UPD160903 [ETC]

UPD160903 Data Sheet | Data Sheet[06/2001] ; UPD160903数据表|数据表[ 06/2001 ]\n
UPD160903
型号: UPD160903
厂家: ETC    ETC
描述:

UPD160903 Data Sheet | Data Sheet[06/2001]
UPD160903数据表|数据表[ 06/2001 ]\n

光电二极管
文件: 总16页 (文件大小:106K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD160903  
384/402-OUTPUT TFT-LCD SOURCE DRIVER  
(COMPATIBLE WITH 64-GRAY SCALES)  
DESCRIPTION  
The µ PD160903 is a source driver for TFT-LCDs capable of dealing with displays with 64-gray scales. Data input is  
based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 262,144 colors  
by output of 64 values γ -corrected by an internal D/A converter and 5-by-2 external power modules. Because the  
output dynamic range is as large as VSS2 + 0.1 V to VDD2 – 0.1 V, level inversion operation of the LCD’s common  
electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and column line  
inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit  
whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a  
clock frequency of 45 MHz when driving at 2.7 V.  
FEATURES  
CMOS level input  
384/402 outputs  
Input of 6 bits (gray-scale data) by 6 dots  
Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter  
Logic power supply voltage (VDD1): 2.7 to 3.6 V  
Driver power supply voltage (VDD2): 5.5 V ± 0.275 V  
High-speed data transfer: fCLK = 45 MHz (internal data transfer speed when operating at VDD1 = 2.7 V)  
Output dynamic range: VSS2 + 0.1 V to VDD2 – 0.1 V  
Apply for dot-line inversion, n-line inversion and column line inversion  
Output voltage polarity inversion function (POL)  
Display data inversion function (POL21, POL22)  
Single-side mounting is possible (incorporation of slim TCP)  
ORDERING INFORMATION  
Part Number  
Package  
µ PD160903N-xxx  
TCP (TAB package)  
Remark The TCP’s external shape is customized. To order the required shape, so please contact one of our  
sales representatives.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. S14578EJ1V1DS00 (1st edition)  
Date Published June 2001 NS CP (K)  
The mark shows major revised points.  
Printed in Japan  
2000  
©
µPD160903  
1. BLOCK DIAGRAM  
STHR  
R,/L  
STHL  
V
V
DD1  
67-bit bidirectional shift register  
CLK  
STB  
SS1  
O
sel  
C1  
C2  
C66  
C67  
D
D
D
00 to  
10 to  
20 to  
D
D
D
05  
15  
25  
D30 to  
D40 to  
D50 to  
D35  
D45  
D55  
Data register  
POL21,  
POL22  
POL  
Latch  
V
V
DD2  
SS2  
Level shifter  
V
0 to  
V
9
D/A converter  
Voltage follower output  
TEST  
S
1
S
2
S
3
S
402  
Remark /xxx indicates active low signal.  
2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER  
S
1
S
2
S
401  
S
402  
5
5
V
0
V
4
Multi-  
plexer  
6-bit D/A converter  
V
5
V
9
POL  
2
Data Sheet S14578EJ1V1DS  
µPD160903  
3. PIN CONFIGURATION (µPD160903N-xxx) (Copper Foil Surface, Face-up)  
S402  
S401  
S400  
S399  
STHL  
D55  
D54  
D53  
D52  
D51  
D50  
D45  
D44  
D43  
D42  
D41  
D40  
D35  
D34  
D33  
D32  
D31  
D30  
VDD1  
TEST  
R,/L  
V9  
V8  
V7  
V6  
Copper Foil  
Surface  
V5  
VDD2  
VSS2  
V4  
V3  
V2  
V1  
V0  
Osel  
VSS1  
CLK  
STB  
POL  
POL21  
POL22  
D25  
D24  
D23  
D22  
D21  
D20  
D15  
D14  
D13  
D12  
D11  
D10  
D05  
D04  
D03  
S4  
S3  
S2  
S1  
D02  
D01  
D00  
STHR  
Remark This figure does not specify the TCP package.  
3
Data Sheet S14578EJ1V1DS  
µPD160903  
4. PIN FUNCTIONS  
(1/2)  
Pin Symbol  
S1 to S402  
Osel  
Pin Name  
I/O  
O
I
Description  
Driver output  
The D/A converted 64-gray-scale analog voltage is output.  
Selection number of  
outputs switching  
Osel:= H or open: 384 outputs (Output pinsS193 through S210 are invalid)  
Osel: = L: 402 outputs  
Pulled up internally in the LSI.  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
R,/L  
Display data  
I
The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6  
dots (2 pixels).  
DX0: LSB, DX5: MSB  
Shift direction control  
I
Refers to the shift direction control. The shift directions of the shift registers are as  
follows.  
R,/L = H (right shift): STHR (input), S1 S402, STHL (output)  
R,/L = L (left shift) : STHL (input), S402 S1, STHR (output)  
These refer to the start pulse I/O pins when driver ICs are connected in cascade.  
Fetching of display data starts when H is read at the rising edge of CLK.  
R,/L = H (right shift): STHR input, STHL output  
STHR  
STHL  
CLK  
Right shift start pulse  
Left shift start pulse  
Shift clock  
I/O  
I/O  
I
R,/L = L (left shift): STHL input, STHR output  
A high level should be input as the pulse of one cycle of the clock signal.  
If the start pulse input is more than 2CLK, the first 1CLK of the high-level input is  
valid.  
Refers to the shift register’s shift clock input. The display data is incorporated into  
the data register at the rising edge. At the rising edge of the 67th clock (64th clock  
in 384 outputs mode) after the start pulse input, the start pulse output reaches the  
high level, thus becoming the start pulse of the next-level driver. If 69th clock (66th  
clock in 384 mode) pulses are input after input of the start pulse, input of display  
data is halted automatically. The contents of the shift register are cleared at the  
STB’s rising edge.  
STB  
POL  
Latch  
Input  
I
The contents of the data register are transferred to the latch circuit at the rising edge.  
And, at the falling edge, the gray scale voltage is supplied to the driver after 4CLK .  
It is necessary to ensure input of one pulse per horizontal period.  
POL = L: The S2n–1 output uses V0 to V4 as the reference supply. The S2n output  
uses V5 to V9 as the reference supply.  
Polarity  
POL = H: The S2n–1 output uses V5 to V9 as the reference supply. The S2n output  
uses V0 to V4 as the reference supply.  
S2n-1 indicates the odd output: and S2n indicates the even output. Input of the POL  
signal is allowed the setup time (tPOL-STB) with respect to STB’s rising edge.  
Data inversion can invert when display data is loaded.  
POL21,  
POL22  
Data inversion  
I
POL21: Invert/not invert of display data D00 to D05, D10 to D15, D20 to D25.  
POL22: Invert/not invert of display data D30 to D35, D40 to D45, D50 to D55.  
POL21, POL22 = H : Display data is inverted.  
POL21, POL22 = L : Display data is not inverted.  
TEST  
Test  
I
Normally, TEST = H or open.  
This pin is pulled up to the VDD1 power supply inside the IC  
V0 to V9  
γ -corrected power  
Input the γ -corrected power supplies from outside by using operational amplifier.  
Make sure to maintain the following relationships. During the gray scale voltage  
output, be sure to keep the gray scale level power supply at a constant level.  
VDD2 0.1 V V0 > V1 > V2 > V3 > V4 > 0.5 VDD2 > V5 > V6 > V7 > V8 > V9 VSS2 + 0.1 V  
supplies  
4
Data Sheet S14578EJ1V1DS  
µPD160903  
(2/2)  
Pin Symbol  
VDD1  
Pin Name  
Logic power supply  
Driver power supply  
Logic ground  
I/O  
Description  
2.7 to 3.6 V  
5.5 V ± 0.275 V  
Grounding  
VDD2  
VSS1  
VSS2  
Driver ground  
Grounding  
Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V9 in that order.  
Reverse this sequence to shut.  
2. To stabilize the supply voltage, please be sure to insert a 0.1 µF bypass capacitor between  
VDD1-VSS1 and VDD2-VSS2. Furthermore, for increased precision of the D/A converter, insertion  
of a bypass capacitor of about 0.01 µF is also recommended between the γ -corrected power  
supply terminals (V0, V1, V2,....., V9) and VSS2.  
5
Data Sheet S14578EJ1V1DS  
µPD160903  
5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE  
The µ PD160903 incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively  
gray scale voltages of differing polarity with respect to the LCD’s counter electrode voltage. The D/A converter  
consists of ladder resistors and switches.  
The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel γ -compensated voltages to V0’ to V63’  
and V0” to V63” is almost equivalent. For the 2 sets of five γ-compensated power supplies, V0 to V4 and V5 to V9,  
respectively, input gray scale voltages of the same polarity with respect to the common voltage.  
Figure 5–1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2 and VSS2,  
common electrode potential VCOM, and γ -corrected voltages V0 to V9 and the input data. Be sure to maintain the  
voltage relationships as follows:  
V
DD2 – 0.1 V V  
0
> V  
1
> V  
2
> V  
3
> V  
4
> 0.5 VDD2 > V  
5
> V  
6
> V  
7
> V  
8
> V VSS2 + 0.1 V  
9
Figures 5–2 and 5–3 indicates the relationship between the input data and output voltage and the resistance values  
of the resistor strings.  
Figure 5–1. Relationship between Input Data and γ -corrected Power Supplies  
V
V
DD2  
0.1 V  
0
16  
V
V
V
1
16  
16  
15  
2
3
V
V
4
COM  
0.5 VDD2  
Split interval  
V
5
15  
16  
16  
V
V
6
7
V
8
16  
V
9
0.1 V  
V
SS2  
20  
30  
10  
3F  
00  
Input data (HEX)  
6
Data Sheet S14578EJ1V1DS  
µPD160903  
Figure 5–2. Relationship between Input Data and Output Voltage  
VDD2 – 0.1 V V0 > V1 > V2 > V3 > V4 > 0.5 VDD2, POL21, POL22 = L  
Resitance ratio  
800  
750  
700  
650  
600  
550  
550  
500  
500  
400  
400  
350  
350  
350  
300  
300  
300  
250  
250  
250  
200  
200  
200  
150  
150  
150  
150  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
150  
150  
150  
200  
200  
250  
250  
300  
500  
800  
Data  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
DX5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DX4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DX3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
DX2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
DX1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
DX0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
rn  
Output voltage  
V
0
V
0
'
V0'  
V0  
r0  
r
r
r
r
0
1
2
3
V1'  
V1+(V0-V1)× 7250 /  
V1+(V0-V1)× 6500 /  
V1+(V0-V1)× 5800 /  
V1+(V0-V1)× 5150 /  
V1+(V0-V1)× 4550 /  
V1+(V0-V1)× 4000 /  
V1+(V0-V1)× 3450 /  
V1+(V0-V1)× 2950 /  
V1+(V0-V1)× 2450 /  
V1+(V0-V1)× 2050 /  
V1+(V0-V1)× 1650 /  
V1+(V0-V1)× 1300 /  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
r1  
V
V
V
1
'
'
'
V2'  
r2  
V3'  
r3  
2
3
V4'  
r4  
V5'  
r5  
V6'  
r6  
V7'  
r7  
V8'  
r8  
V9'  
r9  
V10'  
V11'  
V12'  
V13'  
V14'  
V15'  
V16'  
V17  
V18'  
V19'  
V20'  
V21'  
V22'  
V23'  
V24'  
V25'  
V26'  
V27'  
V28'  
V29'  
V30'  
V31'  
V32'  
V33'  
V34'  
V35'  
V36'  
V37'  
V38'  
V39'  
V40'  
V41'  
V42'  
V43'  
V44'  
V45'  
V46'  
V47'  
V48'  
V49'  
V50'  
V51'  
V52'  
V53'  
V54'  
V55'  
V56'  
V57'  
V58'  
V59'  
V60'  
V61'  
V62'  
V63'  
r10  
r11  
r12  
r13  
r14  
r15  
r16  
r17  
r18  
r19  
r20  
r21  
r22  
r23  
r24  
r25  
r26  
r27  
r28  
r29  
r30  
r31  
r32  
r33  
r34  
r35  
r36  
r37  
r38  
r39  
r40  
r41  
r42  
r43  
r44  
r45  
r46  
r47  
r48  
r49  
r50  
r51  
r52  
r53  
r54  
r55  
r56  
r57  
r58  
r59  
r60  
r61  
r62  
r
14  
15  
V1+(V0-V1)×  
V1+(V0-V1)×  
V1+(V0-V1)×  
V1  
950 /  
600 /  
300 /  
V
V
15  
'
'
r
V1  
16  
r
16  
17  
V2+(V1-V2)× 2450 /  
V2+(V1-V2)× 2200 /  
V2+(V1-V2)× 1950 /  
V2+(V1-V2)× 1700 /  
V2+(V1-V2)× 1500 /  
V2+(V1-V2)× 1300 /  
V2+(V1-V2)× 1100 /  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
V
17  
'
r
V2+(V1-V2)×  
V2+(V1-V2)×  
V2+(V1-V2)×  
V2+(V1-V2)×  
V2+(V1-V2)×  
V2+(V1-V2)×  
V2+(V1-V2)×  
V2+(V1-V2)×  
V2  
950 /  
800 /  
650 /  
500 /  
400 /  
300 /  
200 /  
100 /  
V3+(V2-V3)× 1500 /  
V3+(V2-V3)× 1400 /  
V3+(V2-V3)× 1300 /  
V3+(V2-V3)× 1200 /  
V3+(V2-V3)× 1100 /  
V3+(V2-V3)× 1000 /  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3+(V2-V3)×  
V3  
900 /  
800 /  
700 /  
600 /  
500 /  
400 /  
300 /  
200 /  
100 /  
r46  
r47  
r48  
V
V
V
47  
'
'
'
V3  
48  
49  
r49  
V4+(V3-V4)× 3350 /  
V4+(V3-V4)× 3250 /  
V4+(V3-V4)× 3150 /  
V4+(V3-V4)× 3050 /  
V4+(V3-V4)× 2950 /  
V4+(V3-V4)× 2800 /  
V4+(V3-V4)× 2650 /  
V4+(V3-V4)× 2500 /  
V4+(V3-V4)× 2300 /  
V4+(V3-V4)× 2100 /  
V4+(V3-V4)× 1850 /  
V4+(V3-V4)× 1600 /  
V4+(V3-V4)× 1300 /  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
r
60  
61  
V
61  
'
r
V62  
'
r62  
V
4
V63  
'
V4+(V3-V4)×  
V4  
800 /  
Caution There is no connection between V4 and V5 terminal in the chip.  
7
Data Sheet S14578EJ1V1DS  
µPD160903  
Figure 5–3. Relationship between Input Data and Output Voltage  
0.5 VDD2 > V5 > V6 > V7 > V8 > V9 VSS2 + 0.1 V, POL21, POL22 = L  
Data  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
DX5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DX4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DX3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
DX2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
DX1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
DX0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
rn  
r0  
r1  
r2  
r3  
r4  
r5  
r6  
Resistance ratio  
800  
750  
700  
650  
600  
550  
550  
500  
500  
400  
400  
350  
350  
350  
300  
300  
300  
250  
250  
250  
200  
200  
200  
150  
150  
150  
150  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
150  
150  
150  
200  
200  
250  
250  
300  
500  
800  
Output voltage  
V
V
63''  
62''  
V
5
V0"  
V1"  
V2"  
V3"  
V4"  
V5"  
V6"  
V7"  
V9  
V9+(V8-V9)×  
r
62  
61  
800 /  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
V9+(V8-V9)× 1550 /  
V9+(V8-V9)× 2250 /  
V9+(V8-V9)× 2900 /  
V9+(V8-V9)× 3500 /  
V9+(V8-V9)× 4050 /  
V9+(V8-V9)× 4600 /  
V9+(V8-V9)× 5100 /  
V9+(V8-V9)× 5600 /  
V9+(V8-V9)× 6000 /  
V9+(V8-V9)× 6400 /  
V9+(V8-V9)× 6750 /  
V9+(V8-V9)× 7100 /  
V9+(V8-V9)× 7450 /  
V9+(V8-V9)× 7750  
V8  
r
V
61''  
60''  
r
r
60  
59  
V
r7  
r8  
r9  
V8"  
V9"  
V10"  
V11"  
V12"  
V13"  
V14"  
V15"  
V16"  
V17"  
V18"  
V19"  
V20"  
V21"  
V22"  
V23"  
V24"  
V25"  
V26"  
V27"  
V28"  
V29"  
V30"  
V31"  
V32"  
V33"  
V34"  
V35"  
V36"  
V37"  
V38"  
V39"  
V40"  
V41"  
V42"  
V43"  
V44"  
V45"  
V46"  
V47"  
V48"  
V49"  
V50"  
V51"  
V52"  
V53"  
V54"  
V55"  
V56"  
V57"  
V58"  
V59"  
V60"  
V61"  
V62"  
V63"  
r10  
r11  
r12  
r13  
r14  
r15  
r16  
r17  
r18  
r19  
r20  
r21  
r22  
r23  
r24  
r25  
r26  
r27  
r28  
r29  
r30  
r31  
r32  
r33  
r34  
r35  
r36  
r37  
r38  
r39  
r40  
r41  
r42  
r43  
r44  
r45  
r46  
r47  
r48  
r49  
r50  
r51  
r52  
r53  
r54  
r55  
r56  
r57  
r58  
r59  
r60  
r61  
r62  
r
49  
V
V
V
49''  
48''  
47''  
r
r
48  
47  
V
6
V8+(V7-V8)×  
V8+(V7-V8)×  
V8+(V7-V8)×  
300 /  
550 /  
800 /  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
r
46  
V8+(V7-V8)× 1050 /  
V8+(V7-V8)× 1250 /  
V8+(V7-V8)× 1450 /  
V8+(V7-V8)× 1650 /  
V8+(V7-V8)× 1800 /  
V8+(V7-V8)× 1950 /  
V8+(V7-V8)× 2100 /  
V8+(V7-V8)× 2250 /  
V8+(V7-V8)× 2350 /  
V8+(V7-V8)× 2450 /  
V8+(V7-V8)× 2550 /  
V8+(V7-V8)× 2650  
V7  
V7+(V6-V7)×  
V7+(V6-V7)×  
V7+(V6-V7)×  
V7+(V6-V7)×  
V7+(V6-V7)×  
V7+(V6-V7)×  
V7+(V6-V7)×  
V7+(V6-V7)×  
V7+(V6-V7)×  
100 /  
200 /  
300 /  
400 /  
500 /  
600 /  
700 /  
800 /  
900 /  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
r
r
r
r
17  
16  
15  
14  
V
17''  
16''  
V
V
8
V7+(V6-V7)× 1000 /  
V7+(V6-V7)× 1100 /  
V7+(V6-V7)× 1200 /  
V7+(V6-V7)× 1300 /  
V7+(V6-V7)× 1400 /  
V7+(V6-V7)× 1500 /  
V6  
V
15''  
V6+(V5-V6)×  
V6+(V5-V6)×  
V6+(V5-V6)×  
V6+(V5-V6)×  
V6+(V5-V6)×  
V6+(V5-V6)×  
V6+(V5-V6)×  
V6+(V5-V6)×  
100 /  
200 /  
300 /  
400 /  
500 /  
650 /  
800 /  
950 /  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
r
2
V
2''  
r
r
1
0
V
1
''  
V6+(V5-V6)× 1150 /  
V6+(V5-V6)× 1350 /  
V6+(V5-V6)× 1600 /  
V6+(V5-V6)× 1850 /  
V6+(V5-V6)× 2150 /  
V6+(V5-V6)× 2650 /  
V5  
V
0
''  
V
9
Caution There is no connection between V4 and V5 terminal in the chip.  
8
Data Sheet S14578EJ1V1DS  
µPD160903  
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN  
Data format : 6 bits x 2 RGBs (6 dots)  
Input width : 36 bits (2-pixel data)  
(1) R,/L = H (Right shift)  
Output  
Data  
S1  
S2  
S3  
S4  
...  
S401  
S402  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
...  
D40 to D45  
D50 to D55  
(2) R,/L = L (Left shift)  
Output  
Data  
S1  
S2  
S3  
S4  
...  
...  
S401  
S402  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
Note  
Note  
POL  
L
S2n–1  
S2n  
V0 to V4  
V5 to V9  
V5 to V9  
V0 to V4  
H
Note S2n–1 (Odd output), S2n (Even output), n = 1, 2, ...... 201  
7. RELATIONSHIP BETWEEN STB, POL AND OUTPUT WAVEFORM  
The gray-scale voltage is output 4 clocks after the start of D/A conversion in the LSI, in synchronization with the  
rising edge of STB.  
During this 4-clock period, Hi-Z is output.  
STB  
POL  
S
2n-1  
Selected voltage V  
0
to V  
4
Selected voltage V  
5
to V  
9
Selected voltage V  
0
to V  
4
S
2n  
Selected voltage V  
5
to V  
9
Selected voltage V  
0
to V  
4
Selected voltage V  
5
to V  
9
Hi-Z  
Hi-Z  
Hi-Z  
9
Data Sheet S14578EJ1V1DS  
µPD160903  
8. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25°C, VSS1 = VSS2 = 0 V)  
Parameter  
Logic Part Supply Voltage  
Driver Part Supply Voltage  
Logic Part Input Voltage  
Driver Part Input Voltage  
Logic Part Output Voltage  
Driver Part Output Voltage  
Operating Ambient Temperature  
Storage Temperature  
Symbol  
VDD1  
Rating  
Unit  
V
–0.5 to +4.0  
VDD2  
VI1  
–0.5 to +10.0  
–0.5 to VDD1 + 0.5  
–0.5 to VDD2 + 0.5  
–0.5 to VDD1 + 0.5  
–0.5 to VDD2 + 0.5  
–20 to +75  
V
V
VI2  
V
VO1  
VO2  
TA  
V
V
°C  
°C  
Tstg  
–55 to +125  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
Recommended Operating Range (TA = –20 to +75°C, VSS1 = VSS2 = 0 V)  
Parameter  
Symbol  
VDD1  
Conditions  
MIN.  
2.7  
TYP.  
3.3  
MAX.  
3.6  
Unit  
V
Logic Part Supply Voltage  
Driver Part Supply Voltage  
High-Level Input Voltage  
Low-Level Input Voltage  
γ -Corrected Voltage  
VDD2  
VIH  
5.225  
0.7 VDD1  
0
5.5  
5.775  
V
VDD1  
V
VIL  
0.3 VDD1  
VDD20.1  
0.5 VDD2  
VDD20.1  
45  
V
V0 to V4  
V5 to V9  
VO  
0.5 VDD2  
0.1  
V
V
Driver Part Output Voltage  
Clock Frequency  
0.1  
V
fCLK  
MHz  
10  
Data Sheet S14578EJ1V1DS  
µPD160903  
Electrical Characteristics (TA = –20 to +75°C, VDD1 = 2.7 to 3.6 V, VDD2 = 5.5 V ± 0.275 V, VSS1 = VSS2 = 0 V)  
Parameter  
Symbol  
IIL  
Condition  
MIN.  
VDD1 – 0.1  
6.0  
TYP.  
MAX.  
Unit  
µA  
V
Input Leak Current  
±1.0  
High-Level Output Voltage  
Low-Level Output Voltage  
γ -Corrected Resistance  
VOH  
VOL  
Rγ  
STHR (STHL), IOH = 0 mA  
STHR (STHL), IOL = 0 mA  
0.1  
V
VDD2 = 5.5 V  
12.0  
18.0  
kΩ  
V0 to V4 = V5 to V9 = 2.0 V  
Driver Output Current  
IVOH  
VDD2 = 5.5 V, VX = 5.0 V, VOUT = 4.5 V Note1  
VDD2 = 5.5 V, VX = 0.5 V, VOUT = 1.0 V Note1  
TA = 25°C, VSS2 + 1.0 V to VDD2 – 1.0 V  
–150  
250  
±5  
–70  
µA  
µA  
IVOL  
70  
Output Voltage Deviation  
Output Swing Difference  
Deviation  
VO  
±20  
±15  
±20  
±30  
6.0  
mV  
mV  
mV  
mV  
mA  
VP–P1  
VP–P2  
VP–P3  
VDD1 = 3.3 V  
VDD2 = 5.5 V  
TA = 25°C  
VOUT = 1.2 to 4.3 V  
VOUT = 0.8 to 4.7 V  
VOUT = 0.1 to 5.4 V  
±3  
±7  
±15  
1.0  
Logic Part Dynamic Current IDD1  
Consumption Note2,3,4  
VDD1  
Driver Part Dynamic Current IDD2  
Consumption Note2,4  
VDD2, with no load  
3.7  
7.0  
mA  
Notes 1. VX refers to the output voltage of analog output pins S1 to S402.  
VOUT refers to the voltage applied to analog output pins S1 to S402.  
2. fSTB = 48 kHz, fCLK = 32.5 MHz  
3. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured  
values in the dot checkerboard input pattern.  
4. Refers to the current consumption per driver when cascades are connected under the assumption of XGA  
single-sided mounting (8 units).  
Switching Characteristics (TA = –20 to +75°C, VDD1 = 2.7 to 3.6 V, VDD2 = 5.5 V ± 0.275 V, VSS1 = VSS2 = 0 V)  
Parameter  
Symbol  
tPLH1  
Condition  
MIN.  
TYP.  
9
MAX.  
18  
Unit  
ns  
Start Pulse Delay Time  
Driver Output Delay Time  
CL = 15 pF  
Note  
Note  
Note  
Note  
tPLH2  
tPLH3  
tPHL2  
tPHL3  
CI1  
CL = 150 pF, RL = 4.7 kΩ  
3.8  
5.4  
3.3  
4.4  
5
5.0  
8.5  
5.0  
8.5  
10  
µs  
µs  
µs  
µs  
Input Capacitance  
Logic input other than STHR (STHL) is  
TA = 25°C  
pF  
CI2  
STHR (STHL),TA = 25°C  
8
15  
pF  
Note tPLH2 and tPHL2 are the time until the voltage reached its target voltage ±10% from the falling edge of STB.  
tPLH2 and tPHL2 are the time until the voltage reached its target voltage ±20 mV from the falling edge of STB.  
RL  
Measurement point  
Output  
R
L
L
=
=
4.7 k  
CL  
CL  
C
75 pF  
11  
Data Sheet S14578EJ1V1DS  
µPD160903  
Timing Requirements (TA = –20 to +75°C, VDD1 = 2.7 to 3.6 V, VSS1 = 0 V, tr = tf = 5.0 ns)  
Parameter  
Clock Pulse Width  
Symbol  
PWCLK  
Condition  
MIN.  
22  
4
TYP.  
MAX.  
Unit  
ns  
Clock Pulse High Period  
Clock Pulse Low Period  
Data Setup Time  
PWCLK(H)  
PWCLK(L)  
tSETUP1  
tHOLD1  
ns  
4
ns  
4
ns  
Data Hold Time  
2
ns  
Start Pulse Setup Time  
Start Pulse Hold Time  
POL21/22 Setup Time  
POL21/22 Hold Time  
STB Pulse Width  
tSETUP2  
tHOLD2  
tSETUP3  
tHOLD3  
4
ns  
2
ns  
2
ns  
3
ns  
PWSTB  
tLDT  
4
CLK  
CLK  
ns  
Last Data Timing  
2
CLK-STB Time  
tCLK-STB  
tSTB-CLK  
CLK ↑ → STB ↑  
4
STB-CLK Time  
STB ↑ → CLK ↑  
4
ns  
Time Between STB and Start Pulse tSTB-STH  
STB ↑ → STHR(STHL) ↑  
POL or ↓ → STB ↑  
STB ↓ → POL or ↑  
2
CLK  
ns  
POL-STB Time  
STB-POL Time  
tPOL-STB  
tSTB-POL  
6
6
ns  
Remark Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.  
12  
Data Sheet S14578EJ1V1DS  
µPD160903  
Switching Characteristic Waveform(R,/L= H)  
Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1 (the clock and display data  
numbers are examples when the resolution is XGA).  
13  
Data Sheet S14578EJ1V1DS  
µPD160903  
9. RECOMMENDED MOUNTING CONDITIONS  
The following conditions must be met for mounting conditions of the µPD160903.  
For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).  
Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under  
different conditions.  
µPD160903N-xxx : TCP (TAB Package)  
Mounting Condition  
Thermocompression  
Mounting Method  
Soldering  
Condition  
Heating tool 300 to 350°C, heating for 2 to 3 seconds : pressure 100g  
(per solder)  
ACF  
Temporary bonding 70 to 100°C : pressure 3 to 8 kg/cm2: time 3 to 5 sec.  
Real bonding 165 to 180°C: pressure 25 to 45 kg/cm2: time 30 to 40 sec.  
(When using the anisotropy conductive film SUMIZAC1003 of Sumitomo  
Bakelite,Ltd).  
(Adhesive  
Conductive Film)  
Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF  
manufacturing company. Be sure to avoid using two or more mounting methods at a time.  
14  
Data Sheet S14578EJ1V1DS  
µPD160903  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
15  
Data Sheet S14578EJ1V1DS  
µPD160903  
Reference Documents  
NEC Semiconductor Device Reliability/Quality Control System (C10983E)  
Quality Grades to NEC’s Semiconductor Devices (C11531E)  
The information in this document is current as of June, 2001. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data  
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products  
and/or types are available in every country. Please check with an NEC sales representative for  
availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4  

相关型号:

UPD160903N-XXX

Liquid Crystal Driver, 402-Segment, MOS, TCP
NEC

UPD160970

8-ch level shift driver IC
NEC

UPD160970MA

8-ch level shift driver IC
NEC

UPD160970MA-6A5

8-ch level shift driver IC
NEC

UPD161401

256-COLOR, 1/80-DUTY LCD CONTROLLER/DRIVER WITH ON-CHIP RAM
NEC

UPD161401P

256-COLOR, 1/80-DUTY LCD CONTROLLER/DRIVER WITH ON-CHIP RAM
NEC

UPD161401W

256-COLOR, 1/80-DUTY LCD CONTROLLER/DRIVER WITH ON-CHIP RAM
NEC

UPD1615GC(A)-XXX-8BT

MICROCONTROLLER, PQFP80, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, QFP-80
RENESAS

UPD161602A

360/396-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD161602AP

360/396-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD161602B

360/396-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD161602BP

360/396-OUTPUT TFT-LCD SOURCE DRIVER
NEC