HUF75542S3ST [ETC]

TRANSISTOR | MOSFET | N-CHANNEL | 80V V(BR)DSS | 75A I(D) | TO-263AB ; 晶体管| MOSFET | N沟道| 80V V( BR ) DSS | 75A I( D) | TO- 263AB\n
HUF75542S3ST
型号: HUF75542S3ST
厂家: ETC    ETC
描述:

TRANSISTOR | MOSFET | N-CHANNEL | 80V V(BR)DSS | 75A I(D) | TO-263AB
晶体管| MOSFET | N沟道| 80V V( BR ) DSS | 75A I( D) | TO- 263AB\n

晶体 晶体管 开关
文件: 总11页 (文件大小:168K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HUF75542P3, HUF75542S3S  
TM  
Data Sheet  
June 2000  
File Number 4845.2  
75A, 80V, 0.014 Ohm, N-Channel,  
UltraFET Power MOSFETs  
Packaging  
JEDEC TO-220AB  
JEDEC TO-263AB  
Features  
SOURCE  
DRAIN  
GATE  
• Ultra Low On-Resistance  
- r = 0.014Ω, VGS = 10V  
DS(ON)  
• Simulation Models  
©
- Temperature Compensated PSPICE® and SABER  
Electrical Models  
GATE  
SOURCE  
©
DRAIN  
- Spice and SABER Thermal Impedance Models  
(FLANGE)  
DRAIN (FLANGE)  
HUF75542P3  
- www.intersil.com  
HUF75542S3S  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
Symbol  
Ordering Information  
D
S
PART NUMBER  
PACKAGE  
TO-220AB  
TO-263AB  
BRAND  
75542P  
75542S  
HUF75542P3  
G
HUF75542S3S  
NOTE: When ordering, use the entire part number. Add the suffix T  
to obtain the variant in tape and reel, e.g., HUF75542S3ST.  
o
Absolute Maximum Ratings  
T = 25 C, Unless Otherwise Specified  
C
HUF75542P3, HUF75542S3S  
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
80  
80  
V
V
V
DSS  
Drain to Gate Voltage (R  
GS  
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
DGR  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
GS  
Drain Current  
o
Continuous (T = 25 C, V  
= 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
75  
58  
A
A
C
GS  
D
D
o
Continuous (T = 100 C, V  
= 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
GS  
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
Figure 4  
DM  
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS  
Figures 6, 14, 15  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
230  
1.54  
W
W/ C  
D
o
o
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 175  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
NOTE:  
1. T = 25 C to 150 C.  
o
o
J
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures.  
1
UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.  
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000  
SABER© is a Copyright of Analogy Inc.  
HUF75542P3, HUF75542S3S  
o
Electrical Specifications  
PARAMETER  
T = 25 C, Unless Otherwise Specified  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
BV  
DSS  
I
= 250µA, V  
= 0V (Figure 11)  
80  
-
-
-
-
-
-
V
D
GS  
GS  
GS  
I
V
V
V
= 75V, V  
= 70V, V  
= ±20V  
= 0V  
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
= 0V, T = 150 C  
-
250  
±100  
C
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
THERMAL SPECIFICATIONS  
I
-
GSS  
V
V
= V , I = 250µA (Figure 10)  
2
-
-
4
V
GS(TH)  
GS  
DS  
D
r
I
= 75A, V  
= 10V (Figure 9)  
0.012  
0.014  
DS(ON)  
D
GS  
o
Thermal Resistance Junction to Case  
R
R
TO-220 and TO-263  
-
-
-
-
0.65  
62  
C/W  
θJC  
o
Thermal Resistance Junction to  
Ambient  
C/W  
θJA  
SWITCHING SPECIFICATIONS (V  
= 10V)  
GS  
Turn-On Time  
t
V
V
R
= 40V, I = 75A  
D
= 10V,  
= 3.9Ω  
-
-
-
-
-
-
-
12.5  
117  
50  
80  
-
195  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
GS  
Turn-On Delay Time  
Rise Time  
t
-
d(ON)  
GS  
(Figures 18, 19)  
t
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
195  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 20V  
= 0V to 10V  
= 0V to 2V  
V
= 40V,  
-
-
-
-
-
150  
80  
180  
96  
7
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
= 75A,  
I
I
D
Gate Charge at 10V  
Q
g(10)  
g(TH)  
= 1.0mA  
g(REF)  
(Figures 13, 16, 17)  
Threshold Gate Charge  
Q
5.7  
15  
Gate to Source Gate Charge  
Gate to Drain "Miller" Charge  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
Q
-
gs  
gd  
Q
33  
-
C
V
= 25V, V = 0V,  
GS  
-
-
-
2750  
700  
-
-
-
pF  
pF  
pF  
ISS  
DS  
f = 1MHz  
(Figure 12)  
Output Capacitance  
C
OSS  
RSS  
Reverse Transfer Capacitance  
C
250  
Source to Drain Diode Specifications  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
1.00  
102  
UNITS  
V
Source to Drain Diode Voltage  
V
I
I
I
I
= 75A  
-
-
-
-
-
-
-
-
SD  
SD  
SD  
SD  
SD  
= 37.5A  
V
Reverse Recovery Time  
t
= 75A, dI /dt = 100A/µs  
SD  
ns  
rr  
Reverse Recovered Charge  
Q
= 75A, dI /dt = 100A/µs  
SD  
255  
nC  
RR  
2
HUF75542P3, HUF75542S3S  
Typical Performance Curves  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
80  
60  
40  
20  
0
V
= 10V  
GS  
25  
50  
75  
100  
125  
150  
175  
0
25  
50  
75  
100  
125  
o
150  
175  
o
T , CASE TEMPERATURE ( C)  
C
T
, CASE TEMPERATURE ( C)  
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
2
DUTY CYCLE - DESCENDING ORDER  
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.1  
P
DM  
NOTES:  
SINGLE PULSE  
-4  
t
1
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
DM  
x Z  
θJC  
x R + T  
J
θJC C  
t
2
0.01  
-5  
-3  
10  
-2  
10  
-1  
10  
0
1
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
1000  
o
T
= 25 C  
C
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
25  
V
= 10V  
GS  
100  
50  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
-5  
-4  
-3  
10  
-2  
10  
-1  
0
1
10  
10  
10  
10  
10  
t, PULSE WIDTH (s)  
FIGURE 4. PEAK CURRENT CAPABILITY  
3
HUF75542P3, HUF75542S3S  
Typical Performance Curves (Continued)  
1000  
100  
10  
500  
If R = 0  
= (L)(I )/(1.3*RATED BV  
SINGLE PULSE  
t
- V  
)
DD  
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS  
DSS  
T
= MAX RATED  
J
o
T
= 25 C  
C
t
AV  
- V ) +1]  
DD  
AS DSS  
100  
100µs  
o
STARTING T = 25 C  
J
10  
1
1ms  
o
STARTING T = 150 C  
J
10ms  
OPERATION IN THIS  
AREA MAY BE  
LIMITED BY r  
DS(ON)  
0.001  
0.01  
0.1  
1
10  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
200  
t
, TIME IN AVALANCHE (ms)  
AV  
V
DS  
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING  
CAPABILITY  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
150  
150  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
DD  
V
= 20V  
= 10V  
= 7V  
GS  
V
= 6V  
GS  
V
GS  
V
= 15V  
120  
90  
60  
30  
0
120  
90  
60  
30  
0
V
GS  
V
= 5V  
GS  
o
T
= 175 C  
J
PULSE DURATION = 80µs  
o
T
= 25 C  
J
DUTY CYCLE = 0.5% MAX  
o
o
T
= -55 C  
J
T
= 25 C  
C
0
1
2
3
4
2
3
4
5
6
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
GS  
FIGURE 7. TRANSFER CHARACTERISTICS  
FIGURE 8. SATURATION CHARACTERISTICS  
2.5  
2.0  
1.5  
1.0  
0.5  
1.2  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= V , I = 250µA  
DS  
GS  
D
1.0  
0.8  
0.6  
0.4  
V
= 10V, I = 75A  
D
GS  
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON  
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
RESISTANCE vs JUNCTION TEMPERATURE  
4
HUF75542P3, HUF75542S3S  
Typical Performance Curves (Continued)  
1.2  
1.1  
1.0  
0.9  
0.8  
10000  
1000  
100  
V
= 0V, f = 1MHz  
GS  
I
= 250µA  
D
C
= C + C  
GS GD  
ISS  
C
C
+ C  
OSS  
DS GD  
C
= C  
GD  
RSS  
-80  
-40  
0
40  
80  
120  
160  
200  
0.1  
1
10  
80  
o
T , JUNCTION TEMPERATURE ( C)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
J
DS  
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
10  
V
= 40V  
DD  
8
6
4
2
0
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
I
= 75A  
= 50A  
= 25A  
D
D
D
0
20  
40  
60  
80  
100  
Q , GATE CHARGE (nC)  
g
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.  
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
-
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS  
5
HUF75542P3, HUF75542S3S  
Test Circuits and Waveforms (Continued)  
V
DS  
V
Q
DD  
R
g(TOT)  
L
V
DS  
V
= 20V  
GS  
V
Q
GS  
g(10)  
+
V
DD  
V
= 10V  
V
GS  
GS  
-
DUT  
V
= 2V  
GS  
I
0
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 16. GATE CHARGE TEST CIRCUIT  
FIGURE 17. GATE CHARGE WAVEFORMS  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT  
FIGURE 19. SWITCHING TIME WAVEFORM  
6
HUF75542P3, HUF75542S3S  
PSPICE Electrical Model  
.SUBCKT HUF75542P3 2 1 3 ;  
rev 15 Feb 2000  
CA 12 8 4.4e-9  
CB 15 14 4.2e-9  
CIN 6 8 2.5e-9  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
EBREAK 11 7 17 18 87.2  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
-
+
50  
-
17  
18  
-
DBODY  
RDRAIN  
6
8
EBREAK  
ESG  
IT 8 17 1  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LDRAIN 2 5 1.0e-9  
LGATE 1 9 2.6e-9  
LSOURCE 3 7 1.1e-9  
LGATE  
EVTEMP  
RGATE  
GATE  
1
6
+
-
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 5.5e-3  
RGATE 9 20 1.0  
RLDRAIN 2 5 10  
RLGATE 1 9 26  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RLSOURCE 3 7 11  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 3.3e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
22  
RVTHRES  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*230),2.5))}  
.MODEL DBODYMOD D (IS = 2.5e-12 RS = 2.85e-3 XTI = 5.5 TRS1 = 2e-3 TRS2 = 1e-6 CJO = 3.2e-9 TT = 5.5e-8 M = 0.6)  
.MODEL DBREAKMOD D (RS = 2.9e-1 TRS1 = 1e-3 TRS2 = 1e-6)  
.MODEL DPLCAPMOD D (CJO = 3.4e-9 IS = 1e-30 M = 0.8 N = 10)  
.MODEL MMEDMOD NMOS (VTO = 3.06 KP = 4.8 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1)  
.MODEL MSTROMOD NMOS (VTO = 3.5 KP = 80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 2.67 KP = 0.08 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10)  
.MODEL RBREAKMOD RES (TC1 =1.3e-3 TC2 = -9e-7)  
.MODEL RDRAINMOD RES (TC1 = 1.1e-2 TC2 = 2.5e-5)  
.MODEL RSLCMOD RES (TC1 = 4.5e-3 TC2 = 1e-5)  
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC1 = -2.5e-3 TC2 = -1.1e-5)  
.MODEL RVTEMPMOD RES (TC1 = -2.75e-3 TC2 = 0)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.0 VOFF= -4.5)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.5 VOFF= -6.0)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.5 VOFF= 0.5)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -0.5)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
7
HUF75542P3, HUF75542S3S  
SABER Electrical Model  
REV 15 Feb 00  
template huf75542p3 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (is = 2.5e-12, rs = 2.85e-3, xti = 5.5, trs1 = 2e-3, trs2 = 1e-6, cjo = 3.2e-9, tt = 5.5e-8, m = 0.6)  
dp..model dbreakmod = (rs = 2.9e-1, trs1 = 1e-3, trs2 = 1e-6)  
dp..model dplcapmod = (cjo = 3.4e-9, is = 1e-30, m = 0.8, nl = 10)  
m..model mmedmod = (type=_n, vto = 3.06, kp = 4.8, is = 1e-30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 3.5, kp = 80, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_n, vto = 2.67, kp = 0.08, is = 1e-30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.0, voff = -4.5)  
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -4.5, voff = -6.0)  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.5)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -0.5)  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
c.ca n12 n8 = 4.4e-9  
c.cb n15 n14 = 4.2e-9  
c.cin n6 n8 = 2.5e-9  
RSLC2  
ISCL  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
DBREAK  
11  
50  
-
RDRAIN  
6
8
ESG  
EVTHRES  
+
16  
21  
i.it n8 n17 = 1  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
DBODY  
l.ldrain n2 n5 = 1e-9  
l.lgate n1 n9 = 2.6e-9  
l.lsource n3 n7 = 1.1e-9  
RGATE  
GATE  
1
6
+
-
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
res.rbreak n17 n18 = 1, tc1 = 1.3e-3, tc2 = -9e-7  
res.rdrain n50 n16 = 5.5e-3, tc1 = 1.1e-2, tc2 = 2.5e-5  
res.rgate n9 n20 = 1.0  
S1A  
S2A  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
res.rldrain n2 n5 = 10  
RVTEMP  
19  
S1B  
S2B  
res.rlgate n1 n9 = 26  
res.rlsource n3 n7 = 11  
13  
CB  
CA  
res.rslc1 n5 n51 = 1e-6, tc1 = 4.5e-3, tc2 = 1e-5  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 3.3e-3, tc1 = 0, tc2 = 0  
res.rvtemp n18 n19 = 1, tc1 = -2.75e-3, tc2 = 0  
res.rvthres n22 n8 = 1, tc1 = -2.5e-3, tc2 = -1.1e-5  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
spe.ebreak n11 n7 n17 n18 = 87.2  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/230))** 2.5))  
}
}
8
HUF75542P3, HUF75542S3S  
SPICE Thermal Model  
JUNCTION  
th  
REV 15 Feb 00  
T75542  
CTHERM1 th 6 4.1e-3  
CTHERM2 6 5 5.5e-3  
CTHERM3 5 4 8.6e-3  
CTHERM4 4 3 1.5e-2  
CTHERM5 3 2 1.6e-2  
CTHERM6 2 tl 6.5e-2  
RTHERM1  
CTHERM1  
6
RTHERM1 th 6 2.0e-4  
RTHERM2 6 5 3.5e-3  
RTHERM3 5 4 2.5e-2  
RTHERM4 4 3 9.0e-2  
RTHERM5 3 2 1.6e-1  
RTHERM6 2 tl 2.3e-1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model t75542  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 4.1e-3  
ctherm.ctherm2 6 5 = 5.5e-3  
ctherm.ctherm3 5 4 = 8.6e-3  
ctherm.ctherm4 4 3 = 1.5e-2  
ctherm.ctherm5 3 2 = 1.6e-2  
ctherm.ctherm6 2 tl = 6.5e-2  
4
3
2
rtherm.rtherm1 th 6 = 2.0e-4  
rtherm.rtherm2 6 5 = 3.5e-3  
rtherm.rtherm3 5 4 = 2.5e-2  
rtherm.rtherm4 4 3 = 9.0e-2  
rtherm.rtherm5 3 2 = 1.6e-1  
rtherm.rtherm6 2 tl = 2.3e-1  
}
tl  
CASE  
9
HUF75542P3, HUF75542S3S  
TO-263AB SURFACE MOUNT JEDEC TO-263AB PLASTIC PACKAGE  
E
A
INCHES  
MIN  
MILLIMETERS  
A
1
SYMBOL  
MAX  
0.180  
0.052  
0.034  
0.055  
-
MIN  
4.32  
MAX  
4.57  
1.32  
0.86  
1.39  
-
NOTES  
H
1
A
0.170  
0.048  
0.030  
0.045  
0.310  
0.018  
0.405  
0.395  
-
4, 5  
4, 5  
4, 5  
2
TERM. 4  
A
1.22  
1
b
0.77  
D
L
b
b
1.15  
1
2
7.88  
L
2
c
0.022  
0.425  
0.405  
0.46  
0.55  
10.79  
10.28  
4, 5  
-
L
1
D
E
e
10.29  
10.04  
-
1
3
0.100 TYP  
0.200 BSC  
2.54 TYP  
5.08 BSC  
7
b
b1  
c
e
e
7
1
J
1
e1  
H
0.045  
0.055  
0.105  
0.195  
0.110  
0.070  
-
1.15  
1.39  
2.66  
4.95  
2.79  
1.77  
-
-
1
0.450  
(11.43)  
TERM. 4  
J
0.095  
0.175  
0.090  
0.050  
0.315  
2.42  
4.45  
2.29  
1.27  
8.01  
-
1
L
-
L
L
L
4, 6  
3
1
2
3
L
3
0.350  
(8.89)  
2
b
2
0.700  
(17.78)  
NOTES:  
1. These dimensions are within allowable dimensions of Rev. C of  
JEDEC TO-263AB outline dated 2-92.  
2. L and b dimensions established a minimum mounting surface  
3
2
0.150  
(3.81)  
for terminal 4.  
3. Solder finish uncontrolled in this area.  
4. Dimension (without solder).  
3
1
0.080 TYP (2.03)  
0.062 TYP (1.58)  
5. Add typically 0.002 inches (0.05mm) for solder plating.  
6. L is the terminal length for soldering.  
1
7. Position of lead to be measured 0.120 inches (3.05mm) from bottom  
of dimension D.  
MINIMUM PAD SIZE RECOMMENDED FOR  
SURFACE-MOUNTED APPLICATIONS  
8. Controlling dimension: Inch.  
9. Revision 10 dated 5-99.  
4.0mm  
1.5mm  
1.75mm  
DIA. HOLE  
USER DIRECTION OF FEED  
2.0mm  
C
TO-263AB  
24mm TAPE AND REEL  
L
24mm  
16mm  
COVER TAPE  
40mm MIN.  
ACCESS HOLE  
30.4mm  
13mm  
330mm  
100mm  
GENERAL INFORMATION  
1. 800 PIECES PER REEL.  
2. ORDER IN MULTIPLES OF FULL REELS ONLY.  
3. MEETS EIA-481 REVISION "A" SPECIFICATIONS.  
24.4mm  
10  
HUF75542P3, HUF75542S3S  
TO-220AB  
3 LEAD JEDEC TO-220AB PLASTIC PACKAGE  
A
INCHES  
MIN  
MILLIMETERS  
E
ØP  
SYMBOL  
MAX  
0.180  
0.052  
0.034  
0.055  
0.019  
0.610  
0.160  
0.410  
0.030  
MIN  
4.32  
1.22  
0.77  
1.15  
0.36  
14.99  
-
MAX  
4.57  
NOTES  
A
1
A
0.170  
0.048  
0.030  
0.045  
0.014  
0.590  
-
-
Q
H
1
A
1.32  
-
1
b
0.86  
3, 4  
TERM. 4  
D
b
1.39  
2, 3  
1
o
45  
E
1
c
0.48  
2, 3, 4  
D
1
D
15.49  
4.06  
-
-
L
1
D
1
b1  
b
E
0.395  
-
10.04  
-
10.41  
0.76  
-
L
E
-
c
1
e
0.100 TYP  
0.200 BSC  
0.235  
2.54 TYP  
5.08 BSC  
5
5
-
o
60  
e
1
2
e
3
1
J
1
H
0.255  
0.110  
0.550  
0.150  
0.153  
0.112  
5.97  
6.47  
2.79  
13.97  
3.81  
3.88  
2.84  
1
1
e1  
J
0.100  
0.530  
0.130  
0.149  
0.102  
2.54  
13.47  
3.31  
6
-
L
L
2
-
1
ØP  
Q
3.79  
2.60  
-
NOTES:  
1. These dimensions are within allowable dimensions of Rev. J of  
JEDEC TO-220AB outline dated 3-24-87.  
2. Lead dimension and finish uncontrolled in L .  
1
3. Lead dimension (without solder).  
4. Add typically 0.002 inches (0.05mm) for solder coating.  
5. Position of lead to be measured 0.250 inches (6.35mm) from bot-  
tom of dimension D.  
6. Position of lead to be measured 0.100 inches (2.54mm) from bot-  
tom of dimension D.  
7. Controlling dimension: Inch.  
8. Revision 2 dated 7-97.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Intersil Ltd.  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
Mercure Center  
8F-2, 96, Sec. 1, Chien-kuo North,  
Taipei, Taiwan 104  
Republic of China  
TEL: 886-2-2515-8508  
FAX: 886-2-2515-8369  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
11  

相关型号:

HUF75545P3

75A, 80V, 0.010 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD

HUF75545P3

75A, 80V, 0.010 Ohm, N-Channel, UltraFET Power MOSFET
INTERSIL

HUF75545P3

75A, 80V, 0.01ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB, TO-220AB, 3 PIN
ROCHESTER

HUF75545P3

N 沟道,UltraFET 功率 MOSFET,80V,75A,10mΩ
ONSEMI

HUF75545P3_NL

75A, 80V, 0.01ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB, TO-220AB, 3 PIN
ROCHESTER

HUF75545S3

75A, 80V, 0.010 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD

HUF75545S3

75A, 80V, 0.01ohm, N-CHANNEL, Si, POWER, MOSFET, TO-262AA, TO-262AA, 3 PIN
ROCHESTER

HUF75545S3S

75A, 80V, 0.010 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD

HUF75545S3S

75A, 80V, 0.010 Ohm, N-Channel, UltraFET Power MOSFET
INTERSIL

HUF75545S3ST

75A, 80V, 0.01ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB, TO-263AB, 3 PIN
ROCHESTER

HUF75545S3ST

N 沟道,UltraFET 功率 MOSFET,80V,75A,10mΩ
ONSEMI

HUF75545S3ST_NL

Power Field-Effect Transistor, 75A I(D), 80V, 0.01ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, TO-263AB, 3 PIN
FAIRCHILD