FMS9875KGC100X [ETC]

;
FMS9875KGC100X
型号: FMS9875KGC100X
厂家: ETC    ETC
描述:

转换器
文件: 总29页 (文件大小:482K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
FMS9875  
GBR YP P Graphics Digitizer  
B R  
Triple 8-Bit, 108/140 MHz A/D Converter with Clamps and PLL  
The ADC sampling clock can be derived from either an  
external source or from incoming horizontal sync using the  
Features  
• 108/140 Ms/s conversion rate  
• RGB and YPBPR clamps  
• 444 and 422 output timing  
• Adjustable Gain and offset  
• Internal Reference Voltage  
• I2C/SMBus compatible Serial Port  
• 100-pin package  
internal PLL. Setup and control is via registers accessible  
through an SMBus/I2C compatible serial port.  
Input amplitude range is 500–1000mV with either DC or AC  
coupling. AC coupled inputs can be clamped to program-  
mable midpoint/bottom levels or to external reference levels  
using either internal or externally generated clamp timing.  
Common to the three channels are clamp pulses, a bandgap  
reference voltage and clocks derived from the HSYNC PLL  
or an external clock source. Digital data output levels are  
2.5–3.3V CMOS compliant.  
Applications  
• YPBPR Digitizers  
• Projectors  
• TV sets  
Power is derived from a single +3.3 Volt power supply. Package  
is a low cost 100-lead MQFP. Performance specifications are  
guaranteed over 0°C to 70°C.  
Description  
As a fully integrated graphics interface, the FMS9875 can  
digitize RGB orYPBPR video signals at resolutions up to  
1280 x 1024 with 75 Hz refresh rate. Compatible video  
formats include NTSC-601, PAL-601, SMPTE 293M,  
SMPTE 296M and SMPTE 274M.  
Product Number  
FMS9875KAC100  
FMS9875KAC140  
Speed  
108 Ms/s  
140 Ms/s  
Block Diagram  
GYIN  
Gain &  
Offset  
Bottom  
Clamp  
DGY7-0  
A/D  
GYREF  
Bottom/  
Midpoint  
Clamp  
BPIN  
Gain &  
Offset  
444/422  
A/D  
A/D  
DBP7-0  
DRP7-0  
BPREF  
Bottom/  
Midpoint  
Clamp  
RPIN  
Gain &  
Offset  
444/422  
RPREF  
ICLAMP  
VREFIN  
Reference  
VREFOUT  
SCK  
CLAMP  
INVSCK  
XCK  
ICLAMP  
Timing  
Generator  
DCK  
DCK  
HSOUT  
HS  
PXCK  
HSIN  
COAST  
LPF  
PLL  
SDA  
SCL  
A0  
A1  
SYNC  
Stripper  
ACSIN  
DCSOUT  
Control  
PWRDN  
REV. 1.2.15 1/14/02  
PRODUCT SPECIFICATION  
FMS9875  
A/D conversion range can be matched to the amplitude of the  
incoming video signal by programming Gain Registers  
GGY, GBP and GRP, which vary sensitivity (LSB/volt) over  
a 2:1 range. Incoming video signal amplitudes varying from  
0.5 to 1.0 volt can be accommodated.  
Architectural Overview  
Three separate digitizer channels are controlled by common  
timing signals derived from the Timing Generator. A/D clock  
signals can be derived from either a PLL or an external clock  
XCK. With the PLL selected, A/D clocks track the incoming  
horizontal sync signal connected to the HSIN input. Setup is  
controlled by registers that are accessible through the serial  
interface.  
Input offset voltage of each converter is programmable in 1  
LSB steps through the 6-bit OSGY, OSBP and OSRP regis-  
ters. Range of adjustment is equivalent to –31 to +32 LSB.  
Conversion Channels  
A/D Converter  
Typical RGB or YPBPR input signals, GYIN, BPIN, and  
RPIN are ground referenced with 700mV amplitude. If a  
sync signal is embedded then the usual format is sync on  
green or Y with the sync tip at ground, the black level  
elevated to 300mV and peak green at 1000mV. Either type  
of input can be accepted by using the clamp function with  
AC coupling.  
Each A/D converter digitizes the analog input into 8-bit data  
words. Latency is 5–51/2 clock cycles, depending upon the  
state of the INVSCK pin.  
VREFIN is the source of reference voltage for the three A/D  
converters. VREFIN can be connected to either the internal  
bandgap voltage, VREFOUT or an external voltage.  
Clamps  
Output Data Configuration  
AC coupled input video signals must be level shifted to  
match the signal and A/D converter reference levels during  
the back porch (see Figure 1). Y/G inputs should be clamped  
to the A/D converter lower reference level. PBPR signals  
should be clamped to the A/D converter midrange level  
(nominally 350 mV), which is 50% of full scale (nominally  
700 mV).  
For RGB outputs, data format is unsigned binary: 00  
corresponds to the lowest input; FF corresponds to the  
highest input.  
For YPBPR outputs, the data format is:  
• Y (0 to 700mV input): unsigned binary.  
• PBPR ( 350mV input): twos-complement or offset binary.  
+350 mV  
PBIN, PRIN  
Output data format is:  
-350 mV  
+700 mV  
• 24-bit YPBPR444  
• 16-bit YPBPR422  
YGIN  
With 422 sampling, PBPR samples are coincident with even  
samples of Y, beginning with 0.  
ICLAMP  
HSOUT, L-to-H transition identifies the first sample.  
Figure 1. Clamping to the back-porch  
Timing and Control  
Clamp pulses, ICLAMP, are derived from internal Timing  
and Control logic or from the external CLAMP input. Clamp  
timing is common to the three input channels.  
Timing and Control logic encompasses the Timing Generator,  
PLL and Serial Interface.  
Timing Generator  
With the A/D range set to 700mV ground referenced, clamp  
levels are:  
All internal clock and synchronization signals are generated  
by the Timing Generator. Master Clock source is either the  
PLL or the external clock input, XCK. Register bit, XCKSEL  
selects the Master Clock source. Two clocks are generated.  
• RGB: 000mV  
Y: 000mV  
• PBPR: +350mV  
Sampling clock, SCK is supplied to all three A/D converters.  
Phase of SCK (relative to HSIN) can be adjusted in 32 11.25  
degree phase increments using the 5-bit PHASE register.  
Clamp levels can be set through the registers or through the  
YGREF, BPREF and RPREF pins.  
Output data clocks, DCK and DCK are provided for  
synchronizing data transfer from the digitizer outputs.  
DCK and DCK are slaved to SCK.  
Gain and Offset  
Gain and Offset registers serve two functions: 1) Adjustment  
of contrast and brightness by setting RGB values in tandems.  
2) Matching the gain and offsets between channels, by  
setting RGB values individually to obtain the same output  
levels at zero and full-scale.  
Incoming horizontal sync HSIN is propagated by the Timing  
and Control to HSOUT with a delay that aligns the leading  
edge with the output data.  
2
REV. 1.2.15 1/14/02  
FMS9875  
PRODUCT SPECIFICATION  
Phase Locked Loop  
VCO frequency to be maintained. Missing horizontal sync  
pulses during the vertical interval can cause tearing at the top  
of a picture, if COAST is not used.  
With a horizontal sync signal connected to the HSIN input  
pin, the PLL generates a high frequency internal clock sig-  
nal, PXCK that is fed to the Timing and Control logic. Fre-  
quency of PXCK is set by the register programmable PLL  
divide ratio, PLLN.  
Two pixels per clock mode is set by programming the PLL  
to half the pixel rate. By toggling the INVCK pin between  
frames, even and odd pixels can be read on alternate frames.  
COAST is an input that disables the PLL lock to the horizon-  
tal sync input, HSIN. If HSIN is to be disregarded for a  
period such as the vertical sync interval, COAST allows the  
Serial Interface  
Registers are accessed through an I2C/SMBus compatible  
serial port. Four serial addresses are pin selectable.  
Pin Assignments  
100-Lead MQFP (KG)  
DYG (7)  
DYG (6)  
DYG (5)  
DYG (4)  
76  
77  
78  
79  
50  
49  
48  
47  
VDDO  
GND  
NC  
NC  
DYG (3)  
DYG (2)  
DYG (1)  
DYG (0)  
GND  
80  
81  
82  
83  
84  
46  
45  
44  
43  
42  
NC  
NC  
NC  
NC  
GND  
VDDO  
DCK  
DCK  
85  
86  
87  
88  
89  
90  
91  
92  
41  
40  
39  
38  
37  
36  
35  
34  
GND  
GND  
VDDP  
GND  
VDDP  
GND  
LPF  
HSOUT  
DCSOUT  
GND  
VDDO  
GND  
XCK  
GND  
GND  
VDDA  
93  
94  
95  
33  
32  
31  
VDDP  
GND  
COAST  
30  
29  
28  
27  
26  
HSIN  
GND  
GND  
VDDP  
VDDP  
PWRDNB  
REFOUT  
REFIN  
96  
97  
98  
99  
VDDA  
VDDA  
100  
REV. 1.2.15 1/14/02  
3
PRODUCT SPECIFICATION  
FMS9875  
Pin Descriptions  
Pin Name  
Pin No. Type/Value Pin Function Description  
Converter Channels  
YGIN, BPIN, RPIN 3, 9, 15  
Input  
Input  
Analog Inputs. RGB or YPBPR.  
YGREF, BPREF  
,
4, 10, 16  
Clamp Reference Inputs. Voltage reference inputs for YG, BP and  
RPREF  
RP clamps.  
DYG7-0  
76–83  
63–70  
51–58  
Output  
Output  
Output  
Luminance/Green Channel Data Output.  
PB/Blue Channel Data Output.  
DPB7-0  
DPR7-0  
PR/Red Channel Data Output.  
Timing Generator  
CLAMP  
21  
20  
Input  
Input  
External Clamp Input.  
INVSCK  
Invert Sampling Clock. Inverts SCK, the internal clock sampling the  
analog inputs. Supports Alternate Pixel Sampling mode for capture  
pixel rates up to 216Ms/s.  
XCK  
34  
Input  
External Clock input. Enabled if register bit, XCKSEL = H.  
Replaces PXCK clock generated by PLL. If unused, connect to  
ground through a 10kresistor.  
DCK  
DCK  
86  
87  
Output  
Output  
Output Data Clock. Clock for strobing output data to external logic.  
Output Data Clock Inverted. Inverted clock for strobing output data  
to external logic.  
HSOUT  
88  
Output  
Horizontal Sync Output. Reconstructed HSYNC delayed by  
FMS9875 latency with leading edge synchronized to start of data  
output. Polarity is always active HIGH.  
Phase Locked Loop  
HSIN  
30  
31  
Schmitt  
Input  
Horizontal Sync input. Schmitt trigger threshold is 1.5V. A 5V  
source should be clamped at 3.3V or current limited, to prevent  
overdriving ESD protection diodes.  
COAST  
PLL COAST. Extraneous or missing horizontal sync pulses can be  
ignored by asserting the COAST input. With COAST asserted, the  
HSIN signal is ignored by the PLL without affecting PXCK and the  
derived clocks: SCK, DCK and DCK. With register bit, COASTPOL = 1:  
COAST = L: PLL locked to HSIN.  
COAST = H: PLL VCO input floats with HSIN disregarded  
COAST polarity may be inverted using the COASTPOL register bit.  
LPF  
35  
Passive  
PLL Low Pass Filter. Connect recommended PLL filter to LPF pin.  
(see Schematic, PLL Filter)  
Sync Stripper  
ACSIN  
2
Analog Composite Sync Input. Input to sync stripper with 150mV  
threshold.  
DCSOUT  
Control  
SDA  
89  
Digital Composite Sync Output. Output from sync stripper.  
22  
23  
24  
25  
96  
Bi-directional Serial Port Data. Bi-directional data (I2C/SMBUS).  
SCL  
Input  
Input  
Input  
Input  
Serial Port Clock. Clock input (I2C/SMBUS).  
Address bit 0. Lower bit of serial port address.  
Address bit 1. Upper bit of serial port address.  
A0  
A1  
PWRDN  
Power Down/Output Control. Powers down the FMS9875 with  
outputs high impedance.  
4
REV. 1.2.15 1/14/02  
FMS9875  
PRODUCT SPECIFICATION  
Pin Descriptions  
Pin  
Name  
Pin No.  
Pin Function Description  
Power and Ground  
VDDA  
VDDP  
5, 7, 11, 13, 17, 19, 95, 99, 100  
26, 27, 33, 37, 39  
ADC Supply Voltages. Provide a quiet noise free voltage.  
PLL Supply Voltage. Most sensitive supply voltage.  
Provide a very quiet noise free voltage.  
VDDO  
GND  
50, 60, 62, 72, 85, 91  
Digital Output Supply Voltage. Decouple judiciously to  
avoid propagation of switching noise.  
1, 6, 8, 12, 14, 18, 28, 29, 32, 36, 38, 40, Ground. Returns for all power supplies. Connect ground  
41, 42, 49, 59, 61, 71, 84, 90, 92, 93, 94 pins to a solid ground-plane.  
VREFIN  
98  
Voltage Reference Input. Common reference input to  
RGB converters. Connect to VREFOUT, if internal  
reference is used.  
VREFOUT  
97  
Voltage Reference Output. Internal band-gap reference  
output. Tie to ground through a 0.1µF capacitor.  
Addressable Memory  
Register Map  
Name  
Address  
Function  
Default (hex)  
PLLN11-4  
00  
PLL divide ratio, MSBs. PLLN + 1 = total number of  
69 (1693)  
pixels per horizontal line.  
PLLCTRL  
01  
PLL Control Register.  
D0 (1693)  
1. Lower four bits of PLL divide ratio.  
2. PLL Subdivide phase.  
3. PLL Subdivide ratio.  
GGY7-0  
02  
Gain, green/luminance channel. Adjustable from 70 to  
80  
140%.  
GBP7-0  
GRP7-0  
03  
04  
05  
Gain, blue/PB channel. Adjustable from 70 to 140%.  
Gain, red/PR channel. Adjustable from 70 to 140%.  
80  
80  
80  
OSGY5-0  
Offset, green/luminance channel. OSR5-0 is stored in  
the six upper register bits 7-2. Default value is decimal 32.  
OSGY5–0  
X X  
OSBP5-0  
OSRP5-0  
CD7-0  
06  
07  
08  
Offset, blue/PB channel. OSR5-0 is stored in the six  
upper register bits 7-2. Default value is decimal 32.  
80  
80  
80  
OSBP5–0  
X X  
Offset, red/PR channel. OSR5-0 is stored in the six upper  
register bits 7-2. Default value is decimal 32.  
OSRP5–0  
X X  
Clamp delay. Delay in pixels from trailing edge of  
horizontal sync.  
CW7-0  
09  
0A  
Clamp width. Width of clamp pulse in pixels.  
80  
F4  
CONFIG 1  
Configuration Register No. 1  
REV. 1.2.15 1/14/02  
5
PRODUCT SPECIFICATION  
FMS9875  
Name  
Address  
Function  
Default (hex)  
PHASE7-0  
0B  
Sampling clock phase. PHASE4-0 stored in upper  
register bits 7-3. PHASE sets the sampling clock phase in  
11.25° increments. Default value is decimal 16.  
80  
PHASE4–0  
X X X  
PLLCTRL  
CONFIG 2  
0C  
0D  
0E  
0F  
PLL Control.  
24  
00  
00  
00  
Configuration Register No. 2.  
Clamp Control Register.  
Reserved.  
Register Definitions  
PLL Control Register (01)  
Bit no.  
Name  
Type Description  
1-0  
SUBDIV1-0  
R/W  
PLL Subdivide ratio. Selects the ratio of the divider following the PLL.  
00: divide-by 1  
01: divide-by 2  
10: divide-by 4  
11: reserved  
SUBDIV1–0  
X X X X X X  
2
PLLFAZ  
R/W  
PLL Sub-divider Phase. Selects the phase of the divide-by-2 output.  
(Invalid for other outputs)  
3
R/W  
R/W  
Reserved.  
7-4  
PLLN3-0  
PLL divide ratio, LSBs. PLLN + 1 = total number of pixels per horizontal line.  
PLLN3–0  
X X X X  
Configuration Register 1 (0A)  
Bit no.  
Name  
Type Description  
0
1
XCKSEL  
R/W  
R/W  
R/W  
R/W  
R/W  
External Clock Select. Select internal clock source.  
0: Internal PLL  
1: XCK input.  
2
3
4
5
XCLAMPOL  
XCLAMP  
External Clamp Polarity. Select clamp polarity.  
0: Active L.  
1: Active H.  
External Clamp Select. Select clamp source.  
0: Internally generated by PLL referenced to HSIN.  
1: External CLAMP input.  
COASTPOL  
HSPOL  
Coast Polarity. Select COAST input polarity.  
0: Active L.  
1: Active H.  
HSIN Polarity. Select horizontal sync input polarity. PLL is locked to selected  
edge:  
0: Falling edge.  
1: Rising edge.  
6
7
R
R
1:  
1:  
6
REV. 1.2.15 1/14/02  
FMS9875  
PRODUCT SPECIFICATION  
PLL Configuration Register (0C)  
Bit no.  
1-0  
Name  
Type Description  
4-2  
IPUMP2-0  
R/W  
Charge Pump Current. Selects Charge Pump current (µA).  
000: 50  
001: 100  
010: 150  
011: 250  
100: 350  
101: 500  
110: 750  
111: 1500  
6-5  
7
FVCO1-0  
R/W  
R/W  
VCO Frequency Range. Selects VCO frequency range (MHz).  
00: 10–40  
01: 10–70  
10: 20–120  
11: 20–150  
Reserved.  
0: Run.  
1: (reserved).  
Configuration Register 2 (0D)  
Bit no.  
Name  
Type Description  
0
3-1  
4
R
Reserved. Set to 0.  
REV  
Revision Number. Die revision number.  
OUTPHASE R/W  
Output Data Phase. In the alternate pixel mode, selects either odd (1, 3, 5, …)  
or even (2, 4, 6 ….) samples following the HSYNC leading edge to be emitted  
from output data ports.  
0: Even samples  
1: Odd samples  
5
6
7
TWOS  
PRFIRST  
422  
R/W  
R/W  
R/W  
PBPR Data Output Format.  
0: Offset binary.  
1: Two’s complement.  
PBPR Data Output Timing.  
0: PB data first, PR data second.  
1: PR data first, PB data second.  
Output Data Format.  
0: 444  
1: 422 with PBPR multiplexed onto the DBP7-0 output.  
REV. 1.2.15 1/14/02  
7
PRODUCT SPECIFICATION  
FMS9875  
Clamp Control Register (0E)  
Bit no.  
1-0  
Name  
Type Description  
Reserved. Set to 00.  
3-2  
RPLEVEL  
R/W  
RP Clamp. Clamps R or PR input to selected level.  
00: Clamp to internal 0 V.  
01: Clamp to external voltage at RPREF input.  
10: Clamp to internal mid-scale.  
11: Clamp to high impedance.  
5-4  
7-6  
BPLEVEL  
GYLEVEL  
R/W  
R/W  
BP Clamp. Clamps B or PB input to selected level.  
00: Clamp to internal 0 V.  
01: Clamp to external voltage at BPREF input.  
10: Clamp to internal mid-scale.  
11: Clamp to high impedance.  
GY Clamp.  
00: Clamp to internal 0 V.  
01: Clamp to external voltage at YGREF input.  
10: Clamp to internal mid-scale.  
11: Clamp to high impedance.  
8
REV. 1.2.15 1/14/02  
FMS9875  
PRODUCT SPECIFICATION  
A plot of output codes versus input voltage has a staircase-  
like shape. With FMS9875 Gain and Offset register values  
set to match a nominal 700 mV input, Tables 1 and 2 show  
the output codes in deciminal and binary, corresponding to  
the mid-point input voltages of each step.  
Functional Description  
There are two major sections within the FMS9875:  
1. Analog-to-digital Converter Channels, one for each  
channel, GY, RP, BP and the voltage reference.  
Note:  
2. Timing and Control comprising the PLL, Timing  
Generator, Sync Stripper and Serial Interface.  
1. The midpoint of code 000 lies 1/2 of one code-size  
below the 000/001 transition.  
A/D Converter Channels  
Each of the RGB/YPBPR channels consists of:  
2. The midpoint of code 255 lies 1/2 of one code-size  
above the 254/255 transition.  
1. A clamp to set the lower reference of each G/Y, B and R  
channel or the midpoint reference of the PB and PR  
channels.  
3. For AC coupled inputs, during the blanking period:  
a) Y, G, B and R inputs should be clamped to the  
FMS9875 bottom reference.  
2. Gain and offset stages to match the A/D converter range  
to input signal levels.  
b) PB and PR inputs should be clamped to the FMS9875  
mid-range level. (Half the range plus the offset  
voltage)  
3. An Analog-to-Digital Converter to digitize the analog  
input.  
Table 1.YP P and GBR Decimal Output Coding  
B
R
PB, PR  
Two’s Complement  
Input (mV)  
700  
Y, G, B, R  
255  
Offset Binary  
255  
254  
127  
126  
697.25  
254  
351.37  
348.63  
345.88  
128  
127  
126  
128  
127  
126  
000  
255  
254  
2.75  
0
001  
000  
001  
000  
129  
128  
Table 2.YP P and GBR Binary Output Coding  
B
R
Input (mV)  
PB, PR  
Offset Binary Two’s Complement  
350 mV ref. 0 mV ref.  
Y, G, B, R  
1111 1111  
1111 1110  
700  
350  
1111 1111  
1111 1110  
0111 1111  
0111 1110  
697.25  
347.25  
351.37  
348.63  
345.88  
1.37  
-1.37  
-4.12  
1000 0000  
0111 1111  
0111 1110  
1000 0000  
0111 1111  
0111 1110  
0000 0000  
1111 1111  
1111 1110  
2.75  
0
-347.25  
-350  
0000 0001  
0000 0000  
0000 0001  
0000 0000  
1000 0001  
1000 0000  
REV. 1.2.15 1/14/02  
9
PRODUCT SPECIFICATION  
FMS9875  
Analog Inputs  
2. External voltages levels connected to the GYREF, BPREF  
and RPREF inputs. Nominal values are 0 mV for Y and  
350 mV for PB and PR. Clamp Control Register bits  
should be set as follows:  
Input signal range is 500 to 1000mV to support conversion of  
single-ended signals with a typical amplitude of 700mV p-p.  
With the clamp active, each input can accommodate compos-  
ite sync, a negative 300mV excursion.  
Table 4. External Clamp Setup  
Inputs are optimized for a source resistance of 37.5 to 75.  
To reduce noise sensitivity, the 400MHz input bandwidth  
may be reduced by adding a small series inductor prior to the  
75terminating resistor. See Applications Section.  
GYLEVEL  
BPLEVEL  
RPLEVEL  
GBR  
01  
01  
01  
YPBPR  
Clamps  
External clamp levels should be established to match the  
incoming signals. For example, with 650 mV peak-to-peak  
PBPR signals, the mid-point should be set to 325 mV.  
If the incoming signals are not ground referenced, a clamp  
must be used to establish the incoming video range. Prior to  
each A/D converter, each channel includes a clamp that  
allows capacitively coupled input levels to be matched to the  
A/D converter reference level when the clamp pulse is active.  
Source of the clamp timing is determined by the XCLAMP  
register bit.  
Internal clamp timing is generated by the Timing and  
Control Block. Position and width of the internal clamp  
pulse, ICLAMP are programmable through registers CD and  
CW. External clamp input is selected by register bit  
XCLAMP and the external clamp polarity selected through  
register bit XCLAMPOL. To disable the clamp for DC  
coupled inputs, set XCLAMP = 1 with either of these  
conditions:  
Clamping levels depend upon the incoming signal format:  
1. RGB. All signals must be clamped to the A/D converter  
lower reference voltage, which is ground.  
1. XCLAMPOL = 0 with input CLAMP = H.  
2. XCLAMPOL = 1 with input CLAMP = L.  
2. YPBPR. The Y signal must be clamped to ground.  
PBPR signals must be clamped to the mid-level of the  
A/D converter range, to establish the zero level of the  
signed PBPR signals.  
Best performance will be achieved with the clamp set active  
for most of the black signal level interval between the trailing  
edge of horizontal sync and the start of active video. Insufficient  
clamping can cause brightness changes at the top of the image  
and slow recovery from large changes in Average Picture  
Level (APL). Recommended clamp delay value, CD is 0x10  
to 0x20 for most standard video sources.  
With 700 mV incoming signal levels, nominal clamp levels  
are 0 mV for ground and 350 mV for mid-level. Offset and  
gain control can be used to trim input levels to match the  
clamp voltages.  
Clamps levels can be derived from either of two sources:  
1. Internal Voltages:  
Analog-to-Digital Converter  
Figure 2 is a block diagram of the ADC core with gain and  
offset functions. G7-0, OS5-0, VIN and D7-0 generically refer  
to the gain and offset register values, analog input and paral-  
lel data output of any RGB channel.  
a) Y and GBR signals are clamped to the A/D converter  
lower reference voltage that can be adjusted by the  
Offset register value.  
b) PBPR signals are clamped to the A/D mid-scale v  
oltage, which cannot be adjusted by the Offset  
control. Instead, the data output is forced to code  
128 during the clamping period.  
Clamp Control Register bits should be set as follows:  
Table 3. Internal Clamp Setup  
GYLEVEL  
BPLEVEL  
RPLEVEL  
GBR  
00  
00  
00  
10  
00  
10  
YPBPR  
10  
REV. 1.2.15 1/14/02  
FMS9875  
PRODUCT SPECIFICATION  
VREF  
G7-0  
Gain  
Register  
D/A  
IBIAS + IOFFSET  
OS5-0  
Current  
D/A  
Offset  
Register  
A/D Core  
VIN  
+
Track &  
Hold  
-
D7-0  
A/D  
RLEVEL  
SCK  
Figure 2. A/D Converter Architecture  
Within the A/D converter core are the following elements:  
Voltage offset from the common mode voltage at the invert-  
ing input of the Track and Hold is:  
1. Differential track and hold.  
255 + G7–0  
---------------------------- --------  
500  
255  
VOS = ( OS5–0 – 31) •  
2. Differential analog-to-digital converter.  
255  
D/A converter gain tracks A/D gain with 1 LSB of offset  
corresponding to 1LSB of gain. Increasing the offset of a  
video signal increases brightness of the picture. Data output  
from the A/D converter is:  
Setting the gain register value G7-0 (GRP7-0, GGY7-0, GBP7-0),  
establishes the gain D/A converter voltage which is the upper  
A/D reference voltage. Increasing the gain register value  
reduces the output level. Conversion range is defined by the gain  
setting according to Table 5.  
D7–0 = S VIN ( OS5–0 – 31 )  
Table 5. Gain Calibration  
Impact of the offset values OSGY5-0, OSBP5-0, and OSRP5-0  
is shown in Table 6.  
G7-0  
0
Conversion Range (mV)  
500  
700  
102  
255  
Table 6. Offset Calibration  
1000  
OS5-0  
0
Equivalent Offset (bits)  
-31d  
0
A/D Converter sensitivity is:  
31  
255  
255  
500  
----------------------------  
255 + G7 – 0  
S = -------- •  
LSB mV  
63  
32d  
Sampling Clock PHASE Adjustment  
Offset is set through the Track and Hold, which translates the  
ground referenced input to a differential voltage centered  
around A/D common mode bias voltage.  
Bandwidth of TV video is typically well below the horizon-  
tal sampling rate. Consequently, PHASE has little impact on  
images sampled in theYPBPR format or RGB signals derived  
from a video source. By contrast, PC-generated image  
quality is strongly impacted by the PHASE4-0 value. If  
PHASE is not set correctly, any section of an image  
consisting of vertical lines may exhibit tearing.  
The 6-bit Offset D/A converter injects a current into RLEVEL  
with two components:  
1. IBIAS to establish the A/D common mode voltage.  
2. IOFFSET to set the offset from the common mode level.  
Figure 3 shows how an analog input, VIN is sampled by the  
rising edge of SCK after a delay PHASE from the rising  
edge of either PXCK or XCK. SCK can be delayed up to 32  
steps in 11.25° increments by adjusting the register value,  
PHASE4-0  
.
REV. 1.2.15 1/14/02  
11  
PRODUCT SPECIFICATION  
FMS9875  
PHASE  
PXCK/XCK  
SCK  
VIN  
Sn  
DCK  
DA  
Figure 3. Internal Sampling Clock, SCK Timing  
Output data and clocks: DCK and DCK are delayed in tan-  
dem with SCK relative to PXCK or XCK. There is a 5-51/2  
clock latency between the data sample Sn and the corre-  
amplitude modulation of the digitized data, D7-0, due to the  
sampling clock jitter. To avoid corruption of the image, set-  
ting the value PHASE7-0 is critical. PHASE4-0 should be  
trimmed to position the sampling edge of SCK within the  
zone of serendipity.  
sponding data out DA7-0  
.
Ideally, incoming pixels (PC generated) would be trape-  
zoidal with fast rise-times and the sampling edge of the A/D  
clock, SCK would be positioned along the level section of  
the incoming pixel waveform as shown in Figure 4. There is  
a narrow zone of uncertainly where sampling during pixel  
rise time would cause an error in the value of the A/D data  
output, D7-0, which is shown as a value, 0-255.  
Zones of Uncertainty  
RIN, GIN, BIN  
SCK  
D7-0  
Zones of Uncertainty  
RIN, GIN, BIN  
SCK  
Figure 6. Improper Pixel Sampling  
Voltage References  
An on-chip voltage reference is generated from a bandgap  
source. VREFOUT is the buffered output of this source that  
can be connected to VREFIN to supply a voltage reference  
that is common to the three converter channels.  
D7-0  
Figure 4. Ideal Pixel Sampling  
V
REFIN, with a nominal voltage of 1.25V, is the source of the  
In practice, high-resolution pixels have relatively long rise-  
times. As shown in Figure 5, there are narrow zones of seren-  
dipity when the pixel amplitude is level. Samples are valid in  
these zones.  
differential reference voltages for each A/D converter.  
Reference voltages supplied to the differential inputs of the  
comparators in the A/D converters are derived from VREFIN  
.
Digital Data Outputs  
Zones of Serendipity  
Input horizontal sync HSIN and outgoing data, D[7..0] are  
resynchronized to the internal delayed sample clock, SCK.  
Output timing relationships are defined in Figure 7. Latency of  
the first pixel, N varies according to the mode:  
RIN, GIN, BIN  
SCK  
1. Normal.  
2. Alternate pixel sampling.  
D7-0  
Data transitions on the falling edge of the DCK clock. Pixel  
data should be sampled on the rising edge of the DCK clock.  
Figure 5. Acceptable Pixel Sampling  
Levels are 3.3 volt CMOS. PWRDN = L sets the outputs  
high-impedance. PWRDN = H enables the outputs.  
Referring to Figure 6, when the sample clock, SCK has some  
jitter, if the sampling edge occurs anywhere within the zone  
of uncertainty where the pixel rise time is steep, there will be  
12  
REV. 1.2.15 1/14/02  
FMS9875  
PRODUCT SPECIFICATION  
HSIN  
PHASE  
N
PXCK/XCK  
SCK  
GBRIN/YPBPRIN  
DCK  
P0  
DCK  
tSKEW  
D0  
D[7..0]  
HSOUT  
Figure 7. Output Timing  
Figures 8 through 12 depict data output timing relative to the  
sampling clock and inputs for all modes. Timing is referenced  
to the leading edge of HSIN when the first sample is taken at  
the rising edge of SCK. Register bit OUTPHASE, determines  
if odd or even samples are directed to the data ports.  
HS is the internal sync pulse generated from HSIN. SCK is  
the internal A/D converter sampling clock.  
Pixel sampling is referenced to the rising edge of HSIN.  
Data outputs are delayed by 5 to 5.5 pixels. To allow for  
clamping, start-of-active-video (SAV) can begin any time  
after the falling edge of HSIN. End-of-active-video (EAV)  
follows SAV any time before the next HSIN pulse.  
Note the timing of the HSOUT waveform:  
1. HSOUT is always active HIGH.  
2. Leading edge of HSOUT is aligned to the leading or  
trailing edge (selected by the HSPOL register bit) of  
HSIN delayed by 5 to 5.5 pixels  
3. Leading edge is aligned with DCK.  
4. Trailing edge is linked to HSIN.  
5. If HSIN does not terminate before mid-line, HSOUT is  
forced low. A 50% duty cycle indicates that HSPOL is  
incorrectly set.  
GBRIN  
HSIN  
PXCK  
HS  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
5 PIXEL DELAY  
SCK  
DCK  
D0 D1 D2 D3 D4 D5 D6 D7  
DGBR7-0  
HSOUT  
Figure 8. GBR Mode  
REV. 1.2.15 1/14/02  
13  
FMS9875  
PRODUCT SPECIFICATION  
YPBPRIN  
HSIN  
PXCK  
HS  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
5 PIXEL DELAY  
SCK  
DCK  
DGY7-0  
Y0  
Y1 Y2 Y3  
Y4 Y5 Y6  
Y7  
DBP7-0  
DRP7-0  
PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7  
PR0 PR1 PR2 PR3 PR4 PR5 PR6 PR7  
HSOUT  
Figure 9. YP P 444 Mode  
B
R
YPBPRIN  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
HSIN  
PXCK  
HS  
5 PIXEL DELAY  
SCK  
DCK  
DGY7-0  
DBP7-0  
Y0  
Y1 Y2 Y3  
Y4 Y5 Y6  
Y7  
PB0 PR0 PB2 PR2 PB4 PR4 PB6 PR6  
HSOUT  
Figure 10. YP P 422 Mode  
B
R
P0 P1 P2 P3 P4 P5 P6 P7  
RGBIN  
HSIN  
PXCK  
HS  
5.5 PIXEL DELAY  
SCK  
DCK  
D7-0  
D1  
D3  
D5  
D7  
HSOUT  
Figure 11. RGB Alternate Pixel Sampling Mode, (Even Pixels)  
REV. 1.2.15 1/14/02  
14  
FMS9875  
PRODUCT SPECIFICATION  
P2  
P0 P1  
P3 P4 P5 P6 P7  
RGBIN  
HSIN  
PXCK  
HS  
5 PIXEL DELAY  
SCK  
DATACK  
D7-0  
D0  
D2  
D4  
D6  
HSOUT  
Figure 12. RGB Alternate Pixel Sampling Mode, (Odd Pixels)  
On one frame, along each line, even pixels are sampled. On  
the other, odd pixels are sampled.  
Alternate Pixel Sampling Mode  
A logic H on the INVSCK pin inverts the sampling phase of  
SCK. In the Alternate Pixel Sampling Mode:  
Alternate Pixel Sampling is similar to interlacing used in  
broadcast video, except that the columns of pixels are inter-  
laced instead of lines.  
1. The PLL is run at half rate. SCK, DCK and DCK are  
half rate.  
2. CKINV is toggled between frames.  
E1 E1 E1 E1 E1 E1 E1  
O1 O1 O1 O1 O1 O1 O1  
E1 E1 E1 E1 E1 E1 E1  
O1 O1 O1 O1 O1 O1 O1  
E1 E1 E1 E1 E1 E1 E1  
O1 O1 O1 O1 O1 O1 O1  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
Figure 14. Odd Pixels from Frame 1  
Figure 13. Odd and Even Pixels in a Frame  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O1E2O1 O1 O1 O1  
E2 E2 E2 E2O1E2  
O1  
O1  
O1  
O1  
O1  
O1  
O1  
O1  
O1  
O1  
O1  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
E2  
E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2 E2  
O1  
O1 O1 O1 O1 O1  
E2  
E2 E2 E2 E2 E2  
O1  
O1 O1 O1 O1 O1  
Figure 13. Even Pixels from Frame 2  
Figure 14. Subsequent Output  
Combining Frames 2 and 3  
Figure 15. Combined Frames  
2 and 3  
REV. 1.2.15 1/14/02  
15  
PRODUCT SPECIFICATION  
FMS9875  
Reference for the PLL is the horizontal sync input, HSIN  
with polarity selected by the HSPOL bit.  
Timing and Control  
Timing and Control logic encompasses the PLL, Timing  
Generator and Sync Stripper.  
Frequency of the HSIN input is multiplied by the value PLLN  
+ 1 derived from the PLLN11-4 and PLLN3-0 registers. PLLN  
+ 1 should equal the number of pixels per horizontal line  
including active and blanked sections. Typically blanking is  
20–30% of active pixels. Divide ratios from 2–4095 are  
supported. SCK, DCK and DCK run at a rate PLLN + 1  
times the HSIN frequency.  
Phase Locked Loop  
VDDP  
C2  
R
C1  
HSIN  
Θi  
The PLL consists of a phase comparator, charge pump VCO  
and ÷N counter, with the charge pump connected through the  
LPF pin to an external filter. These elements must be pro-  
grammed to match the incoming video source to be captured.  
IP VZ  
Phase  
Detector  
Charge  
Pump  
VCO Θo  
Sub-  
divider  
KV  
Θ
o/N  
Divider  
SCK  
(DCK)  
Values of IPUMP and FVCO for common video standards  
timing are shown in Table 7. Timing of many computer video  
outputs does not comply with VESA recommendations.  
PLLN should be optimized to avoid vertical noise bars on the  
displayed image.  
Two clock types originate in the PLL:  
1. Data clocks DCK and DCK.  
2. Internal sampling clock SCK.  
Modes marked 2X are 2X-oversampled modes where the  
number of samples per horizontal line is doubled. To select  
this mode, the Phase-locked Loop Divide Ratio value must  
changed from PLL1x to:  
DCK and DCK are used to strobe data from the FMS9875 to  
following digital circuits. SCK is the ADC sample clock  
which has adjustable phase controlled through the PHASE  
register. DCK and DCK are phase aligned with SCK.  
PLL2x = 2 • (PLL1x + 1) – 1  
Table 7. Recommended IPUMP and FVCO values for Standard Display Formats  
Test  
Rank  
Refresh  
Rate  
Horizontal  
Frequency Sample Rate FVCO  
Standard  
NTSC-601  
PAL-601  
Resolution  
720 x 483i (1X)  
720 x 583i (1X)  
720 x 483i (2X)  
720 x 583i (2X)  
720 x 483p  
IPUMP  
101  
SUBDIV  
1-0  
1-0  
2-0  
C
C
C
C
C
C
C
30 Hz  
25 Hz  
30 Hz  
25 Hz  
60 Hz  
60 Hz  
30 Hz  
15.734 kHz  
15.625 kHz  
15.734 kHz  
15.625 kHz  
31.4685 kHz  
45.00 kHz  
13.5 MHz  
13.5 MHz  
27 MHz  
00  
00  
00  
00  
00  
01  
01  
2
101  
NTSC-601  
PAL-601  
101  
1
2
1
27 MHz  
101  
SMPTE 293M  
SMPTE 296M  
SMPTE 274M  
VGA  
27 MHz  
111  
1280 x 720p  
1920 x 1080i  
640 X 480  
74.25 MHz  
74.25 MHz  
111  
33.750 kHz  
111  
C
C
C
60 Hz  
75 Hz  
85 Hz  
31.5 kHz  
37.5 kHz  
43.3 kHz  
25.175 MHz  
31.500 MHz  
36.000 MHz  
01  
01  
01  
110  
110  
110  
2
1
1
1
SVGA  
XGA  
C
C
CT  
800 X 600  
1024 X 768  
1280 X 1024  
60 Hz  
75 Hz  
85 Hz  
37.9 kHz  
46.9 kHz  
53.7 kHz  
40.000 MHz  
49.500 MHz  
56.250 MHz  
01  
01  
01  
110  
110  
110  
C
C
C
60 Hz  
75 Hz  
85 Hz  
48.4 kHz  
60.0 kHz  
68.3 kHz  
65.000 MHz  
78.750 MHz  
94.500 MHz  
10  
10  
11  
110  
110  
110  
SXGA  
C
CT  
CT  
60 Hz  
72 Hz  
75 Hz  
64.0 kHz  
78.1 kHz  
80.0 kHz  
108.000 MHz  
135.000 MHz  
135.000 MHz  
11  
11  
11  
110  
111  
111  
Notes:  
1. VESA Monitor Timing Standards and Guidelines, September 17, 1998 and others.  
2. Frame refresh rate is twice the field refresh rate for interlace (i) formats and equal to the field rate for progressive (p) formats.  
3. When SUBDIV = 2, VCO runs at 2x sample rate.  
1-0  
16  
REV. 1.2.15 1/14/02  
FMS9875  
PRODUCT SPECIFICATION  
Values of IPUMP and FVCO are set through the PLL  
Configuration Register (0x0C). Recommended external filter  
components are shown in Figure 16. RF quality 10%  
ceramic capacitors with X7R dielectric are recommended.  
1. Use 2X over-sampling. For example with NTSC-601,  
the 1X sample rate should be 13.5 MHz. If the divide  
ratio is increased from 858 (PLLN = 857) to 1716  
(PLLN = 1715), the sampling rate is 27 MHz.  
2. Use 1X sampling by doubling the VCO frequency, then  
dividing the PLL frequency by two. For example, with  
NTSC-601, the divide ratio is doubled to 1716  
VDDP  
C1  
0.18µF  
(PLLN = 1715), then the sub-divide ratio is set to two  
(SUBDIV1-0 = 01) to reduce the sampling rate from  
27 MHz to 13.5 MHz with 858 pixels per line.  
C2  
0.018µF  
R1  
1.5K  
LPF  
COAST  
When COAST is active, PLL lock to HSIN is disabled, while  
the VCO frequency is retained. VCO frequency remains  
stable over several lines without updates from HSIN.  
COAST can be connected directly to the vertical sync signal  
or supplied by the graphics controller. If 1/2H pulses are  
present within HSIN, the COAST period must encompass all  
1/2H pulses. COAST polarity may be inverted using the  
COASTPOL register bit. In the description below, the setting  
COASTPOL = H is used.  
Figure 16. Schematic, PLL Filter.  
Loop performance is established by setting:  
1. VCO frequency range through FVCO1-0. (see Table 8)  
2. Charge Pump Current through IPUMP2-0. (see Table 9)  
3. External loop filter component values.  
Table 8. VCO Frequency Bands  
Operation of COAST is depicted in Figure 17. HSOUT  
polarity is always positive. When COAST = L, HSOUT  
tracks HSIN (shown with postive polarity in Figure 1):  
FVCO2-0 Frequency Range (MHz) KVCO (MHz/V)  
00  
01  
10  
11  
1040  
1070  
35  
60  
80  
95  
1. HSOUT rising edge tracks HSIN delayed by a few pixels.  
20120  
20150  
2. HSOUT falling edge tracks the trailing edge of HSIN  
with no delay.  
Table 9. Charge Pump Current Levels  
When COAST = H, the PLL flywheels, disregarding the  
incoming HSIN references, while the HSOUT waveform  
depends upon the state of HSIN.  
IPUMP2-0  
000  
Current (µA)  
50  
100  
150  
250  
350  
500  
750  
1500  
1. If HSIN = H:  
001  
a.) HSOUT rising edge remains locked to the PLL.  
010  
b.) HSOUT trailing edge falls after 50% of the HSOUT  
period has expired.  
011  
100  
2. HSIN transitions:  
101  
a.) HSOUT rising edge remains locked to the PLL.  
110  
b.) HSOUT falling edge is terminated by the trailing  
edge of HSIN.  
111  
3. If HSIN = L, then HSOUT = L  
Setting PHASE4-0 selects the sampling phase of SCK rela-  
tive to PXCK in 32 steps of 11.25°. Phase of the output data,  
DCK and DCK is slaved to the SCK phase.  
RMS Clock jitter is less than 2% of pixel period in all operat-  
ing modes.  
At frequencies below 80 MHz, the percentage jitter begins to  
rise. Increased jitter at low frequencies can be counteracted  
in either of two ways:  
REV. 1.2.15 1/14/02  
17  
PRODUCT SPECIFICATION  
FMS9875  
HSIN  
Trailing edge terminates HSOUT  
COAST  
HSOUT  
50% Timeout  
Figure 17.  
Timing Generator  
Timing and Control logic generates:  
Serial Interface  
Register access is via a 2-wire I2C/SMBus compatible inter-  
face. As a slave device, the 7-bit address is selected by the  
A1-0 pins (see Table 10). Serial port pins SDA and SCL com-  
municate with the host SMBus/I2C controller which act as a  
master.  
1. Internal sampling clock, SCK.  
2. Output data clocks, DCK and DCK.  
3. Output horizontal sync, HSOUT  
.
Since the serial control port is design to interface with 3.3V  
logic, the pins must be protected, if SDA and SCL signals  
originate from 5V logic. Series connected 150resistors are  
recommended. (See Applications Section)  
4. Internal clamp pulse, ICLAMP.  
With HSPOL set correctly, ICLAMP delay follows the trail-  
ing edge of horizontal sync in (HSIN). Delay is set by the  
CD register. Width of ICLAMP is set by the CW register.  
Range of CD and CW values is 1–255 pixels.  
Table 10. Serial Interface Address Codes  
A1-0  
00  
7-Bit Address  
Sync Stripper  
4C  
4D  
4E  
4F  
Some video signals include embedded composite sync rather  
than separate horizontal and vertical sync signals, typically  
sync on green. Composite sync is extracted from Composite  
Video at the ACSIN pin.  
01  
10  
11  
When the ACSIN signal falls below a 150mV ground refer-  
enced threshold, sync is detected. Composite Sync Output,  
DCSOUT reflects the ACSIN sync timing with non-inverted  
CMOS digital levels.  
Two signals comprise the bus: clock (SCL) and bi-directional  
data (SDA). When receiving and transmitting data through  
the serial interface, the FMS9875 acts as a slave, responding  
only to commands by the I2C/SMBus master.  
Data received or transmitted on the SDA line must be stable  
for the duration of the positive-going SCL pulse. Data on  
SDA may change only when SCL = L. An SDA transition  
while SCL = H is interpreted as a start or stop signal.  
Power Down  
PWRDN = L minimizes FMS9875 power consumption.  
Data outputs become high impedance. Clocks generation is  
stopped. Register contents are retained. Sync stripping and  
the internal voltage reference function.  
18  
REV. 1.2.15 1/14/02  
FMS9875  
PRODUCT SPECIFICATION  
SDA  
tBUFF  
tSTAH  
tDHO  
tDSU  
tSTASU  
tSTOSU  
tDAL  
SCL  
tDAH  
Figure 18. Serial Bus: Read/Write Timing  
SDA  
SCL  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ACK  
Figure 19. SerialBus: Typical Byte Transfer  
SDA  
SCL  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W\  
ACK  
Figure 20. Serial Bus: Slave Address with Read/Write Bit  
There are five steps within an I2C/SMBus cycle:  
Data Transfer via Serial Interface  
If a slave device, such as the FMS9875 does not acknowl-  
edge the master device during a write sequence, SDA  
remains HIGH so the master can generate a stop signal. Dur-  
ing a read sequence, if the master device does not acknowl-  
edge by bringing SDA = L, the FMS9875 interprets SDA =  
H as “end of data.” SDA remains HIGH so the master can  
generate a stop signal.  
1. Start signal  
2. Slave address byte  
3. Pointer register address byte  
4. Data byte to read or write  
5. Stop signal  
When the Serial Bus interface is inactive, SCL = H and SDA  
= H. Communications are initiated by sending a start signal  
(Figure 18, left waveform) that is a HIGH-to-LOW transition  
on SDA while SCL is HIGH. A start signal alerts all slaved  
devices that a data transfer sequence is imminent.  
To write data to a specific FMS9875 control register, three  
bytes are sent:  
1. Write the slave address byte with bit R/W = L.  
2. Write the pointer byte.  
3. Write to the control register indexed by the pointer.  
After a start signal, the first eight bits of data comprise a seven  
bit slave address followed a single R/W bit (Read = H, Write  
= L) to set the direction of data transfer: read from; or write  
to the slave device. If the transmitted slave address matches  
the address of the FMS9875 which set by the state of the  
ADD pin, the FMS9875 acknowledges by pulling SDA  
LOW on the 9th SCL pulse (see Figure 20). If the addresses  
do not match or the register being accessed is 0x0F, the  
FMS9875 does not acknowledge.  
After each byte is written, the pointer auto-increments to  
allow multiple data byte transfers within one write cycle.  
Data is read from the control registers of the FMS9875 in a simi-  
lar manner, except that two data transfer operations are required:  
1. Write the slave address byte with bit R/W = L.  
2. Write the pointer byte.  
3. Write the slave address byte with bit R/W = H  
4. Read the control register indexed by the pointer.  
For each byte of data read or written, the MSB is the first bit  
of the sequence.  
REV. 1.2.15 1/14/02  
19  
PRODUCT SPECIFICATION  
FMS9875  
After each byte is read, the pointer auto-increments to allow  
multiple data byte transfers within one read cycle.  
Read from one register  
1. Start signal  
2. Slave Address byte (R/W bit = LOW)  
3. Pointer byte (= base address)  
4. Stop signal (optional)  
5. Start signal  
6. Slave Address byte (R/W bit = HIGH)  
7. Data byte from base address  
8. Stop signal  
Preceding each slave write, there must be a start cycle.  
Following the pointer byte there should be a stop cycle.  
After the last read, there must be a stop cycle comprising  
a LOW-to-HIGH transition of SDA while SCL is HIGH.  
(see Figure 18, right waveform)  
A repeated start signal occurs when the master device driv-  
ing the serial interface generates a start signal without first  
generating a stop signal to terminate the current communica-  
tion. This is used to change the mode of communication  
(read, write) between the slave and master without releasing  
the serial interface lines.  
Read from four registers  
1. Start signal  
2. Slave Address byte (R/W bit = LOW)  
3. Pointer byte (= base address)  
4. Stop signal (optional)  
5. Start signal  
Serial Interface Read/Write Examples  
6. Slave Address byte (R/W bit = HIGH)  
7. Data byte from base address  
8. Data byte from (base address + 1)  
9. Data byte from (base address + 2)  
10. Data byte from (base address + 3)  
11. Stop signal  
Examples below show how serial bus cycles can be linked  
together for multiple register read and write access cycles.  
For sequential register accesses, each ACK handshake ini-  
tiates further SCL clock cycles from the master to transfer  
the next data byte.  
Write to one register  
1. Start signal  
2. Slave Address byte (R/W bit = LOW)  
3. Pointer byte  
4. Data byte to base address  
5. Stop signal  
Write to four consecutive registers  
1. Start signal  
2. Slave Address byte (R/W bit = LOW)  
3. Pointer byte  
4. Data byte to base address  
5. Data byte to (base address + 1)  
6. Data byte to (base address + 2)  
7. Data byte to (base address + 3)  
8. Stop signal  
20  
REV. 1.2.15 1/14/02  
FMS9875  
PRODUCT SPECIFICATION  
Absolute Maximum Ratings  
(beyond which the device may be damaged)1  
Parameter  
Power Supply Voltages  
VCC (Measured to GND)  
Digital Inputs  
Min  
Typ  
Max  
Unit  
-0.5  
4
V
Applied voltage (Measured to GND)2  
Forced current 3, 4  
-0.3  
-5.0  
VDDA  
5.0  
V
mA  
Analog Inputs  
Applied Voltage (Measured to GND)2  
Forced current 3, 4  
-0.5  
VDDA  
10.0  
V
-10.0  
mA  
Digital Outputs  
Applied voltage (Measured to GND)2  
Forced current 3, 4  
Forced current 3, 4  
-0.5  
-6.0  
-8.0  
V
mA  
6.0  
8.0  
1
mA  
Short circuit duration (single output in HIGH state to ground)  
Temperature  
second  
Junction  
150  
300  
220  
150  
150  
°C  
°C  
°C  
°C  
V
Lead Soldering (10 seconds)  
Vapor Phase Soldering (1 minute)  
Storage  
-65  
Electrostatic Discharge5  
Notes:  
1. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if  
Operating Conditions are not exceeded.  
2. Applied voltage must be current limited to specified range.  
3. Forcing voltage must be limited to specified range.  
4. Current is specified as conventional current flowing into the device.  
5. EIAJ test method.  
Operating Conditions  
Parameter  
VDDA  
Min  
3.0  
3.0  
2.2  
0
Nom  
3.3  
Max  
3.6  
3.6  
3.6  
70  
Units  
ADC Power Supply Voltage  
PLL Power Supply Voltage  
Output Power Supply Voltage  
Ambient Temperature, Still Air  
A/D analog input range, min.  
A/D analog input range, max.  
V
V
VDDP  
3.3  
VDDO  
TA  
3.3  
V
°C  
VTMAX  
VTMIN  
550  
mV p-p  
mV p-p  
875  
Test Rank Definitions  
Rank  
P
D
C
T
Production tested at 70°C.  
Guaranteed by design over full temperature range.  
Guaranteed by characterization and design over full temperature range.  
Target specification, pending characterization.  
REV. 1.2.15 1/14/02  
21  
PRODUCT SPECIFICATION  
FMS9875  
Electrical Characteristics1  
Test  
Parameter  
Temp.  
Rank  
Min  
Typ Max  
Unit  
Power Supply Currents  
IDDA  
IDDD  
IDDP  
PD  
Supply current, ADC  
Supply current2, Digital Output  
Supply current, PLL  
25°C  
25°C  
25°C  
Full  
P
P
220  
50  
mA  
mA  
mA  
mW  
mA  
mW  
P
50  
Power dissipation  
D
1100  
30  
IPD  
Power-down current  
Full  
PC  
D
PDD  
Powered-down disspation  
Full  
100  
Digital Inputs/Outputs  
CI  
Input Capacitance  
25°C  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
D
PC  
PC  
D
3
pF  
µA  
µA  
V
IIH  
Input Current, HIGH  
-2  
-2  
+2  
+2  
IIL  
Input Current, LOW  
VIH  
VIL  
Input Voltage, HIGH  
VDDD0.8  
Input Voltage, LOW  
D
0.8  
V
IOHD  
IOHC  
IOLD  
IOLC  
VOH  
VOL  
Output Current, HIGH, data  
Output Current, HIGH, clock  
Output Current, LOW, data  
Output Current, LOW, clock  
Output Voltage, HIGH (IOH = max.)  
Output Voltage, LOW (VDD3) (IOL = max.)  
D
4
8
4
8
mA  
mA  
mA  
mA  
V
D
D
D
D
VDDO0.1  
VDDD0.8  
D
0.1  
V
Serial Bus I/O  
VSMIH Input Voltage, HIGH  
Full  
Full  
Full  
Full  
Full  
D
D
D
D
D
V
V
VSMIL  
Input Voltage, LOW  
0.8  
VSMOL Output Voltage, LOW (ISMOL = max.)  
ISMOH Output Current, HIGH  
0.1  
V
1
µA  
mA  
ISMOL  
Output Current, HIGH  
4
Analog Inputs  
IB  
Input bias current  
Input Offset Voltage3  
Full  
Full  
Full  
PC  
D
1
µA  
mV  
mV  
EOS  
-75  
0
+75  
VACSIN Analog Composite Sync Threshold  
C
125  
150 175  
Reference Output  
VREF  
Output Voltage  
Full  
Full  
PC  
C
1.15  
1.25 1.38  
50  
V
Temperature Coefficient  
ppm/°C  
Notes:  
1. Unless otherwise stated, 0 to 70°C  
2. DCK, DCK load = 15 pF; data load = 5 pF.  
3. With Gain = 102.  
22  
REV. 1.2.15 1/14/02  
FMS9875  
PRODUCT SPECIFICATION  
Switching Characteristics  
Test  
Temp. Rank Min. Typ. Max. Unit  
Parameter  
Analog-to-Digital Converters  
Conversion rate  
FMS9875KAC100  
FMS9875KAC140  
Full  
Full  
CT  
CT  
10  
10  
108  
140  
2
Ms/s  
ns  
tSKEW  
Timing Generator  
HSIN input frequency  
DCK Clock to Data Out Skew  
-0.5  
Full  
Full  
C
15  
110  
12  
kHz  
Maximum PLL clock rate  
FMS9875KAC100  
FMS9875KAC140  
CT  
108  
140  
MHz  
Minimum PLL clock rate  
Sampling phase tempco  
Full  
Full  
PC  
C
MHz  
20  
ps/°C  
Serial Bus Interface  
tDAL  
tDAH  
SCL Pulse Width, LOW  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
C
C
C
C
C
C
C
C
4.7  
4.0  
4.0  
4.7  
4.0  
4.7  
250  
0
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
SCL Pulse Width, HIGH  
tSTAH  
tSTASU  
tSTOSU  
tBUFF  
tDSU  
SDA Start Hold Time  
SCL to SDA Setup Time (Stop)  
SCL to SDA Setup Time (Start)  
SDA Stop Hold Time Setup  
SDA to SCL Data Setup Time  
SDA to SCL Data Hold Time  
tDHO  
A/D Converter Performance Characteristics  
Test  
Parameter  
Temp.  
Rank  
Min.  
Typ.  
Max.  
Unit  
Analog to Digital Converter  
ELI  
Integral Linearity Error  
Differential Linearity Error  
Missing Codes  
Input full scale matching1  
Offset adjustment range  
Offset Register Value to Zero Offset  
Gain tempco  
Full  
Full  
PC  
PC  
PC  
PC  
D
-2.0  
-1.0  
2.0  
1.0  
0
LSB  
LSB  
ELD  
Full  
Full  
2.5  
25  
6
%FS  
%FS  
LSB  
ppm/°C  
MHz  
ns  
Full  
OSZ  
BW  
Full  
C
4
32  
59  
25°C  
25°C  
25°C  
25°C  
C
300  
400  
2
Analog bandwidth, full power  
Transient response  
D
C
tOV  
Over-voltage recovery time  
C
1.5  
ns  
Notes  
1. Without offset trim. (OSGY = OSBP = OSRP = 32.)  
REV. 1.2.15 1/14/02  
23  
PRODUCT SPECIFICATION  
FMS9875  
PLL Performance Characteristics  
Test  
Parameter  
Temp.  
Rank  
Min.  
Typ.  
Max.  
Unit  
Clock Input  
tJPP  
Peak-to-peak PLL Jitter  
MHz  
31.5  
49.5  
78.75  
108  
25°C  
C
ps  
6000  
3117  
1493  
892  
135  
750  
tJRMS RMS Jitter  
MHz  
31.5  
49.5  
78.75  
108  
25°C  
C
ps  
873  
488  
245  
148  
122  
135  
tJ2PP  
Peak-to-peak jitter with  
subdivide ratio equal  
to 2.  
MHz  
31.5  
49.5  
MHz  
31.5  
49.5  
25°C  
25°C  
C
C
ps  
ps  
1600  
1700  
tJ2RMS RMS jitter with subdivide  
ratio equal to 2.  
330  
203  
Notes  
1. In Figures 21-23, the dashed curve is with subdivide ratio = 2.  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
0
20  
40  
60  
80 100 120 140 160  
0
20  
40  
60  
80 100 120 140 160  
VCO Frequency, MHz  
VCO Frequency, MHz  
Figure 21. Pixel Clock Peak-to-Peak Jitter  
Figure 22. Pixel Clock RMS Jitter  
5%  
4%  
3%  
2%  
1%  
0
0
20  
40  
60  
VCO Frequency, MHz  
Figure 23. Pixel Clock % RMS Jitter  
80 100 120 140 160  
24  
REV. 1.2.15 1/14/02  
FMS9875  
PRODUCT SPECIFICATION  
By adjusting the values in the gain (GRP, GGY, GBP) and  
offset (OSRO, OSGY, OSBP) registers, the input conversion  
range can be matched to the incoming analog signals.  
Applications Information  
For additional applications information see Applications  
Notes available from the factory.  
AC Coupled Digitizer  
Shown in Figure 24 is an implementation of a video digitizer  
with AC coupled YPBPRinputs. Horizontal sync input.  
To minimize component count, use of the following on-chip  
circuits is recommended:  
1. ADC sampling clock.  
2. Clamp.  
Output data is three channel 24-bit pixels with a maximum  
rate of 140Ms/s. Data is clocked out on the negative edge of  
DCK. HSOUT is delayed HSIN.  
3. Voltage reference  
Optimum PLL Configuration Register (address 0x0C)  
settings for typical modes are listed in Table 7. Unless  
otherwise indicated, all modes are compliant with VESA or  
SMPTE specifications. For unlisted modes, values should be  
adjusted to optimize performance.  
Control is through the serial port with 150resistors  
inserted to allow interfacing with 5V logic. If the serial bus is  
operates with 3.3V levels, these resistors are unnecessary.  
VPLL  
VADC  
VDIG  
C1  
Y
.047uF  
U1  
C2  
R1  
75  
FMS9875  
PB  
75  
NC9  
74  
.047uF  
26  
27  
33  
37  
39  
VDDP  
VDDP  
VDDP  
VDDP  
VDDP  
NC8  
73  
NC7  
48  
F
R2  
75  
NC6  
47  
NC5  
46  
NC4  
45  
NC3  
44  
3
9
YGIN  
BPIN  
RPIN  
YGREF  
BPREF  
RPREF  
CKINV  
CLAMP  
SDA  
NC2  
43  
F
NC1  
RN1 100  
YDATA [7..0]  
15  
4
76  
77  
78  
79  
80  
81  
82  
83  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
PR  
DYG7  
DYG6  
DYG5  
DYG4  
DYG3  
DYG2  
DYG1  
DYG0  
R3  
75  
C3  
.047uF  
10  
16  
20  
21  
22  
23  
24  
25  
30  
31  
34  
35  
R4  
F
SDA  
RN2 100  
PBATA [7..0]  
PRATA [7..0]  
INVSCK  
CLAMP  
150  
R5  
63  
64  
65  
66  
67  
68  
69  
70  
16  
15  
14  
13  
12  
11  
10  
9
1
DPB7  
DPB6  
DPB5  
DPB4  
DPB3  
DPB2  
DPB1  
DPB0  
2
3
4
5
6
7
8
SCL  
150  
SCL  
A0  
A1  
A0  
RN3 100  
VPLL  
51  
52  
53  
54  
55  
56  
57  
58  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
A1  
DPR7  
DPR6  
DPR5  
DPR4  
DPR3  
DPR2  
DPR1  
DPR0  
C4  
R6  
3.3k  
HSIN  
HSIN  
COAST  
XCK  
0.039uF  
C 5  
R7  
47  
LPF  
86  
87  
88  
89  
97  
DCK  
DCK  
DCK  
0.0039uF  
2
96  
98  
ACSIN  
PWRDN  
REFIN  
R8  
47  
DCK  
HSOUT  
DCSOUT  
REFOUT  
F
REFOUT  
C6  
0.1uF  
Figure 24. Schematic, VGA Digitizer, AC Coupled RGB  
REV. 1.2.15 1/14/02  
25  
PRODUCT SPECIFICATION  
FMS9875  
Digital I/O  
Printed Wiring Board Design Guidelines  
Recommendations:  
Recommended strategy is to mount the FMS9875 over a  
ground plane with carefully routed analog inputs and digital  
outputs. All connections should be treated as transmission  
lines to ensure that reflections due to mismatches are mini-  
mized and ground return currents do not interfere with critical  
signals.  
1. Route digital I/O signals clear of analog inputs.  
2. Terminate clock lines to reduce reflections. Treat clock  
lines as transmission lines.  
3. Scale the HSIN input to 3.3V, using a resistor network  
or a series 1 kresistor.  
Analog Inputs  
4. Limit Serial Port inputs voltages applied to SDA and  
SDL pins with 150resistors connected directly to the  
pins.  
Recommendations:  
1. Keep analog trace lengths short to minimize crosstalk.  
5. If necessary, to reduce reflections, EMI or spikes add a  
2. Terminate analog inputs with 75resistors, placed  
50–200resistor at each data output pin.  
close to the FMS9875 analog inputs, RIN, GIN and BIN  
By matching transmission line impedances, reflections  
will be minimized.  
.
6. If necessary, to reduce reflections, EMI or spikes add a  
50–200resistor at each data output pi.  
3. Layout traces as 75transmission lines.  
7. To minimize noise within the FMS9875, restrict the  
capacitive load at the digital outputs to < 10pF.  
4. Avoid running analog traces near digital traces. Due to  
the wide input bandwidth (400MHz) digital noise can  
easily leak into analog inputs or cause excessive PLL  
jitter.  
Power and Ground  
A schematic of the recommended power distribution is  
shown in Figure 26. Note that:  
5. If necessary, limit bandwidth by adding a ferrite bead in  
series with each RGB input as shown in Figure 25. A  
Fair-Rite #2508051217Z0 is recommended.Alternatively,  
bandwidth reduction using a shunt 10pF capacitor may  
reduce snow (intensity noise) caused by HF noise riding  
on the RGB input. Mismatches, reflections and noise  
may cause ringing or distortion of the incoming video  
signals.  
1. Analog and digital circuits are layed out over a common  
solid ground plane.  
2. Each FMS9875 pin is decoupled with a 0.1µF capacitor.  
3. A group of pins may be de-coupled through a common  
capacitor if no pin is more than 5 mm from the capacitor.  
4. A separate regulated supply is used for the phase-locked  
6. Locate the PLL filter close to the FMS9875 package and  
clear of other signals.  
loop power supply, VDDP  
.
5. Capacitors are attached to each PLL pin or pin-pair.  
7. Bypass the reference with a 0.1µF capacitor to ground.  
C1  
47nF  
L1  
BEAD  
RIN, GIN, BIN  
R,G,B INPUT  
R1  
75  
C2  
10pF  
Figure 25. RGB Input Filter Options  
26  
REV. 1.2.15 1/14/02  
FMS9875  
PRODUCT SPECIFICATION  
Pins 26, 27  
C1  
0.01µF  
Pin 33  
C2  
0.1µF  
Pin 37  
Pin 39  
C3  
0.01µF  
U1  
RC1117-3.3  
L1  
BEAD  
VPLL  
C5  
2
4
3
OUT  
PowerInput  
IN  
ADJ/GND  
C4  
0.1µF  
OUT  
C6  
C7  
+
10µF  
1
0.1µF  
10µF  
L2  
BEAD  
VADC Pins  
C8  
C9  
C10 C11 C12 C13 C14  
C15  
+ C24  
10µF  
0.1µF 0.1µF 0.1µF 0.1µF 0.1µF 0.1µF 0.1µF 0.1µF  
U2  
RC1117-3.3  
L3  
BEAD  
2
4
3
VDD Pins  
OUT  
OUT  
IN  
ADJ/GND  
1
C16 C17 C18 C19 C20 C21 C22  
C23  
0.1µF 0.1µF 0.1µF 0.1µF 0.1µF 0.1µF 0.1µF  
+
C25  
0.1µF  
10µF  
Figure 26. Recommended Power Distribution  
Physical placement of PLL power supply decoupling  
components is critical. Bearing in mind the following  
suggestions:  
with 700mV input, adjust GGY, GBP and GRP so that  
each RGB data output D7-0 = (same value), typically  
240 decimal. Average values during calibration to  
minimize the impact of noise.  
1. All components should be placed in close proximity to  
the FMS9875 pins.  
4. In theYPBPR mode, theY-channel calibration procedure  
is the same as for GBR. PBPR channels must be  
calibrated differently. If the internal mid-scale clamp is  
used, Offset is automatically preset. Only the Gain need  
be adjusted to accomodate the swing from peak blue to  
peak orange on the PB channel; and peak red to peak  
cyan onthe PR channel. Average values during calibra-  
tion to minimize the impact of noise.  
2. Routing through vias should be avoided, if possible.  
3. Each VDDP/GND pin pair: 26&27/28, 33/32, 37/38, and  
39/40 should be decoupled with a either a 0.01 or 0.1 µF  
capacitor (see Figure 24).  
4. Use Fair-rite 274 301 9447 bead.  
5. Clamp registers, CD and CW, should be programmed to  
maximize the period of the clamp during the backporch,  
while not encroaching into the sync or active video  
periods.  
Firmware  
Best performance can be achieved by correctly setting the  
FMS9875 registers. Here are some recommendations:  
6. PHASE must be trimmed to minimize onscreen snow  
(intensity noise) when a vertical grill pattern is  
displayed.  
1. For analog video, the sampling rate is usually 2X–3X  
the video bandwidth. PLLN and PHASE are not critical.  
2. For PC video, set the value of PLLN equal to the num-  
ber of pixels to be sampled minus one. With this setting,  
the number of samples per horizontal line equals the  
number of pixels. If PLLN + 1 does not equal the num-  
ber of pixels, there will be irregular intensities on text  
and an interference pattern on a vertical grill pattern.  
7. FVCO must be set to encompass the incoming  
frequency range.  
8. IPUMP must be set to minimize intensity noise.  
9. To ensure correct power-on defaults, program all regis-  
ters including Test Register 0x0F, which must be set to  
0x00 for normal operation. Note that unlike registers  
0x00 through 0x0D, register 0x0F does not acknowl-  
edge. The ACK bit remains H instead of being pulled L.  
3. In the GBR mode, calibrate Offset and Gain by first set-  
ting each input to 0mV. Then adjust OSGY, OSBP, and  
OSRP to set each RGB data output D7-0 = 0x00. Next  
REV. 1.2.15 1/14/02  
27  
PRODUCT SPECIFICATION  
FMS9875  
Mechanical Dimensions  
100-Lead MQFP (KG) Package  
Notes:  
Millimeters  
Symbol  
Notes  
3, 5  
4
1. All dimensions and tolerances conform to ANSI Y14.5M-1994.  
Min.  
Typ.  
Max  
2. Dimensions D1 and E1 do not include mold protrusion.  
Allowable mold protrusion is 0.254mm per side.  
A
2.82  
0.15  
3.00  
A1  
A2  
D
3. "N" is the number of terminals, 25 per side.  
2.62  
2.77  
2.67  
4. Dimension "b" does not include dambar protrusion. Allowable  
dambar protrusion shall be 0.08mm in excess of the "b"  
dimension at the maximum material condition.  
17.20 BSC  
14.00 BSC  
12.00 BSC  
0.88  
D1  
D2  
L
0.73  
0.17  
1.03  
0.27  
N
100  
0.50 BSC  
e
b
.40 Min.  
0° Min.  
0.13 R Min.  
Datum Plane  
.13/.30 R  
e
07°  
D2  
L
D1/2  
1.60 Ref.  
Lead Detail  
D
A2  
See Lead Detail  
Base Plane  
A
-C-  
B
Seating Plane  
A1  
LEAD COPLANARITY  
ccc  
C
28  
REV. 1.2.15 1/14/02  
PRODUCT SPECIFICATION  
FMS9875  
Ordering Information  
Product Number  
FMS9875KGC100  
FMS9875KGC100X  
Temperature Range  
Screening  
Commercial  
Commercial  
Package  
Package Marking  
0°C to 70°C  
0°C to 70°C  
100 Lead MQFP  
9875KGC100  
9875KGC100  
100 Lead MQFP with  
Tape and Reel  
FMS9875KGC140  
FMS9875KGC140X  
0°C to 70°C  
0°C to 70°C  
Commercial  
Commercial  
100 Lead MQFP  
9875KGC140  
9875KGC140  
100 Lead MQFP with  
Tape and Reel  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO  
ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME  
ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, and (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in a significant injury of the user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
1/14/02 0.0m 004  
Stock#DS30009875  
2001 Fairchild Semiconductor Corporation  

相关型号:

FMS9884A

3x8-Bit, 108/140/175 Ms/s Triple Video A/D Converter with Clamps
FAIRCHILD

FMS9884AKAC100

3x8-Bit, 108/140/175 Ms/s Triple Video A/D Converter with Clamps
FAIRCHILD

FMS9884AKAC140

3x8-Bit, 108/140/175 Ms/s Triple Video A/D Converter with Clamps
FAIRCHILD

FMS9884AKAC175

3x8-Bit, 108/140/175 Ms/s Triple Video A/D Converter with Clamps
FAIRCHILD

FMS988AKAC100

Signal Conditioner
ETC

FMS988AKAC140

Signal Conditioner
ETC

FMSA-461

EMI INPUT FILTER 28 VOLT INPUT
CRANE

FMSA-461

EMI INPUT FILTER 28 VOLT INPUT
CRANE

FMSA-461/883

EMI INPUT FILTER 28 VOLT INPUT
CRANE

FMSA-461/883

EMI INPUT FILTER 28 VOLT INPUT
CRANE