HGT5A30N120CN [FAIRCHILD]

Insulated Gate Bipolar Transistor, 75A I(C), 1200V V(BR)CES, N-Channel, TO-247ST, 3 PIN;
HGT5A30N120CN
型号: HGT5A30N120CN
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Insulated Gate Bipolar Transistor, 75A I(C), 1200V V(BR)CES, N-Channel, TO-247ST, 3 PIN

局域网 电动机控制 栅 瞄准线 晶体管
文件: 总8页 (文件大小:206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTG30N120CN / HGTG5A30N120CN  
Data Sheet  
August 2002  
75A, 1200V, NPT Series N-Channel IGBT  
Features  
o
The HGTG30N120CN and HGT5A30N120CN are Non-  
Punch Through (NPT) IGBT design. This is a new member  
of the MOS gated high voltage switching IGBT family. IGBTs  
combine the best features of MOSFETs and bipolar  
transistors. This device has the high input impedance of a  
MOSFET and the low on-state conduction loss of a bipolar  
transistor.  
• 75A, 1200V, T = 25 C  
C
• 1200V Switching SOA Capability  
o
Typical Fall Time. . . . . . . . . . . . . . . . 350ns at T = 150 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
• Avalanche Rated  
The IGBT is ideal for many high voltage switching  
applications operating at moderate frequencies where low  
conduction losses are essential, such as: AC and DC motor  
controls, power supplies and drivers for solenoids, relays  
and contactors.  
Thermal Impedance SPICE Model  
Temperature Compensating SABER™ Model  
www.fairchildsemi.com  
Packaging  
Formerly Developmental Type TA49281.  
JEDEC STYLE TO-247  
E
C
Ordering Information  
COLLECTOR  
(BOTTOM SIDE  
METAL)  
G
PART NUMBER  
HGTG30N120CN  
HGT5A30N120CN  
PACKAGE  
TO-247  
TO-247-ST  
BRAND  
30N120CN  
30N120CN  
NOTE: When ordering, use the entire part number.  
Symbol  
C
JEDEC STYLE TO-247-ST  
E
G
C
COLLECTOR  
(BOTTOM SIDE  
METAL)  
G
E
FAIRCHILD SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
©2002 Fairchild Semiconductor Corporation  
HGTG30N120CN / HGT5A30N120CN Rev. C1  
HGTG30N120CN / HGT5A30N120CN  
o
Absolute Maximum Ratings  
T
= 25 C, Unless Otherwise Specified  
C
HGTG30N120CN  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
1200  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
75  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
40  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
240  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
o
±30  
Switching Safe Operating Area at T = 150 C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
150A at 1200V  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
500  
4.0  
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
W/ C  
C
Forward Voltage Avalanche Energy (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
135  
mJ  
AV  
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
-55 to 150  
260  
C
J
STG  
o
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
L
SC  
SC  
Short Circuit Withstand Time (Note 3) at V  
Short Circuit Withstand Time (Note 3) at V  
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
= 12V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
8
µs  
µs  
GE  
15  
GE  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Pulse width limited by maximum junction temperature.  
o
2. I  
CE  
= 30A, L = 400µH, T = 125 C.  
J
o
3. V  
CE(PK)  
= 960V, T = 125 C, R = 3.  
J
G
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
Collector to Emitter Leakage Current  
BV  
BV  
I
I
= 250µA, V  
= 0V  
= 0V  
1200  
-
-
-
CES  
ECS  
C
GE  
= 10mA, V  
15  
-
250  
-
V
C
GE  
o
I
V
= 1200V  
T
= 25 C  
-
-
µA  
µA  
mA  
V
CES  
CE  
C
C
C
C
C
o
T
T
T
T
= 125 C  
-
600  
-
o
= 150 C  
-
8
o
Collector to Emitter Saturation Voltage  
V
I
= 30,  
= 25 C  
-
-
2.1  
2.9  
6.6  
-
2.4  
3.5  
-
CE(SAT)  
C
V
= 15V  
o
GE  
= 150 C  
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 250µA, V = V  
CE GE  
6.0  
-
V
GE(TH)  
C
I
V
= ±20V  
±250  
-
nA  
A
GES  
SSOA  
GE  
o
T = 150 C, R = 3, V  
= 15V,  
150  
-
J
G
GE  
= 1200V  
L = 200µH, V  
CE(PK)  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
= 30A, V  
= 600V  
CE  
-
-
-
-
-
-
-
-
-
-
9.6  
260  
330  
24  
-
V
GEP  
C
C
Q
I
V
= 30A,  
V
= 15V  
325  
420  
30  
nC  
nC  
ns  
G(ON)  
GE  
GE  
= 600V  
CE  
V
= 20V  
o
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C  
J
d(ON)I  
I
= 30A  
CE  
t
21  
26  
ns  
rI  
V
V
R
= 960V  
= 15V  
= 3Ω  
CE  
GE  
Current Turn-Off Delay Time  
Current Fall Time  
t
220  
180  
2.2  
2.8  
4.2  
260  
240  
-
ns  
d(OFF)I  
t
ns  
G
fI  
L = 1mH  
Test Circuit (Figure 18)  
Turn-On Energy (Note 4)  
Turn-On Energy (Note 4)  
Turn-Off Energy (Note 5)  
E
E
E
mJ  
mJ  
mJ  
ON1  
ON2  
OFF  
3.5  
4.8  
©2002 Fairchild Semiconductor Corporation  
HGTG30N120CN / HGT5A30N120CN Rev. C1  
HGTG30N120CN / HGT5A30N120CN  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified (Continued)  
C
PARAMETER  
Current Turn-On Delay Time  
Current Rise Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
22  
MAX  
28  
UNITS  
ns  
o
t
IGBT and Diode at T = 150 C  
-
-
-
-
-
-
-
-
d(ON)I  
J
I
V
V
R
= 30A  
CE  
t
21  
26  
ns  
rI  
= 960V  
= 15V  
= 3Ω  
CE  
GE  
Current Turn-Off Delay Time  
Current Fall Time  
t
260  
350  
2.6  
5.6  
6.6  
-
300  
400  
-
ns  
d(OFF)I  
t
ns  
G
fI  
L = 1mH  
Turn-On Energy (Note 4)  
Turn-On Energy (Note 4)  
Turn-Off Energy (Note 5)  
E
E
E
mJ  
mJ  
mJ  
ON1  
ON2  
OFF  
Test Circuit (Figure 18)  
7.0  
7.5  
0.25  
o
Thermal Resistance Junction To Case  
NOTES:  
R
C/W  
θJC  
4. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. EON1 is the turn-on loss of the IGBT only. EON2  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same TJ as the IGBT. The diode type is specified in  
Figure 18.  
5. Turn-Off Energy Loss (EOFF) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
at the point where the collector current equals zero (ICE = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
Typical Performance Curves Unless Otherwise Specified  
80  
70  
60  
50  
40  
30  
20  
200  
160  
120  
80  
o
V
= 15V  
T
= 150 C, R = 3, V = 15V, L = 200µH  
GE  
GE  
J
G
40  
0
10  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
25  
50  
75  
100  
125  
150  
o
T
, CASE TEMPERATURE ( C)  
V
CE  
, COLLECTOR TO EMITTER VOLTAGE (V)  
C
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
100  
50  
40  
30  
20  
500  
400  
o
= 150 C, R = 3, L = 1mH, V = 960V  
CE  
o
I
T
SC  
J
G
V
= 960V, R = 3, T = 125 C  
G J  
CE  
300  
200  
100  
0
10  
f
f
= 0.05 / (t  
+ t  
)
MAX1  
d(OFF)I  
d(ON)I  
T
C
V
GE  
t
SC  
= (P - P ) / (E  
+ E  
)
MAX2  
D
C
ON2  
OFF  
o
15V  
75 C  
P
= CONDUCTION DISSIPATION  
(DUTY FACTOR = 50%)  
o
10  
0
C
75 C 12V  
o
110 C 15V  
o
o
R
= 0.25 C/W, SEE NOTES  
110 C 12V  
ØJC  
1
11  
12  
13  
14  
15  
16  
5
10  
20  
60  
I
, COLLECTOR TO EMITTER CURRENT (A)  
V
, GATE TO EMITTER VOLTAGE (V)  
CE  
GE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
©2002 Fairchild Semiconductor Corporation  
HGTG30N120CN / HGT5A30N120CN Rev. C1  
HGTG30N120CN / HGT5A30N120CN  
Typical Performance Curves Unless Otherwise Specified (Continued)  
350  
300  
250  
200  
150  
100  
50  
225  
200  
DUTY CYCLE < 0.5%, V  
GE  
PULSE DURATION = 250µs  
= 15V  
DUTY CYCLE < 0.5%, V  
GE  
PULSE DURATION = 250µs  
= 12V  
175  
150  
125  
100  
75  
o
T
= -55 C  
o
o
o
C
T
= -55 C  
T
= 25 C  
T
= 150 C  
C
C
C
o
T
= 150 C  
C
50  
o
T
= 25 C  
C
25  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
12  
15.0  
R
= 3, L = 1mH, V  
= 960V  
CE  
R
T
= 3, L = 1mH, V  
= 960V  
CE  
G
G
10  
8
12.5  
10.0  
7.5  
5.0  
2.5  
0
o
o
= 150 , V  
= 15V, V  
= 12V  
T
= 150 C, V  
= 12V OR 15V  
J
GE  
GE  
J
GE  
6
4
o
T
= 25 C, V = 12V OR 15V  
GE  
J
2
o
T
= 25 C, V  
GE  
= 15V, V  
45  
= 12V  
J
GE  
0
5
10  
15  
20  
25  
30  
35  
40  
50  
55  
60  
5
10  
15  
I , COLLECTOR TO EMITTER CURRENT (A)  
CE  
20  
25  
30  
35  
40  
45  
50  
55  
60  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
80  
40  
R
= 3, L = 1mH, V = 960V  
CE  
G
R
= 3, L = 1mH, V  
= 960V  
CE  
G
70  
60  
50  
40  
30  
20  
35  
30  
25  
20  
15  
o
o
T
= 25 C, T = 150 C, V = 12V  
GE  
J
J
o
o
T
= 25 C, T = 150 C, V  
= 12V  
= 15V  
J
J
GE  
o
= 25 C, T = 150 C, V  
GE  
o
T
= 15V  
55  
J
J
10  
0
o
o
T
= 25 C, T = 150 C, V  
J
J
GE  
5
10  
15  
I , COLLECTOR TO EMITTER CURRENT (A)  
CE  
20  
25  
30  
35  
40  
45  
50  
60  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
©2002 Fairchild Semiconductor Corporation  
HGTG30N120CN / HGT5A30N120CN Rev. C1  
HGTG30N120CN / HGT5A30N120CN  
Typical Performance Curves Unless Otherwise Specified (Continued)  
600  
500  
400  
300  
200  
100  
800  
700  
600  
500  
400  
300  
200  
R
= 3, L = 1mH, V  
= 960V  
CE  
G
R
= 3, L = 1mH, V = 960V  
CE  
G
o
o
= 150 C, V  
T
= 12V, V  
GE  
= 15V  
T
J
= 150 C, V = 12V AND 15V  
GE  
J
GE  
o
T
= 25 C, V  
= 12V AND 15V  
J
GE  
100  
0
o
T
= 25 C, V  
= 12V, V  
25  
= 15V  
35  
J
GE  
GE  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55 60  
5
10  
15  
20  
30  
40  
45  
50  
55 60  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER  
CURRENT  
16  
500  
o
DUTY CYCLE < 0.5%, V  
= 20V  
I
= 2mA, R = 20, T = 25 C  
CE  
PULSE DURATION = 250µs  
G(REF)  
L
C
14  
12  
10  
8
o
T
= -55 C  
C
400  
300  
200  
o
V
= 1200V  
CE  
T
= 25 C  
C
o
T
= 150 C  
C
V
= 800V  
V
= 400V  
CE  
CE  
6
4
100  
0
2
0
0
50  
100  
150  
200  
250  
300  
7
8
9
10  
11  
12  
13  
14  
15  
Q
G
, GATE CHARGE (nC)  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
10  
40  
o
FREQUENCY = 1MHz  
DUTY CYCLE < 0.5%, T = 110 C  
C
PULSE DURATION = 250µs  
C
35  
30  
25  
20  
15  
10  
5
IES  
V
= 15V  
8
6
4
2
0
GE  
V
GE  
= 10V  
C
OES  
C
RES  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
5
10  
15  
20  
25  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 16. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
©2002 Fairchild Semiconductor Corporation  
HGTG30N120CN / HGT5A30N120CN Rev. C1  
HGTG30N120CN / HGT5A30N120CN  
Typical Performance Curves Unless Otherwise Specified (Continued)  
0
10  
0.5  
0.2  
0.1  
-1  
10  
0.05  
0.02  
0.01  
t
1
P
D
0
DUTY FACTOR, D = t / t  
1
2
t
SINGLE PULSE  
PEAK T = (P X Z  
X R  
) + T  
θJC C  
2
J
D
θJC  
-2  
10  
-5  
-4  
10  
-3  
-2  
-1  
1
10  
10  
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 17. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
Test Circuit and Waveforms  
RHRP30120  
90%  
OFF  
10%  
ON2  
V
GE  
E
E
L = 1mH  
V
CE  
R
= 3Ω  
G
90%  
10%  
d(OFF)I  
+
-
I
CE  
t
t
V
= 960V  
rI  
DD  
t
fI  
t
d(ON)I  
FIGURE 18. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 19. SWITCHING TEST WAVEFORMS  
©2002 Fairchild Semiconductor Corporation  
HGTG30N120CN / HGT5A30N120CN Rev. C1  
HGTG30N120CN / HGT5A30N120CN  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge  
built in the handlers body capacitance is not discharged  
through the device. With proper handling and application  
procedures, however, IGBTs are currently being extensively  
used in production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 5, 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f  
; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
= 0.05/(t ).  
+ t  
MAX1  
MAX1  
d(OFF)I d(ON)I  
Deadtime (the denominator) has been arbitrarily held to 10%  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as ECCOSORBDLD26or equivalent.  
of the on-state time for a 50% duty factor. Other definitions  
are possible. t  
d(OFF)I  
and t are defined in Figure 19.  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
JM d(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
is important when controlling output ripple under a lightly  
loaded condition.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON2  
MAX2  
D
C
3. Tips of soldering irons should be grounded.  
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM θJC  
C
4. Devices should never be inserted into or removed from  
circuits with power on.  
The sum of device switching and conduction losses must  
not exceed P . A 50% duty factor was used (Figure 3) and  
D
5. Gate Voltage Rating - Never exceed the gate-voltage  
the conduction losses (P ) are approximated by  
C
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
P
= (V  
CE  
x I )/2.  
CE  
C
permanent damage to the oxide layer in the gate region.  
E
and E  
OFF  
are defined in the switching waveforms  
is the integral of the  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate  
open-circuited or floating should be avoided. These  
conditions can result in turn-on of the device due to  
voltage buildup on the input capacitor due to leakage  
currents or pickup.  
ON2  
shown in Figure 19. E  
instantaneous power loss (I  
ON2  
x V ) during turn-on and  
CE  
CE  
E
is the integral of the instantaneous power loss  
OFF  
(I  
x V ) during turn-off. All tail losses are included in the  
CE  
CE  
calculation for E  
; i.e., the collector current equals zero  
OFF  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
(I  
= 0).  
CE  
©2002 Fairchild Semiconductor Corporation  
HGTG30N120CN / HGT5A30N120CN Rev. C1  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
PACMAN™  
POP™  
Power247™  
PowerTrench  
QFET™  
QS™  
SPM™  
Stealth™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
ImpliedDisconnect™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
MSX™  
FACT™  
ActiveArray™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DOME™  
EcoSPARK™  
E2CMOSTM  
EnSignaTM  
FACT Quiet Series™  
â
FAST  
â
FASTr™  
FRFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
I2C™  
QT Optoelectronics™ TinyLogic™  
Quiet Series™  
RapidConfigure™  
RapidConnect™  
TruTranslation™  
UHC™  
UltraFET  
MSXPro™  
OCX™  
â
OCXPro™  
OPTOLOGIC  
Across the board. Around the world.™  
The Power Franchise™  
ProgrammableActive Droop™  
â
â
SILENT SWITCHER VCX™  
SMARTSTART™  
OPTOPLANAR™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TOANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOTASSUMEANY LIABILITYARISING OUT OF THEAPPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I1  

相关型号:

HGT5A40N60A4D

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL

HGTA32N60E2

32A, 600V N-Channel IGBT
INTERSIL

HGTB12N60D1C

TRANSISTOR,IGBT,N-CHAN,CURRENT SENSE,600V V(BR)CES,18A I(C),SIP
RENESAS

HGTB12N60D1C

18A, 600V, N-CHANNEL IGBT, TS-001AA
ROCHESTER

HGTD10N40F1

10A, 400V and 500V N-Channel IGBTs
INTERSIL

HGTD10N40F1S

10A, 400V and 500V N-Channel IGBTs
INTERSIL

HGTD10N40F1S9A

Insulated Gate Bipolar Transistor, 12A I(C), 400V V(BR)CES, N-Channel, TO-252AA
RENESAS

HGTD10N50F1

10A, 400V and 500V N-Channel IGBTs
INTERSIL

HGTD10N50F1S

10A, 400V and 500V N-Channel IGBTs
INTERSIL

HGTD10N50F1S9A

12A, 500V, N-CHANNEL IGBT, TO-252AA
RENESAS

HGTD14N41G4VLS

24A, 430V, N-CHANNEL IGBT, TO-252AA
RENESAS

HGTD14N41G4VLS9A

24A, 430V, N-CHANNEL IGBT, TO-252AA
RENESAS