]  
C
103 WR deassertion to  
address not valid  
t
0.25 × T 2.0 [1 WS 3]  
1.1  
11.6  
24.1  
0.5  
8.5  
18.5  
ns  
ns  
ns  
C
1.25 × T 4.0 [4 WS 7]  
C
2.25 × T 4.0 [WS 8]  
C
104 Address and AA valid  
to input data valid  
t
, t  
80 MHz:  
AA AC  
(WS + 0.75) × T 9.5 [WS 1]  
16.9  
ns  
ns  
C
100 MHz:  
(WS + 0.75) × T 5.0 [WS 1]  
12.5  
C
105 RD assertion to input  
data valid  
t
80 MHz:  
OE  
(WS + 0.25) × T 9.5 [WS 1]  
10.6  
7.5  
ns  
ns  
ns  
C
100 MHz:  
(WS + 0.25) × T 5.0 [WS 1]  
C
106 RD deassertion to  
data not valid (data  
hold time)  
t
0.0  
0.0  
OHZ  
107 Address valid to WR  
t
(WS + 0.75) × T 4.0 [WS 1] 17.9  
13.5  
4.5  
ns  
ns  
AW  
C
2
deassertion  
108 Data valid to WR  
deassertion (data  
setup time)  
t
(t  
)
(WS 0.25) × T 3.0 [WS 1]  
6.4  
DS DW  
C
109 Data hold time from  
WR deassertion  
t
0.25 × T 2.0 [1 WS 3]  
1.1  
13.6  
26.1  
0.5  
10.5  
20.5  
ns  
ns  
ns  
DH  
C
1.25 × T 2.0 [4 WS 7]  
C
2.25 × T 2.0 [WS 8]  
C
110 WR assertion to data  
active  
0.75 × T 3.7 [WS = 1]  
5.7  
–0.6  
–6.8  
3.8  
–1.2  
–6.2  
ns  
ns  
ns  
C
0.25 × T 3.7 [2 WS 3]  
C
0.25 × T 3.7 [WS 4]  
C
111 WR deassertion to  
data high impedance  
0.25 × T + 0.2 [1 WS 3]  
3.3  
15.8  
28.3  
2.7  
12.7  
22.7  
ns  
ns  
ns  
C
1.25 × T + 0.2 [4 WS 7]  
C
2.25 × T + 0.2 [WS 8]  
C
2-13  
AC Electrical Characteristics  
Table 2-8. SRAM Read and Write Accesses3,6 (Continued)  
80 MHz  
100 MHz  
Min Max  
No.  
Characteristics  
Symbol  
Expression1  
Unit  
Min  
Max  
112 Previous RD  
1.25 × T 4.0 [1 WS 3]  
11.6  
24.1  
36.6  
8.5  
18.5  
28.5  
ns  
ns  
ns  
C
deassertion to data  
active (write)  
2.25 × T 4.0 [4 WS 7]  
C
3.25 × T 4.0 [WS 8]  
C
113 RD deassertion time  
0.75 × T 4.0 [1 WS 3]  
5.4  
17.9  
30.4  
3.5  
13.5  
23.5  
ns  
ns  
ns  
C
1.75 × T 4.0 [4 WS 7]  
C
2.75 × T 4.0 [WS 8]  
C
114 WR deassertion time  
0.5 × T 4.0 [WS = 1]  
2.3  
8.5  
27.3  
39.8  
1.0  
6.0  
21.0  
31.0  
ns  
ns  
ns  
ns  
C
T
4.0 [2 WS 3]  
C
2.5 × T 4.0 [4 WS 7]  
C
3.5 × T 4.0 [WS 8]  
C
115 Address valid to RD  
assertion  
0.5 × T 4.0  
2.3  
1.0  
8.5  
ns  
ns  
C
116 RD assertion pulse  
width  
(WS + 0.25) × T 4.0  
11.6  
C
117 RD deassertion to  
address not valid  
0.25 × T 2.0 [1 WS 3]  
1.1  
13.6  
26.1  
0.5  
10.5  
20.5  
ns  
ns  
ns  
C
1.25 × T 2.0 [4 WS 7]  
C
2.25 × T 2.0 [WS 8]  
C
118 TA setup before RD  
0.25 × T + 2.0  
5.1  
0
4.5  
0
ns  
ns  
C
4
or WR deassertion  
119 TA hold after RD or  
WR deassertion  
Notes: 1. WS is the number of wait states specified in the BCR.  
2. Timings 100, 107 are guaranteed by design, not tested.  
3. All timings for 100 MHz are measured from 0.5 · Vcc to 0.5 · Vcc  
4. Timing 118 is relative to the deassertion edge of RD or WR even if TA remains active.  
5. Timings 110, 111, and 112, are not helpful and are not specified for 100 MHz.  
6.  
V
= 3.3 V ± 0.3 V; T = –40°C to +100°C, C = 50 pF  
CC J L  
2-14  
AC Electrical Characteristics  
100  
A[0–23]  
AA[0–3]  
117  
106  
113  
116  
RD  
105  
WR  
104  
118  
119  
TA  
Data  
In  
D[0–23]  
Note: Address lines A[0–23] hold their state after a  
read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-12. SRAM Read Access  
100  
A[0–23]  
AA[0–3]  
107  
101  
102  
103  
WR  
RD  
114  
119  
118  
TA  
108  
109  
Data  
Out  
D[0–23]  
Note: Address lines A[0–23] hold their state after a  
read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-13. SRAM Write Access  
2-15  
AC Electrical Characteristics  
2.6.5.2 DRAM Timing  
The selection guides in Figure 2-14 and Figure 2-17 are for primary selection only. Final selection  
should be based on the timing in the following tables. For example, the selection guide suggests that four  
wait states must be used for 100 MHz operation in Page Mode DRAM. However, using the information in  
the appropriate table, a designer could choose to evaluate whether fewer wait states might be used by  
determining which timing prevents operation at 100 MHz, by running the chip at a slightly lower  
frequency (for example, 95 MHz), by using faster DRAM (if it becomes available), and by manipulating  
control factors such as capacitive and resistive load to improve overall system performance.  
Note:  
This figure should be used for primary selection. For exact  
and detailed timings see the following tables.  
DRAM type  
(tRAC ns)  
100  
80  
70  
60  
50  
Chip frequency  
(MHz)  
120  
40  
66  
80  
100  
1 Wait state  
2 Wait states  
3 Wait states  
4 Wait states  
Figure 2-14. DRAM Page Mode Wait States Selection Guide  
2-16  
AC Electrical Characteristics  
Table 2-9. DRAM Page Mode Timings, Two Wait States1, 2, 3, 7  
80 MHz  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min Max  
131 Page mode cycle time for two consecutive accesses of the  
same direction  
3 × T  
37.5  
ns  
C
Page mode cycle time for mixed (read and write) accesses  
132 CAS assertion to data valid (read)  
t
2.75 × T  
34.4  
12.3  
24.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PC  
C
t
1.5 × T 6.5  
C
CAC  
133 Column address valid to data valid (read)  
134 CAS deassertion to data not valid (read hold time)  
135 Last CAS assertion to RAS deassertion  
136 Previous CAS deassertion to RAS deassertion  
137 CAS assertion pulse width  
t
2.5 × T 6.5  
AA  
C
t
0.0  
OFF  
RSH  
t
1.75 × T 4.0  
17.9  
36.6  
14.8  
C
t
3.25 × T 4.0  
RHCP  
C
t
1.5 × T 4.0  
CAS  
CRP  
C
5
138 Last CAS deassertion to RAS deassertion  
t
BRW[1–0] = 00  
BRW[1–0] = 01  
BRW[1–0] = 10  
BRW[1–0] = 11  
Not supported  
ns  
ns  
ns  
ns  
3.5 × T 6.0  
37.8  
50.3  
75.3  
C
4.5 × T 6.0  
C
6.5 × T 6.0  
C
139 CAS deassertion pulse width  
t
1.25 × T 4.0  
11.6  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CP  
C
140 Column address valid to CAS assertion  
141 CAS assertion to column address not valid  
142 Last column address valid to RAS deassertion  
143 WR deassertion to CAS assertion  
144 CAS deassertion to WR assertion  
145 CAS assertion to WR deassertion  
146 WR assertion pulse width  
t
T 4.0  
C
ASC  
t
1.75 × T 4.0  
17.9  
33.5  
11.6  
2.6  
CAH  
C
t
3 × T 4.0  
RAL  
RCS  
RCH  
C
t
1.25 × T 4  
C
t
0.5 × T 3.7  
C
t
1.5 × T 4.2  
14.6  
26.8  
30.1  
27.0  
0.1  
WCH  
C
t
2.5 × T 4.5  
WP  
C
147 Last WR assertion to RAS deassertion  
148 WR assertion to CAS deassertion  
149 Data valid to CAS assertion (write)  
150 CAS assertion to data not valid (write)  
151 WR assertion to CAS assertion  
t
2.75 × T 4.3  
RWL  
CWL  
C
t
2.5 × T 4.3  
C
t
0.25 × T 3.0  
DS  
DH  
C
t
1.75 × T 4.0  
17.9  
8.2  
C
t
T
4.3  
C
WCS  
152 Last RD assertion to RAS deassertion  
153 RD assertion to data valid  
t
2.5 × T 4.0  
27.3  
ROH  
C
t
1.75 × T 6.5  
15.4  
GA  
C
6
154 RD deassertion to data not valid  
t
0.0  
GZ  
155 WR assertion to data active  
0.75 × T 1.5  
7.9  
C
156 WR deassertion to data high impedance  
0.25 × T  
3.1  
C
Notes: 1. The number of wait states for Page mode access is specified in the DCR.  
2. The refresh period is specified in the DCR.  
3. The asynchronous delays specified in the expressions are valid for the DSP56305.  
4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (for  
example, t equals 3 × T for read-after-read or write-after-write sequences).  
PC  
C
5. BRW[1–0] (DRAM Control Register bits) defines the number of wait states that should be inserted in each  
DRAM out-of-page access.  
6. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t  
and not t  
GZ.  
OFF  
7. At this time, there are no DRAMs fast enough to fit with two wait states Page mode @ 100MHz (see Table  
2-14). However, DRAM speeds are approaching two-wait-state compatibility.  
2-17  
AC Electrical Characteristics  
Table 2-10. DRAM Page Mode Timings, Three Wait States1, 2, 3  
80 MHz  
100 MHz  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min Max  
Min Max  
131 Page mode cycle time for two consecutive accesses of the  
same direction  
4 × T  
50.0  
40.0  
ns  
C
Page mode cycle time for mixed (read and write) accesses  
132 CAS assertion to data valid (read)  
t
3.5 × T  
43.7  
19.3  
31.8  
35.0  
14.3  
24.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PC  
C
t
2 × T 5.7  
C
CAC  
133 Column address valid to data valid (read)  
134 CAS deassertion to data not valid (read hold time)  
135 Last CAS assertion to RAS deassertion  
136 Previous CAS deassertion to RAS deassertion  
137 CAS assertion pulse width  
t
3 × T 5.7  
AA  
C
t
0.0  
0.0  
OFF  
RSH  
t
2.5 × T 4.0  
27.3  
52.3  
21.0  
21.0  
41.0  
16.0  
C
t
4.5 × T 4.0  
RHCP  
C
t
2 × T 4.0  
CAS  
C
5
138 Last CAS deassertion to RAS assertion  
t
CRP  
BRW[1–0] = 00  
BRW[1–0] = 01  
BRW[1–0] = 10  
BRW[1–0] = 11  
Not supported  
ns  
ns  
ns  
ns  
3.75 × T 6.0  
40.9  
53.4  
78.4  
31.5  
41.5  
61.5  
C
4.75 × T 6.0  
C
6.75 × T 6.0  
C
139 CAS deassertion pulse width  
t
1.5 × T 4.0  
14.8  
8.5  
11.0  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CP  
C
140 Column address valid to CAS assertion  
141 CAS assertion to column address not valid  
142 Last column address valid to RAS deassertion  
143 WR deassertion to CAS assertion  
144 CAS deassertion to WR assertion  
145 CAS assertion to WR deassertion  
146 WR assertion pulse width  
t
T 4.0  
C
ASC  
t
2.5 × T 4.0  
27.3  
46.0  
11.6  
5.4  
21.0  
36.0  
8.5  
CAH  
C
t
4 × T 4.0  
RAL  
RCS  
RCH  
C
t
1.25 × T 4.0  
C
t
0.75 × TC 4.0  
3.5  
t
2.25 × T 4.2  
23.9  
39.3  
42.6  
36.3  
2.0  
18.3  
30.5  
33.2  
28.2  
0.2  
WCH  
C
t
3.5 × T 4.5  
WP  
C
147 Last WR assertion to RAS deassertion  
148 WR assertion to CAS deassertion  
149 Data valid to CAS assertion (write)  
150 CAS assertion to data not valid (write)  
151 WR assertion to CAS assertion  
t
3.75 × T 4.3  
RWL  
CWL  
C
t
3.25 × T 4.3  
C
t
0.5 × T – 4.8  
DS  
DH  
C
t
2.5 × T 4.0  
27.3  
11.3  
39.8  
21.0  
8.2  
C
t
1.25 × T 4.3  
WCS  
C
152 Last RD assertion to RAS deassertion  
153 RD assertion to data valid  
t
3.5 × T 4.0  
31.0  
ROH  
C
t
2.5 × T 5.7  
25.6  
19.3  
GA  
C
6
154 RD deassertion to data not valid  
t
0.0  
0.0  
GZ  
155 WR assertion to data active  
0.75 × T – 1.5  
7.9  
6.0  
C
156 WR deassertion to data high impedance  
0.25 × T  
3.1  
2.5  
C
Notes: 1. The number of wait states for Page mode access is specified in the DCR.  
2. The refresh period is specified in the DCR.  
3. The asynchronous delays specified in the expressions are valid for DSP56305.  
4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (for example, t equals 4 ×  
PC  
T
for read-after-read or write-after-write sequences).  
C
5. BRW[1–0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of  
page-access.  
6. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t  
and not t  
.
GZ  
OFF  
2-18  
AC Electrical Characteristics  
Table 2-11. DRAM Page Mode Timings, Four Wait States1, 2, 3  
80 MHz  
100 MHz  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min Max  
Min Max  
131 Page mode cycle time for two consecutive accesses of the  
same direction  
5 × T  
62.5  
50.0  
ns  
C
Page mode cycle time for mixed (read and write) accesses  
132 CAS assertion to data valid (read)  
t
4.5 × T  
56.2  
28.7  
41.2  
45.0  
21.8  
31.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PC  
C
t
2.75 × T 5.7  
C
CAC  
133 Column address valid to data valid (read)  
134 CAS deassertion to data not valid (read hold time)  
135 Last CAS assertion to RAS deassertion  
136 Previous CAS deassertion to RAS deassertion  
137 CAS assertion pulse width  
t
3.75 × T 5.7  
AA  
C
t
0.0  
0.0  
OFF  
RSH  
t
3.5 × T 4.0  
39.8  
71.0  
27.3  
31.0  
56.0  
21.0  
C
t
6 × T 4.0  
RHCP  
C
t
2.5 × T 4.0  
CAS  
C
5
138 Last CAS deassertion to RAS assertion  
t
CRP  
BRW[1–0] = 00  
BRW[1–0] = 01  
BRW[1–0] = 10  
BRW[1–0] = 11  
Not supported  
ns  
ns  
ns  
ns  
4.25 × T 6.0  
47.2  
59.6  
84.6  
36.5  
46.5  
66.5  
C
5.25 × T 6.0  
C
7.25 × T 6.0  
C
139 CAS deassertion pulse width  
t
2 × T 4.0  
21.0  
8.5  
16.0  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CP  
C
140 Column address valid to CAS assertion  
141 CAS assertion to column address not valid  
142 Last column address valid to RAS deassertion  
143 WR deassertion to CAS assertion  
144 CAS deassertion to WR assertion  
145 CAS assertion to WR deassertion  
146 WR assertion pulse width  
t
T 4.0  
C
ASC  
t
3.5 × T 4.0  
39.8  
58.5  
11.8  
11.9  
36.4  
51.8  
55.1  
42.6  
1.5  
31.0  
46.0  
8.5  
CAH  
C
t
5 × T 4.0  
RAL  
RCS  
RCH  
C
t
1.25 × T 4.0  
C
t
1.25 × T – 3.7  
8.8  
C
t
3.25 × T 4.2  
28.3  
40.5  
43.2  
33.2  
0.2  
WCH  
C
t
4.5 × T 4.5  
WP  
C
147 Last WR assertion to RAS deassertion  
148 WR assertion to CAS deassertion  
149 Data valid to CAS assertion (write)  
150 CAS assertion to data not valid (write)  
151 WR assertion to CAS assertion  
t
4.75 × T 4.3  
RWL  
CWL  
C
t
3.75 × T 4.3  
C
t
0.5 × T – 4.8  
DS  
DH  
C
t
3.5 × T 4.0  
39.8  
11.3  
52.3  
31.0  
8.2  
C
t
1.25 × T 4.3  
WCS  
C
152 Last RD assertion to RAS deassertion  
153 RD assertion to data valid  
t
4.5 × T 4.0  
41.0  
ROH  
C
t
3.25 × T 5.7  
34.9  
26.8  
GA  
C
6
154 RD deassertion to data not valid  
t
0.0  
0.0  
GZ  
155 WR assertion to data active  
0.75 × T – 1.5  
7.9  
6.0  
C
156 WR deassertion to data high impedance  
0.25 × T  
3.1  
2.5  
C
Notes: 1. The number of wait states for Page mode access is specified in the DCR.  
2. The refresh period is specified in the DCR.  
3. The asynchronous delays specified in the expressions are valid for DSP56305.  
4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (for example, t equals  
PC  
3 × T for read-after-read or write-after-write sequences).  
C
5. BRW[1–0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page  
access. N/A = does not apply because 100 MHz requires a minimum of three wait states.  
6. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t  
and not t  
.
GZ  
OFF  
2-19  
AC Electrical Characteristics  
RAS  
136  
131  
135  
CAS  
137  
139  
138  
142  
140  
151  
141  
Column  
Address  
Last Column  
Address  
Column  
Address  
Row  
Add  
A[0–23]  
144  
145  
147  
148  
WR  
RD  
146  
155  
156  
150  
149  
D[0–23]  
Data Out  
Data Out  
Data Out  
Figure 2-15. DRAM Page Mode Write Accesses  
RAS  
CAS  
136  
135  
131  
137  
140  
139  
141  
138  
142  
Row  
Add  
Last Column  
Address  
Column  
Address  
Column  
Address  
A[0–23]  
WR  
143  
132  
133  
153  
152  
RD  
134  
154  
D[0–23]  
Data In  
Data In  
Data In  
Figure 2-16. DRAM Page Mode Read Accesses  
2-20  
AC Electrical Characteristics  
DRAM Type  
(tRAC ns)  
Note: This figure should be used for primary selection. For  
exact and detailed timings, see the following tables.  
100  
80  
70  
60  
Chip Frequency  
(MHz)  
50  
120  
40 66  
80  
100  
4 Wait States  
8 Wait States  
11 Wait States  
15 Wait States  
Figure 2-17. DRAM Out-of-Page Wait States Selection Guide  
Table 2-12. DRAM Out-of-Page and Refresh Timings, Eight Wait States1, 2  
80 MHz  
Characteristics3  
No.  
Symbol  
Expression  
Unit  
Min Max  
157 Random read or write cycle time  
158 RAS assertion to data valid (read)  
159 CAS assertion to data valid (read)  
160 Column address valid to data valid (read)  
161 CAS deassertion to data not valid (read hold time)  
162 RAS deassertion to RAS assertion  
163 RAS assertion pulse width  
t
9 × T  
112.5  
52.9  
21.6  
31.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
C
t
4.75 × T 6.5  
C
RAC  
t
2.25 × T 6.5  
CAC  
C
t
3 × T 6.5  
AA  
C
t
0.0  
OFF  
t
3.25 × T 4.0  
36.6  
67.9  
36.6  
55.4  
24.1  
29.3  
19.9  
49.1  
RP  
C
t
5.75 × T 4.0  
RAS  
RSH  
CSH  
C
164 CAS assertion to RAS deassertion  
165 RAS assertion to CAS deassertion  
166 CAS assertion pulse width  
t
t
3.25 × T 4.0  
C
4.75 × T 4.0  
C
t
2.25 × T 4.0  
CAS  
RCD  
C
167 RAS assertion to CAS assertion  
168 RAS assertion to column address valid  
169 CAS deassertion to RAS assertion  
t
2.5 × T ± 2  
33.3  
23.9  
C
t
1.75 × T ± 2  
C
RAD  
t
4.25 × T 4.0  
C
CRP  
2-21  
AC Electrical Characteristics  
Table 2-12. DRAM Out-of-Page and Refresh Timings, Eight Wait States1, 2 (Continued)  
80 MHz  
Characteristics3  
No.  
Symbol  
Expression  
Unit  
Min Max  
170 CAS deassertion pulse width  
t
2.75 × T 6.0  
28.4  
36.6  
17.9  
5.4  
87.3  
3.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CP  
C
171 Row address valid to RAS assertion  
172 RAS assertion to row address not valid  
173 Column address valid to CAS assertion  
174 CAS assertion to column address not valid  
175 RAS assertion to column address not valid  
176 Column address valid to RAS deassertion  
177 WR deassertion to CAS assertion  
t
3.25 × T 4.0  
C
ASR  
RAH  
t
1.75 × T 4.0  
C
t
0.75 × T 4.0  
C
ASC  
t
3.25 × T 4.0  
36.6  
67.9  
46.0  
21.2  
11.9  
0.5  
CAH  
C
t
5.75 × T 4.0  
C
AR  
t
4 × T 4.0  
C
RAL  
RCS  
RCH  
RRH  
t
2 × T 3.8  
C
4
178 CAS deassertion to WR assertion  
t
t
1.25 × T 3.7  
C
4
179 RAS deassertion to WR assertion  
0.25 × T 2.6  
C
180 CAS assertion to WR deassertion  
181 RAS assertion to WR deassertion  
182 WR assertion pulse width  
t
t
3 × T 4.2  
33.3  
64.6  
101.8  
105.1  
92.6  
55.4  
36.6  
67.9  
64.5  
14.8  
17.9  
102.3  
WCH  
WCR  
C
5.5 × T 4.2  
C
t
8.5 × T 4.5  
C
WP  
183 WR assertion to RAS deassertion  
184 WR assertion to CAS deassertion  
185 Data valid to CAS assertion (write)  
186 CAS assertion to data not valid (write)  
187 RAS assertion to data not valid (write)  
188 WR assertion to CAS assertion  
189 CAS assertion to RAS assertion (refresh)  
190 RAS deassertion to CAS assertion (refresh)  
191 RD assertion to RAS deassertion  
192 RD assertion to data valid  
t
8.75 × T 4.3  
C
RWL  
CWL  
t
7.75 × T 4.3  
C
t
4.75 × T 4.0  
C
DS  
DH  
t
3.25 × T 4.0  
C
t
5.75 × T 4.0  
DHR  
WCS  
C
t
5.5 × T 4.3  
C
t
1.5 × T 4.0  
C
CSR  
t
1.75 × T 4.0  
C
RPC  
t
8.5 × T 4.0  
C
ROH  
t
7.5 × T 6.5  
C
GA  
3
193 RD deassertion to data not valid  
t
0.0  
GZ  
194 WR assertion to data active  
0.75 × T 1.5  
7.9  
C
195 WR deassertion to data high impedance  
0.25 × T  
C
Notes: 1. The number of wait states for an out-of-page access is specified in the DCR.  
2. The refresh period is specified in the DCR.  
3. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t  
and not t  
.
OFF  
GZ  
4. Either t  
or t  
must be satisfied for read cycles.  
RCH  
RRH  
2-22  
AC Electrical Characteristics  
Table 2-13. DRAM Out-of-Page and Refresh Timings, Eleven Wait States1, 2  
80 MHz  
100 MHz  
No.  
Characteristics3  
Symbol  
Expression  
Unit  
Min Max  
Min Max  
157 Random read or write cycle time  
t
12 × T  
150.0  
120.0  
ns  
RC  
C
158 RAS assertion to data valid (read)  
t
80 MHz:  
RAC  
6.25 × T 6.5  
100 MHz:  
71.6  
ns  
ns  
C
6.25 × T 7.0  
55.5  
C
159 CAS assertion to data valid (read)  
t
80 MHz:  
CAC  
3.75 × T 6.5  
100 MHz:  
40.4  
ns  
ns  
C
3.75 × T 7.0  
30.5  
C
160 Column address valid to data valid (read)  
t
80 MHz:  
AA  
4.5 × T 6.5  
49.8  
ns  
C
100 MHz:  
4.5 × T 7.0  
38.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
161 CAS deassertion to data not valid (read hold time)  
162 RAS deassertion to RAS assertion  
163 RAS assertion pulse width  
t
0.0  
0.0  
OFF  
t
4.25 × T 4.0  
49.1  
92.9  
61.6  
74.1  
42.9  
27.3  
17.9  
67.9  
49.1  
49.1  
17.9  
5.4  
38.5  
73.5  
48.5  
58.5  
33.5  
21.0  
13.5  
53.5  
36.5  
38.5  
13.5  
3.5  
RP  
C
t
7.75 × T 4.0  
RAS  
RSH  
CSH  
C
164 CAS assertion to RAS deassertion  
165 RAS assertion to CAS deassertion  
166 CAS assertion pulse width  
t
t
5.25 × T 4.0  
C
6.25 × T 4.0  
C
t
3.75 × T 4.0  
CAS  
C
167 RAS assertion to CAS assertion  
t
2.5 × T ± 4.0  
35.3  
25.9  
29.0  
21.5  
RCD  
C
168 RAS assertion to column address valid  
169 CAS deassertion to RAS assertion  
170 CAS deassertion pulse width  
t
1.75 × T ± 4.0  
C
RAD  
t
5.75 × T 4.0  
C
CRP  
t
4.25 × T – 6.0  
CP  
C
171 Row address valid to RAS assertion  
172 RAS assertion to row address not valid  
173 Column address valid to CAS assertion  
174 CAS assertion to column address not valid  
175 RAS assertion to column address not valid  
176 Column address valid to RAS deassertion  
177 WR deassertion to CAS assertion  
t
4.25 × T 4.0  
ASR  
RAH  
C
t
1.75 × T 4.0  
C
t
0.75 × T 4.0  
ASC  
C
t
5.25 × T 4.0  
61.6  
92.9  
71.0  
33.5  
17.9  
48.5  
73.5  
56.0  
26.0  
13.8  
CAH  
C
t
7.75 × T 4.0  
AR  
C
t
6 × T 4.0  
RAL  
RCS  
RCH  
RRH  
C
t
3.0 × T 4.0  
C
4
178 CAS deassertion to WR assertion  
t
t
1.75 × T – 3.7  
C
4
179 RAS deassertion to WR assertion  
80 MHz:  
0.25 × T 2.6  
0.5  
ns  
C
100 MHz:  
0.25 × T 2.0  
0.5  
45.8  
70.8  
110.5  
113.2  
98.2  
53.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
180 CAS assertion to WR deassertion  
181 RAS assertion to WR deassertion  
182 WR assertion pulse width  
t
t
5 × T 4.2  
58.3  
WCH  
WCR  
C
7.5 × T 4.2  
89.6  
C
t
11.5 × T 4.5  
139.3  
142.7  
123.8  
67.9  
WP  
C
183 WR assertion to RAS deassertion  
184 WR assertion to CAS deassertion  
185 Data valid to CAS assertion (write)  
t
11.75 × T 4.3  
C
RWL  
CWL  
t
10.25 × T 4.3  
C
t
5.75 × T 4.0  
C
DS  
2-23  
AC Electrical Characteristics  
Table 2-13. DRAM Out-of-Page and Refresh Timings, Eleven Wait States1, 2 (Continued)  
80 MHz  
100 MHz  
No.  
Characteristics3  
Symbol  
Expression  
Unit  
Min Max  
Min Max  
186 CAS assertion to data not valid (write)  
187 RAS assertion to data not valid (write)  
188 WR assertion to CAS assertion  
t
5.25 × T 4.0  
61.6  
92.9  
77.0  
14.8  
30.4  
139.8  
48.5  
73.5  
60.7  
11.0  
23.5  
111.0  
ns  
ns  
ns  
ns  
ns  
ns  
DH  
C
t
7.75 × T 4.0  
C
DHR  
WCS  
t
6.5 × T 4.3  
C
189 CAS assertion to RAS assertion (refresh)  
190 RAS deassertion to CAS assertion (refresh)  
191 RD assertion to RAS deassertion  
192 RD assertion to data valid  
t
1.5 × T 4.0  
C
CSR  
t
2.75 × T 4.0  
C
RPC  
t
11.5 × T 4.0  
ROH  
C
t
80 MHz:  
GA  
10 × T 6.5  
118.5  
ns  
C
100 MHz:  
10 × T 7.0  
0.0  
9.1  
0.0  
6.0  
93.0  
ns  
ns  
ns  
ns  
C
3
193 RD deassertion to data not valid  
t
GZ  
194 WR assertion to data active  
0.75 × T – 1.5  
C
195 WR deassertion to data high impedance  
0.25 × T  
3.1  
2.5  
C
Notes: 1. The number of wait states for an out-of-page access is specified in the DCR.  
2. The refresh period is specified in the DCR.  
3. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t  
and not t  
.
GZ  
OFF  
4. Either t  
or t  
must be satisfied for read cycles.  
RCH  
RRH  
Table 2-14. DRAM Out-of-Page and Refresh Timings, Fifteen Wait States1, 2  
80 MHz  
100 MHz  
Min Max  
No.  
Characteristics3  
Symbol  
Expression  
Unit  
Min Max  
157 Random read or write cycle time  
158 RAS assertion to data valid (read)  
t
16 × T  
200.0  
160.0  
ns  
RC  
C
t
80 MHz:  
RAC  
8.25 × T 6.5  
100 MHz:  
96.6  
ns  
ns  
C
8.25 × T 5.7  
76.8  
C
159 CAS assertion to data valid (read)  
t
80 MHz:  
CAC  
4.75 × T 6.5  
100 MHz:  
52.9  
ns  
ns  
C
4.75 × T 5.7  
41.8  
C
160 Column address valid to data valid (read)  
t
80 MHz:  
AA  
5.5 × T 6.5  
62.3  
ns  
C
100 MHz:  
5.5 × T 5.7  
49.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
161 CAS deassertion to data not valid (read hold time)  
162 RAS deassertion to RAS assertion  
163 RAS assertion pulse width  
t
0.0  
0.0  
0.0  
OFF  
t
6.25 × T 4.0  
74.1  
117.9  
74.1  
99.1  
55.4  
41.8  
58.5  
93.5  
58.5  
78.5  
43.5  
33.0  
RP  
C
t
9.75 × T 4.0  
RAS  
RSH  
CSH  
C
164 CAS assertion to RAS deassertion  
165 RAS assertion to CAS deassertion  
166 CAS assertion pulse width  
t
t
6.25 × T 4.0  
C
8.25 × T 4.0  
C
t
4.75 × T 4.0  
CAS  
C
167 RAS assertion to CAS assertion  
t
3.5 × T ± 2  
45.8  
37.0  
RCD  
C
2-24  
AC Electrical Characteristics  
Table 2-14. DRAM Out-of-Page and Refresh Timings, Fifteen Wait States1, 2 (Continued)  
80 MHz  
100 MHz  
No.  
Characteristics3  
Symbol  
Expression  
Unit  
Min Max  
Min Max  
168 RAS assertion to column address valid  
169 CAS deassertion to RAS assertion  
170 CAS deassertion pulse width  
t
2.75 × T ± 2.0  
32.4  
92.9  
74.1  
74.1  
30.4  
5.4  
36.4  
25.5  
73.5  
56.5  
58.5  
23.5  
3.5  
29.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RAD  
C
t
7.75 × T 4.0  
C
CRP  
t
6.25 × T – 6.0  
C
CP  
171 Row address valid to RAS assertion  
172 RAS assertion to row address not valid  
173 Column address valid to CAS assertion  
174 CAS assertion to column address not valid  
175 RAS assertion to column address not valid  
176 Column address valid to RAS deassertion  
177 WR deassertion to CAS assertion  
t
6.25 × T 4.0  
C
ASR  
RAH  
t
2.75 × T 4.0  
C
t
0.75 × T 4.0  
C
ASC  
t
6.25 × T 4.0  
74.1  
117.9  
83.5  
58.7  
18.2  
58.5  
93.5  
66.0  
46.2  
13.8  
CAH  
C
t
9.75 × T 4.0  
C
AR  
t
7 × T 4.0  
C
RAL  
RCS  
RCH  
RRH  
t
5 × T 3.8  
C
4
178 CAS deassertion to WR assertion  
t
t
1.75 × T – 3.7  
C
4
179 RAS deassertion to WR assertion  
80 MHz:  
0.25 × T 2.6  
0.5  
ns  
C
100 MHz:  
0.25 × T 2.0  
0.5  
55.8  
90.8  
150.5  
153.2  
138.2  
83.5  
58.5  
93.5  
90.7  
11.0  
43.5  
151.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
180 CAS assertion to WR deassertion  
181 RAS assertion to WR deassertion  
182 WR assertion pulse width  
t
t
6 × T 4.2  
70.8  
WCH  
WCR  
C
9.5 × T 4.2  
114.6  
189.3  
192.6  
173.8  
105.4  
74.1  
C
t
15.5 × T 4.5  
C
WP  
183 WR assertion to RAS deassertion  
184 WR assertion to CAS deassertion  
185 Data valid to CAS assertion (write)  
186 CAS assertion to data not valid (write)  
187 RAS assertion to data not valid (write)  
188 WR assertion to CAS assertion  
189 CAS assertion to RAS assertion (refresh)  
190 RAS deassertion to CAS assertion (refresh)  
191 RD assertion to RAS deassertion  
192 RD assertion to data valid  
t
15.75 × T 4.3  
C
RWL  
CWL  
t
14.25 × T 4.3  
C
t
8.75 × T 4.0  
C
DS  
t
6.25 × T 4.0  
C
DH  
t
9.75 × T 4.0  
117.9  
114.5  
14.8  
DHR  
WCS  
C
t
9.5 × T 4.3  
C
t
1.5 × T 4.0  
C
CSR  
t
4.75 × T 4.0  
55.4  
RPC  
C
t
15.5 × T 4.0  
189.8  
ROH  
C
t
80 MHz:  
GA  
14 × T 6.5  
168.5  
ns  
C
100 MHz:  
14 × T 5.7  
0.0  
9.1  
0.0  
6.0  
134.3  
ns  
ns  
ns  
ns  
C
3
193 RD deassertion to data not valid  
t
GZ  
194 WR assertion to data active  
0.75 × T – 1.5  
C
195 WR deassertion to data high impedance  
0.25 × T  
3.1  
2.5  
C
Notes: 1. The number of wait states for an out-of-page access is specified in the DCR.  
2. The refresh period is specified in the DCR.  
3. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t  
and not t  
.
GZ  
OFF  
4. Either t  
or t  
must be satisfied for read cycles.  
RCH  
RRH  
2-25  
AC Electrical Characteristics  
157  
163  
162  
162  
165  
RAS  
167  
168  
164  
169  
170  
166  
CAS  
171  
173  
174  
175  
Row Address  
172  
Column Address  
176  
A[0–23]  
177  
179  
191  
WR  
RD  
178  
160  
159  
158  
193  
192  
161  
Data  
In  
D[0–23]  
Figure 2-18. DRAM Out-of-Page Read Access  
2-26  
AC Electrical Characteristics  
157  
162  
163  
162  
165  
RAS  
167  
164  
169  
168  
166  
170  
CAS  
173  
172  
171  
174  
176  
Column Address  
Row Address  
A[0–23]  
181  
175  
188  
180  
182  
WR  
184  
183  
187  
RD  
186  
195  
185  
194  
Data Out  
D[0–23]  
Figure 2-19. DRAM Out-of-Page Write Access  
157  
162  
162  
163  
RAS  
190  
170  
177  
165  
189  
CAS  
WR  
Figure 2-20. DRAM Refresh Access  
2-27  
AC Electrical Characteristics  
2.6.5.3 Synchronous Timings (SRAM)  
Table 2-15. External Bus Synchronous Timings (SRAM Access)3  
80 MHz  
100 MHz  
Min Max  
No.  
Characteristics  
Expression1,2  
Unit  
Min Max  
196 CLKOUT high to BS assertion  
0.25 × T +5.2/–0.5  
2.6  
8.4  
8.3  
13.6  
5.6  
2.0  
6.5  
7.7  
11.7  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
197 CLKOUT high to BS deassertion  
0.75 × T +4.2/–1.0  
C
4
198 CLKOUT high to address, and AA valid  
0.25 × T + 2.5  
C
4
199 CLKOUT high to address, and AA invalid  
200 TA valid to CLKOUT high (setup time)  
201 CLKOUT high to TA invalid (hold time)  
202 CLKOUT high to data out active  
0.25 × T – 0.7  
2.4  
5.8  
0.0  
3.1  
1.8  
4.0  
0.0  
2.5  
C
0.25 × T  
C
203 CLKOUT high to data out valid  
80 MHz:  
0.25 × T + 4.5  
7.6  
ns  
C
100 MHz:  
0.25 × T + 4.0  
6.5  
ns  
ns  
C
204 CLKOUT high to data out invalid  
0.25 × T  
3.1  
2.5  
C
205 CLKOUT high to data out high impedance  
80 MHz:  
0.25 × T + 0.5  
3.6  
ns  
C
100 MHz:  
0.25 × T  
5.0  
2.5  
ns  
ns  
ns  
C
206 Data in valid to CLKOUT high (setup)  
207 CLKOUT high to data in invalid (hold)  
208 CLKOUT high to RD assertion  
4.0  
0.0  
6.7  
0.0  
maximum:  
0.75 × T + 2.5  
10.4  
ns  
ns  
11.9  
4.5  
10.0  
4.0  
C
209 CLKOUT high to RD deassertion  
0.0  
7.6  
0.0  
4.5  
ns  
ns  
2
210 CLKOUT high to WR assertion  
0.5 × T + 4.3  
10.6  
9.3  
C
[WS = 1 or WS 4]  
[2 WS 3]  
1.3  
0.0  
4.8  
4.3  
0.0  
0.0  
4.3  
3.8  
ns  
ns  
211 CLKOUT high to WR deassertion  
Notes: 1. WS is the number of wait states specified in the BCR.  
2. If WS > 1, WR assertion refers to the next rising edge of CLKOUT.  
3. External bus synchronous timings should be used only for reference to the clock and not for relative timings.  
4. T198 and T199 are valid for Address Trace mode if the ATE bit in the Operating Mode Register is set. Use the  
status of BR (See T212) to determine whether the access referenced by A[0–23] is internal or external in this  
mode.  
2-28  
AC Electrical Characteristics  
198  
CLKOUT  
A[0–23]  
AA[0–3]  
199  
201  
200  
TA  
211  
WR  
205  
210  
203  
204  
D[0–23]  
Data Out  
208  
202  
209  
RD  
207  
206  
D[0–23]  
Data In  
Note: Address lines A[0–23] hold their state after a read or write operation. AA[0–3] do not hold their state  
after a read or write operation.  
Figure 2-21. Synchronous Bus Timings 1 WS (BCR Controlled)  
CLKOUT  
A[0–23]  
AA[0–3]  
199  
201  
198  
201  
200  
211  
TA  
200  
WR  
210  
205  
203  
202  
204  
Data Out  
D[0–23]  
208  
209  
RD  
207  
206  
Data In  
D[0–23]  
Note: Address lines A[0–23] hold their state after a read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-22. Synchronous Bus Timings 2 WS (TA Controlled)  
2-29  
AC Electrical Characteristics  
2.6.5.4 Arbitration Timings  
Table 2-16. Arbitration Bus Timings1.  
80 MHz  
Min Max  
100 MHz  
No.  
Characteristics  
Expression2  
Unit  
Min Max  
212  
213  
214  
215  
216  
CLKOUT high to BR  
assertion/deassertion  
1.0  
5.0  
0.0  
5.0  
0.0  
4.5  
0.0  
4.0  
0.0  
4.0  
0.0  
4.0  
ns  
ns  
ns  
ns  
ns  
3
BG asserted/deasserted to CLKOUT  
high (setup)  
CLKOUT high to BG  
deasserted/asserted (hold)  
BB deassertion to CLKOUT high (input  
setup)  
CLKOUT high to BB assertion (input  
hold)  
217  
218  
219  
220  
CLKOUT high to BB assertion (output)  
CLKOUT high to BB deassertion (output)  
BB high to BB high impedance (output)  
1.0  
1.0  
4.5  
4.5  
5.6  
0.0  
0.0  
4.0  
4.0  
4.5  
ns  
ns  
ns  
ns  
CLKOUT high to address and controls  
active  
0.25 × T  
0.75 × T  
0.25 × T  
3.1  
2.5  
C
C
C
221  
CLKOUT high to address and controls  
high impedance  
9.4  
7.5  
ns  
222  
223  
224  
CLKOUT high to AA active  
3.1  
4.1  
2.5  
2.0  
ns  
ns  
ns  
CLKOUT high to AA deassertion  
CLKOUT high to AA high impedance  
maximum: 0.25 × T + 4.0  
7.1  
9.4  
6.5  
7.5  
C
0.75 × T  
C
Notes: 1. Synchronous Bus Arbitration is not recommended. Use Asynchronous mode whenever possible.  
2. An expression is used to compute the maximum or minimum value listed, as appropriate. For timing 223, the  
minimum is an absolute value.  
3. T212 is valid for Address Trace mode when the ATE bit in the Operating Mode Register is set. BR is  
deasserted for internal accesses and asserted for external accesses.  
2-30  
AC Electrical Characteristics  
CLKOUT  
BR  
214  
212  
213  
215  
BG  
BB  
216  
217  
220  
A[0–23]  
RD, WR  
222  
AA[0–3]  
Note: Address lines A[0–23] hold their state after a read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-23. Bus Acquisition Timings  
CLKOUT  
BR  
214  
213  
212  
BG  
219  
218  
BB  
221  
A[0–23]  
RD, WR  
224  
223  
AA[0–3]  
Note: Address lines A[0–23] hold their state after a read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-24. Bus Release Timings Case 1 (BRT Bit in Operating Mode Register Cleared)  
2-31  
AC Electrical Characteristics  
CLKOUT  
212  
BR  
BG  
214  
213  
219  
218  
BB  
221  
A[0–23]  
RD, WR  
224  
223  
AA[0–3]  
Note: Address lines A[0–23] hold their state after a read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-25. Bus Release Timings Case 2 (BRT Bit in Operating Mode Register Set)  
2-32  
AC Electrical Characteristics  
2.6.5.5 Asynchronous Bus Arbitrations Timings  
Table 2-17. Asynchronous Bus Arbitration Timing1,3  
80 MHz  
100 MHz2  
No.  
Characteristics  
Expression  
Unit  
Min Max  
Min Max  
4
250  
BB assertion window from BG input deassertion  
2.5 × Tc + 5  
2 × Tc + 5  
25  
30  
ns  
ns  
4
251  
Delay from BB assertion to BG assertion  
25  
25  
Notes: 1. Bit 13 in the Operating Mode Register must be set to enter Asynchronous Arbitration mode.  
2. Asynchronous Arbitration mode is recommended for operation at 100 MHz.  
3. If Asynchronous Arbitration mode is active, none of the timings in Table 2-16 is required.  
4. In order to guarantee timings 250, and 251, BG inputs must be asserted to different DSP56300 devices on  
the same bus in the non-overlap manner shown in Figure 2-26.  
BG1  
BB  
250  
BG2  
251  
250+251  
Figure 2-26. Asynchronous Bus Arbitration Timing  
The asynchronous bus arbitration is enabled by internal BB inputs and synchronization circuits on BG.  
These synchronization circuits add delay from the external signal until it is exposed to internal logic. As a  
result of this delay, a DSP56300 part can assume mastership and assert BB, for some time after BG is  
deasserted. Timing 250 defines when BB can be asserted.  
Once BB is asserted, there is a synchronization delay from BB assertion to the time this assertion is  
exposed to other DSP56300 components which are potential masters on the same bus. If BG input is  
asserted before that time, a situation of BG asserted, and BB deasserted, can cause another DSP56300  
component to assume mastership at the same time. Therefore, a non-overlap period between one BG  
input active to another BG input active is required. Timing 251 ensures that such a situation is avoided.  
2-33  
AC Electrical Characteristics  
2.6.6 Host Interface Timing  
Table 2-18. Universal Bus Mode Timing Parameters  
80 MHz  
100 MHz  
No.  
Characteristic  
Expression  
Unit  
Min Max  
Min Max  
300 Access Cycle Time  
3 × T  
37.5  
5.8  
30.0  
4.6  
0.0  
4.6  
0.0  
3.3  
ns  
ns  
ns  
ns  
ns  
ns  
C
1
301 HA[10–0], HAEN Setup to Data Strobe Assertion  
1
302 HA[10–0], HAEN Valid Hold from Data Strobe Deassertion  
0.0  
2
303 HRW Setup to HDS Assertion  
5.8  
2
304 HRW Valid Hold from HDS Deassertion  
0.0  
1
305 Data Strobe Deasserted Width  
4.1  
1
306 Data Strobe Asserted Pulse Width  
80 MHz: 2.5 × T + 1.7  
100 MHz: 2.5 × T + 1.3  
32.9  
ns  
ns  
C
26.3  
2.0  
C
307 HBS Asserted Pulse Width  
2.5  
ns  
1
308 HBS Assertion to Data Strobe Assertion  
80 MHz: T 4.9  
7.6  
ns  
ns  
C
100 MHz: T 4.0  
6.0  
C
1
309 HBS Assertion to Data Strobe Deassertion  
80 MHz: 2.5 × T + 2.9  
100 MHz: 2.5 × T + 2.3  
34.1  
22.1  
13.4  
ns  
ns  
C
27.3  
17.6  
C
1
310 HBS Deassertion to Data Strobe Deassertion  
80 MHz: 1.5 × T + 3.3  
100 MHz: 1.5 × T + 2.6  
ns  
ns  
C
C
2
311 Data Out Valid to TA Assertion (HBS Not Used—Tied to V  
)
80 MHz: 2 × T 11.6  
100 MHz: 2 × T 9.2  
ns  
ns  
CC  
C
10.8  
1.3  
C
3
312 Data Out Active from Read Data Strobe Assertion  
1.7  
ns  
ns  
313 Data Out Valid from Read Data Strobe Assertion  
18.9  
16.9  
3
(No Wait States Inserted—HTA Asserted)  
314 Data Out Valid Hold from Read Data Strobe Deassertion  
1.7  
12.0  
1.3  
9.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
3
315 Data Out High Impedance from Read Data Strobe Deassertion  
4
316 Data In Valid Setup to Write Data Strobe Deassertion  
8.3  
0.0  
6.6  
0.0  
4
317 Data In Valid Hold from Write Data Strobe Deassertion  
1
318 HSAK Assertion from Data Strobe Assertion  
30.0  
30.0  
1
319 HSAK Asserted Hold from Data Strobe Deassertion  
2.0  
3.1  
38.0  
2.0  
2.5  
1,2,5  
320 HTA Active from Data Strobe Assertion  
321 HTA Assertion from Data Strobe Assertion  
80 MHz: 2.0 × T + 13.0  
ns  
ns  
C
1,2,5  
(HBS Not Used—Tied to V  
)
100 MHz: 2.0 × T + 12.2  
32.2  
CC  
C
2,5  
322 HTA Assertion from HBS Assertion  
80 MHz: 2.0 × T + 13.0  
38.0  
ns  
ns  
C
100 MHz: 2.0 × T + 12.2  
32.2  
15.0  
C
1,2,5  
323 HTA Deasserted from Data Strobe Assertion  
0.0  
17.1  
ns  
ns  
ns  
ns  
ns  
1,2  
324 HTA Assertion to Data Strobe Deassertion  
0.0  
1,2  
325 HTA High Impedance from Data Strobe Deassertion  
326 HIRQ Asserted Pulse Width (HIRH = 0, HIRD = 1)  
15.3  
12.2  
7
(LT + 1) × T 6.0  
19.0  
0.0  
14.0  
0.0  
C
327 Data Strobe Deasserted Hold from HIRQ Deassertion  
1
(HIRH = 0)  
1
328 HIRQ Asserted Hold from Data Strobe Assertion (HIRH = 1)  
1.5 × T  
18.8  
15.0  
ns  
C
2-34  
AC Electrical Characteristics  
Table 2-18. Universal Bus Mode Timing Parameters (Continued)  
80 MHz  
100 MHz  
No.  
Characteristic  
Expression  
Unit  
Min Max  
Min Max  
329 HIRQ Deassertion from Data Strobe Assertion  
80 MHz: 2.5 × T + 24.7  
55.9  
55.9  
ns  
ns  
C
1
(HIRH = 1, HIRD = 1)  
100 MHz: 2.5 × T + 21.5  
46.5  
C
330 HIRQ High Impedance from Data Strobe Assertion  
80 MHz: 2.5 × T + 24.7  
ns  
ns  
C
1,6  
(HIRH = 1, HIRD = 0)  
100 MHz: 2.5 × T + 21.5  
46.5  
C
331 HIRQ Active from Data Strobe Deassertion  
2.5 × T  
31.3  
25.0  
ns  
C
1
(HIRH = 1, HIRD = 0)  
1
332 HIRQ Deasserted Hold from Data Strobe Deassertion  
2.5 × T  
1.5 × T  
31.3  
18.8  
25.0  
15.0  
ns  
ns  
C
C
2
1
333 HDRQ Asserted Hold from Data Strobe Assertion  
2
1
334 HDRQ Deassertion from Data Strobe Assertion  
80 MHz: 2.5 × T + 24.7  
100 MHz: 2.5 × T + 21.5  
55.9  
ns  
ns  
C
46.5  
C
2
1
335 HDRQ Deasserted Hold from Data Strobe Deassertion  
80 MHz: 2.5 × T + 3.7  
35.0  
ns  
ns  
C
100 MHz: 2.5 × T + 3.0  
28.0  
4.6  
0.0  
2.0  
C
1
336 HDAK Assertion to Data Strobe Assertion  
5.8  
0.0  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
337 HDAK Asserted Hold from Data Strobe Deassertion  
1
338 HDBEN Deasserted Hold from Data Strobe Assertion  
1
339 HDBEN Assertion from Data Strobe Assertion  
22.2  
19.6  
1
340 HDBEN Asserted Hold from Data Strobe Deassertion  
2.5  
2.0  
1
341 HDBEN Deassertion from Data Strobe Deassertion  
22.2  
19.6  
3
342 HDBDR High Hold from Read Data Strobe Assertion  
2.5  
2.0  
3
343 HDBDR Low from Read Data Strobe Assertion  
22.2  
19.6  
3
344 HDBDR Low Hold from Read Data Strobe Deassertion  
2.5  
2.0  
3
345 HDBDR High from Read Data Strobe Deassertion  
22.2  
22.2  
19.6  
19.6  
2
346 HRST Assertion to Host Port Pins High Impedance  
Notes: 1. The Data Strobe is HRD or HWR in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.  
2. HTA, HDRQ, and HRST may be programmed as active-high or active-low. In the example timing diagrams, HDRQ and HRST  
are shown as active-high and HTA is shown as active low.  
3. The Read Data Strobe is HRD in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.  
4. The Write Data Strobe is HWR in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.  
5. HTA requires an external pull-down resistor if programmed as active high (HTAP = 0); or an external pull-up resistor if  
programmed as active low (HTAP = 1). The resistor value should be consistent with the DC specifications.  
6. HIRQ requires an external pull-up resistor if programmed as open drain (HIRD = 0). The resistor value should be consistent  
with the DC specifications.  
7. “LT” is the value of the latency timer register (CLAT) as programmed by the user during self configuration.  
LT 1.  
8. Values are valid for V = 3.3 ± 0.3V  
CC  
2-35  
AC Electrical Characteristics  
Table 2-19. Universal Bus Mode, Synchronous Port A Type Host Timing  
80 MHz  
100 MHz  
No.  
Characteristic  
Expression  
Unit  
Min Max  
Min Max  
300 Access Cycle Time  
3 × T  
37.5  
5.8  
0.0  
4.1  
2.5  
7.6  
30.0  
4.6  
0.0  
3.3  
2.0  
ns  
ns  
ns  
ns  
ns  
C
1
301 HA[10–0], HAEN Setup to Data Strobe Assertion  
1
302 HA[10–0], HAEN Valid Hold from Data Strobe Deassertion  
1
305 Data Strobe Deasserted Width  
307 HBS Asserted Pulse Width  
1
308 HBS Assertion to Data Strobe Assertion  
80 MHz: T 4.9  
ns  
ns  
C
100 MHz: T 4.0  
6.0  
C
1
309 HBS Assertion to Data Strobe Deassertion  
80 MHz: 2.5 × T + 2.9  
100 MHz: 2.5 × T + 2.3  
34.1  
22.1  
ns  
ns  
C
27.3  
C
1
310 HBS Deassertion to Data Strobe Deassertion  
80 MHz: 1.5 × T + 3.3  
100 MHz: 1.5 × T + 2.6  
ns  
ns  
C
17.6  
1.3  
C
3
312 Data Out Active from Read Data Strobe Assertion  
1.7  
ns  
ns  
313 Data Out Valid from Read Data Strobe Assertion  
18.9  
16.9  
3
(No Wait States Inserted—HTA Asserted)  
314 Data Out Valid Hold from Read Data Strobe Deassertion  
1.7  
12.0  
1.3  
9.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
3
315 Data Out High Impedance from Read Data Strobe Deassertion  
4
316 Data In Valid Setup to Write Data Strobe Deassertion  
8.3  
0.0  
0.0  
6.6  
0.0  
0.0  
4
317 Data In Valid Hold from Write Data Strobe Deassertion  
1,2  
324 HTA Assertion to Data Strobe Deassertion  
1,2  
325 HTA High Impedance from Data Strobe Deassertion  
15.3  
12.2  
7
326 HIRQ Asserted Pulse Width (HIRH = 0, HIRD = 1)  
(LT + 1) × T 6.0  
6.5  
0.0  
4.0  
0.0  
C
327 Data Strobe Deasserted Hold from HIRQ Deassertion  
1
(HIRH = 0)  
1
328 HIRQ Asserted Hold from Data Strobe Assertion (HIRH = 1)  
1.5 × T  
18.8  
15.0  
ns  
C
329 HIRQ Deassertion from Data Strobe Assertion  
80 MHz: 2.5 × T + 24.7  
100 MHz: 2.5 × T + 21.5  
55.9  
ns  
ns  
C
1
(HIRH = 1, HIRD = 1)  
46.5  
C
330 HIRQ High Impedance from Data Strobe Assertion  
80 MHz: 2.5 × T + 24.7  
55.9  
ns  
ns  
C
1,6  
(HIRH = 1, HIRD = 0)  
100 MHz: 2.5 × T + 21.5  
46.5  
C
331 HIRQ Active from Data Strobe Deassertion  
2.5 × T  
31.3  
25.0  
ns  
C
C
1
(HIRH = 1, HIRD = 0)  
1
332 HIRQ Deasserted Hold from Data Strobe Deassertion  
2.5 × T  
31.3  
22.2  
25.0  
19.6  
ns  
ns  
ns  
ns  
2
346 HRST Assertion to Host Port Pins High Impedance  
347 HBS Assertion to CLKOUT Rising Edge  
4.3  
7.4  
3.4  
5.9  
1
348 Data Strobe Deassertion to CLKOUT Rising Edge  
Notes: 1. The Data Strobe is HRD or HWR in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.  
2. HTA, HDRQ, and HRST may be programmed as active-high or active-low. In the example timing diagrams, HDRQ and HRST  
are shown as active-high and HTA is shown as active low.  
3. The Read Data Strobe is HRD in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.  
4. The Write Data Strobe is HWR in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.  
5. HTA requires an external pull-down resistor if programmed as active high (HTAP = 0); or an external pull-up resistor if  
programmed as active low (HTAP = 1). The resistor value should be consistent with the DC specifications.  
6. HIRQ requires an external pull-up resistor if programmed as open drain (HIRD = 0). The resistor value should be consistent  
with the DC specifications.  
7. “LT” is the value of the latency timer register (CLAT) as programmed by the user during self configuration.  
8. Values are valid for V = 3.3 ± 0.3V  
CC  
2-36  
AC Electrical Characteristics  
HA[10–0]  
301  
302  
HDS  
HRD  
HWR  
305  
307  
308  
HBS  
310  
309  
332  
329  
HIRQ  
(HIRD = 1,  
HIRH = 1)  
328  
331  
330  
HIRQ  
(HIRD = 0,  
HIRH = 1)  
Figure 2-27. Universal Bus Mode I/O Access Timing  
336  
337  
HDAK  
HDS  
HRD  
HWR  
305  
334  
335  
HDRQ  
333  
Figure 2-28. Universal Bus Mode DMA Access Timing  
HRW  
303  
304  
HDS  
Figure 2-29. HRW to HDS Timing  
2-37  
AC Electrical Characteristics  
326  
HIRQ  
332  
327  
HDS  
HRD  
HWR  
Figure 2-30. HIRQ Pulse Width (HIRH = 0)  
HRST  
346  
HI32  
Outputs  
Figure 2-31. HRST Timing  
306  
HDS  
HRD  
309  
307  
HBS  
HTA  
310  
322  
321  
324  
325  
315  
320  
323  
311  
Valid (Output)  
HD[23–0]  
312  
313  
314  
318  
319  
HSAK  
343  
345  
342  
344  
HDBDR  
339  
341  
HDBEN  
338  
340  
Figure 2-32. Read Timing  
2-38  
AC Electrical Characteristics  
306  
HDS  
HRD  
309  
307  
HBS  
310  
322  
321  
325  
320  
HTA  
323  
324  
317  
HD[23–0]  
Valid (Input)  
316  
318  
319  
HSAK  
HDBDR  
HDBEN  
339  
340  
338  
341  
Figure 2-33. Write Timing  
CLKOUT  
347  
HBS  
Figure 2-34. HBS Synchronous Timing  
CLKOUT  
348  
HDS  
HRD  
HWR  
Figure 2-35. Data Strobe Synchronous Timing  
2-39  
AC Electrical Characteristics  
Table 2-20. PCI Mode Timing Parameters1  
80 MHz  
100 MHz  
No.  
Characteristic10  
Symbol  
Min  
Unit  
Max  
Min  
Max  
349 HCLK to Signal Valid Delay—Bussed Signals  
350 HCLK to Signal Valid Delay—Point to Point  
351 Float to Active Delay  
t
2.0  
2.0  
11.0  
12.0  
2.0  
2.0  
11.0  
12.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
µs  
ns  
ns  
ns  
ns  
VAL  
t
VAL(ptp)  
t
2.0  
2.0  
ON  
352 Active to Float Delay  
t
28.0  
28.0  
OFF  
353 Input Set Up Time to HCLK—Bussed Signals  
354 Input Set Up Time to HCLK—Point to Point  
355 Input Hold Time from HCLK  
t
7.0  
7.0  
SU  
t
10.0, 12.0  
0.0  
10.0, 12.0  
0.0  
SU(ptp)  
t
H
356 Reset Active Time After Power Stable  
357 Reset Active Time After HCLK Stable  
358 Reset Active to Output Float Delay  
359 HCLK Cycle Time  
t
1.0  
1.0  
RST  
t
100.0  
100.0  
RST-CLK  
RST-OFF  
t
40.0  
40.0  
t
30.0  
11.0  
11.0  
30.0  
11.0  
11.0  
CYC  
360 HCLK High Time  
t
HIGH  
361 HCLK Low Time  
t
LOW  
Notes: 1. For standard PCI timing, see the PCI Local Bus Specification, Rev. 2.0, especially Chapters 3 and 4.  
2. The HI32 supports these timings for a PCI bus operating at 33 MHz for a DSP clock frequency of 56 MHz and above. The DSP  
core operating frequency should be greater than 5/3 of the PCI bus frequency to maintain proper PCI operation.  
3. HGNT has a setup time of 10 ns. HREQ has a setup time of 12 ns.  
359  
361  
HCLK  
360  
349  
350  
OUTPUT  
DELAY  
351  
High  
Impedance  
OUTPUT  
352  
INPUT  
353  
355  
354  
Figure 2-36. PCI Timing  
2-40  
AC Electrical Characteristics  
POWER  
HCLK  
357  
356  
HRST  
358  
PCI Signals  
Figure 2-37. PCI Reset Timing  
2-41  
AC Electrical Characteristics  
2.6.7 SCI Timing  
No.  
Table 2-21. SCI Timing  
80 MHz  
100 MHz  
Characteristics1  
Symbol  
Expression  
Unit  
Min Max Min Max  
2
400 Synchronous clock cycle  
t
8 × T  
100.0  
40.0  
40.0  
14.3  
80.0  
30.0  
30.0  
8.0  
ns  
ns  
ns  
ns  
SCC  
C
401 Clock low period  
402 Clock high period  
t
t
/2 10.0  
SCC  
SCC  
/2 10.0  
403 Output data setup to clock falling edge (internal  
clock)  
t
/4 + 0.5 × T 17.0  
SCC C  
404 Output data hold after clock rising edge (internal  
clock)  
t
/4 0.5 × T  
18.8  
56.3  
15.0  
50.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCC  
C
405 Input data setup time before clock rising edge  
(internal clock)  
t
/4 + 0.5 × T + 25.0  
SCC C  
406 Input data not valid before clock rising edge  
(internal clock)  
t
/4 + 0.5 × T 5.5  
25.8  
32.0  
19.5  
32.0  
SCC  
C
407 Clock falling edge to output data valid (external  
clock)  
408 Output data hold after clock rising edge  
(external clock)  
T
+ 8.0  
20.5  
0.0  
9.0  
18.0  
0.0  
9.0  
C
409 Input data setup time before clock rising edge  
(external clock)  
410 Input data hold time after clock rising edge  
(external clock)  
3
411 Asynchronous clock cycle  
412 Clock low period  
t
64 × T  
800.0  
390.0  
390.0  
370.0  
640.0  
310.0  
310.0  
290.0  
ns  
ns  
ns  
ns  
ACC  
C
t
t
t
/2 10.0  
/2 10.0  
/2 30.0  
ACC  
ACC  
ACC  
413 Clock high period  
414 Output data setup to clock rising edge (internal  
clock)  
415 Output data hold after clock rising edge  
(internal clock)  
t
/2 30.0  
370.0  
290.0  
ns  
ACC  
Notes: 1.  
V
t
t
= 3.3 V ± 0.3 V; T = 40°C to +100 °C, C = 50 pF  
J L  
= synchronous clock cycle time (For internal clock, t  
= asynchronous clock cycle time; value given for 1X Clock mode (For internal clock, t  
CC  
SCC  
ACC  
2.  
3.  
is determined by the SCI clock control register and T )  
SCC C.  
is determined by the  
ACC  
SCI clock control register and T  
)
C.  
2-42  
AC Electrical Characteristics  
400  
402  
404  
401  
SCLK  
(Output)  
403  
Data Valid  
405  
TXD  
RXD  
406  
Data  
Valid  
a) Internal Clock  
400  
402  
401  
SCLK  
(Input)  
407  
408  
TXD  
RXD  
Data Valid  
409  
410  
Data Valid  
b) External Clock  
Figure 2-38. SCI Synchronous Mode Timing  
411  
413  
415  
412  
414  
1X SCLK  
(Output)  
TXD  
Data Valid  
Figure 2-39. SCI Asynchronous Mode Timing  
2-43  
AC Electrical Characteristics  
2.6.8 ESSI0/ESSI1 Timing  
Table 2-22. ESSI Timings  
80 MHz  
100 MHz  
Cond-  
ition6  
No.  
Characteristics4, 5, 7  
Symbol  
Expression  
Unit  
Min Max  
Min Max  
1
430 Clock cycle  
t
3 × T  
4 × T  
50.0  
37.5  
30.0  
40.0  
x ck  
i ck  
ns  
SSICC  
C
C
431 Clock high period  
For internal clock  
2 × T 10.0  
15.0  
18.8  
10.0  
15.0  
ns  
ns  
C
For external clock  
1.5 × T  
C
432 Clock low period  
For internal clock  
2 × T 10.0  
15.0  
18.8  
10.0  
15.0  
ns  
ns  
C
For external clock  
1.5 × T  
C
433 RXC rising edge to FSR out (bl) high  
434 RXC rising edge to FSR out (bl) low  
435 RXC rising edge to FSR out (wr) high  
37.0  
22.0  
37.0  
22.0  
x ck  
i ck a  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
37.0  
22.0  
37.0  
22.0  
x ck  
i ck a  
2
39.0  
24.0  
39.0  
24.0  
x ck  
i ck a  
2
436 RXC rising edge to FSR out (wr) low  
39.0  
24.0  
39.0  
24.0  
x ck  
i ck a  
437 RXC rising edge to FSR out (wl) high  
438 RXC rising edge to FSR out (wl) low  
36.0  
21.0  
36.0  
21.0  
x ck  
i ck a  
37.0  
22.0  
37.0  
22.0  
x ck  
i ck a  
439 Data in setup time before RXC (SCK in  
Synchronous mode) falling edge  
10.0  
19.0  
10.0  
19.0  
x ck  
i ck  
440 Data in hold time after RXC falling edge  
441 FSR input (bl, wr) high before RXC falling edge  
442 FSR input (wl) high before RXC falling edge  
443 FSR input hold time after RXC falling edge  
444 Flags input setup before RXC falling edge  
445 Flags input hold time after RXC falling edge  
446 TXC rising edge to FST out (bl) high  
5.0  
3.0  
5.0  
3.0  
x ck  
i ck  
2
1.0  
23.0  
1.0  
23.0  
x ck  
i ck a  
3.5  
23.0  
3.5  
23.0  
x ck  
i ck a  
3.0  
0.0  
3.0  
0.0  
x ck  
i ck a  
5.5  
19.0  
5.5  
19.0  
x ck  
i ck s  
6.0  
0.0  
6.0  
0.0  
x ck  
i ck s  
29.0  
15.0  
29.0  
15.0  
x ck  
i ck  
447 TXC rising edge to FST out (bl) low  
31.0  
17.0  
31.0  
17.0  
x ck  
i ck  
2
448 TXC rising edge to FST out (wr) high  
31.0  
17.0  
31.0  
17.0  
x ck  
i ck  
2
449 TXC rising edge to FST out (wr) low  
33.0  
19.0  
33.0  
19.0  
x ck  
i ck  
450 TXC rising edge to FST out (wl) high  
30.0  
16.0  
30.0  
16.0  
x ck  
i ck  
2-44  
AC Electrical Characteristics  
Table 2-22. ESSI Timings (Continued)  
80 MHz  
Min Max  
100 MHz  
Cond-  
ition6  
No.  
Characteristics4, 5, 7  
Symbol  
Expression  
Unit  
Min Max  
451 TXC rising edge to FST out (wl) low  
31.0  
17.0  
31.0  
17.0  
x ck  
i ck  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
452 TXC rising edge to data out enable from high  
impedance  
31.0  
17.0  
31.0  
17.0  
x ck  
i ck  
453 TXC rising edge to Transmitter #0 drive enable  
assertion  
34.0  
20.0  
34.0  
20.0  
x ck  
i ck  
8
454 TXC rising edge to data out valid  
20.0  
10.0  
20.0  
10.0  
x ck  
i ck  
3
455 TXC rising edge to data out high impedance  
31.0  
16.0  
31.0  
16.0  
x ck  
i ck  
456 TXC rising edge to Transmitter #0 drive enable  
34.0  
20.0  
34.0  
20.0  
x ck  
i ck  
3
deassertion  
457 FST input (bl, wr) setup time before TXC falling  
2.0  
21.0  
2.0  
21.0  
x ck  
i ck  
2
edge  
458 FST input (wl) to data out enable from high  
impedance  
27.0  
27.0  
459 FST input (wl) to Transmitter #0 drive enable  
assertion  
31.0  
31.0  
460 FST input (wl) setup time before TXC falling edge  
461 FST input hold time after TXC falling edge  
462 Flag output valid after TXC rising edge  
2.5  
21.0  
2.5  
21.0  
x ck  
i ck  
4.0  
0.0  
4.0  
0.0  
x ck  
i ck  
32.0  
18.0  
32.0  
18.0  
x ck  
i ck  
Notes: 1. For the internal clock, the external clock cycle is defined by the instruction cycle time (timing 7 in Table 2-5 on page 2-6)  
and the ESSI control register.  
2. The word-relative frame sync signal waveform relative to the clock operates the same way as the bit-length frame sync  
signal waveform, but spreads from one serial clock before the first bit clock (same as Bit Length Frame Sync signal), until  
the one before the last bit clock of the first word in frame.  
3. Periodically sampled and not 100 percent tested  
4.  
V
= 3.3 V ± 0.3 V; T = 40°C to +100 °C, C = 50 pF  
CC J L  
5. TXC (SCK Pin) = Transmit Clock  
RXC (SC0 or SCK Pin) = Receive Clock  
FST (SC2 Pin) = Transmit Frame Sync  
FSR (SC1 or SC2 Pin) Receive Frame Sync  
6. i ck = Internal Clock  
x ck = External Clock  
i ck a = Internal Clock, Asynchronous Mode  
(Asynchronous implies that TXC and RXC are two different clocks)  
i ck s = Internal Clock, Synchronous Mode  
(Synchronous implies that TXC and RXC are the same clock)  
7. bl = bit length  
wl = word length  
wr = word length relative  
8. If the DSP core writes to the transmit register during the last cycle before causing an underrun error, the delay is 20 ns +  
(0.5 × T ).  
C
2-45  
AC Electrical Characteristics  
430  
431  
432  
TXC  
(Input/  
Output)  
446  
447  
FST (Bit)  
Out  
450  
451  
FST (Word)  
Out  
454  
452  
454  
455  
First Bit  
Last Bit  
Data Out  
459  
Transmitter  
#0 Drive  
Enable  
457  
453  
456  
461  
FST (Bit) In  
458  
461  
460  
FST (Word)  
In  
462  
See Note  
Flags Out  
Note:  
In Network mode, output flag transitions can occur at the start of each time slot within the frame. In  
Normal mode, the output flag state is asserted for the entire frame period.  
Figure 2-40. ESSI Transmitter Timing  
2-46  
AC Electrical Characteristics  
430  
431  
RXC  
(Input/  
432  
Output)  
433  
434  
FSR (Bit)  
Out  
437  
438  
FSR  
(Word)  
Out  
440  
439  
Last Bit  
First Bit  
Data In  
443  
441  
FSR (Bit)  
In  
443  
445  
442  
FSR  
(Word)  
In  
444  
Flags In  
Figure 2-41. ESSI Receiver Timing  
2-47  
AC Electrical Characteristics  
2.6.9 Timer Timing  
Table 2-23. Timer Timing  
80 MHz  
100 MHz  
No.  
Characteristics  
Expression  
Unit  
Min Max  
Min Max  
480  
481 TIO High  
2 × T + 2.0  
27.0  
27.0  
9.0  
22.0  
22.0  
9.0  
ns  
ns  
ns  
TIO Low  
C
2 × T + 2.0  
C
482 Timer setup time from TIO (Input) assertion to CLKOUT  
rising edge  
12.5  
10.0  
483 Synchronous timer delay time from CLKOUT rising edge to 10.25 × T + 1.0 129.1  
103.5  
ns  
C
the external memory access address out valid caused by  
first interrupt instruction execution  
484 CLKOUT rising edge to TIO (Output) assertion  
Minimum  
Maximum  
0.5 × T + 0.5  
9.8  
26.1  
5.5  
24.8  
ns  
ns  
C
0.5 × T + 19.8  
C
485 CLKOUT rising edge to TIO (Output) deassertion  
Minimum  
Maximum  
0.5 × T + 0.5  
9.8  
26.1  
5.5  
24.8  
ns  
ns  
C
0.5 × T + 19.8  
C
Note:  
V
= 3.3 V ± 0.3 V; T = 40°C to +100 °C, C = 50 pF  
CC J L  
TIO  
480  
481  
Figure 2-42. TIO Timer Event Input Restrictions  
CLKOUT  
TIO (Input)  
Address  
482  
483  
First Interrupt Instruction Execution  
Figure 2-43. Timer Interrupt Generation  
CLKOUT  
TIO (Output)  
484  
485  
Figure 2-44. External Pulse Generation  
2-48  
AC Electrical Characteristics  
2.6.10 GPIO Timing  
Table 2-24. GPIO Timing  
80 MHz  
100 MHz  
No.  
Characteristics  
Expression  
Unit  
Min Max  
Min Max  
490  
0.0  
8.5  
0.0  
84.4  
31.0  
0.0  
8.5  
0.0  
67.5  
8.5  
ns  
ns  
ns  
ns  
ns  
CLKOUT edge to GPIO out valid (GPIO out delay time)  
491 CLKOUT edge to GPIO out not valid (GPIO out hold time)  
492 GPIO In valid to CLKOUT edge (GPIO in set-up time)  
493 CLKOUT edge to GPIO in not valid (GPIO in hold time)  
494 Fetch to CLKOUT edge before GPIO change  
6.75 × T  
C
Note:  
V
= 3.3 V ± 0.3 V; T = 40°C to +100 °C, C = 50 pF  
CC J L  
CLKOUT  
(Output)  
490  
491  
GPIO  
(Output)  
492  
493  
GPIO  
(Input)  
Valid  
A[0–23]  
494  
Fetch the instruction MOVE X0,X:(R0); X0 contains the new value of GPIO  
and R0 contains the address of GPIO data register.  
Figure 2-45. GPIO Timing  
2-49  
AC Electrical Characteristics  
2.6.11 JTAG Timing  
Table 2-25. JTAG Timing  
All frequencies  
No.  
Characteristics1,2  
Unit  
Min  
Max  
500 TCK frequency of operation (1/(T × 3); maximum 22 MHz)  
0.0  
45.0  
20.0  
0.0  
22.0  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
501 TCK cycle time in Crystal mode  
502 TCK clock pulse width measured at 1.5 V  
503 TCK rise and fall times  
3.0  
504 Boundary scan input data setup time  
505 Boundary scan input data hold time  
506 TCK low to output data valid  
507 TCK low to output high impedance  
508 TMS, TDI data setup time  
5.0  
24.0  
0.0  
40.0  
40.0  
0.0  
5.0  
509 TMS, TDI data hold time  
25.0  
0.0  
510 TCK low to TDO data valid  
511 TCK low to TDO high impedance  
512 TRST assert time  
44.0  
44.0  
0.0  
100.0  
40.0  
513 TRST setup time to TCK low  
Notes: 1.  
V
= 3.3 V ± 0.3 V; T = 40°C to +100 °C, C = 50 pF  
CC J L  
2. All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.  
501  
502  
502  
V
M
V
V
M
TCK  
(Input)  
IH  
V
IL  
503  
503  
Figure 2-46. Test Clock Input Timing Diagram  
2-50  
AC Electrical Characteristics  
V
TCK  
(Input)  
IH  
V
IL  
504  
505  
Data  
Inputs  
Input Data Valid  
506  
507  
506  
Data  
Outputs  
Output Data Valid  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 2-47. Boundary Scan (JTAG) Timing Diagram  
V
IH  
TCK  
(Input)  
V
IL  
509  
508  
Input Data Valid  
TDI  
TMS  
(Input)  
510  
TDO  
(Output)  
Output Data Valid  
511  
TDO  
(Output)  
510  
TDO  
(Output)  
Output Data Valid  
Figure 2-48. Test Access Port Timing Diagram  
TCK  
(Input)  
513  
TRST  
(Input)  
512  
Figure 2-49. TRST Timing Diagram  
2-51  
AC Electrical Characteristics  
2.6.12 OnCE Module TimIng  
Table 2-26. OnCE Module Timing  
80 MHz  
Min Max  
100 MHz  
No.  
Characteristics  
Expression  
Unit  
Min Max  
500  
1/(T × 3),  
max: 22.0 MHz  
0.0  
22.0  
0.0  
22.0 MHz  
TCK frequency of operation  
C
514 DE assertion time in order to enter Debug mode  
1.5 × T + 10.0  
28.8  
25.0  
ns  
ns  
C
515 Response time when DSP56305 is executing  
NOP instructions from internal memory  
5.5 × T + 30.0  
98.8  
85.0  
C
516 Debug acknowledge assertion time  
3 × T – 5.0  
47.5  
25.0  
ns  
C
Note:  
V
= 3.3 V ± 0.3 V; T = 40°C to +100 °C, C = 50 pF  
CC J L  
DE  
514  
515  
516  
Figure 2-50. OnCE—Debug Request  
2-52  
Chapter 3  
Packaging  
3.1 Pin-Out and Package Information  
This section provides information on the available packages for the DSP56305, including diagrams of the  
package pinouts and tables showing how the signals discussed in Chapter 1 are allocated for each  
package. The DSP56305 is available in a 252-pin molded array process-ball grid array (MAP-BGA)  
package.  
3-1  
MAP-BGA Package Description  
3.2 MAP-BGA Package Description  
Top and bottom views of the MAP-BGA package are shown in Figure 3-1. and Figure 3-2. with their  
pin-outs.  
Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A
B
NC  
HAD15 HCLK HPAR HPERR HIRDY HAD16 HAD17 HAD20 HAD23 HAD24 HAD27 HAD30  
NC  
HDEV  
SEL  
NC  
NC  
HAD14 HGNT HRST HSERR  
HIDSEL HC2 HAD19 HAD22 HAD25 HAD29 HAD31  
H
NC  
NC  
NC  
NC  
C
D
E
F
HAD8 HAD11 HAD12 HAD13 HC1  
HAD5 HAD7 HAD9 HAD10 VCC  
HREQ HLOCK  
HAD18 HAD21 HC3 HAD26 MODD  
NC  
FRAME  
PVCL HSTOP HTRDY VCC  
VCC  
VCC HAD28 MODC  
NC  
MODB D23  
HAD2 HAD4 HAD6  
HAD1 HAD0 HAD3  
HC0  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC MODA  
D22  
D20  
D21  
D17  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
D18  
D19  
G
H
TI01  
RXD  
TI02  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
D12  
D11  
D15  
D9  
D16  
D13  
D14  
D8  
SCLK HINTA TI00  
VCC  
VCC  
VCC  
J
SC11 SC12  
TXD  
SC10  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
D5  
D10  
D7  
K
L
STD1 SCK1 SCK0 SRD0  
SRD1 STD0 SC02 SC01  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
D3  
D0  
D6  
D2  
D4  
D1  
VCC  
VCC  
VCC  
M
N
P
R
T
SC00  
TCK  
TRST  
NC  
DE  
TDI  
BS  
TDO  
NC  
TMS  
BL  
VCC  
TA  
VCC  
VCC  
VCC  
BG  
VCC  
VCC  
A1  
VCC  
A2  
VCC  
VCC  
A8  
VCC  
VCC  
A12  
A9  
A19  
A16  
NC  
A21  
A17  
A15  
A14  
A13  
A22  
A20  
NC  
NC  
NC  
A23  
NC  
VCC  
VCC  
CLK  
OUT  
AA0  
AA1  
PINIT GNDP  
AA3  
XTAL  
WR  
EXTAL  
BCLK  
RD  
A5  
A18  
NC  
NC  
NC  
CAS  
VCCP  
BB  
AA2  
BR  
A3  
A6  
A11  
A10  
BCLK RESET PCAP GNDP1  
A0  
A4  
A7  
Figure 3-1. DSP56305 Molded Array Process-Ball Grid Array (MAP-BGA), Top View  
3-2  
MAP-BGA Package Description  
Bottom View  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A
B
NC  
HAD30 HAD27 HAD24 HAD23 HAD20 HAD17 HAD16 HIRDY HPERR HPAR HCLK HAD15  
NC  
HDEV  
SEL  
NC  
NC  
NC  
NC  
HAD31 HAD29 HAD25 HAD22 HAD19 HC2 HIDSEL  
H
HSERR HRST HGNT HAD14  
NC  
NC  
C
D
E
F
NC  
MODD HAD26 HC3 HAD21 HAD18  
HLOCK HREQ  
HC1 HAD13 HAD12 HAD11 HAD8  
VCC HAD10 HAD9 HAD7 HAD5  
FRAME  
D23 MODB  
NC  
MODC HAD28 VCC  
VCC  
VCC HTRDY HSTOP PVCL  
D21  
D17  
D22  
D20  
MODA  
D19  
VCC  
D18  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
HC0  
VCC  
HAD6 HAD4 HAD2  
HAD3 HAD0 HAD1  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
G
H
D14  
D8  
D16  
D13  
D10  
D15  
D9  
D12  
D11  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
TI02  
RXD  
TI01  
VCC  
TI00 HINTA SCLK  
J
D7  
D5  
GND  
GND  
SC10  
TXD  
SC12 SC11  
K
L
D4  
D1  
D6  
D2  
D3  
D0  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
SRD0 SCK0 SCK1 STD1  
SC01 SC02 STD0 SRD1  
VCC  
VCC  
VCC  
M
N
P
R
T
A23  
NC  
A22  
A20  
NC  
NC  
NC  
A21  
A17  
A15  
A14  
A13  
A19  
A16  
NC  
VCC  
VCC  
A12  
A9  
VCC  
VCC  
A8  
VCC  
A2  
A5  
A3  
A0  
VCC  
A1  
VCC  
VCC  
VCC  
BG  
VCC  
TA  
TMS  
BL  
TDO  
NC  
DE  
TDI  
BS  
NC  
NC  
SC00  
TCK  
TRST  
NC  
VCC  
VCC  
CLK  
OUT  
A18  
NC  
EXTAL  
BLCK  
RD  
AA3  
XTAL  
WR  
GNDP PINIT  
AA0  
AA1  
A11  
A10  
A6  
AA2  
BR  
BB  
VCCP  
CAS  
A7  
A4  
GNDP1 PCAP RESET BCLK  
Figure 3-2. DSP56305 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View  
3-3  
MAP-BGA Package Description  
Table 3-1. DSP56305 MAP-BGA Signal Identification by Pin Number  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
A2  
A3  
NC  
HAD15, HD7, or PB15  
HCLK  
B12  
B13  
B14  
B15  
B16  
C1  
HAD25 or HD17  
HAD29 or HD21  
HAD31 or HD23  
NC  
D5  
D6  
V
CC  
PVCL  
A4  
D7  
HSTOP or HWR/HRW  
HTRDY, HDBEN, or PB20  
A5  
HPAR or HDAK  
HPERR or HDRQ  
HIRDY, HDBDR, or PB21  
HAD16 or HD8  
HAD17 or HD9  
HAD20 or HD12  
HAD23 or HD15  
HAD24 or HD16  
HAD27 or HD19  
HAD30 or HD22  
NC  
D8  
A6  
NC  
D9  
V
CC  
A7  
HAD8, HD0, or PB8  
HAD11, HD3, or PB11  
HAD12, HD4, or PB12  
HAD13, HD5, or PB13  
HC1/HBE1, HA1, or PB17  
HREQ or HTA  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
V
CC  
A8  
C2  
V
CC  
A9  
C3  
HAD28 or HD20  
MODC/IRQC  
A10  
A11  
A12  
A13  
A14  
A15  
B1  
C4  
C5  
NC  
C6  
MODB/IRQB  
C7  
HLOCK, HBS, or PB23  
HFRAME  
D23  
C8  
HAD2, HA5, or PB2  
HAD4, HA7, or PB4  
HAD6, HA9, or PB6  
HC0/HBE0, HA0, or PB16  
C9  
HAD18 or HD10  
HAD21 or HD13  
HC3/HBE3 or PB19  
HAD26 or HD18  
MODD/IRQD  
E2  
NC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
E3  
B2  
NC  
E4  
B3  
HAD14, HD6, or PB14  
HGNT or HAEN  
HRST/HRST  
E5  
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
B4  
E6  
B5  
NC  
E7  
B6  
HSERR or HIRQ  
NC  
E8  
B7  
B8  
HDEVSEL, HSAK, or PB22  
HIDSEL or HRD/HDS  
HC2/HBE2, HA2, or PB18  
HAD19 or HD11  
NC  
E9  
HAD5, HA8, or PB5  
HAD7, HA10, or PB7  
HAD9, HD1, or PB9  
HAD10, HD2, or PB10  
E10  
E11  
E12  
E13  
B9  
D2  
B10  
B11  
D3  
HAD22 or HD14  
D4  
3-4  
MAP-BGA Package Description  
Table 3-1. DSP56305 MAP-BGA Signal Identification by Pin Number (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
E14  
E15  
E16  
F1  
MODA/IRQA  
D22  
G7  
G8  
GND  
GND  
GND  
GND  
GND  
H16  
J1  
D8  
SC11 or PD1  
SC12 or PD2  
TXD or PE1  
SC10 or PD0  
D21  
G9  
J2  
HAD1, HA4, or PB1  
HAD0, HA3, or PB0  
HAD3, HA6, or PB3  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
H1  
J3  
F2  
J4  
F3  
V
J5  
V
CC  
CC  
F4  
V
V
D12  
D15  
J6  
GND  
GND  
GND  
GND  
GND  
GND  
CC  
CC  
F5  
J7  
F6  
GND  
GND  
GND  
GND  
GND  
GND  
D16  
J8  
F7  
D14  
J9  
F8  
SCLK or PE2  
HINTA  
TIO0  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
F9  
H2  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
G2  
G3  
G4  
G5  
G6  
H3  
V
V
CC  
CC  
H4  
V
CC  
CC  
V
H5  
V
D5  
CC  
D18  
D19  
H6  
GND  
GND  
GND  
GND  
GND  
GND  
D10  
H7  
D7  
D20  
H8  
STD1 or PD5  
SCK1 or PD3  
SCK0 or PC3  
SRD0 or PC4  
D17  
H9  
TIO1  
H10  
H11  
H12  
H13  
H14  
H15  
RXD or PE0  
TIO2  
V
V
CC  
CC  
V
V
D11  
D9  
GND  
GND  
GND  
CC  
CC  
GND  
D13  
3-5  
MAP-BGA Package Description  
Table 3-1. DSP56305 MAP-BGA Signal Identification by Pin Number (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
K9  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
GND  
GND  
GND  
M2  
M3  
DE  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
V
V
CC  
TDO  
TMS  
CC  
M4  
A16  
A17  
V
V
M5  
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
M6  
A20  
D3  
M7  
NC  
D6  
M8  
TRST  
BS  
D4  
M9  
P2  
SRD1 or PD4  
STD0 or PC5  
SC02 or PC2  
SC01 or PC1  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
P3  
AA0/RAS0  
CLKOUT  
PINIT/NMI  
L2  
P4  
L3  
P5  
L4  
A19  
A21  
A22  
A23  
TCK  
TDI  
NC  
P6  
GND  
BG  
P
L5  
V
P7  
CC  
L6  
GND  
GND  
GND  
GND  
GND  
GND  
P8  
AA3/RAS3  
EXTAL  
A5  
L7  
P9  
L8  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
L9  
N2  
A8  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
N3  
A12  
N4  
BL  
NC  
V
V
N5  
TA  
A15  
CC  
CC  
N6  
V
V
V
NC  
CC  
CC  
CC  
D0  
D2  
N7  
A18  
N8  
NC  
D1  
N9  
A1  
A2  
R2  
NC  
SC00 or PC0  
N10  
R3  
AA1/RAS1  
3-6  
MAP-BGA Package Description  
Table 3-1. DSP56305 MAP-BGA Signal Identification by Pin Number (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
R4  
R5  
CAS  
R13  
R14  
R15  
R16  
T2  
A11  
A14  
T7  
T8  
BR  
WR  
RD  
A0  
V
CCP  
R6  
BB  
AA2/RAS2  
XTAL  
BCLK  
A3  
NC  
T9  
R7  
NC  
T10  
T11  
T12  
T13  
T14  
T15  
R8  
NC  
A4  
R9  
T3  
BCLK  
RESET  
PCAP  
A7  
R10  
R11  
R12  
T4  
A10  
A13  
NC  
A6  
T5  
A9  
T6  
GND  
P1  
Notes: 1. Signal names are based on configured functionality. Most connections supply a single signal. Some  
connections provide a signal with dual functionality, such as the MODx/IRQx pins that select an  
operating mode after RESET is deasserted, but act as interrupt lines during operation. Some signals  
have configurable polarity; these names are shown with and without overbars, such as HAS/HAS.  
Some connections have two or more configurable functions; names assigned to these connections  
indicate the function for a specific configuration. For example, connection N2 is data line H7 in  
non-multiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when  
the GPIO function is enabled for this pin. Unlike the TQFP package, most of the GND pins are  
connected internally in the center of the connection array and act as heat sink for the chip. Therefore,  
except for GND and GND that support the PLL, other GND signals do not support individual  
P
P1  
subsystems in the chip.  
2. NC stands for Not Connected. The following pin groups are shorted to each other:  
— pins A2, B1, and B2  
— pins A15, B15, B16, C14, C15, C16, and D14  
— pins N3, R1, R2, and T2  
— pins N16, P13, P15, R15, R16, and T15  
Do not connect any line, component, trace, or via to these pins.  
3-7  
MAP-BGA Package Description  
Table 3-2. DSP56305 MAP-BGA Signal Identification by Name  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
A0  
A1  
T10  
N9  
AA2  
AA3  
BB  
R7  
P8  
D22  
D23  
D3  
E15  
D16  
K14  
K16  
J14  
K15  
J16  
H16  
H14  
M2  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A2  
T13  
R13  
P12  
T14  
R14  
P14  
N13  
N14  
P16  
M13  
N10  
N15  
M14  
M15  
M16  
R10  
T11  
P10  
R11  
T12  
P11  
R12  
P3  
R6  
BCLK  
BCLK  
BG  
T3  
D4  
R9  
D5  
P7  
D6  
BL  
N4  
D7  
BR  
T7  
D8  
BS  
P2  
D9  
CAS  
CLKOUT  
D0  
R4  
DE  
P4  
EXTAL  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
P9  
L14  
L16  
J15  
H13  
G13  
H15  
G16  
G14  
G15  
F16  
F13  
F14  
L15  
F15  
E16  
F10  
F11  
F6  
D1  
A20  
A21  
A22  
A23  
A3  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D2  
F7  
F8  
F9  
G10  
G11  
G6  
A4  
A5  
A6  
G7  
A7  
G8  
A8  
G9  
A9  
H10  
H11  
H6  
AA0  
AA1  
D20  
D21  
R3  
3-8  
MAP-BGA Package Description  
Table 3-2. DSP56305 MAP-BGA Signal Identification by Name (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
H7  
H8  
H9  
J10  
J11  
J6  
HA10  
HA2  
D2  
B9  
F2  
HAD23  
HAD24  
HAD25  
HAD26  
HAD27  
HAD28  
HAD29  
HAD3  
HAD30  
HAD31  
HAD4  
HAD5  
HAD6  
HAD7  
HAD8  
HAD9  
HAEN  
HBE0  
HBE1  
HBE2  
HBE3  
HBS  
A11  
A12  
B12  
C12  
A13  
D12  
B13  
F3  
HA3  
HA4  
F1  
HA5  
E1  
F3  
HA6  
J7  
HA7  
E2  
D1  
E3  
F2  
J8  
HA8  
J9  
HA9  
A14  
B14  
E2  
K10  
K11  
K6  
K7  
K8  
K9  
L10  
L11  
L6  
HAD0  
HAD1  
HAD10  
HAD11  
HAD12  
HAD13  
HAD14  
HAD15  
HAD16  
HAD17  
HAD18  
HAD19  
HAD2  
HAD20  
HAD21  
HAD22  
F1  
D4  
C2  
C3  
C4  
B3  
A3  
A8  
A9  
C9  
B10  
E1  
A10  
C10  
B11  
D1  
E3  
D2  
C1  
D3  
B4  
E4  
L7  
C5  
L8  
B9  
L9  
C11  
C7  
GND  
T6  
P1  
GND  
P6  
E4  
C5  
HC0  
E4  
P
HA0  
HA1  
HC1  
C5  
HC2  
B9  
3-9  
MAP-BGA Package Description  
Table 3-2. DSP56305 MAP-BGA Signal Identification by Name (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
HC3  
HCLK  
HD0  
C11  
A4  
HD9  
HDAK  
A9  
A5  
A7  
D8  
B7  
A6  
B8  
C8  
B4  
B8  
H2  
A7  
B6  
C7  
A5  
A6  
B8  
C6  
B5  
D7  
B7  
B6  
D7  
C6  
D8  
HWR  
IRQA  
IRQB  
IRQC  
IRQD  
MODA  
MODB  
MODC  
MODD  
NC  
D7  
E14  
D15  
D13  
C13  
E14  
D15  
D13  
C13  
A15  
A2  
C1  
HDBDR  
HDBEN  
HDEVSEL  
HDRQ  
HDS  
HD1  
D3  
HD10  
HD11  
HD12  
HD13  
HD14  
HD15  
HD16  
HD17  
HD18  
HD19  
HD2  
C9  
B10  
A10  
C10  
B11  
A11  
A12  
B12  
C12  
A13  
D4  
HFRAME  
HGNT  
HIDSEL  
HINTA  
NC  
HIRDY  
HIRQ  
NC  
B1  
NC  
B15  
B16  
B2  
HLOCK  
HPAR  
NC  
NC  
HD20  
HD21  
HD22  
HD23  
HD3  
D12  
B13  
A14  
B14  
C2  
HPERR  
HRD  
NC  
C14  
C15  
C16  
D14  
N16  
N3  
NC  
HREQ  
NC  
HRST/HRST  
HRW  
NC  
NC  
HD4  
C3  
HSAK  
NC  
HD5  
C4  
HSERR  
HSTOP  
HTA  
NC  
P13  
P15  
R1  
HD6  
B3  
NC  
HD7  
A3  
NC  
HD8  
A8  
HTRDY  
NC  
R2  
3-10  
MAP-BGA Package Description  
Table 3-2. DSP56305 MAP-BGA Signal Identification by Name (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
NC  
R15  
R16  
T2  
PB6  
PB7  
E3  
D2  
C1  
D3  
M1  
L4  
L3  
K3  
K4  
L2  
T5  
J4  
RAS3  
RD  
P8  
T9  
T4  
G2  
M1  
L4  
NC  
NC  
PB8  
RESET  
RXD  
NC  
T15  
P5  
F2  
PB9  
NMI  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PCAP  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PE0  
SC00  
SC01  
SC02  
SC10  
SC11  
SC12  
SCK0  
SCK1  
SCLK  
SRD0  
SRD1  
STD0  
STD1  
TA  
PB0  
PB1  
F1  
L3  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
PB16  
PB17  
PB18  
PB19  
PB2  
D4  
C2  
C3  
C4  
B3  
A3  
E4  
C5  
B9  
C11  
E1  
D8  
A7  
B7  
C7  
F3  
J4  
J1  
J2  
K3  
K2  
H1  
K4  
L1  
J1  
J2  
K2  
L1  
K1  
G2  
J3  
L2  
K1  
N5  
N1  
N2  
M3  
H3  
G1  
G3  
M4  
PB20  
PB21  
PB22  
PB23  
PB3  
PE1  
TCK  
PE2  
H1  
P5  
D6  
P3  
R3  
R7  
TDI  
PINIT  
PVCL  
RAS0  
RAS1  
RAS2  
TDO  
TIO0  
TIO1  
TIO2  
TMS  
PB4  
E2  
D1  
PB5  
3-11  
MAP-BGA Package Description  
Table 3-2. DSP56305 MAP-BGA Signal Identification by Name (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
TRST  
TXD  
P1  
J3  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
F5  
G12  
G4  
V
V
V
V
V
V
V
V
V
V
V
V
V
M10  
M11  
M12  
M5  
M6  
M7  
M8  
M9  
N11  
N12  
N6  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
D10  
D11  
D5  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
G5  
H12  
H4  
D9  
E10  
E11  
E12  
E13  
E5  
H5  
J12  
J13  
J5  
K12  
K13  
K5  
E6  
N7  
E7  
N8  
E8  
L12  
L13  
L5  
V
R5  
CCP  
E9  
WR  
T8  
F12  
F4  
XTAL  
R8  
Note:  
NC stands for Not Connected. The following pin groups are shorted to each other:  
—pins A2, B1, and B2  
—pins A15, B15, B16, C14, C15, C16, and D14  
—pins N3, R1, R2, and T2  
—pins N16, P13, P15, R15, R16, and T15  
Do not connect any line, component, trace, or via to these pins.  
3-12  
MAP-BGA Package Mechanical Drawing  
3.3 MAP-BGA Package Mechanical Drawing  
Notes:  
1. Dimensions are in millimeters.  
2. Interpret dimensions and  
tolerances per ASME Y14.5M,  
1994.  
3. Dimension b is measured at the  
maximum solder ball diameter,  
parallel to datum plane Z.  
4. Datum Z (seating plane) is  
defined by the spherical crowns  
of the solder balls.  
5. Parallelism measurement shall  
exclude any effect of mark on  
top surface of package.  
Millimeters  
DIM MIN MAX  
1.6  
A
1.9  
A1 0.50 0.70  
A2 1.16 REF  
b
D
E
e
0.60 0.90  
21.00 BSC  
21.00 BSC  
1.27 BSC  
Figure 3-3. DSP56305 Mechanical Information, 252-pin MAP-BGA Package  
3-13  
MAP-BGA Package Mechanical Drawing  
3-14  
Chapter 4  
Design  
Considerations  
4.1 Thermal Design Considerations  
An estimate of the chip junction temperature, TJ, in °C can be obtained from  
this equation:  
Equation 1: TJ = TA + (PD × RθJA  
)
Where:  
TA  
=
=
=
ambient temperature °C  
RθJA  
PD  
package junction-to-ambient thermal resistance °C/W  
power dissipation in package  
Historically, thermal resistance has been expressed as the sum of a  
junction-to-case thermal resistance and a case-to-ambient thermal resistance,  
as in this equation:  
Equation 2: RθJA = RθJC + RθCA  
Where:  
RθJA  
RθJC  
RθCA  
=
=
=
package junction-to-ambient thermal resistance °C/W  
package junction-to-case thermal resistance °C/W  
package case-to-ambient thermal resistance °C/W  
RθJC is device-related and cannot be influenced by the user. The user controls  
the thermal environment to change the case-to-ambient thermal resistance,  
RθCA. For example, the user can change the air flow around the device, add a  
heat sink, change the mounting arrangement on the printed circuit board  
(PCB) or otherwise change the thermal dissipation capability of the area  
surrounding the device on a PCB. This model is most useful for ceramic  
packages with heat sinks; some 90 percent of the heat flow is dissipated  
through the case to the heat sink and out to the ambient environment. For  
ceramic packages, in situations where the heat flow is split between a path to  
the case and an alternate path through the PCB, analysis of the device thermal  
performance may need the additional modeling capability of a system-level  
thermal simulation tool.  
The thermal performance of plastic packages is more dependent on the  
temperature of the PCB to which the package is mounted. Again, if the  
estimates obtained from RθJA do not satisfactorily answer whether the thermal  
performance is adequate, a system-level model may be appropriate.  
4-1  
Electrical Design Considerations  
A complicating factor is the existence of three common ways to determine the junction-to-case thermal  
resistance in plastic packages.  
• To minimize temperature variation across the surface, the thermal resistance is measured from the  
junction to the outside surface of the package (case) closest to the chip mounting area when that surface  
has a proper heat sink.  
• To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance  
is measured from the junction to the point at which the leads attach to the case.  
• If the temperature of the package case (TT) is determined by a thermocouple, thermal resistance is  
computed from the value obtained by the equation (TJ – TT)/PD.  
As noted earlier, the junction-to-case thermal resistances quoted in this data sheet are determined using  
the first definition. From a practical standpoint, that value is also suitable to determine the junction  
temperature from a case thermocouple reading in forced convection environments. In natural convection,  
the use of the junction-to-case thermal resistance to estimate junction temperature from a thermocouple  
reading on the case of the package will yield an estimate of a junction temperature slightly higher than  
actual temperature. Hence, the new thermal metric, thermal characterization parameter or ΨJT, has been  
defined to be (TJ – TT)/PD. This value gives a better estimate of the junction temperature in natural  
convection when the surface temperature of the package is used. Remember that surface temperature  
readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the  
surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a  
40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy.  
4.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to  
guard against damage due to high static  
voltage or electrical fields. However, normal  
precautions are advised to avoid application  
of any voltages higher than maximum rated  
voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage  
level (for example, either GND or V ).  
CC  
4-2  
Power Consumption Considerations  
Use the following list of recommendations to ensure correct DSP operation.  
• Provide a low-impedance path from the board power supply to each VCC pin on the DSP and from the  
board ground to each GND pin.  
• Use at least six 0.01–0.1 µF bypass capacitors positioned as close as possible to the four sides of the  
package to connect the VCC power source to GND.  
• Ensure that capacitor leads and associated printed circuit traces that connect to the chip VCC and GND  
pins are less than 0.5 inch per capacitor lead.  
• Use at least a four-layer PCB with two inner layers for VCC and GND.  
• Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal.  
This recommendation particularly applies to the address and data buses as well as the IRQA, IRQB,  
IRQC, IRQD, TA, and BG pins. Maximum PCB trace lengths on the order of 6 inches are recommended.  
• Consider all device loads as well as parasitic capacitance due to PCB traces when you calculate  
capacitance. This is especially critical in systems with higher capacitive loads that could create higher  
transient currents in the VCC and GND circuits.  
• All inputs must be terminated (that is, not allowed to float) by CMOS levels except for the three pins  
with internal pull-up resistors (TRST, TMS, DE).  
• Take special care to minimize noise levels on the VCCP, GNDP, and GNDP1 pins.  
• The following pins must be asserted after power-up: RESET and TRST.  
• If multiple DSP devices are on the same board, check for cross-talk or excessive spikes on the supplies  
due to synchronous operation of the devices.  
RESET must be asserted when the chip is powered up. A stable EXTAL signal should be supplied  
before deassertion of RESET.  
• At power-up, ensure that the voltage difference between the 5 V tolerant pins and the chip VCC never  
exceeds 3.5 V.  
4.3 Power Consumption Considerations  
Power dissipation is a key issue in portable DSP applications. Some of the factors affecting current  
consumption are described in this section. Most of the current consumed by CMOS devices is alternating  
current (ac), which is charging and discharging the capacitances of the pins and internal nodes.  
Current consumption is described by this formula:  
Equation 3: I = C × V × f  
Where:  
C
V
f
=
=
=
node/pin capacitance  
voltage swing  
frequency of node/pin toggle  
Example 4-1. Current Consumption  
For a Port A address pin loaded with 50 pF capacitance, operating at 3.3 V, with a 66 MHz clock, toggling at its  
maximum possible rate (33 MHz), the current consumption is expressed in Equation 4.  
Equation 4: I = 50 × 1012 × 3.3 × 33 × 106 = 5.48 mA  
The maximum internal current (ICCImax) value reflects the typical possible switching of the internal  
buses on best-case operation conditions—not necessarily a real application case. The typical internal  
current (ICCItyp) value reflects the average switching of the internal buses on typical operating conditions.  
4-3  
PLL Performance Issues  
Perform the following steps for applications that require very low current consumption:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Set the EBD bit when you are not accessing external memory.  
Minimize external memory accesses, and use internal memory accesses.  
Minimize the number of pins that are switching.  
Minimize the capacitive load on the pins.  
Connect the unused inputs to pull-up or pull-down resistors.  
Disable unused peripherals.  
Disable unused pin activity (for example, CLKOUT, XTAL).  
One way to evaluate power consumption is to use a current-per-MIPS measurement methodology to  
minimize specific board effects (that is, to compensate for measured board current not caused by the  
DSP). A benchmark power consumption test algorithm is listed in Appendix A. Use the test algorithm,  
specific test current measurements, and the following equation to derive the current-per-MIPS value.  
Equation 5: I MIPS = I MHz = (ItypF2 ItypF1) ⁄ (F2 – F1)  
Where:  
ItypF2  
ItypF1  
=
=
current at F2  
current at F1  
F2  
F1  
=
=
high frequency (any specified operating frequency)  
low frequency (any specified operating frequency lower than F2)  
Note: F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33  
MHz. The degree of difference between F1 and F2 determines the amount of precision with  
which the current rating can be determined for an application.  
4.4 PLL Performance Issues  
The following explanations should be considered as general observations on expected PLL behavior.  
There is no test that replicates these exact numbers. These observations were measured on a limited  
number of parts and were not verified over the entire temperature and voltage ranges.  
4.4.1 Phase Skew Performance  
The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL and  
CLKOUT for a given capacitive load on CLKOUT, over the entire process, temperature and voltage  
ranges. As defined in Figure 2-2, External Clock Timing, on page 2-5 for input frequencies greater than  
15 MHz and the MF 4, this skew is greater than or equal to 0.0 ns and less than 1.8 ns; otherwise, this  
skew is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this skew is  
between 1.4 ns and +3.2 ns.  
4.4.2 Phase Jitter Performance  
The phase jitter of the PLL is defined as the variations in the skew between the falling edges of EXTAL  
and CLKOUT for a given device in specific temperature, voltage, input frequency, MF, and capacitive  
load on CLKOUT. These variations are a result of the PLL locking mechanism. For input frequencies  
greater than 15 MHz and MF 4, this jitter is less than ±0.6 ns; otherwise, this jitter is not guaranteed.  
However, for MF < 10 and input frequencies greater than 10 MHz, this jitter is less than ±2 ns.  
4-4  
Input (EXTAL) Jitter Requirements  
4.4.3 Frequency Jitter Performance  
The frequency jitter of the PLL is defined as the variation of the frequency of CLKOUT. For small MF  
(MF < 10) this jitter is smaller than 0.5 per cent. For mid-range MF (10 < MF < 500) this jitter is between  
0.5 per cent and approximately 2 per cent. For large MF (MF > 500), the frequency jitter is 2–3 per cent.  
4.5 Input (EXTAL) Jitter Requirements  
The allowed jitter on the frequency of EXTAL is 0.5 percent. If the rate of change of the frequency of  
EXTAL is slow (that is, it does not jump between the minimum and maximum values in one cycle) or the  
frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time), then the allowed  
jitter can be 2 percent. The phase and frequency jitter performance results are valid only if the input jitter  
is less than the prescribed values.  
4-5  
Input (EXTAL) Jitter Requirements  
4-6  
Appendix A  
Power  
Consumption  
Benchmark  
The following benchmark program permits evaluation of DSP power usage in a test situation. It enables  
the PLL, disables the external clock, and uses repeated multiply-accumulate (MAC) instructions with a  
set of synthetic DSP application data to emulate intensive sustained DSP operation.  
;**************************************************************************  
;**************************************************************************  
;*  
*
;* CHECKS  
;*  
Typical Power Consumption  
*
*
;**************************************************************************  
page  
nolist  
200,55,0,0,0  
I_VEC EQU$000000; Interrupt vectors for program debug only  
START EQU$8000 ; MAIN (external) program starting address  
INT_PROG EQU$100 ; INTERNAL program memory starting address  
INT_XDAT EQU$0 ; INTERNAL X-data memory starting address  
INT_YDAT EQU$0 ; INTERNAL Y-data memory starting address  
INCLUDE "ioequ.asm"  
INCLUDE "intequ.asm"  
list  
org  
P:START  
;
movep #$0123FF,x:M_BCR; BCR: Area 3 : 1 w.s (SRAM)  
; Area 2 : 0 w.s (SSRAM)  
; Default: 1 w.s (SRAM)  
;
movep  
#$0d0000,x:M_PCTL; XTAL disable  
; PLL enable  
; CLKOUT disable  
;
;Load the program  
;
move  
move  
do  
move  
move  
nop  
#INT_PROG,r0  
#PROG_START,r1  
#(PROG_END-PROG_START),PLOAD_LOOP  
p:(r1)+,x0  
x0,p:(r0)+  
PLOAD_LOOP  
;
; Load the X-data  
;
move  
move  
do  
move  
move  
#INT_XDAT,r0  
#XDAT_START,r1  
#(XDAT_END-XDAT_START),XLOAD_LOOP  
p:(r1)+,x0  
x0,x:(r0)+  
XLOAD_LOOP  
;
;Load the Y-data  
;
move  
move  
do  
move  
move  
#INT_YDAT,r0  
#YDAT_START,r1  
#(YDAT_END-YDAT_START),YLOAD_LOOP  
p:(r1)+,x0  
x0,y:(r0)+  
YLOAD_LOOP  
;
jmp  
INT_PROG  
PROG_START  
move  
#$0,r0  
#$0,r4  
#$3f,m0  
#$3f,m4  
move  
move  
move  
;
A-1  
Power Consumption Benchmark  
clr  
clr  
a
b
move  
move  
move  
move  
bset  
#$0,x0  
#$0,x1  
#$0,y0  
#$0,y1  
#4,omr  
; ebd  
;
sbr  
dor  
mac  
mac  
add  
mac  
mac  
move  
#60,_end  
x0,y0,ax:(r0)+,x1  
x1,y1,ax:(r0)+,x0  
a,b  
y:(r4)+,y1  
y:(r4)+,y0  
x0,y0,ax:(r0)+,x1  
x1,y1,a  
b1,x:$ff  
y:(r4)+,y0  
_end  
bra  
nop  
nop  
nop  
nop  
sbr  
PROG_END  
nop  
nop  
XDAT_START  
;
org  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
x:0  
$262EB9  
$86F2FE  
$E56A5F  
$616CAC  
$8FFD75  
$9210A  
$A06D7B  
$CEA798  
$8DFBF1  
$A063D6  
$6C6657  
$C2A544  
$A3662D  
$A4E762  
$84F0F3  
$E6F1B0  
$B3829  
$8BF7AE  
$63A94F  
$EF78DC  
$242DE5  
$A3E0BA  
$EBAB6B  
$8726C8  
$CA361  
$2F6E86  
$A57347  
$4BE774  
$8F349D  
$A1ED12  
$4BFCE3  
$EA26E0  
$CD7D99  
$4BA85E  
$27A43F  
$A8B10C  
$D3A55  
$25EC6A  
$2A255B  
$A5F1F8  
$2426D1  
$AE6536  
$CBBC37  
$6235A4  
$37F0D  
$63BEC2  
$A5E4D3  
$8CE810  
$3FF09  
$60E50E  
$CFFB2F  
$40753C  
$8262C5  
A-2  
Power Consumption Benchmark  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
$CA641A  
$EB3B4B  
$2DA928  
$AB6641  
$28A7E6  
$4E2127  
$482FD4  
$7257D  
$E53C72  
$1A8C3  
$E27540  
XDAT_END  
YDAT_START  
;
org  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
y:0  
$5B6DA  
$C3F70B  
$6A39E8  
$81E801  
$C666A6  
$46F8E7  
$AAEC94  
$24233D  
$802732  
$2E3C83  
$A43E00  
$C2B639  
$85A47E  
$ABFDDF  
$F3A2C  
$2D7CF5  
$E16A8A  
$ECB8FB  
$4BED18  
$43F371  
$83A556  
$E1E9D7  
$ACA2C4  
$8135AD  
$2CE0E2  
$8F2C73  
$432730  
$A87FA9  
$4A292E  
$A63CCF  
$6BA65C  
$E06D65  
$1AA3A  
$A1B6EB  
$48AC48  
$EF7AE1  
$6E3006  
$62F6C7  
$6064F4  
$87E41D  
$CB2692  
$2C3863  
$C6BC60  
$43A519  
$6139DE  
$ADF7BF  
$4B3E8C  
$6079D5  
$E0F5EA  
$8230DB  
$A3B778  
$2BFE51  
$E0A6B6  
$68FFB7  
$28F324  
$8F2E8D  
$667842  
$83E053  
$A1FD90  
$6B2689  
$85B68E  
$622EAF  
$6162BC  
$E4A245  
YDAT_END  
;**************************************************************************  
A-3  
Power Consumption Benchmark  
;
;
;
;
;
;
;
;
;
;
;
;
;
EQUATES for DSP56305 I/O registers and ports  
Reference: DSP56305 Specifications Revision 3.00  
Last update:  
Changes:  
November 15 1993  
GPIO for ports C,D and E,  
HI32  
DMA status reg  
PLL control reg  
AAR  
SCI registers address  
SSI registers addr. + split TSR from SSISR  
December 19 1993 (cosmetic - page and opt directives)  
August 9 1994 ESSI and SCI control registers bit update  
;
;
;**************************************************************************  
page  
opt  
132,55,0,0,0  
mex  
ioequ  
ident  
1,0  
;------------------------------------------------------------------------  
;
;
;
EQUATES for I/O Port Programming  
;------------------------------------------------------------------------  
;
Register Addresses  
M_DATH EQU $FFFFCF ; Host port GPIO data Register  
M_DIRH EQU $FFFFCE; Host port GPIO direction Register  
M_PCRC EQU $FFFFBF; Port C Control Register  
M_PRRC EQU $FFFFBE; Port C Direction Register  
M_PDRC EQU $FFFFBD ; Port C GPIO Data Register  
M_PCRD EQU $FFFFAF ; Port D Control register  
M_PRRD EQU $FFFFAE ; Port D Direction Data Register  
M_PDRD EQU $FFFFAD; Port D GPIO Data Register  
M_PCRE EQU $FFFF9F; Port E Control register  
M_PRRE EQU $FFFF9E; Port E Direction Register  
M_PDRE EQU $FFFF9D; Port E Data Register  
M_OGDB EQU $FFFFFC; OnCE GDB Register  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Host Interface  
;------------------------------------------------------------------------  
;
Register Addresses  
M_DTXS EQU $FFFFCD ; DSP SLAVE TRANSMIT DATA FIFO (DTXS)  
M_DTXM EQU $FFFFCC; DSP MASTER TRANSMIT DATA FIFO (DTXM)  
M_DRXR EQU $FFFFCB; DSP RECEIVE DATA FIFO (DRXR)  
M_DPSR EQU $FFFFCA; DSP PCI STATUS REGISTER (DPSR)  
M_DSR EQU $FFFFC9; DSP STATUS REGISTER (DSR)  
M_DPAR EQU $FFFFC8; DSP PCI ADDRESS REGISTER (DPAR)  
M_DPMC EQU $FFFFC7; DSP PCI MASTER CONTROL REGISTER (DPMC)  
M_DPCR EQU $FFFFC6; DSP PCI CONTROL REGISTER (DPCR)  
M_DCTR EQU $FFFFC5 ; DSP CONTROL REGISTER (DCTR)  
;
Host Control Register Bit Flags  
M_HCIE EQU 0  
M_STIE EQU 1  
M_SRIE EQU 2  
; Host Command Interrupt Enable  
; Slave Transmit Interrupt Enable  
; Slave Receive Interrupt Enable  
M_HF35 EQU $38 ; Host Flags 5-3 Mask  
M_HF3 EQU 3  
M_HF4 EQU 4  
M_HF5 EQU 5  
M_HINT EQU 6  
; Host Flag 3  
; Host Flag 4  
; Host Flag 5  
; Host Interrupt A  
M_HDSM EQU 13 ; Host Data Strobe Mode  
M_HRWP EQU 14 ; Host RD/WR Polarity  
M_HTAP EQU 15 ; Host Transfer Acknowledge Polarity  
M_HDRP EQU 16 ; Host Dma Request Polarity  
M_HRSP EQU 17 ; Host Reset Polarity  
M_HIRP EQU 18 ; Host Interrupt Request Polarity  
M_HIRC EQU 19 ; Host Interupt Request Control  
M_HM0 EQU 20  
M_HM1 EQU 21  
; Host Interface Mode  
; Host Interface Mode  
A-4  
Power Consumption Benchmark  
M_HM2 EQU 22  
; Host Interface Mode  
M_HM EQU $700000 ; Host Interface Mode Mask  
;
Host PCI Control Register Bit Flags  
M_PMTIE EQU 1 ; PCI Master Transmit Interrupt Enable  
M_PMRIE EQU 2 ; PCI Master Receive Interrupt Enable  
M_PMAIE EQU 4 ; PCI Master Address Interrupt Enable  
M_PPEIE EQU 5 ; PCI Parity Error Interrupt Enable  
M_PTAIE EQU 7 ; PCI Transaction Abort Interrupt Enable  
M_PTTIE EQU 9 ; PCI Transaction Termination Interrupt Enable  
M_PTCIE EQU 12 ; PCI Transfer Complete Interrupt Enable  
M_CLRT EQU 14 ; Clear Transmitter  
M_MTT EQU 15  
; Master Transfer Terminate  
M_SERF EQU 16 ; HSERR~ Force  
M_MACE EQU 18 ; Master Access Counter Enable  
M_MWSD EQU 19 ; Master Wait States Disable  
M_RBLE EQU 20 ; Receive Buffer Lock Enable  
M_IAE EQU 21  
; Insert Address Enable  
;
Host PCI Master Control Register Bit Flags  
M_ARH EQU $00ffff; DSP PCI Transaction Address (High)  
M_BL EQU $3f0000; PCI Data Burst Length  
M_FC EQU $c00000; Data Transfer Format Control  
;
Host PCI Address Register Bit Flags  
M_ARL EQU $00ffff; DSP PCI Transaction Address (Low)  
M_C EQU $0f0000; PCI Bus Command  
M_BE EQU $f00000; PCI Byte Enables  
;
DSP Status Register Bit Flags  
M_HCP EQU 0  
M_STRQ EQU 1  
M_SRRQ EQU 2  
; Host Command pending  
; Slave Transmit Data Request  
; Slave Receive Data Request  
M_HF02 EQU $38 ; Host Flag 0-2 Mask  
M_HF0 EQU 3  
M_HF1 EQU 4  
M_HF2 EQU 5  
; Host Flag 0  
; Host Flag 1  
; Host Flag 2  
;
DSP PCI Status Register Bit Flags  
M_MWS EQU 0  
M_MTRQ EQU 1  
M_MRRQ EQU 2  
M_MARQ EQU 4  
M_APER EQU 5  
M_DPER EQU 6  
M_MAB EQU 7  
M_TAB EQU 8  
M_TDIS EQU 9  
M_TRTY EQU 10  
M_TO EQU 11  
; PCI Master Wait States  
; PCI Master Transmit Data Request  
; PCI Master Receive Data Request  
; PCI Master Address Request  
; PCI Address Parity Error  
; PCI Data Parity Error  
; PCI Master Abort  
; PCI Target Abort  
; PCI Target Disconnect  
; PCI Target Retry  
; PCI Time Out Termination  
M_RDC EQU $3F0000; Remaining Data Count Mask (RDC5-RDC0)  
M_RDC0 EQU 16  
M_RDC1 EQU 17  
M_RDC2 EQU 18  
M_RDC3 EQU 19  
M_RDC4 EQU 20  
M_RDC5 EQU 21  
M_HACT EQU 23  
; Remaining Data Count  
; Remaining Data Count  
; Remaining Data Count  
; Remaining Data Count  
; Remaining Data Count  
; Remaining Data Count  
; Hi32 Active  
0
1
2
3
4
5
;------------------------------------------------------------------------  
;
;
;
EQUATES for Serial Communications Interface (SCI)  
;------------------------------------------------------------------------  
;
Register Addresses  
M_STXH EQU $FFFF97; SCI Transmit Data Register (high)  
M_STXM EQU $FFFF96; SCI Transmit Data Register (middle)  
M_STXL EQU $FFFF95; SCI Transmit Data Register (low)  
M_SRXH EQU $FFFF9A; SCI Receive Data Register (high)  
M_SRXM EQU $FFFF99; SCI Receive Data Register (middle)  
M_SRXL EQU $FFFF98; SCI Receive Data Register (low)  
M_STXA EQU $FFFF94; SCI Transmit Address Register  
M_SCR EQU $FFFF9C; SCI Control Register  
A-5  
Power Consumption Benchmark  
M_SSR EQU $FFFF93; SCI Status Register  
M_SCCR EQU $FFFF9B; SCI Clock Control Register  
;
SCI Control Register Bit Flags  
M_WDS EQU $7  
M_WDS0 EQU 0  
M_WDS1 EQU 1  
M_WDS2 EQU 2  
M_SSFTD EQU 3  
M_SBK EQU 4  
; Word Select Mask (WDS0-WDS3)  
; Word Select 0  
; Word Select 1  
; Word Select 2  
; SCI Shift Direction  
; Send Break  
M_WAKE EQU 5  
M_RWU EQU 6  
; Wakeup Mode Select  
; Receiver Wakeup Enable  
; Wired-OR Mode Select  
; SCI Receiver Enable  
; SCI Transmitter Enable  
; Idle Line Interrupt Enable  
; SCI Receive Interrupt Enable  
; SCI Transmit Interrupt Enable  
; Timer Interrupt Enable  
; Timer Interrupt Rate  
; SCI Clock Polarity  
M_WOMS EQU 7  
M_SCRE EQU 8  
M_SCTE EQU 9  
M_ILIE EQU 10  
M_SCRIE EQU 11  
M_SCTIE EQU 12  
M_TMIE EQU 13  
M_TIR EQU 14  
M_SCKP EQU 15  
M_REIE EQU 16  
; SCI Error Interrupt Enable (REIE)  
;
SCI Status Register Bit Flags  
M_TRNE EQU 0  
M_TDRE EQU 1  
M_RDRF EQU 2  
M_IDLE EQU 3  
M_OR EQU 4  
; Transmitter Empty  
; Transmit Data Register Empty  
; Receive Data Register Full  
; Idle Line Flag  
; Overrun Error Flag  
M_PE EQU 5  
; Parity Error  
M_FE EQU 6  
M_R8 EQU 7  
; Framing Error Flag  
; Received Bit 8 (R8) Address  
;
SCI Clock Control Register  
M_CD EQU $FFF  
M_COD EQU 12  
M_SCP EQU 13  
M_RCM EQU 14  
M_TCM EQU 15  
; Clock Divider Mask (CD0-CD11)  
; Clock Out Divider  
; Clock Prescaler  
; Receive Clock Mode Source Bit  
; Transmit Clock Source Bit  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Synchronous Serial Interface (SSI)  
;------------------------------------------------------------------------  
;
;
Register Addresses Of SSI0  
M_TX00 EQU $FFFFBC; SSI0 Transmit Data Register 0  
M_TX01 EQU $FFFFBB; SSIO Transmit Data Register 1  
M_TX02 EQU $FFFFBA; SSIO Transmit Data Register 2  
M_TSR0 EQU $FFFFB9; SSI0 Time Slot Register  
M_RX0 EQU $FFFFB8; SSI0 Receive Data Register  
M_SSISR0 EQU $FFFFB7; SSI0 Status Register  
M_CRB0 EQU $FFFFB6; SSI0 Control Register B  
M_CRA0 EQU $FFFFB5; SSI0 Control Register A  
M_TSMA0 EQU $FFFFB4; SSI0 Transmit Slot Mask Register A  
M_TSMB0 EQU $FFFFB3; SSI0 Transmit Slot Mask Register B  
M_RSMA0 EQU $FFFFB2; SSI0 Receive Slot Mask Register A  
M_RSMB0 EQU $FFFFB1; SSI0 Receive Slot Mask Register B  
;
Register Addresses Of SSI1  
M_TX10 EQU $FFFFAC; SSI1 Transmit Data Register 0  
M_TX11 EQU $FFFFAB; SSI1 Transmit Data Register 1  
M_TX12 EQU $FFFFAA; SSI1 Transmit Data Register 2  
M_TSR1 EQU $FFFFA9; SSI1 Time Slot Register  
M_RX1 EQU $FFFFA8; SSI1 Receive Data Register  
M_SSISR1 EQU $FFFFA7; SSI1 Status Register  
M_CRB1 EQU $FFFFA6; SSI1 Control Register B  
M_CRA1 EQU $FFFFA5; SSI1 Control Register A  
M_TSMA1 EQU $FFFFA4; SSI1 Transmit Slot Mask Register A  
M_TSMB1 EQU $FFFFA3; SSI1 Transmit Slot Mask Register B  
M_RSMA1 EQU $FFFFA2; SSI1 Receive Slot Mask Register A  
M_RSMB1 EQU $FFFFA1; SSI1 Receive Slot Mask Register B  
;
SSI Control Register A Bit Flags  
M_PM EQU $FF ; Prescale Modulus Select Mask (PM0-PM7)  
A-6  
Power Consumption Benchmark  
M_PSR EQU 11  
; Prescaler Range  
; Alignment Control (ALC)  
M_DC EQU $1F000 ; Frame Rate Divider Control Mask (DC0-DC7)  
M_ALC EQU 18  
M_WL EQU $380000; Word Length Control Mask (WL0-WL7)  
M_SSC1 EQU 22 ; Select SC1 as TR #0 drive enable (SSC1)  
;
SSI Control Register B Bit Flags  
M_OF EQU $3  
M_OF0 EQU 0  
M_OF1 EQU 1  
; Serial Output Flag Mask  
; Serial Output Flag 0  
; Serial Output Flag 1  
M_SCD EQU $1C ; Serial Control Direction Mask  
M_SCD0 EQU 2  
M_SCD1 EQU 3  
M_SCD2 EQU 4  
M_SCKD EQU 5  
M_SHFD EQU 6  
; Serial Control 0 Direction  
; Serial Control 1 Direction  
; Serial Control 2 Direction  
; Clock Source Direction  
; Shift Direction  
M_FSL EQU $180 ; Frame Sync Length Mask (FSL0-FSL1)  
M_FSL0 EQU 7  
M_FSL1 EQU 8  
M_FSR EQU 9  
M_FSP EQU 10  
M_CKP EQU 11  
M_SYN EQU 12  
M_MOD EQU 13  
; Frame Sync Length 0  
; Frame Sync Length 1  
; Frame Sync Relative Timing  
; Frame Sync Polarity  
; Clock Polarity  
; Sync/Async Control  
; SSI Mode Select  
M_SSTE EQU $1C000; SSI Transmit enable Mask  
M_SSTE2 EQU 14 ; SSI Transmit #2 Enable  
M_SSTE1 EQU 15 ; SSI Transmit #1 Enable  
M_SSTE0 EQU 16 ; SSI Transmit #0 Enable  
M_SSRE EQU 17 ; SSI Receive Enable  
M_SSTIE EQU 18 ; SSI Transmit Interrupt Enable  
M_SSRIE EQU 19 ; SSI Receive Interrupt Enable  
M_STLIE EQU 20 ; SSI Transmit Last Slot Interrupt Enable  
M_SRLIE EQU 21 ; SSI Receive Last Slot Interrupt Enable  
M_STEIE EQU 22 ; SSI Transmit Error Interrupt Enable  
M_SREIE EQU 23 ; SSI Receive Error Interrupt Enable  
;
SSI Status Register Bit Flags  
M_IF EQU $3  
M_IF0 EQU 0  
M_IF1 EQU 1  
M_TFS EQU 2  
M_RFS EQU 3  
M_TUE EQU 4  
M_ROE EQU 5  
M_TDE EQU 6  
M_RDF EQU 7  
; Serial Input Flag Mask  
; Serial Input Flag 0  
; Serial Input Flag 1  
; Transmit Frame Sync Flag  
; Receive Frame Sync Flag  
; Transmitter Underrun Error FLag  
; Receiver Overrun Error Flag  
; Transmit Data Register Empty  
; Receive Data Register Full  
;
SSI Transmit Slot Mask Register A  
M_SSTSA EQU $FFFF ; SSI Transmit Slot Bits Mask A (TS0-TS15)  
SSI Transmit Slot Mask Register B  
M_SSTSB EQU $FFFF ; SSI Transmit Slot Bits Mask B (TS16-TS31)  
SSI Receive Slot Mask Register A  
M_SSRSA EQU $FFFF ; SSI Receive Slot Bits Mask A (RS0-RS15)  
SSI Receive Slot Mask Register B  
;
;
;
M_SSRSB EQU $FFFF ; SSI Receive Slot Bits Mask B (RS16-RS31)  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Exception Processing  
;------------------------------------------------------------------------  
;
Register Addresses  
M_IPRC EQU $FFFFFF; Interrupt Priority Register Core  
M_IPRP EQU $FFFFFE; Interrupt Priority Register Peripheral  
;
Interrupt Priority Register Core (IPRC)  
A-7  
Power Consumption Benchmark  
M_IAL EQU $7  
M_IAL0 EQU 0  
M_IAL1 EQU 1  
M_IAL2 EQU 2  
M_IBL EQU $38  
M_IBL0 EQU 3  
M_IBL1 EQU 4  
M_IBL2 EQU 5  
M_ICL EQU $1C0  
M_ICL0 EQU 6  
M_ICL1 EQU 7  
M_ICL2 EQU 8  
M_IDL EQU $E00  
M_IDL0 EQU 9  
M_IDL1 EQU 10  
M_IDL2 EQU 11  
; IRQA Mode Mask  
; IRQA Mode Interrupt Priority Level (low)  
; IRQA Mode Interrupt Priority Level (high)  
; IRQA Mode Trigger Mode  
; IRQB Mode Mask  
; IRQB Mode Interrupt Priority Level (low)  
; IRQB Mode Interrupt Priority Level (high)  
; IRQB Mode Trigger Mode  
; IRQC Mode Mask  
; IRQC Mode Interrupt Priority Level (low)  
; IRQC Mode Interrupt Priority Level (high)  
; IRQC Mode Trigger Mode  
; IRQD Mode Mask  
; IRQD Mode Interrupt Priority Level (low)  
; IRQD Mode Interrupt Priority Level (high)  
; IRQD Mode Trigger Mode  
M_D0L EQU $3000 ; DMA0 Interrupt priority Level Mask  
M_D0L0 EQU 12  
M_D0L1 EQU 13  
; DMA0 Interrupt Priority Level (low)  
; DMA0 Interrupt Priority Level (high)  
M_D1L EQU $C000 ; DMA1 Interrupt Priority Level Mask  
M_D1L0 EQU 14  
M_D1L1 EQU 15  
; DMA1 Interrupt Priority Level (low)  
; DMA1 Interrupt Priority Level (high)  
M_D2L EQU $30000 ; DMA2 Interrupt priority Level Mask  
M_D2L0 EQU 16  
M_D2L1 EQU 17  
; DMA2 Interrupt Priority Level (low)  
; DMA2 Interrupt Priority Level (high)  
M_D3L EQU $C0000 ; DMA3 Interrupt Priority Level Mask  
M_D3L0 EQU 18  
M_D3L1 EQU 19  
; DMA3 Interrupt Priority Level (low)  
; DMA3 Interrupt Priority Level (high)  
M_D4L EQU $300000; DMA4 Interrupt priority Level Mask  
M_D4L0 EQU 20  
M_D4L1 EQU 21  
; DMA4 Interrupt Priority Level (low)  
; DMA4 Interrupt Priority Level (high)  
M_D5L EQU $C00000; DMA5 Interrupt priority Level Mask  
M_D5L0 EQU 22  
M_D5L1 EQU 23  
; DMA5 Interrupt Priority Level (low)  
; DMA5 Interrupt Priority Level (high)  
;
Interrupt Priority Register Peripheral (IPRP)  
M_HPL EQU $3  
M_HPL0 EQU 0  
M_HPL1 EQU 1  
M_S0L EQU $C  
M_S0L0 EQU 2  
M_S0L1 EQU 3  
M_S1L EQU $30  
M_S1L0 EQU 4  
M_S1L1 EQU 5  
M_SCL EQU $C0  
M_SCL0 EQU 6  
M_SCL1 EQU 7  
M_T0L EQU $300  
M_T0L0 EQU 8  
M_T0L1 EQU 9  
; Host Interrupt Priority Level Mask  
; Host Interrupt Priority Level (low)  
; Host Interrupt Priority Level (high)  
; SSI0 Interrupt Priority Level Mask  
; SSI0 Interrupt Priority Level (low)  
; SSI0 Interrupt Priority Level (high)  
; SSI1 Interrupt Priority Level Mask  
; SSI1 Interrupt Priority Level (low)  
; SSI1 Interrupt Priority Level (high)  
; SCI Interrupt Priority Level Mask  
; SCI Interrupt Priority Level (low)  
; SCI Interrupt Priority Level (high)  
; TIMER Interrupt Priority Level Mask  
; TIMER Interrupt Priority Level (low)  
; TIMER Interrupt Priority Level (high)  
;------------------------------------------------------------------------  
;
;
;
EQUATES for TIMER  
;------------------------------------------------------------------------  
;
Register Addresses Of TIMER0  
M_TCSR0 EQU $FFFF8F; TIMER0 Control/Status Register  
M_TLR0 EQU $FFFF8E; TIMER0 Load Reg  
M_TCPR0 EQU $FFFF8D; TIMER0 Compare Register  
M_TCR0 EQU $FFFF8C ; TIMER0 Count Register  
;
Register Addresses Of TIMER1  
M_TCSR1 EQU $FFFF8B; TIMER1 Control/Status Register  
M_TLR1 EQU $FFFF8A; TIMER1 Load Reg  
M_TCPR1 EQU $FFFF89; TIMER1 Compare Register  
M_TCR1 EQU $FFFF88; TIMER1 Count Register  
;
Register Addresses Of TIMER2  
M_TCSR2 EQU $FFFF87; TIMER2 Control/Status Register  
M_TLR2 EQU $FFFF8; TIMER2 Load Reg  
A-8  
Power Consumption Benchmark  
M_TCPR2 EQU $FFFF85; TIMER2 Compare Register  
M_TCR2 EQU $FFFF84 ; TIMER2 Count Register  
M_TPLR EQU $FFFF83 ; TIMER Prescaler Load Register  
M_TPCR EQU $FFFF82 ; TIMER Prescalar Count Register  
;
Timer Control/Status Register Bit Flags  
M_TE EQU 0  
; Timer Enable  
M_TOIE EQU 1  
M_TCIE EQU 2  
M_TC EQU $F0  
M_INV EQU 8  
M_TRM EQU 9  
M_DIR EQU 11  
M_DI EQU 12  
M_DO EQU 13  
M_PCE EQU 15  
M_TOF EQU 20  
M_TCF EQU 21  
; Timer Overflow Interrupt Enable  
; Timer Compare Interrupt Enable  
; Timer Control Mask (TC0-TC3)  
; Inverter Bit  
; Timer Restart Mode  
; Direction Bit  
; Data Input  
; Data Output  
; Prescaled Clock Enable  
; Timer Overflow Flag  
; Timer Compare Flag  
;
Timer Prescaler Register Bit Flags  
M_PS EQU $600000 ; Prescaler Source Mask  
M_PS0 EQU 21  
M_PS1 EQU 22  
;
Timer Control Bits  
M_TC0 EQU 4  
M_TC1 EQU 5  
M_TC2 EQU 6  
M_TC3 EQU 7  
; Timer Control 0  
; Timer Control 1  
; Timer Control 2  
; Timer Control 3  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Direct Memory Access (DMA)  
;------------------------------------------------------------------------  
;
Register Addresses Of DMA  
M_DSTR EQU $FFFFF4; DMA Status Register  
M_DOR0 EQU $FFFFF3; DMA Offset Register 0  
M_DOR1 EQU $FFFFF2; DMA Offset Register 1  
M_DOR2 EQU $FFFFF1; DMA Offset Register 2  
M_DOR3 EQU $FFFFF0; DMA Offset Register 3  
;
Register Addresses Of DMA0  
M_DSR0 EQU $FFFFEF; DMA0 Source Address Register  
M_DDR0 EQU $FFFFEE; DMA0 Destination Address Register  
M_DCO0 EQU $FFFFED; DMA0 Counter  
M_DCR0 EQU $FFFFEC; DMA0 Control Register  
;
Register Addresses Of DMA1  
M_DSR1 EQU $FFFFEB; DMA1 Source Address Register  
M_DDR1 EQU $FFFFEA; DMA1 Destination Address Register  
M_DCO1 EQU $FFFFE9; DMA1 Counter  
M_DCR1 EQU $FFFFE8; DMA1 Control Register  
;
Register Addresses Of DMA2  
M_DSR2 EQU $FFFFE7; DMA2 Source Address Register  
M_DDR2 EQU $FFFFE6; DMA2 Destination Address Register  
M_DCO2 EQU $FFFFE5; DMA2 Counter  
M_DCR2 EQU $FFFFE4; DMA2 Control Register  
;
Register Addresses Of DMA4  
M_DSR3 EQU $FFFFE3; DMA3 Source Address Register  
M_DDR3 EQU $FFFFE2; DMA3 Destination Address Register  
M_DCO3 EQU $FFFFE1; DMA3 Counter  
M_DCR3 EQU $FFFFE0; DMA3 Control Register  
;
Register Addresses Of DMA4  
M_DSR4 EQU $FFFFDF; DMA4 Source Address Register  
M_DDR4 EQU $FFFFDE; DMA4 Destination Address Register  
A-9  
Power Consumption Benchmark  
M_DCO4 EQU $FFFFDD; DMA4 Counter  
M_DCR4 EQU $FFFFDC; DMA4 Control Register  
;
Register Addresses Of DMA5  
M_DSR5 EQU $FFFFDB; DMA5 Source Address Register  
M_DDR5 EQU $FFFFDA; DMA5 Destination Address Register  
M_DCO5 EQU $FFFFD9; DMA5 Counter  
M_DCR5 EQU $FFFFD8; DMA5 Control Register  
;
DMA Control Register  
M_DSS EQU $3  
M_DSS0 EQU 0  
M_DSS1 EQU 1  
M_DDS EQU $C  
M_DDS0 EQU 2  
M_DDS1 EQU 3  
; DMA Source Space Mask (DSS0-Dss1)  
; DMA Source Memory space 0  
; DMA Source Memory space 1  
; DMA Destination Space Mask (DDS-DDS1)  
; DMA Destination Memory Space 0  
; DMA Destination Memory Space 1  
M_DAM EQU $3F0 ; DMA Address Mode Mask (DAM5-DAM0)  
M_DAM0 EQU 4  
M_DAM1 EQU 5  
M_DAM2 EQU 6  
M_DAM3 EQU 7  
M_DAM4 EQU 8  
M_DAM5 EQU 9  
M_D3D EQU 10  
; DMA Address Mode 0  
; DMA Address Mode 1  
; DMA Address Mode 2  
; DMA Address Mode 3  
; DMA Address Mode 4  
; DMA Address Mode 5  
; DMA Three Dimensional Mode  
M_DRS EQU $F800; DMA Request Source Mask (DRS0-DRS4)  
M_DCON EQU 16 ; DMA Continuous Mode  
M_DPR EQU $60000; DMA Channel Priority  
M_DPR0 EQU 17 ; DMA Channel Priority Level (low)  
M_DPR1 EQU 18 ; DMA Channel Priority Level (high)  
M_DTM EQU $380000; DMA Transfer Mode Mask (DTM2-DTM0)  
M_DTM0 EQU 19 ; DMA Transfer Mode 0  
M_DTM1 EQU 20 ; DMA Transfer Mode 1  
M_DTM2 EQU 21 ; DMA Transfer Mode 2  
M_DIE EQU 22  
M_DE EQU 23  
; DMA Interrupt Enable bit  
; DMA Channel Enable bit  
;
DMA Status Register  
M_DTD EQU $3F ; Channel Transfer Done Status MASK (DTD0-DTD5)  
M_DTD0 EQU 0  
M_DTD1 EQU 1  
M_DTD2 EQU 2  
M_DTD3 EQU 3  
M_DTD4 EQU 4  
M_DTD5 EQU 5  
M_DACT EQU 8  
; DMA Channel Transfer Done Status 0  
; DMA Channel Transfer Done Status 1  
; DMA Channel Transfer Done Status 2  
; DMA Channel Transfer Done Status 3  
; DMA Channel Transfer Done Status 4  
; DMA Channel Transfer Done Status 5  
; DMA Active State  
M_DCH EQU $E00 ; DMA Active Channel Mask (DCH0-DCH2)  
M_DCH0 EQU 9  
M_DCH1 EQU 10 ; DMA Active Channel 1  
M_DCH2 EQU 11 ; DMA Active Channel 2  
; DMA Active Channel 0  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Phase Lock Loop (PLL)  
;------------------------------------------------------------------------  
;
Register Addresses Of PLL  
M_PCTL EQU $FFFFFD; PLL Control Register  
PLL Control Register  
M_MF EQU $FFF ; Multiplication Factor Bits Mask (MF0-MF11)  
;
M_DF EQU $7000 ; Division Factor Bits Mask (DF0-DF2)  
M_XTLR EQU 15  
M_XTLD EQU 16  
M_PSTP EQU 17  
M_PEN EQU 18  
M_PCOD EQU 19  
; XTAL Range select bit  
; XTAL Disable Bit  
; STOP Processing State Bit  
; PLL Enable Bit  
; PLL Clock Output Disable Bit  
M_PD EQU $F00000; PreDivider Factor Bits Mask (PD0-PD3)  
;------------------------------------------------------------------------  
;
;
;
EQUATES for BIU  
;------------------------------------------------------------------------  
A-10  
Power Consumption Benchmark  
;
Register Addresses Of BIU  
M_BCR EQU $FFFFFB; Bus Control Register  
M_DCR EQU $FFFFFA; DRAM Control Register  
M_AAR0 EQU $FFFFF9; Address Attribute Register 0  
M_AAR1 EQU $FFFFF8; Address Attribute Register 1  
M_AAR2 EQU $FFFFF7; Address Attribute Register 2  
M_AAR3 EQU $FFFFF6; Address Attribute Register 3  
M_IDR EQU $FFFFF5; ID Register  
;
Bus Control Register  
M_BA0W EQU $1F  
M_BA1W EQU $3E0  
; Area 0 Wait Control Mask (BA0W0-BA0W4)  
; Area 1 Wait Control Mask (BA1W0-BA14)  
M_BA2W EQU $1C00 ; Area 2 Wait Control Mask (BA2W0-BA2W2)  
M_BA3W EQU $E000 ; Area 3 Wait Control Mask (BA3W0-BA3W3)  
M_BDFW EQU $1F0000; Default Area Wait Control Mask (BDFW0-BDFW4)  
M_BBS EQU 21  
M_BLH EQU 22  
M_BRH EQU 23  
; Bus State  
; Bus Lock Hold  
; Bus Request Hold  
;
DRAM Control Register  
M_BCW EQU $3  
M_BRW EQU $C  
M_BPS EQU $300  
M_BPLE EQU 11  
M_BME EQU 12  
M_BRE EQU 13  
M_BSTR EQU 14  
; In Page Wait States Bits Mask (BCW0-BCW1)  
; Out Of Page Wait States Bits Mask (BRW0-BRW1)  
; DRAM Page Size Bits Mask (BPS0-BPS1)  
; Page Logic Enable  
; Mastership Enable  
; Refresh Enable  
; Software Triggered Refresh  
M_BRF EQU $7F8000; Refresh Rate Bits Mask (BRF0-BRF7)  
M_BRP EQU 23  
Address Attribute Registers  
; Refresh prescaler  
;
M_BAT EQU $3  
M_BAAP EQU 2  
M_BPEN EQU 3  
M_BXEN EQU 4  
M_BYEN EQU 5  
M_BAM EQU 6  
; External Access Type and Pin Definition Bits Mask (BAT0-BAT1)  
; Address Attribute Pin Polarity  
; Program Space Enable  
; X Data Space Enable  
; Y Data Space Enable  
; Address Muxing  
M_BPAC EQU 7  
M_BNC EQU $F00  
; Packing Enable  
; Number of Address Bits to Compare Mask (BNC0-BNC3)  
M_BAC EQU $FFF000; Address to Compare Bits Mask (BAC0-BAC11)  
;
control and status bits in SR  
M_CP EQU $c00000 ; mask for CORE-DMA priority bits in SR  
M_CA EQU 0  
M_V EQU 1  
; Carry  
; Overflow  
M_Z EQU 2  
; Zero  
M_N EQU 3  
; Negative  
M_U EQU 4  
; Unnormalized  
M_E EQU 5  
; Extension  
M_L EQU 6  
; Limit  
M_S EQU 7  
; Scaling Bit  
M_I0 EQU 8  
M_I1 EQU 9  
M_S0 EQU 10  
M_S1 EQU 11  
M_SC EQU 13  
M_DM EQU 14  
M_LF EQU 15  
M_FV EQU 16  
M_SA EQU 17  
M_CE EQU 19  
M_SM EQU 20  
M_RM EQU 21  
M_CP0 EQU22  
M_CP1 EQU 23  
; Interupt Mask Bit 0  
; Interupt Mask Bit 1  
; Scaling Mode Bit 0  
; Scaling Mode Bit 1  
; Sixteen_Bit Compatibility  
; Double Precision Multiply  
; DO-Loop Flag  
; DO-Forever Flag  
; Sixteen-Bit Arithmetic  
; Instruction Cache Enable  
; Arithmetic Saturation  
; Rounding Mode  
; bit 0 of priority bits in SR  
; bit 1 of priority bits in SR  
;
control and status bits in OMR  
M_CDP EQU$300 ; mask for CORE-DMA priority bits in OMR  
M_MA EQU 0  
M_MB EQU 1  
M_MC EQU 2  
M_MD EQU 3  
M_EBD EQU 4  
M_SD EQU 6  
; Operating Mode A  
; Operating Mode B  
; Operating Mode C  
; Operating Mode D  
; External Bus Disable bit in OMR  
; Stop Delay  
A-11  
Power Consumption Benchmark  
M_CDP0 EQU 8  
M_CDP1 EQU 9  
M_BEN EQU 10  
M_TAS EQU 11  
M_BRT EQU 12  
M_XYS EQU 16  
M_EUN EQU 17  
M_EOV EQU 18  
M_WRP EQU 19  
M_SEN EQU 20  
; bit 0 of priority bits in OMR  
; bit 1 of priority bits in OMR  
; Burst Enable  
; TA Synchronize Select  
; Bus Release Timing  
; Stack Extension space select bit in OMR.  
; Extensed stack UNderflow flag in OMR.  
; Extended stack OVerflow flag in OMR.  
; Extended WRaP flag in OMR.  
; Stack Extension Enable bit in OMR.  
;*************************************************************************  
;
;
;
;
;
;
;
;
;
EQUATES for DSP56305 interrupts  
Reference: DSP56305 Specifications Revision 3.00  
Last update: November 15 1993 (Debug request & HI32 interrupts)  
December 19 1993 (cosmetic - page and opt directives)  
August 16 1994 (change interrupt addresses to be  
relative to I_VEC)  
;*************************************************************************  
page  
opt  
132,55,0,0,0  
mex  
intequ ident  
1,0  
if  
@DEF(I_VEC)  
;leave user definition as is.  
else  
I_VEC  
equ  
$0  
endif  
;------------------------------------------------------------------------  
; Non-Maskable interrupts  
;------------------------------------------------------------------------  
I_RESET EQU I_VEC+$00  
I_STACK EQU I_VEC+$02  
; Hardware RESET  
; Stack Error  
I_ILL  
I_DBG  
I_TRAP  
I_NMI  
EQU I_VEC+$04  
EQU I_VEC+$06  
EQU I_VEC+$08  
EQU I_VEC+$0A  
; Illegal Instruction  
; Debug Request  
; Trap  
; Non Maskable Interrupt  
;------------------------------------------------------------------------  
; Interrupt Request Pins  
;------------------------------------------------------------------------  
I_IRQA  
I_IRQB  
I_IRQC  
I_IRQD  
EQU I_VEC+$10  
EQU I_VEC+$12  
EQU I_VEC+$14  
EQU I_VEC+$16  
; IRQA  
; IRQB  
; IRQC  
; IRQD  
;------------------------------------------------------------------------  
; DMA Interrupts  
;------------------------------------------------------------------------  
I_DMA0  
I_DMA1  
I_DMA2  
I_DMA3  
I_DMA4  
I_DMA5  
EQU I_VEC+$18  
EQU I_VEC+$1A  
EQU I_VEC+$1C  
EQU I_VEC+$1E  
EQU I_VEC+$20  
EQU I_VEC+$22  
; DMA Channel 0  
; DMA Channel 1  
; DMA Channel 2  
; DMA Channel 3  
; DMA Channel 4  
; DMA Channel 5  
;------------------------------------------------------------------------  
; Timer Interrupts  
;------------------------------------------------------------------------  
I_TIM0C EQU I_VEC+$24  
I_TIM0OF EQU I_VEC+$26  
I_TIM1C EQU I_VEC+$28  
I_TIM1OF EQU I_VEC+$2A  
I_TIM2C EQU I_VEC+$2C  
I_TIM2OF EQU I_VEC+$2E  
; TIMER 0 compare  
; TIMER 0 overflow  
; TIMER 1 compare  
; TIMER 1 overflow  
; TIMER 2 compare  
; TIMER 2 overflow  
;------------------------------------------------------------------------  
; ESSI Interrupts  
;------------------------------------------------------------------------  
I_SI0RD EQU I_VEC+$30  
I_SI0RDE EQU I_VEC+$32  
I_SI0RLS EQU I_VEC+$34  
I_SI0TD EQU I_VEC+$36  
I_SI0TDE EQU I_VEC+$38  
; ESSI0 Receive Data  
; ESSI0 Receive Data With Exception Status  
; ESSI0 Receive last slot  
; ESSI0 Transmit data  
; ESSI0 Transmit Data With Exception Status  
A-12  
Power Consumption Benchmark  
I_SI0TLS EQU I_VEC+$3A  
I_SI1RD EQU I_VEC+$40  
I_SI1RDE EQU I_VEC+$42  
I_SI1RLS EQU I_VEC+$44  
I_SI1TD EQU I_VEC+$46  
I_SI1TDE EQU I_VEC+$48  
I_SI1TLS EQU I_VEC+$4A  
; ESSI0 Transmit last slot  
; ESSI1 Receive Data  
; ESSI1 Receive Data With Exception Status  
; ESSI1 Receive last slot  
; ESSI1 Transmit data  
; ESSI1 Transmit Data With Exception Status  
; ESSI1 Transmit last slot  
;------------------------------------------------------------------------  
; SCI Interrupts  
;------------------------------------------------------------------------  
I_SCIRD EQU I_VEC+$50  
I_SCIRDE EQU I_VEC+$52  
I_SCITD EQU I_VEC+$54  
I_SCIIL EQU I_VEC+$56  
I_SCITM EQU I_VEC+$58  
; SCI Receive Data  
; SCI Receive Data With Exception Status  
; SCI Transmit Data  
; SCI Idle Line  
; SCI Timer  
;------------------------------------------------------------------------  
; HOST Interrupts  
;------------------------------------------------------------------------  
I_HPTT  
I_HPTA  
I_HPPE  
I_HPTC  
I_HPMR  
I_HSR  
EQU I_VEC+$60  
EQU I_VEC+$62  
EQU I_VEC+$64  
EQU I_VEC+$66  
EQU I_VEC+$68  
EQU I_VEC+$6A  
EQU I_VEC+$6C  
EQU I_VEC+$6E  
EQU I_VEC+$70  
; Host PCI Transaction Termination  
; Host PCI Transaction Abort  
; Host PCI Parity Error  
; Host PCI Transfer Complete  
; Host PCI Master Receive  
; Host Slave Receive  
; Host PCI Master Transmit  
; Host Slave Transmit  
; Host PCI Master Address  
; Host Command/Host NMI (Default)  
I_HPMT  
I_HST  
I_HPMA  
I_HCNMI EQU I_VEC+$72  
;------------------------------------------------------------------------  
; INTERRUPT ENDING ADDRESS  
;------------------------------------------------------------------------  
I_INTEND EQU I_VEC+$FF  
; last address of interrupt vector space  
A-13  
Power Consumption Benchmark  
A-14  
Index  
read accesses 2-20  
wait states selection guide 2-16  
write accesses 2-20  
Page mode timings  
2 wait states 2-17  
3 wait states 2-18  
4 wait states 2-19  
refresh access 2-27  
DRAM controller iv  
drawing  
A
ac electrical characteristics 2-4  
address bus 1-1  
Address Trace mode 2-28, 2-30  
applications iv  
arbitration bus timings 2-30  
B
benchmark test algorithm A-1  
block diagram i  
bootstrap ROM iii  
mechanical information 3-13  
pins  
top view 3-2  
Boundary Scan (JTAG Port) timing diagram 2-51  
bus  
DSP56300  
Family Manual v  
DSP56305  
acquisition timings 2-31  
control 1-1  
block diagram i  
external address 1-5  
external data 1-5  
release timings 2-31, 2-32  
Technical Data v  
User’s Manual v  
E
C
electrical  
CCOP iii  
design considerations 4-2, 4-3  
Enhanced Synchronous Serial Interface (ESSI) iii,  
1-1, 1-18, 1-19, 1-20, 1-21  
ESSI 1-2  
clock 1-1, 1-4  
external 2-4  
internal 2-4  
operation 2-6  
receiver timing 2-47  
co-processors iii  
crystal oscillator circuits 2-5  
Cyclic-code Co-Processor (CCOP) iii  
timing 2-44  
transmitter timing 2-46  
external address bus 1-5  
external bus control 1-5, 1-6, 1-7  
external bus synchronous timings (SRAM  
access) 2-28  
external clock operation 2-4  
external data bus 1-5  
external interrupt timing (negative  
edge-triggered) 2-11  
external level-sensitive fast interrupt timing 2-10  
external memory access (DMA Source)  
timing 2-12  
D
data bus 1-1  
data memory expansion iv  
dc electrical characteristics 2-3  
Debug support iii  
design considerations  
electrical 4-2, 4-3  
PLL 4-4, 4-5  
power consumption 4-3  
thermal 4-1  
External Memory Expansion Port 1-5, 2-13  
documentation list v  
DRAM  
F
out of page  
FCOP iii  
read access 2-26  
Filter Co-Processor (FCOP) iii  
functional groups 1-2  
functional signal groups 1-1  
wait states selection guide 2-21  
write access 2-27  
out of page and refresh timings  
11 wait states 2-23  
15 wait states 2-24  
8 wait states 2-21  
Page mode  
G
General-Purpose Input/Output (GPIO) iii  
GPIO 1-23  
Index-1  
Index  
Timers 1-2  
timing 2-49  
ground 1-1, 1-4  
PLL 1-4  
on-chip memory iii  
operating mode select timing 2-11  
P
Phase Lock Loop 2-6  
Phase-Lock Loop (PLL) 1-1  
design considerations 4-4, 4-5  
performance issues 4-4, 4-5  
pins  
H
Host Interface (HI08) 1-1  
Host Interface (HI32) iii, 1-2, 1-10, 1-11  
PCI 1-2  
timing  
drawing  
PCI mode 2-40  
top view 3-2  
Universal Bus mode 2-34  
I/O access 2-37  
host port  
PLL 1-4, 2-6  
Characteristics 2-6  
Port A 1-1, 1-5  
Port B 1-1  
configuration 1-11  
usage considerations 1-10  
GPIO 1-3  
Port C 1-1, 1-2, 1-18, 1-19  
Port D 1-1, 1-2, 1-20, 1-21  
Port E 1-1, 1-22  
I
information sources v  
instruction cache iii  
internal clocks 2-4  
interrupt and mode control 1-1, 1-8, 1-9  
interrupt control 1-8, 1-9  
interrupt timing 2-7  
power 1-1, 1-4  
power consumption  
design considerations 4-3  
power consumption benchmark test A-1  
power management iv  
program memory expansion iv  
program RAM iii  
external level-sensitive fast 2-10  
external negative edge-triggered 2-11  
synchronous from Wait state 2-11  
R
recovery from Stop state using IRQA 2-12  
RESET 1-10  
Reset timing 2-7, 2-9  
synchronous 2-10  
J
JTAG iii, 1-24  
JTAG Port  
reset timing diagram 2-51  
timing 2-50, 2-51  
JTAG/OnCE port 1-1, 1-2  
ROM, bootstrap iii  
S
SCI 1-2  
M
Asynchronous mode timing 2-43  
Synchronous mode timing 2-43  
timing 2-42  
maximum ratings 2-1, 2-2  
mechanical information  
drawing 3-13  
memory expansion port iii  
mode control 1-8, 1-9  
Mode select timing 2-7  
Serial Communication Interface (SCI) iii, 1-1  
Serial Communications Interface (SCI) 1-22  
signal groupings 1-1  
signals 1-1  
functional grouping 1-2  
SRAM  
O
Access 2-28  
read access 2-15  
read and write accesses 2-13  
support iv  
write access 2-15  
off-chip memory iii  
OnCE module iii, 1-2, 1-24  
Debug request 2-52  
timing 2-52  
on-chip DRAM controller iv  
On-Chip Emulation module iii  
Stop mode iv  
Index-2  
Index  
Stop state  
recovery from 2-12  
Stop timing 2-7  
supply voltage 2-2  
Switch mode iii  
synchronous bus timings  
SRAM  
2 wait states 2-29  
SRAM 1 wait state (BCR controlled) 2-29  
synchronous interrupt from Wait state timing 2-11  
synchronous Reset timing 2-10  
T
target applications iv  
Test Access Port (TAP) iii  
Test Access Port timing diagram 2-51  
Test Clock (TCLK) input timing diagram 2-50  
thermal  
design considerations 4-1  
thermal characteristics 2-2  
Timer  
event input restrictions 2-48  
interrupt generation 2-48  
timing 2-48  
Timers 1-1, 1-2, 1-23  
timing  
interrupt 2-7  
mode select 2-7  
Reset 2-7  
Stop 2-7  
V
VCOP iii  
Viterbi Co-Processor (VCOP) iii  
W
Wait mode iv  
World Wide Web v  
X
X-data RAM iii  
Y
Y-data RAM iii  
Index-3  
Ordering Information  
Consult a Motorola Semiconductor sales office or authorized distributor to determine product availability and place an order.  
Core  
Frequency  
(MHz)  
Supply  
Voltage  
Pin  
Count  
Part  
Package Type  
Order Number  
DSP56305  
3 V  
Molded Array Process-Ball Grid Array (MAP-BGA)  
252  
80  
DSP56305VF80  
DSP56305VF100  
100  
HOW TO REACH US:  
Information in this document is provided solely to enable system and software implementers to use  
Motorola products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the information in this document.  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217  
1-303-675-2140 or 1-800-441-2447  
Motorola reserves the right to make changes without further notice to any products herein. Motorola  
makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Motorola assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data  
sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. Motorola does not convey any license under its patent  
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as  
components in systems intended for surgical implant into the body, or other applications intended to  
support or sustain life, or for any other application in which the failure of the Motorola product could  
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola  
products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or  
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,  
even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
JAPAN:  
Motorola Japan Ltd.; SPS, Technical Information Center,  
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Motorola Semiconductors H.K. Ltd.; Silicon Harbour  
Centre, 2 Dai King Street, Tai Po Industrial Estate,  
Tai Po, N.T., Hong Kong  
852-26668334  
TECHNICAL INFORMATION CENTER:  
1-800-521-6274  
HOME PAGE:  
http://www.motorola.com/semiconductors  
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. OnCE and  
digital dna are trademarks of Motorola, Inc. All other product or service names are the property of their  
respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 1996, 2002  
DSP56305/D  

相关型号:

DSP56305VF80

DSP|24-BIT|CMOS|BGA|252PIN|PLASTIC
ETC

DSP56307

24-BIT DIGITAL SIGNAL PROCESSOR
FREESCALE

DSP56307/D

24-BIT DIGITAL SIGNAL PROCESSOR
FREESCALE

DSP56307QREF

DSP56307 Quick Reference Timing
ETC

DSP56307SCDEMOUM

DSP56307 Speech Coding Demonstration User's Guide
ETC

DSP56307UM

DSP56307 24-bit Digital Signal Processor User's Manual
ETC

DSP56307UM/D

24-BIT DIGITAL SIGNAL PROCESSOR
FREESCALE

DSP56309

24-Bit Digital Signal Processor
MOTOROLA

DSP56309

24-Bit Digital Signal Processor
FREESCALE

DSP56309D

24-Bit Digital Signal Processor
MOTOROLA

DSP56309PV100

24-BIT, 100MHz, OTHER DSP, PQFP144, TQFP-144
MOTOROLA

DSP56309PV100

IC,DSP,24-BIT,CMOS,QFP,144PIN,PLASTIC
NXP